File : exp_ch6.adb


   1 ------------------------------------------------------------------------------
   2 --                                                                          --
   3 --                         GNAT COMPILER COMPONENTS                         --
   4 --                                                                          --
   5 --                              E X P _ C H 6                               --
   6 --                                                                          --
   7 --                                 B o d y                                  --
   8 --                                                                          --
   9 --          Copyright (C) 1992-2016, Free Software Foundation, Inc.         --
  10 --                                                                          --
  11 -- GNAT is free software;  you can  redistribute it  and/or modify it under --
  12 -- terms of the  GNU General Public License as published  by the Free Soft- --
  13 -- ware  Foundation;  either version 3,  or (at your option) any later ver- --
  14 -- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
  15 -- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
  16 -- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
  17 -- for  more details.  You should have  received  a copy of the GNU General --
  18 -- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
  19 -- http://www.gnu.org/licenses for a complete copy of the license.          --
  20 --                                                                          --
  21 -- GNAT was originally developed  by the GNAT team at  New York University. --
  22 -- Extensive contributions were provided by Ada Core Technologies Inc.      --
  23 --                                                                          --
  24 ------------------------------------------------------------------------------
  25 
  26 with Atree;     use Atree;
  27 with Checks;    use Checks;
  28 with Contracts; use Contracts;
  29 with Debug;     use Debug;
  30 with Einfo;     use Einfo;
  31 with Errout;    use Errout;
  32 with Elists;    use Elists;
  33 with Exp_Aggr;  use Exp_Aggr;
  34 with Exp_Atag;  use Exp_Atag;
  35 with Exp_Ch2;   use Exp_Ch2;
  36 with Exp_Ch3;   use Exp_Ch3;
  37 with Exp_Ch7;   use Exp_Ch7;
  38 with Exp_Ch9;   use Exp_Ch9;
  39 with Exp_Dbug;  use Exp_Dbug;
  40 with Exp_Disp;  use Exp_Disp;
  41 with Exp_Dist;  use Exp_Dist;
  42 with Exp_Intr;  use Exp_Intr;
  43 with Exp_Pakd;  use Exp_Pakd;
  44 with Exp_Tss;   use Exp_Tss;
  45 with Exp_Util;  use Exp_Util;
  46 with Freeze;    use Freeze;
  47 with Ghost;     use Ghost;
  48 with Inline;    use Inline;
  49 with Lib;       use Lib;
  50 with Namet;     use Namet;
  51 with Nlists;    use Nlists;
  52 with Nmake;     use Nmake;
  53 with Opt;       use Opt;
  54 with Restrict;  use Restrict;
  55 with Rident;    use Rident;
  56 with Rtsfind;   use Rtsfind;
  57 with Sem;       use Sem;
  58 with Sem_Aux;   use Sem_Aux;
  59 with Sem_Ch6;   use Sem_Ch6;
  60 with Sem_Ch8;   use Sem_Ch8;
  61 with Sem_Ch12;  use Sem_Ch12;
  62 with Sem_Ch13;  use Sem_Ch13;
  63 with Sem_Dim;   use Sem_Dim;
  64 with Sem_Disp;  use Sem_Disp;
  65 with Sem_Dist;  use Sem_Dist;
  66 with Sem_Eval;  use Sem_Eval;
  67 with Sem_Mech;  use Sem_Mech;
  68 with Sem_Res;   use Sem_Res;
  69 with Sem_SCIL;  use Sem_SCIL;
  70 with Sem_Util;  use Sem_Util;
  71 with Sinfo;     use Sinfo;
  72 with Snames;    use Snames;
  73 with Stand;     use Stand;
  74 with Targparm;  use Targparm;
  75 with Tbuild;    use Tbuild;
  76 with Uintp;     use Uintp;
  77 with Validsw;   use Validsw;
  78 
  79 package body Exp_Ch6 is
  80 
  81    -----------------------
  82    -- Local Subprograms --
  83    -----------------------
  84 
  85    procedure Add_Access_Actual_To_Build_In_Place_Call
  86      (Function_Call : Node_Id;
  87       Function_Id   : Entity_Id;
  88       Return_Object : Node_Id;
  89       Is_Access     : Boolean := False);
  90    --  Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
  91    --  object name given by Return_Object and add the attribute to the end of
  92    --  the actual parameter list associated with the build-in-place function
  93    --  call denoted by Function_Call. However, if Is_Access is True, then
  94    --  Return_Object is already an access expression, in which case it's passed
  95    --  along directly to the build-in-place function. Finally, if Return_Object
  96    --  is empty, then pass a null literal as the actual.
  97 
  98    procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
  99      (Function_Call  : Node_Id;
 100       Function_Id    : Entity_Id;
 101       Alloc_Form     : BIP_Allocation_Form := Unspecified;
 102       Alloc_Form_Exp : Node_Id             := Empty;
 103       Pool_Actual    : Node_Id             := Make_Null (No_Location));
 104    --  Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
 105    --  function call that returns a caller-unknown-size result (BIP_Alloc_Form
 106    --  and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
 107    --  otherwise pass a literal corresponding to the Alloc_Form parameter
 108    --  (which must not be Unspecified in that case). Pool_Actual is the
 109    --  parameter to pass to BIP_Storage_Pool.
 110 
 111    procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
 112      (Func_Call  : Node_Id;
 113       Func_Id    : Entity_Id;
 114       Ptr_Typ    : Entity_Id := Empty;
 115       Master_Exp : Node_Id   := Empty);
 116    --  Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
 117    --  finalization actions, add an actual parameter which is a pointer to the
 118    --  finalization master of the caller. If Master_Exp is not Empty, then that
 119    --  will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
 120    --  will result in an automatic "null" value for the actual.
 121 
 122    procedure Add_Task_Actuals_To_Build_In_Place_Call
 123      (Function_Call : Node_Id;
 124       Function_Id   : Entity_Id;
 125       Master_Actual : Node_Id;
 126       Chain         : Node_Id := Empty);
 127    --  Ada 2005 (AI-318-02): For a build-in-place call, if the result type
 128    --  contains tasks, add two actual parameters: the master, and a pointer to
 129    --  the caller's activation chain. Master_Actual is the actual parameter
 130    --  expression to pass for the master. In most cases, this is the current
 131    --  master (_master). The two exceptions are: If the function call is the
 132    --  initialization expression for an allocator, we pass the master of the
 133    --  access type. If the function call is the initialization expression for a
 134    --  return object, we pass along the master passed in by the caller. In most
 135    --  contexts, the activation chain to pass is the local one, which is
 136    --  indicated by No (Chain). However, in an allocator, the caller passes in
 137    --  the activation Chain. Note: Master_Actual can be Empty, but only if
 138    --  there are no tasks.
 139 
 140    procedure Check_Overriding_Operation (Subp : Entity_Id);
 141    --  Subp is a dispatching operation. Check whether it may override an
 142    --  inherited private operation, in which case its DT entry is that of
 143    --  the hidden operation, not the one it may have received earlier.
 144    --  This must be done before emitting the code to set the corresponding
 145    --  DT to the address of the subprogram. The actual placement of Subp in
 146    --  the proper place in the list of primitive operations is done in
 147    --  Declare_Inherited_Private_Subprograms, which also has to deal with
 148    --  implicit operations. This duplication is unavoidable for now???
 149 
 150    procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
 151    --  This procedure is called only if the subprogram body N, whose spec
 152    --  has the given entity Spec, contains a parameterless recursive call.
 153    --  It attempts to generate runtime code to detect if this a case of
 154    --  infinite recursion.
 155    --
 156    --  The body is scanned to determine dependencies. If the only external
 157    --  dependencies are on a small set of scalar variables, then the values
 158    --  of these variables are captured on entry to the subprogram, and if
 159    --  the values are not changed for the call, we know immediately that
 160    --  we have an infinite recursion.
 161 
 162    procedure Expand_Actuals (N : in out Node_Id; Subp : Entity_Id);
 163    --  For each actual of an in-out or out parameter which is a numeric
 164    --  (view) conversion of the form T (A), where A denotes a variable,
 165    --  we insert the declaration:
 166    --
 167    --    Temp : T[ := T (A)];
 168    --
 169    --  prior to the call. Then we replace the actual with a reference to Temp,
 170    --  and append the assignment:
 171    --
 172    --    A := TypeA (Temp);
 173    --
 174    --  after the call. Here TypeA is the actual type of variable A. For out
 175    --  parameters, the initial declaration has no expression. If A is not an
 176    --  entity name, we generate instead:
 177    --
 178    --    Var  : TypeA renames A;
 179    --    Temp : T := Var;       --  omitting expression for out parameter.
 180    --    ...
 181    --    Var := TypeA (Temp);
 182    --
 183    --  For other in-out parameters, we emit the required constraint checks
 184    --  before and/or after the call.
 185    --
 186    --  For all parameter modes, actuals that denote components and slices of
 187    --  packed arrays are expanded into suitable temporaries.
 188    --
 189    --  For non-scalar objects that are possibly unaligned, add call by copy
 190    --  code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
 191    --
 192    --  For OUT and IN OUT parameters, add predicate checks after the call
 193    --  based on the predicates of the actual type.
 194    --
 195    --  The parameter N is IN OUT because in some cases, the expansion code
 196    --  rewrites the call as an expression actions with the call inside. In
 197    --  this case N is reset to point to the inside call so that the caller
 198    --  can continue processing of this call.
 199 
 200    procedure Expand_Ctrl_Function_Call (N : Node_Id);
 201    --  N is a function call which returns a controlled object. Transform the
 202    --  call into a temporary which retrieves the returned object from the
 203    --  secondary stack using 'reference.
 204 
 205    procedure Expand_Non_Function_Return (N : Node_Id);
 206    --  Expand a simple return statement found in a procedure body, entry body,
 207    --  accept statement, or an extended return statement. Note that all non-
 208    --  function returns are simple return statements.
 209 
 210    function Expand_Protected_Object_Reference
 211      (N    : Node_Id;
 212       Scop : Entity_Id) return Node_Id;
 213 
 214    procedure Expand_Protected_Subprogram_Call
 215      (N    : Node_Id;
 216       Subp : Entity_Id;
 217       Scop : Entity_Id);
 218    --  A call to a protected subprogram within the protected object may appear
 219    --  as a regular call. The list of actuals must be expanded to contain a
 220    --  reference to the object itself, and the call becomes a call to the
 221    --  corresponding protected subprogram.
 222 
 223    function Has_Unconstrained_Access_Discriminants
 224      (Subtyp : Entity_Id) return Boolean;
 225    --  Returns True if the given subtype is unconstrained and has one
 226    --  or more access discriminants.
 227 
 228    procedure Expand_Simple_Function_Return (N : Node_Id);
 229    --  Expand simple return from function. In the case where we are returning
 230    --  from a function body this is called by Expand_N_Simple_Return_Statement.
 231 
 232    procedure Rewrite_Function_Call_For_C (N : Node_Id);
 233    --  When generating C code, replace a call to a function that returns an
 234    --  array into the generated procedure with an additional out parameter.
 235 
 236    procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id);
 237    --  N is a return statement for a function that returns its result on the
 238    --  secondary stack. This sets the Sec_Stack_Needed_For_Return flag on the
 239    --  function and all blocks and loops that the return statement is jumping
 240    --  out of. This ensures that the secondary stack is not released; otherwise
 241    --  the function result would be reclaimed before returning to the caller.
 242 
 243    ----------------------------------------------
 244    -- Add_Access_Actual_To_Build_In_Place_Call --
 245    ----------------------------------------------
 246 
 247    procedure Add_Access_Actual_To_Build_In_Place_Call
 248      (Function_Call : Node_Id;
 249       Function_Id   : Entity_Id;
 250       Return_Object : Node_Id;
 251       Is_Access     : Boolean := False)
 252    is
 253       Loc            : constant Source_Ptr := Sloc (Function_Call);
 254       Obj_Address    : Node_Id;
 255       Obj_Acc_Formal : Entity_Id;
 256 
 257    begin
 258       --  Locate the implicit access parameter in the called function
 259 
 260       Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
 261 
 262       --  If no return object is provided, then pass null
 263 
 264       if not Present (Return_Object) then
 265          Obj_Address := Make_Null (Loc);
 266          Set_Parent (Obj_Address, Function_Call);
 267 
 268       --  If Return_Object is already an expression of an access type, then use
 269       --  it directly, since it must be an access value denoting the return
 270       --  object, and couldn't possibly be the return object itself.
 271 
 272       elsif Is_Access then
 273          Obj_Address := Return_Object;
 274          Set_Parent (Obj_Address, Function_Call);
 275 
 276       --  Apply Unrestricted_Access to caller's return object
 277 
 278       else
 279          Obj_Address :=
 280             Make_Attribute_Reference (Loc,
 281               Prefix         => Return_Object,
 282               Attribute_Name => Name_Unrestricted_Access);
 283 
 284          Set_Parent (Return_Object, Obj_Address);
 285          Set_Parent (Obj_Address, Function_Call);
 286       end if;
 287 
 288       Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
 289 
 290       --  Build the parameter association for the new actual and add it to the
 291       --  end of the function's actuals.
 292 
 293       Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
 294    end Add_Access_Actual_To_Build_In_Place_Call;
 295 
 296    ------------------------------------------------------
 297    -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
 298    ------------------------------------------------------
 299 
 300    procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
 301      (Function_Call  : Node_Id;
 302       Function_Id    : Entity_Id;
 303       Alloc_Form     : BIP_Allocation_Form := Unspecified;
 304       Alloc_Form_Exp : Node_Id             := Empty;
 305       Pool_Actual    : Node_Id             := Make_Null (No_Location))
 306    is
 307       Loc               : constant Source_Ptr := Sloc (Function_Call);
 308       Alloc_Form_Actual : Node_Id;
 309       Alloc_Form_Formal : Node_Id;
 310       Pool_Formal       : Node_Id;
 311 
 312    begin
 313       --  The allocation form generally doesn't need to be passed in the case
 314       --  of a constrained result subtype, since normally the caller performs
 315       --  the allocation in that case. However this formal is still needed in
 316       --  the case where the function has a tagged result, because generally
 317       --  such functions can be called in a dispatching context and such calls
 318       --  must be handled like calls to class-wide functions.
 319 
 320       if Is_Constrained (Underlying_Type (Etype (Function_Id)))
 321         and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
 322       then
 323          return;
 324       end if;
 325 
 326       --  Locate the implicit allocation form parameter in the called function.
 327       --  Maybe it would be better for each implicit formal of a build-in-place
 328       --  function to have a flag or a Uint attribute to identify it. ???
 329 
 330       Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
 331 
 332       if Present (Alloc_Form_Exp) then
 333          pragma Assert (Alloc_Form = Unspecified);
 334 
 335          Alloc_Form_Actual := Alloc_Form_Exp;
 336 
 337       else
 338          pragma Assert (Alloc_Form /= Unspecified);
 339 
 340          Alloc_Form_Actual :=
 341            Make_Integer_Literal (Loc,
 342              Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
 343       end if;
 344 
 345       Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
 346 
 347       --  Build the parameter association for the new actual and add it to the
 348       --  end of the function's actuals.
 349 
 350       Add_Extra_Actual_To_Call
 351         (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
 352 
 353       --  Pass the Storage_Pool parameter. This parameter is omitted on
 354       --  ZFP as those targets do not support pools.
 355 
 356       if RTE_Available (RE_Root_Storage_Pool_Ptr) then
 357          Pool_Formal := Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
 358          Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
 359          Add_Extra_Actual_To_Call
 360            (Function_Call, Pool_Formal, Pool_Actual);
 361       end if;
 362    end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
 363 
 364    -----------------------------------------------------------
 365    -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
 366    -----------------------------------------------------------
 367 
 368    procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
 369      (Func_Call  : Node_Id;
 370       Func_Id    : Entity_Id;
 371       Ptr_Typ    : Entity_Id := Empty;
 372       Master_Exp : Node_Id   := Empty)
 373    is
 374    begin
 375       if not Needs_BIP_Finalization_Master (Func_Id) then
 376          return;
 377       end if;
 378 
 379       declare
 380          Formal : constant Entity_Id :=
 381                     Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
 382          Loc    : constant Source_Ptr := Sloc (Func_Call);
 383 
 384          Actual    : Node_Id;
 385          Desig_Typ : Entity_Id;
 386 
 387       begin
 388          --  If there is a finalization master actual, such as the implicit
 389          --  finalization master of an enclosing build-in-place function,
 390          --  then this must be added as an extra actual of the call.
 391 
 392          if Present (Master_Exp) then
 393             Actual := Master_Exp;
 394 
 395          --  Case where the context does not require an actual master
 396 
 397          elsif No (Ptr_Typ) then
 398             Actual := Make_Null (Loc);
 399 
 400          else
 401             Desig_Typ := Directly_Designated_Type (Ptr_Typ);
 402 
 403             --  Check for a library-level access type whose designated type has
 404             --  supressed finalization. Such an access types lack a master.
 405             --  Pass a null actual to the callee in order to signal a missing
 406             --  master.
 407 
 408             if Is_Library_Level_Entity (Ptr_Typ)
 409               and then Finalize_Storage_Only (Desig_Typ)
 410             then
 411                Actual := Make_Null (Loc);
 412 
 413             --  Types in need of finalization actions
 414 
 415             elsif Needs_Finalization (Desig_Typ) then
 416 
 417                --  The general mechanism of creating finalization masters for
 418                --  anonymous access types is disabled by default, otherwise
 419                --  finalization masters will pop all over the place. Such types
 420                --  use context-specific masters.
 421 
 422                if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
 423                  and then No (Finalization_Master (Ptr_Typ))
 424                then
 425                   Build_Anonymous_Master (Ptr_Typ);
 426                end if;
 427 
 428                --  Access-to-controlled types should always have a master
 429 
 430                pragma Assert (Present (Finalization_Master (Ptr_Typ)));
 431 
 432                Actual :=
 433                  Make_Attribute_Reference (Loc,
 434                    Prefix =>
 435                      New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
 436                    Attribute_Name => Name_Unrestricted_Access);
 437 
 438             --  Tagged types
 439 
 440             else
 441                Actual := Make_Null (Loc);
 442             end if;
 443          end if;
 444 
 445          Analyze_And_Resolve (Actual, Etype (Formal));
 446 
 447          --  Build the parameter association for the new actual and add it to
 448          --  the end of the function's actuals.
 449 
 450          Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
 451       end;
 452    end Add_Finalization_Master_Actual_To_Build_In_Place_Call;
 453 
 454    ------------------------------
 455    -- Add_Extra_Actual_To_Call --
 456    ------------------------------
 457 
 458    procedure Add_Extra_Actual_To_Call
 459      (Subprogram_Call : Node_Id;
 460       Extra_Formal    : Entity_Id;
 461       Extra_Actual    : Node_Id)
 462    is
 463       Loc         : constant Source_Ptr := Sloc (Subprogram_Call);
 464       Param_Assoc : Node_Id;
 465 
 466    begin
 467       Param_Assoc :=
 468         Make_Parameter_Association (Loc,
 469           Selector_Name             => New_Occurrence_Of (Extra_Formal, Loc),
 470           Explicit_Actual_Parameter => Extra_Actual);
 471 
 472       Set_Parent (Param_Assoc, Subprogram_Call);
 473       Set_Parent (Extra_Actual, Param_Assoc);
 474 
 475       if Present (Parameter_Associations (Subprogram_Call)) then
 476          if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
 477               N_Parameter_Association
 478          then
 479 
 480             --  Find last named actual, and append
 481 
 482             declare
 483                L : Node_Id;
 484             begin
 485                L := First_Actual (Subprogram_Call);
 486                while Present (L) loop
 487                   if No (Next_Actual (L)) then
 488                      Set_Next_Named_Actual (Parent (L), Extra_Actual);
 489                      exit;
 490                   end if;
 491                   Next_Actual (L);
 492                end loop;
 493             end;
 494 
 495          else
 496             Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
 497          end if;
 498 
 499          Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
 500 
 501       else
 502          Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
 503          Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
 504       end if;
 505    end Add_Extra_Actual_To_Call;
 506 
 507    ---------------------------------------------
 508    -- Add_Task_Actuals_To_Build_In_Place_Call --
 509    ---------------------------------------------
 510 
 511    procedure Add_Task_Actuals_To_Build_In_Place_Call
 512      (Function_Call : Node_Id;
 513       Function_Id   : Entity_Id;
 514       Master_Actual : Node_Id;
 515       Chain         : Node_Id := Empty)
 516    is
 517       Loc           : constant Source_Ptr := Sloc (Function_Call);
 518       Result_Subt   : constant Entity_Id :=
 519                         Available_View (Etype (Function_Id));
 520       Actual        : Node_Id;
 521       Chain_Actual  : Node_Id;
 522       Chain_Formal  : Node_Id;
 523       Master_Formal : Node_Id;
 524 
 525    begin
 526       --  No such extra parameters are needed if there are no tasks
 527 
 528       if not Has_Task (Result_Subt) then
 529          return;
 530       end if;
 531 
 532       Actual := Master_Actual;
 533 
 534       --  Use a dummy _master actual in case of No_Task_Hierarchy
 535 
 536       if Restriction_Active (No_Task_Hierarchy) then
 537          Actual := New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc);
 538 
 539       --  In the case where we use the master associated with an access type,
 540       --  the actual is an entity and requires an explicit reference.
 541 
 542       elsif Nkind (Actual) = N_Defining_Identifier then
 543          Actual := New_Occurrence_Of (Actual, Loc);
 544       end if;
 545 
 546       --  Locate the implicit master parameter in the called function
 547 
 548       Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
 549       Analyze_And_Resolve (Actual, Etype (Master_Formal));
 550 
 551       --  Build the parameter association for the new actual and add it to the
 552       --  end of the function's actuals.
 553 
 554       Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
 555 
 556       --  Locate the implicit activation chain parameter in the called function
 557 
 558       Chain_Formal :=
 559         Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
 560 
 561       --  Create the actual which is a pointer to the current activation chain
 562 
 563       if No (Chain) then
 564          Chain_Actual :=
 565            Make_Attribute_Reference (Loc,
 566              Prefix         => Make_Identifier (Loc, Name_uChain),
 567              Attribute_Name => Name_Unrestricted_Access);
 568 
 569       --  Allocator case; make a reference to the Chain passed in by the caller
 570 
 571       else
 572          Chain_Actual :=
 573            Make_Attribute_Reference (Loc,
 574              Prefix         => New_Occurrence_Of (Chain, Loc),
 575              Attribute_Name => Name_Unrestricted_Access);
 576       end if;
 577 
 578       Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
 579 
 580       --  Build the parameter association for the new actual and add it to the
 581       --  end of the function's actuals.
 582 
 583       Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
 584    end Add_Task_Actuals_To_Build_In_Place_Call;
 585 
 586    -----------------------
 587    -- BIP_Formal_Suffix --
 588    -----------------------
 589 
 590    function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
 591    begin
 592       case Kind is
 593          when BIP_Alloc_Form          =>
 594             return "BIPalloc";
 595          when BIP_Storage_Pool        =>
 596             return "BIPstoragepool";
 597          when BIP_Finalization_Master =>
 598             return "BIPfinalizationmaster";
 599          when BIP_Task_Master         =>
 600             return "BIPtaskmaster";
 601          when BIP_Activation_Chain    =>
 602             return "BIPactivationchain";
 603          when BIP_Object_Access       =>
 604             return "BIPaccess";
 605       end case;
 606    end BIP_Formal_Suffix;
 607 
 608    ---------------------------
 609    -- Build_In_Place_Formal --
 610    ---------------------------
 611 
 612    function Build_In_Place_Formal
 613      (Func : Entity_Id;
 614       Kind : BIP_Formal_Kind) return Entity_Id
 615    is
 616       Formal_Name  : constant Name_Id :=
 617                        New_External_Name
 618                          (Chars (Func), BIP_Formal_Suffix (Kind));
 619       Extra_Formal : Entity_Id := Extra_Formals (Func);
 620 
 621    begin
 622       --  Maybe it would be better for each implicit formal of a build-in-place
 623       --  function to have a flag or a Uint attribute to identify it. ???
 624 
 625       --  The return type in the function declaration may have been a limited
 626       --  view, and the extra formals for the function were not generated at
 627       --  that point. At the point of call the full view must be available and
 628       --  the extra formals can be created.
 629 
 630       if No (Extra_Formal) then
 631          Create_Extra_Formals (Func);
 632          Extra_Formal := Extra_Formals (Func);
 633       end if;
 634 
 635       loop
 636          pragma Assert (Present (Extra_Formal));
 637          exit when Chars (Extra_Formal) = Formal_Name;
 638 
 639          Next_Formal_With_Extras (Extra_Formal);
 640       end loop;
 641 
 642       return Extra_Formal;
 643    end Build_In_Place_Formal;
 644 
 645    -------------------------------
 646    -- Build_Procedure_Body_Form --
 647    -------------------------------
 648 
 649    function Build_Procedure_Body_Form
 650      (Func_Id   : Entity_Id;
 651       Func_Body : Node_Id) return Node_Id
 652    is
 653       Loc : constant Source_Ptr := Sloc (Func_Body);
 654 
 655       Proc_Decl : constant Node_Id   :=
 656                     Next (Unit_Declaration_Node (Func_Id));
 657       --  It is assumed that the next node following the declaration of the
 658       --  corresponding subprogram spec is the declaration of the procedure
 659       --  form.
 660 
 661       Proc_Id : constant Entity_Id := Defining_Entity (Proc_Decl);
 662 
 663       procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id);
 664       --  Replace each return statement found in the list Stmts with an
 665       --  assignment of the return expression to parameter Param_Id.
 666 
 667       ---------------------
 668       -- Replace_Returns --
 669       ---------------------
 670 
 671       procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id) is
 672          Stmt : Node_Id;
 673 
 674       begin
 675          Stmt := First (Stmts);
 676          while Present (Stmt) loop
 677             if Nkind (Stmt) = N_Block_Statement then
 678                Replace_Returns (Param_Id, Statements (Stmt));
 679 
 680             elsif Nkind (Stmt) = N_Case_Statement then
 681                declare
 682                   Alt : Node_Id;
 683                begin
 684                   Alt := First (Alternatives (Stmt));
 685                   while Present (Alt) loop
 686                      Replace_Returns (Param_Id, Statements (Alt));
 687                      Next (Alt);
 688                   end loop;
 689                end;
 690 
 691             elsif Nkind (Stmt) = N_Extended_Return_Statement then
 692                declare
 693                   Ret_Obj : constant Entity_Id :=
 694                               Defining_Entity
 695                                 (First (Return_Object_Declarations (Stmt)));
 696                   Assign  : constant Node_Id :=
 697                               Make_Assignment_Statement (Sloc (Stmt),
 698                                 Name       =>
 699                                   New_Occurrence_Of (Param_Id, Loc),
 700                                 Expression =>
 701                                   New_Occurrence_Of (Ret_Obj, Sloc (Stmt)));
 702                   Stmts   : List_Id;
 703 
 704                begin
 705                   --  The extended return may just contain the declaration
 706 
 707                   if Present (Handled_Statement_Sequence (Stmt)) then
 708                      Stmts := Statements (Handled_Statement_Sequence (Stmt));
 709                   else
 710                      Stmts := New_List;
 711                   end if;
 712 
 713                   Set_Assignment_OK (Name (Assign));
 714 
 715                   Rewrite (Stmt,
 716                     Make_Block_Statement (Sloc (Stmt),
 717                       Declarations               =>
 718                         Return_Object_Declarations (Stmt),
 719                       Handled_Statement_Sequence =>
 720                         Make_Handled_Sequence_Of_Statements (Loc,
 721                           Statements => Stmts)));
 722 
 723                   Replace_Returns (Param_Id, Stmts);
 724 
 725                   Append_To (Stmts, Assign);
 726                   Append_To (Stmts, Make_Simple_Return_Statement (Loc));
 727                end;
 728 
 729             elsif Nkind (Stmt) = N_If_Statement then
 730                Replace_Returns (Param_Id, Then_Statements (Stmt));
 731                Replace_Returns (Param_Id, Else_Statements (Stmt));
 732 
 733                declare
 734                   Part : Node_Id;
 735                begin
 736                   Part := First (Elsif_Parts (Stmt));
 737                   while Present (Part) loop
 738                      Replace_Returns (Param_Id, Then_Statements (Part));
 739                      Next (Part);
 740                   end loop;
 741                end;
 742 
 743             elsif Nkind (Stmt) = N_Loop_Statement then
 744                Replace_Returns (Param_Id, Statements (Stmt));
 745 
 746             elsif Nkind (Stmt) = N_Simple_Return_Statement then
 747 
 748                --  Generate:
 749                --    Param := Expr;
 750                --    return;
 751 
 752                Rewrite (Stmt,
 753                  Make_Assignment_Statement (Sloc (Stmt),
 754                    Name       => New_Occurrence_Of (Param_Id, Loc),
 755                    Expression => Relocate_Node (Expression (Stmt))));
 756 
 757                Insert_After (Stmt, Make_Simple_Return_Statement (Loc));
 758 
 759                --  Skip the added return
 760 
 761                Next (Stmt);
 762             end if;
 763 
 764             Next (Stmt);
 765          end loop;
 766       end Replace_Returns;
 767 
 768       --  Local variables
 769 
 770       Stmts    : List_Id;
 771       New_Body : Node_Id;
 772 
 773    --  Start of processing for Build_Procedure_Body_Form
 774 
 775    begin
 776       --  This routine replaces the original function body:
 777 
 778       --    function F (...) return Array_Typ is
 779       --    begin
 780       --       ...
 781       --       return Something;
 782       --    end F;
 783 
 784       --    with the following:
 785 
 786       --    procedure P (..., Result : out Array_Typ) is
 787       --    begin
 788       --       ...
 789       --       Result := Something;
 790       --    end P;
 791 
 792       Stmts :=
 793         Statements (Handled_Statement_Sequence (Func_Body));
 794       Replace_Returns (Last_Entity (Proc_Id), Stmts);
 795 
 796       New_Body :=
 797         Make_Subprogram_Body (Loc,
 798           Specification              =>
 799             Copy_Subprogram_Spec (Specification (Proc_Decl)),
 800           Declarations               => Declarations (Func_Body),
 801           Handled_Statement_Sequence =>
 802             Make_Handled_Sequence_Of_Statements (Loc,
 803               Statements => Stmts));
 804 
 805       --  If the function is a generic instance, so is the new procedure.
 806       --  Set flag accordingly so that the proper renaming declarations are
 807       --  generated.
 808 
 809       Set_Is_Generic_Instance (Proc_Id, Is_Generic_Instance (Func_Id));
 810       return New_Body;
 811    end Build_Procedure_Body_Form;
 812 
 813    --------------------------------
 814    -- Check_Overriding_Operation --
 815    --------------------------------
 816 
 817    procedure Check_Overriding_Operation (Subp : Entity_Id) is
 818       Typ     : constant Entity_Id := Find_Dispatching_Type (Subp);
 819       Op_List : constant Elist_Id  := Primitive_Operations (Typ);
 820       Op_Elmt : Elmt_Id;
 821       Prim_Op : Entity_Id;
 822       Par_Op  : Entity_Id;
 823 
 824    begin
 825       if Is_Derived_Type (Typ)
 826         and then not Is_Private_Type (Typ)
 827         and then In_Open_Scopes (Scope (Etype (Typ)))
 828         and then Is_Base_Type (Typ)
 829       then
 830          --  Subp overrides an inherited private operation if there is an
 831          --  inherited operation with a different name than Subp (see
 832          --  Derive_Subprogram) whose Alias is a hidden subprogram with the
 833          --  same name as Subp.
 834 
 835          Op_Elmt := First_Elmt (Op_List);
 836          while Present (Op_Elmt) loop
 837             Prim_Op := Node (Op_Elmt);
 838             Par_Op  := Alias (Prim_Op);
 839 
 840             if Present (Par_Op)
 841               and then not Comes_From_Source (Prim_Op)
 842               and then Chars (Prim_Op) /= Chars (Par_Op)
 843               and then Chars (Par_Op) = Chars (Subp)
 844               and then Is_Hidden (Par_Op)
 845               and then Type_Conformant (Prim_Op, Subp)
 846             then
 847                Set_DT_Position_Value (Subp, DT_Position (Prim_Op));
 848             end if;
 849 
 850             Next_Elmt (Op_Elmt);
 851          end loop;
 852       end if;
 853    end Check_Overriding_Operation;
 854 
 855    -------------------------------
 856    -- Detect_Infinite_Recursion --
 857    -------------------------------
 858 
 859    procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
 860       Loc : constant Source_Ptr := Sloc (N);
 861 
 862       Var_List : constant Elist_Id := New_Elmt_List;
 863       --  List of globals referenced by body of procedure
 864 
 865       Call_List : constant Elist_Id := New_Elmt_List;
 866       --  List of recursive calls in body of procedure
 867 
 868       Shad_List : constant Elist_Id := New_Elmt_List;
 869       --  List of entity id's for entities created to capture the value of
 870       --  referenced globals on entry to the procedure.
 871 
 872       Scop : constant Uint := Scope_Depth (Spec);
 873       --  This is used to record the scope depth of the current procedure, so
 874       --  that we can identify global references.
 875 
 876       Max_Vars : constant := 4;
 877       --  Do not test more than four global variables
 878 
 879       Count_Vars : Natural := 0;
 880       --  Count variables found so far
 881 
 882       Var  : Entity_Id;
 883       Elm  : Elmt_Id;
 884       Ent  : Entity_Id;
 885       Call : Elmt_Id;
 886       Decl : Node_Id;
 887       Test : Node_Id;
 888       Elm1 : Elmt_Id;
 889       Elm2 : Elmt_Id;
 890       Last : Node_Id;
 891 
 892       function Process (Nod : Node_Id) return Traverse_Result;
 893       --  Function to traverse the subprogram body (using Traverse_Func)
 894 
 895       -------------
 896       -- Process --
 897       -------------
 898 
 899       function Process (Nod : Node_Id) return Traverse_Result is
 900       begin
 901          --  Procedure call
 902 
 903          if Nkind (Nod) = N_Procedure_Call_Statement then
 904 
 905             --  Case of one of the detected recursive calls
 906 
 907             if Is_Entity_Name (Name (Nod))
 908               and then Has_Recursive_Call (Entity (Name (Nod)))
 909               and then Entity (Name (Nod)) = Spec
 910             then
 911                Append_Elmt (Nod, Call_List);
 912                return Skip;
 913 
 914             --  Any other procedure call may have side effects
 915 
 916             else
 917                return Abandon;
 918             end if;
 919 
 920          --  A call to a pure function can always be ignored
 921 
 922          elsif Nkind (Nod) = N_Function_Call
 923            and then Is_Entity_Name (Name (Nod))
 924            and then Is_Pure (Entity (Name (Nod)))
 925          then
 926             return Skip;
 927 
 928          --  Case of an identifier reference
 929 
 930          elsif Nkind (Nod) = N_Identifier then
 931             Ent := Entity (Nod);
 932 
 933             --  If no entity, then ignore the reference
 934 
 935             --  Not clear why this can happen. To investigate, remove this
 936             --  test and look at the crash that occurs here in 3401-004 ???
 937 
 938             if No (Ent) then
 939                return Skip;
 940 
 941             --  Ignore entities with no Scope, again not clear how this
 942             --  can happen, to investigate, look at 4108-008 ???
 943 
 944             elsif No (Scope (Ent)) then
 945                return Skip;
 946 
 947             --  Ignore the reference if not to a more global object
 948 
 949             elsif Scope_Depth (Scope (Ent)) >= Scop then
 950                return Skip;
 951 
 952             --  References to types, exceptions and constants are always OK
 953 
 954             elsif Is_Type (Ent)
 955               or else Ekind (Ent) = E_Exception
 956               or else Ekind (Ent) = E_Constant
 957             then
 958                return Skip;
 959 
 960             --  If other than a non-volatile scalar variable, we have some
 961             --  kind of global reference (e.g. to a function) that we cannot
 962             --  deal with so we forget the attempt.
 963 
 964             elsif Ekind (Ent) /= E_Variable
 965               or else not Is_Scalar_Type (Etype (Ent))
 966               or else Treat_As_Volatile (Ent)
 967             then
 968                return Abandon;
 969 
 970             --  Otherwise we have a reference to a global scalar
 971 
 972             else
 973                --  Loop through global entities already detected
 974 
 975                Elm := First_Elmt (Var_List);
 976                loop
 977                   --  If not detected before, record this new global reference
 978 
 979                   if No (Elm) then
 980                      Count_Vars := Count_Vars + 1;
 981 
 982                      if Count_Vars <= Max_Vars then
 983                         Append_Elmt (Entity (Nod), Var_List);
 984                      else
 985                         return Abandon;
 986                      end if;
 987 
 988                      exit;
 989 
 990                   --  If recorded before, ignore
 991 
 992                   elsif Node (Elm) = Entity (Nod) then
 993                      return Skip;
 994 
 995                   --  Otherwise keep looking
 996 
 997                   else
 998                      Next_Elmt (Elm);
 999                   end if;
1000                end loop;
1001 
1002                return Skip;
1003             end if;
1004 
1005          --  For all other node kinds, recursively visit syntactic children
1006 
1007          else
1008             return OK;
1009          end if;
1010       end Process;
1011 
1012       function Traverse_Body is new Traverse_Func (Process);
1013 
1014    --  Start of processing for Detect_Infinite_Recursion
1015 
1016    begin
1017       --  Do not attempt detection in No_Implicit_Conditional mode, since we
1018       --  won't be able to generate the code to handle the recursion in any
1019       --  case.
1020 
1021       if Restriction_Active (No_Implicit_Conditionals) then
1022          return;
1023       end if;
1024 
1025       --  Otherwise do traversal and quit if we get abandon signal
1026 
1027       if Traverse_Body (N) = Abandon then
1028          return;
1029 
1030       --  We must have a call, since Has_Recursive_Call was set. If not just
1031       --  ignore (this is only an error check, so if we have a funny situation,
1032       --  due to bugs or errors, we do not want to bomb).
1033 
1034       elsif Is_Empty_Elmt_List (Call_List) then
1035          return;
1036       end if;
1037 
1038       --  Here is the case where we detect recursion at compile time
1039 
1040       --  Push our current scope for analyzing the declarations and code that
1041       --  we will insert for the checking.
1042 
1043       Push_Scope (Spec);
1044 
1045       --  This loop builds temporary variables for each of the referenced
1046       --  globals, so that at the end of the loop the list Shad_List contains
1047       --  these temporaries in one-to-one correspondence with the elements in
1048       --  Var_List.
1049 
1050       Last := Empty;
1051       Elm := First_Elmt (Var_List);
1052       while Present (Elm) loop
1053          Var := Node (Elm);
1054          Ent := Make_Temporary (Loc, 'S');
1055          Append_Elmt (Ent, Shad_List);
1056 
1057          --  Insert a declaration for this temporary at the start of the
1058          --  declarations for the procedure. The temporaries are declared as
1059          --  constant objects initialized to the current values of the
1060          --  corresponding temporaries.
1061 
1062          Decl :=
1063            Make_Object_Declaration (Loc,
1064              Defining_Identifier => Ent,
1065              Object_Definition   => New_Occurrence_Of (Etype (Var), Loc),
1066              Constant_Present    => True,
1067              Expression          => New_Occurrence_Of (Var, Loc));
1068 
1069          if No (Last) then
1070             Prepend (Decl, Declarations (N));
1071          else
1072             Insert_After (Last, Decl);
1073          end if;
1074 
1075          Last := Decl;
1076          Analyze (Decl);
1077          Next_Elmt (Elm);
1078       end loop;
1079 
1080       --  Loop through calls
1081 
1082       Call := First_Elmt (Call_List);
1083       while Present (Call) loop
1084 
1085          --  Build a predicate expression of the form
1086 
1087          --    True
1088          --      and then global1 = temp1
1089          --      and then global2 = temp2
1090          --      ...
1091 
1092          --  This predicate determines if any of the global values
1093          --  referenced by the procedure have changed since the
1094          --  current call, if not an infinite recursion is assured.
