File : s-fatgen.adb


   1 ------------------------------------------------------------------------------
   2 --                                                                          --
   3 --                         GNAT COMPILER COMPONENTS                         --
   4 --                                                                          --
   5 --                       S Y S T E M . F A T _ G E N                        --
   6 --                                                                          --
   7 --                                 B o d y                                  --
   8 --                                                                          --
   9 --          Copyright (C) 1992-2015, Free Software Foundation, Inc.         --
  10 --                                                                          --
  11 -- GNAT is free software;  you can  redistribute it  and/or modify it under --
  12 -- terms of the  GNU General Public License as published  by the Free Soft- --
  13 -- ware  Foundation;  either version 3,  or (at your option) any later ver- --
  14 -- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
  15 -- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
  16 -- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
  17 --                                                                          --
  18 --                                                                          --
  19 --                                                                          --
  20 --                                                                          --
  21 --                                                                          --
  22 -- You should have received a copy of the GNU General Public License and    --
  23 -- a copy of the GCC Runtime Library Exception along with this program;     --
  24 -- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
  25 -- <http://www.gnu.org/licenses/>.                                          --
  26 --                                                                          --
  27 -- GNAT was originally developed  by the GNAT team at  New York University. --
  28 -- Extensive contributions were provided by Ada Core Technologies Inc.      --
  29 --                                                                          --
  30 ------------------------------------------------------------------------------
  31 
  32 --  The implementation here is portable to any IEEE implementation. It does
  33 --  not handle nonbinary radix, and also assumes that model numbers and
  34 --  machine numbers are basically identical, which is not true of all possible
  35 --  floating-point implementations. On a non-IEEE machine, this body must be
  36 --  specialized appropriately, or better still, its generic instantiations
  37 --  should be replaced by efficient machine-specific code.
  38 
  39 with Ada.Unchecked_Conversion;
  40 with System;
  41 package body System.Fat_Gen is
  42 
  43    Float_Radix        : constant T := T (T'Machine_Radix);
  44    Radix_To_M_Minus_1 : constant T := Float_Radix ** (T'Machine_Mantissa - 1);
  45 
  46    pragma Assert (T'Machine_Radix = 2);
  47    --  This version does not handle radix 16
  48 
  49    --  Constants for Decompose and Scaling
  50 
  51    Rad    : constant T := T (T'Machine_Radix);
  52    Invrad : constant T := 1.0 / Rad;
  53 
  54    subtype Expbits is Integer range 0 .. 6;
  55    --  2 ** (2 ** 7) might overflow.  How big can radix-16 exponents get?
  56 
  57    Log_Power : constant array (Expbits) of Integer := (1, 2, 4, 8, 16, 32, 64);
  58 
  59    R_Power : constant array (Expbits) of T :=
  60      (Rad **  1,
  61       Rad **  2,
  62       Rad **  4,
  63       Rad **  8,
  64       Rad ** 16,
  65       Rad ** 32,
  66       Rad ** 64);
  67 
  68    R_Neg_Power : constant array (Expbits) of T :=
  69      (Invrad **  1,
  70       Invrad **  2,
  71       Invrad **  4,
  72       Invrad **  8,
  73       Invrad ** 16,
  74       Invrad ** 32,
  75       Invrad ** 64);
  76 
  77    -----------------------
  78    -- Local Subprograms --
  79    -----------------------
  80 
  81    procedure Decompose (XX : T; Frac : out T; Expo : out UI);
  82    --  Decomposes a floating-point number into fraction and exponent parts.
  83    --  Both results are signed, with Frac having the sign of XX, and UI has
  84    --  the sign of the exponent. The absolute value of Frac is in the range
  85    --  0.0 <= Frac < 1.0. If Frac = 0.0 or -0.0, then Expo is always zero.
  86 
  87    function Gradual_Scaling  (Adjustment : UI) return T;
  88    --  Like Scaling with a first argument of 1.0, but returns the smallest
  89    --  denormal rather than zero when the adjustment is smaller than
  90    --  Machine_Emin. Used for Succ and Pred.
