File : a-ngelfu.adb


   1 ------------------------------------------------------------------------------
   2 --                                                                          --
   3 --                         GNAT RUN-TIME COMPONENTS                         --
   4 --                                                                          --
   5 --                ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS                 --
   6 --                                                                          --
   7 --                                 B o d y                                  --
   8 --                                                                          --
   9 --          Copyright (C) 1992-2015, Free Software Foundation, Inc.         --
  10 --                                                                          --
  11 -- GNAT is free software;  you can  redistribute it  and/or modify it under --
  12 -- terms of the  GNU General Public License as published  by the Free Soft- --
  13 -- ware  Foundation;  either version 3,  or (at your option) any later ver- --
  14 -- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
  15 -- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
  16 -- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
  17 --                                                                          --
  18 --                                                                          --
  19 --                                                                          --
  20 --                                                                          --
  21 --                                                                          --
  22 -- You should have received a copy of the GNU General Public License and    --
  23 -- a copy of the GCC Runtime Library Exception along with this program;     --
  24 -- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
  25 -- <http://www.gnu.org/licenses/>.                                          --
  26 --                                                                          --
  27 -- GNAT was originally developed  by the GNAT team at  New York University. --
  28 -- Extensive contributions were provided by Ada Core Technologies Inc.      --
  29 --                                                                          --
  30 ------------------------------------------------------------------------------
  31 
  32 --  This body is specifically for using an Ada interface to C math.h to get
  33 --  the computation engine. Many special cases are handled locally to avoid
  34 --  unnecessary calls or to meet Annex G strict mode requirements.
  35 
  36 --  Uses functions sqrt, exp, log, pow, sin, asin, cos, acos, tan, atan, sinh,
  37 --  cosh, tanh from C library via math.h
  38 
  39 with Ada.Numerics.Aux;
  40 
  41 package body Ada.Numerics.Generic_Elementary_Functions is
  42 
  43    use type Ada.Numerics.Aux.Double;
  44 
  45    Sqrt_Two : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696;
  46    Log_Two  : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755;
  47 
  48    Half_Log_Two : constant := Log_Two / 2;
  49 
  50    subtype T is Float_Type'Base;
  51    subtype Double is Aux.Double;
  52 
  53    Two_Pi  : constant T := 2.0 * Pi;
  54    Half_Pi : constant T := Pi / 2.0;
  55 
  56    Half_Log_Epsilon    : constant T := T (1 - T'Model_Mantissa) * Half_Log_Two;
  57    Log_Inverse_Epsilon : constant T := T (T'Model_Mantissa - 1) * Log_Two;
  58    Sqrt_Epsilon        : constant T := Sqrt_Two ** (1 - T'Model_Mantissa);
  59 
  60    -----------------------
  61    -- Local Subprograms --
  62    -----------------------
  63 
  64    function Exp_Strict (X : Float_Type'Base) return Float_Type'Base;
  65    --  Cody/Waite routine, supposedly more precise than the library version.
  66    --  Currently only needed for Sinh/Cosh on X86 with the largest FP type.
  67 
  68    function Local_Atan
  69      (Y : Float_Type'Base;
  70       X : Float_Type'Base := 1.0) return Float_Type'Base;
  71    --  Common code for arc tangent after cycle reduction
  72 
  73    ----------
  74    -- "**" --
  75    ----------
  76 
  77    function "**" (Left, Right : Float_Type'Base) return Float_Type'Base is
  78       A_Right  : Float_Type'Base;
  79       Int_Part : Integer;
  80       Result   : Float_Type'Base;
  81       R1       : Float_Type'Base;
  82       Rest     : Float_Type'Base;
  83 
  84    begin
  85       if Left = 0.0
  86         and then Right = 0.0
  87       then
  88          raise Argument_Error;
  89 
  90       elsif Left < 0.0 then
  91          raise Argument_Error;
  92 
  93       elsif Right = 0.0 then
  94          return 1.0;
  95 
  96       elsif Left = 0.0 then
  97          if Right < 0.0 then
  98             raise Constraint_Error;
  99          else
 100             return 0.0;
 101          end if;
 102 
 103       elsif Left = 1.0 then
 104          return 1.0;
 105 
 106       elsif Right = 1.0 then
 107          return Left;
 108 
 109       else
 110          begin
 111             if Right = 2.0 then
 112                return Left * Left;
 113 
 114             elsif Right = 0.5 then
 115                return Sqrt (Left);
 116 
 117             else
 118                A_Right := abs (Right);
 119 
 120                --  If exponent is larger than one, compute integer exponen-
 121                --  tiation if possible, and evaluate fractional part with more
 122                --  precision. The relative error is now proportional to the
 123                --  fractional part of the exponent only.