1095 
1096          Test := New_Occurrence_Of (Standard_True, Loc);
1097 
1098          Elm1 := First_Elmt (Var_List);
1099          Elm2 := First_Elmt (Shad_List);
1100          while Present (Elm1) loop
1101             Test :=
1102               Make_And_Then (Loc,
1103                 Left_Opnd  => Test,
1104                 Right_Opnd =>
1105                   Make_Op_Eq (Loc,
1106                     Left_Opnd  => New_Occurrence_Of (Node (Elm1), Loc),
1107                     Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
1108 
1109             Next_Elmt (Elm1);
1110             Next_Elmt (Elm2);
1111          end loop;
1112 
1113          --  Now we replace the call with the sequence
1114 
1115          --    if no-changes (see above) then
1116          --       raise Storage_Error;
1117          --    else
1118          --       original-call
1119          --    end if;
1120 
1121          Rewrite (Node (Call),
1122            Make_If_Statement (Loc,
1123              Condition       => Test,
1124              Then_Statements => New_List (
1125                Make_Raise_Storage_Error (Loc,
1126                  Reason => SE_Infinite_Recursion)),
1127 
1128              Else_Statements => New_List (
1129                Relocate_Node (Node (Call)))));
1130 
1131          Analyze (Node (Call));
1132 
1133          Next_Elmt (Call);
1134       end loop;
1135 
1136       --  Remove temporary scope stack entry used for analysis
1137 
1138       Pop_Scope;
1139    end Detect_Infinite_Recursion;
1140 
1141    --------------------
1142    -- Expand_Actuals --
1143    --------------------
1144 
1145    procedure Expand_Actuals (N : in out Node_Id; Subp : Entity_Id) is
1146       Loc       : constant Source_Ptr := Sloc (N);
1147       Actual    : Node_Id;
1148       Formal    : Entity_Id;
1149       N_Node    : Node_Id;
1150       Post_Call : List_Id;
1151       E_Actual  : Entity_Id;
1152       E_Formal  : Entity_Id;
1153 
1154       procedure Add_Call_By_Copy_Code;
1155       --  For cases where the parameter must be passed by copy, this routine
1156       --  generates a temporary variable into which the actual is copied and
1157       --  then passes this as the parameter. For an OUT or IN OUT parameter,
1158       --  an assignment is also generated to copy the result back. The call
1159       --  also takes care of any constraint checks required for the type
1160       --  conversion case (on both the way in and the way out).
1161 
1162       procedure Add_Simple_Call_By_Copy_Code;
1163       --  This is similar to the above, but is used in cases where we know
1164       --  that all that is needed is to simply create a temporary and copy
1165       --  the value in and out of the temporary.
1166 
1167       procedure Check_Fortran_Logical;
1168       --  A value of type Logical that is passed through a formal parameter
1169       --  must be normalized because .TRUE. usually does not have the same
1170       --  representation as True. We assume that .FALSE. = False = 0.
1171       --  What about functions that return a logical type ???
1172 
1173       function Is_Legal_Copy return Boolean;
1174       --  Check that an actual can be copied before generating the temporary
1175       --  to be used in the call. If the actual is of a by_reference type then
1176       --  the program is illegal (this can only happen in the presence of
1177       --  rep. clauses that force an incorrect alignment). If the formal is
1178       --  a by_reference parameter imposed by a DEC pragma, emit a warning to
1179       --  the effect that this might lead to unaligned arguments.
1180 
1181       function Make_Var (Actual : Node_Id) return Entity_Id;
1182       --  Returns an entity that refers to the given actual parameter, Actual
1183       --  (not including any type conversion). If Actual is an entity name,
1184       --  then this entity is returned unchanged, otherwise a renaming is
1185       --  created to provide an entity for the actual.
1186 
1187       procedure Reset_Packed_Prefix;
1188       --  The expansion of a packed array component reference is delayed in
1189       --  the context of a call. Now we need to complete the expansion, so we
1190       --  unmark the analyzed bits in all prefixes.
1191 
1192       ---------------------------
1193       -- Add_Call_By_Copy_Code --
1194       ---------------------------
1195 
1196       procedure Add_Call_By_Copy_Code is
1197          Crep  : Boolean;
1198          Expr  : Node_Id;
1199          F_Typ : Entity_Id := Etype (Formal);
1200          Indic : Node_Id;
1201          Init  : Node_Id;
1202          Temp  : Entity_Id;
1203          V_Typ : Entity_Id;
1204          Var   : Entity_Id;
1205 
1206       begin
1207          if not Is_Legal_Copy then
1208             return;
1209          end if;
1210 
1211          Temp := Make_Temporary (Loc, 'T', Actual);
1212 
1213          --  Handle formals whose type comes from the limited view
1214 
1215          if From_Limited_With (F_Typ)
1216            and then Has_Non_Limited_View (F_Typ)
1217          then
1218             F_Typ := Non_Limited_View (F_Typ);
1219          end if;
1220 
1221          --  Use formal type for temp, unless formal type is an unconstrained
1222          --  array, in which case we don't have to worry about bounds checks,
1223          --  and we use the actual type, since that has appropriate bounds.
1224 
1225          if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1226             Indic := New_Occurrence_Of (Etype (Actual), Loc);
1227          else
1228             Indic := New_Occurrence_Of (F_Typ, Loc);
1229          end if;
1230 
1231          if Nkind (Actual) = N_Type_Conversion then
1232             V_Typ := Etype (Expression (Actual));
1233 
1234             --  If the formal is an (in-)out parameter, capture the name
1235             --  of the variable in order to build the post-call assignment.
1236 
1237             Var := Make_Var (Expression (Actual));
1238 
1239             Crep := not Same_Representation
1240                           (F_Typ, Etype (Expression (Actual)));
1241 
1242          else
1243             V_Typ := Etype (Actual);
1244             Var   := Make_Var (Actual);
1245             Crep  := False;
1246          end if;
1247 
1248          --  Setup initialization for case of in out parameter, or an out
1249          --  parameter where the formal is an unconstrained array (in the
1250          --  latter case, we have to pass in an object with bounds).
1251 
1252          --  If this is an out parameter, the initial copy is wasteful, so as
1253          --  an optimization for the one-dimensional case we extract the
1254          --  bounds of the actual and build an uninitialized temporary of the
1255          --  right size.
1256 
1257          if Ekind (Formal) = E_In_Out_Parameter
1258            or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
1259          then
1260             if Nkind (Actual) = N_Type_Conversion then
1261                if Conversion_OK (Actual) then
1262                   Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1263                else
1264                   Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1265                end if;
1266 
1267             elsif Ekind (Formal) = E_Out_Parameter
1268               and then Is_Array_Type (F_Typ)
1269               and then Number_Dimensions (F_Typ) = 1
1270               and then not Has_Non_Null_Base_Init_Proc (F_Typ)
1271             then
1272                --  Actual is a one-dimensional array or slice, and the type
1273                --  requires no initialization. Create a temporary of the
1274                --  right size, but do not copy actual into it (optimization).
1275 
1276                Init := Empty;
1277                Indic :=
1278                  Make_Subtype_Indication (Loc,
1279                    Subtype_Mark => New_Occurrence_Of (F_Typ, Loc),
1280                    Constraint   =>
1281                      Make_Index_Or_Discriminant_Constraint (Loc,
1282                        Constraints => New_List (
1283                          Make_Range (Loc,
1284                            Low_Bound  =>
1285                              Make_Attribute_Reference (Loc,
1286                                Prefix         => New_Occurrence_Of (Var, Loc),
1287                                Attribute_Name => Name_First),
1288                            High_Bound =>
1289                              Make_Attribute_Reference (Loc,
1290                                Prefix         => New_Occurrence_Of (Var, Loc),
1291                                Attribute_Name => Name_Last)))));
1292 
1293             else
1294                Init := New_Occurrence_Of (Var, Loc);
1295             end if;
1296 
1297          --  An initialization is created for packed conversions as
1298          --  actuals for out parameters to enable Make_Object_Declaration
1299          --  to determine the proper subtype for N_Node. Note that this
1300          --  is wasteful because the extra copying on the call side is
1301          --  not required for such out parameters. ???
1302 
1303          elsif Ekind (Formal) = E_Out_Parameter
1304            and then Nkind (Actual) = N_Type_Conversion
1305            and then (Is_Bit_Packed_Array (F_Typ)
1306                        or else
1307                      Is_Bit_Packed_Array (Etype (Expression (Actual))))
1308          then
1309             if Conversion_OK (Actual) then
1310                Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1311             else
1312                Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1313             end if;
1314 
1315          elsif Ekind (Formal) = E_In_Parameter then
1316 
1317             --  Handle the case in which the actual is a type conversion
1318 
1319             if Nkind (Actual) = N_Type_Conversion then
1320                if Conversion_OK (Actual) then
1321                   Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1322                else
1323                   Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1324                end if;
1325             else
1326                Init := New_Occurrence_Of (Var, Loc);
1327             end if;
1328 
1329          else
1330             Init := Empty;
1331          end if;
1332 
1333          N_Node :=
1334            Make_Object_Declaration (Loc,
1335              Defining_Identifier => Temp,
1336              Object_Definition   => Indic,
1337              Expression          => Init);
1338          Set_Assignment_OK (N_Node);
1339          Insert_Action (N, N_Node);
1340 
1341          --  Now, normally the deal here is that we use the defining
1342          --  identifier created by that object declaration. There is
1343          --  one exception to this. In the change of representation case
1344          --  the above declaration will end up looking like:
1345 
1346          --    temp : type := identifier;
1347 
1348          --  And in this case we might as well use the identifier directly
1349          --  and eliminate the temporary. Note that the analysis of the
1350          --  declaration was not a waste of time in that case, since it is
1351          --  what generated the necessary change of representation code. If
1352          --  the change of representation introduced additional code, as in
1353          --  a fixed-integer conversion, the expression is not an identifier
1354          --  and must be kept.
1355 
1356          if Crep
1357            and then Present (Expression (N_Node))
1358            and then Is_Entity_Name (Expression (N_Node))
1359          then
1360             Temp := Entity (Expression (N_Node));
1361             Rewrite (N_Node, Make_Null_Statement (Loc));
1362          end if;
1363 
1364          --  For IN parameter, all we do is to replace the actual
1365 
1366          if Ekind (Formal) = E_In_Parameter then
1367             Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1368             Analyze (Actual);
1369 
1370          --  Processing for OUT or IN OUT parameter
1371 
1372          else
1373             --  Kill current value indications for the temporary variable we
1374             --  created, since we just passed it as an OUT parameter.
1375 
1376             Kill_Current_Values (Temp);
1377             Set_Is_Known_Valid (Temp, False);
1378 
1379             --  If type conversion, use reverse conversion on exit
1380 
1381             if Nkind (Actual) = N_Type_Conversion then
1382                if Conversion_OK (Actual) then
1383                   Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1384                else
1385                   Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1386                end if;
1387             else
1388                Expr := New_Occurrence_Of (Temp, Loc);
1389             end if;
1390 
1391             Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1392             Analyze (Actual);
1393 
1394             --  If the actual is a conversion of a packed reference, it may
1395             --  already have been expanded by Remove_Side_Effects, and the
1396             --  resulting variable is a temporary which does not designate
1397             --  the proper out-parameter, which may not be addressable. In
1398             --  that case, generate an assignment to the original expression
1399             --  (before expansion of the packed reference) so that the proper
1400             --  expansion of assignment to a packed component can take place.
1401 
1402             declare
1403                Obj : Node_Id;
1404                Lhs : Node_Id;
1405 
1406             begin
1407                if Is_Renaming_Of_Object (Var)
1408                  and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1409                  and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1410                    = N_Indexed_Component
1411                  and then
1412                    Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1413                then
1414                   Obj := Renamed_Object (Var);
1415                   Lhs :=
1416                     Make_Selected_Component (Loc,
1417                       Prefix        =>
1418                         New_Copy_Tree (Original_Node (Prefix (Obj))),
1419                       Selector_Name => New_Copy (Selector_Name (Obj)));
1420                   Reset_Analyzed_Flags (Lhs);
1421 
1422                else
1423                   Lhs := New_Occurrence_Of (Var, Loc);
1424                end if;
1425 
1426                Set_Assignment_OK (Lhs);
1427 
1428                if Is_Access_Type (E_Formal)
1429                  and then Is_Entity_Name (Lhs)
1430                  and then
1431                    Present (Effective_Extra_Accessibility (Entity (Lhs)))
1432                then
1433                   --  Copyback target is an Ada 2012 stand-alone object of an
1434                   --  anonymous access type.
1435 
1436                   pragma Assert (Ada_Version >= Ada_2012);
1437 
1438                   if Type_Access_Level (E_Formal) >
1439                      Object_Access_Level (Lhs)
1440                   then
1441                      Append_To (Post_Call,
1442                        Make_Raise_Program_Error (Loc,
1443                          Reason => PE_Accessibility_Check_Failed));
1444                   end if;
1445 
1446                   Append_To (Post_Call,
1447                     Make_Assignment_Statement (Loc,
1448                       Name       => Lhs,
1449                       Expression => Expr));
1450 
1451                   --  We would like to somehow suppress generation of the
1452                   --  extra_accessibility assignment generated by the expansion
1453                   --  of the above assignment statement. It's not a correctness
1454                   --  issue because the following assignment renders it dead,
1455                   --  but generating back-to-back assignments to the same
1456                   --  target is undesirable. ???
1457 
1458                   Append_To (Post_Call,
1459                     Make_Assignment_Statement (Loc,
1460                       Name       => New_Occurrence_Of (
1461                         Effective_Extra_Accessibility (Entity (Lhs)), Loc),
1462                       Expression => Make_Integer_Literal (Loc,
1463                         Type_Access_Level (E_Formal))));
1464 
1465                else
1466                   Append_To (Post_Call,
1467                     Make_Assignment_Statement (Loc,
1468                       Name       => Lhs,
1469                       Expression => Expr));
1470                end if;
1471             end;
1472          end if;
1473       end Add_Call_By_Copy_Code;
1474 
1475       ----------------------------------
1476       -- Add_Simple_Call_By_Copy_Code --
1477       ----------------------------------
1478 
1479       procedure Add_Simple_Call_By_Copy_Code is
1480          Decl   : Node_Id;
1481          F_Typ  : Entity_Id := Etype (Formal);
1482          Incod  : Node_Id;
1483          Indic  : Node_Id;
1484          Lhs    : Node_Id;
1485          Outcod : Node_Id;
1486          Rhs    : Node_Id;
1487          Temp   : Entity_Id;
1488 
1489       begin
1490          if not Is_Legal_Copy then
1491             return;
1492          end if;
1493 
1494          --  Handle formals whose type comes from the limited view
1495 
1496          if From_Limited_With (F_Typ)
1497            and then Has_Non_Limited_View (F_Typ)
1498          then
1499             F_Typ := Non_Limited_View (F_Typ);
1500          end if;
1501 
1502          --  Use formal type for temp, unless formal type is an unconstrained
1503          --  array, in which case we don't have to worry about bounds checks,
1504          --  and we use the actual type, since that has appropriate bounds.
1505 
1506          if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1507             Indic := New_Occurrence_Of (Etype (Actual), Loc);
1508          else
1509             Indic := New_Occurrence_Of (F_Typ, Loc);
1510          end if;
1511 
1512          --  Prepare to generate code
1513 
1514          Reset_Packed_Prefix;
1515 
1516          Temp := Make_Temporary (Loc, 'T', Actual);
1517          Incod  := Relocate_Node (Actual);
1518          Outcod := New_Copy_Tree (Incod);
1519 
1520          --  Generate declaration of temporary variable, initializing it
1521          --  with the input parameter unless we have an OUT formal or
1522          --  this is an initialization call.
1523 
1524          --  If the formal is an out parameter with discriminants, the
1525          --  discriminants must be captured even if the rest of the object
1526          --  is in principle uninitialized, because the discriminants may
1527          --  be read by the called subprogram.
1528 
1529          if Ekind (Formal) = E_Out_Parameter then
1530             Incod := Empty;
1531 
1532             if Has_Discriminants (F_Typ) then
1533                Indic := New_Occurrence_Of (Etype (Actual), Loc);
1534             end if;
1535 
1536          elsif Inside_Init_Proc then
1537 
1538             --  Could use a comment here to match comment below ???
1539 
1540             if Nkind (Actual) /= N_Selected_Component
1541               or else
1542                 not Has_Discriminant_Dependent_Constraint
1543                   (Entity (Selector_Name (Actual)))
1544             then
1545                Incod := Empty;
1546 
1547             --  Otherwise, keep the component in order to generate the proper
1548             --  actual subtype, that depends on enclosing discriminants.
1549 
1550             else
1551                null;
1552             end if;
1553          end if;
1554 
1555          Decl :=
1556            Make_Object_Declaration (Loc,
1557              Defining_Identifier => Temp,
1558              Object_Definition   => Indic,
1559              Expression          => Incod);
1560 
1561          if Inside_Init_Proc
1562            and then No (Incod)
1563          then
1564             --  If the call is to initialize a component of a composite type,
1565             --  and the component does not depend on discriminants, use the
1566             --  actual type of the component. This is required in case the
1567             --  component is constrained, because in general the formal of the
1568             --  initialization procedure will be unconstrained. Note that if
1569             --  the component being initialized is constrained by an enclosing
1570             --  discriminant, the presence of the initialization in the
1571             --  declaration will generate an expression for the actual subtype.
1572 
1573             Set_No_Initialization (Decl);
1574             Set_Object_Definition (Decl,
1575               New_Occurrence_Of (Etype (Actual), Loc));
1576          end if;
1577 
1578          Insert_Action (N, Decl);
1579 
1580          --  The actual is simply a reference to the temporary
1581 
1582          Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1583 
1584          --  Generate copy out if OUT or IN OUT parameter
1585 
1586          if Ekind (Formal) /= E_In_Parameter then
1587             Lhs := Outcod;
1588             Rhs := New_Occurrence_Of (Temp, Loc);
1589 
1590             --  Deal with conversion
1591 
1592             if Nkind (Lhs) = N_Type_Conversion then
1593                Lhs := Expression (Lhs);
1594                Rhs := Convert_To (Etype (Actual), Rhs);
1595             end if;
1596 
1597             Append_To (Post_Call,
1598               Make_Assignment_Statement (Loc,
1599                 Name       => Lhs,
1600                 Expression => Rhs));
1601             Set_Assignment_OK (Name (Last (Post_Call)));
1602          end if;
1603       end Add_Simple_Call_By_Copy_Code;
1604 
1605       ---------------------------
1606       -- Check_Fortran_Logical --
1607       ---------------------------
1608 
1609       procedure Check_Fortran_Logical is
1610          Logical : constant Entity_Id := Etype (Formal);
1611          Var     : Entity_Id;
1612 
1613       --  Note: this is very incomplete, e.g. it does not handle arrays
1614       --  of logical values. This is really not the right approach at all???)
1615 
1616       begin
1617          if Convention (Subp) = Convention_Fortran
1618            and then Root_Type (Etype (Formal)) = Standard_Boolean
1619            and then Ekind (Formal) /= E_In_Parameter
1620          then
1621             Var := Make_Var (Actual);
1622             Append_To (Post_Call,
1623               Make_Assignment_Statement (Loc,
1624                 Name => New_Occurrence_Of (Var, Loc),
1625                 Expression =>
1626                   Unchecked_Convert_To (
1627                     Logical,
1628                     Make_Op_Ne (Loc,
1629                       Left_Opnd  => New_Occurrence_Of (Var, Loc),
1630                       Right_Opnd =>
1631                         Unchecked_Convert_To (
1632                           Logical,
1633                           New_Occurrence_Of (Standard_False, Loc))))));
1634          end if;
1635       end Check_Fortran_Logical;
1636 
1637       -------------------
1638       -- Is_Legal_Copy --
1639       -------------------
1640 
1641       function Is_Legal_Copy return Boolean is
1642       begin
1643          --  An attempt to copy a value of such a type can only occur if
1644          --  representation clauses give the actual a misaligned address.
1645 
1646          if Is_By_Reference_Type (Etype (Formal)) then
1647 
1648             --  If the front-end does not perform full type layout, the actual
1649             --  may in fact be properly aligned but there is not enough front-
1650             --  end information to determine this. In that case gigi will emit
1651             --  an error if a copy is not legal, or generate the proper code.
1652             --  For other backends we report the error now.
1653 
1654             --  Seems wrong to be issuing an error in the expander, since it
1655             --  will be missed in -gnatc mode ???
1656 
1657             if Frontend_Layout_On_Target then
1658                Error_Msg_N
1659                  ("misaligned actual cannot be passed by reference", Actual);
1660             end if;
1661 
1662             return False;
1663 
1664          --  For users of Starlet, we assume that the specification of by-
1665          --  reference mechanism is mandatory. This may lead to unaligned
1666          --  objects but at least for DEC legacy code it is known to work.
1667          --  The warning will alert users of this code that a problem may
1668          --  be lurking.
1669 
1670          elsif Mechanism (Formal) = By_Reference
1671            and then Is_Valued_Procedure (Scope (Formal))
1672          then
1673             Error_Msg_N
1674               ("by_reference actual may be misaligned??", Actual);
1675             return False;
1676 
1677          else
1678             return True;
1679          end if;
1680       end Is_Legal_Copy;
1681 
1682       --------------
1683       -- Make_Var --
1684       --------------
1685 
1686       function Make_Var (Actual : Node_Id) return Entity_Id is
1687          Var : Entity_Id;
1688 
1689       begin
1690          if Is_Entity_Name (Actual) then
1691             return Entity (Actual);
1692 
1693          else
1694             Var := Make_Temporary (Loc, 'T', Actual);
1695 
1696             N_Node :=
1697               Make_Object_Renaming_Declaration (Loc,
1698                 Defining_Identifier => Var,
1699                 Subtype_Mark        =>
1700                   New_Occurrence_Of (Etype (Actual), Loc),
1701                 Name                => Relocate_Node (Actual));
1702 
1703             Insert_Action (N, N_Node);
1704             return Var;
1705          end if;
1706       end Make_Var;
1707 
1708       -------------------------
1709       -- Reset_Packed_Prefix --
1710       -------------------------
1711 
1712       procedure Reset_Packed_Prefix is
1713          Pfx : Node_Id := Actual;
1714       begin
1715          loop
1716             Set_Analyzed (Pfx, False);
1717             exit when
1718               not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
1719             Pfx := Prefix (Pfx);
1720          end loop;
1721       end Reset_Packed_Prefix;
1722 
1723    --  Start of processing for Expand_Actuals
1724 
1725    begin
1726       Post_Call := New_List;
1727 
1728       Formal := First_Formal (Subp);
1729       Actual := First_Actual (N);
1730       while Present (Formal) loop
1731          E_Formal := Etype (Formal);
1732          E_Actual := Etype (Actual);
1733 
1734          --  Handle formals whose type comes from the limited view
1735 
1736          if From_Limited_With (E_Formal)
1737            and then Has_Non_Limited_View (E_Formal)
1738          then
1739             E_Formal := Non_Limited_View (E_Formal);
1740          end if;
1741 
1742          if Is_Scalar_Type (E_Formal)
1743            or else Nkind (Actual) = N_Slice
1744          then
1745             Check_Fortran_Logical;
1746 
1747          --  RM 6.4.1 (11)
1748 
1749          elsif Ekind (Formal) /= E_Out_Parameter then
1750 
1751             --  The unusual case of the current instance of a protected type
1752             --  requires special handling. This can only occur in the context
1753             --  of a call within the body of a protected operation.
1754 
1755             if Is_Entity_Name (Actual)
1756               and then Ekind (Entity (Actual)) = E_Protected_Type
1757               and then In_Open_Scopes (Entity (Actual))
1758             then
1759                if Scope (Subp) /= Entity (Actual) then
1760                   Error_Msg_N
1761                     ("operation outside protected type may not "
1762                      & "call back its protected operations??", Actual);
1763                end if;
1764 
1765                Rewrite (Actual,
1766                  Expand_Protected_Object_Reference (N, Entity (Actual)));
1767             end if;
1768 
1769             --  Ada 2005 (AI-318-02): If the actual parameter is a call to a
1770             --  build-in-place function, then a temporary return object needs
1771             --  to be created and access to it must be passed to the function.
1772             --  Currently we limit such functions to those with inherently
1773             --  limited result subtypes, but eventually we plan to expand the
1774             --  functions that are treated as build-in-place to include other
1775             --  composite result types.
1776 
1777             if Is_Build_In_Place_Function_Call (Actual) then
1778                Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
1779             end if;
1780 
1781             Apply_Constraint_Check (Actual, E_Formal);
1782 
1783          --  Out parameter case. No constraint checks on access type
1784          --  RM 6.4.1 (13)
1785 
1786          elsif Is_Access_Type (E_Formal) then
1787             null;
1788 
1789          --  RM 6.4.1 (14)
1790 
1791          elsif Has_Discriminants (Base_Type (E_Formal))
1792            or else Has_Non_Null_Base_Init_Proc (E_Formal)
1793          then
1794             Apply_Constraint_Check (Actual, E_Formal);
1795 
1796          --  RM 6.4.1 (15)
1797 
1798          else
1799             Apply_Constraint_Check (Actual, Base_Type (E_Formal));
1800          end if;
1801 
1802          --  Processing for IN-OUT and OUT parameters
1803 
1804          if Ekind (Formal) /= E_In_Parameter then
1805 
1806             --  For type conversions of arrays, apply length/range checks
1807 
1808             if Is_Array_Type (E_Formal)
1809               and then Nkind (Actual) = N_Type_Conversion
1810             then
1811                if Is_Constrained (E_Formal) then
1812                   Apply_Length_Check (Expression (Actual), E_Formal);
1813                else
1814                   Apply_Range_Check (Expression (Actual), E_Formal);
1815                end if;
1816             end if;
1817 
1818             --  If argument is a type conversion for a type that is passed
1819             --  by copy, then we must pass the parameter by copy.
1820 
1821             if Nkind (Actual) = N_Type_Conversion
1822               and then
1823                 (Is_Numeric_Type (E_Formal)
1824                   or else Is_Access_Type (E_Formal)
1825                   or else Is_Enumeration_Type (E_Formal)
1826                   or else Is_Bit_Packed_Array (Etype (Formal))
1827                   or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
1828 
1829                   --  Also pass by copy if change of representation
1830 
1831                   or else not Same_Representation
1832                                 (Etype (Formal),
1833                                  Etype (Expression (Actual))))
1834             then
1835                Add_Call_By_Copy_Code;
1836 
1837             --  References to components of bit-packed arrays are expanded
1838             --  at this point, rather than at the point of analysis of the
1839             --  actuals, to handle the expansion of the assignment to
1840             --  [in] out parameters.
1841 
1842             elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1843                Add_Simple_Call_By_Copy_Code;
1844 
1845             --  If a non-scalar actual is possibly bit-aligned, we need a copy
1846             --  because the back-end cannot cope with such objects. In other
1847             --  cases where alignment forces a copy, the back-end generates
1848             --  it properly. It should not be generated unconditionally in the
1849             --  front-end because it does not know precisely the alignment
1850             --  requirements of the target, and makes too conservative an
1851             --  estimate, leading to superfluous copies or spurious errors
1852             --  on by-reference parameters.
1853 
1854             elsif Nkind (Actual) = N_Selected_Component
1855               and then
1856                 Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
1857               and then not Represented_As_Scalar (Etype (Formal))
1858             then
1859                Add_Simple_Call_By_Copy_Code;
1860 
1861             --  References to slices of bit-packed arrays are expanded
1862 
1863             elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1864                Add_Call_By_Copy_Code;
1865 
1866             --  References to possibly unaligned slices of arrays are expanded
1867 
1868             elsif Is_Possibly_Unaligned_Slice (Actual) then
1869                Add_Call_By_Copy_Code;
1870 
1871             --  Deal with access types where the actual subtype and the
1872             --  formal subtype are not the same, requiring a check.
1873 
1874             --  It is necessary to exclude tagged types because of "downward
1875             --  conversion" errors.
1876 
1877             elsif Is_Access_Type (E_Formal)
1878               and then not Same_Type (E_Formal, E_Actual)
1879               and then not Is_Tagged_Type (Designated_Type (E_Formal))
1880             then
1881                Add_Call_By_Copy_Code;
1882 
1883             --  If the actual is not a scalar and is marked for volatile
1884             --  treatment, whereas the formal is not volatile, then pass
1885             --  by copy unless it is a by-reference type.
1886 
1887             --  Note: we use Is_Volatile here rather than Treat_As_Volatile,
1888             --  because this is the enforcement of a language rule that applies
1889             --  only to "real" volatile variables, not e.g. to the address
1890             --  clause overlay case.
1891 
1892             elsif Is_Entity_Name (Actual)
1893               and then Is_Volatile (Entity (Actual))
1894               and then not Is_By_Reference_Type (E_Actual)
1895               and then not Is_Scalar_Type (Etype (Entity (Actual)))
1896               and then not Is_Volatile (E_Formal)
1897             then
1898                Add_Call_By_Copy_Code;
1899 
1900             elsif Nkind (Actual) = N_Indexed_Component
1901               and then Is_Entity_Name (Prefix (Actual))
1902               and then Has_Volatile_Components (Entity (Prefix (Actual)))
1903             then
1904                Add_Call_By_Copy_Code;
1905 
1906             --  Add call-by-copy code for the case of scalar out parameters
1907             --  when it is not known at compile time that the subtype of the
1908             --  formal is a subrange of the subtype of the actual (or vice
1909             --  versa for in out parameters), in order to get range checks
1910             --  on such actuals. (Maybe this case should be handled earlier
1911             --  in the if statement???)
1912 
1913             elsif Is_Scalar_Type (E_Formal)
1914               and then
1915                 (not In_Subrange_Of (E_Formal, E_Actual)
1916                   or else
1917                     (Ekind (Formal) = E_In_Out_Parameter
1918                       and then not In_Subrange_Of (E_Actual, E_Formal)))
1919             then
1920                --  Perhaps the setting back to False should be done within
1921                --  Add_Call_By_Copy_Code, since it could get set on other
1922                --  cases occurring above???
1923 
1924                if Do_Range_Check (Actual) then
1925                   Set_Do_Range_Check (Actual, False);
1926                end if;
1927 
1928                Add_Call_By_Copy_Code;
1929             end if;
1930 
1931             --  RM 3.2.4 (23/3): A predicate is checked on in-out and out
1932             --  by-reference parameters on exit from the call. If the actual
1933             --  is a derived type and the operation is inherited, the body
1934             --  of the operation will not contain a call to the predicate
1935             --  function, so it must be done explicitly after the call. Ditto
1936             --  if the actual is an entity of a predicated subtype.
1937 
1938             --  The rule refers to by-reference types, but a check is needed
1939             --  for by-copy types as well. That check is subsumed by the rule
1940             --  for subtype conversion on assignment, but we can generate the
1941             --  required check now.
1942 
1943             --  Note also that Subp may be either a subprogram entity for
1944             --  direct calls, or a type entity for indirect calls, which must
1945             --  be handled separately because the name does not denote an
1946             --  overloadable entity.
1947 
1948             By_Ref_Predicate_Check : declare
1949                Aund : constant Entity_Id := Underlying_Type (E_Actual);
1950                Atyp : Entity_Id;
1951 
1952                function Is_Public_Subp return Boolean;
1953                --  Check whether the subprogram being called is a visible
1954                --  operation of the type of the actual. Used to determine
1955                --  whether an invariant check must be generated on the
1956                --  caller side.
1957 
1958                ---------------------
1959                --  Is_Public_Subp --
1960                ---------------------
1961 
1962                function Is_Public_Subp return Boolean is
1963                   Pack      : constant Entity_Id := Scope (Subp);
1964                   Subp_Decl : Node_Id;
1965 
1966                begin
1967                   if not Is_Subprogram (Subp) then
1968                      return False;
1969 
1970                   --  The operation may be inherited, or a primitive of the
1971                   --  root type.
1972 
1973                   elsif
1974                     Nkind_In (Parent (Subp), N_Private_Extension_Declaration,
1975                                              N_Full_Type_Declaration)
1976                   then
1977                      Subp_Decl := Parent (Subp);
1978 
1979                   else
1980                      Subp_Decl := Unit_Declaration_Node (Subp);
1981                   end if;
1982 
1983                   return Ekind (Pack) = E_Package
1984                     and then
1985                       List_Containing (Subp_Decl) =
1986                         Visible_Declarations
1987                           (Specification (Unit_Declaration_Node (Pack)));
1988                end Is_Public_Subp;
1989 
1990             --  Start of processing for By_Ref_Predicate_Check
1991 
1992             begin
1993                if No (Aund) then
1994                   Atyp := E_Actual;
1995                else
1996                   Atyp := Aund;
1997                end if;
1998 
1999                if Has_Predicates (Atyp)
2000                  and then Present (Predicate_Function (Atyp))
2001 
2002                  --  Skip predicate checks for special cases
2003 
2004                  and then Predicate_Tests_On_Arguments (Subp)
2005                then
2006                   Append_To (Post_Call,
2007                     Make_Predicate_Check (Atyp, Actual));
2008                end if;
2009 
2010                --  We generated caller-side invariant checks in two cases:
2011 
2012                --  a) when calling an inherited operation, where there is an
2013                --  implicit view conversion of the actual to the parent type.
2014 
2015                --  b) When the conversion is explicit
2016 
2017                --  We treat these cases separately because the required
2018                --  conversion for a) is added later when expanding the call.
2019 
2020                if Has_Invariants (Etype (Actual))
2021                   and then
2022                     Nkind (Parent (Subp)) = N_Private_Extension_Declaration
2023                then
2024                   if Comes_From_Source (N) and then Is_Public_Subp then
2025                      Append_To (Post_Call, Make_Invariant_Call (Actual));
2026                   end if;
2027 
2028                elsif Nkind (Actual) = N_Type_Conversion
2029                  and then Has_Invariants (Etype (Expression (Actual)))
2030                then
2031                   if Comes_From_Source (N) and then Is_Public_Subp then
2032                      Append_To (Post_Call,
2033                        Make_Invariant_Call (Expression (Actual)));
2034                   end if;
2035                end if;
2036             end By_Ref_Predicate_Check;
2037 
2038          --  Processing for IN parameters
2039 
2040          else
2041             --  For IN parameters in the bit-packed array case, we expand an
2042             --  indexed component (the circuit in Exp_Ch4 deliberately left
2043             --  indexed components appearing as actuals untouched, so that
2044             --  the special processing above for the OUT and IN OUT cases
2045             --  could be performed. We could make the test in Exp_Ch4 more
2046             --  complex and have it detect the parameter mode, but it is
2047             --  easier simply to handle all cases here.)
2048 
2049             if Nkind (Actual) = N_Indexed_Component
2050               and then Is_Bit_Packed_Array (Etype (Prefix (Actual)))
2051             then
2052                Reset_Packed_Prefix;
2053                Expand_Packed_Element_Reference (Actual);
2054 
2055             --  If we have a reference to a bit-packed array, we copy it, since
2056             --  the actual must be byte aligned.
2057 
2058             --  Is this really necessary in all cases???
2059 
2060             elsif Is_Ref_To_Bit_Packed_Array (Actual) then
2061                Add_Simple_Call_By_Copy_Code;
2062 
2063             --  If a non-scalar actual is possibly unaligned, we need a copy
2064 
2065             elsif Is_Possibly_Unaligned_Object (Actual)
2066               and then not Represented_As_Scalar (Etype (Formal))
2067             then
2068                Add_Simple_Call_By_Copy_Code;
2069 
2070             --  Similarly, we have to expand slices of packed arrays here
2071             --  because the result must be byte aligned.
2072 
2073             elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2074                Add_Call_By_Copy_Code;
2075 
2076             --  Only processing remaining is to pass by copy if this is a
2077             --  reference to a possibly unaligned slice, since the caller
2078             --  expects an appropriately aligned argument.
2079 
2080             elsif Is_Possibly_Unaligned_Slice (Actual) then
2081                Add_Call_By_Copy_Code;
2082 
2083             --  An unusual case: a current instance of an enclosing task can be
2084             --  an actual, and must be replaced by a reference to self.
2085 
2086             elsif Is_Entity_Name (Actual)
2087               and then Is_Task_Type (Entity (Actual))
2088             then
2089                if In_Open_Scopes (Entity (Actual)) then
2090                   Rewrite (Actual,
2091                     (Make_Function_Call (Loc,
2092                        Name => New_Occurrence_Of (RTE (RE_Self), Loc))));
2093                   Analyze (Actual);
2094 
2095                --  A task type cannot otherwise appear as an actual
2096 
2097                else
2098                   raise Program_Error;
2099                end if;
2100             end if;
2101          end if;
2102 
2103          Next_Formal (Formal);
2104          Next_Actual (Actual);
2105       end loop;
2106 
2107       --  Find right place to put post call stuff if it is present
2108 
2109       if not Is_Empty_List (Post_Call) then
2110 
2111          --  Cases where the call is not a member of a statement list.
2112          --  This includes the case where the call is an actual in another
2113          --  function call or indexing, i.e. an expression context as well.
2114 
2115          if not Is_List_Member (N)
2116            or else Nkind_In (Parent (N), N_Function_Call, N_Indexed_Component)
2117          then
2118             --  In Ada 2012 the call may be a function call in an expression
2119             --  (since OUT and IN OUT parameters are now allowed for such
2120             --  calls). The write-back of (in)-out parameters is handled
2121             --  by the back-end, but the constraint checks generated when
2122             --  subtypes of formal and actual don't match must be inserted
2123             --  in the form of assignments.
2124 
2125             if Ada_Version >= Ada_2012
2126               and then Nkind (N) = N_Function_Call
2127             then
2128                --  We used to just do handle this by climbing up parents to
2129                --  a non-statement/declaration and then simply making a call
2130                --  to Insert_Actions_After (P, Post_Call), but that doesn't
2131                --  work. If we are in the middle of an expression, e.g. the
2132                --  condition of an IF, this call would insert after the IF
2133                --  statement, which is much too late to be doing the write
2134                --  back. For example:
2135 
2136                --     if Clobber (X) then
2137                --        Put_Line (X'Img);
2138                --     else
2139                --        goto Junk
2140                --     end if;
2141 
2142                --  Now assume Clobber changes X, if we put the write back
2143                --  after the IF, the Put_Line gets the wrong value and the
2144                --  goto causes the write back to be skipped completely.
2145 
2146                --  To deal with this, we replace the call by
2147 
2148                --    do
2149                --       Tnnn : constant function-result-type := function-call;
2150                --       Post_Call actions
2151                --    in
2152                --       Tnnn;
2153                --    end;
2154 
2155                declare
2156                   Tnnn  : constant Entity_Id := Make_Temporary (Loc, 'T');
2157                   FRTyp : constant Entity_Id := Etype (N);
2158                   Name  : constant Node_Id   := Relocate_Node (N);
2159 
2160                begin
2161                   Prepend_To (Post_Call,
2162                     Make_Object_Declaration (Loc,
2163                       Defining_Identifier => Tnnn,
2164                       Object_Definition   => New_Occurrence_Of (FRTyp, Loc),
2165                       Constant_Present    => True,
2166                       Expression          => Name));
2167 
2168                   Rewrite (N,
2169                     Make_Expression_With_Actions (Loc,
2170                       Actions    => Post_Call,
2171                       Expression => New_Occurrence_Of (Tnnn, Loc)));
2172 
2173                   --  We don't want to just blindly call Analyze_And_Resolve
2174                   --  because that would cause unwanted recursion on the call.
2175                   --  So for a moment set the call as analyzed to prevent that
2176                   --  recursion, and get the rest analyzed properly, then reset
2177                   --  the analyzed flag, so our caller can continue.
2178 
2179                   Set_Analyzed (Name, True);
2180                   Analyze_And_Resolve (N, FRTyp);
2181                   Set_Analyzed (Name, False);
2182 
2183                   --  Reset calling argument to point to function call inside
2184                   --  the expression with actions so the caller can continue
2185                   --  to process the call. In spite of the fact that it is
2186                   --  marked Analyzed above, it may be rewritten by Remove_
2187                   --  Side_Effects if validity checks are present, so go back
2188                   --  to original call.