  91 
  92    --------------
  93    -- Adjacent --
  94    --------------
  95 
  96    function Adjacent (X, Towards : T) return T is
  97    begin
  98       if Towards = X then
  99          return X;
 100       elsif Towards > X then
 101          return Succ (X);
 102       else
 103          return Pred (X);
 104       end if;
 105    end Adjacent;
 106 
 107    -------------
 108    -- Ceiling --
 109    -------------
 110 
 111    function Ceiling (X : T) return T is
 112       XT : constant T := Truncation (X);
 113    begin
 114       if X <= 0.0 then
 115          return XT;
 116       elsif X = XT then
 117          return X;
 118       else
 119          return XT + 1.0;
 120       end if;
 121    end Ceiling;
 122 
 123    -------------
 124    -- Compose --
 125    -------------
 126 
 127    function Compose (Fraction : T; Exponent : UI) return T is
 128       Arg_Frac : T;
 129       Arg_Exp  : UI;
 130       pragma Unreferenced (Arg_Exp);
 131    begin
 132       Decompose (Fraction, Arg_Frac, Arg_Exp);
 133       return Scaling (Arg_Frac, Exponent);
 134    end Compose;
 135 
 136    ---------------
 137    -- Copy_Sign --
 138    ---------------
 139 
 140    function Copy_Sign (Value, Sign : T) return T is
 141       Result : T;
 142 
 143       function Is_Negative (V : T) return Boolean;
 144       pragma Import (Intrinsic, Is_Negative);
 145 
 146    begin
 147       Result := abs Value;
 148 
 149       if Is_Negative (Sign) then
 150          return -Result;
 151       else
 152          return Result;
 153       end if;
 154    end Copy_Sign;
 155 
 156    ---------------
 157    -- Decompose --
 158    ---------------
 159 
 160    procedure Decompose (XX : T; Frac : out T; Expo : out UI) is
 161       X : constant T := T'Machine (XX);
 162 
 163    begin
 164       if X = 0.0 then
 165 
 166          --  The normalized exponent of zero is zero, see RM A.5.2(15)
 167 
 168          Frac := X;
 169          Expo := 0;
 170 
 171       --  Check for infinities, transfinites, whatnot
 172 
 173       elsif X > T'Safe_Last then
 174          Frac := Invrad;
 175          Expo := T'Machine_Emax + 1;
 176 
 177       elsif X < T'Safe_First then
 178          Frac := -Invrad;
 179          Expo := T'Machine_Emax + 2;    -- how many extra negative values?
 180 
 181       else
 182          --  Case of nonzero finite x. Essentially, we just multiply
 183          --  by Rad ** (+-2**N) to reduce the range.