 124 
 125                if A_Right > 1.0
 126                  and then A_Right < Float_Type'Base (Integer'Last)
 127                then
 128                   Int_Part := Integer (Float_Type'Base'Truncation (A_Right));
 129                   Result := Left ** Int_Part;
 130                   Rest := A_Right - Float_Type'Base (Int_Part);
 131 
 132                   --  Compute with two leading bits of the mantissa using
 133                   --  square roots. Bound  to be better than logarithms, and
 134                   --  easily extended to greater precision.
 135 
 136                   if Rest >= 0.5 then
 137                      R1 := Sqrt (Left);
 138                      Result := Result * R1;
 139                      Rest := Rest - 0.5;
 140 
 141                      if Rest >= 0.25 then
 142                         Result := Result * Sqrt (R1);
 143                         Rest := Rest - 0.25;
 144                      end if;
 145 
 146                   elsif Rest >= 0.25 then
 147                      Result := Result * Sqrt (Sqrt (Left));
 148                      Rest := Rest - 0.25;
 149                   end if;
 150 
 151                   Result := Result *
 152                     Float_Type'Base (Aux.Pow (Double (Left), Double (Rest)));
 153 
 154                   if Right >= 0.0 then
 155                      return Result;
 156                   else
 157                      return (1.0 / Result);
 158                   end if;
 159                else
 160                   return
 161                     Float_Type'Base (Aux.Pow (Double (Left), Double (Right)));
 162                end if;
 163             end if;
 164 
 165          exception
 166             when others =>
 167                raise Constraint_Error;
 168          end;
 169       end if;
 170    end "**";
 171 
 172    ------------
 173    -- Arccos --
 174    ------------
 175 
 176    --  Natural cycle
 177 
 178    function Arccos (X : Float_Type'Base) return Float_Type'Base is
 179       Temp : Float_Type'Base;
 180 
 181    begin
 182       if abs X > 1.0 then
 183          raise Argument_Error;
 184 
 185       elsif abs X < Sqrt_Epsilon then
 186          return Pi / 2.0 - X;
 187 
 188       elsif X = 1.0 then
 189          return 0.0;
 190 
 191       elsif X = -1.0 then
 192          return Pi;
 193       end if;
 194 
 195       Temp := Float_Type'Base (Aux.Acos (Double (X)));
 196 
 197       if Temp < 0.0 then
 198          Temp := Pi + Temp;
 199       end if;
 200 
 201       return Temp;
 202    end Arccos;
 203 
 204    --  Arbitrary cycle
 205 
 206    function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base is
 207       Temp : Float_Type'Base;
 208 
 209    begin
 210       if Cycle <= 0.0 then
 211          raise Argument_Error;
 212 
 213       elsif abs X > 1.0 then
 214          raise Argument_Error;
 215 
 216       elsif abs X < Sqrt_Epsilon then
 217          return Cycle / 4.0;
 218 
 219       elsif X = 1.0 then
 220          return 0.0;
 221 
 222       elsif X = -1.0 then
 223          return Cycle / 2.0;
 224       end if;
 225 
 226       Temp := Arctan (Sqrt ((1.0 - X) * (1.0 + X)) / X, 1.0, Cycle);
 227 
 228       if Temp < 0.0 then
 229          Temp := Cycle / 2.0 + Temp;
 230       end if;
 231 
 232       return Temp;
 233    end Arccos;
 234 
 235    -------------
 236    -- Arccosh --
 237    -------------
 238 
 239    function Arccosh (X : Float_Type'Base) return Float_Type'Base is
 240    begin
 241       --  Return positive branch of Log (X - Sqrt (X * X - 1.0)), or the proper
 242       --  approximation for X close to 1 or >> 1.
