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ABSTRACT 

A description of the techniques employed at Oxford University to 
obtain a high speed implementation of the RSA encryption algorithm on 
an "off-the-shelf" digital signal processing chip. using these 
techniques a two and a half second (average) encrypt time (for 512 bit 
exponent and modulus) was achieved on a first generation DSP (The 
Texas Instruments TMS 32010) and times below one second are achievable 
On second generation parts. Furthermore the techniques of algorithm 
development employed lead to a provably correct implementation. 

WHY DSP? 

At the time we started work we considered several implementation 
options : 
1. The first and most available option was an eight bit micro- 

Processor - best estimates of 512 bits in 4 minutes (ie. 2 bits per 
second) did not seem very promising. 

2. A 16 bit micro-processor - might make it in 50  seconds - but that's 
still too slow. 

3. Discrete logic - was going to be extremely complex and messy. 
4 .  A bit slice system would be very expensive to develop and 

implement. 
5. And although a custom/semi-custom chip would be cheap to 

manufacture, it would be expensive to develop and would be too 
inflexible to allow commitment to the high volumes necessary to 
make this approach economically viable. 
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One thing we did know about implementing the RSA algorithm is that it 
involved lots of multiplication and so we decided to see if we could 
utilise a dedicated hardware rnultiplier/accumulator or MAC. 

6. A MAC taking 100 ns for a 16 x 16 multiply was available and looked 
very promising. However, we quickly realised that we needed some 
fairly specialised hardware to drive it and feed it with data. 
Certainly no ordinary micro-processor would be able to keep up with 
the MAC'S performance. 

Just as we were beginning to despair the answer came to us courtesy Of 
Texas Instruments who announced a new type of chip : the Digital 
Signal Processor or DSP. 

DIAGRAM ONE - DSP ARCHITECTURE 
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7. The DSP - is a MAC and a fast microprocessor on a single chip which 
seemed to be the ideal combination... .... The first one available 
was the TMS320 which has a 200ns cycle time for most instructions 
including multiply. Our early performance estimates suggested that 
with this chip five seconds for a 512 bit exponentiation should be 
fairly easily achievable. 

THE IMPLE13ENTATION 

Having decided to use a DSP we have to develop a program for it. The 
first problem is that there are no suitable DSP compilers available 
and, although we might expect to eventually have to tune the assembler 
code to take full advantage of the DSP architecture and optimise 
performance, assembler is no good as a design language. Furthermore, 
our choice of implementation technique must take into consideration 
the nature of the application and in particular the requirement for 
integrity. With this in mind we chose to use the program development 
and validation techniques expounded by Prof. David Gries of Cornell 
University. The notation used is a combination of predicate logic and 
the "guarded command" form of computation guru Edsger Dijkstra. 

TAE ALGORITRM 

In our notation the RSA algorithm can be specified in terms of pre- 
and post- conditions thus: 

~ p e c  fastexp.O (a: A , E , M ;  out: c); 
{ pre: 0 C: A < M & 0 S E } 

I post: c = AE mod M 1 
endspec 

Where the pre conditions require that: the input data A is in the 
range 0 to M ,  the modulus minus one and the exponent E is positive; 
and post: the output data c equals A to the power E modulo M. 

The basic algorithm we will work with to satisfy these conditions 1s 
Knuth's 'square and multiply' exponentiation method with modulo 
reduction incorporated. Thus: 

proc fastexp.1 (a: A , E , M ;  out: c ) ;  
{pre: O I A < M h O S E }  

a, e, c := A,E,1 ; 
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{ inv: c * ae mod M = AE mod M } 

{ bound: t = 2 * log~e + 1 1 
- do e # O C e m o d 2 = O +  

e,a : = e = 2 , a * a e M  

1 e mod 2 #O + 

od e,c := e-1, c * a mod M - 

{ post: c = AE mod M 3 

endproc 

Notice that after initialisation of the variables the executable 
portion of this fastexp has been reduced to a single loop command 
albeit with two branches. Writing the algorithm in this very concise 
form which may not at first seem natural, allows us to prove its 
correctness more easily at a later stage. 

