File : exp_pakd.adb


   1 ------------------------------------------------------------------------------
   2 --                                                                          --
   3 --                         GNAT COMPILER COMPONENTS                         --
   4 --                                                                          --
   5 --                             E X P _ P A K D                              --
   6 --                                                                          --
   7 --                                 B o d y                                  --
   8 --                                                                          --
   9 --          Copyright (C) 1992-2016, Free Software Foundation, Inc.         --
  10 --                                                                          --
  11 -- GNAT is free software;  you can  redistribute it  and/or modify it under --
  12 -- terms of the  GNU General Public License as published  by the Free Soft- --
  13 -- ware  Foundation;  either version 3,  or (at your option) any later ver- --
  14 -- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
  15 -- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
  16 -- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
  17 -- for  more details.  You should have  received  a copy of the GNU General --
  18 -- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
  19 -- http://www.gnu.org/licenses for a complete copy of the license.          --
  20 --                                                                          --
  21 -- GNAT was originally developed  by the GNAT team at  New York University. --
  22 -- Extensive contributions were provided by Ada Core Technologies Inc.      --
  23 --                                                                          --
  24 ------------------------------------------------------------------------------
  25 
  26 with Atree;    use Atree;
  27 with Checks;   use Checks;
  28 with Einfo;    use Einfo;
  29 with Errout;   use Errout;
  30 with Exp_Dbug; use Exp_Dbug;
  31 with Exp_Util; use Exp_Util;
  32 with Layout;   use Layout;
  33 with Lib.Xref; use Lib.Xref;
  34 with Namet;    use Namet;
  35 with Nlists;   use Nlists;
  36 with Nmake;    use Nmake;
  37 with Opt;      use Opt;
  38 with Sem;      use Sem;
  39 with Sem_Aux;  use Sem_Aux;
  40 with Sem_Ch3;  use Sem_Ch3;
  41 with Sem_Ch8;  use Sem_Ch8;
  42 with Sem_Ch13; use Sem_Ch13;
  43 with Sem_Eval; use Sem_Eval;
  44 with Sem_Res;  use Sem_Res;
  45 with Sem_Util; use Sem_Util;
  46 with Sinfo;    use Sinfo;
  47 with Snames;   use Snames;
  48 with Stand;    use Stand;
  49 with Targparm; use Targparm;
  50 with Tbuild;   use Tbuild;
  51 with Ttypes;   use Ttypes;
  52 with Uintp;    use Uintp;
  53 
  54 package body Exp_Pakd is
  55 
  56    ---------------------------
  57    -- Endian Considerations --
  58    ---------------------------
  59 
  60    --  As described in the specification, bit numbering in a packed array
  61    --  is consistent with bit numbering in a record representation clause,
  62    --  and hence dependent on the endianness of the machine:
  63 
  64    --    For little-endian machines, element zero is at the right hand end
  65    --    (low order end) of a bit field.
  66 
  67    --    For big-endian machines, element zero is at the left hand end
  68    --    (high order end) of a bit field.
  69 
  70    --  The shifts that are used to right justify a field therefore differ in
  71    --  the two cases. For the little-endian case, we can simply use the bit
  72    --  number (i.e. the element number * element size) as the count for a right
  73    --  shift. For the big-endian case, we have to subtract the shift count from
  74    --  an appropriate constant to use in the right shift. We use rotates
  75    --  instead of shifts (which is necessary in the store case to preserve
  76    --  other fields), and we expect that the backend will be able to change the
  77    --  right rotate into a left rotate, avoiding the subtract, if the machine
  78    --  architecture provides such an instruction.
  79 
  80    -----------------------
  81    -- Local Subprograms --
  82    -----------------------
  83 
  84    procedure Compute_Linear_Subscript
  85      (Atyp   : Entity_Id;
  86       N      : Node_Id;
  87       Subscr : out Node_Id);
  88    --  Given a constrained array type Atyp, and an indexed component node N
  89    --  referencing an array object of this type, build an expression of type
  90    --  Standard.Integer representing the zero-based linear subscript value.
  91    --  This expression includes any required range checks.
  92 
  93    function Compute_Number_Components
  94       (N   : Node_Id;
  95        Typ : Entity_Id) return Node_Id;
  96    --  Build an expression that multiplies the length of the dimensions of the
  97    --  array, used to control array equality checks.
  98 
  99    procedure Convert_To_PAT_Type (Aexp : Node_Id);
 100    --  Given an expression of a packed array type, builds a corresponding
 101    --  expression whose type is the implementation type used to represent
 102    --  the packed array. Aexp is analyzed and resolved on entry and on exit.
 103 
 104    procedure Get_Base_And_Bit_Offset
 105      (N      : Node_Id;
 106       Base   : out Node_Id;
 107       Offset : out Node_Id);
 108    --  Given a node N for a name which involves a packed array reference,
 109    --  return the base object of the reference and build an expression of
 110    --  type Standard.Integer representing the zero-based offset in bits
 111    --  from Base'Address to the first bit of the reference.
 112 
 113    function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean;
 114    --  There are two versions of the Set routines, the ones used when the
 115    --  object is known to be sufficiently well aligned given the number of
 116    --  bits, and the ones used when the object is not known to be aligned.
 117    --  This routine is used to determine which set to use. Obj is a reference
 118    --  to the object, and Csiz is the component size of the packed array.
 119    --  True is returned if the alignment of object is known to be sufficient,
 120    --  defined as 1 for odd bit sizes, 4 for bit sizes divisible by 4, and
 121    --  2 otherwise.
 122 
 123    function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id;
 124    --  Build a left shift node, checking for the case of a shift count of zero
 125 
 126    function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id;
 127    --  Build a right shift node, checking for the case of a shift count of zero
 128 
 129    function RJ_Unchecked_Convert_To
 130      (Typ  : Entity_Id;
 131       Expr : Node_Id) return Node_Id;
 132    --  The packed array code does unchecked conversions which in some cases
 133    --  may involve non-discrete types with differing sizes. The semantics of
 134    --  such conversions is potentially endianness dependent, and the effect
 135    --  we want here for such a conversion is to do the conversion in size as
 136    --  though numeric items are involved, and we extend or truncate on the
 137    --  left side. This happens naturally in the little-endian case, but in
 138    --  the big endian case we can get left justification, when what we want
 139    --  is right justification. This routine does the unchecked conversion in
 140    --  a stepwise manner to ensure that it gives the expected result. Hence
 141    --  the name (RJ = Right justified). The parameters Typ and Expr are as
 142    --  for the case of a normal Unchecked_Convert_To call.
 143 
 144    procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id);
 145    --  This routine is called in the Get and Set case for arrays that are
 146    --  packed but not bit-packed, meaning that they have at least one
 147    --  subscript that is of an enumeration type with a non-standard
 148    --  representation. This routine modifies the given node to properly
 149    --  reference the corresponding packed array type.
 150 
 151    procedure Setup_Inline_Packed_Array_Reference
 152      (N      : Node_Id;
 153       Atyp   : Entity_Id;
 154       Obj    : in out Node_Id;
 155       Cmask  : out Uint;
 156       Shift  : out Node_Id);
 157    --  This procedure performs common processing on the N_Indexed_Component
 158    --  parameter given as N, whose prefix is a reference to a packed array.
 159    --  This is used for the get and set when the component size is 1, 2, 4,
 160    --  or for other component sizes when the packed array type is a modular
 161    --  type (i.e. the cases that are handled with inline code).
 162    --
 163    --  On entry:
 164    --
 165    --    N is the N_Indexed_Component node for the packed array reference
 166    --
 167    --    Atyp is the constrained array type (the actual subtype has been
 168    --    computed if necessary to obtain the constraints, but this is still
 169    --    the original array type, not the Packed_Array_Impl_Type value).
 170    --
 171    --    Obj is the object which is to be indexed. It is always of type Atyp.
 172    --
 173    --  On return:
 174    --
 175    --    Obj is the object containing the desired bit field. It is of type
 176    --    Unsigned, Long_Unsigned, or Long_Long_Unsigned, and is either the
 177    --    entire value, for the small static case, or the proper selected byte
 178    --    from the array in the large or dynamic case. This node is analyzed
 179    --    and resolved on return.
 180    --
 181    --    Shift is a node representing the shift count to be used in the
 182    --    rotate right instruction that positions the field for access.
 183    --    This node is analyzed and resolved on return.
 184    --
 185    --    Cmask is a mask corresponding to the width of the component field.
 186    --    Its value is 2 ** Csize - 1 (e.g. 2#1111# for component size of 4).
 187    --
 188    --  Note: in some cases the call to this routine may generate actions
 189    --  (for handling multi-use references and the generation of the packed
 190    --  array type on the fly). Such actions are inserted into the tree
 191    --  directly using Insert_Action.
 192 
 193    function Revert_Storage_Order (N : Node_Id) return Node_Id;
 194    --  Perform appropriate justification and byte ordering adjustments for N,
 195    --  an element of a packed array type, when both the component type and
 196    --  the enclosing packed array type have reverse scalar storage order.
 197    --  On little-endian targets, the value is left justified before byte
 198    --  swapping. The Etype of the returned expression is an integer type of
 199    --  an appropriate power-of-2 size.
 200 
 201    --------------------------
 202    -- Revert_Storage_Order --
 203    --------------------------
 204 
 205    function Revert_Storage_Order (N : Node_Id) return Node_Id is
 206       Loc     : constant Source_Ptr := Sloc (N);
 207       T       : constant Entity_Id := Etype (N);
 208       T_Size  : constant Uint := RM_Size (T);
 209 
 210       Swap_RE : RE_Id;
 211       Swap_F  : Entity_Id;
 212       Swap_T  : Entity_Id;
 213       --  Swapping function
 214 
 215       Arg      : Node_Id;
 216       Adjusted : Node_Id;
 217       Shift    : Uint;
 218 
 219    begin
 220       if T_Size <= 8 then
 221 
 222          --  Array component size is less than a byte: no swapping needed
 223 
 224          Swap_F := Empty;
 225          Swap_T := RTE (RE_Unsigned_8);
 226 
 227       else
 228          --  Select byte swapping function depending on array component size
 229 
 230          if T_Size <= 16 then
 231             Swap_RE := RE_Bswap_16;
 232 
 233          elsif T_Size <= 32 then
 234             Swap_RE := RE_Bswap_32;
 235 
 236          else pragma Assert (T_Size <= 64);
 237             Swap_RE := RE_Bswap_64;
 238          end if;
 239 
 240          Swap_F := RTE (Swap_RE);
 241          Swap_T := Etype (Swap_F);
 242 
 243       end if;
 244 
 245       Shift := Esize (Swap_T) - T_Size;
 246 
 247       Arg := RJ_Unchecked_Convert_To (Swap_T, N);
 248 
 249       if not Bytes_Big_Endian and then Shift > Uint_0 then
 250          Arg :=
 251            Make_Op_Shift_Left (Loc,
 252              Left_Opnd  => Arg,
 253              Right_Opnd => Make_Integer_Literal (Loc, Shift));
 254       end if;
 255 
 256       if Present (Swap_F) then
 257          Adjusted :=
 258            Make_Function_Call (Loc,
 259              Name                   => New_Occurrence_Of (Swap_F, Loc),
 260              Parameter_Associations => New_List (Arg));
 261       else
 262          Adjusted := Arg;
 263       end if;
 264 
 265       Set_Etype (Adjusted, Swap_T);
 266       return Adjusted;
 267    end Revert_Storage_Order;
 268 
 269    ------------------------------
 270    -- Compute_Linear_Subscript --
 271    ------------------------------
 272 
 273    procedure Compute_Linear_Subscript
 274      (Atyp   : Entity_Id;
 275       N      : Node_Id;
 276       Subscr : out Node_Id)
 277    is
 278       Loc    : constant Source_Ptr := Sloc (N);
 279       Oldsub : Node_Id;
 280       Newsub : Node_Id;
 281       Indx   : Node_Id;
 282       Styp   : Entity_Id;
 283 
 284    begin
 285       Subscr := Empty;
 286 
 287       --  Loop through dimensions
 288 
 289       Indx   := First_Index (Atyp);
 290       Oldsub := First (Expressions (N));
 291 
 292       while Present (Indx) loop
 293          Styp := Etype (Indx);
 294          Newsub := Relocate_Node (Oldsub);
 295 
 296          --  Get expression for the subscript value. First, if Do_Range_Check
 297          --  is set on a subscript, then we must do a range check against the
 298          --  original bounds (not the bounds of the packed array type). We do
 299          --  this by introducing a subtype conversion.