 243 
 244       if X < 1.0 then
 245          raise Argument_Error;
 246 
 247       elsif X < 1.0 + Sqrt_Epsilon then
 248          return Sqrt (2.0 * (X - 1.0));
 249 
 250       elsif X > 1.0 / Sqrt_Epsilon then
 251          return Log (X) + Log_Two;
 252 
 253       else
 254          return Log (X + Sqrt ((X - 1.0) * (X + 1.0)));
 255       end if;
 256    end Arccosh;
 257 
 258    ------------
 259    -- Arccot --
 260    ------------
 261 
 262    --  Natural cycle
 263 
 264    function Arccot
 265      (X    : Float_Type'Base;
 266       Y    : Float_Type'Base := 1.0)
 267       return Float_Type'Base
 268    is
 269    begin
 270       --  Just reverse arguments
 271 
 272       return Arctan (Y, X);
 273    end Arccot;
 274 
 275    --  Arbitrary cycle
 276 
 277    function Arccot
 278      (X     : Float_Type'Base;
 279       Y     : Float_Type'Base := 1.0;
 280       Cycle : Float_Type'Base)
 281       return  Float_Type'Base
 282    is
 283    begin
 284       --  Just reverse arguments
 285 
 286       return Arctan (Y, X, Cycle);
 287    end Arccot;
 288 
 289    -------------
 290    -- Arccoth --
 291    -------------
 292 
 293    function Arccoth (X : Float_Type'Base) return Float_Type'Base is
 294    begin
 295       if abs X > 2.0 then
 296          return Arctanh (1.0 / X);
 297 
 298       elsif abs X = 1.0 then
 299          raise Constraint_Error;
 300 
 301       elsif abs X < 1.0 then
 302          raise Argument_Error;
 303 
 304       else
 305          --  1.0 < abs X <= 2.0. One of X + 1.0 and X - 1.0 is exact, the other
 306          --  has error 0 or Epsilon.
 307 
 308          return 0.5 * (Log (abs (X + 1.0)) - Log (abs (X - 1.0)));
 309       end if;
 310    end Arccoth;
 311 
 312    ------------
 313    -- Arcsin --
 314    ------------
 315 
 316    --  Natural cycle
 317 
 318    function Arcsin (X : Float_Type'Base) return Float_Type'Base is
 319    begin
 320       if abs X > 1.0 then
 321          raise Argument_Error;
 322 
 323       elsif abs X < Sqrt_Epsilon then
 324          return X;
 325 
 326       elsif X = 1.0 then
 327          return Pi / 2.0;
 328 
 329       elsif X = -1.0 then
 330          return -(Pi / 2.0);
 331       end if;
 332 
 333       return Float_Type'Base (Aux.Asin (Double (X)));
 334    end Arcsin;
 335 
 336    --  Arbitrary cycle
 337 
 338    function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base is
 339    begin
 340       if Cycle <= 0.0 then
 341          raise Argument_Error;
 342 
 343       elsif abs X > 1.0 then
 344          raise Argument_Error;
 345 
 346       elsif X = 0.0 then
 347          return X;
 348 
 349       elsif X = 1.0 then
 350          return Cycle / 4.0;
 351 
 352       elsif X = -1.0 then
 353          return -(Cycle / 4.0);
 354       end if;
 355 
 356       return Arctan (X / Sqrt ((1.0 - X) * (1.0 + X)), 1.0, Cycle);
 357    end Arcsin;
 358 
 359    -------------
 360    -- Arcsinh --
 361    -------------
 362 
 363    function Arcsinh (X : Float_Type'Base) return Float_Type'Base is
 364    begin
 365       if abs X < Sqrt_Epsilon then
 366          return X;
 367 
 368       elsif X > 1.0 / Sqrt_Epsilon then
 369          return Log (X) + Log_Two;
 370 
 371       elsif X < -(1.0 / Sqrt_Epsilon) then
 372          return -(Log (-X) + Log_Two);
 373 
 374       elsif X < 0.0 then
 375          return -Log (abs X + Sqrt (X * X + 1.0));
 376 
 377       else
 378          return Log (X + Sqrt (X * X + 1.0));
 379       end if;
 380    end Arcsinh;
 381 
 382    ------------
 383    -- Arctan --
 384    ------------
 385 
 386    --  Natural cycle
 387 
 388    function Arctan