Obviously this basic algorithm will need to be written in a 
substantially different form before our target DSP can execute it and 
in order to arrive at an assembler code version we go through a 
process of step-wise refinement. At each step of refinement the 
algorithm is re-written in a form which can be proven to be equivalent 
to its predecessor. In the case of our RSA algorithm most of the 
refinement is necessary in order to be able to represent and operate 
on the several hundred bit long integers within the constraints of a 
16 bit architecture; the implementation of conditions, loops and other 
program constraints being fairly straightforward on the micro- 
processor-like DSP. 

In order to keep our top level program simple and well structured we 
introduce two procedures (subroutines) which we call 'longmult' and 
'longmod' to handle respectively the long integer multiplication and 
modulo reduction. 

Here is the specification 
pre/post condition form: 

~ ~ e c  longmult.O 
{ pre: 0 5 

of these procedures, once again using the 

in: u,v; a: w); 
u,v < bn 1 
- 
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{ post: w = u * v 1 
endspec 

longmod.0 (2: w,m; out: v); 
c pre: o s w < m2 1 
{ post: v = w mod m 3 

endspec 

THE HEART OF THE ALGORITHM 

These two procedures really are the heart of the algorithm; and the 
key to performance is going to be their design. First let us consider 
what algorithm to use for long multiplication. The problem we have is 
similar to one we learned to solve at school. There we knew, from a 
memorised table, how to multiply up to 12 times 12 but faced with a 
larger multiplication (and assuming that we all went to school before 
the advent of the pocket calculator) we used a paper and pencil 
algorithm which went something l i k e  this (referring to diagram two): 6 
times 2 is 12, 2 down carry 1, 2 times 2 is 4 plus one is 5 and SO on 
repeating for each row, shifting one column left each time and 
finishing with a final addition sum. This is a fairly convenient 
method of hand calculation but how efficient is it? 

Taking the general case of an n by n digit multiply - for each row we 
have to do n multiplications, 2n fetches, n i 1 stores and, n carry 
and add operations. Plus the final additions which require n2 fetches 
and adds plus carries etc. Assuming all perations are equivalent to 
execute that makes in the order of 6n2 instructions. 

Let's try it another way using the same principle but working in 
columns not rows and saving all the carries till we sum each column. 

DIAGRAM TWO - LONG MULTIPLICATION AT SCHOOL 

3 0 7 8 2 6  
4 1 5 1 3 2 x  

6 1 5 6 5 2  
9 2 3 4 7 8 -  

3 0 7 8 2 6 - -  
1 5 3 9 1 3 0 - - -  
3 0 7 8 2 6 - - - -  

1 2 3 1 3 0 4 - - - - -  

1 2 7 7 8 8 4 2 3 0 3 2  
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DIAGRAM THRXE - ALTERNATIVE LONG MULTIPLICATION 

3 0 7 8 2 6  
4 1 5 1 3 2 x  

6 0 1 4  1 6  4 1 2  
9 0 2 1  2 4  6 1 8  - 

3 0 7 8 2 6 - -  
1 5  0 3 5  40 1 0  3 0  - - - 

3 0 7 8 2 6 - - - -  
1 2  0 2 8 3 2  8 2 4  - - - - - 

1 2 7 7 8 8 4 2 3 0 3 2  

Referring to diagram 3 :  here 6 times 2 is 1 2 ,  2 down 1 to carry, 2 

times 2 is 4 ,  6 times 3 is 18 ,  1 8  plus 4 is 22 plus 1 is 23,  3 down 2 

to carry and so on for the other columns. This time we have the same 
number of multiplies and adds but have saved a set of fetches and 
carries leaving an order of 4n2 instructions, ie a saving of 3 3 %  over 
the previous method. A further 50% saving can be obtained at 
implementation by taking advantage of a feature of the TMS320 DSP 

which allows auto increment and decrement of data pointers during 
multiply and accumulate operations - this effectively gives us the 
data fetching for free. Using this feature the core of our multiply 
program is as shown in diagram four. 

In the DSP we have two auxiliary registers A R O  and AR1 which we use as 
data pointers and a T register which contains the multiplicand for any 
multiplication instructions. 

The MPY * star instruction multiplies the contents of the T- 
register by the data pointed to by the current auxiliary register. 
The LTA * star instruction loads the T register (with new data 
pointed to by the current auxiliary register) and adds the result of 
the previous multiply into the accumulator. 