2189 
2190                   N := Original_Node (Name);
2191                end;
2192 
2193             --  If not the special Ada 2012 case of a function call, then
2194             --  we must have the triggering statement of a triggering
2195             --  alternative or an entry call alternative, and we can add
2196             --  the post call stuff to the corresponding statement list.
2197 
2198             else
2199                declare
2200                   P : Node_Id;
2201 
2202                begin
2203                   P := Parent (N);
2204                   pragma Assert (Nkind_In (P, N_Triggering_Alternative,
2205                                               N_Entry_Call_Alternative));
2206 
2207                   if Is_Non_Empty_List (Statements (P)) then
2208                      Insert_List_Before_And_Analyze
2209                        (First (Statements (P)), Post_Call);
2210                   else
2211                      Set_Statements (P, Post_Call);
2212                   end if;
2213 
2214                   return;
2215                end;
2216             end if;
2217 
2218          --  Otherwise, normal case where N is in a statement sequence,
2219          --  just put the post-call stuff after the call statement.
2220 
2221          else
2222             Insert_Actions_After (N, Post_Call);
2223             return;
2224          end if;
2225       end if;
2226 
2227       --  The call node itself is re-analyzed in Expand_Call
2228 
2229    end Expand_Actuals;
2230 
2231    -----------------
2232    -- Expand_Call --
2233    -----------------
2234 
2235    --  This procedure handles expansion of function calls and procedure call
2236    --  statements (i.e. it serves as the body for Expand_N_Function_Call and
2237    --  Expand_N_Procedure_Call_Statement). Processing for calls includes:
2238 
2239    --    Replace call to Raise_Exception by Raise_Exception_Always if possible
2240    --    Provide values of actuals for all formals in Extra_Formals list
2241    --    Replace "call" to enumeration literal function by literal itself
2242    --    Rewrite call to predefined operator as operator
2243    --    Replace actuals to in-out parameters that are numeric conversions,
2244    --     with explicit assignment to temporaries before and after the call.
2245 
2246    --   Note that the list of actuals has been filled with default expressions
2247    --   during semantic analysis of the call. Only the extra actuals required
2248    --   for the 'Constrained attribute and for accessibility checks are added
2249    --   at this point.
2250 
2251    procedure Expand_Call (N : Node_Id) is
2252       Loc           : constant Source_Ptr := Sloc (N);
2253       Call_Node     : Node_Id := N;
2254       Extra_Actuals : List_Id := No_List;
2255       Prev          : Node_Id := Empty;
2256 
2257       procedure Add_Actual_Parameter (Insert_Param : Node_Id);
2258       --  Adds one entry to the end of the actual parameter list. Used for
2259       --  default parameters and for extra actuals (for Extra_Formals). The
2260       --  argument is an N_Parameter_Association node.
2261 
2262       procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
2263       --  Adds an extra actual to the list of extra actuals. Expr is the
2264       --  expression for the value of the actual, EF is the entity for the
2265       --  extra formal.
2266 
2267       function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
2268       --  Within an instance, a type derived from an untagged formal derived
2269       --  type inherits from the original parent, not from the actual. The
2270       --  current derivation mechanism has the derived type inherit from the
2271       --  actual, which is only correct outside of the instance. If the
2272       --  subprogram is inherited, we test for this particular case through a
2273       --  convoluted tree traversal before setting the proper subprogram to be
2274       --  called.
2275 
2276       function In_Unfrozen_Instance (E : Entity_Id) return Boolean;
2277       --  Return true if E comes from an instance that is not yet frozen
2278 
2279       function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
2280       --  Determine if Subp denotes a non-dispatching call to a Deep routine
2281 
2282       function New_Value (From : Node_Id) return Node_Id;
2283       --  From is the original Expression. New_Value is equivalent to a call
2284       --  to Duplicate_Subexpr with an explicit dereference when From is an
2285       --  access parameter.
2286 
2287       --------------------------
2288       -- Add_Actual_Parameter --
2289       --------------------------
2290 
2291       procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
2292          Actual_Expr : constant Node_Id :=
2293                          Explicit_Actual_Parameter (Insert_Param);
2294 
2295       begin
2296          --  Case of insertion is first named actual
2297 
2298          if No (Prev) or else
2299             Nkind (Parent (Prev)) /= N_Parameter_Association
2300          then
2301             Set_Next_Named_Actual
2302               (Insert_Param, First_Named_Actual (Call_Node));
2303             Set_First_Named_Actual (Call_Node, Actual_Expr);
2304 
2305             if No (Prev) then
2306                if No (Parameter_Associations (Call_Node)) then
2307                   Set_Parameter_Associations (Call_Node, New_List);
2308                end if;
2309 
2310                Append (Insert_Param, Parameter_Associations (Call_Node));
2311 
2312             else
2313                Insert_After (Prev, Insert_Param);
2314             end if;
2315 
2316          --  Case of insertion is not first named actual
2317 
2318          else
2319             Set_Next_Named_Actual
2320               (Insert_Param, Next_Named_Actual (Parent (Prev)));
2321             Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
2322             Append (Insert_Param, Parameter_Associations (Call_Node));
2323          end if;
2324 
2325          Prev := Actual_Expr;
2326       end Add_Actual_Parameter;
2327 
2328       ----------------------
2329       -- Add_Extra_Actual --
2330       ----------------------
2331 
2332       procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
2333          Loc : constant Source_Ptr := Sloc (Expr);
2334 
2335       begin
2336          if Extra_Actuals = No_List then
2337             Extra_Actuals := New_List;
2338             Set_Parent (Extra_Actuals, Call_Node);
2339          end if;
2340 
2341          Append_To (Extra_Actuals,
2342            Make_Parameter_Association (Loc,
2343              Selector_Name             => New_Occurrence_Of (EF, Loc),
2344              Explicit_Actual_Parameter => Expr));
2345 
2346          Analyze_And_Resolve (Expr, Etype (EF));
2347 
2348          if Nkind (Call_Node) = N_Function_Call then
2349             Set_Is_Accessibility_Actual (Parent (Expr));
2350          end if;
2351       end Add_Extra_Actual;
2352 
2353       ---------------------------
2354       -- Inherited_From_Formal --
2355       ---------------------------
2356 
2357       function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
2358          Par      : Entity_Id;
2359          Gen_Par  : Entity_Id;
2360          Gen_Prim : Elist_Id;
2361          Elmt     : Elmt_Id;
2362          Indic    : Node_Id;
2363 
2364       begin
2365          --  If the operation is inherited, it is attached to the corresponding
2366          --  type derivation. If the parent in the derivation is a generic
2367          --  actual, it is a subtype of the actual, and we have to recover the
2368          --  original derived type declaration to find the proper parent.
2369 
2370          if Nkind (Parent (S)) /= N_Full_Type_Declaration
2371            or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
2372            or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
2373                                                    N_Derived_Type_Definition
2374            or else not In_Instance
2375          then
2376             return Empty;
2377 
2378          else
2379             Indic :=
2380               Subtype_Indication
2381                 (Type_Definition (Original_Node (Parent (S))));
2382 
2383             if Nkind (Indic) = N_Subtype_Indication then
2384                Par := Entity (Subtype_Mark (Indic));
2385             else
2386                Par := Entity (Indic);
2387             end if;
2388          end if;
2389 
2390          if not Is_Generic_Actual_Type (Par)
2391            or else Is_Tagged_Type (Par)
2392            or else Nkind (Parent (Par)) /= N_Subtype_Declaration
2393            or else not In_Open_Scopes (Scope (Par))
2394          then
2395             return Empty;
2396          else
2397             Gen_Par := Generic_Parent_Type (Parent (Par));
2398          end if;
2399 
2400          --  If the actual has no generic parent type, the formal is not
2401          --  a formal derived type, so nothing to inherit.
2402 
2403          if No (Gen_Par) then
2404             return Empty;
2405          end if;
2406 
2407          --  If the generic parent type is still the generic type, this is a
2408          --  private formal, not a derived formal, and there are no operations
2409          --  inherited from the formal.
2410 
2411          if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
2412             return Empty;
2413          end if;
2414 
2415          Gen_Prim := Collect_Primitive_Operations (Gen_Par);
2416 
2417          Elmt := First_Elmt (Gen_Prim);
2418          while Present (Elmt) loop
2419             if Chars (Node (Elmt)) = Chars (S) then
2420                declare
2421                   F1 : Entity_Id;
2422                   F2 : Entity_Id;
2423 
2424                begin
2425                   F1 := First_Formal (S);
2426                   F2 := First_Formal (Node (Elmt));
2427                   while Present (F1)
2428                     and then Present (F2)
2429                   loop
2430                      if Etype (F1) = Etype (F2)
2431                        or else Etype (F2) = Gen_Par
2432                      then
2433                         Next_Formal (F1);
2434                         Next_Formal (F2);
2435                      else
2436                         Next_Elmt (Elmt);
2437                         exit;   --  not the right subprogram
2438                      end if;
2439 
2440                      return Node (Elmt);
2441                   end loop;
2442                end;
2443 
2444             else
2445                Next_Elmt (Elmt);
2446             end if;
2447          end loop;
2448 
2449          raise Program_Error;
2450       end Inherited_From_Formal;
2451 
2452       --------------------------
2453       -- In_Unfrozen_Instance --
2454       --------------------------
2455 
2456       function In_Unfrozen_Instance (E : Entity_Id) return Boolean is
2457          S : Entity_Id;
2458 
2459       begin
2460          S := E;
2461          while Present (S) and then S /= Standard_Standard loop
2462             if Is_Generic_Instance (S)
2463               and then Present (Freeze_Node (S))
2464               and then not Analyzed (Freeze_Node (S))
2465             then
2466                return True;
2467             end if;
2468 
2469             S := Scope (S);
2470          end loop;
2471 
2472          return False;
2473       end In_Unfrozen_Instance;
2474 
2475       -------------------------
2476       -- Is_Direct_Deep_Call --
2477       -------------------------
2478 
2479       function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
2480       begin
2481          if Is_TSS (Subp, TSS_Deep_Adjust)
2482            or else Is_TSS (Subp, TSS_Deep_Finalize)
2483            or else Is_TSS (Subp, TSS_Deep_Initialize)
2484          then
2485             declare
2486                Actual : Node_Id;
2487                Formal : Node_Id;
2488 
2489             begin
2490                Actual := First (Parameter_Associations (N));
2491                Formal := First_Formal (Subp);
2492                while Present (Actual)
2493                  and then Present (Formal)
2494                loop
2495                   if Nkind (Actual) = N_Identifier
2496                     and then Is_Controlling_Actual (Actual)
2497                     and then Etype (Actual) = Etype (Formal)
2498                   then
2499                      return True;
2500                   end if;
2501 
2502                   Next (Actual);
2503                   Next_Formal (Formal);
2504                end loop;
2505             end;
2506          end if;
2507 
2508          return False;
2509       end Is_Direct_Deep_Call;
2510 
2511       ---------------
2512       -- New_Value --
2513       ---------------
2514 
2515       function New_Value (From : Node_Id) return Node_Id is
2516          Res : constant Node_Id := Duplicate_Subexpr (From);
2517       begin
2518          if Is_Access_Type (Etype (From)) then
2519             return Make_Explicit_Dereference (Sloc (From), Prefix => Res);
2520          else
2521             return Res;
2522          end if;
2523       end New_Value;
2524 
2525       --  Local variables
2526 
2527       Remote        : constant Boolean := Is_Remote_Call (Call_Node);
2528       Actual        : Node_Id;
2529       Formal        : Entity_Id;
2530       Orig_Subp     : Entity_Id := Empty;
2531       Param_Count   : Natural := 0;
2532       Parent_Formal : Entity_Id;
2533       Parent_Subp   : Entity_Id;
2534       Scop          : Entity_Id;
2535       Subp          : Entity_Id;
2536 
2537       Prev_Orig : Node_Id;
2538       --  Original node for an actual, which may have been rewritten. If the
2539       --  actual is a function call that has been transformed from a selected
2540       --  component, the original node is unanalyzed. Otherwise, it carries
2541       --  semantic information used to generate additional actuals.
2542 
2543       CW_Interface_Formals_Present : Boolean := False;
2544 
2545    --  Start of processing for Expand_Call
2546 
2547    begin
2548       --  Expand the function or procedure call if the first actual has a
2549       --  declared dimension aspect, and the subprogram is declared in one
2550       --  of the dimension I/O packages.
2551 
2552       if Ada_Version >= Ada_2012
2553         and then
2554            Nkind_In (Call_Node, N_Procedure_Call_Statement, N_Function_Call)
2555         and then Present (Parameter_Associations (Call_Node))
2556       then
2557          Expand_Put_Call_With_Symbol (Call_Node);
2558       end if;
2559 
2560       --  Ignore if previous error
2561 
2562       if Nkind (Call_Node) in N_Has_Etype
2563         and then Etype (Call_Node) = Any_Type
2564       then
2565          return;
2566       end if;
2567 
2568       --  Call using access to subprogram with explicit dereference
2569 
2570       if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
2571          Subp        := Etype (Name (Call_Node));
2572          Parent_Subp := Empty;
2573 
2574       --  Case of call to simple entry, where the Name is a selected component
2575       --  whose prefix is the task, and whose selector name is the entry name
2576 
2577       elsif Nkind (Name (Call_Node)) = N_Selected_Component then
2578          Subp        := Entity (Selector_Name (Name (Call_Node)));
2579          Parent_Subp := Empty;
2580 
2581       --  Case of call to member of entry family, where Name is an indexed
2582       --  component, with the prefix being a selected component giving the
2583       --  task and entry family name, and the index being the entry index.
2584 
2585       elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
2586          Subp        := Entity (Selector_Name (Prefix (Name (Call_Node))));
2587          Parent_Subp := Empty;
2588 
2589       --  Normal case
2590 
2591       else
2592          Subp        := Entity (Name (Call_Node));
2593          Parent_Subp := Alias (Subp);
2594 
2595          --  Replace call to Raise_Exception by call to Raise_Exception_Always
2596          --  if we can tell that the first parameter cannot possibly be null.
2597          --  This improves efficiency by avoiding a run-time test.
2598 
2599          --  We do not do this if Raise_Exception_Always does not exist, which
2600          --  can happen in configurable run time profiles which provide only a
2601          --  Raise_Exception.
2602 
2603          if Is_RTE (Subp, RE_Raise_Exception)
2604            and then RTE_Available (RE_Raise_Exception_Always)
2605          then
2606             declare
2607                FA : constant Node_Id :=
2608                       Original_Node (First_Actual (Call_Node));
2609 
2610             begin
2611                --  The case we catch is where the first argument is obtained
2612                --  using the Identity attribute (which must always be
2613                --  non-null).
2614 
2615                if Nkind (FA) = N_Attribute_Reference
2616                  and then Attribute_Name (FA) = Name_Identity
2617                then
2618                   Subp := RTE (RE_Raise_Exception_Always);
2619                   Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
2620                end if;
2621             end;
2622          end if;
2623 
2624          if Ekind (Subp) = E_Entry then
2625             Parent_Subp := Empty;
2626          end if;
2627       end if;
2628 
2629       --  Ada 2005 (AI-345): We have a procedure call as a triggering
2630       --  alternative in an asynchronous select or as an entry call in
2631       --  a conditional or timed select. Check whether the procedure call
2632       --  is a renaming of an entry and rewrite it as an entry call.
2633 
2634       if Ada_Version >= Ada_2005
2635         and then Nkind (Call_Node) = N_Procedure_Call_Statement
2636         and then
2637            ((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
2638               and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
2639           or else
2640             (Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
2641               and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
2642       then
2643          declare
2644             Ren_Decl : Node_Id;
2645             Ren_Root : Entity_Id := Subp;
2646 
2647          begin
2648             --  This may be a chain of renamings, find the root
2649 
2650             if Present (Alias (Ren_Root)) then
2651                Ren_Root := Alias (Ren_Root);
2652             end if;
2653 
2654             if Present (Original_Node (Parent (Parent (Ren_Root)))) then
2655                Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
2656 
2657                if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
2658                   Rewrite (Call_Node,
2659                     Make_Entry_Call_Statement (Loc,
2660                       Name =>
2661                         New_Copy_Tree (Name (Ren_Decl)),
2662                       Parameter_Associations =>
2663                         New_Copy_List_Tree
2664                           (Parameter_Associations (Call_Node))));
2665 
2666                   return;
2667                end if;
2668             end if;
2669          end;
2670       end if;
2671 
2672       --  When generating C code, transform a function call that returns a
2673       --  constrained array type into procedure form.
2674 
2675       if Modify_Tree_For_C
2676         and then Nkind (Call_Node) = N_Function_Call
2677         and then Is_Entity_Name (Name (Call_Node))
2678         and then Rewritten_For_C (Ultimate_Alias (Entity (Name (Call_Node))))
2679       then
2680          --  For internally generated calls ensure that they reference the
2681          --  entity of the spec of the called function (needed since the
2682          --  expander may generate calls using the entity of their body).
2683          --  See for example Expand_Boolean_Operator().
2684 
2685          if not (Comes_From_Source (Call_Node))
2686            and then Nkind (Unit_Declaration_Node
2687                             (Ultimate_Alias (Entity (Name (Call_Node))))) =
2688                               N_Subprogram_Body
2689          then
2690             Set_Entity (Name (Call_Node),
2691               Corresponding_Function
2692                 (Corresponding_Procedure
2693                   (Ultimate_Alias (Entity (Name (Call_Node))))));
2694          end if;
2695 
2696          Rewrite_Function_Call_For_C (Call_Node);
2697          return;
2698       end if;
2699 
2700       --  First step, compute extra actuals, corresponding to any Extra_Formals
2701       --  present. Note that we do not access Extra_Formals directly, instead
2702       --  we simply note the presence of the extra formals as we process the
2703       --  regular formals collecting corresponding actuals in Extra_Actuals.
2704 
2705       --  We also generate any required range checks for actuals for in formals
2706       --  as we go through the loop, since this is a convenient place to do it.
2707       --  (Though it seems that this would be better done in Expand_Actuals???)
2708 
2709       --  Special case: Thunks must not compute the extra actuals; they must
2710       --  just propagate to the target primitive their extra actuals.
2711 
2712       if Is_Thunk (Current_Scope)
2713         and then Thunk_Entity (Current_Scope) = Subp
2714         and then Present (Extra_Formals (Subp))
2715       then
2716          pragma Assert (Present (Extra_Formals (Current_Scope)));
2717 
2718          declare
2719             Target_Formal : Entity_Id;
2720             Thunk_Formal  : Entity_Id;
2721 
2722          begin
2723             Target_Formal := Extra_Formals (Subp);
2724             Thunk_Formal  := Extra_Formals (Current_Scope);
2725             while Present (Target_Formal) loop
2726                Add_Extra_Actual
2727                  (New_Occurrence_Of (Thunk_Formal, Loc), Thunk_Formal);
2728 
2729                Target_Formal := Extra_Formal (Target_Formal);
2730                Thunk_Formal  := Extra_Formal (Thunk_Formal);
2731             end loop;
2732 
2733             while Is_Non_Empty_List (Extra_Actuals) loop
2734                Add_Actual_Parameter (Remove_Head (Extra_Actuals));
2735             end loop;
2736 
2737             Expand_Actuals (Call_Node, Subp);
2738             return;
2739          end;
2740       end if;
2741 
2742       Formal := First_Formal (Subp);
2743       Actual := First_Actual (Call_Node);
2744       Param_Count := 1;
2745       while Present (Formal) loop
2746 
2747          --  Generate range check if required
2748 
2749          if Do_Range_Check (Actual)
2750            and then Ekind (Formal) = E_In_Parameter
2751          then
2752             Generate_Range_Check
2753               (Actual, Etype (Formal), CE_Range_Check_Failed);
2754          end if;
2755 
2756          --  Prepare to examine current entry
2757 
2758          Prev := Actual;
2759          Prev_Orig := Original_Node (Prev);
2760 
2761          --  Ada 2005 (AI-251): Check if any formal is a class-wide interface
2762          --  to expand it in a further round.
2763 
2764          CW_Interface_Formals_Present :=
2765            CW_Interface_Formals_Present
2766              or else
2767                (Ekind (Etype (Formal)) = E_Class_Wide_Type
2768                  and then Is_Interface (Etype (Etype (Formal))))
2769              or else
2770                (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
2771                  and then Is_Interface (Directly_Designated_Type
2772                                          (Etype (Etype (Formal)))));
2773 
2774          --  Create possible extra actual for constrained case. Usually, the
2775          --  extra actual is of the form actual'constrained, but since this
2776          --  attribute is only available for unconstrained records, TRUE is
2777          --  expanded if the type of the formal happens to be constrained (for
2778          --  instance when this procedure is inherited from an unconstrained
2779          --  record to a constrained one) or if the actual has no discriminant
2780          --  (its type is constrained). An exception to this is the case of a
2781          --  private type without discriminants. In this case we pass FALSE
2782          --  because the object has underlying discriminants with defaults.
2783 
2784          if Present (Extra_Constrained (Formal)) then
2785             if Ekind (Etype (Prev)) in Private_Kind
2786               and then not Has_Discriminants (Base_Type (Etype (Prev)))
2787             then
2788                Add_Extra_Actual
2789                  (New_Occurrence_Of (Standard_False, Loc),
2790                   Extra_Constrained (Formal));
2791 
2792             elsif Is_Constrained (Etype (Formal))
2793               or else not Has_Discriminants (Etype (Prev))
2794             then
2795                Add_Extra_Actual
2796                  (New_Occurrence_Of (Standard_True, Loc),
2797                   Extra_Constrained (Formal));
2798 
2799             --  Do not produce extra actuals for Unchecked_Union parameters.
2800             --  Jump directly to the end of the loop.
2801 
2802             elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
2803                goto Skip_Extra_Actual_Generation;
2804 
2805             else
2806                --  If the actual is a type conversion, then the constrained
2807                --  test applies to the actual, not the target type.
2808 
2809                declare
2810                   Act_Prev : Node_Id;
2811 
2812                begin
2813                   --  Test for unchecked conversions as well, which can occur
2814                   --  as out parameter actuals on calls to stream procedures.
2815 
2816                   Act_Prev := Prev;
2817                   while Nkind_In (Act_Prev, N_Type_Conversion,
2818                                             N_Unchecked_Type_Conversion)
2819                   loop
2820                      Act_Prev := Expression (Act_Prev);
2821                   end loop;
2822 
2823                   --  If the expression is a conversion of a dereference, this
2824                   --  is internally generated code that manipulates addresses,
2825                   --  e.g. when building interface tables. No check should
2826                   --  occur in this case, and the discriminated object is not
2827                   --  directly a hand.
2828 
2829                   if not Comes_From_Source (Actual)
2830                     and then Nkind (Actual) = N_Unchecked_Type_Conversion
2831                     and then Nkind (Act_Prev) = N_Explicit_Dereference
2832                   then
2833                      Add_Extra_Actual
2834                        (New_Occurrence_Of (Standard_False, Loc),
2835                         Extra_Constrained (Formal));
2836 
2837                   else
2838                      Add_Extra_Actual
2839                        (Make_Attribute_Reference (Sloc (Prev),
2840                         Prefix =>
2841                           Duplicate_Subexpr_No_Checks
2842                             (Act_Prev, Name_Req => True),
2843                         Attribute_Name => Name_Constrained),
2844                         Extra_Constrained (Formal));
2845                   end if;
2846                end;
2847             end if;
2848          end if;
2849 
2850          --  Create possible extra actual for accessibility level
2851 
2852          if Present (Extra_Accessibility (Formal)) then
2853 
2854             --  Ada 2005 (AI-252): If the actual was rewritten as an Access
2855             --  attribute, then the original actual may be an aliased object
2856             --  occurring as the prefix in a call using "Object.Operation"
2857             --  notation. In that case we must pass the level of the object,
2858             --  so Prev_Orig is reset to Prev and the attribute will be
2859             --  processed by the code for Access attributes further below.
2860 
2861             if Prev_Orig /= Prev
2862               and then Nkind (Prev) = N_Attribute_Reference
2863               and then
2864                 Get_Attribute_Id (Attribute_Name (Prev)) = Attribute_Access
2865               and then Is_Aliased_View (Prev_Orig)
2866             then
2867                Prev_Orig := Prev;
2868             end if;
2869 
2870             --  Ada 2005 (AI-251): Thunks must propagate the extra actuals of
2871             --  accessibility levels.
2872 
2873             if Is_Thunk (Current_Scope) then
2874                declare
2875                   Parm_Ent : Entity_Id;
2876 
2877                begin
2878                   if Is_Controlling_Actual (Actual) then
2879 
2880                      --  Find the corresponding actual of the thunk
2881 
2882                      Parm_Ent := First_Entity (Current_Scope);
2883                      for J in 2 .. Param_Count loop
2884                         Next_Entity (Parm_Ent);
2885                      end loop;
2886 
2887                   --  Handle unchecked conversion of access types generated
2888                   --  in thunks (cf. Expand_Interface_Thunk).
2889 
2890                   elsif Is_Access_Type (Etype (Actual))
2891                     and then Nkind (Actual) = N_Unchecked_Type_Conversion
2892                   then
2893                      Parm_Ent := Entity (Expression (Actual));
2894 
2895                   else pragma Assert (Is_Entity_Name (Actual));
2896                      Parm_Ent := Entity (Actual);
2897                   end if;
2898 
2899                   Add_Extra_Actual
2900                     (New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
2901                      Extra_Accessibility (Formal));
2902                end;
2903 
2904             elsif Is_Entity_Name (Prev_Orig) then
2905 
2906                --  When passing an access parameter, or a renaming of an access
2907                --  parameter, as the actual to another access parameter we need
2908                --  to pass along the actual's own access level parameter. This
2909                --  is done if we are within the scope of the formal access
2910                --  parameter (if this is an inlined body the extra formal is
2911                --  irrelevant).
2912 
2913                if (Is_Formal (Entity (Prev_Orig))
2914                     or else
2915                       (Present (Renamed_Object (Entity (Prev_Orig)))
2916                         and then
2917                           Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
2918                         and then
2919                           Is_Formal
2920                             (Entity (Renamed_Object (Entity (Prev_Orig))))))
2921                  and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
2922                  and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
2923                then
2924                   declare
2925                      Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
2926 
2927                   begin
2928                      pragma Assert (Present (Parm_Ent));
2929 
2930                      if Present (Extra_Accessibility (Parm_Ent)) then
2931                         Add_Extra_Actual
2932                           (New_Occurrence_Of
2933                              (Extra_Accessibility (Parm_Ent), Loc),
2934                            Extra_Accessibility (Formal));
2935 
2936                      --  If the actual access parameter does not have an
2937                      --  associated extra formal providing its scope level,
2938                      --  then treat the actual as having library-level
2939                      --  accessibility.
2940 
2941                      else
2942                         Add_Extra_Actual
2943                           (Make_Integer_Literal (Loc,
2944                              Intval => Scope_Depth (Standard_Standard)),
2945                            Extra_Accessibility (Formal));
2946                      end if;
2947                   end;
2948 
2949                --  The actual is a normal access value, so just pass the level
2950                --  of the actual's access type.
2951 
2952                else
2953                   Add_Extra_Actual
2954                     (Dynamic_Accessibility_Level (Prev_Orig),
2955                      Extra_Accessibility (Formal));
2956                end if;
2957 
2958             --  If the actual is an access discriminant, then pass the level
2959             --  of the enclosing object (RM05-3.10.2(12.4/2)).
2960 
2961             elsif Nkind (Prev_Orig) = N_Selected_Component
2962               and then Ekind (Entity (Selector_Name (Prev_Orig))) =
2963                                                        E_Discriminant
2964               and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
2965                                                        E_Anonymous_Access_Type
2966             then
2967                Add_Extra_Actual
2968                  (Make_Integer_Literal (Loc,
2969                     Intval => Object_Access_Level (Prefix (Prev_Orig))),
2970                   Extra_Accessibility (Formal));
2971 
2972             --  All other cases
2973 
2974             else
2975                case Nkind (Prev_Orig) is
2976 
2977                   when N_Attribute_Reference =>
2978                      case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
2979 
2980                         --  For X'Access, pass on the level of the prefix X
2981 
2982                         when Attribute_Access =>
2983 
2984                            --  If this is an Access attribute applied to the
2985                            --  the current instance object passed to a type
2986                            --  initialization procedure, then use the level
2987                            --  of the type itself. This is not really correct,
2988                            --  as there should be an extra level parameter
2989                            --  passed in with _init formals (only in the case
2990                            --  where the type is immutably limited), but we
2991                            --  don't have an easy way currently to create such
2992                            --  an extra formal (init procs aren't ever frozen).
2993                            --  For now we just use the level of the type,
2994                            --  which may be too shallow, but that works better
2995                            --  than passing Object_Access_Level of the type,
2996                            --  which can be one level too deep in some cases.
2997                            --  ???
2998 
2999                            if Is_Entity_Name (Prefix (Prev_Orig))
3000                              and then Is_Type (Entity (Prefix (Prev_Orig)))
3001                            then
3002                               Add_Extra_Actual
3003                                 (Make_Integer_Literal (Loc,
3004                                    Intval =>
3005                                      Type_Access_Level
3006                                        (Entity (Prefix (Prev_Orig)))),
3007                                  Extra_Accessibility (Formal));
3008 
3009                            else
3010                               Add_Extra_Actual
3011                                 (Make_Integer_Literal (Loc,
3012                                    Intval =>
3013                                      Object_Access_Level
3014                                        (Prefix (Prev_Orig))),
3015                                  Extra_Accessibility (Formal));
3016                            end if;
3017 
3018                         --  Treat the unchecked attributes as library-level
3019 
3020                         when Attribute_Unchecked_Access |
3021                            Attribute_Unrestricted_Access =>
3022                            Add_Extra_Actual
3023                              (Make_Integer_Literal (Loc,
3024                                 Intval => Scope_Depth (Standard_Standard)),
3025                               Extra_Accessibility (Formal));
3026 
3027                         --  No other cases of attributes returning access
3028                         --  values that can be passed to access parameters.
3029 
3030                         when others =>
3031                            raise Program_Error;
3032 
3033                      end case;
3034 
3035                   --  For allocators we pass the level of the execution of the
3036                   --  called subprogram, which is one greater than the current
3037                   --  scope level.
3038 
3039                   when N_Allocator =>
3040                      Add_Extra_Actual
3041                        (Make_Integer_Literal (Loc,
3042                           Intval => Scope_Depth (Current_Scope) + 1),
3043                         Extra_Accessibility (Formal));
3044 
3045                   --  For most other cases we simply pass the level of the
3046                   --  actual's access type. The type is retrieved from
3047                   --  Prev rather than Prev_Orig, because in some cases
3048                   --  Prev_Orig denotes an original expression that has
3049                   --  not been analyzed.
3050 
3051                   when others =>
3052                      Add_Extra_Actual
3053                        (Dynamic_Accessibility_Level (Prev),
3054                         Extra_Accessibility (Formal));
3055                end case;
3056             end if;
3057          end if;
3058 
3059          --  Perform the check of 4.6(49) that prevents a null value from being
3060          --  passed as an actual to an access parameter. Note that the check
3061          --  is elided in the common cases of passing an access attribute or
3062          --  access parameter as an actual. Also, we currently don't enforce
3063          --  this check for expander-generated actuals and when -gnatdj is set.
3064 
3065          if Ada_Version >= Ada_2005 then
3066 
3067             --  Ada 2005 (AI-231): Check null-excluding access types. Note that
3068             --  the intent of 6.4.1(13) is that null-exclusion checks should
3069             --  not be done for 'out' parameters, even though it refers only
3070             --  to constraint checks, and a null_exclusion is not a constraint.
3071             --  Note that AI05-0196-1 corrects this mistake in the RM.
3072 
3073             if Is_Access_Type (Etype (Formal))
3074               and then Can_Never_Be_Null (Etype (Formal))
3075               and then Ekind (Formal) /= E_Out_Parameter
3076               and then Nkind (Prev) /= N_Raise_Constraint_Error
3077               and then (Known_Null (Prev)
3078                          or else not Can_Never_Be_Null (Etype (Prev)))
3079             then
3080                Install_Null_Excluding_Check (Prev);
3081             end if;
3082 
3083          --  Ada_Version < Ada_2005
3084 
3085          else
3086             if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
3087               or else Access_Checks_Suppressed (Subp)
3088             then
3089                null;
3090 
3091             elsif Debug_Flag_J then
3092                null;
3093 
3094             elsif not Comes_From_Source (Prev) then
3095                null;
3096 
3097             elsif Is_Entity_Name (Prev)
3098               and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
3099             then
3100                null;
3101 
3102             elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
3103                null;
3104 
3105             else
3106                Install_Null_Excluding_Check (Prev);
3107             end if;
3108          end if;
3109 
3110          --  Perform appropriate validity checks on parameters that
3111          --  are entities.
3112 
3113          if Validity_Checks_On then
3114             if  (Ekind (Formal) = E_In_Parameter
3115                   and then Validity_Check_In_Params)
3116               or else
3117                 (Ekind (Formal) = E_In_Out_Parameter
3118                   and then Validity_Check_In_Out_Params)
3119             then
3120                --  If the actual is an indexed component of a packed type (or
3121                --  is an indexed or selected component whose prefix recursively
3122                --  meets this condition), it has not been expanded yet. It will
3123                --  be copied in the validity code that follows, and has to be
3124                --  expanded appropriately, so reanalyze it.
3125 
3126                --  What we do is just to unset analyzed bits on prefixes till
3127                --  we reach something that does not have a prefix.
3128 
3129                declare
3130                   Nod : Node_Id;
3131 
3132                begin
3133                   Nod := Actual;
3134                   while Nkind_In (Nod, N_Indexed_Component,
3135                                        N_Selected_Component)
3136                   loop
3137                      Set_Analyzed (Nod, False);
3138                      Nod := Prefix (Nod);
3139                   end loop;
3140                end;
3141 
3142                Ensure_Valid (Actual);
3143             end if;
3144          end if;
3145 
3146          --  For IN OUT and OUT parameters, ensure that subscripts are valid
3147          --  since this is a left side reference. We only do this for calls
3148          --  from the source program since we assume that compiler generated
3149          --  calls explicitly generate any required checks. We also need it
3150          --  only if we are doing standard validity checks, since clearly it is
3151          --  not needed if validity checks are off, and in subscript validity
3152          --  checking mode, all indexed components are checked with a call
3153          --  directly from Expand_N_Indexed_Component.
3154 
3155          if Comes_From_Source (Call_Node)
3156            and then Ekind (Formal) /= E_In_Parameter
3157            and then Validity_Checks_On
3158            and then Validity_Check_Default
3159            and then not Validity_Check_Subscripts
3160          then
3161             Check_Valid_Lvalue_Subscripts (Actual);
3162          end if;
3163 
3164          --  Mark any scalar OUT parameter that is a simple variable as no
3165          --  longer known to be valid (unless the type is always valid). This
3166          --  reflects the fact that if an OUT parameter is never set in a
3167          --  procedure, then it can become invalid on the procedure return.
3168 
3169          if Ekind (Formal) = E_Out_Parameter
3170            and then Is_Entity_Name (Actual)
3171            and then Ekind (Entity (Actual)) = E_Variable
3172            and then not Is_Known_Valid (Etype (Actual))
3173          then
3174             Set_Is_Known_Valid (Entity (Actual), False);
3175          end if;
3176 
3177          --  For an OUT or IN OUT parameter, if the actual is an entity, then
3178          --  clear current values, since they can be clobbered. We are probably
3179          --  doing this in more places than we need to, but better safe than
3180          --  sorry when it comes to retaining bad current values.
3181 
3182          if Ekind (Formal) /= E_In_Parameter
3183            and then Is_Entity_Name (Actual)
3184            and then Present (Entity (Actual))
3185          then
3186             declare
3187                Ent : constant Entity_Id := Entity (Actual);
3188                Sav : Node_Id;
3189 
3190             begin
3191                --  For an OUT or IN OUT parameter that is an assignable entity,
3192                --  we do not want to clobber the Last_Assignment field, since
3193                --  if it is set, it was precisely because it is indeed an OUT
3194                --  or IN OUT parameter. We do reset the Is_Known_Valid flag
3195                --  since the subprogram could have returned in invalid value.
3196 
3197                if Ekind_In (Formal, E_Out_Parameter, E_In_Out_Parameter)
3198                  and then Is_Assignable (Ent)
3199                then
3200                   Sav := Last_Assignment (Ent);
3201                   Kill_Current_Values (Ent);
3202                   Set_Last_Assignment (Ent, Sav);
3203                   Set_Is_Known_Valid (Ent, False);
3204 
3205                --  For all other cases, just kill the current values
3206 
3207                else
3208                   Kill_Current_Values (Ent);
3209                end if;
3210             end;
3211          end if;
3212 
3213          --  If the formal is class wide and the actual is an aggregate, force
3214          --  evaluation so that the back end who does not know about class-wide
3215          --  type, does not generate a temporary of the wrong size.
3216 
3217          if not Is_Class_Wide_Type (Etype (Formal)) then
3218             null;
3219 
3220          elsif Nkind (Actual) = N_Aggregate
3221            or else (Nkind (Actual) = N_Qualified_Expression
3222                      and then Nkind (Expression (Actual)) = N_Aggregate)
3223          then
3224             Force_Evaluation (Actual);
3225          end if;
3226 
3227          --  In a remote call, if the formal is of a class-wide type, check
3228          --  that the actual meets the requirements described in E.4(18).
3229 
3230          if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
3231             Insert_Action (Actual,
3232               Make_Transportable_Check (Loc,
3233                 Duplicate_Subexpr_Move_Checks (Actual)));
3234          end if;
3235 
3236          --  This label is required when skipping extra actual generation for
3237          --  Unchecked_Union parameters.
3238 
3239          <<Skip_Extra_Actual_Generation>>
3240 
3241          Param_Count := Param_Count + 1;
3242          Next_Actual (Actual);
3243          Next_Formal (Formal);
3244       end loop;
3245 
3246       --  If we are calling an Ada 2012 function which needs to have the
3247       --  "accessibility level determined by the point of call" (AI05-0234)
3248       --  passed in to it, then pass it in.
3249 
3250       if Ekind_In (Subp, E_Function, E_Operator, E_Subprogram_Type)
3251         and then
3252           Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
3253       then
3254          declare
3255             Ancestor : Node_Id := Parent (Call_Node);
3256             Level    : Node_Id := Empty;
3257             Defer    : Boolean := False;
3258 
3259          begin
3260             --  Unimplemented: if Subp returns an anonymous access type, then
3261 
3262             --    a) if the call is the operand of an explict conversion, then
3263             --       the target type of the conversion (a named access type)
3264             --       determines the accessibility level pass in;
3265 
3266             --    b) if the call defines an access discriminant of an object
3267             --       (e.g., the discriminant of an object being created by an
3268             --       allocator, or the discriminant of a function result),
3269             --       then the accessibility level to pass in is that of the
3270             --       discriminated object being initialized).
3271 
3272             --  ???
3273 
3274             while Nkind (Ancestor) = N_Qualified_Expression
3275             loop
3276                Ancestor := Parent (Ancestor);
3277             end loop;
3278 
3279             case Nkind (Ancestor) is
3280                when N_Allocator =>
3281 
3282                   --  At this point, we'd like to assign
3283 
3284                   --    Level := Dynamic_Accessibility_Level (Ancestor);
3285 
3286                   --  but Etype of Ancestor may not have been set yet,
3287                   --  so that doesn't work.
3288 
3289                   --  Handle this later in Expand_Allocator_Expression.
3290 
3291                   Defer := True;
3292 
3293                when N_Object_Declaration | N_Object_Renaming_Declaration =>
3294                   declare
3295                      Def_Id : constant Entity_Id :=
3296                                 Defining_Identifier (Ancestor);
3297 
3298                   begin
3299                      if Is_Return_Object (Def_Id) then
3300                         if Present (Extra_Accessibility_Of_Result
3301                                      (Return_Applies_To (Scope (Def_Id))))
3302                         then
3303                            --  Pass along value that was passed in if the
3304                            --  routine we are returning from also has an
3305                            --  Accessibility_Of_Result formal.