 389      (Y    : Float_Type'Base;
 390       X    : Float_Type'Base := 1.0)
 391       return Float_Type'Base
 392    is
 393    begin
 394       if X = 0.0 and then Y = 0.0 then
 395          raise Argument_Error;
 396 
 397       elsif Y = 0.0 then
 398          if X > 0.0 then
 399             return 0.0;
 400          else -- X < 0.0
 401             return Pi * Float_Type'Copy_Sign (1.0, Y);
 402          end if;
 403 
 404       elsif X = 0.0 then
 405          return Float_Type'Copy_Sign (Half_Pi, Y);
 406 
 407       else
 408          return Local_Atan (Y, X);
 409       end if;
 410    end Arctan;
 411 
 412    --  Arbitrary cycle
 413 
 414    function Arctan
 415      (Y     : Float_Type'Base;
 416       X     : Float_Type'Base := 1.0;
 417       Cycle : Float_Type'Base)
 418       return  Float_Type'Base
 419    is
 420    begin
 421       if Cycle <= 0.0 then
 422          raise Argument_Error;
 423 
 424       elsif X = 0.0 and then Y = 0.0 then
 425          raise Argument_Error;
 426 
 427       elsif Y = 0.0 then
 428          if X > 0.0 then
 429             return 0.0;
 430          else -- X < 0.0
 431             return Cycle / 2.0 * Float_Type'Copy_Sign (1.0, Y);
 432          end if;
 433 
 434       elsif X = 0.0 then
 435          return Float_Type'Copy_Sign (Cycle / 4.0, Y);
 436 
 437       else
 438          return Local_Atan (Y, X) *  Cycle / Two_Pi;
 439       end if;
 440    end Arctan;
 441 
 442    -------------
 443    -- Arctanh --
 444    -------------
 445 
 446    function Arctanh (X : Float_Type'Base) return Float_Type'Base is
 447       A, B, D, A_Plus_1, A_From_1 : Float_Type'Base;
 448 
 449       Mantissa : constant Integer := Float_Type'Base'Machine_Mantissa;
 450 
 451    begin
 452       --  The naive formula:
 453 
 454       --     Arctanh (X) := (1/2) * Log  (1 + X) / (1 - X)
 455 
 456       --   is not well-behaved numerically when X < 0.5 and when X is close
 457       --   to one. The following is accurate but probably not optimal.
 458 
 459       if abs X = 1.0 then
 460          raise Constraint_Error;
 461 
 462       elsif abs X >= 1.0 - 2.0 ** (-Mantissa) then
 463 
 464          if abs X >= 1.0 then
 465             raise Argument_Error;
 466          else
 467 
 468             --  The one case that overflows if put through the method below:
 469             --  abs X = 1.0 - Epsilon.  In this case (1/2) log (2/Epsilon) is
 470             --  accurate. This simplifies to:
 471 
 472             return Float_Type'Copy_Sign (
 473                Half_Log_Two * Float_Type'Base (Mantissa + 1), X);
 474          end if;
 475 
 476       --  elsif abs X <= 0.5 then
 477       --  why is above line commented out ???
 478 
 479       else
 480          --  Use several piecewise linear approximations. A is close to X,
 481          --  chosen so 1.0 + A, 1.0 - A, and X - A are exact. The two scalings
 482          --  remove the low-order bits of X.
 483 
 484          A := Float_Type'Base'Scaling (
 485              Float_Type'Base (Long_Long_Integer
 486                (Float_Type'Base'Scaling (X, Mantissa - 1))), 1 - Mantissa);
 487 
 488          B := X - A;                --  This is exact; abs B <= 2**(-Mantissa).
 489          A_Plus_1 := 1.0 + A;       --  This is exact.
 490          A_From_1 := 1.0 - A;       --  Ditto.
 491          D := A_Plus_1 * A_From_1;  --  1 - A*A.
 492 
 493          --  use one term of the series expansion:
 494 
 495          --    f (x + e) = f(x) + e * f'(x) + ..
 496 
 497          --  The derivative of Arctanh at A is 1/(1-A*A). Next term is
 498          --  A*(B/D)**2 (if a quadratic approximation is ever needed).