 300 
 301          if Do_Range_Check (Newsub)
 302            and then Etype (Newsub) /= Styp
 303          then
 304             Newsub := Convert_To (Styp, Newsub);
 305          end if;
 306 
 307          --  Now evolve the expression for the subscript. First convert
 308          --  the subscript to be zero based and of an integer type.
 309 
 310          --  Case of integer type, where we just subtract to get lower bound
 311 
 312          if Is_Integer_Type (Styp) then
 313 
 314             --  If length of integer type is smaller than standard integer,
 315             --  then we convert to integer first, then do the subtract
 316 
 317             --  Integer (subscript) - Integer (Styp'First)
 318 
 319             if Esize (Styp) < Esize (Standard_Integer) then
 320                Newsub :=
 321                  Make_Op_Subtract (Loc,
 322                    Left_Opnd => Convert_To (Standard_Integer, Newsub),
 323                  Right_Opnd =>
 324                    Convert_To (Standard_Integer,
 325                      Make_Attribute_Reference (Loc,
 326                        Prefix         => New_Occurrence_Of (Styp, Loc),
 327                        Attribute_Name => Name_First)));
 328 
 329             --  For larger integer types, subtract first, then convert to
 330             --  integer, this deals with strange long long integer bounds.
 331 
 332             --    Integer (subscript - Styp'First)
 333 
 334             else
 335                Newsub :=
 336                  Convert_To (Standard_Integer,
 337                    Make_Op_Subtract (Loc,
 338                      Left_Opnd => Newsub,
 339                    Right_Opnd =>
 340                      Make_Attribute_Reference (Loc,
 341                        Prefix         => New_Occurrence_Of (Styp, Loc),
 342                        Attribute_Name => Name_First)));
 343             end if;
 344 
 345          --  For the enumeration case, we have to use 'Pos to get the value
 346          --  to work with before subtracting the lower bound.
 347 
 348          --    Integer (Styp'Pos (subscr)) - Integer (Styp'Pos (Styp'First));
 349 
 350          --  This is not quite right for bizarre cases where the size of the
 351          --  enumeration type is > Integer'Size bits due to rep clause ???
 352 
 353          else
 354             pragma Assert (Is_Enumeration_Type (Styp));
 355 
 356             Newsub :=
 357               Make_Op_Subtract (Loc,
 358                 Left_Opnd => Convert_To (Standard_Integer,
 359                   Make_Attribute_Reference (Loc,
 360                     Prefix         => New_Occurrence_Of (Styp, Loc),
 361                     Attribute_Name => Name_Pos,
 362                     Expressions    => New_List (Newsub))),
 363 
 364                 Right_Opnd =>
 365                   Convert_To (Standard_Integer,
 366                     Make_Attribute_Reference (Loc,
 367                       Prefix         => New_Occurrence_Of (Styp, Loc),
 368                       Attribute_Name => Name_Pos,
 369                       Expressions    => New_List (
 370                         Make_Attribute_Reference (Loc,
 371                           Prefix         => New_Occurrence_Of (Styp, Loc),
 372                           Attribute_Name => Name_First)))));
 373          end if;
 374 
 375          Set_Paren_Count (Newsub, 1);
 376 
 377          --  For the first subscript, we just copy that subscript value
 378 
 379          if No (Subscr) then
 380             Subscr := Newsub;
 381 
 382          --  Otherwise, we must multiply what we already have by the current
 383          --  stride and then add in the new value to the evolving subscript.
 384 
 385          else
 386             Subscr :=
 387               Make_Op_Add (Loc,
 388                 Left_Opnd =>
 389                   Make_Op_Multiply (Loc,
 390                     Left_Opnd  => Subscr,
 391                     Right_Opnd =>
 392                       Make_Attribute_Reference (Loc,
 393                         Attribute_Name => Name_Range_Length,
 394                         Prefix         => New_Occurrence_Of (Styp, Loc))),
 395                 Right_Opnd => Newsub);
 396          end if;
 397 
 398          --  Move to next subscript
 399 
 400          Next_Index (Indx);
 401          Next (Oldsub);
 402       end loop;
 403    end Compute_Linear_Subscript;
 404 
 405    -------------------------------
 406    -- Compute_Number_Components --
 407    -------------------------------
 408 
 409    function Compute_Number_Components
 410       (N   : Node_Id;
 411        Typ : Entity_Id) return Node_Id
 412    is
 413       Loc      : constant Source_Ptr := Sloc (N);
 414       Len_Expr : Node_Id;
 415 
 416    begin
 417       Len_Expr :=
 418         Make_Attribute_Reference (Loc,
 419           Attribute_Name => Name_Length,
 420           Prefix         => New_Occurrence_Of (Typ, Loc),
 421           Expressions    => New_List (Make_Integer_Literal (Loc, 1)));
 422 
 423       for J in 2 .. Number_Dimensions (Typ) loop
 424          Len_Expr :=
 425            Make_Op_Multiply (Loc,
 426              Left_Opnd  => Len_Expr,
 427              Right_Opnd =>
 428                Make_Attribute_Reference (Loc,
 429                 Attribute_Name => Name_Length,
 430                 Prefix         => New_Occurrence_Of (Typ, Loc),
 431                 Expressions    => New_List (Make_Integer_Literal (Loc, J))));
 432       end loop;
 433 
 434       return Len_Expr;
 435    end Compute_Number_Components;
 436 
 437    -------------------------
 438    -- Convert_To_PAT_Type --
 439    -------------------------
 440 
 441    --  The PAT is always obtained from the actual subtype
 442 
 443    procedure Convert_To_PAT_Type (Aexp : Node_Id) is
 444       Act_ST : Entity_Id;
 445 
 446    begin
 447       Convert_To_Actual_Subtype (Aexp);
 448       Act_ST := Underlying_Type (Etype (Aexp));
 449       Create_Packed_Array_Impl_Type (Act_ST);
 450 
 451       --  Just replace the etype with the packed array type. This works because
 452       --  the expression will not be further analyzed, and Gigi considers the
 453       --  two types equivalent in any case.
 454 
 455       --  This is not strictly the case ??? If the reference is an actual in
 456       --  call, the expansion of the prefix is delayed, and must be reanalyzed,
 457       --  see Reset_Packed_Prefix. On the other hand, if the prefix is a simple
 458       --  array reference, reanalysis can produce spurious type errors when the
 459       --  PAT type is replaced again with the original type of the array. Same
 460       --  for the case of a dereference. Ditto for function calls: expansion
 461       --  may introduce additional actuals which will trigger errors if call is
 462       --  reanalyzed. The following is correct and minimal, but the handling of
 463       --  more complex packed expressions in actuals is confused. Probably the
 464       --  problem only remains for actuals in calls.
 465 
 466       Set_Etype (Aexp, Packed_Array_Impl_Type (Act_ST));
 467 
 468       if Is_Entity_Name (Aexp)
 469         or else
 470            (Nkind (Aexp) = N_Indexed_Component
 471              and then Is_Entity_Name (Prefix (Aexp)))
 472         or else Nkind_In (Aexp, N_Explicit_Dereference, N_Function_Call)
 473       then
 474          Set_Analyzed (Aexp);
 475       end if;
 476    end Convert_To_PAT_Type;
 477 
 478    -----------------------------------
 479    -- Create_Packed_Array_Impl_Type --
 480    -----------------------------------
 481 
 482    procedure Create_Packed_Array_Impl_Type (Typ : Entity_Id) is
 483       Loc      : constant Source_Ptr := Sloc (Typ);
 484       Ctyp     : constant Entity_Id  := Component_Type (Typ);
 485       Csize    : constant Uint       := Component_Size (Typ);
 486 
 487       Ancest   : Entity_Id;
 488       PB_Type  : Entity_Id;
 489       PASize   : Uint;
 490       Decl     : Node_Id;
 491       PAT      : Entity_Id;
 492       Len_Expr : Node_Id;
 493       Len_Bits : Uint;
 494       Bits_U1  : Node_Id;
 495       PAT_High : Node_Id;
 496       Btyp     : Entity_Id;
 497       Lit      : Node_Id;
 498 
 499       procedure Install_PAT;
 500       --  This procedure is called with Decl set to the declaration for the
 501       --  packed array type. It creates the type and installs it as required.
 502 
 503       procedure Set_PB_Type;
 504       --  Sets PB_Type to Packed_Bytes{1,2,4} as required by the alignment
 505       --  requirements (see documentation in the spec of this package).
 506 
 507       -----------------
 508       -- Install_PAT --
 509       -----------------
 510 
 511       procedure Install_PAT is
 512          Pushed_Scope : Boolean := False;
 513 
 514       begin
 515          --  We do not want to put the declaration we have created in the tree
 516          --  since it is often hard, and sometimes impossible to find a proper
 517          --  place for it (the impossible case arises for a packed array type
 518          --  with bounds depending on the discriminant, a declaration cannot
 519          --  be put inside the record, and the reference to the discriminant
 520          --  cannot be outside the record).
 521 
 522          --  The solution is to analyze the declaration while temporarily
 523          --  attached to the tree at an appropriate point, and then we install
 524          --  the resulting type as an Itype in the packed array type field of
 525          --  the original type, so that no explicit declaration is required.
 526 
 527          --  Note: the packed type is created in the scope of its parent type.
 528          --  There are at least some cases where the current scope is deeper,
 529          --  and so when this is the case, we temporarily reset the scope
 530          --  for the definition. This is clearly safe, since the first use
 531          --  of the packed array type will be the implicit reference from
 532          --  the corresponding unpacked type when it is elaborated.
 533 
 534          if Is_Itype (Typ) then
 535             Set_Parent (Decl, Associated_Node_For_Itype (Typ));
 536          else
 537             Set_Parent (Decl, Declaration_Node (Typ));
 538          end if;
 539 
 540          if Scope (Typ) /= Current_Scope then
 541             Push_Scope (Scope (Typ));
 542             Pushed_Scope := True;
 543          end if;
 544 
 545          Set_Is_Itype (PAT, True);
 546          Set_Is_Packed_Array_Impl_Type (PAT, True);
 547          Set_Packed_Array_Impl_Type (Typ, PAT);
 548          Analyze (Decl, Suppress => All_Checks);
 549 
 550          if Pushed_Scope then
 551             Pop_Scope;
 552          end if;
 553 
 554          --  Set Esize and RM_Size to the actual size of the packed object
 555          --  Do not reset RM_Size if already set, as happens in the case of
 556          --  a modular type.
 557 
 558          if Unknown_Esize (PAT) then
 559             Set_Esize (PAT, PASize);
 560          end if;
 561 
 562          if Unknown_RM_Size (PAT) then
 563             Set_RM_Size (PAT, PASize);
 564          end if;
 565 
 566          Adjust_Esize_Alignment (PAT);
 567 
 568          --  Set remaining fields of packed array type
 569 
 570          Init_Alignment                (PAT);
 571          Set_Parent                    (PAT, Empty);
 572          Set_Associated_Node_For_Itype (PAT, Typ);
 573          Set_Original_Array_Type       (PAT, Typ);
 574 
 575          --  Propagate representation aspects
 576 
 577          Set_Is_Atomic               (PAT, Is_Atomic                (Typ));
 578          Set_Is_Independent          (PAT, Is_Independent           (Typ));
 579          Set_Is_Volatile             (PAT, Is_Volatile              (Typ));
 580          Set_Is_Volatile_Full_Access (PAT, Is_Volatile_Full_Access  (Typ));
 581          Set_Treat_As_Volatile       (PAT, Treat_As_Volatile        (Typ));
 582 
 583          --  For a non-bit-packed array, propagate reverse storage order
 584          --  flag from original base type to packed array base type.
 585 
 586          if not Is_Bit_Packed_Array (Typ) then
 587             Set_Reverse_Storage_Order
 588               (Etype (PAT), Reverse_Storage_Order (Base_Type (Typ)));
 589          end if;
 590 
 591          --  We definitely do not want to delay freezing for packed array
 592          --  types. This is of particular importance for the itypes that are
 593          --  generated for record components depending on discriminants where
 594          --  there is no place to put the freeze node.