3306 
3307                            Level :=
3308                              New_Occurrence_Of
3309                               (Extra_Accessibility_Of_Result
3310                                 (Return_Applies_To (Scope (Def_Id))), Loc);
3311                         end if;
3312                      else
3313                         Level :=
3314                           Make_Integer_Literal (Loc,
3315                             Intval => Object_Access_Level (Def_Id));
3316                      end if;
3317                   end;
3318 
3319                when N_Simple_Return_Statement =>
3320                   if Present (Extra_Accessibility_Of_Result
3321                                (Return_Applies_To
3322                                  (Return_Statement_Entity (Ancestor))))
3323                   then
3324                      --  Pass along value that was passed in if the returned
3325                      --  routine also has an Accessibility_Of_Result formal.
3326 
3327                      Level :=
3328                        New_Occurrence_Of
3329                          (Extra_Accessibility_Of_Result
3330                             (Return_Applies_To
3331                                (Return_Statement_Entity (Ancestor))), Loc);
3332                   end if;
3333 
3334                when others =>
3335                   null;
3336             end case;
3337 
3338             if not Defer then
3339                if not Present (Level) then
3340 
3341                   --  The "innermost master that evaluates the function call".
3342 
3343                   --  ??? - Should we use Integer'Last here instead in order
3344                   --  to deal with (some of) the problems associated with
3345                   --  calls to subps whose enclosing scope is unknown (e.g.,
3346                   --  Anon_Access_To_Subp_Param.all)?
3347 
3348                   Level := Make_Integer_Literal (Loc,
3349                              Scope_Depth (Current_Scope) + 1);
3350                end if;
3351 
3352                Add_Extra_Actual
3353                  (Level,
3354                   Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)));
3355             end if;
3356          end;
3357       end if;
3358 
3359       --  If we are expanding the RHS of an assignment we need to check if tag
3360       --  propagation is needed. You might expect this processing to be in
3361       --  Analyze_Assignment but has to be done earlier (bottom-up) because the
3362       --  assignment might be transformed to a declaration for an unconstrained
3363       --  value if the expression is classwide.
3364 
3365       if Nkind (Call_Node) = N_Function_Call
3366         and then Is_Tag_Indeterminate (Call_Node)
3367         and then Is_Entity_Name (Name (Call_Node))
3368       then
3369          declare
3370             Ass : Node_Id := Empty;
3371 
3372          begin
3373             if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
3374                Ass := Parent (Call_Node);
3375 
3376             elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
3377               and then Nkind (Parent (Parent (Call_Node))) =
3378                                                   N_Assignment_Statement
3379             then
3380                Ass := Parent (Parent (Call_Node));
3381 
3382             elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
3383               and then Nkind (Parent (Parent (Call_Node))) =
3384                                                   N_Assignment_Statement
3385             then
3386                Ass := Parent (Parent (Call_Node));
3387             end if;
3388 
3389             if Present (Ass)
3390               and then Is_Class_Wide_Type (Etype (Name (Ass)))
3391             then
3392                if Is_Access_Type (Etype (Call_Node)) then
3393                   if Designated_Type (Etype (Call_Node)) /=
3394                     Root_Type (Etype (Name (Ass)))
3395                   then
3396                      Error_Msg_NE
3397                        ("tag-indeterminate expression "
3398                          & " must have designated type& (RM 5.2 (6))",
3399                          Call_Node, Root_Type (Etype (Name (Ass))));
3400                   else
3401                      Propagate_Tag (Name (Ass), Call_Node);
3402                   end if;
3403 
3404                elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
3405                   Error_Msg_NE
3406                     ("tag-indeterminate expression must have type&"
3407                      & "(RM 5.2 (6))",
3408                      Call_Node, Root_Type (Etype (Name (Ass))));
3409 
3410                else
3411                   Propagate_Tag (Name (Ass), Call_Node);
3412                end if;
3413 
3414                --  The call will be rewritten as a dispatching call, and
3415                --  expanded as such.
3416 
3417                return;
3418             end if;
3419          end;
3420       end if;
3421 
3422       --  Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3423       --  it to point to the correct secondary virtual table
3424 
3425       if Nkind (Call_Node) in N_Subprogram_Call
3426         and then CW_Interface_Formals_Present
3427       then
3428          Expand_Interface_Actuals (Call_Node);
3429       end if;
3430 
3431       --  Deals with Dispatch_Call if we still have a call, before expanding
3432       --  extra actuals since this will be done on the re-analysis of the
3433       --  dispatching call. Note that we do not try to shorten the actual list
3434       --  for a dispatching call, it would not make sense to do so. Expansion
3435       --  of dispatching calls is suppressed for VM targets, because the VM
3436       --  back-ends directly handle the generation of dispatching calls and
3437       --  would have to undo any expansion to an indirect call.
3438 
3439       if Nkind (Call_Node) in N_Subprogram_Call
3440         and then Present (Controlling_Argument (Call_Node))
3441       then
3442          declare
3443             Call_Typ   : constant Entity_Id := Etype (Call_Node);
3444             Typ        : constant Entity_Id := Find_Dispatching_Type (Subp);
3445             Eq_Prim_Op : Entity_Id := Empty;
3446             New_Call   : Node_Id;
3447             Param      : Node_Id;
3448             Prev_Call  : Node_Id;
3449 
3450          begin
3451             if not Is_Limited_Type (Typ) then
3452                Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
3453             end if;
3454 
3455             if Tagged_Type_Expansion then
3456                Expand_Dispatching_Call (Call_Node);
3457 
3458                --  The following return is worrisome. Is it really OK to skip
3459                --  all remaining processing in this procedure ???
3460 
3461                return;
3462 
3463             --  VM targets
3464 
3465             else
3466                Apply_Tag_Checks (Call_Node);
3467 
3468                --  If this is a dispatching "=", we must first compare the
3469                --  tags so we generate: x.tag = y.tag and then x = y
3470 
3471                if Subp = Eq_Prim_Op then
3472 
3473                   --  Mark the node as analyzed to avoid reanalyzing this
3474                   --  dispatching call (which would cause a never-ending loop)
3475 
3476                   Prev_Call := Relocate_Node (Call_Node);
3477                   Set_Analyzed (Prev_Call);
3478 
3479                   Param := First_Actual (Call_Node);
3480                   New_Call :=
3481                     Make_And_Then (Loc,
3482                       Left_Opnd =>
3483                            Make_Op_Eq (Loc,
3484                              Left_Opnd =>
3485                                Make_Selected_Component (Loc,
3486                                  Prefix        => New_Value (Param),
3487                                  Selector_Name =>
3488                                    New_Occurrence_Of
3489                                      (First_Tag_Component (Typ), Loc)),
3490 
3491                              Right_Opnd =>
3492                                Make_Selected_Component (Loc,
3493                                  Prefix        =>
3494                                    Unchecked_Convert_To (Typ,
3495                                      New_Value (Next_Actual (Param))),
3496                                  Selector_Name =>
3497                                    New_Occurrence_Of
3498                                      (First_Tag_Component (Typ), Loc))),
3499                       Right_Opnd => Prev_Call);
3500 
3501                   Rewrite (Call_Node, New_Call);
3502 
3503                   Analyze_And_Resolve
3504                     (Call_Node, Call_Typ, Suppress => All_Checks);
3505                end if;
3506 
3507                --  Expansion of a dispatching call results in an indirect call,
3508                --  which in turn causes current values to be killed (see
3509                --  Resolve_Call), so on VM targets we do the call here to
3510                --  ensure consistent warnings between VM and non-VM targets.
3511 
3512                Kill_Current_Values;
3513             end if;
3514 
3515             --  If this is a dispatching "=" then we must update the reference
3516             --  to the call node because we generated:
3517             --     x.tag = y.tag and then x = y
3518 
3519             if Subp = Eq_Prim_Op then
3520                Call_Node := Right_Opnd (Call_Node);
3521             end if;
3522          end;
3523       end if;
3524 
3525       --  Similarly, expand calls to RCI subprograms on which pragma
3526       --  All_Calls_Remote applies. The rewriting will be reanalyzed
3527       --  later. Do this only when the call comes from source since we
3528       --  do not want such a rewriting to occur in expanded code.
3529 
3530       if Is_All_Remote_Call (Call_Node) then
3531          Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
3532 
3533       --  Similarly, do not add extra actuals for an entry call whose entity
3534       --  is a protected procedure, or for an internal protected subprogram
3535       --  call, because it will be rewritten as a protected subprogram call
3536       --  and reanalyzed (see Expand_Protected_Subprogram_Call).
3537 
3538       elsif Is_Protected_Type (Scope (Subp))
3539          and then (Ekind (Subp) = E_Procedure
3540                     or else Ekind (Subp) = E_Function)
3541       then
3542          null;
3543 
3544       --  During that loop we gathered the extra actuals (the ones that
3545       --  correspond to Extra_Formals), so now they can be appended.
3546 
3547       else
3548          while Is_Non_Empty_List (Extra_Actuals) loop
3549             Add_Actual_Parameter (Remove_Head (Extra_Actuals));
3550          end loop;
3551       end if;
3552 
3553       --  At this point we have all the actuals, so this is the point at which
3554       --  the various expansion activities for actuals is carried out.
3555 
3556       Expand_Actuals (Call_Node, Subp);
3557 
3558       --  Verify that the actuals do not share storage. This check must be done
3559       --  on the caller side rather that inside the subprogram to avoid issues
3560       --  of parameter passing.
3561 
3562       if Check_Aliasing_Of_Parameters then
3563          Apply_Parameter_Aliasing_Checks (Call_Node, Subp);
3564       end if;
3565 
3566       --  If the subprogram is a renaming, or if it is inherited, replace it in
3567       --  the call with the name of the actual subprogram being called. If this
3568       --  is a dispatching call, the run-time decides what to call. The Alias
3569       --  attribute does not apply to entries.
3570 
3571       if Nkind (Call_Node) /= N_Entry_Call_Statement
3572         and then No (Controlling_Argument (Call_Node))
3573         and then Present (Parent_Subp)
3574         and then not Is_Direct_Deep_Call (Subp)
3575       then
3576          if Present (Inherited_From_Formal (Subp)) then
3577             Parent_Subp := Inherited_From_Formal (Subp);
3578          else
3579             Parent_Subp := Ultimate_Alias (Parent_Subp);
3580          end if;
3581 
3582          --  The below setting of Entity is suspect, see F109-018 discussion???
3583 
3584          Set_Entity (Name (Call_Node), Parent_Subp);
3585 
3586          if Is_Abstract_Subprogram (Parent_Subp)
3587            and then not In_Instance
3588          then
3589             Error_Msg_NE
3590               ("cannot call abstract subprogram &!",
3591                Name (Call_Node), Parent_Subp);
3592          end if;
3593 
3594          --  Inspect all formals of derived subprogram Subp. Compare parameter
3595          --  types with the parent subprogram and check whether an actual may
3596          --  need a type conversion to the corresponding formal of the parent
3597          --  subprogram.
3598 
3599          --  Not clear whether intrinsic subprograms need such conversions. ???
3600 
3601          if not Is_Intrinsic_Subprogram (Parent_Subp)
3602            or else Is_Generic_Instance (Parent_Subp)
3603          then
3604             declare
3605                procedure Convert (Act : Node_Id; Typ : Entity_Id);
3606                --  Rewrite node Act as a type conversion of Act to Typ. Analyze
3607                --  and resolve the newly generated construct.
3608 
3609                -------------
3610                -- Convert --
3611                -------------
3612 
3613                procedure Convert (Act : Node_Id; Typ : Entity_Id) is
3614                begin
3615                   Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
3616                   Analyze (Act);
3617                   Resolve (Act, Typ);
3618                end Convert;
3619 
3620                --  Local variables
3621 
3622                Actual_Typ : Entity_Id;
3623                Formal_Typ : Entity_Id;
3624                Parent_Typ : Entity_Id;
3625 
3626             begin
3627                Actual := First_Actual (Call_Node);
3628                Formal := First_Formal (Subp);
3629                Parent_Formal := First_Formal (Parent_Subp);
3630                while Present (Formal) loop
3631                   Actual_Typ := Etype (Actual);
3632                   Formal_Typ := Etype (Formal);
3633                   Parent_Typ := Etype (Parent_Formal);
3634 
3635                   --  For an IN parameter of a scalar type, the parent formal
3636                   --  type and derived formal type differ or the parent formal
3637                   --  type and actual type do not match statically.
3638 
3639                   if Is_Scalar_Type (Formal_Typ)
3640                     and then Ekind (Formal) = E_In_Parameter
3641                     and then Formal_Typ /= Parent_Typ
3642                     and then
3643                       not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
3644                     and then not Raises_Constraint_Error (Actual)
3645                   then
3646                      Convert (Actual, Parent_Typ);
3647                      Enable_Range_Check (Actual);
3648 
3649                      --  If the actual has been marked as requiring a range
3650                      --  check, then generate it here.
3651 
3652                      if Do_Range_Check (Actual) then
3653                         Generate_Range_Check
3654                           (Actual, Etype (Formal), CE_Range_Check_Failed);
3655                      end if;
3656 
3657                   --  For access types, the parent formal type and actual type
3658                   --  differ.
3659 
3660                   elsif Is_Access_Type (Formal_Typ)
3661                     and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
3662                   then
3663                      if Ekind (Formal) /= E_In_Parameter then
3664                         Convert (Actual, Parent_Typ);
3665 
3666                      elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
3667                        and then Designated_Type (Parent_Typ) /=
3668                                 Designated_Type (Actual_Typ)
3669                        and then not Is_Controlling_Formal (Formal)
3670                      then
3671                         --  This unchecked conversion is not necessary unless
3672                         --  inlining is enabled, because in that case the type
3673                         --  mismatch may become visible in the body about to be
3674                         --  inlined.
3675 
3676                         Rewrite (Actual,
3677                           Unchecked_Convert_To (Parent_Typ,
3678                             Relocate_Node (Actual)));
3679                         Analyze (Actual);
3680                         Resolve (Actual, Parent_Typ);
3681                      end if;
3682 
3683                   --  If there is a change of representation, then generate a
3684                   --  warning, and do the change of representation.
3685 
3686                   elsif not Same_Representation (Formal_Typ, Parent_Typ) then
3687                      Error_Msg_N
3688                        ("??change of representation required", Actual);
3689                      Convert (Actual, Parent_Typ);
3690 
3691                   --  For array and record types, the parent formal type and
3692                   --  derived formal type have different sizes or pragma Pack
3693                   --  status.
3694 
3695                   elsif ((Is_Array_Type (Formal_Typ)
3696                            and then Is_Array_Type (Parent_Typ))
3697                        or else
3698                          (Is_Record_Type (Formal_Typ)
3699                            and then Is_Record_Type (Parent_Typ)))
3700                     and then
3701                       (Esize (Formal_Typ) /= Esize (Parent_Typ)
3702                         or else Has_Pragma_Pack (Formal_Typ) /=
3703                                 Has_Pragma_Pack (Parent_Typ))
3704                   then
3705                      Convert (Actual, Parent_Typ);
3706                   end if;
3707 
3708                   Next_Actual (Actual);
3709                   Next_Formal (Formal);
3710                   Next_Formal (Parent_Formal);
3711                end loop;
3712             end;
3713          end if;
3714 
3715          Orig_Subp := Subp;
3716          Subp := Parent_Subp;
3717       end if;
3718 
3719       --  Deal with case where call is an explicit dereference
3720 
3721       if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
3722 
3723       --  Handle case of access to protected subprogram type
3724 
3725          if Is_Access_Protected_Subprogram_Type
3726               (Base_Type (Etype (Prefix (Name (Call_Node)))))
3727          then
3728             --  If this is a call through an access to protected operation, the
3729             --  prefix has the form (object'address, operation'access). Rewrite
3730             --  as a for other protected calls: the object is the 1st parameter
3731             --  of the list of actuals.
3732 
3733             declare
3734                Call : Node_Id;
3735                Parm : List_Id;
3736                Nam  : Node_Id;
3737                Obj  : Node_Id;
3738                Ptr  : constant Node_Id := Prefix (Name (Call_Node));
3739 
3740                T : constant Entity_Id :=
3741                      Equivalent_Type (Base_Type (Etype (Ptr)));
3742 
3743                D_T : constant Entity_Id :=
3744                        Designated_Type (Base_Type (Etype (Ptr)));
3745 
3746             begin
3747                Obj :=
3748                  Make_Selected_Component (Loc,
3749                    Prefix        => Unchecked_Convert_To (T, Ptr),
3750                    Selector_Name =>
3751                      New_Occurrence_Of (First_Entity (T), Loc));
3752 
3753                Nam :=
3754                  Make_Selected_Component (Loc,
3755                    Prefix        => Unchecked_Convert_To (T, Ptr),
3756                    Selector_Name =>
3757                      New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
3758 
3759                Nam :=
3760                  Make_Explicit_Dereference (Loc,
3761                    Prefix => Nam);
3762 
3763                if Present (Parameter_Associations (Call_Node)) then
3764                   Parm := Parameter_Associations (Call_Node);
3765                else
3766                   Parm := New_List;
3767                end if;
3768 
3769                Prepend (Obj, Parm);
3770 
3771                if Etype (D_T) = Standard_Void_Type then
3772                   Call :=
3773                     Make_Procedure_Call_Statement (Loc,
3774                       Name                   => Nam,
3775                       Parameter_Associations => Parm);
3776                else
3777                   Call :=
3778                     Make_Function_Call (Loc,
3779                       Name                   => Nam,
3780                       Parameter_Associations => Parm);
3781                end if;
3782 
3783                Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
3784                Set_Etype (Call, Etype (D_T));
3785 
3786                --  We do not re-analyze the call to avoid infinite recursion.
3787                --  We analyze separately the prefix and the object, and set
3788                --  the checks on the prefix that would otherwise be emitted
3789                --  when resolving a call.
3790 
3791                Rewrite (Call_Node, Call);
3792                Analyze (Nam);
3793                Apply_Access_Check (Nam);
3794                Analyze (Obj);
3795                return;
3796             end;
3797          end if;
3798       end if;
3799 
3800       --  If this is a call to an intrinsic subprogram, then perform the
3801       --  appropriate expansion to the corresponding tree node and we
3802       --  are all done (since after that the call is gone).
3803 
3804       --  In the case where the intrinsic is to be processed by the back end,
3805       --  the call to Expand_Intrinsic_Call will do nothing, which is fine,
3806       --  since the idea in this case is to pass the call unchanged. If the
3807       --  intrinsic is an inherited unchecked conversion, and the derived type
3808       --  is the target type of the conversion, we must retain it as the return
3809       --  type of the expression. Otherwise the expansion below, which uses the
3810       --  parent operation, will yield the wrong type.
3811 
3812       if Is_Intrinsic_Subprogram (Subp) then
3813          Expand_Intrinsic_Call (Call_Node, Subp);
3814 
3815          if Nkind (Call_Node) = N_Unchecked_Type_Conversion
3816            and then Parent_Subp /= Orig_Subp
3817            and then Etype (Parent_Subp) /= Etype (Orig_Subp)
3818          then
3819             Set_Etype (Call_Node, Etype (Orig_Subp));
3820          end if;
3821 
3822          return;
3823       end if;
3824 
3825       if Ekind_In (Subp, E_Function, E_Procedure) then
3826 
3827          --  We perform two simple optimization on calls:
3828 
3829          --  a) replace calls to null procedures unconditionally;
3830 
3831          --  b) for To_Address, just do an unchecked conversion. Not only is
3832          --  this efficient, but it also avoids order of elaboration problems
3833          --  when address clauses are inlined (address expression elaborated
3834          --  at the wrong point).
3835 
3836          --  We perform these optimization regardless of whether we are in the
3837          --  main unit or in a unit in the context of the main unit, to ensure
3838          --  that tree generated is the same in both cases, for CodePeer use.
3839 
3840          if Is_RTE (Subp, RE_To_Address) then
3841             Rewrite (Call_Node,
3842               Unchecked_Convert_To
3843                 (RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
3844             return;
3845 
3846          elsif Is_Null_Procedure (Subp) then
3847             Rewrite (Call_Node, Make_Null_Statement (Loc));
3848             return;
3849          end if;
3850 
3851          --  Handle inlining. No action needed if the subprogram is not inlined
3852 
3853          if not Is_Inlined (Subp) then
3854             null;
3855 
3856          --  Handle frontend inlining
3857 
3858          elsif not Back_End_Inlining then
3859             Inlined_Subprogram : declare
3860                Bod         : Node_Id;
3861                Must_Inline : Boolean := False;
3862                Spec        : constant Node_Id := Unit_Declaration_Node (Subp);
3863 
3864             begin
3865                --  Verify that the body to inline has already been seen, and
3866                --  that if the body is in the current unit the inlining does
3867                --  not occur earlier. This avoids order-of-elaboration problems
3868                --  in the back end.
3869 
3870                --  This should be documented in sinfo/einfo ???
3871 
3872                if No (Spec)
3873                  or else Nkind (Spec) /= N_Subprogram_Declaration
3874                  or else No (Body_To_Inline (Spec))
3875                then
3876                   Must_Inline := False;
3877 
3878                --  If this an inherited function that returns a private type,
3879                --  do not inline if the full view is an unconstrained array,
3880                --  because such calls cannot be inlined.
3881 
3882                elsif Present (Orig_Subp)
3883                  and then Is_Array_Type (Etype (Orig_Subp))
3884                  and then not Is_Constrained (Etype (Orig_Subp))
3885                then
3886                   Must_Inline := False;
3887 
3888                elsif In_Unfrozen_Instance (Scope (Subp)) then
3889                   Must_Inline := False;
3890 
3891                else
3892                   Bod := Body_To_Inline (Spec);
3893 
3894                   if (In_Extended_Main_Code_Unit (Call_Node)
3895                         or else In_Extended_Main_Code_Unit (Parent (Call_Node))
3896                         or else Has_Pragma_Inline_Always (Subp))
3897                     and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
3898                                or else
3899                                  Earlier_In_Extended_Unit (Sloc (Bod), Loc))
3900                   then
3901                      Must_Inline := True;
3902 
3903                   --  If we are compiling a package body that is not the main
3904                   --  unit, it must be for inlining/instantiation purposes,
3905                   --  in which case we inline the call to insure that the same
3906                   --  temporaries are generated when compiling the body by
3907                   --  itself. Otherwise link errors can occur.
3908 
3909                   --  If the function being called is itself in the main unit,
3910                   --  we cannot inline, because there is a risk of double
3911                   --  elaboration and/or circularity: the inlining can make
3912                   --  visible a private entity in the body of the main unit,
3913                   --  that gigi will see before its sees its proper definition.
3914 
3915                   elsif not (In_Extended_Main_Code_Unit (Call_Node))
3916                     and then In_Package_Body
3917                   then
3918                      Must_Inline := not In_Extended_Main_Source_Unit (Subp);
3919 
3920                   --  Inline calls to _postconditions when generating C code
3921 
3922                   elsif Modify_Tree_For_C
3923                     and then In_Same_Extended_Unit (Sloc (Bod), Loc)
3924                     and then Chars (Name (N)) = Name_uPostconditions
3925                   then
3926                      Must_Inline := True;
3927                   end if;
3928                end if;
3929 
3930                if Must_Inline then
3931                   Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
3932 
3933                else
3934                   --  Let the back end handle it
3935 
3936                   Add_Inlined_Body (Subp, Call_Node);
3937 
3938                   if Front_End_Inlining
3939                     and then Nkind (Spec) = N_Subprogram_Declaration
3940                     and then (In_Extended_Main_Code_Unit (Call_Node))
3941                     and then No (Body_To_Inline (Spec))
3942                     and then not Has_Completion (Subp)
3943                     and then In_Same_Extended_Unit (Sloc (Spec), Loc)
3944                   then
3945                      Cannot_Inline
3946                        ("cannot inline& (body not seen yet)?",
3947                         Call_Node, Subp);
3948                   end if;
3949                end if;
3950             end Inlined_Subprogram;
3951 
3952          --  Back end inlining: let the back end handle it
3953 
3954          elsif No (Unit_Declaration_Node (Subp))
3955            or else Nkind (Unit_Declaration_Node (Subp)) /=
3956                                                  N_Subprogram_Declaration
3957            or else No (Body_To_Inline (Unit_Declaration_Node (Subp)))
3958            or else Nkind (Body_To_Inline (Unit_Declaration_Node (Subp))) in
3959                                                                       N_Entity
3960          then
3961             Add_Inlined_Body (Subp, Call_Node);
3962 
3963             --  If the inlined call appears within an instantiation and some
3964             --  level of optimization is required, ensure that the enclosing
3965             --  instance body is available so that the back-end can actually
3966             --  perform the inlining.
3967 
3968             if In_Instance
3969               and then Comes_From_Source (Subp)
3970               and then Optimization_Level > 0
3971             then
3972                declare
3973                   Decl      : Node_Id;
3974                   Inst      : Entity_Id;
3975                   Inst_Node : Node_Id;
3976 
3977                begin
3978                   Inst := Scope (Subp);
3979 
3980                   --  Find enclosing instance
3981 
3982                   while Present (Inst) and then Inst /= Standard_Standard loop
3983                      exit when Is_Generic_Instance (Inst);
3984                      Inst := Scope (Inst);
3985                   end loop;
3986 
3987                   if Present (Inst)
3988                     and then Is_Generic_Instance (Inst)
3989                     and then not Is_Inlined (Inst)
3990                   then
3991                      Set_Is_Inlined (Inst);
3992                      Decl := Unit_Declaration_Node (Inst);
3993 
3994                      --  Do not add a pending instantiation if the body exits
3995                      --  already, or if the instance is a compilation unit, or
3996                      --  the instance node is missing.
3997 
3998                      if Present (Corresponding_Body (Decl))
3999                        or else Nkind (Parent (Decl)) = N_Compilation_Unit
4000                        or else No (Next (Decl))
4001                      then
4002                         null;
4003 
4004                      else
4005                         --  The instantiation node usually follows the package
4006                         --  declaration for the instance. If the generic unit
4007                         --  has aspect specifications, they are transformed
4008                         --  into pragmas in the instance, and the instance node
4009                         --  appears after them.
4010 
4011                         Inst_Node := Next (Decl);
4012 
4013                         while Nkind (Inst_Node) /= N_Package_Instantiation loop
4014                            Inst_Node := Next (Inst_Node);
4015                         end loop;
4016 
4017                         Add_Pending_Instantiation (Inst_Node, Decl);
4018                      end if;
4019                   end if;
4020                end;
4021             end if;
4022 
4023          --  Front end expansion of simple functions returning unconstrained
4024          --  types (see Check_And_Split_Unconstrained_Function). Note that the
4025          --  case of a simple renaming (Body_To_Inline in N_Entity above, see
4026          --  also Build_Renamed_Body) cannot be expanded here because this may
4027          --  give rise to order-of-elaboration issues for the types of the
4028          --  parameters of the subprogram, if any.
4029 
4030          else
4031             Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
4032          end if;
4033       end if;
4034 
4035       --  Check for protected subprogram. This is either an intra-object call,
4036       --  or a protected function call. Protected procedure calls are rewritten
4037       --  as entry calls and handled accordingly.
4038 
4039       --  In Ada 2005, this may be an indirect call to an access parameter that
4040       --  is an access_to_subprogram. In that case the anonymous type has a
4041       --  scope that is a protected operation, but the call is a regular one.
4042       --  In either case do not expand call if subprogram is eliminated.
4043 
4044       Scop := Scope (Subp);
4045 
4046       if Nkind (Call_Node) /= N_Entry_Call_Statement
4047         and then Is_Protected_Type (Scop)
4048         and then Ekind (Subp) /= E_Subprogram_Type
4049         and then not Is_Eliminated (Subp)
4050       then
4051          --  If the call is an internal one, it is rewritten as a call to the
4052          --  corresponding unprotected subprogram.
4053 
4054          Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
4055       end if;
4056 
4057       --  Functions returning controlled objects need special attention. If
4058       --  the return type is limited, then the context is initialization and
4059       --  different processing applies. If the call is to a protected function,
4060       --  the expansion above will call Expand_Call recursively. Otherwise the
4061       --  function call is transformed into a temporary which obtains the
4062       --  result from the secondary stack.
4063 
4064       if Needs_Finalization (Etype (Subp)) then
4065          if not Is_Limited_View (Etype (Subp))
4066            and then
4067              (No (First_Formal (Subp))
4068                 or else
4069                   not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
4070          then
4071             Expand_Ctrl_Function_Call (Call_Node);
4072 
4073          --  Build-in-place function calls which appear in anonymous contexts
4074          --  need a transient scope to ensure the proper finalization of the
4075          --  intermediate result after its use.
4076 
4077          elsif Is_Build_In_Place_Function_Call (Call_Node)
4078            and then
4079              Nkind_In (Parent (Call_Node), N_Attribute_Reference,
4080                                            N_Function_Call,
4081                                            N_Indexed_Component,
4082                                            N_Object_Renaming_Declaration,
4083                                            N_Procedure_Call_Statement,
4084                                            N_Selected_Component,
4085                                            N_Slice)
4086          then
4087             Establish_Transient_Scope (Call_Node, Sec_Stack => True);
4088          end if;
4089       end if;
4090    end Expand_Call;
4091 
4092    -------------------------------
4093    -- Expand_Ctrl_Function_Call --
4094    -------------------------------
4095 
4096    procedure Expand_Ctrl_Function_Call (N : Node_Id) is
4097       function Is_Element_Reference (N : Node_Id) return Boolean;
4098       --  Determine whether node N denotes a reference to an Ada 2012 container
4099       --  element.
4100 
4101       --------------------------
4102       -- Is_Element_Reference --
4103       --------------------------
4104 
4105       function Is_Element_Reference (N : Node_Id) return Boolean is
4106          Ref : constant Node_Id := Original_Node (N);
4107 
4108       begin
4109          --  Analysis marks an element reference by setting the generalized
4110          --  indexing attribute of an indexed component before the component
4111          --  is rewritten into a function call.
4112 
4113          return
4114            Nkind (Ref) = N_Indexed_Component
4115              and then Present (Generalized_Indexing (Ref));
4116       end Is_Element_Reference;
4117 
4118       --  Local variables
4119 
4120       Is_Elem_Ref : constant Boolean := Is_Element_Reference (N);
4121 
4122    --  Start of processing for Expand_Ctrl_Function_Call
4123 
4124    begin
4125       --  Optimization, if the returned value (which is on the sec-stack) is
4126       --  returned again, no need to copy/readjust/finalize, we can just pass
4127       --  the value thru (see Expand_N_Simple_Return_Statement), and thus no
4128       --  attachment is needed
4129 
4130       if Nkind (Parent (N)) = N_Simple_Return_Statement then
4131          return;
4132       end if;
4133 
4134       --  Resolution is now finished, make sure we don't start analysis again
4135       --  because of the duplication.
4136 
4137       Set_Analyzed (N);
4138 
4139       --  A function which returns a controlled object uses the secondary
4140       --  stack. Rewrite the call into a temporary which obtains the result of
4141       --  the function using 'reference.
4142 
4143       Remove_Side_Effects (N);
4144 
4145       --  When the temporary function result appears inside a case expression
4146       --  or an if expression, its lifetime must be extended to match that of
4147       --  the context. If not, the function result will be finalized too early
4148       --  and the evaluation of the expression could yield incorrect result. An
4149       --  exception to this rule are references to Ada 2012 container elements.
4150       --  Such references must be finalized at the end of each iteration of the
4151       --  related quantified expression, otherwise the container will remain
4152       --  busy.
4153 
4154       if not Is_Elem_Ref
4155         and then Within_Case_Or_If_Expression (N)
4156         and then Nkind (N) = N_Explicit_Dereference
4157       then
4158          Set_Is_Processed_Transient (Entity (Prefix (N)));
4159       end if;
4160    end Expand_Ctrl_Function_Call;
4161 
4162    ----------------------------------------
4163    -- Expand_N_Extended_Return_Statement --
4164    ----------------------------------------
4165 
4166    --  If there is a Handled_Statement_Sequence, we rewrite this:
4167 
4168    --     return Result : T := <expression> do
4169    --        <handled_seq_of_stms>
4170    --     end return;
4171 
4172    --  to be:
4173 
4174    --     declare
4175    --        Result : T := <expression>;
4176    --     begin
4177    --        <handled_seq_of_stms>
4178    --        return Result;
4179    --     end;
4180 
4181    --  Otherwise (no Handled_Statement_Sequence), we rewrite this:
4182 
4183    --     return Result : T := <expression>;
4184 
4185    --  to be:
4186 
4187    --     return <expression>;
4188 
4189    --  unless it's build-in-place or there's no <expression>, in which case
4190    --  we generate:
4191 
4192    --     declare
4193    --        Result : T := <expression>;
4194    --     begin
4195    --        return Result;
4196    --     end;
4197 
4198    --  Note that this case could have been written by the user as an extended
4199    --  return statement, or could have been transformed to this from a simple
4200    --  return statement.
4201 
4202    --  That is, we need to have a reified return object if there are statements
4203    --  (which might refer to it) or if we're doing build-in-place (so we can
4204    --  set its address to the final resting place or if there is no expression
4205    --  (in which case default initial values might need to be set).
4206 
4207    procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
4208       Loc : constant Source_Ptr := Sloc (N);
4209 
4210       function Build_Heap_Allocator
4211         (Temp_Id    : Entity_Id;
4212          Temp_Typ   : Entity_Id;
4213          Func_Id    : Entity_Id;
4214          Ret_Typ    : Entity_Id;
4215          Alloc_Expr : Node_Id) return Node_Id;
4216       --  Create the statements necessary to allocate a return object on the
4217       --  caller's master. The master is available through implicit parameter
4218       --  BIPfinalizationmaster.
4219       --
4220       --    if BIPfinalizationmaster /= null then
4221       --       declare
4222       --          type Ptr_Typ is access Ret_Typ;
4223       --          for Ptr_Typ'Storage_Pool use
4224       --                Base_Pool (BIPfinalizationmaster.all).all;
4225       --          Local : Ptr_Typ;
4226       --
4227       --       begin
4228       --          procedure Allocate (...) is
4229       --          begin
4230       --             System.Storage_Pools.Subpools.Allocate_Any (...);
4231       --          end Allocate;
4232       --
4233       --          Local := <Alloc_Expr>;
4234       --          Temp_Id := Temp_Typ (Local);
4235       --       end;
4236       --    end if;
4237       --
4238       --  Temp_Id is the temporary which is used to reference the internally
4239       --  created object in all allocation forms. Temp_Typ is the type of the
4240       --  temporary. Func_Id is the enclosing function. Ret_Typ is the return
4241       --  type of Func_Id. Alloc_Expr is the actual allocator.
4242 
4243       function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id;
4244       --  Construct a call to System.Tasking.Stages.Move_Activation_Chain
4245       --  with parameters:
4246       --    From         current activation chain
4247       --    To           activation chain passed in by the caller
4248       --    New_Master   master passed in by the caller
4249       --
4250       --  Func_Id is the entity of the function where the extended return
4251       --  statement appears.
4252 
4253       --------------------------
4254       -- Build_Heap_Allocator --
4255       --------------------------
4256 
4257       function Build_Heap_Allocator
4258         (Temp_Id    : Entity_Id;
4259          Temp_Typ   : Entity_Id;
4260          Func_Id    : Entity_Id;
4261          Ret_Typ    : Entity_Id;
4262          Alloc_Expr : Node_Id) return Node_Id
4263       is
4264       begin
4265          pragma Assert (Is_Build_In_Place_Function (Func_Id));
4266 
4267          --  Processing for build-in-place object allocation.
4268 
4269          if Needs_Finalization (Ret_Typ) then
4270             declare
4271                Decls      : constant List_Id := New_List;
4272                Fin_Mas_Id : constant Entity_Id :=
4273                               Build_In_Place_Formal
4274                                 (Func_Id, BIP_Finalization_Master);
4275                Stmts      : constant List_Id := New_List;
4276                Desig_Typ  : Entity_Id;
4277                Local_Id   : Entity_Id;
4278                Pool_Id    : Entity_Id;
4279                Ptr_Typ    : Entity_Id;
4280 
4281             begin
4282                --  Generate:
4283                --    Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4284 
4285                Pool_Id := Make_Temporary (Loc, 'P');
4286 
4287                Append_To (Decls,
4288                  Make_Object_Renaming_Declaration (Loc,
4289                    Defining_Identifier => Pool_Id,
4290                    Subtype_Mark        =>
4291                      New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc),
4292                    Name                =>
4293                      Make_Explicit_Dereference (Loc,
4294                        Prefix =>
4295                          Make_Function_Call (Loc,
4296                            Name                   =>
4297                              New_Occurrence_Of (RTE (RE_Base_Pool), Loc),
4298                            Parameter_Associations => New_List (
4299                              Make_Explicit_Dereference (Loc,
4300                                Prefix =>
4301                                  New_Occurrence_Of (Fin_Mas_Id, Loc)))))));
4302 
4303                --  Create an access type which uses the storage pool of the
4304                --  caller's master. This additional type is necessary because
4305                --  the finalization master cannot be associated with the type
4306                --  of the temporary. Otherwise the secondary stack allocation
4307                --  will fail.
4308 
4309                Desig_Typ := Ret_Typ;
4310 
4311                --  Ensure that the build-in-place machinery uses a fat pointer
4312                --  when allocating an unconstrained array on the heap. In this
4313                --  case the result object type is a constrained array type even
4314                --  though the function type is unconstrained.
4315 
4316                if Ekind (Desig_Typ) = E_Array_Subtype then
4317                   Desig_Typ := Base_Type (Desig_Typ);
4318                end if;
4319 
4320                --  Generate:
4321                --    type Ptr_Typ is access Desig_Typ;
4322 
4323                Ptr_Typ := Make_Temporary (Loc, 'P');
4324 
4325                Append_To (Decls,
4326                  Make_Full_Type_Declaration (Loc,
4327                    Defining_Identifier => Ptr_Typ,
4328                    Type_Definition     =>
4329                      Make_Access_To_Object_Definition (Loc,
4330                        Subtype_Indication =>
4331                          New_Occurrence_Of (Desig_Typ, Loc))));
4332 
4333                --  Perform minor decoration in order to set the master and the
4334                --  storage pool attributes.
4335 
4336                Set_Ekind (Ptr_Typ, E_Access_Type);
4337                Set_Finalization_Master     (Ptr_Typ, Fin_Mas_Id);
4338                Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
4339 
4340                --  Create the temporary, generate:
4341                --    Local_Id : Ptr_Typ;
4342 
4343                Local_Id := Make_Temporary (Loc, 'T');
4344 
4345                Append_To (Decls,
4346                  Make_Object_Declaration (Loc,
4347                    Defining_Identifier => Local_Id,
4348                    Object_Definition   =>
4349                      New_Occurrence_Of (Ptr_Typ, Loc)));
4350 
4351                --  Allocate the object, generate:
4352                --    Local_Id := <Alloc_Expr>;
4353 
4354                Append_To (Stmts,
4355                  Make_Assignment_Statement (Loc,
4356                    Name       => New_Occurrence_Of (Local_Id, Loc),
4357                    Expression => Alloc_Expr));
4358 
4359                --  Generate:
4360                --    Temp_Id := Temp_Typ (Local_Id);
4361 
4362                Append_To (Stmts,
4363                  Make_Assignment_Statement (Loc,
4364                    Name       => New_Occurrence_Of (Temp_Id, Loc),
4365                    Expression =>
4366                      Unchecked_Convert_To (Temp_Typ,
4367                        New_Occurrence_Of (Local_Id, Loc))));
4368 
4369                --  Wrap the allocation in a block. This is further conditioned
4370                --  by checking the caller finalization master at runtime. A
4371                --  null value indicates a non-existent master, most likely due
4372                --  to a Finalize_Storage_Only allocation.