 184 
 185          declare
 186             Ax : T  := abs X;
 187             Ex : UI := 0;
 188 
 189          --  Ax * Rad ** Ex is invariant
 190 
 191          begin
 192             if Ax >= 1.0 then
 193                while Ax >= R_Power (Expbits'Last) loop
 194                   Ax := Ax * R_Neg_Power (Expbits'Last);
 195                   Ex := Ex + Log_Power (Expbits'Last);
 196                end loop;
 197 
 198                --  Ax < Rad ** 64
 199 
 200                for N in reverse Expbits'First .. Expbits'Last - 1 loop
 201                   if Ax >= R_Power (N) then
 202                      Ax := Ax * R_Neg_Power (N);
 203                      Ex := Ex + Log_Power (N);
 204                   end if;
 205 
 206                   --  Ax < R_Power (N)
 207 
 208                end loop;
 209 
 210                --  1 <= Ax < Rad
 211 
 212                Ax := Ax * Invrad;
 213                Ex := Ex + 1;
 214 
 215             else
 216                --  0 < ax < 1
 217 
 218                while Ax < R_Neg_Power (Expbits'Last) loop
 219                   Ax := Ax * R_Power (Expbits'Last);
 220                   Ex := Ex - Log_Power (Expbits'Last);
 221                end loop;
 222 
 223                --  Rad ** -64 <= Ax < 1
 224 
 225                for N in reverse Expbits'First .. Expbits'Last - 1 loop
 226                   if Ax < R_Neg_Power (N) then
 227                      Ax := Ax * R_Power (N);
 228                      Ex := Ex - Log_Power (N);
 229                   end if;
 230 
 231                   --  R_Neg_Power (N) <= Ax < 1
 232 
 233                end loop;
 234             end if;
 235 
 236             Frac := (if X > 0.0 then Ax else -Ax);
 237             Expo := Ex;
 238          end;
 239       end if;
 240    end Decompose;
 241 
 242    --------------
 243    -- Exponent --
 244    --------------
 245 
 246    function Exponent (X : T) return UI is
 247       X_Frac : T;
 248       X_Exp  : UI;
 249       pragma Unreferenced (X_Frac);
 250    begin
 251       Decompose (X, X_Frac, X_Exp);
 252       return X_Exp;
 253    end Exponent;
 254 
 255    -----------
 256    -- Floor --
 257    -----------
 258 
 259    function Floor (X : T) return T is
 260       XT : constant T := Truncation (X);
 261    begin
 262       if X >= 0.0 then
 263          return XT;
 264       elsif XT = X then
 265          return X;
 266       else
 267          return XT - 1.0;
 268       end if;
 269    end Floor;
 270 
 271    --------------
 272    -- Fraction --
 273    --------------
 274 
 275    function Fraction (X : T) return T is
 276       X_Frac : T;
 277       X_Exp  : UI;
 278       pragma Unreferenced (X_Exp);
 279    begin
 280       Decompose (X, X_Frac, X_Exp);
 281       return X_Frac;
 282    end Fraction;
 283 
 284    ---------------------
 285    -- Gradual_Scaling --
 286    ---------------------
 287 
 288    function Gradual_Scaling  (Adjustment : UI) return T is
 289       Y  : T;
 290       Y1 : T;
 291       Ex : UI := Adjustment;
 292 
 293    begin
 294       if Adjustment < T'Machine_Emin - 1 then
 295          Y  := 2.0 ** T'Machine_Emin;
 296          Y1 := Y;
 297          Ex := Ex - T'Machine_Emin;
 298          while Ex < 0 loop
 299             Y := T'Machine (Y / 2.0);
 300 
 301             if Y = 0.0 then
 302                return Y1;
 303             end if;
 304 
 305             Ex := Ex + 1;
 306             Y1 := Y;
 307          end loop;
 308 
 309          return Y1;
 310 
 311       else
 312          return Scaling (1.0, Adjustment);
 313       end if;
 314    end Gradual_Scaling;
 315 
 316    ------------------
 317    -- Leading_Part --
 318    ------------------
 319 
 320    function Leading_Part (X : T; Radix_Digits : UI) return T is
 321       L    : UI;
 322       Y, Z : T;
 323 
 324    begin
 325       if Radix_Digits >= T'Machine_Mantissa then
 326          return X;
 327 
 328       elsif Radix_Digits <= 0 then
 329          raise Constraint_Error;
 330 
 331       else
 332          L := Exponent (X) - Radix_Digits;
 333          Y := Truncation (Scaling (X, -L));
 334          Z := Scaling (Y, L);
 335          return Z;
 336       end if;
 337    end Leading_Part;
 338 
 339    -------------
 340    -- Machine --
 341    -------------
 342 
 343    --  The trick with Machine is to force the compiler to store the result
 344    --  in memory so that we do not have extra precision used. The compiler
 345    --  is clever, so we have to outwit its possible optimizations. We do
 346    --  this by using an intermediate pragma Volatile location.