 595 
 596          Set_Has_Delayed_Freeze (PAT, False);
 597          Set_Has_Delayed_Freeze (Etype (PAT), False);
 598 
 599          --  If we did allocate a freeze node, then clear out the reference
 600          --  since it is obsolete (should we delete the freeze node???)
 601 
 602          Set_Freeze_Node (PAT, Empty);
 603          Set_Freeze_Node (Etype (PAT), Empty);
 604       end Install_PAT;
 605 
 606       -----------------
 607       -- Set_PB_Type --
 608       -----------------
 609 
 610       procedure Set_PB_Type is
 611       begin
 612          --  If the user has specified an explicit alignment for the
 613          --  type or component, take it into account.
 614 
 615          if Csize <= 2 or else Csize = 4 or else Csize mod 2 /= 0
 616            or else Alignment (Typ) = 1
 617            or else Component_Alignment (Typ) = Calign_Storage_Unit
 618          then
 619             PB_Type := RTE (RE_Packed_Bytes1);
 620 
 621          elsif Csize mod 4 /= 0
 622            or else Alignment (Typ) = 2
 623          then
 624             PB_Type := RTE (RE_Packed_Bytes2);
 625 
 626          else
 627             PB_Type := RTE (RE_Packed_Bytes4);
 628          end if;
 629       end Set_PB_Type;
 630 
 631    --  Start of processing for Create_Packed_Array_Impl_Type
 632 
 633    begin
 634       --  If we already have a packed array type, nothing to do
 635 
 636       if Present (Packed_Array_Impl_Type (Typ)) then
 637          return;
 638       end if;
 639 
 640       --  If our immediate ancestor subtype is constrained, and it already
 641       --  has a packed array type, then just share the same type, since the
 642       --  bounds must be the same. If the ancestor is not an array type but
 643       --  a private type, as can happen with multiple instantiations, create
 644       --  a new packed type, to avoid privacy issues.
 645 
 646       if Ekind (Typ) = E_Array_Subtype then
 647          Ancest := Ancestor_Subtype (Typ);
 648 
 649          if Present (Ancest)
 650            and then Is_Array_Type (Ancest)
 651            and then Is_Constrained (Ancest)
 652            and then Present (Packed_Array_Impl_Type (Ancest))
 653          then
 654             Set_Packed_Array_Impl_Type (Typ, Packed_Array_Impl_Type (Ancest));
 655             return;
 656          end if;
 657       end if;
 658 
 659       --  We preset the result type size from the size of the original array
 660       --  type, since this size clearly belongs to the packed array type. The
 661       --  size of the conceptual unpacked type is always set to unknown.
 662 
 663       PASize := RM_Size (Typ);
 664 
 665       --  Case of an array where at least one index is of an enumeration
 666       --  type with a non-standard representation, but the component size
 667       --  is not appropriate for bit packing. This is the case where we
 668       --  have Is_Packed set (we would never be in this unit otherwise),
 669       --  but Is_Bit_Packed_Array is false.
 670 
 671       --  Note that if the component size is appropriate for bit packing,
 672       --  then the circuit for the computation of the subscript properly
 673       --  deals with the non-standard enumeration type case by taking the
 674       --  Pos anyway.
 675 
 676       if not Is_Bit_Packed_Array (Typ) then
 677 
 678          --  Here we build a declaration:
 679 
 680          --    type tttP is array (index1, index2, ...) of component_type
 681 
 682          --  where index1, index2, are the index types. These are the same
 683          --  as the index types of the original array, except for the non-
 684          --  standard representation enumeration type case, where we have
 685          --  two subcases.
 686 
 687          --  For the unconstrained array case, we use
 688 
 689          --    Natural range <>
 690 
 691          --  For the constrained case, we use
 692 
 693          --    Natural range Enum_Type'Pos (Enum_Type'First) ..
 694          --                  Enum_Type'Pos (Enum_Type'Last);
 695 
 696          --  Note that tttP is created even if no index subtype is a non
 697          --  standard enumeration, because we still need to remove padding
 698          --  normally inserted for component alignment.
 699 
 700          PAT :=
 701            Make_Defining_Identifier (Loc,
 702              Chars => New_External_Name (Chars (Typ), 'P'));
 703 
 704          declare
 705             Indexes   : constant List_Id := New_List;
 706             Indx      : Node_Id;
 707             Indx_Typ  : Entity_Id;
 708             Enum_Case : Boolean;
 709             Typedef   : Node_Id;
 710 
 711          begin
 712             Indx := First_Index (Typ);
 713 
 714             while Present (Indx) loop
 715                Indx_Typ := Etype (Indx);
 716 
 717                Enum_Case := Is_Enumeration_Type (Indx_Typ)
 718                               and then Has_Non_Standard_Rep (Indx_Typ);
 719 
 720                --  Unconstrained case
 721 
 722                if not Is_Constrained (Typ) then
 723                   if Enum_Case then
 724                      Indx_Typ := Standard_Natural;
 725                   end if;
 726 
 727                   Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
 728 
 729                --  Constrained case
 730 
 731                else
 732                   if not Enum_Case then
 733                      Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
 734 
 735                   else
 736                      Append_To (Indexes,
 737                        Make_Subtype_Indication (Loc,
 738                          Subtype_Mark =>
 739                            New_Occurrence_Of (Standard_Natural, Loc),
 740                          Constraint =>
 741                            Make_Range_Constraint (Loc,
 742                              Range_Expression =>
 743                                Make_Range (Loc,
 744                                  Low_Bound =>
 745                                    Make_Attribute_Reference (Loc,
 746                                      Prefix         =>
 747                                        New_Occurrence_Of (Indx_Typ, Loc),
 748                                      Attribute_Name => Name_Pos,
 749                                      Expressions    => New_List (
 750                                        Make_Attribute_Reference (Loc,
 751                                          Prefix         =>
 752                                            New_Occurrence_Of (Indx_Typ, Loc),
 753                                          Attribute_Name => Name_First))),
 754 
 755                                  High_Bound =>
 756                                    Make_Attribute_Reference (Loc,
 757                                      Prefix         =>
 758                                        New_Occurrence_Of (Indx_Typ, Loc),
 759                                      Attribute_Name => Name_Pos,
 760                                      Expressions    => New_List (
 761                                        Make_Attribute_Reference (Loc,
 762                                          Prefix         =>
 763                                            New_Occurrence_Of (Indx_Typ, Loc),
 764                                          Attribute_Name => Name_Last)))))));
 765 
 766                   end if;
 767                end if;
 768 
 769                Next_Index (Indx);
 770             end loop;
 771 
 772             if not Is_Constrained (Typ) then
 773                Typedef :=
 774                  Make_Unconstrained_Array_Definition (Loc,
 775                    Subtype_Marks => Indexes,
 776                    Component_Definition =>
 777                      Make_Component_Definition (Loc,
 778                        Aliased_Present    => False,
 779                        Subtype_Indication =>
 780                           New_Occurrence_Of (Ctyp, Loc)));
 781 
 782             else
 783                Typedef :=
 784                   Make_Constrained_Array_Definition (Loc,
 785                     Discrete_Subtype_Definitions => Indexes,
 786                     Component_Definition =>
 787                       Make_Component_Definition (Loc,
 788                         Aliased_Present    => False,
 789                         Subtype_Indication =>
 790                           New_Occurrence_Of (Ctyp, Loc)));
 791             end if;
 792 
 793             Decl :=
 794               Make_Full_Type_Declaration (Loc,
 795                 Defining_Identifier => PAT,
 796                 Type_Definition     => Typedef);
 797          end;
 798 
 799          Install_PAT;
 800          return;
 801 
 802       --  Case of bit-packing required for unconstrained array. We create
 803       --  a subtype that is equivalent to use Packed_Bytes{1,2,4} as needed.
 804 
 805       elsif not Is_Constrained (Typ) then
 806 
 807          --  When generating standard DWARF (i.e when GNAT_Encodings is
 808          --  DWARF_GNAT_Encodings_Minimal), the ___XP suffix will be stripped
 809          --  by the back-end but generate it anyway to ease compiler debugging.
 810          --  This will help to distinguish implementation types from original
 811          --  packed arrays.
 812 
 813          PAT :=
 814            Make_Defining_Identifier (Loc,
 815              Chars => Make_Packed_Array_Impl_Type_Name (Typ, Csize));
 816 
 817          Set_PB_Type;
 818 
 819          Decl :=
 820            Make_Subtype_Declaration (Loc,
 821              Defining_Identifier => PAT,
 822                Subtype_Indication => New_Occurrence_Of (PB_Type, Loc));
 823 
 824          Install_PAT;
 825          return;
 826 
 827       --  Remaining code is for the case of bit-packing for constrained array
 828 
 829       --  The name of the packed array subtype is
 830 
 831       --    ttt___XPsss
 832 
 833       --  where sss is the component size in bits and ttt is the name of
 834       --  the parent packed type.
 835 
 836       else
 837          PAT :=
 838            Make_Defining_Identifier (Loc,
 839              Chars => Make_Packed_Array_Impl_Type_Name (Typ, Csize));
 840 
 841          --  Build an expression for the length of the array in bits.
 842          --  This is the product of the length of each of the dimensions
 843 
 844          Len_Expr := Compute_Number_Components (Typ, Typ);
 845 
 846          --  Temporarily attach the length expression to the tree and analyze
 847          --  and resolve it, so that we can test its value. We assume that the
 848          --  total length fits in type Integer. This expression may involve
 849          --  discriminants, so we treat it as a default/per-object expression.
 850 
 851          Set_Parent (Len_Expr, Typ);
 852          Preanalyze_Spec_Expression (Len_Expr, Standard_Long_Long_Integer);
 853 
 854          --  Use a modular type if possible. We can do this if we have
 855          --  static bounds, and the length is small enough, and the length
 856          --  is not zero. We exclude the zero length case because the size
 857          --  of things is always at least one, and the zero length object
 858          --  would have an anomalous size.
 859 
 860          if Compile_Time_Known_Value (Len_Expr) then
 861             Len_Bits := Expr_Value (Len_Expr) * Csize;
 862 
 863             --  Check for size known to be too large
 864 
 865             if Len_Bits >
 866               Uint_2 ** (Standard_Integer_Size - 1) * System_Storage_Unit
 867             then
 868                if System_Storage_Unit = 8 then
 869                   Error_Msg_N
 870                     ("packed array size cannot exceed " &
 871                      "Integer''Last bytes", Typ);
 872                else
 873                   Error_Msg_N
 874                     ("packed array size cannot exceed " &
 875                      "Integer''Last storage units", Typ);
 876                end if;
 877 
 878                --  Reset length to arbitrary not too high value to continue
 879 
 880                Len_Expr := Make_Integer_Literal (Loc, 65535);
 881                Analyze_And_Resolve (Len_Expr, Standard_Long_Long_Integer);
 882             end if;
 883 
 884             --  We normally consider small enough to mean no larger than the
 885             --  value of System_Max_Binary_Modulus_Power, checking that in the
 886             --  case of values longer than word size, we have long shifts.
 887 
 888             if Len_Bits > 0
 889               and then
 890                 (Len_Bits <= System_Word_Size
 891                    or else (Len_Bits <= System_Max_Binary_Modulus_Power
 892                               and then Support_Long_Shifts_On_Target))
 893             then
 894                --  We can use the modular type, it has the form:
 895 
 896                --    subtype tttPn is btyp
 897                --      range 0 .. 2 ** ((Typ'Length (1)
 898                --                * ... * Typ'Length (n)) * Csize) - 1;
 899 
 900                --  The bounds are statically known, and btyp is one of the
 901                --  unsigned types, depending on the length.