DIAGRAM FOUR - MULTIPLICATION PROGRAM CORE 

MPY * +, 1 
LTA * -, 0 



31 7 

MPY * +, 1 
LTA * -, 0 
MPY * f , 1 
LTA * -, 0 
MPY * +, 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The + and - respectively increment and decrement the current auxiliary 
register and the 0 or 1 at the end selects a new auxiliary register as 

current for the next instruction. Both arguments for each successive 
multiply can thus be changed for no overhead while we multiply and 
add; which is what we need for the column based multiplication 
procedure just described. 

With this method we do have to ensure that we don't overflow the 
accumulator before the end of a column. However, it is a fairly 
simple calculation to work out the optimum word length to satisfy this 
condition. 

In practice we are prevented from using 16 bit words (on the early 
DSP'S anyway) because they take all data as being in two's compliment 
form. Some of the more recent DSP's do help out by providing 40 bit 
accumulators and unsigned arithmetic. 

Next let's consider the modulo reduction operation. We have an 
intermediate value (say W )  which is the result of a long multiply 
calculation and we want to find the remainder when W is divided by the 
modulus M. That is we want: 

X = W mod M = W - M * (W div M) 

where 'div' is normal integer division. 

Division on a DSP is hard (that is to say expensive in time) but given 
that throughout any single exponentiation we will always be using the 
same modulus and that we have available easy or 'cheap' 
multiplication, we can calculate (once only for each M )  R equals the 
reciprocal of M and subsequently obtain our result, X, by two 
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multiplications and a subtraction: 

X = W - M *  ( W * R )  

The problem is that R in this case is a real number considerably 
smaller than one. 

Thus, if we are to use this method we need to approximate and scale R. 
That is multiply R by some power of 2 and round off in order to 
represent R as an integer. 

The trade off in this is fairly clear - the more accurately we 
represent R (and other intermediate values) the longer it will take to 
do the multiplications, the less accurately the greater the error we 
will have to correct at the end. 

The mathematics of this trade-off are more complex than it would at 
first appear so I will just assume the results that we proved in our 
paper at Oxford. 

LONGMOD PROCEDURE (refer to Diagram Five) 

If M is represented as n base b digits (and therefore W is 2n base b 
digits) then R should be represented as the integer 

R : = b2n div M 
Note that R here will have n + 1 digits as a result of the second 
precondition defining the range of M. 

Next we multiply the most significant n + 1 digits of W by R and then 
multiply the n most significant digits of this result by M and 
subtracting the n + 1 least significant digits of this from the 
corresponding part of W. Our calculations show that the result x so 
obtained will always be in the range 0 to 3M - 1. In other words at 
most two further subtractions of M are required to give us the result 
we are looking for. 

It is possible to show that for about 90% of the values of W and M, 
the initial value of X obtained will be less than M and that only in 
1% of cases will X exceed 2M and thus require two correcting 
subtractions. 
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DIAGRAM FIVE - LONGMOD 

It can be seen from all this that for large n this modulo reduction 
method takes about the same time to execute as two long 
multiplications. Actually we can do almost twice as well as this by 
only calculating half the product in each long multiplication since 
the other half of each product is not required. 

Thus, apart from the small overhead of calculating the reciprocal R 
(which could of course be done in advance and stored with its 
corresponding M as part of the RSA key) the modulo calculation is not 
much slower than the long multiplication. 

FASTEXP CONTINUED 

Returning now to the top level Fastexp algorithm. If we represent the 
exponent E as a sequence of n base b digits where b = 2f then our next 
requirement of the algorithm will require two nested loops to take 
care of respectively the digits and bits of E. Skipping a Couple of 
refinement steps, our fastexp procedure is as shown in Diagram six, 

DIAGRAM S I X  - PROC FASTEXP.4 
proc fastexp.4 ( ~ :  A E M; out: c); 

( p r e : O I A < M & O < E }  
(en-l ... e0)b := E; 
a,c,i := A,I,O; 
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- do (en-l ... ei)b = 0 + 

(eif-1 . . . ei0) 2 := ei ; 
j := 0; 
- d o j < f +  
- if eij = 0 + skip 

$$ e i , = O + c : = c * a & M  

- fi; 

a := a * a mod M; 
j : = j + 1  od ; - 

od - i : = i + :  

{ post: c = AE mod M 1 

endproc 

which with a few further refinements, including insertion of our 
subroutines longmult and longmod and globalisation of the data 
(to save on parameter passing), can be translated almost directly into 
the TMS320 assembler code listed in Diagram seven. Notice how simple 
the program appears. 