4373 
4374                --  Generate:
4375                --    if BIPfinalizationmaster /= null then
4376                --       declare
4377                --          <Decls>
4378                --       begin
4379                --          <Stmts>
4380                --       end;
4381                --    end if;
4382 
4383                return
4384                  Make_If_Statement (Loc,
4385                    Condition       =>
4386                      Make_Op_Ne (Loc,
4387                        Left_Opnd  => New_Occurrence_Of (Fin_Mas_Id, Loc),
4388                        Right_Opnd => Make_Null (Loc)),
4389 
4390                    Then_Statements => New_List (
4391                      Make_Block_Statement (Loc,
4392                        Declarations               => Decls,
4393                        Handled_Statement_Sequence =>
4394                          Make_Handled_Sequence_Of_Statements (Loc,
4395                            Statements => Stmts))));
4396             end;
4397 
4398          --  For all other cases, generate:
4399          --    Temp_Id := <Alloc_Expr>;
4400 
4401          else
4402             return
4403               Make_Assignment_Statement (Loc,
4404                 Name       => New_Occurrence_Of (Temp_Id, Loc),
4405                 Expression => Alloc_Expr);
4406          end if;
4407       end Build_Heap_Allocator;
4408 
4409       ---------------------------
4410       -- Move_Activation_Chain --
4411       ---------------------------
4412 
4413       function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id is
4414       begin
4415          return
4416            Make_Procedure_Call_Statement (Loc,
4417              Name                   =>
4418                New_Occurrence_Of (RTE (RE_Move_Activation_Chain), Loc),
4419 
4420              Parameter_Associations => New_List (
4421 
4422                --  Source chain
4423 
4424                Make_Attribute_Reference (Loc,
4425                  Prefix         => Make_Identifier (Loc, Name_uChain),
4426                  Attribute_Name => Name_Unrestricted_Access),
4427 
4428                --  Destination chain
4429 
4430                New_Occurrence_Of
4431                  (Build_In_Place_Formal (Func_Id, BIP_Activation_Chain), Loc),
4432 
4433                --  New master
4434 
4435                New_Occurrence_Of
4436                  (Build_In_Place_Formal (Func_Id, BIP_Task_Master), Loc)));
4437       end Move_Activation_Chain;
4438 
4439       --  Local variables
4440 
4441       Func_Id      : constant Entity_Id :=
4442                        Return_Applies_To (Return_Statement_Entity (N));
4443       Is_BIP_Func  : constant Boolean   :=
4444                        Is_Build_In_Place_Function (Func_Id);
4445       Ret_Obj_Id   : constant Entity_Id :=
4446                        First_Entity (Return_Statement_Entity (N));
4447       Ret_Obj_Decl : constant Node_Id   := Parent (Ret_Obj_Id);
4448       Ret_Typ      : constant Entity_Id := Etype (Func_Id);
4449 
4450       Exp         : Node_Id;
4451       HSS         : Node_Id;
4452       Result      : Node_Id;
4453       Return_Stmt : Node_Id;
4454       Stmts       : List_Id;
4455 
4456    --  Start of processing for Expand_N_Extended_Return_Statement
4457 
4458    begin
4459       --  Given that functionality of interface thunks is simple (just displace
4460       --  the pointer to the object) they are always handled by means of
4461       --  simple return statements.
4462 
4463       pragma Assert (not Is_Thunk (Current_Scope));
4464 
4465       if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
4466          Exp := Expression (Ret_Obj_Decl);
4467       else
4468          Exp := Empty;
4469       end if;
4470 
4471       HSS := Handled_Statement_Sequence (N);
4472 
4473       --  If the returned object needs finalization actions, the function must
4474       --  perform the appropriate cleanup should it fail to return. The state
4475       --  of the function itself is tracked through a flag which is coupled
4476       --  with the scope finalizer. There is one flag per each return object
4477       --  in case of multiple returns.
4478 
4479       if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
4480          declare
4481             Flag_Decl : Node_Id;
4482             Flag_Id   : Entity_Id;
4483             Func_Bod  : Node_Id;
4484 
4485          begin
4486             --  Recover the function body
4487 
4488             Func_Bod := Unit_Declaration_Node (Func_Id);
4489 
4490             if Nkind (Func_Bod) = N_Subprogram_Declaration then
4491                Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
4492             end if;
4493 
4494             --  Create a flag to track the function state
4495 
4496             Flag_Id := Make_Temporary (Loc, 'F');
4497             Set_Status_Flag_Or_Transient_Decl (Ret_Obj_Id, Flag_Id);
4498 
4499             --  Insert the flag at the beginning of the function declarations,
4500             --  generate:
4501             --    Fnn : Boolean := False;
4502 
4503             Flag_Decl :=
4504               Make_Object_Declaration (Loc,
4505                 Defining_Identifier => Flag_Id,
4506                   Object_Definition =>
4507                     New_Occurrence_Of (Standard_Boolean, Loc),
4508                   Expression        =>
4509                     New_Occurrence_Of (Standard_False, Loc));
4510 
4511             Prepend_To (Declarations (Func_Bod), Flag_Decl);
4512             Analyze (Flag_Decl);
4513          end;
4514       end if;
4515 
4516       --  Build a simple_return_statement that returns the return object when
4517       --  there is a statement sequence, or no expression, or the result will
4518       --  be built in place. Note however that we currently do this for all
4519       --  composite cases, even though nonlimited composite results are not yet
4520       --  built in place (though we plan to do so eventually).
4521 
4522       if Present (HSS)
4523         or else Is_Composite_Type (Ret_Typ)
4524         or else No (Exp)
4525       then
4526          if No (HSS) then
4527             Stmts := New_List;
4528 
4529          --  If the extended return has a handled statement sequence, then wrap
4530          --  it in a block and use the block as the first statement.
4531 
4532          else
4533             Stmts := New_List (
4534               Make_Block_Statement (Loc,
4535                 Declarations               => New_List,
4536                 Handled_Statement_Sequence => HSS));
4537          end if;
4538 
4539          --  If the result type contains tasks, we call Move_Activation_Chain.
4540          --  Later, the cleanup code will call Complete_Master, which will
4541          --  terminate any unactivated tasks belonging to the return statement
4542          --  master. But Move_Activation_Chain updates their master to be that
4543          --  of the caller, so they will not be terminated unless the return
4544          --  statement completes unsuccessfully due to exception, abort, goto,
4545          --  or exit. As a formality, we test whether the function requires the
4546          --  result to be built in place, though that's necessarily true for
4547          --  the case of result types with task parts.
4548 
4549          if Is_BIP_Func and then Has_Task (Ret_Typ) then
4550 
4551             --  The return expression is an aggregate for a complex type which
4552             --  contains tasks. This particular case is left unexpanded since
4553             --  the regular expansion would insert all temporaries and
4554             --  initialization code in the wrong block.
4555 
4556             if Nkind (Exp) = N_Aggregate then
4557                Expand_N_Aggregate (Exp);
4558             end if;
4559 
4560             --  Do not move the activation chain if the return object does not
4561             --  contain tasks.
4562 
4563             if Has_Task (Etype (Ret_Obj_Id)) then
4564                Append_To (Stmts, Move_Activation_Chain (Func_Id));
4565             end if;
4566          end if;
4567 
4568          --  Update the state of the function right before the object is
4569          --  returned.
4570 
4571          if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
4572             declare
4573                Flag_Id : constant Entity_Id :=
4574                            Status_Flag_Or_Transient_Decl (Ret_Obj_Id);
4575 
4576             begin
4577                --  Generate:
4578                --    Fnn := True;
4579 
4580                Append_To (Stmts,
4581                  Make_Assignment_Statement (Loc,
4582                    Name       => New_Occurrence_Of (Flag_Id, Loc),
4583                    Expression => New_Occurrence_Of (Standard_True, Loc)));
4584             end;
4585          end if;
4586 
4587          --  Build a simple_return_statement that returns the return object
4588 
4589          Return_Stmt :=
4590            Make_Simple_Return_Statement (Loc,
4591              Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
4592          Append_To (Stmts, Return_Stmt);
4593 
4594          HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
4595       end if;
4596 
4597       --  Case where we build a return statement block
4598 
4599       if Present (HSS) then
4600          Result :=
4601            Make_Block_Statement (Loc,
4602              Declarations               => Return_Object_Declarations (N),
4603              Handled_Statement_Sequence => HSS);
4604 
4605          --  We set the entity of the new block statement to be that of the
4606          --  return statement. This is necessary so that various fields, such
4607          --  as Finalization_Chain_Entity carry over from the return statement
4608          --  to the block. Note that this block is unusual, in that its entity
4609          --  is an E_Return_Statement rather than an E_Block.
4610 
4611          Set_Identifier
4612            (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
4613 
4614          --  If the object decl was already rewritten as a renaming, then we
4615          --  don't want to do the object allocation and transformation of
4616          --  the return object declaration to a renaming. This case occurs
4617          --  when the return object is initialized by a call to another
4618          --  build-in-place function, and that function is responsible for
4619          --  the allocation of the return object.
4620 
4621          if Is_BIP_Func
4622            and then Nkind (Ret_Obj_Decl) = N_Object_Renaming_Declaration
4623          then
4624             pragma Assert
4625               (Nkind (Original_Node (Ret_Obj_Decl)) = N_Object_Declaration
4626                 and then Is_Build_In_Place_Function_Call
4627                            (Expression (Original_Node (Ret_Obj_Decl))));
4628 
4629             --  Return the build-in-place result by reference
4630 
4631             Set_By_Ref (Return_Stmt);
4632 
4633          elsif Is_BIP_Func then
4634 
4635             --  Locate the implicit access parameter associated with the
4636             --  caller-supplied return object and convert the return
4637             --  statement's return object declaration to a renaming of a
4638             --  dereference of the access parameter. If the return object's
4639             --  declaration includes an expression that has not already been
4640             --  expanded as separate assignments, then add an assignment
4641             --  statement to ensure the return object gets initialized.
4642 
4643             --    declare
4644             --       Result : T [:= <expression>];
4645             --    begin
4646             --       ...
4647 
4648             --  is converted to
4649 
4650             --    declare
4651             --       Result : T renames FuncRA.all;
4652             --       [Result := <expression;]
4653             --    begin
4654             --       ...
4655 
4656             declare
4657                Ret_Obj_Expr : constant Node_Id   := Expression (Ret_Obj_Decl);
4658                Ret_Obj_Typ  : constant Entity_Id := Etype (Ret_Obj_Id);
4659 
4660                Init_Assignment  : Node_Id := Empty;
4661                Obj_Acc_Formal   : Entity_Id;
4662                Obj_Acc_Deref    : Node_Id;
4663                Obj_Alloc_Formal : Entity_Id;
4664 
4665             begin
4666                --  Build-in-place results must be returned by reference
4667 
4668                Set_By_Ref (Return_Stmt);
4669 
4670                --  Retrieve the implicit access parameter passed by the caller
4671 
4672                Obj_Acc_Formal :=
4673                  Build_In_Place_Formal (Func_Id, BIP_Object_Access);
4674 
4675                --  If the return object's declaration includes an expression
4676                --  and the declaration isn't marked as No_Initialization, then
4677                --  we need to generate an assignment to the object and insert
4678                --  it after the declaration before rewriting it as a renaming
4679                --  (otherwise we'll lose the initialization). The case where
4680                --  the result type is an interface (or class-wide interface)
4681                --  is also excluded because the context of the function call
4682                --  must be unconstrained, so the initialization will always
4683                --  be done as part of an allocator evaluation (storage pool
4684                --  or secondary stack), never to a constrained target object
4685                --  passed in by the caller. Besides the assignment being
4686                --  unneeded in this case, it avoids problems with trying to
4687                --  generate a dispatching assignment when the return expression
4688                --  is a nonlimited descendant of a limited interface (the
4689                --  interface has no assignment operation).
4690 
4691                if Present (Ret_Obj_Expr)
4692                  and then not No_Initialization (Ret_Obj_Decl)
4693                  and then not Is_Interface (Ret_Obj_Typ)
4694                then
4695                   Init_Assignment :=
4696                     Make_Assignment_Statement (Loc,
4697                       Name       => New_Occurrence_Of (Ret_Obj_Id, Loc),
4698                       Expression => Relocate_Node (Ret_Obj_Expr));
4699 
4700                   Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
4701                   Set_Assignment_OK (Name (Init_Assignment));
4702                   Set_No_Ctrl_Actions (Init_Assignment);
4703 
4704                   Set_Parent (Name (Init_Assignment), Init_Assignment);
4705                   Set_Parent (Expression (Init_Assignment), Init_Assignment);
4706 
4707                   Set_Expression (Ret_Obj_Decl, Empty);
4708 
4709                   if Is_Class_Wide_Type (Etype (Ret_Obj_Id))
4710                     and then not Is_Class_Wide_Type
4711                                    (Etype (Expression (Init_Assignment)))
4712                   then
4713                      Rewrite (Expression (Init_Assignment),
4714                        Make_Type_Conversion (Loc,
4715                          Subtype_Mark =>
4716                            New_Occurrence_Of (Etype (Ret_Obj_Id), Loc),
4717                          Expression   =>
4718                            Relocate_Node (Expression (Init_Assignment))));
4719                   end if;
4720 
4721                   --  In the case of functions where the calling context can
4722                   --  determine the form of allocation needed, initialization
4723                   --  is done with each part of the if statement that handles
4724                   --  the different forms of allocation (this is true for
4725                   --  unconstrained and tagged result subtypes).
4726 
4727                   if Is_Constrained (Ret_Typ)
4728                     and then not Is_Tagged_Type (Underlying_Type (Ret_Typ))
4729                   then
4730                      Insert_After (Ret_Obj_Decl, Init_Assignment);
4731                   end if;
4732                end if;
4733 
4734                --  When the function's subtype is unconstrained, a run-time
4735                --  test is needed to determine the form of allocation to use
4736                --  for the return object. The function has an implicit formal
4737                --  parameter indicating this. If the BIP_Alloc_Form formal has
4738                --  the value one, then the caller has passed access to an
4739                --  existing object for use as the return object. If the value
4740                --  is two, then the return object must be allocated on the
4741                --  secondary stack. Otherwise, the object must be allocated in
4742                --  a storage pool (currently only supported for the global
4743                --  heap, user-defined storage pools TBD ???). We generate an
4744                --  if statement to test the implicit allocation formal and
4745                --  initialize a local access value appropriately, creating
4746                --  allocators in the secondary stack and global heap cases.
4747                --  The special formal also exists and must be tested when the
4748                --  function has a tagged result, even when the result subtype
4749                --  is constrained, because in general such functions can be
4750                --  called in dispatching contexts and must be handled similarly
4751                --  to functions with a class-wide result.
4752 
4753                if not Is_Constrained (Ret_Typ)
4754                  or else Is_Tagged_Type (Underlying_Type (Ret_Typ))
4755                then
4756                   Obj_Alloc_Formal :=
4757                     Build_In_Place_Formal (Func_Id, BIP_Alloc_Form);
4758 
4759                   declare
4760                      Pool_Id        : constant Entity_Id :=
4761                                         Make_Temporary (Loc, 'P');
4762                      Alloc_Obj_Id   : Entity_Id;
4763                      Alloc_Obj_Decl : Node_Id;
4764                      Alloc_If_Stmt  : Node_Id;
4765                      Heap_Allocator : Node_Id;
4766                      Pool_Decl      : Node_Id;
4767                      Pool_Allocator : Node_Id;
4768                      Ptr_Type_Decl  : Node_Id;
4769                      Ref_Type       : Entity_Id;
4770                      SS_Allocator   : Node_Id;
4771 
4772                   begin
4773                      --  Reuse the itype created for the function's implicit
4774                      --  access formal. This avoids the need to create a new
4775                      --  access type here, plus it allows assigning the access
4776                      --  formal directly without applying a conversion.
4777 
4778                      --    Ref_Type := Etype (Object_Access);
4779 
4780                      --  Create an access type designating the function's
4781                      --  result subtype.
4782 
4783                      Ref_Type := Make_Temporary (Loc, 'A');
4784 
4785                      Ptr_Type_Decl :=
4786                        Make_Full_Type_Declaration (Loc,
4787                          Defining_Identifier => Ref_Type,
4788                          Type_Definition     =>
4789                            Make_Access_To_Object_Definition (Loc,
4790                              All_Present        => True,
4791                              Subtype_Indication =>
4792                                New_Occurrence_Of (Ret_Obj_Typ, Loc)));
4793 
4794                      Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
4795 
4796                      --  Create an access object that will be initialized to an
4797                      --  access value denoting the return object, either coming
4798                      --  from an implicit access value passed in by the caller
4799                      --  or from the result of an allocator.
4800 
4801                      Alloc_Obj_Id := Make_Temporary (Loc, 'R');
4802                      Set_Etype (Alloc_Obj_Id, Ref_Type);
4803 
4804                      Alloc_Obj_Decl :=
4805                        Make_Object_Declaration (Loc,
4806                          Defining_Identifier => Alloc_Obj_Id,
4807                          Object_Definition   =>
4808                            New_Occurrence_Of (Ref_Type, Loc));
4809 
4810                      Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
4811 
4812                      --  Create allocators for both the secondary stack and
4813                      --  global heap. If there's an initialization expression,
4814                      --  then create these as initialized allocators.
4815 
4816                      if Present (Ret_Obj_Expr)
4817                        and then not No_Initialization (Ret_Obj_Decl)
4818                      then
4819                         --  Always use the type of the expression for the
4820                         --  qualified expression, rather than the result type.
4821                         --  In general we cannot always use the result type
4822                         --  for the allocator, because the expression might be
4823                         --  of a specific type, such as in the case of an
4824                         --  aggregate or even a nonlimited object when the
4825                         --  result type is a limited class-wide interface type.
4826 
4827                         Heap_Allocator :=
4828                           Make_Allocator (Loc,
4829                             Expression =>
4830                               Make_Qualified_Expression (Loc,
4831                                 Subtype_Mark =>
4832                                   New_Occurrence_Of
4833                                     (Etype (Ret_Obj_Expr), Loc),
4834                                 Expression   => New_Copy_Tree (Ret_Obj_Expr)));
4835 
4836                      else
4837                         --  If the function returns a class-wide type we cannot
4838                         --  use the return type for the allocator. Instead we
4839                         --  use the type of the expression, which must be an
4840                         --  aggregate of a definite type.
4841 
4842                         if Is_Class_Wide_Type (Ret_Obj_Typ) then
4843                            Heap_Allocator :=
4844                              Make_Allocator (Loc,
4845                                Expression =>
4846                                  New_Occurrence_Of
4847                                    (Etype (Ret_Obj_Expr), Loc));
4848                         else
4849                            Heap_Allocator :=
4850                              Make_Allocator (Loc,
4851                                Expression =>
4852                                  New_Occurrence_Of (Ret_Obj_Typ, Loc));
4853                         end if;
4854 
4855                         --  If the object requires default initialization then
4856                         --  that will happen later following the elaboration of
4857                         --  the object renaming. If we don't turn it off here
4858                         --  then the object will be default initialized twice.
4859 
4860                         Set_No_Initialization (Heap_Allocator);
4861                      end if;
4862 
4863                      --  The Pool_Allocator is just like the Heap_Allocator,
4864                      --  except we set Storage_Pool and Procedure_To_Call so
4865                      --  it will use the user-defined storage pool.
4866 
4867                      Pool_Allocator := New_Copy_Tree (Heap_Allocator);
4868 
4869                      --  Do not generate the renaming of the build-in-place
4870                      --  pool parameter on ZFP because the parameter is not
4871                      --  created in the first place.
4872 
4873                      if RTE_Available (RE_Root_Storage_Pool_Ptr) then
4874                         Pool_Decl :=
4875                           Make_Object_Renaming_Declaration (Loc,
4876                             Defining_Identifier => Pool_Id,
4877                             Subtype_Mark        =>
4878                               New_Occurrence_Of
4879                                 (RTE (RE_Root_Storage_Pool), Loc),
4880                             Name                =>
4881                               Make_Explicit_Dereference (Loc,
4882                                 New_Occurrence_Of
4883                                   (Build_In_Place_Formal
4884                                      (Func_Id, BIP_Storage_Pool), Loc)));
4885                         Set_Storage_Pool (Pool_Allocator, Pool_Id);
4886                         Set_Procedure_To_Call
4887                           (Pool_Allocator, RTE (RE_Allocate_Any));
4888                      else
4889                         Pool_Decl := Make_Null_Statement (Loc);
4890                      end if;
4891 
4892                      --  If the No_Allocators restriction is active, then only
4893                      --  an allocator for secondary stack allocation is needed.
4894                      --  It's OK for such allocators to have Comes_From_Source
4895                      --  set to False, because gigi knows not to flag them as
4896                      --  being a violation of No_Implicit_Heap_Allocations.
4897 
4898                      if Restriction_Active (No_Allocators) then
4899                         SS_Allocator   := Heap_Allocator;
4900                         Heap_Allocator := Make_Null (Loc);
4901                         Pool_Allocator := Make_Null (Loc);
4902 
4903                      --  Otherwise the heap and pool allocators may be needed,
4904                      --  so we make another allocator for secondary stack
4905                      --  allocation.
4906 
4907                      else
4908                         SS_Allocator := New_Copy_Tree (Heap_Allocator);
4909 
4910                         --  The heap and pool allocators are marked as
4911                         --  Comes_From_Source since they correspond to an
4912                         --  explicit user-written allocator (that is, it will
4913                         --  only be executed on behalf of callers that call the
4914                         --  function as initialization for such an allocator).
4915                         --  Prevents errors when No_Implicit_Heap_Allocations
4916                         --  is in force.
4917 
4918                         Set_Comes_From_Source (Heap_Allocator, True);
4919                         Set_Comes_From_Source (Pool_Allocator, True);
4920                      end if;
4921 
4922                      --  The allocator is returned on the secondary stack.
4923 
4924                      Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
4925                      Set_Procedure_To_Call
4926                        (SS_Allocator, RTE (RE_SS_Allocate));
4927 
4928                      --  The allocator is returned on the secondary stack,
4929                      --  so indicate that the function return, as well as
4930                      --  all blocks that encloses the allocator, must not
4931                      --  release it. The flags must be set now because
4932                      --  the decision to use the secondary stack is done
4933                      --  very late in the course of expanding the return
4934                      --  statement, past the point where these flags are
4935                      --  normally set.
4936 
4937                      Set_Uses_Sec_Stack (Func_Id);
4938                      Set_Uses_Sec_Stack (Return_Statement_Entity (N));
4939                      Set_Sec_Stack_Needed_For_Return
4940                        (Return_Statement_Entity (N));
4941                      Set_Enclosing_Sec_Stack_Return (N);
4942 
4943                      --  Create an if statement to test the BIP_Alloc_Form
4944                      --  formal and initialize the access object to either the
4945                      --  BIP_Object_Access formal (BIP_Alloc_Form =
4946                      --  Caller_Allocation), the result of allocating the
4947                      --  object in the secondary stack (BIP_Alloc_Form =
4948                      --  Secondary_Stack), or else an allocator to create the
4949                      --  return object in the heap or user-defined pool
4950                      --  (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
4951 
4952                      --  ??? An unchecked type conversion must be made in the
4953                      --  case of assigning the access object formal to the
4954                      --  local access object, because a normal conversion would
4955                      --  be illegal in some cases (such as converting access-
4956                      --  to-unconstrained to access-to-constrained), but the
4957                      --  the unchecked conversion will presumably fail to work
4958                      --  right in just such cases. It's not clear at all how to
4959                      --  handle this. ???
4960 
4961                      Alloc_If_Stmt :=
4962                        Make_If_Statement (Loc,
4963                          Condition =>
4964                            Make_Op_Eq (Loc,
4965                              Left_Opnd  =>
4966                                New_Occurrence_Of (Obj_Alloc_Formal, Loc),
4967                              Right_Opnd =>
4968                                Make_Integer_Literal (Loc,
4969                                  UI_From_Int (BIP_Allocation_Form'Pos
4970                                                 (Caller_Allocation)))),
4971 
4972                          Then_Statements => New_List (
4973                            Make_Assignment_Statement (Loc,
4974                              Name       =>
4975                                New_Occurrence_Of (Alloc_Obj_Id, Loc),
4976                              Expression =>
4977                                Make_Unchecked_Type_Conversion (Loc,
4978                                  Subtype_Mark =>
4979                                    New_Occurrence_Of (Ref_Type, Loc),
4980                                  Expression   =>
4981                                    New_Occurrence_Of (Obj_Acc_Formal, Loc)))),
4982 
4983                          Elsif_Parts => New_List (
4984                            Make_Elsif_Part (Loc,
4985                              Condition =>
4986                                Make_Op_Eq (Loc,
4987                                  Left_Opnd  =>
4988                                    New_Occurrence_Of (Obj_Alloc_Formal, Loc),
4989                                  Right_Opnd =>
4990                                    Make_Integer_Literal (Loc,
4991                                      UI_From_Int (BIP_Allocation_Form'Pos
4992                                                     (Secondary_Stack)))),
4993 
4994                              Then_Statements => New_List (
4995                                Make_Assignment_Statement (Loc,
4996                                  Name       =>
4997                                    New_Occurrence_Of (Alloc_Obj_Id, Loc),
4998                                  Expression => SS_Allocator))),
4999 
5000                            Make_Elsif_Part (Loc,
5001                              Condition =>
5002                                Make_Op_Eq (Loc,
5003                                  Left_Opnd  =>
5004                                    New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5005                                  Right_Opnd =>
5006                                    Make_Integer_Literal (Loc,
5007                                      UI_From_Int (BIP_Allocation_Form'Pos
5008                                                     (Global_Heap)))),
5009 
5010                              Then_Statements => New_List (
5011                                Build_Heap_Allocator
5012                                  (Temp_Id    => Alloc_Obj_Id,
5013                                   Temp_Typ   => Ref_Type,
5014                                   Func_Id    => Func_Id,
5015                                   Ret_Typ    => Ret_Obj_Typ,
5016                                   Alloc_Expr => Heap_Allocator)))),
5017 
5018                          Else_Statements => New_List (
5019                            Pool_Decl,
5020                            Build_Heap_Allocator
5021                              (Temp_Id    => Alloc_Obj_Id,
5022                               Temp_Typ   => Ref_Type,
5023                               Func_Id    => Func_Id,
5024                               Ret_Typ    => Ret_Obj_Typ,
5025                               Alloc_Expr => Pool_Allocator)));
5026 
5027                      --  If a separate initialization assignment was created
5028                      --  earlier, append that following the assignment of the
5029                      --  implicit access formal to the access object, to ensure
5030                      --  that the return object is initialized in that case. In
5031                      --  this situation, the target of the assignment must be
5032                      --  rewritten to denote a dereference of the access to the
5033                      --  return object passed in by the caller.
5034 
5035                      if Present (Init_Assignment) then
5036                         Rewrite (Name (Init_Assignment),
5037                           Make_Explicit_Dereference (Loc,
5038                             Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc)));
5039 
5040                         Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
5041 
5042                         Append_To
5043                           (Then_Statements (Alloc_If_Stmt), Init_Assignment);
5044                      end if;
5045 
5046                      Insert_Before (Ret_Obj_Decl, Alloc_If_Stmt);
5047 
5048                      --  Remember the local access object for use in the
5049                      --  dereference of the renaming created below.
5050 
5051                      Obj_Acc_Formal := Alloc_Obj_Id;
5052                   end;
5053                end if;
5054 
5055                --  Replace the return object declaration with a renaming of a
5056                --  dereference of the access value designating the return
5057                --  object.
5058 
5059                Obj_Acc_Deref :=
5060                  Make_Explicit_Dereference (Loc,
5061                    Prefix => New_Occurrence_Of (Obj_Acc_Formal, Loc));
5062 
5063                Rewrite (Ret_Obj_Decl,
5064                  Make_Object_Renaming_Declaration (Loc,
5065                    Defining_Identifier => Ret_Obj_Id,
5066                    Access_Definition   => Empty,
5067                    Subtype_Mark        => New_Occurrence_Of (Ret_Obj_Typ, Loc),
5068                    Name                => Obj_Acc_Deref));
5069 
5070                Set_Renamed_Object (Ret_Obj_Id, Obj_Acc_Deref);
5071             end;
5072          end if;
5073 
5074       --  Case where we do not build a block
5075 
5076       else
5077          --  We're about to drop Return_Object_Declarations on the floor, so
5078          --  we need to insert it, in case it got expanded into useful code.
5079          --  Remove side effects from expression, which may be duplicated in
5080          --  subsequent checks (see Expand_Simple_Function_Return).
5081 
5082          Insert_List_Before (N, Return_Object_Declarations (N));
5083          Remove_Side_Effects (Exp);
5084 
5085          --  Build simple_return_statement that returns the expression directly
5086 
5087          Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
5088          Result := Return_Stmt;
5089       end if;
5090 
5091       --  Set the flag to prevent infinite recursion
5092 
5093       Set_Comes_From_Extended_Return_Statement (Return_Stmt);
5094 
5095       Rewrite (N, Result);
5096       Analyze (N);
5097    end Expand_N_Extended_Return_Statement;
5098 
5099    ----------------------------
5100    -- Expand_N_Function_Call --
5101    ----------------------------
5102 
5103    procedure Expand_N_Function_Call (N : Node_Id) is
5104    begin
5105       Expand_Call (N);
5106    end Expand_N_Function_Call;
5107 
5108    ---------------------------------------
5109    -- Expand_N_Procedure_Call_Statement --
5110    ---------------------------------------
5111 
5112    procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
5113       Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
5114 
5115    begin
5116       --  The procedure call is Ghost when the name is Ghost. Set the mode now
5117       --  to ensure that any nodes generated during expansion are properly set
5118       --  as Ghost.
5119 
5120       Set_Ghost_Mode (N);
5121 
5122       Expand_Call (N);
5123       Ghost_Mode := Save_Ghost_Mode;
5124    end Expand_N_Procedure_Call_Statement;
5125 
5126    --------------------------------------
5127    -- Expand_N_Simple_Return_Statement --
5128    --------------------------------------
5129 
5130    procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
5131    begin
5132       --  Defend against previous errors (i.e. the return statement calls a
5133       --  function that is not available in configurable runtime).
5134 
5135       if Present (Expression (N))
5136         and then Nkind (Expression (N)) = N_Empty
5137       then
5138          Check_Error_Detected;
5139          return;
5140       end if;
5141 
5142       --  Distinguish the function and non-function cases:
5143 
5144       case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
5145 
5146          when E_Function          |
5147               E_Generic_Function  =>
5148             Expand_Simple_Function_Return (N);
5149 
5150          when E_Procedure         |
5151               E_Generic_Procedure |
5152               E_Entry             |
5153               E_Entry_Family      |
5154               E_Return_Statement =>
5155             Expand_Non_Function_Return (N);
5156 
5157          when others =>
5158             raise Program_Error;
5159       end case;
5160 
5161    exception
5162       when RE_Not_Available =>
5163          return;
5164    end Expand_N_Simple_Return_Statement;
5165 
5166    ------------------------------
5167    -- Expand_N_Subprogram_Body --
5168    ------------------------------
5169 
5170    --  Add poll call if ATC polling is enabled, unless the body will be inlined
5171    --  by the back-end.
5172 
5173    --  Add dummy push/pop label nodes at start and end to clear any local
5174    --  exception indications if local-exception-to-goto optimization is active.
5175 
5176    --  Add return statement if last statement in body is not a return statement
5177    --  (this makes things easier on Gigi which does not want to have to handle
5178    --  a missing return).
5179 
5180    --  Add call to Activate_Tasks if body is a task activator
5181 
5182    --  Deal with possible detection of infinite recursion
5183 
5184    --  Eliminate body completely if convention stubbed
5185 
5186    --  Encode entity names within body, since we will not need to reference
5187    --  these entities any longer in the front end.
5188 
5189    --  Initialize scalar out parameters if Initialize/Normalize_Scalars
5190 
5191    --  Reset Pure indication if any parameter has root type System.Address
5192    --  or has any parameters of limited types, where limited means that the
5193    --  run-time view is limited (i.e. the full type is limited).
5194 
5195    --  Wrap thread body
5196 
5197    procedure Expand_N_Subprogram_Body (N : Node_Id) is
5198       Body_Id  : constant Entity_Id  := Defining_Entity (N);
5199       HSS      : constant Node_Id    := Handled_Statement_Sequence (N);
5200       Loc      : constant Source_Ptr := Sloc (N);
5201 
5202       procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id);
5203       --  Append a return statement to the statement sequence Stmts if the last
5204       --  statement is not already a return or a goto statement. Note that the
5205       --  latter test is not critical, it does not matter if we add a few extra
5206       --  returns, since they get eliminated anyway later on. Spec_Id denotes
5207       --  the corresponding spec of the subprogram body.
5208 
5209       ----------------
5210       -- Add_Return --
5211       ----------------
5212 
5213       procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id) is
5214          Last_Stmt : Node_Id;
5215          Loc       : Source_Ptr;
5216          Stmt      : Node_Id;
5217 
5218       begin
5219          --  Get last statement, ignoring any Pop_xxx_Label nodes, which are
5220          --  not relevant in this context since they are not executable.
5221 
5222          Last_Stmt := Last (Stmts);
5223          while Nkind (Last_Stmt) in N_Pop_xxx_Label loop
5224             Prev (Last_Stmt);
5225          end loop;
5226 
5227          --  Now insert return unless last statement is a transfer
5228 
5229          if not Is_Transfer (Last_Stmt) then
5230 
5231             --  The source location for the return is the end label of the
5232             --  procedure if present. Otherwise use the sloc of the last
5233             --  statement in the list. If the list comes from a generated
5234             --  exception handler and we are not debugging generated code,
5235             --  all the statements within the handler are made invisible
5236             --  to the debugger.
5237 
5238             if Nkind (Parent (Stmts)) = N_Exception_Handler
5239               and then not Comes_From_Source (Parent (Stmts))
5240             then
5241                Loc := Sloc (Last_Stmt);
5242             elsif Present (End_Label (HSS)) then
5243                Loc := Sloc (End_Label (HSS));
5244             else
5245                Loc := Sloc (Last_Stmt);
5246             end if;
5247 
5248             --  Append return statement, and set analyzed manually. We can't
5249             --  call Analyze on this return since the scope is wrong.
5250 
5251             --  Note: it almost works to push the scope and then do the Analyze
5252             --  call, but something goes wrong in some weird cases and it is
5253             --  not worth worrying about ???
5254 
5255             Stmt := Make_Simple_Return_Statement (Loc);
5256 
5257             --  The return statement is handled properly, and the call to the
5258             --  postcondition, inserted below, does not require information
5259             --  from the body either. However, that call is analyzed in the
5260             --  enclosing scope, and an elaboration check might improperly be
5261             --  added to it. A guard in Sem_Elab is needed to prevent that
5262             --  spurious check, see Check_Elab_Call.
5263 
5264             Append_To (Stmts, Stmt);
5265             Set_Analyzed (Stmt);
5266 
5267             --  Call the _Postconditions procedure if the related subprogram
5268             --  has contract assertions that need to be verified on exit.
5269 
5270             if Ekind (Spec_Id) = E_Procedure
5271               and then Present (Postconditions_Proc (Spec_Id))
5272             then
5273                Insert_Action (Stmt,
5274                  Make_Procedure_Call_Statement (Loc,
5275                    Name =>
5276                      New_Occurrence_Of (Postconditions_Proc (Spec_Id), Loc)));
5277             end if;
5278          end if;
5279       end Add_Return;
5280 
5281       --  Local variables
5282 
5283       Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
5284 
5285       Except_H : Node_Id;
5286       L        : List_Id;
5287       Spec_Id  : Entity_Id;
5288 
5289    --  Start of processing for Expand_N_Subprogram_Body
5290 
5291    begin
5292       if Present (Corresponding_Spec (N)) then
5293          Spec_Id := Corresponding_Spec (N);
5294       else
5295          Spec_Id := Body_Id;
5296       end if;
5297 
5298       --  If this is a Pure function which has any parameters whose root type
5299       --  is System.Address, reset the Pure indication.
5300       --  This check is also performed when the subprogram is frozen, but we
5301       --  repeat it on the body so that the indication is consistent, and so
5302       --  it applies as well to bodies without separate specifications.
5303 
5304       if Is_Pure (Spec_Id)
5305         and then Is_Subprogram (Spec_Id)
5306         and then not Has_Pragma_Pure_Function (Spec_Id)
5307       then
5308          Check_Function_With_Address_Parameter (Spec_Id);
5309 
5310          if Spec_Id /= Body_Id then
5311             Set_Is_Pure (Body_Id, Is_Pure (Spec_Id));
5312          end if;
5313       end if;
5314 
5315       --  The subprogram body is Ghost when it is stand alone and subject to
5316       --  pragma Ghost or the corresponding spec is Ghost. To accomodate both
5317       --  cases, set the mode now to ensure that any nodes generated during
5318       --  expansion are marked as Ghost.
5319 
5320       Set_Ghost_Mode (N, Spec_Id);
5321 
5322       --  Set L to either the list of declarations if present, or to the list
5323       --  of statements if no declarations are present. This is used to insert
5324       --  new stuff at the start.
5325 
5326       if Is_Non_Empty_List (Declarations (N)) then
5327          L := Declarations (N);
5328       else
5329          L := Statements (HSS);
5330       end if;
5331 
5332       --  If local-exception-to-goto optimization active, insert dummy push
5333       --  statements at start, and dummy pop statements at end, but inhibit
5334       --  this if we have No_Exception_Handlers, since they are useless and
5335       --  intefere with analysis, e.g. by codepeer.
5336 
5337       if (Debug_Flag_Dot_G
5338            or else Restriction_Active (No_Exception_Propagation))
5339         and then not Restriction_Active (No_Exception_Handlers)
5340         and then not CodePeer_Mode
5341         and then Is_Non_Empty_List (L)
5342       then
5343          declare
5344             FS  : constant Node_Id    := First (L);
5345             FL  : constant Source_Ptr := Sloc (FS);
5346             LS  : Node_Id;
5347             LL  : Source_Ptr;
5348 
5349          begin
5350             --  LS points to either last statement, if statements are present
5351             --  or to the last declaration if there are no statements present.
5352             --  It is the node after which the pop's are generated.
5353 
5354             if Is_Non_Empty_List (Statements (HSS)) then
5355                LS := Last (Statements (HSS));
5356             else
5357                LS := Last (L);
5358             end if;
5359 
5360             LL := Sloc (LS);
5361 
5362             Insert_List_Before_And_Analyze (FS, New_List (
5363               Make_Push_Constraint_Error_Label (FL),
5364               Make_Push_Program_Error_Label    (FL),
5365               Make_Push_Storage_Error_Label    (FL)));
5366 
5367             Insert_List_After_And_Analyze (LS, New_List (
5368               Make_Pop_Constraint_Error_Label  (LL),
5369               Make_Pop_Program_Error_Label     (LL),
5370               Make_Pop_Storage_Error_Label     (LL)));
5371          end;
5372       end if;
5373 
5374       --  Need poll on entry to subprogram if polling enabled. We only do this
5375       --  for non-empty subprograms, since it does not seem necessary to poll
5376       --  for a dummy null subprogram.
5377 
5378       if Is_Non_Empty_List (L) then
5379 
5380          --  Do not add a polling call if the subprogram is to be inlined by
5381          --  the back-end, to avoid repeated calls with multiple inlinings.
5382 
5383          if Is_Inlined (Spec_Id)
5384            and then Front_End_Inlining
5385            and then Optimization_Level > 1
5386          then
5387             null;
5388          else
5389             Generate_Poll_Call (First (L));
5390          end if;
5391       end if;
5392 
5393       --  Initialize any scalar OUT args if Initialize/Normalize_Scalars
5394 
5395       if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
5396          declare
5397             F : Entity_Id;
5398             A : Node_Id;
5399 
5400          begin
5401             --  Loop through formals
5402 
5403             F := First_Formal (Spec_Id);
5404             while Present (F) loop
5405                if Is_Scalar_Type (Etype (F))
5406                  and then Ekind (F) = E_Out_Parameter
5407                then
5408                   Check_Restriction (No_Default_Initialization, F);
5409 
5410                   --  Insert the initialization. We turn off validity checks
5411                   --  for this assignment, since we do not want any check on
5412                   --  the initial value itself (which may well be invalid).