 902 
 903                if Len_Bits <= Standard_Short_Short_Integer_Size then
 904                   Btyp := RTE (RE_Short_Short_Unsigned);
 905 
 906                elsif Len_Bits <= Standard_Short_Integer_Size then
 907                   Btyp := RTE (RE_Short_Unsigned);
 908 
 909                elsif Len_Bits <= Standard_Integer_Size then
 910                   Btyp := RTE (RE_Unsigned);
 911 
 912                elsif Len_Bits <= Standard_Long_Integer_Size then
 913                   Btyp := RTE (RE_Long_Unsigned);
 914 
 915                else
 916                   Btyp := RTE (RE_Long_Long_Unsigned);
 917                end if;
 918 
 919                Lit := Make_Integer_Literal (Loc, 2 ** Len_Bits - 1);
 920                Set_Print_In_Hex (Lit);
 921 
 922                Decl :=
 923                  Make_Subtype_Declaration (Loc,
 924                    Defining_Identifier => PAT,
 925                      Subtype_Indication =>
 926                        Make_Subtype_Indication (Loc,
 927                          Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
 928 
 929                          Constraint =>
 930                            Make_Range_Constraint (Loc,
 931                              Range_Expression =>
 932                                Make_Range (Loc,
 933                                  Low_Bound =>
 934                                    Make_Integer_Literal (Loc, 0),
 935                                  High_Bound => Lit))));
 936 
 937                if PASize = Uint_0 then
 938                   PASize := Len_Bits;
 939                end if;
 940 
 941                Install_PAT;
 942 
 943                --  Propagate a given alignment to the modular type. This can
 944                --  cause it to be under-aligned, but that's OK.
 945 
 946                if Present (Alignment_Clause (Typ)) then
 947                   Set_Alignment (PAT, Alignment (Typ));
 948                end if;
 949 
 950                return;
 951             end if;
 952          end if;
 953 
 954          --  Could not use a modular type, for all other cases, we build
 955          --  a packed array subtype:
 956 
 957          --    subtype tttPn is
 958          --      System.Packed_Bytes{1,2,4} (0 .. (Bits + 7) / 8 - 1);
 959 
 960          --  Bits is the length of the array in bits
 961 
 962          Set_PB_Type;
 963 
 964          Bits_U1 :=
 965            Make_Op_Add (Loc,
 966              Left_Opnd =>
 967                Make_Op_Multiply (Loc,
 968                  Left_Opnd  =>
 969                    Make_Integer_Literal (Loc, Csize),
 970                  Right_Opnd => Len_Expr),
 971 
 972              Right_Opnd =>
 973                Make_Integer_Literal (Loc, 7));
 974 
 975          Set_Paren_Count (Bits_U1, 1);
 976 
 977          PAT_High :=
 978            Make_Op_Subtract (Loc,
 979              Left_Opnd =>
 980                Make_Op_Divide (Loc,
 981                  Left_Opnd => Bits_U1,
 982                  Right_Opnd => Make_Integer_Literal (Loc, 8)),
 983              Right_Opnd => Make_Integer_Literal (Loc, 1));
 984 
 985          Decl :=
 986            Make_Subtype_Declaration (Loc,
 987              Defining_Identifier => PAT,
 988                Subtype_Indication =>
 989                  Make_Subtype_Indication (Loc,
 990                    Subtype_Mark => New_Occurrence_Of (PB_Type, Loc),
 991                    Constraint =>
 992                      Make_Index_Or_Discriminant_Constraint (Loc,
 993                        Constraints => New_List (
 994                          Make_Range (Loc,
 995                            Low_Bound =>
 996                              Make_Integer_Literal (Loc, 0),
 997                            High_Bound =>
 998                              Convert_To (Standard_Integer, PAT_High))))));
 999 
1000          Install_PAT;
1001 
1002          --  Currently the code in this unit requires that packed arrays
1003          --  represented by non-modular arrays of bytes be on a byte
1004          --  boundary for bit sizes handled by System.Pack_nn units.
1005          --  That's because these units assume the array being accessed
1006          --  starts on a byte boundary.
1007 
1008          if Get_Id (UI_To_Int (Csize)) /= RE_Null then
1009             Set_Must_Be_On_Byte_Boundary (Typ);
1010          end if;
1011       end if;
1012    end Create_Packed_Array_Impl_Type;
1013 
1014    -----------------------------------
1015    -- Expand_Bit_Packed_Element_Set --
1016    -----------------------------------
1017 
1018    procedure Expand_Bit_Packed_Element_Set (N : Node_Id) is
1019       Loc : constant Source_Ptr := Sloc (N);
1020       Lhs : constant Node_Id    := Name (N);
1021 
1022       Ass_OK : constant Boolean := Assignment_OK (Lhs);
1023       --  Used to preserve assignment OK status when assignment is rewritten
1024 
1025       Rhs : Node_Id := Expression (N);
1026       --  Initially Rhs is the right hand side value, it will be replaced
1027       --  later by an appropriate unchecked conversion for the assignment.
1028 
1029       Obj   : Node_Id;
1030       Atyp  : Entity_Id;
1031       PAT   : Entity_Id;
1032       Ctyp  : Entity_Id;
1033       Csiz  : Int;
1034       Cmask : Uint;
1035 
1036       Shift : Node_Id;
1037       --  The expression for the shift value that is required
1038 
1039       Shift_Used : Boolean := False;
1040       --  Set True if Shift has been used in the generated code at least once,
1041       --  so that it must be duplicated if used again.
1042 
1043       New_Lhs : Node_Id;
1044       New_Rhs : Node_Id;
1045 
1046       Rhs_Val_Known : Boolean;
1047       Rhs_Val       : Uint;
1048       --  If the value of the right hand side as an integer constant is
1049       --  known at compile time, Rhs_Val_Known is set True, and Rhs_Val
1050       --  contains the value. Otherwise Rhs_Val_Known is set False, and
1051       --  the Rhs_Val is undefined.
1052 
1053       function Get_Shift return Node_Id;
1054       --  Function used to get the value of Shift, making sure that it
1055       --  gets duplicated if the function is called more than once.
1056 
1057       ---------------
1058       -- Get_Shift --
1059       ---------------
1060 
1061       function Get_Shift return Node_Id is
1062       begin
1063          --  If we used the shift value already, then duplicate it. We
1064          --  set a temporary parent in case actions have to be inserted.
1065 
1066          if Shift_Used then
1067             Set_Parent (Shift, N);
1068             return Duplicate_Subexpr_No_Checks (Shift);
1069 
1070          --  If first time, use Shift unchanged, and set flag for first use
1071 
1072          else
1073             Shift_Used := True;
1074             return Shift;
1075          end if;
1076       end Get_Shift;
1077 
1078    --  Start of processing for Expand_Bit_Packed_Element_Set
1079 
1080    begin
1081       pragma Assert (Is_Bit_Packed_Array (Etype (Prefix (Lhs))));
1082 
1083       Obj := Relocate_Node (Prefix (Lhs));
1084       Convert_To_Actual_Subtype (Obj);
1085       Atyp := Etype (Obj);
1086       PAT  := Packed_Array_Impl_Type (Atyp);
1087       Ctyp := Component_Type (Atyp);
1088       Csiz := UI_To_Int (Component_Size (Atyp));
1089 
1090       --  We remove side effects, in case the rhs modifies the lhs, because we
1091       --  are about to transform the rhs into an expression that first READS
1092       --  the lhs, so we can do the necessary shifting and masking. Example:
1093       --  "X(2) := F(...);" where F modifies X(3). Otherwise, the side effect
1094       --  will be lost.
1095 
1096       Remove_Side_Effects (Rhs);
1097 
1098       --  We convert the right hand side to the proper subtype to ensure
1099       --  that an appropriate range check is made (since the normal range
1100       --  check from assignment will be lost in the transformations). This
1101       --  conversion is analyzed immediately so that subsequent processing
1102       --  can work with an analyzed Rhs (and e.g. look at its Etype)
1103 
1104       --  If the right-hand side is a string literal, create a temporary for
1105       --  it, constant-folding is not ready to wrap the bit representation
1106       --  of a string literal.
1107 
1108       if Nkind (Rhs) = N_String_Literal then
1109          declare
1110             Decl : Node_Id;
1111          begin
1112             Decl :=
1113               Make_Object_Declaration (Loc,
1114                 Defining_Identifier => Make_Temporary (Loc, 'T', Rhs),
1115                 Object_Definition   => New_Occurrence_Of (Ctyp, Loc),
1116                 Expression          => New_Copy_Tree (Rhs));
1117 
1118             Insert_Actions (N, New_List (Decl));
1119             Rhs := New_Occurrence_Of (Defining_Identifier (Decl), Loc);
1120          end;
1121       end if;
1122 
1123       Rhs := Convert_To (Ctyp, Rhs);
1124       Set_Parent (Rhs, N);
1125 
1126       --  If we are building the initialization procedure for a packed array,
1127       --  and Initialize_Scalars is enabled, each component assignment is an
1128       --  out-of-range value by design.  Compile this value without checks,
1129       --  because a call to the array init_proc must not raise an exception.
1130 
1131       --  Condition is not consistent with description above, Within_Init_Proc
1132       --  is True also when we are building the IP for a record or protected
1133       --  type that has a packed array component???
1134 
1135       if Within_Init_Proc
1136         and then Initialize_Scalars
1137       then
1138          Analyze_And_Resolve (Rhs, Ctyp, Suppress => All_Checks);
1139       else
1140          Analyze_And_Resolve (Rhs, Ctyp);
1141       end if;
1142 
1143       --  Case of component size 1,2,4 or any component size for the modular
1144       --  case. These are the cases for which we can inline the code.
1145 
1146       if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1147         or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1148       then
1149          Setup_Inline_Packed_Array_Reference (Lhs, Atyp, Obj, Cmask, Shift);
1150 
1151          --  The statement to be generated is:
1152 
1153          --    Obj := atyp!((Obj and Mask1) or (shift_left (rhs, Shift)))
1154 
1155          --  or in the case of a freestanding Reverse_Storage_Order object,
1156 
1157          --    Obj := Swap (atyp!((Swap (Obj) and Mask1)
1158          --                         or (shift_left (rhs, Shift))))
1159 
1160          --      where Mask1 is obtained by shifting Cmask left Shift bits
1161          --      and then complementing the result.
1162 
1163          --      the "and Mask1" is omitted if rhs is constant and all 1 bits
1164 
1165          --      the "or ..." is omitted if rhs is constant and all 0 bits
1166 
1167          --      rhs is converted to the appropriate type
1168 
1169          --      The result is converted back to the array type, since
1170          --      otherwise we lose knowledge of the packed nature.
1171 
1172          --  Determine if right side is all 0 bits or all 1 bits
1173 
1174          if Compile_Time_Known_Value (Rhs) then
1175             Rhs_Val       := Expr_Rep_Value (Rhs);
1176             Rhs_Val_Known := True;
1177 
1178          --  The following test catches the case of an unchecked conversion of
1179          --  an integer literal. This results from optimizing aggregates of
1180          --  packed types.
1181 
1182          elsif Nkind (Rhs) = N_Unchecked_Type_Conversion
1183            and then Compile_Time_Known_Value (Expression (Rhs))
1184          then
1185             Rhs_Val       := Expr_Rep_Value (Expression (Rhs));
1186             Rhs_Val_Known := True;
1187 
1188          else
1189             Rhs_Val       := No_Uint;
1190             Rhs_Val_Known := False;
1191          end if;
1192 
1193          --  Some special checks for the case where the right hand value is
1194          --  known at compile time. Basically we have to take care of the
1195          --  implicit conversion to the subtype of the component object.
1196 
1197          if Rhs_Val_Known then
1198 
1199             --  If we have a biased component type then we must manually do the
1200             --  biasing, since we are taking responsibility in this case for
1201             --  constructing the exact bit pattern to be used.
1202 
1203             if Has_Biased_Representation (Ctyp) then
1204                Rhs_Val := Rhs_Val - Expr_Rep_Value (Type_Low_Bound (Ctyp));
1205             end if;
1206 
1207             --  For a negative value, we manually convert the two's complement
1208             --  value to a corresponding unsigned value, so that the proper
1209             --  field width is maintained. If we did not do this, we would
1210             --  get too many leading sign bits later on.
1211 
1212             if Rhs_Val < 0 then
1213                Rhs_Val := 2 ** UI_From_Int (Csiz) + Rhs_Val;
1214             end if;
1215          end if;
1216 
1217          --  Now create copies removing side effects. Note that in some complex
1218          --  cases, this may cause the fact that we have already set a packed
1219          --  array type on Obj to get lost. So we save the type of Obj, and
1220          --  make sure it is reset properly.