DIAGRAM SEVW - PROC FASTEXP.7 

* 
* 
EXP 

* 
LOOP1 

ENDLl 

proc fastexp.7(var A,E,M,R,C) 

LAR AR1,N to initialize C 

LACK CO 
ADDS DATAO DATAO is XRAM data page address 
ADDS N 

SUBS ONE decrement ACC 

BAN2 LOOP1 

LARP 1 use AR1 as a counter 

MAR *- AR1 := N-1 
CO is ~ R A M  relative address of CO 

ACC is pointer to CAR, 

TBLW 2 ERO "CN-1 - .. c := 0 "  
repeat LOOP? while ARl>O and dec AR1 

TBLW ONE 'lC* := 1" 
ZAC 
SACL I "i := 0" 
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* 
LOOP 2 

* 
LOOP3 

LSBl 

* 
LSBO 

* 

ENDL3 

ENDL 2 * 

LACK EO 
ADDS DATAO 
ADDS I 
TBLR EI 
LACK F 
SUBS ONE 
SACL J 

ZALS EI 
AND ONE 
BZ LSBO 

LACK CO 
ADDS DATAO 
SACL X 
CALL LONMUL 
CALL LONMOD 

LACK A0 
ADDS DATAO 
SACL X 
CALL LONMUL 
CALL LONMOD 

LAC EI,15 
SACH EI 
ZALS J 
SUBS ONE 
SACL J 
BGEZ LOOP3 

ZALS I 
ADDS ONE 
SACL I 
SUBS NE 
BLZ LOOP2 

endproc 

EO is XRAM relative address of EO 

I~ACC := ~ 1 ~ 1 1  

"if ACC = + skip" (to LSBO) 
"if ACC = 1 + I r  

9 X := address of C 
"call longmult ( C) 
"call longmod ( C) 'I 

x := address of A0 
"call longmult (A) 
"call longmod(A)" 

"EI := EI div 2" 

llj := j - 1 1 1  

"repeat LOOP3 while j > O "  

lli := i+l" 

'Irepeat LOOP2 while itn," 

There are only 43 machine code instructions required apart from the 
multiplcation and modulo procedures. 

This simplicity is, another direct benefit of the rigourous 
development methodology employed. 

PERFORMANCE AND SECOND GENERATION DSP'S 

This implementation of Ifastexpl takes on average (that is with an 
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exponent composed of half 0's and half 1's) 2.6 seconds to execute 
with 512 bit modulus and exponent on a Texas Instruments TMS32010 
running at its maximum clock rate of 20 MHz. The 32010 (originally 
just called the TMs320) was the first general purpose DSP on the 
market but second generation DSP's are appearing now from most 
manufacturers and speed calculations using our algorithm suggest that 
times below 1 second will be possible on the TMS320C25 and below one 
quarter of a second on the Motorola DSP56200 which has a 24 x 24 
multiplier and 56 bit accumulator. 

The third (or is it fifth?) generation DSP from Inmos (the IMSA 100) 
which is part of the Transputer family, has on board no less than 32 
16 x 16 multiplier/accumulators and should prove to be the fastest yet 
once we have refined our algorithm into the OCCAM parallel processing 
language which is executed directly by the transputer hardware. 

CUSTOM CHIPS 

Finally, I know that I started this presentation by stating that we 
decided against a custom silicon RSA implementation on the grounds of 
development cost and inflexibility, but a number of developments have 
taken place since we originally came to that conclusion. Most 
importantly the advent of silicon compilers and low volume custom 
silicon processes has reduced the turnaround time and development cost 
to a point where manufacture of a few hundred chips is a viable 
proposition. Furthermore, the increase in demand for fast RSA 

solutions plus the ultimate unit cost and performance advantages has 
led Computer Security Limited's sister company, RAANND Systems Ltd, to 
develop a custom RSA chip. Dr Gordon Rankine, the Managing Director 
of RAANND and the architect of this RSA chip, code named Thomas, has 
documented his presentation of this design elsewhere in the 
proceedings. 
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