5413                   --  Predicate checks are disabled as well (RM 6.4.1 (13/3))
5414 
5415                   A :=
5416                     Make_Assignment_Statement (Loc,
5417                       Name       => New_Occurrence_Of (F, Loc),
5418                       Expression => Get_Simple_Init_Val (Etype (F), N));
5419                   Set_Suppress_Assignment_Checks (A);
5420 
5421                   Insert_Before_And_Analyze (First (L),
5422                     A, Suppress => Validity_Check);
5423                end if;
5424 
5425                Next_Formal (F);
5426             end loop;
5427          end;
5428       end if;
5429 
5430       --  Clear out statement list for stubbed procedure
5431 
5432       if Present (Corresponding_Spec (N)) then
5433          Set_Elaboration_Flag (N, Spec_Id);
5434 
5435          if Convention (Spec_Id) = Convention_Stubbed
5436            or else Is_Eliminated (Spec_Id)
5437          then
5438             Set_Declarations (N, Empty_List);
5439             Set_Handled_Statement_Sequence (N,
5440               Make_Handled_Sequence_Of_Statements (Loc,
5441                 Statements => New_List (Make_Null_Statement (Loc))));
5442 
5443             Ghost_Mode := Save_Ghost_Mode;
5444             return;
5445          end if;
5446       end if;
5447 
5448       --  Create a set of discriminals for the next protected subprogram body
5449 
5450       if Is_List_Member (N)
5451         and then Present (Parent (List_Containing (N)))
5452         and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5453         and then Present (Next_Protected_Operation (N))
5454       then
5455          Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
5456       end if;
5457 
5458       --  Returns_By_Ref flag is normally set when the subprogram is frozen but
5459       --  subprograms with no specs are not frozen.
5460 
5461       declare
5462          Typ  : constant Entity_Id := Etype (Spec_Id);
5463          Utyp : constant Entity_Id := Underlying_Type (Typ);
5464 
5465       begin
5466          if not Acts_As_Spec (N)
5467            and then Nkind (Parent (Parent (Spec_Id))) /=
5468              N_Subprogram_Body_Stub
5469          then
5470             null;
5471 
5472          elsif Is_Limited_View (Typ) then
5473             Set_Returns_By_Ref (Spec_Id);
5474 
5475          elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5476             Set_Returns_By_Ref (Spec_Id);
5477          end if;
5478       end;
5479 
5480       --  For a procedure, we add a return for all possible syntactic ends of
5481       --  the subprogram.
5482 
5483       if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) then
5484          Add_Return (Spec_Id, Statements (HSS));
5485 
5486          if Present (Exception_Handlers (HSS)) then
5487             Except_H := First_Non_Pragma (Exception_Handlers (HSS));
5488             while Present (Except_H) loop
5489                Add_Return (Spec_Id, Statements (Except_H));
5490                Next_Non_Pragma (Except_H);
5491             end loop;
5492          end if;
5493 
5494       --  For a function, we must deal with the case where there is at least
5495       --  one missing return. What we do is to wrap the entire body of the
5496       --  function in a block:
5497 
5498       --    begin
5499       --      ...
5500       --    end;
5501 
5502       --  becomes
5503 
5504       --    begin
5505       --       begin
5506       --          ...
5507       --       end;
5508 
5509       --       raise Program_Error;
5510       --    end;
5511 
5512       --  This approach is necessary because the raise must be signalled to the
5513       --  caller, not handled by any local handler (RM 6.4(11)).
5514 
5515       --  Note: we do not need to analyze the constructed sequence here, since
5516       --  it has no handler, and an attempt to analyze the handled statement
5517       --  sequence twice is risky in various ways (e.g. the issue of expanding
5518       --  cleanup actions twice).
5519 
5520       elsif Has_Missing_Return (Spec_Id) then
5521          declare
5522             Hloc : constant Source_Ptr := Sloc (HSS);
5523             Blok : constant Node_Id    :=
5524                      Make_Block_Statement (Hloc,
5525                        Handled_Statement_Sequence => HSS);
5526             Rais : constant Node_Id    :=
5527                      Make_Raise_Program_Error (Hloc,
5528                        Reason => PE_Missing_Return);
5529 
5530          begin
5531             Set_Handled_Statement_Sequence (N,
5532               Make_Handled_Sequence_Of_Statements (Hloc,
5533                 Statements => New_List (Blok, Rais)));
5534 
5535             Push_Scope (Spec_Id);
5536             Analyze (Blok);
5537             Analyze (Rais);
5538             Pop_Scope;
5539          end;
5540       end if;
5541 
5542       --  If subprogram contains a parameterless recursive call, then we may
5543       --  have an infinite recursion, so see if we can generate code to check
5544       --  for this possibility if storage checks are not suppressed.
5545 
5546       if Ekind (Spec_Id) = E_Procedure
5547         and then Has_Recursive_Call (Spec_Id)
5548         and then not Storage_Checks_Suppressed (Spec_Id)
5549       then
5550          Detect_Infinite_Recursion (N, Spec_Id);
5551       end if;
5552 
5553       --  Set to encode entity names in package body before gigi is called
5554 
5555       Qualify_Entity_Names (N);
5556 
5557       Ghost_Mode := Save_Ghost_Mode;
5558    end Expand_N_Subprogram_Body;
5559 
5560    -----------------------------------
5561    -- Expand_N_Subprogram_Body_Stub --
5562    -----------------------------------
5563 
5564    procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
5565       Bod : Node_Id;
5566 
5567    begin
5568       if Present (Corresponding_Body (N)) then
5569          Bod := Unit_Declaration_Node (Corresponding_Body (N));
5570 
5571          --  The body may have been expanded already when it is analyzed
5572          --  through the subunit node. Do no expand again: it interferes
5573          --  with the construction of unnesting tables when generating C.
5574 
5575          if not Analyzed (Bod) then
5576             Expand_N_Subprogram_Body (Bod);
5577          end if;
5578 
5579          --  Add full qualification to entities that may be created late
5580          --  during unnesting.
5581 
5582          Qualify_Entity_Names (N);
5583       end if;
5584    end Expand_N_Subprogram_Body_Stub;
5585 
5586    -------------------------------------
5587    -- Expand_N_Subprogram_Declaration --
5588    -------------------------------------
5589 
5590    --  If the declaration appears within a protected body, it is a private
5591    --  operation of the protected type. We must create the corresponding
5592    --  protected subprogram an associated formals. For a normal protected
5593    --  operation, this is done when expanding the protected type declaration.
5594 
5595    --  If the declaration is for a null procedure, emit null body
5596 
5597    procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
5598       Loc  : constant Source_Ptr := Sloc (N);
5599       Subp : constant Entity_Id  := Defining_Entity (N);
5600 
5601       --  Local variables
5602 
5603       Scop      : constant Entity_Id  := Scope (Subp);
5604       Prot_Bod  : Node_Id;
5605       Prot_Decl : Node_Id;
5606       Prot_Id   : Entity_Id;
5607 
5608    --  Start of processing for Expand_N_Subprogram_Declaration
5609 
5610    begin
5611       --  In SPARK, subprogram declarations are only allowed in package
5612       --  specifications.
5613 
5614       if Nkind (Parent (N)) /= N_Package_Specification then
5615          if Nkind (Parent (N)) = N_Compilation_Unit then
5616             Check_SPARK_05_Restriction
5617               ("subprogram declaration is not a library item", N);
5618 
5619          elsif Present (Next (N))
5620            and then Nkind (Next (N)) = N_Pragma
5621            and then Get_Pragma_Id (Pragma_Name (Next (N))) = Pragma_Import
5622          then
5623             --  In SPARK, subprogram declarations are also permitted in
5624             --  declarative parts when immediately followed by a corresponding
5625             --  pragma Import. We only check here that there is some pragma
5626             --  Import.
5627 
5628             null;
5629          else
5630             Check_SPARK_05_Restriction
5631               ("subprogram declaration is not allowed here", N);
5632          end if;
5633       end if;
5634 
5635       --  Deal with case of protected subprogram. Do not generate protected
5636       --  operation if operation is flagged as eliminated.
5637 
5638       if Is_List_Member (N)
5639         and then Present (Parent (List_Containing (N)))
5640         and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5641         and then Is_Protected_Type (Scop)
5642       then
5643          if No (Protected_Body_Subprogram (Subp))
5644            and then not Is_Eliminated (Subp)
5645          then
5646             Prot_Decl :=
5647               Make_Subprogram_Declaration (Loc,
5648                 Specification =>
5649                   Build_Protected_Sub_Specification
5650                     (N, Scop, Unprotected_Mode));
5651 
5652             --  The protected subprogram is declared outside of the protected
5653             --  body. Given that the body has frozen all entities so far, we
5654             --  analyze the subprogram and perform freezing actions explicitly.
5655             --  including the generation of an explicit freeze node, to ensure
5656             --  that gigi has the proper order of elaboration.
5657             --  If the body is a subunit, the insertion point is before the
5658             --  stub in the parent.
5659 
5660             Prot_Bod := Parent (List_Containing (N));
5661 
5662             if Nkind (Parent (Prot_Bod)) = N_Subunit then
5663                Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
5664             end if;
5665 
5666             Insert_Before (Prot_Bod, Prot_Decl);
5667             Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
5668             Set_Has_Delayed_Freeze (Prot_Id);
5669 
5670             Push_Scope (Scope (Scop));
5671             Analyze (Prot_Decl);
5672             Freeze_Before (N, Prot_Id);
5673             Set_Protected_Body_Subprogram (Subp, Prot_Id);
5674 
5675             --  Create protected operation as well. Even though the operation
5676             --  is only accessible within the body, it is possible to make it
5677             --  available outside of the protected object by using 'Access to
5678             --  provide a callback, so build protected version in all cases.
5679 
5680             Prot_Decl :=
5681               Make_Subprogram_Declaration (Loc,
5682                 Specification =>
5683                   Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
5684             Insert_Before (Prot_Bod, Prot_Decl);
5685             Analyze (Prot_Decl);
5686 
5687             Pop_Scope;
5688          end if;
5689 
5690       --  Ada 2005 (AI-348): Generate body for a null procedure. In most
5691       --  cases this is superfluous because calls to it will be automatically
5692       --  inlined, but we definitely need the body if preconditions for the
5693       --  procedure are present.
5694 
5695       elsif Nkind (Specification (N)) = N_Procedure_Specification
5696         and then Null_Present (Specification (N))
5697       then
5698          declare
5699             Bod : constant Node_Id := Body_To_Inline (N);
5700 
5701          begin
5702             Set_Has_Completion (Subp, False);
5703             Append_Freeze_Action (Subp, Bod);
5704 
5705             --  The body now contains raise statements, so calls to it will
5706             --  not be inlined.
5707 
5708             Set_Is_Inlined (Subp, False);
5709          end;
5710       end if;
5711 
5712       --  When generating C code, transform a function that returns a
5713       --  constrained array type into a procedure with an out parameter
5714       --  that carries the return value.
5715 
5716       --  We skip this transformation for unchecked conversions, since they
5717       --  are not needed by the C generator (and this also produces cleaner
5718       --  output).
5719 
5720       if Modify_Tree_For_C
5721         and then Nkind (Specification (N)) = N_Function_Specification
5722         and then Is_Array_Type (Etype (Subp))
5723         and then Is_Constrained (Etype (Subp))
5724         and then not Is_Unchecked_Conversion_Instance (Subp)
5725       then
5726          Build_Procedure_Form (N);
5727       end if;
5728    end Expand_N_Subprogram_Declaration;
5729 
5730    --------------------------------
5731    -- Expand_Non_Function_Return --
5732    --------------------------------
5733 
5734    procedure Expand_Non_Function_Return (N : Node_Id) is
5735       pragma Assert (No (Expression (N)));
5736 
5737       Loc       : constant Source_Ptr := Sloc (N);
5738       Scope_Id  : Entity_Id := Return_Applies_To (Return_Statement_Entity (N));
5739       Kind      : constant Entity_Kind := Ekind (Scope_Id);
5740       Call      : Node_Id;
5741       Acc_Stat  : Node_Id;
5742       Goto_Stat : Node_Id;
5743       Lab_Node  : Node_Id;
5744 
5745    begin
5746       --  Call the _Postconditions procedure if the related subprogram has
5747       --  contract assertions that need to be verified on exit.
5748 
5749       if Ekind_In (Scope_Id, E_Entry, E_Entry_Family, E_Procedure)
5750         and then Present (Postconditions_Proc (Scope_Id))
5751       then
5752          Insert_Action (N,
5753            Make_Procedure_Call_Statement (Loc,
5754              Name => New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc)));
5755       end if;
5756 
5757       --  If it is a return from a procedure do no extra steps
5758 
5759       if Kind = E_Procedure or else Kind = E_Generic_Procedure then
5760          return;
5761 
5762       --  If it is a nested return within an extended one, replace it with a
5763       --  return of the previously declared return object.
5764 
5765       elsif Kind = E_Return_Statement then
5766          Rewrite (N,
5767            Make_Simple_Return_Statement (Loc,
5768              Expression =>
5769                New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
5770          Set_Comes_From_Extended_Return_Statement (N);
5771          Set_Return_Statement_Entity (N, Scope_Id);
5772          Expand_Simple_Function_Return (N);
5773          return;
5774       end if;
5775 
5776       pragma Assert (Is_Entry (Scope_Id));
5777 
5778       --  Look at the enclosing block to see whether the return is from an
5779       --  accept statement or an entry body.
5780 
5781       for J in reverse 0 .. Scope_Stack.Last loop
5782          Scope_Id := Scope_Stack.Table (J).Entity;
5783          exit when Is_Concurrent_Type (Scope_Id);
5784       end loop;
5785 
5786       --  If it is a return from accept statement it is expanded as call to
5787       --  RTS Complete_Rendezvous and a goto to the end of the accept body.
5788 
5789       --  (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
5790       --  Expand_N_Accept_Alternative in exp_ch9.adb)
5791 
5792       if Is_Task_Type (Scope_Id) then
5793 
5794          Call :=
5795            Make_Procedure_Call_Statement (Loc,
5796              Name => New_Occurrence_Of (RTE (RE_Complete_Rendezvous), Loc));
5797          Insert_Before (N, Call);
5798          --  why not insert actions here???
5799          Analyze (Call);
5800 
5801          Acc_Stat := Parent (N);
5802          while Nkind (Acc_Stat) /= N_Accept_Statement loop
5803             Acc_Stat := Parent (Acc_Stat);
5804          end loop;
5805 
5806          Lab_Node := Last (Statements
5807            (Handled_Statement_Sequence (Acc_Stat)));
5808 
5809          Goto_Stat := Make_Goto_Statement (Loc,
5810            Name => New_Occurrence_Of
5811              (Entity (Identifier (Lab_Node)), Loc));
5812 
5813          Set_Analyzed (Goto_Stat);
5814 
5815          Rewrite (N, Goto_Stat);
5816          Analyze (N);
5817 
5818       --  If it is a return from an entry body, put a Complete_Entry_Body call
5819       --  in front of the return.
5820 
5821       elsif Is_Protected_Type (Scope_Id) then
5822          Call :=
5823            Make_Procedure_Call_Statement (Loc,
5824              Name =>
5825                New_Occurrence_Of (RTE (RE_Complete_Entry_Body), Loc),
5826              Parameter_Associations => New_List (
5827                Make_Attribute_Reference (Loc,
5828                  Prefix         =>
5829                    New_Occurrence_Of
5830                      (Find_Protection_Object (Current_Scope), Loc),
5831                  Attribute_Name => Name_Unchecked_Access)));
5832 
5833          Insert_Before (N, Call);
5834          Analyze (Call);
5835       end if;
5836    end Expand_Non_Function_Return;
5837 
5838    ---------------------------------------
5839    -- Expand_Protected_Object_Reference --
5840    ---------------------------------------
5841 
5842    function Expand_Protected_Object_Reference
5843      (N    : Node_Id;
5844       Scop : Entity_Id) return Node_Id
5845    is
5846       Loc   : constant Source_Ptr := Sloc (N);
5847       Corr  : Entity_Id;
5848       Rec   : Node_Id;
5849       Param : Entity_Id;
5850       Proc  : Entity_Id;
5851 
5852    begin
5853       Rec := Make_Identifier (Loc, Name_uObject);
5854       Set_Etype (Rec, Corresponding_Record_Type (Scop));
5855 
5856       --  Find enclosing protected operation, and retrieve its first parameter,
5857       --  which denotes the enclosing protected object. If the enclosing
5858       --  operation is an entry, we are immediately within the protected body,
5859       --  and we can retrieve the object from the service entries procedure. A
5860       --  barrier function has the same signature as an entry. A barrier
5861       --  function is compiled within the protected object, but unlike
5862       --  protected operations its never needs locks, so that its protected
5863       --  body subprogram points to itself.
5864 
5865       Proc := Current_Scope;
5866       while Present (Proc)
5867         and then Scope (Proc) /= Scop
5868       loop
5869          Proc := Scope (Proc);
5870       end loop;
5871 
5872       Corr := Protected_Body_Subprogram (Proc);
5873 
5874       if No (Corr) then
5875 
5876          --  Previous error left expansion incomplete.
5877          --  Nothing to do on this call.
5878 
5879          return Empty;
5880       end if;
5881 
5882       Param :=
5883         Defining_Identifier
5884           (First (Parameter_Specifications (Parent (Corr))));
5885 
5886       if Is_Subprogram (Proc) and then Proc /= Corr then
5887 
5888          --  Protected function or procedure
5889 
5890          Set_Entity (Rec, Param);
5891 
5892          --  Rec is a reference to an entity which will not be in scope when
5893          --  the call is reanalyzed, and needs no further analysis.
5894 
5895          Set_Analyzed (Rec);
5896 
5897       else
5898          --  Entry or barrier function for entry body. The first parameter of
5899          --  the entry body procedure is pointer to the object. We create a
5900          --  local variable of the proper type, duplicating what is done to
5901          --  define _object later on.
5902 
5903          declare
5904             Decls   : List_Id;
5905             Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
5906 
5907          begin
5908             Decls := New_List (
5909               Make_Full_Type_Declaration (Loc,
5910                 Defining_Identifier => Obj_Ptr,
5911                   Type_Definition   =>
5912                      Make_Access_To_Object_Definition (Loc,
5913                        Subtype_Indication =>
5914                          New_Occurrence_Of
5915                            (Corresponding_Record_Type (Scop), Loc))));
5916 
5917             Insert_Actions (N, Decls);
5918             Freeze_Before (N, Obj_Ptr);
5919 
5920             Rec :=
5921               Make_Explicit_Dereference (Loc,
5922                 Prefix =>
5923                   Unchecked_Convert_To (Obj_Ptr,
5924                     New_Occurrence_Of (Param, Loc)));
5925 
5926             --  Analyze new actual. Other actuals in calls are already analyzed
5927             --  and the list of actuals is not reanalyzed after rewriting.
5928 
5929             Set_Parent (Rec, N);
5930             Analyze (Rec);
5931          end;
5932       end if;
5933 
5934       return Rec;
5935    end Expand_Protected_Object_Reference;
5936 
5937    --------------------------------------
5938    -- Expand_Protected_Subprogram_Call --
5939    --------------------------------------
5940 
5941    procedure Expand_Protected_Subprogram_Call
5942      (N    : Node_Id;
5943       Subp : Entity_Id;
5944       Scop : Entity_Id)
5945    is
5946       Rec   : Node_Id;
5947 
5948       procedure Freeze_Called_Function;
5949       --  If it is a function call it can appear in elaboration code and
5950       --  the called entity must be frozen before the call. This must be
5951       --  done before the call is expanded, as the expansion may rewrite it
5952       --  to something other than a call (e.g. a temporary initialized in a
5953       --  transient block).
5954 
5955       ----------------------------
5956       -- Freeze_Called_Function --
5957       ----------------------------
5958 
5959       procedure Freeze_Called_Function is
5960       begin
5961          if Ekind (Subp) = E_Function then
5962             Freeze_Expression (Name (N));
5963          end if;
5964       end Freeze_Called_Function;
5965 
5966    --  Start of processing for Expand_Protected_Subprogram_Call
5967 
5968    begin
5969       --  If the protected object is not an enclosing scope, this is an inter-
5970       --  object function call. Inter-object procedure calls are expanded by
5971       --  Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
5972       --  subprogram being called is in the protected body being compiled, and
5973       --  if the protected object in the call is statically the enclosing type.
5974       --  The object may be an component of some other data structure, in which
5975       --  case this must be handled as an inter-object call.
5976 
5977       if not In_Open_Scopes (Scop)
5978         or else not Is_Entity_Name (Name (N))
5979       then
5980          if Nkind (Name (N)) = N_Selected_Component then
5981             Rec := Prefix (Name (N));
5982 
5983          else
5984             pragma Assert (Nkind (Name (N)) = N_Indexed_Component);
5985             Rec := Prefix (Prefix (Name (N)));
5986          end if;
5987 
5988          Freeze_Called_Function;
5989          Build_Protected_Subprogram_Call (N,
5990            Name     => New_Occurrence_Of (Subp, Sloc (N)),
5991            Rec      => Convert_Concurrent (Rec, Etype (Rec)),
5992            External => True);
5993 
5994       else
5995          Rec := Expand_Protected_Object_Reference (N, Scop);
5996 
5997          if No (Rec) then
5998             return;
5999          end if;
6000 
6001          Freeze_Called_Function;
6002          Build_Protected_Subprogram_Call (N,
6003            Name     => Name (N),
6004            Rec      => Rec,
6005            External => False);
6006 
6007       end if;
6008 
6009       --  Analyze and resolve the new call. The actuals have already been
6010       --  resolved, but expansion of a function call will add extra actuals
6011       --  if needed. Analysis of a procedure call already includes resolution.
6012 
6013       Analyze (N);
6014 
6015       if Ekind (Subp) = E_Function then
6016          Resolve (N, Etype (Subp));
6017       end if;
6018    end Expand_Protected_Subprogram_Call;
6019 
6020    -----------------------------------
6021    -- Expand_Simple_Function_Return --
6022    -----------------------------------
6023 
6024    --  The "simple" comes from the syntax rule simple_return_statement. The
6025    --  semantics are not at all simple.
6026 
6027    procedure Expand_Simple_Function_Return (N : Node_Id) is
6028       Loc : constant Source_Ptr := Sloc (N);
6029 
6030       Scope_Id : constant Entity_Id :=
6031                    Return_Applies_To (Return_Statement_Entity (N));
6032       --  The function we are returning from
6033 
6034       R_Type : constant Entity_Id := Etype (Scope_Id);
6035       --  The result type of the function
6036 
6037       Utyp : constant Entity_Id := Underlying_Type (R_Type);
6038 
6039       Exp : Node_Id := Expression (N);
6040       pragma Assert (Present (Exp));
6041 
6042       Exptyp : constant Entity_Id := Etype (Exp);
6043       --  The type of the expression (not necessarily the same as R_Type)
6044 
6045       Subtype_Ind : Node_Id;
6046       --  If the result type of the function is class-wide and the expression
6047       --  has a specific type, then we use the expression's type as the type of
6048       --  the return object. In cases where the expression is an aggregate that
6049       --  is built in place, this avoids the need for an expensive conversion
6050       --  of the return object to the specific type on assignments to the
6051       --  individual components.
6052 
6053    begin
6054       if Is_Class_Wide_Type (R_Type)
6055         and then not Is_Class_Wide_Type (Exptyp)
6056         and then Nkind (Exp) /= N_Type_Conversion
6057       then
6058          Subtype_Ind := New_Occurrence_Of (Exptyp, Loc);
6059       else
6060          Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
6061 
6062          --  If the result type is class-wide and the expression is a view
6063          --  conversion, the conversion plays no role in the expansion because
6064          --  it does not modify the tag of the object. Remove the conversion
6065          --  altogether to prevent tag overwriting.
6066 
6067          if Is_Class_Wide_Type (R_Type)
6068            and then not Is_Class_Wide_Type (Exptyp)
6069            and then Nkind (Exp) = N_Type_Conversion
6070          then
6071             Exp := Expression (Exp);
6072          end if;
6073       end if;
6074 
6075       --  For the case of a simple return that does not come from an extended
6076       --  return, in the case of Ada 2005 where we are returning a limited
6077       --  type, we rewrite "return <expression>;" to be:
6078 
6079       --    return _anon_ : <return_subtype> := <expression>
6080 
6081       --  The expansion produced by Expand_N_Extended_Return_Statement will
6082       --  contain simple return statements (for example, a block containing
6083       --  simple return of the return object), which brings us back here with
6084       --  Comes_From_Extended_Return_Statement set. The reason for the barrier
6085       --  checking for a simple return that does not come from an extended
6086       --  return is to avoid this infinite recursion.
6087 
6088       --  The reason for this design is that for Ada 2005 limited returns, we
6089       --  need to reify the return object, so we can build it "in place", and
6090       --  we need a block statement to hang finalization and tasking stuff.
6091 
6092       --  ??? In order to avoid disruption, we avoid translating to extended
6093       --  return except in the cases where we really need to (Ada 2005 for
6094       --  inherently limited). We might prefer to do this translation in all
6095       --  cases (except perhaps for the case of Ada 95 inherently limited),
6096       --  in order to fully exercise the Expand_N_Extended_Return_Statement
6097       --  code. This would also allow us to do the build-in-place optimization
6098       --  for efficiency even in cases where it is semantically not required.
6099 
6100       --  As before, we check the type of the return expression rather than the
6101       --  return type of the function, because the latter may be a limited
6102       --  class-wide interface type, which is not a limited type, even though
6103       --  the type of the expression may be.
6104 
6105       if not Comes_From_Extended_Return_Statement (N)
6106         and then Is_Limited_View (Etype (Expression (N)))
6107         and then Ada_Version >= Ada_2005
6108         and then not Debug_Flag_Dot_L
6109 
6110          --  The functionality of interface thunks is simple and it is always
6111          --  handled by means of simple return statements. This leaves their
6112          --  expansion simple and clean.
6113 
6114         and then not Is_Thunk (Current_Scope)
6115       then
6116          declare
6117             Return_Object_Entity : constant Entity_Id :=
6118                                      Make_Temporary (Loc, 'R', Exp);
6119 
6120             Obj_Decl : constant Node_Id :=
6121                          Make_Object_Declaration (Loc,
6122                            Defining_Identifier => Return_Object_Entity,
6123                            Object_Definition   => Subtype_Ind,
6124                            Expression          => Exp);
6125 
6126             Ext : constant Node_Id :=
6127                     Make_Extended_Return_Statement (Loc,
6128                       Return_Object_Declarations => New_List (Obj_Decl));
6129             --  Do not perform this high-level optimization if the result type
6130             --  is an interface because the "this" pointer must be displaced.
6131 
6132          begin
6133             Rewrite (N, Ext);
6134             Analyze (N);
6135             return;
6136          end;
6137       end if;
6138 
6139       --  Here we have a simple return statement that is part of the expansion
6140       --  of an extended return statement (either written by the user, or
6141       --  generated by the above code).
6142 
6143       --  Always normalize C/Fortran boolean result. This is not always needed,
6144       --  but it seems a good idea to minimize the passing around of non-
6145       --  normalized values, and in any case this handles the processing of
6146       --  barrier functions for protected types, which turn the condition into
6147       --  a return statement.
6148 
6149       if Is_Boolean_Type (Exptyp)
6150         and then Nonzero_Is_True (Exptyp)
6151       then
6152          Adjust_Condition (Exp);
6153          Adjust_Result_Type (Exp, Exptyp);
6154       end if;
6155 
6156       --  Do validity check if enabled for returns
6157 
6158       if Validity_Checks_On
6159         and then Validity_Check_Returns
6160       then
6161          Ensure_Valid (Exp);
6162       end if;
6163 
6164       --  Check the result expression of a scalar function against the subtype
6165       --  of the function by inserting a conversion. This conversion must
6166       --  eventually be performed for other classes of types, but for now it's
6167       --  only done for scalars.
6168       --  ???
6169 
6170       if Is_Scalar_Type (Exptyp) then
6171          Rewrite (Exp, Convert_To (R_Type, Exp));
6172 
6173          --  The expression is resolved to ensure that the conversion gets
6174          --  expanded to generate a possible constraint check.
6175 
6176          Analyze_And_Resolve (Exp, R_Type);
6177       end if;
6178 
6179       --  Deal with returning variable length objects and controlled types
6180 
6181       --  Nothing to do if we are returning by reference, or this is not a
6182       --  type that requires special processing (indicated by the fact that
6183       --  it requires a cleanup scope for the secondary stack case).
6184 
6185       if Is_Limited_View (Exptyp)
6186         or else Is_Limited_Interface (Exptyp)
6187       then
6188          null;
6189 
6190       --  No copy needed for thunks returning interface type objects since
6191       --  the object is returned by reference and the maximum functionality
6192       --  required is just to displace the pointer.
6193 
6194       elsif Is_Thunk (Current_Scope) and then Is_Interface (Exptyp) then
6195          null;
6196 
6197       --  If the call is within a thunk and the type is a limited view, the
6198       --  backend will eventually see the non-limited view of the type.
6199 
6200       elsif Is_Thunk (Current_Scope) and then Is_Incomplete_Type (Exptyp) then
6201          return;
6202 
6203       elsif not Requires_Transient_Scope (R_Type) then
6204 
6205          --  Mutable records with variable-length components are not returned
6206          --  on the sec-stack, so we need to make sure that the back end will
6207          --  only copy back the size of the actual value, and not the maximum
6208          --  size. We create an actual subtype for this purpose. However we
6209          --  need not do it if the expression is a function call since this
6210          --  will be done in the called function and doing it here too would
6211          --  cause a temporary with maximum size to be created.
6212 
6213          declare
6214             Ubt  : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
6215             Decl : Node_Id;
6216             Ent  : Entity_Id;
6217          begin
6218             if Nkind (Exp) /= N_Function_Call
6219               and then Has_Discriminants (Ubt)
6220               and then not Is_Constrained (Ubt)
6221               and then not Has_Unchecked_Union (Ubt)
6222             then
6223                Decl := Build_Actual_Subtype (Ubt, Exp);
6224                Ent := Defining_Identifier (Decl);
6225                Insert_Action (Exp, Decl);
6226                Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
6227                Analyze_And_Resolve (Exp);
6228             end if;
6229          end;
6230 
6231       --  Here if secondary stack is used
6232 
6233       else
6234          --  Prevent the reclamation of the secondary stack by all enclosing
6235          --  blocks and loops as well as the related function; otherwise the
6236          --  result would be reclaimed too early.
6237 
6238          Set_Enclosing_Sec_Stack_Return (N);
6239 
6240          --  Optimize the case where the result is a function call. In this
6241          --  case either the result is already on the secondary stack, or is
6242          --  already being returned with the stack pointer depressed and no
6243          --  further processing is required except to set the By_Ref flag
6244          --  to ensure that gigi does not attempt an extra unnecessary copy.
6245          --  (actually not just unnecessary but harmfully wrong in the case
6246          --  of a controlled type, where gigi does not know how to do a copy).
6247          --  To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6248          --  for array types if the constrained status of the target type is
6249          --  different from that of the expression.
6250 
6251          if Requires_Transient_Scope (Exptyp)
6252            and then
6253               (not Is_Array_Type (Exptyp)
6254                 or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
6255                 or else CW_Or_Has_Controlled_Part (Utyp))
6256            and then Nkind (Exp) = N_Function_Call
6257          then
6258             Set_By_Ref (N);
6259 
6260             --  Remove side effects from the expression now so that other parts
6261             --  of the expander do not have to reanalyze this node without this
6262             --  optimization
6263 
6264             Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
6265 
6266          --  For controlled types, do the allocation on the secondary stack
6267          --  manually in order to call adjust at the right time:
6268 
6269          --    type Anon1 is access R_Type;
6270          --    for Anon1'Storage_pool use ss_pool;
6271          --    Anon2 : anon1 := new R_Type'(expr);
6272          --    return Anon2.all;
6273 
6274          --  We do the same for classwide types that are not potentially
6275          --  controlled (by the virtue of restriction No_Finalization) because
6276          --  gigi is not able to properly allocate class-wide types.
6277 
6278          elsif CW_Or_Has_Controlled_Part (Utyp) then
6279             declare
6280                Loc        : constant Source_Ptr := Sloc (N);
6281                Acc_Typ    : constant Entity_Id := Make_Temporary (Loc, 'A');
6282                Alloc_Node : Node_Id;
6283                Temp       : Entity_Id;
6284 
6285             begin
6286                Set_Ekind (Acc_Typ, E_Access_Type);
6287 
6288                Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
6289 
6290                --  This is an allocator for the secondary stack, and it's fine
6291                --  to have Comes_From_Source set False on it, as gigi knows not
6292                --  to flag it as a violation of No_Implicit_Heap_Allocations.
6293 
6294                Alloc_Node :=
6295                  Make_Allocator (Loc,
6296                    Expression =>
6297                      Make_Qualified_Expression (Loc,
6298                        Subtype_Mark => New_Occurrence_Of (Etype (Exp), Loc),
6299                        Expression   => Relocate_Node (Exp)));
6300 
6301                --  We do not want discriminant checks on the declaration,
6302                --  given that it gets its value from the allocator.
6303 
6304                Set_No_Initialization (Alloc_Node);
6305 
6306                Temp := Make_Temporary (Loc, 'R', Alloc_Node);
6307 
6308                Insert_List_Before_And_Analyze (N, New_List (
6309                  Make_Full_Type_Declaration (Loc,
6310                    Defining_Identifier => Acc_Typ,
6311                    Type_Definition     =>
6312                      Make_Access_To_Object_Definition (Loc,
6313                        Subtype_Indication => Subtype_Ind)),
6314 
6315                  Make_Object_Declaration (Loc,
6316                    Defining_Identifier => Temp,
6317                    Object_Definition   => New_Occurrence_Of (Acc_Typ, Loc),
6318                    Expression          => Alloc_Node)));
6319 
6320                Rewrite (Exp,
6321                  Make_Explicit_Dereference (Loc,
6322                  Prefix => New_Occurrence_Of (Temp, Loc)));
6323 
6324                --  Ada 2005 (AI-251): If the type of the returned object is
6325                --  an interface then add an implicit type conversion to force
6326                --  displacement of the "this" pointer.
6327 
6328                if Is_Interface (R_Type) then
6329                   Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6330                end if;
6331 
6332                Analyze_And_Resolve (Exp, R_Type);
6333             end;
6334 
6335          --  Otherwise use the gigi mechanism to allocate result on the
6336          --  secondary stack.
6337 
6338          else
6339             Check_Restriction (No_Secondary_Stack, N);
6340             Set_Storage_Pool (N, RTE (RE_SS_Pool));
6341             Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
6342          end if;
6343       end if;
6344 
6345       --  Implement the rules of 6.5(8-10), which require a tag check in
6346       --  the case of a limited tagged return type, and tag reassignment for
6347       --  nonlimited tagged results. These actions are needed when the return
6348       --  type is a specific tagged type and the result expression is a
6349       --  conversion or a formal parameter, because in that case the tag of
6350       --  the expression might differ from the tag of the specific result type.
6351 
6352       if Is_Tagged_Type (Utyp)
6353         and then not Is_Class_Wide_Type (Utyp)
6354         and then (Nkind_In (Exp, N_Type_Conversion,
6355                                  N_Unchecked_Type_Conversion)
6356                     or else (Is_Entity_Name (Exp)
6357                                and then Ekind (Entity (Exp)) in Formal_Kind))
6358       then
6359          --  When the return type is limited, perform a check that the tag of
6360          --  the result is the same as the tag of the return type.
6361 
6362          if Is_Limited_Type (R_Type) then
6363             Insert_Action (Exp,
6364               Make_Raise_Constraint_Error (Loc,
6365                 Condition =>
6366                   Make_Op_Ne (Loc,
6367                     Left_Opnd  =>
6368                       Make_Selected_Component (Loc,
6369                         Prefix        => Duplicate_Subexpr (Exp),
6370                         Selector_Name => Make_Identifier (Loc, Name_uTag)),
6371                     Right_Opnd =>
6372                       Make_Attribute_Reference (Loc,
6373                         Prefix         =>
6374                           New_Occurrence_Of (Base_Type (Utyp), Loc),
6375                         Attribute_Name => Name_Tag)),
6376                 Reason    => CE_Tag_Check_Failed));
6377 
6378          --  If the result type is a specific nonlimited tagged type, then we
6379          --  have to ensure that the tag of the result is that of the result
6380          --  type. This is handled by making a copy of the expression in
6381          --  the case where it might have a different tag, namely when the
6382          --  expression is a conversion or a formal parameter. We create a new
6383          --  object of the result type and initialize it from the expression,
6384          --  which will implicitly force the tag to be set appropriately.
6385 
6386          else
6387             declare
6388                ExpR       : constant Node_Id   := Relocate_Node (Exp);
6389                Result_Id  : constant Entity_Id :=
6390                               Make_Temporary (Loc, 'R', ExpR);
6391                Result_Exp : constant Node_Id   :=
6392                               New_Occurrence_Of (Result_Id, Loc);
6393                Result_Obj : constant Node_Id   :=
6394                               Make_Object_Declaration (Loc,
6395                                 Defining_Identifier => Result_Id,
6396                                 Object_Definition   =>
6397                                   New_Occurrence_Of (R_Type, Loc),
6398                                 Constant_Present    => True,
6399                                 Expression          => ExpR);
6400 
6401             begin
6402                Set_Assignment_OK (Result_Obj);
6403                Insert_Action (Exp, Result_Obj);
6404 
6405                Rewrite (Exp, Result_Exp);
6406                Analyze_And_Resolve (Exp, R_Type);
6407             end;
6408          end if;
6409 
6410       --  Ada 2005 (AI-344): If the result type is class-wide, then insert
6411       --  a check that the level of the return expression's underlying type
6412       --  is not deeper than the level of the master enclosing the function.
6413       --  Always generate the check when the type of the return expression
6414       --  is class-wide, when it's a type conversion, or when it's a formal
6415       --  parameter. Otherwise, suppress the check in the case where the
6416       --  return expression has a specific type whose level is known not to
6417       --  be statically deeper than the function's result type.
6418 
6419       --  No runtime check needed in interface thunks since it is performed
6420       --  by the target primitive associated with the thunk.
6421 
6422       --  Note: accessibility check is skipped in the VM case, since there
6423       --  does not seem to be any practical way to implement this check.
6424 
6425       elsif Ada_Version >= Ada_2005
6426         and then Tagged_Type_Expansion
6427         and then Is_Class_Wide_Type (R_Type)
6428         and then not Is_Thunk (Current_Scope)
6429         and then not Scope_Suppress.Suppress (Accessibility_Check)
6430         and then
6431           (Is_Class_Wide_Type (Etype (Exp))
6432             or else Nkind_In (Exp, N_Type_Conversion,
6433                                    N_Unchecked_Type_Conversion)
6434             or else (Is_Entity_Name (Exp)
6435                       and then Ekind (Entity (Exp)) in Formal_Kind)
6436             or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
6437                       Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
6438       then
6439          declare
6440             Tag_Node : Node_Id;
6441 
6442          begin
6443             --  Ada 2005 (AI-251): In class-wide interface objects we displace
6444             --  "this" to reference the base of the object. This is required to
6445             --  get access to the TSD of the object.
6446 
6447             if Is_Class_Wide_Type (Etype (Exp))
6448               and then Is_Interface (Etype (Exp))
6449             then
6450                --  If the expression is an explicit dereference then we can
6451                --  directly displace the pointer to reference the base of
6452                --  the object.