 347 
 348    function Machine (X : T) return T is
 349       Temp : T;
 350       pragma Volatile (Temp);
 351    begin
 352       Temp := X;
 353       return Temp;
 354    end Machine;
 355 
 356    ----------------------
 357    -- Machine_Rounding --
 358    ----------------------
 359 
 360    --  For now, the implementation is identical to that of Rounding, which is
 361    --  a permissible behavior, but is not the most efficient possible approach.
 362 
 363    function Machine_Rounding (X : T) return T is
 364       Result : T;
 365       Tail   : T;
 366 
 367    begin
 368       Result := Truncation (abs X);
 369       Tail   := abs X - Result;
 370 
 371       if Tail >= 0.5  then
 372          Result := Result + 1.0;
 373       end if;
 374 
 375       if X > 0.0 then
 376          return Result;
 377 
 378       elsif X < 0.0 then
 379          return -Result;
 380 
 381       --  For zero case, make sure sign of zero is preserved
 382 
 383       else
 384          return X;
 385       end if;
 386    end Machine_Rounding;
 387 
 388    -----------
 389    -- Model --
 390    -----------
 391 
 392    --  We treat Model as identical to Machine. This is true of IEEE and other
 393    --  nice floating-point systems, but not necessarily true of all systems.
 394 
 395    function Model (X : T) return T is
 396    begin
 397       return Machine (X);
 398    end Model;
 399 
 400    ----------
 401    -- Pred --
 402    ----------
 403 
 404    function Pred (X : T) return T is
 405       X_Frac : T;
 406       X_Exp  : UI;
 407 
 408    begin
 409       --  Zero has to be treated specially, since its exponent is zero
 410 
 411       if X = 0.0 then
 412          return -Succ (X);
 413 
 414       --  Special treatment for most negative number
 415 
 416       elsif X = T'First then
 417 
 418          --  If not generating infinities, we raise a constraint error
 419 
 420          if T'Machine_Overflows then
 421             raise Constraint_Error with "Pred of largest negative number";
 422 
 423          --  Otherwise generate a negative infinity
 424 
 425          else
 426             return X / (X - X);
 427          end if;
 428 
 429       --  For infinities, return unchanged
 430 
 431       elsif X < T'First or else X > T'Last then
 432          return X;
 433 
 434       --  Subtract from the given number a number equivalent to the value
 435       --  of its least significant bit. Given that the most significant bit
 436       --  represents a value of 1.0 * radix ** (exp - 1), the value we want
 437       --  is obtained by shifting this by (mantissa-1) bits to the right,
 438       --  i.e. decreasing the exponent by that amount.
 439 
 440       else
 441          Decompose (X, X_Frac, X_Exp);
 442 
 443          --  A special case, if the number we had was a positive power of
 444          --  two, then we want to subtract half of what we would otherwise
 445          --  subtract, since the exponent is going to be reduced.
 446 
 447          --  Note that X_Frac has the same sign as X, so if X_Frac is 0.5,
 448          --  then we know that we have a positive number (and hence a
 449          --  positive power of 2).