 499 
 500          return 0.5 * (Log (A_Plus_1) - Log (A_From_1)) + B / D;
 501       end if;
 502    end Arctanh;
 503 
 504    ---------
 505    -- Cos --
 506    ---------
 507 
 508    --  Natural cycle
 509 
 510    function Cos (X : Float_Type'Base) return Float_Type'Base is
 511    begin
 512       if abs X < Sqrt_Epsilon then
 513          return 1.0;
 514       end if;
 515 
 516       return Float_Type'Base (Aux.Cos (Double (X)));
 517    end Cos;
 518 
 519    --  Arbitrary cycle
 520 
 521    function Cos (X, Cycle : Float_Type'Base) return Float_Type'Base is
 522    begin
 523       --  Just reuse the code for Sin. The potential small loss of speed is
 524       --  negligible with proper (front-end) inlining.
 525 
 526       return -Sin (abs X - Cycle * 0.25, Cycle);
 527    end Cos;
 528 
 529    ----------
 530    -- Cosh --
 531    ----------
 532 
 533    function Cosh (X : Float_Type'Base) return Float_Type'Base is
 534       Lnv      : constant Float_Type'Base := 8#0.542714#;
 535       V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
 536       Y        : constant Float_Type'Base := abs X;
 537       Z        : Float_Type'Base;
 538 
 539    begin
 540       if Y < Sqrt_Epsilon then
 541          return 1.0;
 542 
 543       elsif Y > Log_Inverse_Epsilon then
 544          Z := Exp_Strict (Y - Lnv);
 545          return (Z + V2minus1 * Z);
 546 
 547       else
 548          Z := Exp_Strict (Y);
 549          return 0.5 * (Z + 1.0 / Z);
 550       end if;
 551 
 552    end Cosh;
 553 
 554    ---------
 555    -- Cot --
 556    ---------
 557 
 558    --  Natural cycle
 559 
 560    function Cot (X : Float_Type'Base) return Float_Type'Base is
 561    begin
 562       if X = 0.0 then
 563          raise Constraint_Error;
 564 
 565       elsif abs X < Sqrt_Epsilon then
 566          return 1.0 / X;
 567       end if;
 568 
 569       return 1.0 / Float_Type'Base (Aux.Tan (Double (X)));
 570    end Cot;
 571 
 572    --  Arbitrary cycle
 573 
 574    function Cot (X, Cycle : Float_Type'Base) return Float_Type'Base is
 575       T : Float_Type'Base;
 576 
 577    begin
 578       if Cycle <= 0.0 then
 579          raise Argument_Error;
 580       end if;
 581 
 582       T := Float_Type'Base'Remainder (X, Cycle);
 583 
 584       if T = 0.0 or else abs T = 0.5 * Cycle then
 585          raise Constraint_Error;
 586 
 587       elsif abs T < Sqrt_Epsilon then
 588          return 1.0 / T;
 589 
 590       elsif abs T = 0.25 * Cycle then
 591          return 0.0;
 592 
 593       else
 594          T := T / Cycle * Two_Pi;
 595          return Cos (T) / Sin (T);
 596       end if;
 597    end Cot;
 598 
 599    ----------
 600    -- Coth --
 601    ----------
 602 
 603    function Coth (X : Float_Type'Base) return Float_Type'Base is
 604    begin
 605       if X = 0.0 then
 606          raise Constraint_Error;
 607 
 608       elsif X < Half_Log_Epsilon then
 609          return -1.0;
 610 
 611       elsif X > -Half_Log_Epsilon then
 612          return 1.0;
 613 
 614       elsif abs X < Sqrt_Epsilon then
 615          return 1.0 / X;
 616       end if;
 617 
 618       return 1.0 / Float_Type'Base (Aux.Tanh (Double (X)));
 619    end Coth;
 620 
 621    ---------
 622    -- Exp --
 623    ---------
 624 
 625    function Exp (X : Float_Type'Base) return Float_Type'Base is
 626       Result : Float_Type'Base;
 627 
 628    begin
 629       if X = 0.0 then
 630          return 1.0;
 631       end if;
 632 
 633       Result := Float_Type'Base (Aux.Exp (Double (X)));
 634 
 635       --  Deal with case of Exp returning IEEE infinity. If Machine_Overflows
 636       --  is False, then we can just leave it as an infinity (and indeed we
 637       --  prefer to do so). But if Machine_Overflows is True, then we have
 638       --  to raise a Constraint_Error exception as required by the RM.