6453 
6454                if Nkind (Exp) = N_Explicit_Dereference then
6455                   Tag_Node :=
6456                     Make_Explicit_Dereference (Loc,
6457                       Prefix =>
6458                         Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6459                           Make_Function_Call (Loc,
6460                             Name                   =>
6461                               New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6462                             Parameter_Associations => New_List (
6463                               Unchecked_Convert_To (RTE (RE_Address),
6464                                 Duplicate_Subexpr (Prefix (Exp)))))));
6465 
6466                --  Similar case to the previous one but the expression is a
6467                --  renaming of an explicit dereference.
6468 
6469                elsif Nkind (Exp) = N_Identifier
6470                  and then Present (Renamed_Object (Entity (Exp)))
6471                  and then Nkind (Renamed_Object (Entity (Exp)))
6472                             = N_Explicit_Dereference
6473                then
6474                   Tag_Node :=
6475                     Make_Explicit_Dereference (Loc,
6476                       Prefix =>
6477                         Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6478                           Make_Function_Call (Loc,
6479                             Name                   =>
6480                               New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6481                             Parameter_Associations => New_List (
6482                               Unchecked_Convert_To (RTE (RE_Address),
6483                                 Duplicate_Subexpr
6484                                   (Prefix
6485                                     (Renamed_Object (Entity (Exp)))))))));
6486 
6487                --  Common case: obtain the address of the actual object and
6488                --  displace the pointer to reference the base of the object.
6489 
6490                else
6491                   Tag_Node :=
6492                     Make_Explicit_Dereference (Loc,
6493                       Prefix =>
6494                         Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6495                           Make_Function_Call (Loc,
6496                             Name               =>
6497                               New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6498                             Parameter_Associations => New_List (
6499                               Make_Attribute_Reference (Loc,
6500                                 Prefix         => Duplicate_Subexpr (Exp),
6501                                 Attribute_Name => Name_Address)))));
6502                end if;
6503             else
6504                Tag_Node :=
6505                  Make_Attribute_Reference (Loc,
6506                    Prefix         => Duplicate_Subexpr (Exp),
6507                    Attribute_Name => Name_Tag);
6508             end if;
6509 
6510             Insert_Action (Exp,
6511               Make_Raise_Program_Error (Loc,
6512                 Condition =>
6513                   Make_Op_Gt (Loc,
6514                     Left_Opnd  => Build_Get_Access_Level (Loc, Tag_Node),
6515                     Right_Opnd =>
6516                       Make_Integer_Literal (Loc,
6517                         Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
6518                 Reason => PE_Accessibility_Check_Failed));
6519          end;
6520 
6521       --  AI05-0073: If function has a controlling access result, check that
6522       --  the tag of the return value, if it is not null, matches designated
6523       --  type of return type.
6524 
6525       --  The return expression is referenced twice in the code below, so it
6526       --  must be made free of side effects. Given that different compilers
6527       --  may evaluate these parameters in different order, both occurrences
6528       --  perform a copy.
6529 
6530       elsif Ekind (R_Type) = E_Anonymous_Access_Type
6531         and then Has_Controlling_Result (Scope_Id)
6532       then
6533          Insert_Action (N,
6534            Make_Raise_Constraint_Error (Loc,
6535              Condition =>
6536                Make_And_Then (Loc,
6537                  Left_Opnd  =>
6538                    Make_Op_Ne (Loc,
6539                      Left_Opnd  => Duplicate_Subexpr (Exp),
6540                      Right_Opnd => Make_Null (Loc)),
6541 
6542                  Right_Opnd => Make_Op_Ne (Loc,
6543                    Left_Opnd  =>
6544                      Make_Selected_Component (Loc,
6545                        Prefix        => Duplicate_Subexpr (Exp),
6546                        Selector_Name => Make_Identifier (Loc, Name_uTag)),
6547 
6548                    Right_Opnd =>
6549                      Make_Attribute_Reference (Loc,
6550                        Prefix         =>
6551                          New_Occurrence_Of (Designated_Type (R_Type), Loc),
6552                        Attribute_Name => Name_Tag))),
6553 
6554              Reason    => CE_Tag_Check_Failed),
6555              Suppress  => All_Checks);
6556       end if;
6557 
6558       --  AI05-0234: RM 6.5(21/3). Check access discriminants to
6559       --  ensure that the function result does not outlive an
6560       --  object designated by one of it discriminants.
6561 
6562       if Present (Extra_Accessibility_Of_Result (Scope_Id))
6563         and then Has_Unconstrained_Access_Discriminants (R_Type)
6564       then
6565          declare
6566             Discrim_Source : Node_Id;
6567 
6568             procedure Check_Against_Result_Level (Level : Node_Id);
6569             --  Check the given accessibility level against the level
6570             --  determined by the point of call. (AI05-0234).
6571 
6572             --------------------------------
6573             -- Check_Against_Result_Level --
6574             --------------------------------
6575 
6576             procedure Check_Against_Result_Level (Level : Node_Id) is
6577             begin
6578                Insert_Action (N,
6579                  Make_Raise_Program_Error (Loc,
6580                    Condition =>
6581                      Make_Op_Gt (Loc,
6582                        Left_Opnd  => Level,
6583                        Right_Opnd =>
6584                          New_Occurrence_Of
6585                            (Extra_Accessibility_Of_Result (Scope_Id), Loc)),
6586                        Reason => PE_Accessibility_Check_Failed));
6587             end Check_Against_Result_Level;
6588 
6589          begin
6590             Discrim_Source := Exp;
6591             while Nkind (Discrim_Source) = N_Qualified_Expression loop
6592                Discrim_Source := Expression (Discrim_Source);
6593             end loop;
6594 
6595             if Nkind (Discrim_Source) = N_Identifier
6596               and then Is_Return_Object (Entity (Discrim_Source))
6597             then
6598                Discrim_Source := Entity (Discrim_Source);
6599 
6600                if Is_Constrained (Etype (Discrim_Source)) then
6601                   Discrim_Source := Etype (Discrim_Source);
6602                else
6603                   Discrim_Source := Expression (Parent (Discrim_Source));
6604                end if;
6605 
6606             elsif Nkind (Discrim_Source) = N_Identifier
6607               and then Nkind_In (Original_Node (Discrim_Source),
6608                                  N_Aggregate, N_Extension_Aggregate)
6609             then
6610                Discrim_Source := Original_Node (Discrim_Source);
6611 
6612             elsif Nkind (Discrim_Source) = N_Explicit_Dereference and then
6613               Nkind (Original_Node (Discrim_Source)) = N_Function_Call
6614             then
6615                Discrim_Source := Original_Node (Discrim_Source);
6616             end if;
6617 
6618             while Nkind_In (Discrim_Source, N_Qualified_Expression,
6619                                             N_Type_Conversion,
6620                                             N_Unchecked_Type_Conversion)
6621             loop
6622                Discrim_Source := Expression (Discrim_Source);
6623             end loop;
6624 
6625             case Nkind (Discrim_Source) is
6626                when N_Defining_Identifier =>
6627 
6628                   pragma Assert (Is_Composite_Type (Discrim_Source)
6629                                   and then Has_Discriminants (Discrim_Source)
6630                                   and then Is_Constrained (Discrim_Source));
6631 
6632                   declare
6633                      Discrim   : Entity_Id :=
6634                                    First_Discriminant (Base_Type (R_Type));
6635                      Disc_Elmt : Elmt_Id   :=
6636                                    First_Elmt (Discriminant_Constraint
6637                                                  (Discrim_Source));
6638                   begin
6639                      loop
6640                         if Ekind (Etype (Discrim)) =
6641                              E_Anonymous_Access_Type
6642                         then
6643                            Check_Against_Result_Level
6644                              (Dynamic_Accessibility_Level (Node (Disc_Elmt)));
6645                         end if;
6646 
6647                         Next_Elmt (Disc_Elmt);
6648                         Next_Discriminant (Discrim);
6649                         exit when not Present (Discrim);
6650                      end loop;
6651                   end;
6652 
6653                when N_Aggregate | N_Extension_Aggregate =>
6654 
6655                   --  Unimplemented: extension aggregate case where discrims
6656                   --  come from ancestor part, not extension part.
6657 
6658                   declare
6659                      Discrim  : Entity_Id :=
6660                                   First_Discriminant (Base_Type (R_Type));
6661 
6662                      Disc_Exp : Node_Id   := Empty;
6663 
6664                      Positionals_Exhausted
6665                               : Boolean   := not Present (Expressions
6666                                                             (Discrim_Source));
6667 
6668                      function Associated_Expr
6669                        (Comp_Id : Entity_Id;
6670                         Associations : List_Id) return Node_Id;
6671 
6672                      --  Given a component and a component associations list,
6673                      --  locate the expression for that component; returns
6674                      --  Empty if no such expression is found.
6675 
6676                      ---------------------
6677                      -- Associated_Expr --
6678                      ---------------------
6679 
6680                      function Associated_Expr
6681                        (Comp_Id : Entity_Id;
6682                         Associations : List_Id) return Node_Id
6683                      is
6684                         Assoc  : Node_Id;
6685                         Choice : Node_Id;
6686 
6687                      begin
6688                         --  Simple linear search seems ok here
6689 
6690                         Assoc := First (Associations);
6691                         while Present (Assoc) loop
6692                            Choice := First (Choices (Assoc));
6693                            while Present (Choice) loop
6694                               if (Nkind (Choice) = N_Identifier
6695                                    and then Chars (Choice) = Chars (Comp_Id))
6696                                 or else (Nkind (Choice) = N_Others_Choice)
6697                               then
6698                                  return Expression (Assoc);
6699                               end if;
6700 
6701                               Next (Choice);
6702                            end loop;
6703 
6704                            Next (Assoc);
6705                         end loop;
6706 
6707                         return Empty;
6708                      end Associated_Expr;
6709 
6710                   --  Start of processing for Expand_Simple_Function_Return
6711 
6712                   begin
6713                      if not Positionals_Exhausted then
6714                         Disc_Exp := First (Expressions (Discrim_Source));
6715                      end if;
6716 
6717                      loop
6718                         if Positionals_Exhausted then
6719                            Disc_Exp :=
6720                              Associated_Expr
6721                                (Discrim,
6722                                 Component_Associations (Discrim_Source));
6723                         end if;
6724 
6725                         if Ekind (Etype (Discrim)) =
6726                              E_Anonymous_Access_Type
6727                         then
6728                            Check_Against_Result_Level
6729                              (Dynamic_Accessibility_Level (Disc_Exp));
6730                         end if;
6731 
6732                         Next_Discriminant (Discrim);
6733                         exit when not Present (Discrim);
6734 
6735                         if not Positionals_Exhausted then
6736                            Next (Disc_Exp);
6737                            Positionals_Exhausted := not Present (Disc_Exp);
6738                         end if;
6739                      end loop;
6740                   end;
6741 
6742                when N_Function_Call =>
6743 
6744                   --  No check needed (check performed by callee)
6745 
6746                   null;
6747 
6748                when others =>
6749 
6750                   declare
6751                      Level : constant Node_Id :=
6752                                Make_Integer_Literal (Loc,
6753                                  Object_Access_Level (Discrim_Source));
6754 
6755                   begin
6756                      --  Unimplemented: check for name prefix that includes
6757                      --  a dereference of an access value with a dynamic
6758                      --  accessibility level (e.g., an access param or a
6759                      --  saooaaat) and use dynamic level in that case. For
6760                      --  example:
6761                      --    return Access_Param.all(Some_Index).Some_Component;
6762                      --  ???
6763 
6764                      Set_Etype (Level, Standard_Natural);
6765                      Check_Against_Result_Level (Level);
6766                   end;
6767 
6768             end case;
6769          end;
6770       end if;
6771 
6772       --  If we are returning an object that may not be bit-aligned, then copy
6773       --  the value into a temporary first. This copy may need to expand to a
6774       --  loop of component operations.
6775 
6776       if Is_Possibly_Unaligned_Slice (Exp)
6777         or else Is_Possibly_Unaligned_Object (Exp)
6778       then
6779          declare
6780             ExpR : constant Node_Id   := Relocate_Node (Exp);
6781             Tnn  : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
6782          begin
6783             Insert_Action (Exp,
6784               Make_Object_Declaration (Loc,
6785                 Defining_Identifier => Tnn,
6786                 Constant_Present    => True,
6787                 Object_Definition   => New_Occurrence_Of (R_Type, Loc),
6788                 Expression          => ExpR),
6789               Suppress => All_Checks);
6790             Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6791          end;
6792       end if;
6793 
6794       --  Call the _Postconditions procedure if the related function has
6795       --  contract assertions that need to be verified on exit.
6796 
6797       if Ekind (Scope_Id) = E_Function
6798         and then Present (Postconditions_Proc (Scope_Id))
6799       then
6800          --  In the case of discriminated objects, we have created a
6801          --  constrained subtype above, and used the underlying type. This
6802          --  transformation is post-analysis and harmless, except that now the
6803          --  call to the post-condition will be analyzed and the type kinds
6804          --  have to match.
6805 
6806          if Nkind (Exp) = N_Unchecked_Type_Conversion
6807            and then Is_Private_Type (R_Type) /= Is_Private_Type (Etype (Exp))
6808          then
6809             Rewrite (Exp, Expression (Relocate_Node (Exp)));
6810          end if;
6811 
6812          --  We are going to reference the returned value twice in this case,
6813          --  once in the call to _Postconditions, and once in the actual return
6814          --  statement, but we can't have side effects happening twice.
6815 
6816          Force_Evaluation (Exp, Mode => Strict);
6817 
6818          --  Generate call to _Postconditions
6819 
6820          Insert_Action (Exp,
6821            Make_Procedure_Call_Statement (Loc,
6822              Name                   =>
6823                New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc),
6824              Parameter_Associations => New_List (New_Copy_Tree (Exp))));
6825       end if;
6826 
6827       --  Ada 2005 (AI-251): If this return statement corresponds with an
6828       --  simple return statement associated with an extended return statement
6829       --  and the type of the returned object is an interface then generate an
6830       --  implicit conversion to force displacement of the "this" pointer.
6831 
6832       if Ada_Version >= Ada_2005
6833         and then Comes_From_Extended_Return_Statement (N)
6834         and then Nkind (Expression (N)) = N_Identifier
6835         and then Is_Interface (Utyp)
6836         and then Utyp /= Underlying_Type (Exptyp)
6837       then
6838          Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
6839          Analyze_And_Resolve (Exp);
6840       end if;
6841    end Expand_Simple_Function_Return;
6842 
6843    --------------------------------------------
6844    -- Has_Unconstrained_Access_Discriminants --
6845    --------------------------------------------
6846 
6847    function Has_Unconstrained_Access_Discriminants
6848      (Subtyp : Entity_Id) return Boolean
6849    is
6850       Discr : Entity_Id;
6851 
6852    begin
6853       if Has_Discriminants (Subtyp)
6854         and then not Is_Constrained (Subtyp)
6855       then
6856          Discr := First_Discriminant (Subtyp);
6857          while Present (Discr) loop
6858             if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
6859                return True;
6860             end if;
6861 
6862             Next_Discriminant (Discr);
6863          end loop;
6864       end if;
6865 
6866       return False;
6867    end Has_Unconstrained_Access_Discriminants;
6868 
6869    --------------------------------
6870    -- Is_Build_In_Place_Function --
6871    --------------------------------
6872 
6873    function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
6874    begin
6875       --  This function is called from Expand_Subtype_From_Expr during
6876       --  semantic analysis, even when expansion is off. In those cases
6877       --  the build_in_place expansion will not take place.
6878 
6879       if not Expander_Active then
6880          return False;
6881       end if;
6882 
6883       --  For now we test whether E denotes a function or access-to-function
6884       --  type whose result subtype is inherently limited. Later this test
6885       --  may be revised to allow composite nonlimited types. Functions with
6886       --  a foreign convention or whose result type has a foreign convention
6887       --  never qualify.
6888 
6889       if Ekind_In (E, E_Function, E_Generic_Function)
6890         or else (Ekind (E) = E_Subprogram_Type
6891                   and then Etype (E) /= Standard_Void_Type)
6892       then
6893          --  Note: If the function has a foreign convention, it cannot build
6894          --  its result in place, so you're on your own. On the other hand,
6895          --  if only the return type has a foreign convention, its layout is
6896          --  intended to be compatible with the other language, but the build-
6897          --  in place machinery can ensure that the object is not copied.
6898 
6899          if Has_Foreign_Convention (E) then
6900             return False;
6901 
6902          --  In Ada 2005 all functions with an inherently limited return type
6903          --  must be handled using a build-in-place profile, including the case
6904          --  of a function with a limited interface result, where the function
6905          --  may return objects of nonlimited descendants.
6906 
6907          else
6908             return Is_Limited_View (Etype (E))
6909               and then Ada_Version >= Ada_2005
6910               and then not Debug_Flag_Dot_L;
6911          end if;
6912 
6913       else
6914          return False;
6915       end if;
6916    end Is_Build_In_Place_Function;
6917 
6918    -------------------------------------
6919    -- Is_Build_In_Place_Function_Call --
6920    -------------------------------------
6921 
6922    function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
6923       Exp_Node    : Node_Id := N;
6924       Function_Id : Entity_Id;
6925 
6926    begin
6927       --  Return False if the expander is currently inactive, since awareness
6928       --  of build-in-place treatment is only relevant during expansion. Note
6929       --  that Is_Build_In_Place_Function, which is called as part of this
6930       --  function, is also conditioned this way, but we need to check here as
6931       --  well to avoid blowing up on processing protected calls when expansion
6932       --  is disabled (such as with -gnatc) since those would trip over the
6933       --  raise of Program_Error below.
6934 
6935       --  In SPARK mode, build-in-place calls are not expanded, so that we
6936       --  may end up with a call that is neither resolved to an entity, nor
6937       --  an indirect call.
6938 
6939       if not Expander_Active then
6940          return False;
6941       end if;
6942 
6943       --  Step past qualification, type conversion (which can occur in actual
6944       --  parameter contexts), and unchecked conversion (which can occur in
6945       --  cases of calls to 'Input).
6946 
6947       if Nkind_In (Exp_Node, N_Qualified_Expression,
6948                              N_Type_Conversion,
6949                              N_Unchecked_Type_Conversion)
6950       then
6951          Exp_Node := Expression (N);
6952       end if;
6953 
6954       if Nkind (Exp_Node) /= N_Function_Call then
6955          return False;
6956 
6957       else
6958          if Is_Entity_Name (Name (Exp_Node)) then
6959             Function_Id := Entity (Name (Exp_Node));
6960 
6961          --  In the case of an explicitly dereferenced call, use the subprogram
6962          --  type generated for the dereference.
6963 
6964          elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
6965             Function_Id := Etype (Name (Exp_Node));
6966 
6967          --  This may be a call to a protected function.
6968 
6969          elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
6970             Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
6971 
6972          else
6973             raise Program_Error;
6974          end if;
6975 
6976          return Is_Build_In_Place_Function (Function_Id);
6977       end if;
6978    end Is_Build_In_Place_Function_Call;
6979 
6980    -----------------------
6981    -- Freeze_Subprogram --
6982    -----------------------
6983 
6984    procedure Freeze_Subprogram (N : Node_Id) is
6985       Loc : constant Source_Ptr := Sloc (N);
6986 
6987       procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
6988       --  (Ada 2005): Register a predefined primitive in all the secondary
6989       --  dispatch tables of its primitive type.
6990 
6991       ----------------------------------
6992       -- Register_Predefined_DT_Entry --
6993       ----------------------------------
6994 
6995       procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
6996          Iface_DT_Ptr : Elmt_Id;
6997          Tagged_Typ   : Entity_Id;
6998          Thunk_Id     : Entity_Id;
6999          Thunk_Code   : Node_Id;
7000 
7001       begin
7002          Tagged_Typ := Find_Dispatching_Type (Prim);
7003 
7004          if No (Access_Disp_Table (Tagged_Typ))
7005            or else not Has_Interfaces (Tagged_Typ)
7006            or else not RTE_Available (RE_Interface_Tag)
7007            or else Restriction_Active (No_Dispatching_Calls)
7008          then
7009             return;
7010          end if;
7011 
7012          --  Skip the first two access-to-dispatch-table pointers since they
7013          --  leads to the primary dispatch table (predefined DT and user
7014          --  defined DT). We are only concerned with the secondary dispatch
7015          --  table pointers. Note that the access-to- dispatch-table pointer
7016          --  corresponds to the first implemented interface retrieved below.
7017 
7018          Iface_DT_Ptr :=
7019            Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
7020 
7021          while Present (Iface_DT_Ptr)
7022            and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
7023          loop
7024             pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
7025             Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
7026 
7027             if Present (Thunk_Code) then
7028                Insert_Actions_After (N, New_List (
7029                  Thunk_Code,
7030 
7031                  Build_Set_Predefined_Prim_Op_Address (Loc,
7032                    Tag_Node     =>
7033                      New_Occurrence_Of (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
7034                    Position     => DT_Position (Prim),
7035                    Address_Node =>
7036                      Unchecked_Convert_To (RTE (RE_Prim_Ptr),
7037                        Make_Attribute_Reference (Loc,
7038                          Prefix         => New_Occurrence_Of (Thunk_Id, Loc),
7039                          Attribute_Name => Name_Unrestricted_Access))),
7040 
7041                  Build_Set_Predefined_Prim_Op_Address (Loc,
7042                    Tag_Node     =>
7043                      New_Occurrence_Of
7044                       (Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
7045                        Loc),
7046                    Position     => DT_Position (Prim),
7047                    Address_Node =>
7048                      Unchecked_Convert_To (RTE (RE_Prim_Ptr),
7049                        Make_Attribute_Reference (Loc,
7050                          Prefix         => New_Occurrence_Of (Prim, Loc),
7051                          Attribute_Name => Name_Unrestricted_Access)))));
7052             end if;
7053 
7054             --  Skip the tag of the predefined primitives dispatch table
7055 
7056             Next_Elmt (Iface_DT_Ptr);
7057             pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
7058 
7059             --  Skip tag of the no-thunks dispatch table
7060 
7061             Next_Elmt (Iface_DT_Ptr);
7062             pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7063 
7064             --  Skip tag of predefined primitives no-thunks dispatch table
7065 
7066             Next_Elmt (Iface_DT_Ptr);
7067             pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7068 
7069             Next_Elmt (Iface_DT_Ptr);
7070          end loop;
7071       end Register_Predefined_DT_Entry;
7072 
7073       --  Local variables
7074 
7075       Subp : constant Entity_Id  := Entity (N);
7076 
7077    --  Start of processing for Freeze_Subprogram
7078 
7079    begin
7080       --  We suppress the initialization of the dispatch table entry when
7081       --  not Tagged_Type_Expansion because the dispatching mechanism is
7082       --  handled internally by the target.
7083 
7084       if Is_Dispatching_Operation (Subp)
7085         and then not Is_Abstract_Subprogram (Subp)
7086         and then Present (DTC_Entity (Subp))
7087         and then Present (Scope (DTC_Entity (Subp)))
7088         and then Tagged_Type_Expansion
7089         and then not Restriction_Active (No_Dispatching_Calls)
7090         and then RTE_Available (RE_Tag)
7091       then
7092          declare
7093             Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
7094 
7095          begin
7096             --  Handle private overridden primitives
7097 
7098             if not Is_CPP_Class (Typ) then
7099                Check_Overriding_Operation (Subp);
7100             end if;
7101 
7102             --  We assume that imported CPP primitives correspond with objects
7103             --  whose constructor is in the CPP side; therefore we don't need
7104             --  to generate code to register them in the dispatch table.
7105 
7106             if Is_CPP_Class (Typ) then
7107                null;
7108 
7109             --  Handle CPP primitives found in derivations of CPP_Class types.
7110             --  These primitives must have been inherited from some parent, and
7111             --  there is no need to register them in the dispatch table because
7112             --  Build_Inherit_Prims takes care of initializing these slots.
7113 
7114             elsif Is_Imported (Subp)
7115                and then (Convention (Subp) = Convention_CPP
7116                            or else Convention (Subp) = Convention_C)
7117             then
7118                null;
7119 
7120             --  Generate code to register the primitive in non statically
7121             --  allocated dispatch tables
7122 
7123             elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
7124 
7125                --  When a primitive is frozen, enter its name in its dispatch
7126                --  table slot.
7127 
7128                if not Is_Interface (Typ)
7129                  or else Present (Interface_Alias (Subp))
7130                then
7131                   if Is_Predefined_Dispatching_Operation (Subp) then
7132                      Register_Predefined_DT_Entry (Subp);
7133                   end if;
7134 
7135                   Insert_Actions_After (N,
7136                     Register_Primitive (Loc, Prim => Subp));
7137                end if;
7138             end if;
7139          end;
7140       end if;
7141 
7142       --  Mark functions that return by reference. Note that it cannot be part
7143       --  of the normal semantic analysis of the spec since the underlying
7144       --  returned type may not be known yet (for private types).
7145 
7146       declare
7147          Typ  : constant Entity_Id := Etype (Subp);
7148          Utyp : constant Entity_Id := Underlying_Type (Typ);
7149       begin
7150          if Is_Limited_View (Typ) then
7151             Set_Returns_By_Ref (Subp);
7152          elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
7153             Set_Returns_By_Ref (Subp);
7154          end if;
7155       end;
7156 
7157       --  Wnen freezing a null procedure, analyze its delayed aspects now
7158       --  because we may not have reached the end of the declarative list when
7159       --  delayed aspects are normally analyzed. This ensures that dispatching
7160       --  calls are properly rewritten when the generated _Postcondition
7161       --  procedure is analyzed in the null procedure body.
7162 
7163       if Nkind (Parent (Subp)) = N_Procedure_Specification
7164         and then Null_Present (Parent (Subp))
7165       then
7166          Analyze_Entry_Or_Subprogram_Contract (Subp);
7167       end if;
7168    end Freeze_Subprogram;
7169 
7170    -----------------------
7171    -- Is_Null_Procedure --
7172    -----------------------
7173 
7174    function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
7175       Decl : constant Node_Id := Unit_Declaration_Node (Subp);
7176 
7177    begin
7178       if Ekind (Subp) /= E_Procedure then
7179          return False;
7180 
7181       --  Check if this is a declared null procedure
7182 
7183       elsif Nkind (Decl) = N_Subprogram_Declaration then
7184          if not Null_Present (Specification (Decl)) then
7185             return False;
7186 
7187          elsif No (Body_To_Inline (Decl)) then
7188             return False;
7189 
7190          --  Check if the body contains only a null statement, followed by
7191          --  the return statement added during expansion.
7192 
7193          else
7194             declare
7195                Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
7196 
7197                Stat  : Node_Id;
7198                Stat2 : Node_Id;
7199 
7200             begin
7201                if Nkind (Orig_Bod) /= N_Subprogram_Body then
7202                   return False;
7203                else
7204                   --  We must skip SCIL nodes because they are currently
7205                   --  implemented as special N_Null_Statement nodes.
7206 
7207                   Stat :=
7208                      First_Non_SCIL_Node
7209                        (Statements (Handled_Statement_Sequence (Orig_Bod)));
7210                   Stat2 := Next_Non_SCIL_Node (Stat);
7211 
7212                   return
7213                      Is_Empty_List (Declarations (Orig_Bod))
7214                        and then Nkind (Stat) = N_Null_Statement
7215                        and then
7216                         (No (Stat2)
7217                           or else
7218                             (Nkind (Stat2) = N_Simple_Return_Statement
7219                               and then No (Next (Stat2))));
7220                end if;
7221             end;
7222          end if;
7223 
7224       else
7225          return False;
7226       end if;
7227    end Is_Null_Procedure;
7228 
7229    -------------------------------------------
7230    -- Make_Build_In_Place_Call_In_Allocator --
7231    -------------------------------------------
7232 
7233    procedure Make_Build_In_Place_Call_In_Allocator
7234      (Allocator     : Node_Id;
7235       Function_Call : Node_Id)
7236    is
7237       Acc_Type          : constant Entity_Id := Etype (Allocator);
7238       Loc               : Source_Ptr;
7239       Func_Call         : Node_Id := Function_Call;
7240       Ref_Func_Call     : Node_Id;
7241       Function_Id       : Entity_Id;
7242       Result_Subt       : Entity_Id;
7243       New_Allocator     : Node_Id;
7244       Return_Obj_Access : Entity_Id; -- temp for function result
7245       Temp_Init         : Node_Id; -- initial value of Return_Obj_Access
7246       Alloc_Form        : BIP_Allocation_Form;
7247       Pool              : Node_Id; -- nonnull if Alloc_Form = User_Storage_Pool
7248       Return_Obj_Actual : Node_Id; -- the temp.all, in caller-allocates case
7249       Chain             : Entity_Id; -- activation chain, in case of tasks
7250 
7251    begin
7252       --  Step past qualification or unchecked conversion (the latter can occur
7253       --  in cases of calls to 'Input).
7254 
7255       if Nkind_In (Func_Call,
7256                    N_Qualified_Expression,
7257                    N_Type_Conversion,
7258                    N_Unchecked_Type_Conversion)
7259       then
7260          Func_Call := Expression (Func_Call);
7261       end if;
7262 
7263       --  If the call has already been processed to add build-in-place actuals
7264       --  then return. This should not normally occur in an allocator context,
7265       --  but we add the protection as a defensive measure.
7266 
7267       if Is_Expanded_Build_In_Place_Call (Func_Call) then
7268          return;
7269       end if;
7270 
7271       --  Mark the call as processed as a build-in-place call
7272 
7273       Set_Is_Expanded_Build_In_Place_Call (Func_Call);
7274 
7275       Loc := Sloc (Function_Call);
7276 
7277       if Is_Entity_Name (Name (Func_Call)) then
7278          Function_Id := Entity (Name (Func_Call));
7279 
7280       elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
7281          Function_Id := Etype (Name (Func_Call));
7282 
7283       else
7284          raise Program_Error;
7285       end if;
7286 
7287       Result_Subt := Available_View (Etype (Function_Id));
7288 
7289       --  Create a temp for the function result. In the caller-allocates case,
7290       --  this will be initialized to the result of a new uninitialized
7291       --  allocator. Note: we do not use Allocator as the Related_Node of
7292       --  Return_Obj_Access in call to Make_Temporary below as this would
7293       --  create a sort of infinite "recursion".
7294 
7295       Return_Obj_Access := Make_Temporary (Loc, 'R');
7296       Set_Etype (Return_Obj_Access, Acc_Type);
7297 
7298       --  When the result subtype is constrained, the return object is
7299       --  allocated on the caller side, and access to it is passed to the
7300       --  function.
7301 
7302       --  Here and in related routines, we must examine the full view of the
7303       --  type, because the view at the point of call may differ from that
7304       --  that in the function body, and the expansion mechanism depends on
7305       --  the characteristics of the full view.
7306 
7307       if Is_Constrained (Underlying_Type (Result_Subt)) then
7308 
7309          --  Replace the initialized allocator of form "new T'(Func (...))"
7310          --  with an uninitialized allocator of form "new T", where T is the
7311          --  result subtype of the called function. The call to the function
7312          --  is handled separately further below.
7313 
7314          New_Allocator :=
7315            Make_Allocator (Loc,
7316              Expression => New_Occurrence_Of (Result_Subt, Loc));
7317          Set_No_Initialization (New_Allocator);
7318 
7319          --  Copy attributes to new allocator. Note that the new allocator
7320          --  logically comes from source if the original one did, so copy the
7321          --  relevant flag. This ensures proper treatment of the restriction
7322          --  No_Implicit_Heap_Allocations in this case.
7323 
7324          Set_Storage_Pool      (New_Allocator, Storage_Pool      (Allocator));
7325          Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
7326          Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
7327 
7328          Rewrite (Allocator, New_Allocator);
7329 
7330          --  Initial value of the temp is the result of the uninitialized
7331          --  allocator
7332 
7333          Temp_Init := Relocate_Node (Allocator);
7334 
7335          --  Indicate that caller allocates, and pass in the return object
7336 
7337          Alloc_Form := Caller_Allocation;
7338          Pool := Make_Null (No_Location);
7339          Return_Obj_Actual :=
7340            Make_Unchecked_Type_Conversion (Loc,
7341              Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
7342              Expression   =>
7343                Make_Explicit_Dereference (Loc,
7344                  Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)));
7345 
7346       --  When the result subtype is unconstrained, the function itself must
7347       --  perform the allocation of the return object, so we pass parameters
7348       --  indicating that.
7349 
7350       else
7351          Temp_Init := Empty;
7352 
7353          --  Case of a user-defined storage pool. Pass an allocation parameter
7354          --  indicating that the function should allocate its result in the
7355          --  pool, and pass the pool. Use 'Unrestricted_Access because the
7356          --  pool may not be aliased.
7357 
7358          if Present (Associated_Storage_Pool (Acc_Type)) then
7359             Alloc_Form := User_Storage_Pool;
7360             Pool :=
7361               Make_Attribute_Reference (Loc,
7362                 Prefix         =>
7363                   New_Occurrence_Of
7364                     (Associated_Storage_Pool (Acc_Type), Loc),
7365                 Attribute_Name => Name_Unrestricted_Access);
7366 
7367          --  No user-defined pool; pass an allocation parameter indicating that
7368          --  the function should allocate its result on the heap.
7369 
7370          else
7371             Alloc_Form := Global_Heap;
7372             Pool := Make_Null (No_Location);
7373          end if;
7374 
7375          --  The caller does not provide the return object in this case, so we
7376          --  have to pass null for the object access actual.
7377 
7378          Return_Obj_Actual := Empty;
7379       end if;
7380 
7381       --  Declare the temp object
7382 
7383       Insert_Action (Allocator,
7384         Make_Object_Declaration (Loc,
7385           Defining_Identifier => Return_Obj_Access,
7386           Object_Definition   => New_Occurrence_Of (Acc_Type, Loc),
7387           Expression          => Temp_Init));
7388 
7389       Ref_Func_Call := Make_Reference (Loc, Func_Call);
7390 
7391       --  Ada 2005 (AI-251): If the type of the allocator is an interface
7392       --  then generate an implicit conversion to force displacement of the
7393       --  "this" pointer.
7394 
7395       if Is_Interface (Designated_Type (Acc_Type)) then
7396          Rewrite
7397            (Ref_Func_Call,
7398             OK_Convert_To (Acc_Type, Ref_Func_Call));
7399       end if;
7400 
7401       declare
7402          Assign : constant Node_Id :=
7403            Make_Assignment_Statement (Loc,
7404              Name       => New_Occurrence_Of (Return_Obj_Access, Loc),
7405              Expression => Ref_Func_Call);
7406          --  Assign the result of the function call into the temp. In the
7407          --  caller-allocates case, this is overwriting the temp with its
7408          --  initial value, which has no effect. In the callee-allocates case,
7409          --  this is setting the temp to point to the object allocated by the
7410          --  callee.
7411 
7412          Actions : List_Id;
7413          --  Actions to be inserted. If there are no tasks, this is just the
7414          --  assignment statement. If the allocated object has tasks, we need
7415          --  to wrap the assignment in a block that activates them. The
7416          --  activation chain of that block must be passed to the function,
7417          --  rather than some outer chain.
7418       begin
7419          if Has_Task (Result_Subt) then
7420             Actions := New_List;
7421             Build_Task_Allocate_Block_With_Init_Stmts
7422               (Actions, Allocator, Init_Stmts => New_List (Assign));
7423             Chain := Activation_Chain_Entity (Last (Actions));
7424          else
7425             Actions := New_List (Assign);
7426             Chain   := Empty;
7427          end if;
7428 
7429          Insert_Actions (Allocator, Actions);
7430       end;
7431 
7432       --  When the function has a controlling result, an allocation-form
7433       --  parameter must be passed indicating that the caller is allocating
7434       --  the result object. This is needed because such a function can be
7435       --  called as a dispatching operation and must be treated similarly
7436       --  to functions with unconstrained result subtypes.
7437 
7438       Add_Unconstrained_Actuals_To_Build_In_Place_Call
7439         (Func_Call, Function_Id, Alloc_Form, Pool_Actual => Pool);
7440 
7441       Add_Finalization_Master_Actual_To_Build_In_Place_Call
7442         (Func_Call, Function_Id, Acc_Type);
7443 
7444       Add_Task_Actuals_To_Build_In_Place_Call
7445         (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type),
7446          Chain => Chain);
7447 
7448       --  Add an implicit actual to the function call that provides access
7449       --  to the allocated object. An unchecked conversion to the (specific)
7450       --  result subtype of the function is inserted to handle cases where
7451       --  the access type of the allocator has a class-wide designated type.
7452 
7453       Add_Access_Actual_To_Build_In_Place_Call
7454         (Func_Call, Function_Id, Return_Obj_Actual);
7455 
7456       --  Finally, replace the allocator node with a reference to the temp
7457 
7458       Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
7459 
7460       Analyze_And_Resolve (Allocator, Acc_Type);
7461    end Make_Build_In_Place_Call_In_Allocator;
7462 
7463    ---------------------------------------------------
7464    -- Make_Build_In_Place_Call_In_Anonymous_Context --
7465    ---------------------------------------------------
7466 
7467    procedure Make_Build_In_Place_Call_In_Anonymous_Context
7468      (Function_Call : Node_Id)
7469    is
7470       Loc             : Source_Ptr;
7471       Func_Call       : Node_Id := Function_Call;
7472       Function_Id     : Entity_Id;
7473       Result_Subt     : Entity_Id;
7474       Return_Obj_Id   : Entity_Id;
7475       Return_Obj_Decl : Entity_Id;
7476 
7477    begin
7478       --  Step past qualification, type conversion (which can occur in actual
7479       --  parameter contexts), and unchecked conversion (which can occur in
7480       --  cases of calls to 'Input).
7481 
7482       if Nkind_In (Func_Call, N_Qualified_Expression,
7483                               N_Type_Conversion,
7484                               N_Unchecked_Type_Conversion)
7485       then
7486          Func_Call := Expression (Func_Call);
7487       end if;
7488 
7489       --  If the call has already been processed to add build-in-place actuals
7490       --  then return. One place this can occur is for calls to build-in-place
7491       --  functions that occur within a call to a protected operation, where
7492       --  due to rewriting and expansion of the protected call there can be
7493       --  more than one call to Expand_Actuals for the same set of actuals.
7494 
7495       if Is_Expanded_Build_In_Place_Call (Func_Call) then
7496          return;
7497       end if;
7498 
7499       --  Mark the call as processed as a build-in-place call
7500 
7501       Set_Is_Expanded_Build_In_Place_Call (Func_Call);
7502 
7503       Loc := Sloc (Function_Call);
7504 
7505       if Is_Entity_Name (Name (Func_Call)) then
7506          Function_Id := Entity (Name (Func_Call));
7507 
7508       elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
7509          Function_Id := Etype (Name (Func_Call));
7510 
7511       else
7512          raise Program_Error;
7513       end if;
7514 
7515       Result_Subt := Etype (Function_Id);
7516 
7517       --  If the build-in-place function returns a controlled object, then the
7518       --  object needs to be finalized immediately after the context. Since
7519       --  this case produces a transient scope, the servicing finalizer needs
7520       --  to name the returned object. Create a temporary which is initialized
7521       --  with the function call:
7522       --
7523       --    Temp_Id : Func_Type := BIP_Func_Call;
7524       --
7525       --  The initialization expression of the temporary will be rewritten by
7526       --  the expander using the appropriate mechanism in Make_Build_In_Place_
7527       --  Call_In_Object_Declaration.
7528 
7529       if Needs_Finalization (Result_Subt) then
7530          declare
7531             Temp_Id   : constant Entity_Id := Make_Temporary (Loc, 'R');
7532             Temp_Decl : Node_Id;
7533 
7534          begin
7535             --  Reset the guard on the function call since the following does
7536             --  not perform actual call expansion.
7537 
7538             Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
7539 
7540             Temp_Decl :=
7541               Make_Object_Declaration (Loc,
7542                 Defining_Identifier => Temp_Id,
7543                 Object_Definition =>
7544                   New_Occurrence_Of (Result_Subt, Loc),
7545                 Expression =>
7546                   New_Copy_Tree (Function_Call));
7547 
7548             Insert_Action (Function_Call, Temp_Decl);
7549 
7550             Rewrite (Function_Call, New_Occurrence_Of (Temp_Id, Loc));
7551             Analyze (Function_Call);
7552          end;
7553 
7554       --  When the result subtype is constrained, an object of the subtype is
7555       --  declared and an access value designating it is passed as an actual.