 450 
 451          if X_Frac = 0.5 then
 452             return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1);
 453 
 454          --  Otherwise the exponent is unchanged
 455 
 456          else
 457             return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa);
 458          end if;
 459       end if;
 460    end Pred;
 461 
 462    ---------------
 463    -- Remainder --
 464    ---------------
 465 
 466    function Remainder (X, Y : T) return T is
 467       A        : T;
 468       B        : T;
 469       Arg      : T;
 470       P        : T;
 471       P_Frac   : T;
 472       Sign_X   : T;
 473       IEEE_Rem : T;
 474       Arg_Exp  : UI;
 475       P_Exp    : UI;
 476       K        : UI;
 477       P_Even   : Boolean;
 478 
 479       Arg_Frac : T;
 480       pragma Unreferenced (Arg_Frac);
 481 
 482    begin
 483       if Y = 0.0 then
 484          raise Constraint_Error;
 485       end if;
 486 
 487       if X > 0.0 then
 488          Sign_X :=  1.0;
 489          Arg := X;
 490       else
 491          Sign_X := -1.0;
 492          Arg := -X;
 493       end if;
 494 
 495       P := abs Y;
 496 
 497       if Arg < P then
 498          P_Even := True;
 499          IEEE_Rem := Arg;
 500          P_Exp := Exponent (P);
 501 
 502       else
 503          Decompose (Arg, Arg_Frac, Arg_Exp);
 504          Decompose (P,   P_Frac,   P_Exp);
 505 
 506          P := Compose (P_Frac, Arg_Exp);
 507          K := Arg_Exp - P_Exp;
 508          P_Even := True;
 509          IEEE_Rem := Arg;
 510 
 511          for Cnt in reverse 0 .. K loop
 512             if IEEE_Rem >= P then
 513                P_Even := False;
 514                IEEE_Rem := IEEE_Rem - P;
 515             else
 516                P_Even := True;
 517             end if;
 518 
 519             P := P * 0.5;
 520          end loop;
 521       end if;
 522 
 523       --  That completes the calculation of modulus remainder. The final
 524       --  step is get the IEEE remainder. Here we need to compare Rem with
 525       --  (abs Y) / 2. We must be careful of unrepresentable Y/2 value
 526       --  caused by subnormal numbers
 527 
 528       if P_Exp >= 0 then
 529          A := IEEE_Rem;
 530          B := abs Y * 0.5;
 531 
 532       else
 533          A := IEEE_Rem * 2.0;
 534          B := abs Y;
 535       end if;
 536 
 537       if A > B or else (A = B and then not P_Even) then
 538          IEEE_Rem := IEEE_Rem - abs Y;
 539       end if;
 540 
 541       return Sign_X * IEEE_Rem;
 542    end Remainder;
 543 
 544    --------------
 545    -- Rounding --
 546    --------------
 547 
 548    function Rounding (X : T) return T is
 549       Result : T;
 550       Tail   : T;
 551 
 552    begin
 553       Result := Truncation (abs X);
 554       Tail   := abs X - Result;
 555 
 556       if Tail >= 0.5  then
 557          Result := Result + 1.0;
 558       end if;
 559 
 560       if X > 0.0 then
 561          return Result;
 562 
 563       elsif X < 0.0 then
 564          return -Result;
 565 
 566       --  For zero case, make sure sign of zero is preserved
 567 
 568       else
 569          return X;
 570       end if;
 571    end Rounding;
 572 
 573    -------------
 574    -- Scaling --
 575    -------------
 576 
 577    --  Return x * rad ** adjustment quickly, or quietly underflow to zero,
 578    --  or overflow naturally.
 579 
 580    function Scaling (X : T; Adjustment : UI) return T is
 581    begin
 582       if X = 0.0 or else Adjustment = 0 then
 583          return X;
 584       end if;
 585 
 586       --  Nonzero x essentially, just multiply repeatedly by Rad ** (+-2**n)
 587 
 588       declare
 589          Y  : T  := X;
 590          Ex : UI := Adjustment;
 591 
 592       --  Y * Rad ** Ex is invariant
 593 
 594       begin
 595          if Ex < 0 then
 596             while Ex <= -Log_Power (Expbits'Last) loop
 597                Y := Y * R_Neg_Power (Expbits'Last);
 598                Ex := Ex + Log_Power (Expbits'Last);
 599             end loop;
 600 
 601             --  -64 < Ex <= 0
 602 
 603             for N in reverse Expbits'First .. Expbits'Last - 1 loop
 604                if Ex <= -Log_Power (N) then
 605                   Y := Y * R_Neg_Power (N);