 639 
 640       if Float_Type'Machine_Overflows and then not Result'Valid then
 641          raise Constraint_Error;
 642       end if;
 643 
 644       return Result;
 645    end Exp;
 646 
 647    ----------------
 648    -- Exp_Strict --
 649    ----------------
 650 
 651    function Exp_Strict (X : Float_Type'Base) return Float_Type'Base is
 652       G : Float_Type'Base;
 653       Z : Float_Type'Base;
 654 
 655       P0 : constant := 0.25000_00000_00000_00000;
 656       P1 : constant := 0.75753_18015_94227_76666E-2;
 657       P2 : constant := 0.31555_19276_56846_46356E-4;
 658 
 659       Q0 : constant := 0.5;
 660       Q1 : constant := 0.56817_30269_85512_21787E-1;
 661       Q2 : constant := 0.63121_89437_43985_02557E-3;
 662       Q3 : constant := 0.75104_02839_98700_46114E-6;
 663 
 664       C1 : constant := 8#0.543#;
 665       C2 : constant := -2.1219_44400_54690_58277E-4;
 666       Le : constant := 1.4426_95040_88896_34074;
 667 
 668       XN : Float_Type'Base;
 669       P, Q, R : Float_Type'Base;
 670 
 671    begin
 672       if X = 0.0 then
 673          return 1.0;
 674       end if;
 675 
 676       XN := Float_Type'Base'Rounding (X * Le);
 677       G := (X - XN * C1) - XN * C2;
 678       Z := G * G;
 679       P := G * ((P2 * Z + P1) * Z + P0);
 680       Q := ((Q3 * Z + Q2) * Z + Q1) * Z + Q0;
 681       R := 0.5 + P / (Q - P);
 682 
 683       R := Float_Type'Base'Scaling (R, Integer (XN) + 1);
 684 
 685       --  Deal with case of Exp returning IEEE infinity. If Machine_Overflows
 686       --  is False, then we can just leave it as an infinity (and indeed we
 687       --  prefer to do so). But if Machine_Overflows is True, then we have to
 688       --  raise a Constraint_Error exception as required by the RM.
 689 
 690       if Float_Type'Machine_Overflows and then not R'Valid then
 691          raise Constraint_Error;
 692       else
 693          return R;
 694       end if;
 695 
 696    end Exp_Strict;
 697 
 698    ----------------
 699    -- Local_Atan --
 700    ----------------
 701 
 702    function Local_Atan
 703      (Y : Float_Type'Base;
 704       X : Float_Type'Base := 1.0) return Float_Type'Base
 705    is
 706       Z        : Float_Type'Base;
 707       Raw_Atan : Float_Type'Base;
 708 
 709    begin
 710       Z := (if abs Y > abs X then abs (X / Y) else abs (Y / X));
 711 
 712       Raw_Atan :=
 713         (if Z < Sqrt_Epsilon then Z
 714          elsif Z = 1.0 then Pi / 4.0
 715          else Float_Type'Base (Aux.Atan (Double (Z))));
 716 
 717       if abs Y > abs X then
 718          Raw_Atan := Half_Pi - Raw_Atan;
 719       end if;
 720 
 721       if X > 0.0 then
 722          return Float_Type'Copy_Sign (Raw_Atan, Y);
 723       else
 724          return Float_Type'Copy_Sign (Pi - Raw_Atan, Y);
 725       end if;
 726    end Local_Atan;
 727 
 728    ---------
 729    -- Log --
 730    ---------
 731 
 732    --  Natural base
 733 
 734    function Log (X : Float_Type'Base) return Float_Type'Base is
 735    begin
 736       if X < 0.0 then
 737          raise Argument_Error;
 738 
 739       elsif X = 0.0 then
 740          raise Constraint_Error;
 741 
 742       elsif X = 1.0 then
 743          return 0.0;
 744       end if;
 745 
 746       return Float_Type'Base (Aux.Log (Double (X)));
 747    end Log;
 748 
 749    --  Arbitrary base
 750 
 751    function Log (X, Base : Float_Type'Base) return Float_Type'Base is
 752    begin
 753       if X < 0.0 then
 754          raise Argument_Error;
 755 
 756       elsif Base <= 0.0 or else Base = 1.0 then
 757          raise Argument_Error;
 758 
 759       elsif X = 0.0 then
 760          raise Constraint_Error;
 761 
 762       elsif X = 1.0 then
 763          return 0.0;
 764       end if;
 765 
 766       return Float_Type'Base (Aux.Log (Double (X)) / Aux.Log (Double (Base)));
 767    end Log;
 768 
 769    ---------
 770    -- Sin --
 771    ---------
 772 
 773    --  Natural cycle
 774 
 775    function Sin (X : Float_Type'Base) return Float_Type'Base is
 776    begin
 777       if abs X < Sqrt_Epsilon then
 778          return X;
 779       end if;
 780 
 781       return Float_Type'Base (Aux.Sin (Double (X)));
 782    end Sin;
 783 
 784    --  Arbitrary cycle
 785 
 786    function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base is
 787       T : Float_Type'Base;
 788 
 789    begin
 790       if Cycle <= 0.0 then
 791          raise Argument_Error;
 792 
 793       --  If X is zero, return it as the result, preserving the argument sign.