1221 
1222          New_Lhs := Duplicate_Subexpr (Obj, Name_Req => True);
1223          New_Rhs := Duplicate_Subexpr_No_Checks (Obj);
1224 
1225          --  First we deal with the "and"
1226 
1227          if not Rhs_Val_Known or else Rhs_Val /= Cmask then
1228             declare
1229                Mask1 : Node_Id;
1230                Lit   : Node_Id;
1231 
1232             begin
1233                if Compile_Time_Known_Value (Shift) then
1234                   Mask1 :=
1235                     Make_Integer_Literal (Loc,
1236                       Modulus (Etype (Obj)) - 1 -
1237                                  (Cmask * (2 ** Expr_Value (Get_Shift))));
1238                   Set_Print_In_Hex (Mask1);
1239 
1240                else
1241                   Lit := Make_Integer_Literal (Loc, Cmask);
1242                   Set_Print_In_Hex (Lit);
1243                   Mask1 :=
1244                     Make_Op_Not (Loc,
1245                       Right_Opnd => Make_Shift_Left (Lit, Get_Shift));
1246                end if;
1247 
1248                New_Rhs :=
1249                  Make_Op_And (Loc,
1250                    Left_Opnd  => New_Rhs,
1251                    Right_Opnd => Mask1);
1252             end;
1253          end if;
1254 
1255          --  Then deal with the "or"
1256 
1257          if not Rhs_Val_Known or else Rhs_Val /= 0 then
1258             declare
1259                Or_Rhs : Node_Id;
1260 
1261                procedure Fixup_Rhs;
1262                --  Adjust Rhs by bias if biased representation for components
1263                --  or remove extraneous high order sign bits if signed.
1264 
1265                procedure Fixup_Rhs is
1266                   Etyp : constant Entity_Id := Etype (Rhs);
1267 
1268                begin
1269                   --  For biased case, do the required biasing by simply
1270                   --  converting to the biased subtype (the conversion
1271                   --  will generate the required bias).
1272 
1273                   if Has_Biased_Representation (Ctyp) then
1274                      Rhs := Convert_To (Ctyp, Rhs);
1275 
1276                   --  For a signed integer type that is not biased, generate
1277                   --  a conversion to unsigned to strip high order sign bits.
1278 
1279                   elsif Is_Signed_Integer_Type (Ctyp) then
1280                      Rhs := Unchecked_Convert_To (RTE (Bits_Id (Csiz)), Rhs);
1281                   end if;
1282 
1283                   --  Set Etype, since it can be referenced before the node is
1284                   --  completely analyzed.
1285 
1286                   Set_Etype (Rhs, Etyp);
1287 
1288                   --  We now need to do an unchecked conversion of the
1289                   --  result to the target type, but it is important that
1290                   --  this conversion be a right justified conversion and
1291                   --  not a left justified conversion.
1292 
1293                   Rhs := RJ_Unchecked_Convert_To (Etype (Obj), Rhs);
1294                end Fixup_Rhs;
1295 
1296             begin
1297                if Rhs_Val_Known
1298                  and then Compile_Time_Known_Value (Get_Shift)
1299                then
1300                   Or_Rhs :=
1301                     Make_Integer_Literal (Loc,
1302                       Rhs_Val * (2 ** Expr_Value (Get_Shift)));
1303                   Set_Print_In_Hex (Or_Rhs);
1304 
1305                else
1306                   --  We have to convert the right hand side to Etype (Obj).
1307                   --  A special case arises if what we have now is a Val
1308                   --  attribute reference whose expression type is Etype (Obj).
1309                   --  This happens for assignments of fields from the same
1310                   --  array. In this case we get the required right hand side
1311                   --  by simply removing the inner attribute reference.
1312 
1313                   if Nkind (Rhs) = N_Attribute_Reference
1314                     and then Attribute_Name (Rhs) = Name_Val
1315                     and then Etype (First (Expressions (Rhs))) = Etype (Obj)
1316                   then
1317                      Rhs := Relocate_Node (First (Expressions (Rhs)));
1318                      Fixup_Rhs;
1319 
1320                   --  If the value of the right hand side is a known integer
1321                   --  value, then just replace it by an untyped constant,
1322                   --  which will be properly retyped when we analyze and
1323                   --  resolve the expression.
1324 
1325                   elsif Rhs_Val_Known then
1326 
1327                      --  Note that Rhs_Val has already been normalized to
1328                      --  be an unsigned value with the proper number of bits.
1329 
1330                      Rhs := Make_Integer_Literal (Loc, Rhs_Val);
1331 
1332                   --  Otherwise we need an unchecked conversion
1333 
1334                   else
1335                      Fixup_Rhs;
1336                   end if;
1337 
1338                   Or_Rhs := Make_Shift_Left (Rhs, Get_Shift);
1339                end if;
1340 
1341                if Nkind (New_Rhs) = N_Op_And then
1342                   Set_Paren_Count (New_Rhs, 1);
1343                   Set_Etype (New_Rhs, Etype (Left_Opnd (New_Rhs)));
1344                end if;
1345 
1346                New_Rhs :=
1347                  Make_Op_Or (Loc,
1348                    Left_Opnd  => New_Rhs,
1349                    Right_Opnd => Or_Rhs);
1350             end;
1351          end if;
1352 
1353          --  Now do the rewrite
1354 
1355          Rewrite (N,
1356            Make_Assignment_Statement (Loc,
1357              Name       => New_Lhs,
1358              Expression =>
1359                Unchecked_Convert_To (Etype (New_Lhs), New_Rhs)));
1360          Set_Assignment_OK (Name (N), Ass_OK);
1361 
1362       --  All other component sizes for non-modular case
1363 
1364       else
1365          --  We generate
1366 
1367          --    Set_nn (Arr'address, Subscr, Bits_nn!(Rhs))
1368 
1369          --  where Subscr is the computed linear subscript
1370 
1371          declare
1372             Bits_nn : constant Entity_Id := RTE (Bits_Id (Csiz));
1373             Set_nn  : Entity_Id;
1374             Subscr  : Node_Id;
1375             Atyp    : Entity_Id;
1376             Rev_SSO : Node_Id;
1377 
1378          begin
1379             if No (Bits_nn) then
1380 
1381                --  Error, most likely High_Integrity_Mode restriction
1382 
1383                return;
1384             end if;
1385 
1386             --  Acquire proper Set entity. We use the aligned or unaligned
1387             --  case as appropriate.
1388 
1389             if Known_Aligned_Enough (Obj, Csiz) then
1390                Set_nn := RTE (Set_Id (Csiz));
1391             else
1392                Set_nn := RTE (SetU_Id (Csiz));
1393             end if;
1394 
1395             --  Now generate the set reference
1396 
1397             Obj := Relocate_Node (Prefix (Lhs));
1398             Convert_To_Actual_Subtype (Obj);
1399             Atyp := Etype (Obj);
1400             Compute_Linear_Subscript (Atyp, Lhs, Subscr);
1401 
1402             --  Set indication of whether the packed array has reverse SSO
1403 
1404             Rev_SSO :=
1405               New_Occurrence_Of
1406                 (Boolean_Literals (Reverse_Storage_Order (Atyp)), Loc);
1407 
1408             --  Below we must make the assumption that Obj is
1409             --  at least byte aligned, since otherwise its address
1410             --  cannot be taken. The assumption holds since the
1411             --  only arrays that can be misaligned are small packed
1412             --  arrays which are implemented as a modular type, and
1413             --  that is not the case here.
1414 
1415             Rewrite (N,
1416               Make_Procedure_Call_Statement (Loc,
1417                   Name => New_Occurrence_Of (Set_nn, Loc),
1418                   Parameter_Associations => New_List (
1419                     Make_Attribute_Reference (Loc,
1420                       Prefix         => Obj,
1421                       Attribute_Name => Name_Address),
1422                     Subscr,
1423                     Unchecked_Convert_To (Bits_nn, Convert_To (Ctyp, Rhs)),
1424                     Rev_SSO)));
1425 
1426          end;
1427       end if;
1428 
1429       Analyze (N, Suppress => All_Checks);
1430    end Expand_Bit_Packed_Element_Set;
1431 
1432    -------------------------------------
1433    -- Expand_Packed_Address_Reference --
1434    -------------------------------------
1435 
1436    procedure Expand_Packed_Address_Reference (N : Node_Id) is
1437       Loc    : constant Source_Ptr := Sloc (N);
1438       Base   : Node_Id;
1439       Offset : Node_Id;
1440 
1441    begin
1442       --  We build an expression that has the form
1443 
1444       --    outer_object'Address
1445       --      + (linear-subscript * component_size  for each array reference
1446       --      +  field'Bit_Position                 for each record field
1447       --      +  ...
1448       --      +  ...) / Storage_Unit;
1449 
1450       Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
1451 
1452       Rewrite (N,
1453         Unchecked_Convert_To (RTE (RE_Address),
1454           Make_Op_Add (Loc,
1455             Left_Opnd =>
1456               Unchecked_Convert_To (RTE (RE_Integer_Address),
1457                 Make_Attribute_Reference (Loc,
1458                   Prefix         => Base,
1459                   Attribute_Name => Name_Address)),
1460 
1461             Right_Opnd =>
1462               Unchecked_Convert_To (RTE (RE_Integer_Address),
1463                 Make_Op_Divide (Loc,
1464                   Left_Opnd => Offset,
1465                   Right_Opnd =>
1466                     Make_Integer_Literal (Loc, System_Storage_Unit))))));
1467 
1468       Analyze_And_Resolve (N, RTE (RE_Address));
1469    end Expand_Packed_Address_Reference;
1470 
1471    ---------------------------------
1472    -- Expand_Packed_Bit_Reference --
1473    ---------------------------------
1474 
1475    procedure Expand_Packed_Bit_Reference (N : Node_Id) is
1476       Loc    : constant Source_Ptr := Sloc (N);
1477       Base   : Node_Id;
1478       Offset : Node_Id;
1479 
1480    begin
1481       --  We build an expression that has the form
1482 
1483       --    (linear-subscript * component_size      for each array reference
1484       --      +  field'Bit_Position                 for each record field
1485       --      +  ...
1486       --      +  ...) mod Storage_Unit;
1487 
1488       Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
1489 
1490       Rewrite (N,
1491         Unchecked_Convert_To (Universal_Integer,
1492           Make_Op_Mod (Loc,
1493             Left_Opnd => Offset,
1494             Right_Opnd => Make_Integer_Literal (Loc, System_Storage_Unit))));
1495 
1496       Analyze_And_Resolve (N, Universal_Integer);
1497    end Expand_Packed_Bit_Reference;
1498 
1499    ------------------------------------
1500    -- Expand_Packed_Boolean_Operator --
1501    ------------------------------------
1502 
1503    --  This routine expands "a op b" for the packed cases
1504 
1505    procedure Expand_Packed_Boolean_Operator (N : Node_Id) is
1506       Loc : constant Source_Ptr := Sloc (N);
1507       Typ : constant Entity_Id  := Etype (N);
1508       L   : constant Node_Id    := Relocate_Node (Left_Opnd  (N));
1509       R   : constant Node_Id    := Relocate_Node (Right_Opnd (N));
1510 
1511       Ltyp : Entity_Id;
1512       Rtyp : Entity_Id;
1513       PAT  : Entity_Id;
1514 
1515    begin
1516       Convert_To_Actual_Subtype (L);
1517       Convert_To_Actual_Subtype (R);
1518 
1519       Ensure_Defined (Etype (L), N);
1520       Ensure_Defined (Etype (R), N);
1521 
1522       Apply_Length_Check (R, Etype (L));
1523 
1524       Ltyp := Etype (L);
1525       Rtyp := Etype (R);
1526 
1527       --  Deal with silly case of XOR where the subcomponent has a range
1528       --  True .. True where an exception must be raised.
1529 
1530       if Nkind (N) = N_Op_Xor then
1531          Silly_Boolean_Array_Xor_Test (N, Rtyp);
1532       end if;
1533 
1534       --  Now that that silliness is taken care of, get packed array type
1535 
1536       Convert_To_PAT_Type (L);
1537       Convert_To_PAT_Type (R);
1538 
1539       PAT := Etype (L);
1540 
1541       --  For the modular case, we expand a op b into
1542 
1543       --    rtyp!(pat!(a) op pat!(b))
1544 
1545       --  where rtyp is the Etype of the left operand. Note that we do not
1546       --  convert to the base type, since this would be unconstrained, and
1547       --  hence not have a corresponding packed array type set.