7556 
7557       elsif Is_Constrained (Underlying_Type (Result_Subt)) then
7558 
7559          --  Create a temporary object to hold the function result
7560 
7561          Return_Obj_Id := Make_Temporary (Loc, 'R');
7562          Set_Etype (Return_Obj_Id, Result_Subt);
7563 
7564          Return_Obj_Decl :=
7565            Make_Object_Declaration (Loc,
7566              Defining_Identifier => Return_Obj_Id,
7567              Aliased_Present     => True,
7568              Object_Definition   => New_Occurrence_Of (Result_Subt, Loc));
7569 
7570          Set_No_Initialization (Return_Obj_Decl);
7571 
7572          Insert_Action (Func_Call, Return_Obj_Decl);
7573 
7574          --  When the function has a controlling result, an allocation-form
7575          --  parameter must be passed indicating that the caller is allocating
7576          --  the result object. This is needed because such a function can be
7577          --  called as a dispatching operation and must be treated similarly
7578          --  to functions with unconstrained result subtypes.
7579 
7580          Add_Unconstrained_Actuals_To_Build_In_Place_Call
7581            (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
7582 
7583          Add_Finalization_Master_Actual_To_Build_In_Place_Call
7584            (Func_Call, Function_Id);
7585 
7586          Add_Task_Actuals_To_Build_In_Place_Call
7587            (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
7588 
7589          --  Add an implicit actual to the function call that provides access
7590          --  to the caller's return object.
7591 
7592          Add_Access_Actual_To_Build_In_Place_Call
7593            (Func_Call, Function_Id, New_Occurrence_Of (Return_Obj_Id, Loc));
7594 
7595       --  When the result subtype is unconstrained, the function must allocate
7596       --  the return object in the secondary stack, so appropriate implicit
7597       --  parameters are added to the call to indicate that. A transient
7598       --  scope is established to ensure eventual cleanup of the result.
7599 
7600       else
7601          --  Pass an allocation parameter indicating that the function should
7602          --  allocate its result on the secondary stack.
7603 
7604          Add_Unconstrained_Actuals_To_Build_In_Place_Call
7605            (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
7606 
7607          Add_Finalization_Master_Actual_To_Build_In_Place_Call
7608            (Func_Call, Function_Id);
7609 
7610          Add_Task_Actuals_To_Build_In_Place_Call
7611            (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
7612 
7613          --  Pass a null value to the function since no return object is
7614          --  available on the caller side.
7615 
7616          Add_Access_Actual_To_Build_In_Place_Call
7617            (Func_Call, Function_Id, Empty);
7618       end if;
7619    end Make_Build_In_Place_Call_In_Anonymous_Context;
7620 
7621    --------------------------------------------
7622    -- Make_Build_In_Place_Call_In_Assignment --
7623    --------------------------------------------
7624 
7625    procedure Make_Build_In_Place_Call_In_Assignment
7626      (Assign        : Node_Id;
7627       Function_Call : Node_Id)
7628    is
7629       Lhs          : constant Node_Id := Name (Assign);
7630       Func_Call    : Node_Id := Function_Call;
7631       Func_Id      : Entity_Id;
7632       Loc          : Source_Ptr;
7633       Obj_Decl     : Node_Id;
7634       Obj_Id       : Entity_Id;
7635       Ptr_Typ      : Entity_Id;
7636       Ptr_Typ_Decl : Node_Id;
7637       New_Expr     : Node_Id;
7638       Result_Subt  : Entity_Id;
7639       Target       : Node_Id;
7640 
7641    begin
7642       --  Step past qualification or unchecked conversion (the latter can occur
7643       --  in cases of calls to 'Input).
7644 
7645       if Nkind_In (Func_Call, N_Qualified_Expression,
7646                               N_Unchecked_Type_Conversion)
7647       then
7648          Func_Call := Expression (Func_Call);
7649       end if;
7650 
7651       --  If the call has already been processed to add build-in-place actuals
7652       --  then return. This should not normally occur in an assignment context,
7653       --  but we add the protection as a defensive measure.
7654 
7655       if Is_Expanded_Build_In_Place_Call (Func_Call) then
7656          return;
7657       end if;
7658 
7659       --  Mark the call as processed as a build-in-place call
7660 
7661       Set_Is_Expanded_Build_In_Place_Call (Func_Call);
7662 
7663       Loc := Sloc (Function_Call);
7664 
7665       if Is_Entity_Name (Name (Func_Call)) then
7666          Func_Id := Entity (Name (Func_Call));
7667 
7668       elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
7669          Func_Id := Etype (Name (Func_Call));
7670 
7671       else
7672          raise Program_Error;
7673       end if;
7674 
7675       Result_Subt := Etype (Func_Id);
7676 
7677       --  When the result subtype is unconstrained, an additional actual must
7678       --  be passed to indicate that the caller is providing the return object.
7679       --  This parameter must also be passed when the called function has a
7680       --  controlling result, because dispatching calls to the function needs
7681       --  to be treated effectively the same as calls to class-wide functions.
7682 
7683       Add_Unconstrained_Actuals_To_Build_In_Place_Call
7684         (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
7685 
7686       Add_Finalization_Master_Actual_To_Build_In_Place_Call
7687         (Func_Call, Func_Id);
7688 
7689       Add_Task_Actuals_To_Build_In_Place_Call
7690         (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
7691 
7692       --  Add an implicit actual to the function call that provides access to
7693       --  the caller's return object.
7694 
7695       Add_Access_Actual_To_Build_In_Place_Call
7696         (Func_Call,
7697          Func_Id,
7698          Make_Unchecked_Type_Conversion (Loc,
7699            Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
7700            Expression   => Relocate_Node (Lhs)));
7701 
7702       --  Create an access type designating the function's result subtype
7703 
7704       Ptr_Typ := Make_Temporary (Loc, 'A');
7705 
7706       Ptr_Typ_Decl :=
7707         Make_Full_Type_Declaration (Loc,
7708           Defining_Identifier => Ptr_Typ,
7709           Type_Definition     =>
7710             Make_Access_To_Object_Definition (Loc,
7711               All_Present        => True,
7712               Subtype_Indication =>
7713                 New_Occurrence_Of (Result_Subt, Loc)));
7714       Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
7715 
7716       --  Finally, create an access object initialized to a reference to the
7717       --  function call. We know this access value is non-null, so mark the
7718       --  entity accordingly to suppress junk access checks.
7719 
7720       New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
7721 
7722       Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
7723       Set_Etype (Obj_Id, Ptr_Typ);
7724       Set_Is_Known_Non_Null (Obj_Id);
7725 
7726       Obj_Decl :=
7727         Make_Object_Declaration (Loc,
7728           Defining_Identifier => Obj_Id,
7729           Object_Definition   => New_Occurrence_Of (Ptr_Typ, Loc),
7730           Expression          => New_Expr);
7731       Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
7732 
7733       Rewrite (Assign, Make_Null_Statement (Loc));
7734 
7735       --  Retrieve the target of the assignment
7736 
7737       if Nkind (Lhs) = N_Selected_Component then
7738          Target := Selector_Name (Lhs);
7739       elsif Nkind (Lhs) = N_Type_Conversion then
7740          Target := Expression (Lhs);
7741       else
7742          Target := Lhs;
7743       end if;
7744 
7745       --  If we are assigning to a return object or this is an expression of
7746       --  an extension aggregate, the target should either be an identifier
7747       --  or a simple expression. All other cases imply a different scenario.
7748 
7749       if Nkind (Target) in N_Has_Entity then
7750          Target := Entity (Target);
7751       else
7752          return;
7753       end if;
7754    end Make_Build_In_Place_Call_In_Assignment;
7755 
7756    ----------------------------------------------------
7757    -- Make_Build_In_Place_Call_In_Object_Declaration --
7758    ----------------------------------------------------
7759 
7760    procedure Make_Build_In_Place_Call_In_Object_Declaration
7761      (Obj_Decl      : Node_Id;
7762       Function_Call : Node_Id)
7763    is
7764       Obj_Def_Id : constant Entity_Id  := Defining_Identifier (Obj_Decl);
7765       Encl_Func  : constant Entity_Id  := Enclosing_Subprogram (Obj_Def_Id);
7766       Loc        : constant Source_Ptr := Sloc (Function_Call);
7767       Obj_Loc    : constant Source_Ptr := Sloc (Obj_Decl);
7768 
7769       Call_Deref      : Node_Id;
7770       Caller_Object   : Node_Id;
7771       Def_Id          : Entity_Id;
7772       Fmaster_Actual  : Node_Id := Empty;
7773       Func_Call       : Node_Id := Function_Call;
7774       Function_Id     : Entity_Id;
7775       Pool_Actual     : Node_Id;
7776       Ptr_Typ         : Entity_Id;
7777       Ptr_Typ_Decl    : Node_Id;
7778       Pass_Caller_Acc : Boolean := False;
7779       Res_Decl        : Node_Id;
7780       Result_Subt     : Entity_Id;
7781 
7782       Definite : Boolean;
7783       --  True if result subtype is definite, or has a size that does not
7784       --  require secondary stack usage (i.e. no variant part or components
7785       --  whose type depends on discriminants). In particular, untagged types
7786       --  with only access discriminants do not require secondary stack use.
7787       --  Note that if the return type is tagged we must always use the sec.
7788       --  stack because the call may dispatch on result.
7789 
7790    begin
7791       --  Step past qualification or unchecked conversion (the latter can occur
7792       --  in cases of calls to 'Input).
7793 
7794       if Nkind_In (Func_Call, N_Qualified_Expression,
7795                               N_Unchecked_Type_Conversion)
7796       then
7797          Func_Call := Expression (Func_Call);
7798       end if;
7799 
7800       --  If the call has already been processed to add build-in-place actuals
7801       --  then return. This should not normally occur in an object declaration,
7802       --  but we add the protection as a defensive measure.
7803 
7804       if Is_Expanded_Build_In_Place_Call (Func_Call) then
7805          return;
7806       end if;
7807 
7808       --  Mark the call as processed as a build-in-place call
7809 
7810       Set_Is_Expanded_Build_In_Place_Call (Func_Call);
7811 
7812       if Is_Entity_Name (Name (Func_Call)) then
7813          Function_Id := Entity (Name (Func_Call));
7814 
7815       elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
7816          Function_Id := Etype (Name (Func_Call));
7817 
7818       else
7819          raise Program_Error;
7820       end if;
7821 
7822       Result_Subt := Etype (Function_Id);
7823       Definite :=
7824         (Is_Definite_Subtype (Underlying_Type (Result_Subt))
7825              and then not Is_Tagged_Type (Result_Subt))
7826           or else not Requires_Transient_Scope (Underlying_Type (Result_Subt));
7827 
7828       --  Create an access type designating the function's result subtype. We
7829       --  use the type of the original call because it may be a call to an
7830       --  inherited operation, which the expansion has replaced with the parent
7831       --  operation that yields the parent type. Note that this access type
7832       --  must be declared before we establish a transient scope, so that it
7833       --  receives the proper accessibility level.
7834 
7835       Ptr_Typ := Make_Temporary (Loc, 'A');
7836       Ptr_Typ_Decl :=
7837         Make_Full_Type_Declaration (Loc,
7838           Defining_Identifier => Ptr_Typ,
7839           Type_Definition     =>
7840             Make_Access_To_Object_Definition (Loc,
7841               All_Present        => True,
7842               Subtype_Indication =>
7843                 New_Occurrence_Of (Etype (Function_Call), Loc)));
7844 
7845       --  The access type and its accompanying object must be inserted after
7846       --  the object declaration in the constrained case, so that the function
7847       --  call can be passed access to the object. In the indefinite case,
7848       --  or if the object declaration is for a return object, the access type
7849       --  and object must be inserted before the object, since the object
7850       --  declaration is rewritten to be a renaming of a dereference of the
7851       --  access object. Note: we need to freeze Ptr_Typ explicitly, because
7852       --  the result object is in a different (transient) scope, so won't
7853       --  cause freezing.
7854 
7855       if Definite
7856         and then not Is_Return_Object (Defining_Identifier (Obj_Decl))
7857       then
7858          Insert_After_And_Analyze (Obj_Decl, Ptr_Typ_Decl);
7859       else
7860          Insert_Action (Obj_Decl, Ptr_Typ_Decl);
7861       end if;
7862 
7863       --  Force immediate freezing of Ptr_Typ because Res_Decl will be
7864       --  elaborated in an inner (transient) scope and thus won't cause
7865       --  freezing by itself.
7866 
7867       declare
7868          Ptr_Typ_Freeze_Ref : constant Node_Id :=
7869                                 New_Occurrence_Of (Ptr_Typ, Loc);
7870       begin
7871          Set_Parent (Ptr_Typ_Freeze_Ref, Ptr_Typ_Decl);
7872          Freeze_Expression (Ptr_Typ_Freeze_Ref);
7873       end;
7874 
7875       --  If the object is a return object of an enclosing build-in-place
7876       --  function, then the implicit build-in-place parameters of the
7877       --  enclosing function are simply passed along to the called function.
7878       --  (Unfortunately, this won't cover the case of extension aggregates
7879       --  where the ancestor part is a build-in-place indefinite function
7880       --  call that should be passed along the caller's parameters. Currently
7881       --  those get mishandled by reassigning the result of the call to the
7882       --  aggregate return object, when the call result should really be
7883       --  directly built in place in the aggregate and not in a temporary. ???)
7884 
7885       if Is_Return_Object (Defining_Identifier (Obj_Decl)) then
7886          Pass_Caller_Acc := True;
7887 
7888          --  When the enclosing function has a BIP_Alloc_Form formal then we
7889          --  pass it along to the callee (such as when the enclosing function
7890          --  has an unconstrained or tagged result type).
7891 
7892          if Needs_BIP_Alloc_Form (Encl_Func) then
7893             if RTE_Available (RE_Root_Storage_Pool_Ptr) then
7894                Pool_Actual :=
7895                  New_Occurrence_Of
7896                    (Build_In_Place_Formal (Encl_Func, BIP_Storage_Pool), Loc);
7897 
7898             --  The build-in-place pool formal is not built on e.g. ZFP
7899 
7900             else
7901                Pool_Actual := Empty;
7902             end if;
7903 
7904             Add_Unconstrained_Actuals_To_Build_In_Place_Call
7905               (Function_Call  => Func_Call,
7906                Function_Id    => Function_Id,
7907                Alloc_Form_Exp =>
7908                  New_Occurrence_Of
7909                    (Build_In_Place_Formal (Encl_Func, BIP_Alloc_Form), Loc),
7910                Pool_Actual    => Pool_Actual);
7911 
7912          --  Otherwise, if enclosing function has a definite result subtype,
7913          --  then caller allocation will be used.
7914 
7915          else
7916             Add_Unconstrained_Actuals_To_Build_In_Place_Call
7917               (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
7918          end if;
7919 
7920          if Needs_BIP_Finalization_Master (Encl_Func) then
7921             Fmaster_Actual :=
7922               New_Occurrence_Of
7923                 (Build_In_Place_Formal
7924                    (Encl_Func, BIP_Finalization_Master), Loc);
7925          end if;
7926 
7927          --  Retrieve the BIPacc formal from the enclosing function and convert
7928          --  it to the access type of the callee's BIP_Object_Access formal.
7929 
7930          Caller_Object :=
7931            Make_Unchecked_Type_Conversion (Loc,
7932              Subtype_Mark =>
7933                New_Occurrence_Of
7934                  (Etype
7935                     (Build_In_Place_Formal (Function_Id, BIP_Object_Access)),
7936                   Loc),
7937              Expression   =>
7938                New_Occurrence_Of
7939                  (Build_In_Place_Formal (Encl_Func, BIP_Object_Access),
7940                   Loc));
7941 
7942       --  In the definite case, add an implicit actual to the function call
7943       --  that provides access to the declared object. An unchecked conversion
7944       --  to the (specific) result type of the function is inserted to handle
7945       --  the case where the object is declared with a class-wide type.
7946 
7947       elsif Definite then
7948          Caller_Object :=
7949             Make_Unchecked_Type_Conversion (Loc,
7950               Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
7951               Expression   => New_Occurrence_Of (Obj_Def_Id, Loc));
7952 
7953          --  When the function has a controlling result, an allocation-form
7954          --  parameter must be passed indicating that the caller is allocating
7955          --  the result object. This is needed because such a function can be
7956          --  called as a dispatching operation and must be treated similarly
7957          --  to functions with indefinite result subtypes.
7958 
7959          Add_Unconstrained_Actuals_To_Build_In_Place_Call
7960            (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
7961 
7962       --  The allocation for indefinite library-level objects occurs on the
7963       --  heap as opposed to the secondary stack. This accommodates DLLs where
7964       --  the secondary stack is destroyed after each library unload. This is
7965       --  a hybrid mechanism where a stack-allocated object lives on the heap.
7966 
7967       elsif Is_Library_Level_Entity (Defining_Identifier (Obj_Decl))
7968         and then not Restriction_Active (No_Implicit_Heap_Allocations)
7969       then
7970          Add_Unconstrained_Actuals_To_Build_In_Place_Call
7971            (Func_Call, Function_Id, Alloc_Form => Global_Heap);
7972          Caller_Object := Empty;
7973 
7974          --  Create a finalization master for the access result type to ensure
7975          --  that the heap allocation can properly chain the object and later
7976          --  finalize it when the library unit goes out of scope.
7977 
7978          if Needs_Finalization (Etype (Func_Call)) then
7979             Build_Finalization_Master
7980               (Typ            => Ptr_Typ,
7981                For_Lib_Level  => True,
7982                Insertion_Node => Ptr_Typ_Decl);
7983 
7984             Fmaster_Actual :=
7985               Make_Attribute_Reference (Loc,
7986                 Prefix         =>
7987                   New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
7988                 Attribute_Name => Name_Unrestricted_Access);
7989          end if;
7990 
7991       --  In other indefinite cases, pass an indication to do the allocation
7992       --  on the secondary stack and set Caller_Object to Empty so that a null
7993       --  value will be passed for the caller's object address. A transient
7994       --  scope is established to ensure eventual cleanup of the result.
7995 
7996       else
7997          Add_Unconstrained_Actuals_To_Build_In_Place_Call
7998            (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
7999          Caller_Object := Empty;
8000 
8001          Establish_Transient_Scope (Obj_Decl, Sec_Stack => True);
8002       end if;
8003 
8004       --  Pass along any finalization master actual, which is needed in the
8005       --  case where the called function initializes a return object of an
8006       --  enclosing build-in-place function.
8007 
8008       Add_Finalization_Master_Actual_To_Build_In_Place_Call
8009         (Func_Call  => Func_Call,
8010          Func_Id    => Function_Id,
8011          Master_Exp => Fmaster_Actual);
8012 
8013       if Nkind (Parent (Obj_Decl)) = N_Extended_Return_Statement
8014         and then Has_Task (Result_Subt)
8015       then
8016          --  Here we're passing along the master that was passed in to this
8017          --  function.
8018 
8019          Add_Task_Actuals_To_Build_In_Place_Call
8020            (Func_Call, Function_Id,
8021             Master_Actual =>
8022               New_Occurrence_Of
8023                 (Build_In_Place_Formal (Encl_Func, BIP_Task_Master), Loc));
8024 
8025       else
8026          Add_Task_Actuals_To_Build_In_Place_Call
8027            (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8028       end if;
8029 
8030       Add_Access_Actual_To_Build_In_Place_Call
8031         (Func_Call, Function_Id, Caller_Object, Is_Access => Pass_Caller_Acc);
8032 
8033       --  Finally, create an access object initialized to a reference to the
8034       --  function call. We know this access value cannot be null, so mark the
8035       --  entity accordingly to suppress the access check.
8036 
8037       Def_Id := Make_Temporary (Loc, 'R', Func_Call);
8038       Set_Etype (Def_Id, Ptr_Typ);
8039       Set_Is_Known_Non_Null (Def_Id);
8040 
8041       Res_Decl :=
8042         Make_Object_Declaration (Loc,
8043           Defining_Identifier => Def_Id,
8044           Constant_Present    => True,
8045           Object_Definition   => New_Occurrence_Of (Ptr_Typ, Loc),
8046           Expression          =>
8047             Make_Reference (Loc, Relocate_Node (Func_Call)));
8048 
8049       Insert_After_And_Analyze (Ptr_Typ_Decl, Res_Decl);
8050 
8051       --  If the result subtype of the called function is definite and is not
8052       --  itself the return expression of an enclosing BIP function, then mark
8053       --  the object as having no initialization.
8054 
8055       if Definite
8056         and then not Is_Return_Object (Defining_Identifier (Obj_Decl))
8057       then
8058          --  The related object declaration is encased in a transient block
8059          --  because the build-in-place function call contains at least one
8060          --  nested function call that produces a controlled transient
8061          --  temporary:
8062 
8063          --    Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
8064 
8065          --  Since the build-in-place expansion decouples the call from the
8066          --  object declaration, the finalization machinery lacks the context
8067          --  which prompted the generation of the transient block. To resolve
8068          --  this scenario, store the build-in-place call.
8069 
8070          if Scope_Is_Transient and then Node_To_Be_Wrapped = Obj_Decl then
8071             Set_BIP_Initialization_Call (Obj_Def_Id, Res_Decl);
8072          end if;
8073 
8074          Set_Expression (Obj_Decl, Empty);
8075          Set_No_Initialization (Obj_Decl);
8076 
8077       --  In case of an indefinite result subtype, or if the call is the
8078       --  return expression of an enclosing BIP function, rewrite the object
8079       --  declaration as an object renaming where the renamed object is a
8080       --  dereference of <function_Call>'reference:
8081       --
8082       --      Obj : Subt renames <function_call>'Ref.all;
8083 
8084       else
8085          Call_Deref :=
8086            Make_Explicit_Dereference (Obj_Loc,
8087              Prefix => New_Occurrence_Of (Def_Id, Obj_Loc));
8088 
8089          Rewrite (Obj_Decl,
8090            Make_Object_Renaming_Declaration (Obj_Loc,
8091              Defining_Identifier => Make_Temporary (Obj_Loc, 'D'),
8092              Subtype_Mark        => New_Occurrence_Of (Result_Subt, Obj_Loc),
8093              Name                => Call_Deref));
8094 
8095          Set_Renamed_Object (Defining_Identifier (Obj_Decl), Call_Deref);
8096 
8097          --  If the original entity comes from source, then mark the new
8098          --  entity as needing debug information, even though it's defined
8099          --  by a generated renaming that does not come from source, so that
8100          --  the Materialize_Entity flag will be set on the entity when
8101          --  Debug_Renaming_Declaration is called during analysis.
8102 
8103          if Comes_From_Source (Obj_Def_Id) then
8104             Set_Debug_Info_Needed (Defining_Identifier (Obj_Decl));
8105          end if;
8106 
8107          Analyze (Obj_Decl);
8108 
8109          --  Replace the internal identifier of the renaming declaration's
8110          --  entity with identifier of the original object entity. We also have
8111          --  to exchange the entities containing their defining identifiers to
8112          --  ensure the correct replacement of the object declaration by the
8113          --  object renaming declaration to avoid homograph conflicts (since
8114          --  the object declaration's defining identifier was already entered
8115          --  in current scope). The Next_Entity links of the two entities also
8116          --  have to be swapped since the entities are part of the return
8117          --  scope's entity list and the list structure would otherwise be
8118          --  corrupted. Finally, the homonym chain must be preserved as well.
8119 
8120          declare
8121             Ren_Id  : constant Entity_Id := Defining_Entity (Obj_Decl);
8122             Next_Id : constant Entity_Id := Next_Entity (Ren_Id);
8123 
8124          begin
8125             Set_Chars (Ren_Id, Chars (Obj_Def_Id));
8126 
8127             --  Swap next entity links in preparation for exchanging entities
8128 
8129             Set_Next_Entity (Ren_Id, Next_Entity (Obj_Def_Id));
8130             Set_Next_Entity (Obj_Def_Id, Next_Id);
8131             Set_Homonym     (Ren_Id, Homonym (Obj_Def_Id));
8132 
8133             Exchange_Entities (Ren_Id, Obj_Def_Id);
8134 
8135             --  Preserve source indication of original declaration, so that
8136             --  xref information is properly generated for the right entity.
8137 
8138             Preserve_Comes_From_Source (Obj_Decl, Original_Node (Obj_Decl));
8139             Preserve_Comes_From_Source (Obj_Def_Id, Original_Node (Obj_Decl));
8140 
8141             Set_Comes_From_Source (Ren_Id, False);
8142          end;
8143       end if;
8144 
8145       --  If the object entity has a class-wide Etype, then we need to change
8146       --  it to the result subtype of the function call, because otherwise the
8147       --  object will be class-wide without an explicit initialization and
8148       --  won't be allocated properly by the back end. It seems unclean to make
8149       --  such a revision to the type at this point, and we should try to
8150       --  improve this treatment when build-in-place functions with class-wide
8151       --  results are implemented. ???
8152 
8153       if Is_Class_Wide_Type (Etype (Defining_Identifier (Obj_Decl))) then
8154          Set_Etype (Defining_Identifier (Obj_Decl), Result_Subt);
8155       end if;
8156    end Make_Build_In_Place_Call_In_Object_Declaration;
8157 
8158    --------------------------------------------
8159    -- Make_CPP_Constructor_Call_In_Allocator --
8160    --------------------------------------------
8161 
8162    procedure Make_CPP_Constructor_Call_In_Allocator
8163      (Allocator     : Node_Id;
8164       Function_Call : Node_Id)
8165    is
8166       Loc         : constant Source_Ptr := Sloc (Function_Call);
8167       Acc_Type    : constant Entity_Id := Etype (Allocator);
8168       Function_Id : constant Entity_Id := Entity (Name (Function_Call));
8169       Result_Subt : constant Entity_Id := Available_View (Etype (Function_Id));
8170 
8171       New_Allocator     : Node_Id;
8172       Return_Obj_Access : Entity_Id;
8173       Tmp_Obj           : Node_Id;
8174 
8175    begin
8176       pragma Assert (Nkind (Allocator) = N_Allocator
8177                       and then Nkind (Function_Call) = N_Function_Call);
8178       pragma Assert (Convention (Function_Id) = Convention_CPP
8179                       and then Is_Constructor (Function_Id));
8180       pragma Assert (Is_Constrained (Underlying_Type (Result_Subt)));
8181 
8182       --  Replace the initialized allocator of form "new T'(Func (...))" with
8183       --  an uninitialized allocator of form "new T", where T is the result
8184       --  subtype of the called function. The call to the function is handled
8185       --  separately further below.
8186 
8187       New_Allocator :=
8188         Make_Allocator (Loc,
8189           Expression => New_Occurrence_Of (Result_Subt, Loc));
8190       Set_No_Initialization (New_Allocator);
8191 
8192       --  Copy attributes to new allocator. Note that the new allocator
8193       --  logically comes from source if the original one did, so copy the
8194       --  relevant flag. This ensures proper treatment of the restriction
8195       --  No_Implicit_Heap_Allocations in this case.
8196 
8197       Set_Storage_Pool      (New_Allocator, Storage_Pool      (Allocator));
8198       Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
8199       Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
8200 
8201       Rewrite (Allocator, New_Allocator);
8202 
8203       --  Create a new access object and initialize it to the result of the
8204       --  new uninitialized allocator. Note: we do not use Allocator as the
8205       --  Related_Node of Return_Obj_Access in call to Make_Temporary below
8206       --  as this would create a sort of infinite "recursion".
8207 
8208       Return_Obj_Access := Make_Temporary (Loc, 'R');
8209       Set_Etype (Return_Obj_Access, Acc_Type);
8210 
8211       --  Generate:
8212       --    Rnnn : constant ptr_T := new (T);
8213       --    Init (Rnn.all,...);
8214 
8215       Tmp_Obj :=
8216         Make_Object_Declaration (Loc,
8217           Defining_Identifier => Return_Obj_Access,
8218           Constant_Present    => True,
8219           Object_Definition   => New_Occurrence_Of (Acc_Type, Loc),
8220           Expression          => Relocate_Node (Allocator));
8221       Insert_Action (Allocator, Tmp_Obj);
8222 
8223       Insert_List_After_And_Analyze (Tmp_Obj,
8224         Build_Initialization_Call (Loc,
8225           Id_Ref =>
8226             Make_Explicit_Dereference (Loc,
8227               Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)),
8228           Typ => Etype (Function_Id),
8229           Constructor_Ref => Function_Call));
8230 
8231       --  Finally, replace the allocator node with a reference to the result of
8232       --  the function call itself (which will effectively be an access to the
8233       --  object created by the allocator).
8234 
8235       Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
8236 
8237       --  Ada 2005 (AI-251): If the type of the allocator is an interface then
8238       --  generate an implicit conversion to force displacement of the "this"
8239       --  pointer.
8240 
8241       if Is_Interface (Designated_Type (Acc_Type)) then
8242          Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
8243       end if;
8244 
8245       Analyze_And_Resolve (Allocator, Acc_Type);
8246    end Make_CPP_Constructor_Call_In_Allocator;
8247 
8248    -----------------------------------
8249    -- Needs_BIP_Finalization_Master --
8250    -----------------------------------
8251 
8252    function Needs_BIP_Finalization_Master
8253      (Func_Id : Entity_Id) return Boolean
8254    is
8255       pragma Assert (Is_Build_In_Place_Function (Func_Id));
8256       Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
8257    begin
8258       return
8259         not Restriction_Active (No_Finalization)
8260           and then Needs_Finalization (Func_Typ);
8261    end Needs_BIP_Finalization_Master;
8262 
8263    --------------------------
8264    -- Needs_BIP_Alloc_Form --
8265    --------------------------
8266 
8267    function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
8268       pragma Assert (Is_Build_In_Place_Function (Func_Id));
8269       Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
8270    begin
8271       return not Is_Constrained (Func_Typ) or else Is_Tagged_Type (Func_Typ);
8272    end Needs_BIP_Alloc_Form;
8273 
8274    --------------------------------------
8275    -- Needs_Result_Accessibility_Level --
8276    --------------------------------------
8277 
8278    function Needs_Result_Accessibility_Level
8279      (Func_Id : Entity_Id) return Boolean
8280    is
8281       Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
8282 
8283       function Has_Unconstrained_Access_Discriminant_Component
8284         (Comp_Typ : Entity_Id) return Boolean;
8285       --  Returns True if any component of the type has an unconstrained access
8286       --  discriminant.
8287 
8288       -----------------------------------------------------
8289       -- Has_Unconstrained_Access_Discriminant_Component --
8290       -----------------------------------------------------
8291 
8292       function Has_Unconstrained_Access_Discriminant_Component
8293         (Comp_Typ :  Entity_Id) return Boolean
8294       is
8295       begin
8296          if not Is_Limited_Type (Comp_Typ) then
8297             return False;
8298 
8299             --  Only limited types can have access discriminants with
8300             --  defaults.
8301 
8302          elsif Has_Unconstrained_Access_Discriminants (Comp_Typ) then
8303             return True;
8304 
8305          elsif Is_Array_Type (Comp_Typ) then
8306             return Has_Unconstrained_Access_Discriminant_Component
8307                      (Underlying_Type (Component_Type (Comp_Typ)));
8308 
8309          elsif Is_Record_Type (Comp_Typ) then
8310             declare
8311                Comp : Entity_Id;
8312 
8313             begin
8314                Comp := First_Component (Comp_Typ);
8315                while Present (Comp) loop
8316                   if Has_Unconstrained_Access_Discriminant_Component
8317                        (Underlying_Type (Etype (Comp)))
8318                   then
8319                      return True;
8320                   end if;
8321 
8322                   Next_Component (Comp);
8323                end loop;
8324             end;
8325          end if;
8326 
8327          return False;
8328       end Has_Unconstrained_Access_Discriminant_Component;
8329 
8330       Feature_Disabled : constant Boolean := True;
8331       --  Temporary
8332 
8333    --  Start of processing for Needs_Result_Accessibility_Level
8334 
8335    begin
8336       --  False if completion unavailable (how does this happen???)
8337 
8338       if not Present (Func_Typ) then
8339          return False;
8340 
8341       elsif Feature_Disabled then
8342          return False;
8343 
8344       --  False if not a function, also handle enum-lit renames case
8345 
8346       elsif Func_Typ = Standard_Void_Type
8347         or else Is_Scalar_Type (Func_Typ)
8348       then
8349          return False;
8350 
8351       --  Handle a corner case, a cross-dialect subp renaming. For example,
8352       --  an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
8353       --  an Ada 2005 (or earlier) unit references predefined run-time units.
8354 
8355       elsif Present (Alias (Func_Id)) then
8356 
8357          --  Unimplemented: a cross-dialect subp renaming which does not set
8358          --  the Alias attribute (e.g., a rename of a dereference of an access
8359          --  to subprogram value). ???
8360 
8361          return Present (Extra_Accessibility_Of_Result (Alias (Func_Id)));
8362 
8363       --  Remaining cases require Ada 2012 mode
8364 
8365       elsif Ada_Version < Ada_2012 then
8366          return False;
8367 
8368       elsif Ekind (Func_Typ) = E_Anonymous_Access_Type
8369         or else Is_Tagged_Type (Func_Typ)
8370       then
8371          --  In the case of, say, a null tagged record result type, the need
8372          --  for this extra parameter might not be obvious. This function
8373          --  returns True for all tagged types for compatibility reasons.
8374          --  A function with, say, a tagged null controlling result type might
8375          --  be overridden by a primitive of an extension having an access
8376          --  discriminant and the overrider and overridden must have compatible
8377          --  calling conventions (including implicitly declared parameters).
8378          --  Similarly, values of one access-to-subprogram type might designate
8379          --  both a primitive subprogram of a given type and a function
8380          --  which is, for example, not a primitive subprogram of any type.
8381          --  Again, this requires calling convention compatibility.
8382          --  It might be possible to solve these issues by introducing
8383          --  wrappers, but that is not the approach that was chosen.
8384 
8385          return True;
8386 
8387       elsif Has_Unconstrained_Access_Discriminants (Func_Typ) then
8388          return True;
8389 
8390       elsif Has_Unconstrained_Access_Discriminant_Component (Func_Typ) then
8391          return True;
8392 
8393       --  False for all other cases
8394 
8395       else
8396          return False;
8397       end if;
8398    end Needs_Result_Accessibility_Level;
8399 
8400    ---------------------------------
8401    -- Rewrite_Function_Call_For_C --
8402    ---------------------------------
8403 
8404    procedure Rewrite_Function_Call_For_C (N : Node_Id) is
8405       Orig_Func   : constant Entity_Id  := Entity (Name (N));
8406       Func_Id     : constant Entity_Id  := Ultimate_Alias (Orig_Func);
8407       Par         : constant Node_Id    := Parent (N);
8408       Proc_Id     : constant Entity_Id  := Corresponding_Procedure (Func_Id);
8409       Loc         : constant Source_Ptr := Sloc (Par);
8410       Actuals     : List_Id;
8411       Last_Actual : Node_Id;
8412       Last_Formal : Entity_Id;
8413 
8414    --  Start of processing for Rewrite_Function_Call_For_C
8415 
8416    begin
8417       --  The actuals may be given by named associations, so the added actual
8418       --  that is the target of the return value of the call must be a named
8419       --  association as well, so we retrieve the name of the generated
8420       --  out_formal.
8421 
8422       Last_Formal := First_Formal (Proc_Id);
8423       while Present (Next_Formal (Last_Formal)) loop
8424          Last_Formal := Next_Formal (Last_Formal);
8425       end loop;
8426 
8427       Actuals := Parameter_Associations (N);
8428 
8429       --  The original function may lack parameters
8430 
8431       if No (Actuals) then
8432          Actuals := New_List;
8433       end if;
8434 
8435       --  If the function call is the expression of an assignment statement,
8436       --  transform the assignment into a procedure call. Generate:
8437 
8438       --    LHS := Func_Call (...);
8439 
8440       --    Proc_Call (..., LHS);
8441 
8442       --  If function is inherited, a conversion may be necessary.
8443 
8444       if Nkind (Par) = N_Assignment_Statement then
8445          Last_Actual :=  Name (Par);
8446 
8447          if not Comes_From_Source (Orig_Func)
8448            and then Etype (Orig_Func) /= Etype (Func_Id)
8449          then
8450             Last_Actual :=
8451               Make_Type_Conversion (Loc,
8452                 New_Occurrence_Of (Etype (Func_Id), Loc),
8453                 Last_Actual);
8454          end if;
8455 
8456          Append_To (Actuals,
8457            Make_Parameter_Association (Loc,
8458              Selector_Name             =>
8459                Make_Identifier (Loc, Chars (Last_Formal)),
8460              Explicit_Actual_Parameter => Last_Actual));
8461 
8462          Rewrite (Par,
8463            Make_Procedure_Call_Statement (Loc,
8464              Name                   => New_Occurrence_Of (Proc_Id, Loc),
8465              Parameter_Associations => Actuals));
8466          Analyze (Par);
8467 
8468       --  Otherwise the context is an expression. Generate a temporary and a
8469       --  procedure call to obtain the function result. Generate:
8470 
8471       --    ... Func_Call (...) ...
8472 
8473       --    Temp : ...;
8474       --    Proc_Call (..., Temp);
8475       --    ... Temp ...
8476 
8477       else
8478          declare
8479             Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
8480             Call    : Node_Id;
8481             Decl    : Node_Id;
8482 
8483          begin
8484             --  Generate:
8485             --    Temp : ...;
8486 
8487             Decl :=
8488               Make_Object_Declaration (Loc,
8489                 Defining_Identifier => Temp_Id,
8490                 Object_Definition   =>
8491                   New_Occurrence_Of (Etype (Func_Id), Loc));
8492 
8493             --  Generate:
8494             --    Proc_Call (..., Temp);
8495 
8496             Append_To (Actuals,
8497               Make_Parameter_Association (Loc,
8498                 Selector_Name             =>
8499                   Make_Identifier (Loc, Chars (Last_Formal)),
8500                 Explicit_Actual_Parameter =>
8501                   New_Occurrence_Of (Temp_Id, Loc)));
8502 
8503             Call :=
8504               Make_Procedure_Call_Statement (Loc,
8505                 Name                   => New_Occurrence_Of (Proc_Id, Loc),
8506                 Parameter_Associations => Actuals);
8507 
8508             Insert_Actions (Par, New_List (Decl, Call));
8509             Rewrite (N, New_Occurrence_Of (Temp_Id, Loc));
8510          end;
8511       end if;
8512    end Rewrite_Function_Call_For_C;
8513 
8514    ------------------------------------
8515    -- Set_Enclosing_Sec_Stack_Return --
8516    ------------------------------------
8517 
8518    procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id) is
8519       P : Node_Id := N;
8520 
8521    begin
8522       --  Due to a possible mix of internally generated blocks, source blocks
8523       --  and loops, the scope stack may not be contiguous as all labels are
8524       --  inserted at the top level within the related function. Instead,
8525       --  perform a parent-based traversal and mark all appropriate constructs.
8526 
8527       while Present (P) loop
8528 
8529          --  Mark the label of a source or internally generated block or
8530          --  loop.
8531 
8532          if Nkind_In (P, N_Block_Statement, N_Loop_Statement) then
8533             Set_Sec_Stack_Needed_For_Return (Entity (Identifier (P)));
8534 
8535          --  Mark the enclosing function
8536 
8537          elsif Nkind (P) = N_Subprogram_Body then
8538             if Present (Corresponding_Spec (P)) then
8539                Set_Sec_Stack_Needed_For_Return (Corresponding_Spec (P));
8540             else
8541                Set_Sec_Stack_Needed_For_Return (Defining_Entity (P));
8542             end if;
8543 
8544             --  Do not go beyond the enclosing function
8545 
8546             exit;
8547          end if;
8548 
8549          P := Parent (P);
8550       end loop;
8551    end Set_Enclosing_Sec_Stack_Return;
8552 
8553 end Exp_Ch6;