 794       --  Is this test really needed on any machine ???
 795 
 796       elsif X = 0.0 then
 797          return X;
 798       end if;
 799 
 800       T := Float_Type'Base'Remainder (X, Cycle);
 801 
 802       --  The following two reductions reduce the argument to the interval
 803       --  [-0.25 * Cycle, 0.25 * Cycle]. This reduction is exact and is needed
 804       --  to prevent inaccuracy that may result if the sine function uses a
 805       --  different (more accurate) value of Pi in its reduction than is used
 806       --  in the multiplication with Two_Pi.
 807 
 808       if abs T > 0.25 * Cycle then
 809          T := 0.5 * Float_Type'Copy_Sign (Cycle, T) - T;
 810       end if;
 811 
 812       --  Could test for 12.0 * abs T = Cycle, and return an exact value in
 813       --  those cases. It is not clear this is worth the extra test though.
 814 
 815       return Float_Type'Base (Aux.Sin (Double (T / Cycle * Two_Pi)));
 816    end Sin;
 817 
 818    ----------
 819    -- Sinh --
 820    ----------
 821 
 822    function Sinh (X : Float_Type'Base) return Float_Type'Base is
 823       Lnv      : constant Float_Type'Base := 8#0.542714#;
 824       V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
 825       Y        : constant Float_Type'Base := abs X;
 826       F        : constant Float_Type'Base := Y * Y;
 827       Z        : Float_Type'Base;
 828 
 829       Float_Digits_1_6 : constant Boolean := Float_Type'Digits < 7;
 830 
 831    begin
 832       if Y < Sqrt_Epsilon then
 833          return X;
 834 
 835       elsif Y > Log_Inverse_Epsilon then
 836          Z := Exp_Strict (Y - Lnv);
 837          Z := Z + V2minus1 * Z;
 838 
 839       elsif Y < 1.0 then
 840 
 841          if Float_Digits_1_6 then
 842 
 843             --  Use expansion provided by Cody and Waite, p. 226. Note that
 844             --  leading term of the polynomial in Q is exactly 1.0.