1548 
1549       --  Note that both operands must be modular for this code to be used
1550 
1551       if Is_Modular_Integer_Type (PAT)
1552            and then
1553          Is_Modular_Integer_Type (Etype (R))
1554       then
1555          declare
1556             P : Node_Id;
1557 
1558          begin
1559             if Nkind (N) = N_Op_And then
1560                P := Make_Op_And (Loc, L, R);
1561 
1562             elsif Nkind (N) = N_Op_Or then
1563                P := Make_Op_Or  (Loc, L, R);
1564 
1565             else -- Nkind (N) = N_Op_Xor
1566                P := Make_Op_Xor (Loc, L, R);
1567             end if;
1568 
1569             Rewrite (N, Unchecked_Convert_To (Ltyp, P));
1570          end;
1571 
1572       --  For the array case, we insert the actions
1573 
1574       --    Result : Ltype;
1575 
1576       --    System.Bit_Ops.Bit_And/Or/Xor
1577       --     (Left'Address,
1578       --      Ltype'Length * Ltype'Component_Size;
1579       --      Right'Address,
1580       --      Rtype'Length * Rtype'Component_Size
1581       --      Result'Address);
1582 
1583       --  where Left and Right are the Packed_Bytes{1,2,4} operands and
1584       --  the second argument and fourth arguments are the lengths of the
1585       --  operands in bits. Then we replace the expression by a reference
1586       --  to Result.
1587 
1588       --  Note that if we are mixing a modular and array operand, everything
1589       --  works fine, since we ensure that the modular representation has the
1590       --  same physical layout as the array representation (that's what the
1591       --  left justified modular stuff in the big-endian case is about).
1592 
1593       else
1594          declare
1595             Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
1596             E_Id       : RE_Id;
1597 
1598          begin
1599             if Nkind (N) = N_Op_And then
1600                E_Id := RE_Bit_And;
1601 
1602             elsif Nkind (N) = N_Op_Or then
1603                E_Id := RE_Bit_Or;
1604 
1605             else -- Nkind (N) = N_Op_Xor
1606                E_Id := RE_Bit_Xor;
1607             end if;
1608 
1609             Insert_Actions (N, New_List (
1610 
1611               Make_Object_Declaration (Loc,
1612                 Defining_Identifier => Result_Ent,
1613                 Object_Definition => New_Occurrence_Of (Ltyp, Loc)),
1614 
1615               Make_Procedure_Call_Statement (Loc,
1616                 Name => New_Occurrence_Of (RTE (E_Id), Loc),
1617                   Parameter_Associations => New_List (
1618 
1619                     Make_Byte_Aligned_Attribute_Reference (Loc,
1620                       Prefix         => L,
1621                       Attribute_Name => Name_Address),
1622 
1623                     Make_Op_Multiply (Loc,
1624                       Left_Opnd =>
1625                         Make_Attribute_Reference (Loc,
1626                           Prefix         =>
1627                             New_Occurrence_Of
1628                               (Etype (First_Index (Ltyp)), Loc),
1629                           Attribute_Name => Name_Range_Length),
1630 
1631                       Right_Opnd =>
1632                         Make_Integer_Literal (Loc, Component_Size (Ltyp))),
1633 
1634                     Make_Byte_Aligned_Attribute_Reference (Loc,
1635                       Prefix         => R,
1636                       Attribute_Name => Name_Address),
1637 
1638                     Make_Op_Multiply (Loc,
1639                       Left_Opnd =>
1640                         Make_Attribute_Reference (Loc,
1641                           Prefix         =>
1642                             New_Occurrence_Of
1643                               (Etype (First_Index (Rtyp)), Loc),
1644                           Attribute_Name => Name_Range_Length),
1645 
1646                       Right_Opnd =>
1647                         Make_Integer_Literal (Loc, Component_Size (Rtyp))),
1648 
1649                     Make_Byte_Aligned_Attribute_Reference (Loc,
1650                       Prefix => New_Occurrence_Of (Result_Ent, Loc),
1651                       Attribute_Name => Name_Address)))));
1652 
1653             Rewrite (N,
1654               New_Occurrence_Of (Result_Ent, Loc));
1655          end;
1656       end if;
1657 
1658       Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
1659    end Expand_Packed_Boolean_Operator;
1660 
1661    -------------------------------------
1662    -- Expand_Packed_Element_Reference --
1663    -------------------------------------
1664 
1665    procedure Expand_Packed_Element_Reference (N : Node_Id) is
1666       Loc   : constant Source_Ptr := Sloc (N);
1667       Obj   : Node_Id;
1668       Atyp  : Entity_Id;
1669       PAT   : Entity_Id;
1670       Ctyp  : Entity_Id;
1671       Csiz  : Int;
1672       Shift : Node_Id;
1673       Cmask : Uint;
1674       Lit   : Node_Id;
1675       Arg   : Node_Id;
1676 
1677    begin
1678       --  If the node is an actual in a call, the prefix has not been fully
1679       --  expanded, to account for the additional expansion for in-out actuals
1680       --  (see expand_actuals for details). If the prefix itself is a packed
1681       --  reference as well, we have to recurse to complete the transformation
1682       --  of the prefix.
1683 
1684       if Nkind (Prefix (N)) = N_Indexed_Component
1685         and then not Analyzed (Prefix (N))
1686         and then Is_Bit_Packed_Array (Etype (Prefix (Prefix (N))))
1687       then
1688          Expand_Packed_Element_Reference (Prefix (N));
1689       end if;
1690 
1691       --  The prefix may be rewritten below as a conversion. If it is a source
1692       --  entity generate reference to it now, to prevent spurious warnings
1693       --  about unused entities.
1694 
1695       if Is_Entity_Name (Prefix (N))
1696         and then Comes_From_Source (Prefix (N))
1697       then
1698          Generate_Reference (Entity (Prefix (N)), Prefix (N), 'r');
1699       end if;
1700 
1701       --  If not bit packed, we have the enumeration case, which is easily
1702       --  dealt with (just adjust the subscripts of the indexed component)
1703 
1704       --  Note: this leaves the result as an indexed component, which is
1705       --  still a variable, so can be used in the assignment case, as is
1706       --  required in the enumeration case.
1707 
1708       if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
1709          Setup_Enumeration_Packed_Array_Reference (N);
1710          return;
1711       end if;
1712 
1713       --  Remaining processing is for the bit-packed case
1714 
1715       Obj := Relocate_Node (Prefix (N));
1716       Convert_To_Actual_Subtype (Obj);
1717       Atyp := Etype (Obj);
1718       PAT  := Packed_Array_Impl_Type (Atyp);
1719       Ctyp := Component_Type (Atyp);
1720       Csiz := UI_To_Int (Component_Size (Atyp));
1721 
1722       --  Case of component size 1,2,4 or any component size for the modular
1723       --  case. These are the cases for which we can inline the code.
1724 
1725       if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1726         or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1727       then
1728          Setup_Inline_Packed_Array_Reference (N, Atyp, Obj, Cmask, Shift);
1729          Lit := Make_Integer_Literal (Loc, Cmask);
1730          Set_Print_In_Hex (Lit);
1731 
1732          --  We generate a shift right to position the field, followed by a
1733          --  masking operation to extract the bit field, and we finally do an
1734          --  unchecked conversion to convert the result to the required target.
1735 
1736          --  Note that the unchecked conversion automatically deals with the
1737          --  bias if we are dealing with a biased representation. What will
1738          --  happen is that we temporarily generate the biased representation,
1739          --  but almost immediately that will be converted to the original
1740          --  unbiased component type, and the bias will disappear.
1741 
1742          Arg :=
1743            Make_Op_And (Loc,
1744              Left_Opnd  => Make_Shift_Right (Obj, Shift),
1745              Right_Opnd => Lit);
1746          Set_Etype (Arg, Ctyp);
1747 
1748          --  Component extraction is performed on a native endianness scalar
1749          --  value: if Atyp has reverse storage order, then it has been byte
1750          --  swapped, and if the component being extracted is itself of a
1751          --  composite type with reverse storage order, then we need to swap
1752          --  it back to its expected endianness after extraction.
1753 
1754          if Reverse_Storage_Order (Atyp)
1755            and then (Is_Record_Type (Ctyp) or else Is_Array_Type (Ctyp))
1756            and then Reverse_Storage_Order (Ctyp)
1757          then
1758             Arg := Revert_Storage_Order (Arg);
1759          end if;
1760 
1761          --  We needed to analyze this before we do the unchecked convert
1762          --  below, but we need it temporarily attached to the tree for
1763          --  this analysis (hence the temporary Set_Parent call).
1764 
1765          Set_Parent (Arg, Parent (N));
1766          Analyze_And_Resolve (Arg);
1767 
1768          Rewrite (N, RJ_Unchecked_Convert_To (Ctyp, Arg));
1769 
1770       --  All other component sizes for non-modular case
1771 
1772       else
1773          --  We generate
1774 
1775          --    Component_Type!(Get_nn (Arr'address, Subscr))
1776 
1777          --  where Subscr is the computed linear subscript
1778 
1779          declare
1780             Get_nn  : Entity_Id;
1781             Subscr  : Node_Id;
1782             Rev_SSO : constant Node_Id :=
1783               New_Occurrence_Of
1784                 (Boolean_Literals (Reverse_Storage_Order (Atyp)), Loc);
1785 
1786          begin
1787             --  Acquire proper Get entity. We use the aligned or unaligned
1788             --  case as appropriate.
1789 
1790             if Known_Aligned_Enough (Obj, Csiz) then
1791                Get_nn := RTE (Get_Id (Csiz));
1792             else
1793                Get_nn := RTE (GetU_Id (Csiz));
1794             end if;
1795 
1796             --  Now generate the get reference
1797 
1798             Compute_Linear_Subscript (Atyp, N, Subscr);
1799 
1800             --  Below we make the assumption that Obj is at least byte
1801             --  aligned, since otherwise its address cannot be taken.
1802             --  The assumption holds since the only arrays that can be
1803             --  misaligned are small packed arrays which are implemented
1804             --  as a modular type, and that is not the case here.
1805 
1806             Rewrite (N,
1807               Unchecked_Convert_To (Ctyp,
1808                 Make_Function_Call (Loc,
1809                   Name => New_Occurrence_Of (Get_nn, Loc),
1810                   Parameter_Associations => New_List (
1811                     Make_Attribute_Reference (Loc,
1812                       Prefix         => Obj,
1813                       Attribute_Name => Name_Address),
1814                     Subscr,
1815                     Rev_SSO))));
1816          end;
1817       end if;
1818 
1819       Analyze_And_Resolve (N, Ctyp, Suppress => All_Checks);
1820    end Expand_Packed_Element_Reference;
1821 
1822    ----------------------
1823    -- Expand_Packed_Eq --
1824    ----------------------
1825 
1826    --  Handles expansion of "=" on packed array types
1827 
1828    procedure Expand_Packed_Eq (N : Node_Id) is
1829       Loc : constant Source_Ptr := Sloc (N);
1830       L   : constant Node_Id    := Relocate_Node (Left_Opnd  (N));
1831       R   : constant Node_Id    := Relocate_Node (Right_Opnd (N));
1832 
1833       LLexpr : Node_Id;
1834       RLexpr : Node_Id;
1835 
1836       Ltyp : Entity_Id;
1837       Rtyp : Entity_Id;
1838       PAT  : Entity_Id;
1839 
1840    begin
1841       Convert_To_Actual_Subtype (L);
1842       Convert_To_Actual_Subtype (R);
1843       Ltyp := Underlying_Type (Etype (L));
1844       Rtyp := Underlying_Type (Etype (R));
1845 
1846       Convert_To_PAT_Type (L);
1847       Convert_To_PAT_Type (R);
1848       PAT := Etype (L);
1849 
1850       LLexpr :=
1851         Make_Op_Multiply (Loc,
1852           Left_Opnd  => Compute_Number_Components (N, Ltyp),
1853           Right_Opnd => Make_Integer_Literal (Loc, Component_Size (Ltyp)));
1854 
1855       RLexpr :=
1856         Make_Op_Multiply (Loc,
1857           Left_Opnd  => Compute_Number_Components (N, Rtyp),
1858           Right_Opnd => Make_Integer_Literal (Loc, Component_Size (Rtyp)));
1859 
1860       --  For the modular case, we transform the comparison to:
1861 
1862       --    Ltyp'Length = Rtyp'Length and then PAT!(L) = PAT!(R)
1863 
1864       --  where PAT is the packed array type. This works fine, since in the
1865       --  modular case we guarantee that the unused bits are always zeroes.