 606                   Ex := Ex + Log_Power (N);
 607                end if;
 608 
 609                --  -Log_Power (N) < Ex <= 0
 610 
 611             end loop;
 612 
 613             --  Ex = 0
 614 
 615          else
 616             --  Ex >= 0
 617 
 618             while Ex >= Log_Power (Expbits'Last) loop
 619                Y := Y * R_Power (Expbits'Last);
 620                Ex := Ex - Log_Power (Expbits'Last);
 621             end loop;
 622 
 623             --  0 <= Ex < 64
 624 
 625             for N in reverse Expbits'First .. Expbits'Last - 1 loop
 626                if Ex >= Log_Power (N) then
 627                   Y := Y * R_Power (N);
 628                   Ex := Ex - Log_Power (N);
 629                end if;
 630 
 631                --  0 <= Ex < Log_Power (N)
 632 
 633             end loop;
 634 
 635             --  Ex = 0
 636 
 637          end if;
 638 
 639          return Y;
 640       end;
 641    end Scaling;
 642 
 643    ----------
 644    -- Succ --
 645    ----------
 646 
 647    function Succ (X : T) return T is
 648       X_Frac : T;
 649       X_Exp  : UI;
 650       X1, X2 : T;
 651 
 652    begin
 653       --  Treat zero specially since it has a zero exponent
 654 
 655       if X = 0.0 then
 656          X1 := 2.0 ** T'Machine_Emin;
 657 
 658          --  Following loop generates smallest denormal
 659 
 660          loop
 661             X2 := T'Machine (X1 / 2.0);
 662             exit when X2 = 0.0;
 663             X1 := X2;
 664          end loop;
 665 
 666          return X1;
 667 
 668       --  Special treatment for largest positive number
 669 
 670       elsif X = T'Last then
 671 
 672          --  If not generating infinities, we raise a constraint error
 673 
 674          if T'Machine_Overflows then
 675             raise Constraint_Error with "Succ of largest negative number";
 676 
 677          --  Otherwise generate a positive infinity
 678 
 679          else
 680             return X / (X - X);
 681          end if;
 682 
 683       --  For infinities, return unchanged
 684 
 685       elsif X < T'First or else X > T'Last then
 686          return X;
 687 
 688       --  Add to the given number a number equivalent to the value
 689       --  of its least significant bit. Given that the most significant bit
 690       --  represents a value of 1.0 * radix ** (exp - 1), the value we want
 691       --  is obtained by shifting this by (mantissa-1) bits to the right,
 692       --  i.e. decreasing the exponent by that amount.
 693 
 694       else
 695          Decompose (X, X_Frac, X_Exp);
 696 
 697          --  A special case, if the number we had was a negative power of two,
 698          --  then we want to add half of what we would otherwise add, since the
 699          --  exponent is going to be reduced.
 700 
 701          --  Note that X_Frac has the same sign as X, so if X_Frac is -0.5,
 702          --  then we know that we have a negative number (and hence a negative
 703          --  power of 2).
 704 
 705          if X_Frac = -0.5 then
 706             return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1);
 707 
 708          --  Otherwise the exponent is unchanged
 709 
 710          else
 711             return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa);
 712          end if;
 713       end if;
 714    end Succ;
 715 
 716    ----------------
 717    -- Truncation --
 718    ----------------
 719 
 720    --  The basic approach is to compute
 721 
 722    --    T'Machine (RM1 + N) - RM1
 723 
 724    --  where N >= 0.0 and RM1 = radix ** (mantissa - 1)
 725 
 726    --  This works provided that the intermediate result (RM1 + N) does not
 727    --  have extra precision (which is why we call Machine). When we compute
 728    --  RM1 + N, the exponent of N will be normalized and the mantissa shifted
 729    --  shifted appropriately so the lower order bits, which cannot contribute
 730    --  to the integer part of N, fall off on the right. When we subtract RM1
 731    --  again, the significant bits of N are shifted to the left, and what we
 732    --  have is an integer, because only the first e bits are different from
 733    --  zero (assuming binary radix here).