 845 
 846             declare
 847                P0 : constant := -0.71379_3159E+1;
 848                P1 : constant := -0.19033_3399E+0;
 849                Q0 : constant := -0.42827_7109E+2;
 850 
 851             begin
 852                Z := Y + Y * F * (P1 * F + P0) / (F + Q0);
 853             end;
 854 
 855          else
 856             declare
 857                P0 : constant := -0.35181_28343_01771_17881E+6;
 858                P1 : constant := -0.11563_52119_68517_68270E+5;
 859                P2 : constant := -0.16375_79820_26307_51372E+3;
 860                P3 : constant := -0.78966_12741_73570_99479E+0;
 861                Q0 : constant := -0.21108_77005_81062_71242E+7;
 862                Q1 : constant :=  0.36162_72310_94218_36460E+5;
 863                Q2 : constant := -0.27773_52311_96507_01667E+3;
 864 
 865             begin
 866                Z := Y + Y * F * (((P3 * F + P2) * F + P1) * F + P0)
 867                               / (((F + Q2) * F + Q1) * F + Q0);
 868             end;
 869          end if;
 870 
 871       else
 872          Z := Exp_Strict (Y);
 873          Z := 0.5 * (Z - 1.0 / Z);
 874       end if;
 875 
 876       if X > 0.0 then
 877          return Z;
 878       else
 879          return -Z;
 880       end if;
 881    end Sinh;
 882 
 883    ----------
 884    -- Sqrt --
 885    ----------
 886 
 887    function Sqrt (X : Float_Type'Base) return Float_Type'Base is
 888    begin
 889       if X < 0.0 then
 890          raise Argument_Error;
 891 
 892       --  Special case Sqrt (0.0) to preserve possible minus sign per IEEE
 893 
 894       elsif X = 0.0 then
 895          return X;
 896       end if;
 897 
 898       return Float_Type'Base (Aux.Sqrt (Double (X)));
 899    end Sqrt;
 900 
 901    ---------
 902    -- Tan --
 903    ---------
 904 
 905    --  Natural cycle
 906 
 907    function Tan (X : Float_Type'Base) return Float_Type'Base is
 908    begin
 909       if abs X < Sqrt_Epsilon then
 910          return X;
 911       end if;
 912 
 913       --  Note: if X is exactly pi/2, then we should raise an exception, since
 914       --  the result would overflow. But for all floating-point formats we deal
 915       --  with, it is impossible for X to be exactly pi/2, and the result is
 916       --  always in range.
 917 
 918       return Float_Type'Base (Aux.Tan (Double (X)));
 919    end Tan;
 920 
 921    --  Arbitrary cycle
 922 
 923    function Tan (X, Cycle : Float_Type'Base) return Float_Type'Base is
 924       T : Float_Type'Base;
 925 
 926    begin
 927       if Cycle <= 0.0 then
 928          raise Argument_Error;
 929 
 930       elsif X = 0.0 then
 931          return X;
 932       end if;
 933 
 934       T := Float_Type'Base'Remainder (X, Cycle);
 935 
 936       if abs T = 0.25 * Cycle then
 937          raise Constraint_Error;
 938 
 939       elsif abs T = 0.5 * Cycle then
 940          return 0.0;
 941 
 942       else
 943          T := T / Cycle * Two_Pi;
 944          return Sin (T) / Cos (T);
 945       end if;
 946 
 947    end Tan;
 948 
 949    ----------
 950    -- Tanh --
 951    ----------
 952 
 953    function Tanh (X : Float_Type'Base) return Float_Type'Base is
 954       P0 : constant Float_Type'Base := -0.16134_11902_39962_28053E+4;
 955       P1 : constant Float_Type'Base := -0.99225_92967_22360_83313E+2;
 956       P2 : constant Float_Type'Base := -0.96437_49277_72254_69787E+0;
 957 
 958       Q0 : constant Float_Type'Base :=  0.48402_35707_19886_88686E+4;
 959       Q1 : constant Float_Type'Base :=  0.22337_72071_89623_12926E+4;
 960       Q2 : constant Float_Type'Base :=  0.11274_47438_05349_49335E+3;
 961       Q3 : constant Float_Type'Base :=  0.10000_00000_00000_00000E+1;
 962 
 963       Half_Ln3 : constant Float_Type'Base := 0.54930_61443_34054_84570;
 964 
 965       P, Q, R : Float_Type'Base;
 966       Y : constant Float_Type'Base := abs X;
 967       G : constant Float_Type'Base := Y * Y;
 968 
 969       Float_Type_Digits_15_Or_More : constant Boolean :=
 970         Float_Type'Digits > 14;
 971 
 972    begin
 973       if X < Half_Log_Epsilon then
 974          return -1.0;
 975 
 976       elsif X > -Half_Log_Epsilon then
 977          return 1.0;
 978 
 979       elsif Y < Sqrt_Epsilon then
 980          return X;
 981 
 982       elsif Y < Half_Ln3
 983         and then Float_Type_Digits_15_Or_More
 984       then
 985          P := (P2 * G + P1) * G + P0;
 986          Q := ((Q3 * G + Q2) * G + Q1) * G + Q0;
 987          R := G * (P / Q);
 988          return X + X * R;
 989 
 990       else
 991          return Float_Type'Base (Aux.Tanh (Double (X)));
 992       end if;
 993    end Tanh;
 994 
 995 end Ada.Numerics.Generic_Elementary_Functions;