1866       --  We do have to compare the lengths because we could be comparing
1867       --  two different subtypes of the same base type.
1868 
1869       if Is_Modular_Integer_Type (PAT) then
1870          Rewrite (N,
1871            Make_And_Then (Loc,
1872              Left_Opnd =>
1873                Make_Op_Eq (Loc,
1874                  Left_Opnd  => LLexpr,
1875                  Right_Opnd => RLexpr),
1876 
1877              Right_Opnd =>
1878                Make_Op_Eq (Loc,
1879                  Left_Opnd => L,
1880                  Right_Opnd => R)));
1881 
1882       --  For the non-modular case, we call a runtime routine
1883 
1884       --    System.Bit_Ops.Bit_Eq
1885       --      (L'Address, L_Length, R'Address, R_Length)
1886 
1887       --  where PAT is the packed array type, and the lengths are the lengths
1888       --  in bits of the original packed arrays. This routine takes care of
1889       --  not comparing the unused bits in the last byte.
1890 
1891       else
1892          Rewrite (N,
1893            Make_Function_Call (Loc,
1894              Name => New_Occurrence_Of (RTE (RE_Bit_Eq), Loc),
1895              Parameter_Associations => New_List (
1896                Make_Byte_Aligned_Attribute_Reference (Loc,
1897                  Prefix         => L,
1898                  Attribute_Name => Name_Address),
1899 
1900                LLexpr,
1901 
1902                Make_Byte_Aligned_Attribute_Reference (Loc,
1903                  Prefix         => R,
1904                  Attribute_Name => Name_Address),
1905 
1906                RLexpr)));
1907       end if;
1908 
1909       Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
1910    end Expand_Packed_Eq;
1911 
1912    -----------------------
1913    -- Expand_Packed_Not --
1914    -----------------------
1915 
1916    --  Handles expansion of "not" on packed array types
1917 
1918    procedure Expand_Packed_Not (N : Node_Id) is
1919       Loc  : constant Source_Ptr := Sloc (N);
1920       Typ  : constant Entity_Id  := Etype (N);
1921       Opnd : constant Node_Id    := Relocate_Node (Right_Opnd (N));
1922 
1923       Rtyp : Entity_Id;
1924       PAT  : Entity_Id;
1925       Lit  : Node_Id;
1926 
1927    begin
1928       Convert_To_Actual_Subtype (Opnd);
1929       Rtyp := Etype (Opnd);
1930 
1931       --  Deal with silly False..False and True..True subtype case
1932 
1933       Silly_Boolean_Array_Not_Test (N, Rtyp);
1934 
1935       --  Now that the silliness is taken care of, get packed array type
1936 
1937       Convert_To_PAT_Type (Opnd);
1938       PAT := Etype (Opnd);
1939 
1940       --  For the case where the packed array type is a modular type, "not A"
1941       --  expands simply into:
1942 
1943       --     Rtyp!(PAT!(A) xor Mask)
1944 
1945       --  where PAT is the packed array type, Mask is a mask of all 1 bits of
1946       --  length equal to the size of this packed type, and Rtyp is the actual
1947       --  actual subtype of the operand.
1948 
1949       Lit := Make_Integer_Literal (Loc, 2 ** RM_Size (PAT) - 1);
1950       Set_Print_In_Hex (Lit);
1951 
1952       if not Is_Array_Type (PAT) then
1953          Rewrite (N,
1954            Unchecked_Convert_To (Rtyp,
1955              Make_Op_Xor (Loc,
1956                Left_Opnd  => Opnd,
1957                Right_Opnd => Lit)));
1958 
1959       --  For the array case, we insert the actions
1960 
1961       --    Result : Typ;
1962 
1963       --    System.Bit_Ops.Bit_Not
1964       --     (Opnd'Address,
1965       --      Typ'Length * Typ'Component_Size,
1966       --      Result'Address);
1967 
1968       --  where Opnd is the Packed_Bytes{1,2,4} operand and the second argument
1969       --  is the length of the operand in bits. We then replace the expression
1970       --  with a reference to Result.
1971 
1972       else
1973          declare
1974             Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
1975 
1976          begin
1977             Insert_Actions (N, New_List (
1978               Make_Object_Declaration (Loc,
1979                 Defining_Identifier => Result_Ent,
1980                 Object_Definition   => New_Occurrence_Of (Rtyp, Loc)),
1981 
1982               Make_Procedure_Call_Statement (Loc,
1983                 Name => New_Occurrence_Of (RTE (RE_Bit_Not), Loc),
1984                   Parameter_Associations => New_List (
1985                     Make_Byte_Aligned_Attribute_Reference (Loc,
1986                       Prefix         => Opnd,
1987                       Attribute_Name => Name_Address),
1988 
1989                     Make_Op_Multiply (Loc,
1990                       Left_Opnd =>
1991                         Make_Attribute_Reference (Loc,
1992                           Prefix         =>
1993                             New_Occurrence_Of
1994                               (Etype (First_Index (Rtyp)), Loc),
1995                           Attribute_Name => Name_Range_Length),
1996 
1997                       Right_Opnd =>
1998                         Make_Integer_Literal (Loc, Component_Size (Rtyp))),
1999 
2000                     Make_Byte_Aligned_Attribute_Reference (Loc,
2001                       Prefix         => New_Occurrence_Of (Result_Ent, Loc),
2002                       Attribute_Name => Name_Address)))));
2003 
2004             Rewrite (N, New_Occurrence_Of (Result_Ent, Loc));
2005          end;
2006       end if;
2007 
2008       Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
2009    end Expand_Packed_Not;
2010 
2011    -----------------------------
2012    -- Get_Base_And_Bit_Offset --
2013    -----------------------------
2014 
2015    procedure Get_Base_And_Bit_Offset
2016      (N      : Node_Id;
2017       Base   : out Node_Id;
2018       Offset : out Node_Id)
2019    is
2020       Loc    : Source_Ptr;
2021       Term   : Node_Id;
2022       Atyp   : Entity_Id;
2023       Subscr : Node_Id;
2024 
2025    begin
2026       Base   := N;
2027       Offset := Empty;
2028 
2029       --  We build up an expression serially that has the form
2030 
2031       --    linear-subscript * component_size       for each array reference
2032       --      +  field'Bit_Position                 for each record field
2033       --      +  ...
2034 
2035       loop
2036          Loc := Sloc (Base);
2037 
2038          if Nkind (Base) = N_Indexed_Component then
2039             Convert_To_Actual_Subtype (Prefix (Base));
2040             Atyp := Etype (Prefix (Base));
2041             Compute_Linear_Subscript (Atyp, Base, Subscr);
2042 
2043             Term :=
2044               Make_Op_Multiply (Loc,
2045                 Left_Opnd => Subscr,
2046                 Right_Opnd =>
2047                  Make_Attribute_Reference (Loc,
2048                    Prefix         => New_Occurrence_Of (Atyp, Loc),
2049                    Attribute_Name => Name_Component_Size));
2050 
2051          elsif Nkind (Base) = N_Selected_Component then
2052             Term :=
2053               Make_Attribute_Reference (Loc,
2054                 Prefix         => Selector_Name (Base),
2055                 Attribute_Name => Name_Bit_Position);
2056 
2057          else
2058             return;
2059          end if;
2060 
2061          if No (Offset) then
2062             Offset := Term;
2063 
2064          else
2065             Offset :=
2066               Make_Op_Add (Loc,
2067                 Left_Opnd  => Offset,
2068                 Right_Opnd => Term);
2069          end if;
2070 
2071          Base := Prefix (Base);
2072       end loop;
2073    end Get_Base_And_Bit_Offset;
2074 
2075    -------------------------------------
2076    -- Involves_Packed_Array_Reference --
2077    -------------------------------------
2078 
2079    function Involves_Packed_Array_Reference (N : Node_Id) return Boolean is
2080    begin
2081       if Nkind (N) = N_Indexed_Component
2082         and then Is_Bit_Packed_Array (Etype (Prefix (N)))
2083       then
2084          return True;
2085 
2086       elsif Nkind (N) = N_Selected_Component then
2087          return Involves_Packed_Array_Reference (Prefix (N));
2088 
2089       else
2090          return False;
2091       end if;
2092    end Involves_Packed_Array_Reference;
2093 
2094    --------------------------
2095    -- Known_Aligned_Enough --
2096    --------------------------
2097 
2098    function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean is
2099       Typ : constant Entity_Id := Etype (Obj);
2100 
2101       function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean;
2102       --  If the component is in a record that contains previous packed
2103       --  components, consider it unaligned because the back-end might
2104       --  choose to pack the rest of the record. Lead to less efficient code,
2105       --  but safer vis-a-vis of back-end choices.
2106 
2107       --------------------------------
2108       -- In_Partially_Packed_Record --
2109       --------------------------------
2110 
2111       function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean is
2112          Rec_Type  : constant Entity_Id := Scope (Comp);
2113          Prev_Comp : Entity_Id;
2114 
2115       begin
2116          Prev_Comp := First_Entity (Rec_Type);
2117          while Present (Prev_Comp) loop
2118             if Is_Packed (Etype (Prev_Comp)) then
2119                return True;
2120 
2121             elsif Prev_Comp = Comp then
2122                return False;
2123             end if;
2124 
2125             Next_Entity (Prev_Comp);
2126          end loop;
2127 
2128          return False;
2129       end  In_Partially_Packed_Record;
2130 
2131    --  Start of processing for Known_Aligned_Enough
2132 
2133    begin
2134       --  Odd bit sizes don't need alignment anyway
2135 
2136       if Csiz mod 2 = 1 then
2137          return True;
2138 
2139       --  If we have a specified alignment, see if it is sufficient, if not
2140       --  then we can't possibly be aligned enough in any case.
2141 
2142       elsif Known_Alignment (Etype (Obj)) then
2143          --  Alignment required is 4 if size is a multiple of 4, and
2144          --  2 otherwise (e.g. 12 bits requires 4, 10 bits requires 2)
2145 
2146          if Alignment (Etype (Obj)) < 4 - (Csiz mod 4) then
2147             return False;
2148          end if;
2149       end if;
2150 
2151       --  OK, alignment should be sufficient, if object is aligned
2152 
2153       --  If object is strictly aligned, then it is definitely aligned
2154 
2155       if Strict_Alignment (Typ) then
2156          return True;
2157 
2158       --  Case of subscripted array reference
2159 
2160       elsif Nkind (Obj) = N_Indexed_Component then
2161 
2162          --  If we have a pointer to an array, then this is definitely
2163          --  aligned, because pointers always point to aligned versions.
2164 
2165          if Is_Access_Type (Etype (Prefix (Obj))) then
2166             return True;
2167 
2168          --  Otherwise, go look at the prefix
2169 
2170          else
2171             return Known_Aligned_Enough (Prefix (Obj), Csiz);
2172          end if;
2173 
2174       --  Case of record field
2175 
2176       elsif Nkind (Obj) = N_Selected_Component then
2177 
2178          --  What is significant here is whether the record type is packed
2179 
2180          if Is_Record_Type (Etype (Prefix (Obj)))
2181            and then Is_Packed (Etype (Prefix (Obj)))
2182          then
2183             return False;
2184 
2185          --  Or the component has a component clause which might cause
2186          --  the component to become unaligned (we can't tell if the
2187          --  backend is doing alignment computations).