 734 
 735    function Truncation (X : T) return T is
 736       Result : T;
 737 
 738    begin
 739       Result := abs X;
 740 
 741       if Result >= Radix_To_M_Minus_1 then
 742          return Machine (X);
 743 
 744       else
 745          Result := Machine (Radix_To_M_Minus_1 + Result) - Radix_To_M_Minus_1;
 746 
 747          if Result > abs X then
 748             Result := Result - 1.0;
 749          end if;
 750 
 751          if X > 0.0 then
 752             return  Result;
 753 
 754          elsif X < 0.0 then
 755             return -Result;
 756 
 757          --  For zero case, make sure sign of zero is preserved
 758 
 759          else
 760             return X;
 761          end if;
 762       end if;
 763    end Truncation;
 764 
 765    -----------------------
 766    -- Unbiased_Rounding --
 767    -----------------------
 768 
 769    function Unbiased_Rounding (X : T) return T is
 770       Abs_X  : constant T := abs X;
 771       Result : T;
 772       Tail   : T;
 773 
 774    begin
 775       Result := Truncation (Abs_X);
 776       Tail   := Abs_X - Result;
 777 
 778       if Tail > 0.5  then
 779          Result := Result + 1.0;
 780 
 781       elsif Tail = 0.5 then
 782          Result := 2.0 * Truncation ((Result / 2.0) + 0.5);
 783       end if;
 784 
 785       if X > 0.0 then
 786          return Result;
 787 
 788       elsif X < 0.0 then
 789          return -Result;
 790 
 791       --  For zero case, make sure sign of zero is preserved
 792 
 793       else
 794          return X;
 795       end if;
 796    end Unbiased_Rounding;
 797 
 798    -----------
 799    -- Valid --
 800    -----------
 801 
 802    function Valid (X : not null access T) return Boolean is
 803       IEEE_Emin : constant Integer := T'Machine_Emin - 1;
 804       IEEE_Emax : constant Integer := T'Machine_Emax - 1;
 805 
 806       IEEE_Bias : constant Integer := -(IEEE_Emin - 1);
 807 
 808       subtype IEEE_Exponent_Range is
 809         Integer range IEEE_Emin - 1 .. IEEE_Emax + 1;
 810 
 811       --  The implementation of this floating point attribute uses a
 812       --  representation type Float_Rep that allows direct access to the
 813       --  exponent and mantissa parts of a floating point number.
 814 
 815       --  The Float_Rep type is an array of Float_Word elements. This
 816       --  representation is chosen to make it possible to size the type based
 817       --  on a generic parameter. Since the array size is known at compile
 818       --  time, efficient code can still be generated. The size of Float_Word
 819       --  elements should be large enough to allow accessing the exponent in
 820       --  one read, but small enough so that all floating point object sizes
 821       --  are a multiple of the Float_Word'Size.
 822 
 823       --  The following conditions must be met for all possible instantiations
 824       --  of the attributes package:
 825 
 826       --    - T'Size is an integral multiple of Float_Word'Size
 827 
 828       --    - The exponent and sign are completely contained in a single
 829       --      component of Float_Rep, named Most_Significant_Word (MSW).
 830 
 831       --    - The sign occupies the most significant bit of the MSW and the
 832       --      exponent is in the following bits. Unused bits (if any) are in
 833       --      the least significant part.
 834 
 835       type Float_Word is mod 2**Positive'Min (System.Word_Size, 32);
 836       type Rep_Index is range 0 .. 7;
 837 
 838       Rep_Words : constant Positive :=
 839                     (T'Size + Float_Word'Size - 1) / Float_Word'Size;
 840       Rep_Last  : constant Rep_Index :=
 841                     Rep_Index'Min
 842                       (Rep_Index (Rep_Words - 1),
 843                        (T'Mantissa + 16) / Float_Word'Size);
 844       --  Determine the number of Float_Words needed for representing the
 845       --  entire floating-point value. Do not take into account excessive
 846       --  padding, as occurs on IA-64 where 80 bits floats get padded to 128
 847       --  bits. In general, the exponent field cannot be larger than 15 bits,
 848       --  even for 128-bit floating-point types, so the final format size
 849       --  won't be larger than T'Mantissa + 16.
 850 
 851       type Float_Rep is
 852          array (Rep_Index range 0 .. Rep_Index (Rep_Words - 1)) of Float_Word;
 853 
 854       pragma Suppress_Initialization (Float_Rep);
 855       --  This pragma suppresses the generation of an initialization procedure
 856       --  for type Float_Rep when operating in Initialize/Normalize_Scalars
 857       --  mode. This is not just a matter of efficiency, but of functionality,
 858       --  since Valid has a pragma Inline_Always, which is not permitted if
 859       --  there are nested subprograms present.
 860 
 861       Most_Significant_Word : constant Rep_Index :=
 862                                 Rep_Last * Standard'Default_Bit_Order;
 863       --  Finding the location of the Exponent_Word is a bit tricky. In general
 864       --  we assume Word_Order = Bit_Order.
 865 
 866       Exponent_Factor : constant Float_Word :=
 867                           2**(Float_Word'Size - 1) /
 868                             Float_Word (IEEE_Emax - IEEE_Emin + 3) *
 869                               Boolean'Pos (Most_Significant_Word /= 2) +
 870                                 Boolean'Pos (Most_Significant_Word = 2);
 871       --  Factor that the extracted exponent needs to be divided by to be in
 872       --  range 0 .. IEEE_Emax - IEEE_Emin + 2. Special case: Exponent_Factor
 873       --  is 1 for x86/IA64 double extended (GCC adds unused bits to the type).
 874 
 875       Exponent_Mask : constant Float_Word :=
 876                         Float_Word (IEEE_Emax - IEEE_Emin + 2) *
 877                           Exponent_Factor;
 878       --  Value needed to mask out the exponent field. This assumes that the
 879       --  range IEEE_Emin - 1 .. IEEE_Emax + contains 2**N values, for some N
 880       --  in Natural.
 881 
 882       function To_Float is new Ada.Unchecked_Conversion (Float_Rep, T);
 883 
 884       type Float_Access is access all T;
 885       function To_Address is
 886          new Ada.Unchecked_Conversion (Float_Access, System.Address);
 887 
 888       XA : constant System.Address := To_Address (Float_Access (X));
 889 
 890       R : Float_Rep;
 891       pragma Import (Ada, R);
 892       for R'Address use XA;
 893       --  R is a view of the input floating-point parameter. Note that we
 894       --  must avoid copying the actual bits of this parameter in float
 895       --  form (since it may be a signalling NaN).
 896 
 897       E  : constant IEEE_Exponent_Range :=
 898              Integer ((R (Most_Significant_Word) and Exponent_Mask) /
 899                                                         Exponent_Factor)
 900                - IEEE_Bias;
 901       --  Mask/Shift T to only get bits from the exponent. Then convert biased
 902       --  value to integer value.
 903 
 904       SR : Float_Rep;
 905       --  Float_Rep representation of significant of X.all
 906 
 907    begin
 908       if T'Denorm then
 909 
 910          --  All denormalized numbers are valid, so the only invalid numbers
 911          --  are overflows and NaNs, both with exponent = Emax + 1.
 912 
 913          return E /= IEEE_Emax + 1;
 914 
 915       end if;
 916 
 917       --  All denormalized numbers except 0.0 are invalid
 918 
 919       --  Set exponent of X to zero, so we end up with the significand, which
 920       --  definitely is a valid number and can be converted back to a float.
 921 
 922       SR := R;
 923       SR (Most_Significant_Word) :=
 924            (SR (Most_Significant_Word)
 925              and not Exponent_Mask) + Float_Word (IEEE_Bias) * Exponent_Factor;
 926 
 927       return (E in IEEE_Emin .. IEEE_Emax) or else
 928          ((E = IEEE_Emin - 1) and then abs To_Float (SR) = 1.0);
 929    end Valid;
 930 
 931 end System.Fat_Gen;