2188 
2189          elsif Present (Component_Clause (Entity (Selector_Name (Obj)))) then
2190             return False;
2191 
2192          elsif In_Partially_Packed_Record (Entity (Selector_Name (Obj))) then
2193             return False;
2194 
2195          --  In all other cases, go look at prefix
2196 
2197          else
2198             return Known_Aligned_Enough (Prefix (Obj), Csiz);
2199          end if;
2200 
2201       elsif Nkind (Obj) = N_Type_Conversion then
2202          return Known_Aligned_Enough (Expression (Obj), Csiz);
2203 
2204       --  For a formal parameter, it is safer to assume that it is not
2205       --  aligned, because the formal may be unconstrained while the actual
2206       --  is constrained. In this situation, a small constrained packed
2207       --  array, represented in modular form, may be unaligned.
2208 
2209       elsif Is_Entity_Name (Obj) then
2210          return not Is_Formal (Entity (Obj));
2211       else
2212 
2213       --  If none of the above, must be aligned
2214          return True;
2215       end if;
2216    end Known_Aligned_Enough;
2217 
2218    ---------------------
2219    -- Make_Shift_Left --
2220    ---------------------
2221 
2222    function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id is
2223       Nod : Node_Id;
2224 
2225    begin
2226       if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2227          return N;
2228       else
2229          Nod :=
2230            Make_Op_Shift_Left (Sloc (N),
2231              Left_Opnd  => N,
2232              Right_Opnd => S);
2233          Set_Shift_Count_OK (Nod, True);
2234          return Nod;
2235       end if;
2236    end Make_Shift_Left;
2237 
2238    ----------------------
2239    -- Make_Shift_Right --
2240    ----------------------
2241 
2242    function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id is
2243       Nod : Node_Id;
2244 
2245    begin
2246       if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2247          return N;
2248       else
2249          Nod :=
2250            Make_Op_Shift_Right (Sloc (N),
2251              Left_Opnd  => N,
2252              Right_Opnd => S);
2253          Set_Shift_Count_OK (Nod, True);
2254          return Nod;
2255       end if;
2256    end Make_Shift_Right;
2257 
2258    -----------------------------
2259    -- RJ_Unchecked_Convert_To --
2260    -----------------------------
2261 
2262    function RJ_Unchecked_Convert_To
2263      (Typ  : Entity_Id;
2264       Expr : Node_Id) return Node_Id
2265    is
2266       Source_Typ : constant Entity_Id := Etype (Expr);
2267       Target_Typ : constant Entity_Id := Typ;
2268 
2269       Src : Node_Id := Expr;
2270 
2271       Source_Siz : Nat;
2272       Target_Siz : Nat;
2273 
2274    begin
2275       Source_Siz := UI_To_Int (RM_Size (Source_Typ));
2276       Target_Siz := UI_To_Int (RM_Size (Target_Typ));
2277 
2278       --  For a little-endian target type stored byte-swapped on a
2279       --  big-endian machine, do not mask to Target_Siz bits.
2280 
2281       if Bytes_Big_Endian
2282            and then (Is_Record_Type (Target_Typ)
2283                        or else
2284                      Is_Array_Type (Target_Typ))
2285            and then Reverse_Storage_Order (Target_Typ)
2286       then
2287          Source_Siz := Target_Siz;
2288       end if;
2289 
2290       --  First step, if the source type is not a discrete type, then we first
2291       --  convert to a modular type of the source length, since otherwise, on
2292       --  a big-endian machine, we get left-justification. We do it for little-
2293       --  endian machines as well, because there might be junk bits that are
2294       --  not cleared if the type is not numeric. This can be done only if the
2295       --  source siz is different from 0 (i.e. known), otherwise we must trust
2296       --  the type declarations (case of non-discrete components).
2297 
2298       if Source_Siz /= 0
2299         and then Source_Siz /= Target_Siz
2300         and then not Is_Discrete_Type (Source_Typ)
2301       then
2302          Src := Unchecked_Convert_To (RTE (Bits_Id (Source_Siz)), Src);
2303       end if;
2304 
2305       --  In the big endian case, if the lengths of the two types differ, then
2306       --  we must worry about possible left justification in the conversion,
2307       --  and avoiding that is what this is all about.
2308 
2309       if Bytes_Big_Endian and then Source_Siz /= Target_Siz then
2310 
2311          --  Next step. If the target is not a discrete type, then we first
2312          --  convert to a modular type of the target length, since otherwise,
2313          --  on a big-endian machine, we get left-justification.
2314 
2315          if not Is_Discrete_Type (Target_Typ) then
2316             Src := Unchecked_Convert_To (RTE (Bits_Id (Target_Siz)), Src);
2317          end if;
2318       end if;
2319 
2320       --  And now we can do the final conversion to the target type
2321 
2322       return Unchecked_Convert_To (Target_Typ, Src);
2323    end RJ_Unchecked_Convert_To;
2324 
2325    ----------------------------------------------
2326    -- Setup_Enumeration_Packed_Array_Reference --
2327    ----------------------------------------------
2328 
2329    --  All we have to do here is to find the subscripts that correspond to the
2330    --  index positions that have non-standard enumeration types and insert a
2331    --  Pos attribute to get the proper subscript value.
2332 
2333    --  Finally the prefix must be uncheck-converted to the corresponding packed
2334    --  array type.
2335 
2336    --  Note that the component type is unchanged, so we do not need to fiddle
2337    --  with the types (Gigi always automatically takes the packed array type if
2338    --  it is set, as it will be in this case).
2339 
2340    procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id) is
2341       Pfx   : constant Node_Id   := Prefix (N);
2342       Typ   : constant Entity_Id := Etype (N);
2343       Exprs : constant List_Id   := Expressions (N);
2344       Expr  : Node_Id;
2345 
2346    begin
2347       --  If the array is unconstrained, then we replace the array reference
2348       --  with its actual subtype. This actual subtype will have a packed array
2349       --  type with appropriate bounds.
2350 
2351       if not Is_Constrained (Packed_Array_Impl_Type (Etype (Pfx))) then
2352          Convert_To_Actual_Subtype (Pfx);
2353       end if;
2354 
2355       Expr := First (Exprs);
2356       while Present (Expr) loop
2357          declare
2358             Loc      : constant Source_Ptr := Sloc (Expr);
2359             Expr_Typ : constant Entity_Id := Etype (Expr);
2360 
2361          begin
2362             if Is_Enumeration_Type (Expr_Typ)
2363               and then Has_Non_Standard_Rep (Expr_Typ)
2364             then
2365                Rewrite (Expr,
2366                  Make_Attribute_Reference (Loc,
2367                    Prefix         => New_Occurrence_Of (Expr_Typ, Loc),
2368                    Attribute_Name => Name_Pos,
2369                    Expressions    => New_List (Relocate_Node (Expr))));
2370                Analyze_And_Resolve (Expr, Standard_Natural);
2371             end if;
2372          end;
2373 
2374          Next (Expr);
2375       end loop;
2376 
2377       Rewrite (N,
2378         Make_Indexed_Component (Sloc (N),
2379           Prefix      =>
2380             Unchecked_Convert_To (Packed_Array_Impl_Type (Etype (Pfx)), Pfx),
2381           Expressions => Exprs));
2382 
2383       Analyze_And_Resolve (N, Typ);
2384    end Setup_Enumeration_Packed_Array_Reference;
2385 
2386    -----------------------------------------
2387    -- Setup_Inline_Packed_Array_Reference --
2388    -----------------------------------------
2389 
2390    procedure Setup_Inline_Packed_Array_Reference
2391      (N      : Node_Id;
2392       Atyp   : Entity_Id;
2393       Obj    : in out Node_Id;
2394       Cmask  : out Uint;
2395       Shift  : out Node_Id)
2396    is
2397       Loc  : constant Source_Ptr := Sloc (N);
2398       PAT  : Entity_Id;
2399       Otyp : Entity_Id;
2400       Csiz : Uint;
2401       Osiz : Uint;
2402 
2403    begin
2404       Csiz := Component_Size (Atyp);
2405 
2406       Convert_To_PAT_Type (Obj);
2407       PAT := Etype (Obj);
2408 
2409       Cmask := 2 ** Csiz - 1;
2410 
2411       if Is_Array_Type (PAT) then
2412          Otyp := Component_Type (PAT);
2413          Osiz := Component_Size (PAT);
2414 
2415       else
2416          Otyp := PAT;
2417 
2418          --  In the case where the PAT is a modular type, we want the actual
2419          --  size in bits of the modular value we use. This is neither the
2420          --  Object_Size nor the Value_Size, either of which may have been
2421          --  reset to strange values, but rather the minimum size. Note that
2422          --  since this is a modular type with full range, the issue of
2423          --  biased representation does not arise.
2424 
2425          Osiz := UI_From_Int (Minimum_Size (Otyp));
2426       end if;
2427 
2428       Compute_Linear_Subscript (Atyp, N, Shift);
2429 
2430       --  If the component size is not 1, then the subscript must be multiplied
2431       --  by the component size to get the shift count.
2432 
2433       if Csiz /= 1 then
2434          Shift :=
2435            Make_Op_Multiply (Loc,
2436              Left_Opnd  => Make_Integer_Literal (Loc, Csiz),
2437              Right_Opnd => Shift);
2438       end if;
2439 
2440       --  If we have the array case, then this shift count must be broken down
2441       --  into a byte subscript, and a shift within the byte.
2442 
2443       if Is_Array_Type (PAT) then
2444 
2445          declare
2446             New_Shift : Node_Id;
2447 
2448          begin
2449             --  We must analyze shift, since we will duplicate it
2450 
2451             Set_Parent (Shift, N);
2452             Analyze_And_Resolve
2453               (Shift, Standard_Integer, Suppress => All_Checks);
2454 
2455             --  The shift count within the word is
2456             --    shift mod Osiz
2457 
2458             New_Shift :=
2459               Make_Op_Mod (Loc,
2460                 Left_Opnd  => Duplicate_Subexpr (Shift),
2461                 Right_Opnd => Make_Integer_Literal (Loc, Osiz));
2462 
2463             --  The subscript to be used on the PAT array is
2464             --    shift / Osiz
2465 
2466             Obj :=
2467               Make_Indexed_Component (Loc,
2468                 Prefix => Obj,
2469                 Expressions => New_List (
2470                   Make_Op_Divide (Loc,
2471                     Left_Opnd  => Duplicate_Subexpr (Shift),
2472                     Right_Opnd => Make_Integer_Literal (Loc, Osiz))));
2473 
2474             Shift := New_Shift;
2475          end;
2476 
2477       --  For the modular integer case, the object to be manipulated is the
2478       --  entire array, so Obj is unchanged. Note that we will reset its type
2479       --  to PAT before returning to the caller.
2480 
2481       else
2482          null;
2483       end if;
2484 
2485       --  The one remaining step is to modify the shift count for the
2486       --  big-endian case. Consider the following example in a byte:
2487 
2488       --     xxxxxxxx  bits of byte
2489       --     vvvvvvvv  bits of value
2490       --     33221100  little-endian numbering
2491       --     00112233  big-endian numbering
2492 
2493       --  Here we have the case of 2-bit fields
2494 
2495       --  For the little-endian case, we already have the proper shift count
2496       --  set, e.g. for element 2, the shift count is 2*2 = 4.
2497 
2498       --  For the big endian case, we have to adjust the shift count, computing
2499       --  it as (N - F) - Shift, where N is the number of bits in an element of
2500       --  the array used to implement the packed array, F is the number of bits
2501       --  in a source array element, and Shift is the count so far computed.
2502 
2503       --  We also have to adjust if the storage order is reversed
2504 
2505       if Bytes_Big_Endian xor Reverse_Storage_Order (Base_Type (Atyp)) then
2506          Shift :=
2507            Make_Op_Subtract (Loc,
2508              Left_Opnd  => Make_Integer_Literal (Loc, Osiz - Csiz),
2509              Right_Opnd => Shift);
2510       end if;
2511 
2512       Set_Parent (Shift, N);
2513       Set_Parent (Obj, N);
2514       Analyze_And_Resolve (Obj,   Otyp,             Suppress => All_Checks);
2515       Analyze_And_Resolve (Shift, Standard_Integer, Suppress => All_Checks);
2516 
2517       --  Make sure final type of object is the appropriate packed type
2518 
2519       Set_Etype (Obj, Otyp);
2520 
2521    end Setup_Inline_Packed_Array_Reference;
2522 
2523 end Exp_Pakd;