File : s-taprop-mingw.adb


   1 ------------------------------------------------------------------------------
   2 --                                                                          --
   3 --                 GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS                 --
   4 --                                                                          --
   5 --     S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S    --
   6 --                                                                          --
   7 --                                  B o d y                                 --
   8 --                                                                          --
   9 --          Copyright (C) 1992-2015, Free Software Foundation, Inc.         --
  10 --                                                                          --
  11 -- GNARL is free software; you can  redistribute it  and/or modify it under --
  12 -- terms of the  GNU General Public License as published  by the Free Soft- --
  13 -- ware  Foundation;  either version 3,  or (at your option) any later ver- --
  14 -- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
  15 -- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
  16 -- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
  17 --                                                                          --
  18 --                                                                          --
  19 --                                                                          --
  20 --                                                                          --
  21 --                                                                          --
  22 -- You should have received a copy of the GNU General Public License and    --
  23 -- a copy of the GCC Runtime Library Exception along with this program;     --
  24 -- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
  25 -- <http://www.gnu.org/licenses/>.                                          --
  26 --                                                                          --
  27 -- GNARL was developed by the GNARL team at Florida State University.       --
  28 -- Extensive contributions were provided by Ada Core Technologies, Inc.     --
  29 --                                                                          --
  30 ------------------------------------------------------------------------------
  31 
  32 --  This is a NT (native) version of this package
  33 
  34 --  This package contains all the GNULL primitives that interface directly with
  35 --  the underlying OS.
  36 
  37 pragma Polling (Off);
  38 --  Turn off polling, we do not want ATC polling to take place during tasking
  39 --  operations. It causes infinite loops and other problems.
  40 
  41 with Interfaces.C;
  42 with Interfaces.C.Strings;
  43 
  44 with System.Float_Control;
  45 with System.Interrupt_Management;
  46 with System.Multiprocessors;
  47 with System.OS_Primitives;
  48 with System.Task_Info;
  49 with System.Tasking.Debug;
  50 with System.Win32.Ext;
  51 
  52 with System.Soft_Links;
  53 --  We use System.Soft_Links instead of System.Tasking.Initialization because
  54 --  the later is a higher level package that we shouldn't depend on. For
  55 --  example when using the restricted run time, it is replaced by
  56 --  System.Tasking.Restricted.Stages.
  57 
  58 package body System.Task_Primitives.Operations is
  59 
  60    package SSL renames System.Soft_Links;
  61 
  62    use Interfaces.C;
  63    use Interfaces.C.Strings;
  64    use System.OS_Interface;
  65    use System.OS_Primitives;
  66    use System.Parameters;
  67    use System.Task_Info;
  68    use System.Tasking;
  69    use System.Tasking.Debug;
  70    use System.Win32;
  71    use System.Win32.Ext;
  72 
  73    pragma Link_With ("-Xlinker --stack=0x200000,0x1000");
  74    --  Change the default stack size (2 MB) for tasking programs on Windows.
  75    --  This allows about 1000 tasks running at the same time. Note that
  76    --  we set the stack size for non tasking programs on System unit.
  77    --  Also note that under Windows XP, we use a Windows XP extension to
  78    --  specify the stack size on a per task basis, as done under other OSes.
  79 
  80    ---------------------
  81    -- Local Functions --
  82    ---------------------
  83 
  84    procedure InitializeCriticalSection (pCriticalSection : access RTS_Lock);
  85    procedure InitializeCriticalSection
  86      (pCriticalSection : access CRITICAL_SECTION);
  87    pragma Import
  88      (Stdcall, InitializeCriticalSection, "InitializeCriticalSection");
  89 
  90    procedure EnterCriticalSection (pCriticalSection : access RTS_Lock);
  91    procedure EnterCriticalSection
  92      (pCriticalSection : access CRITICAL_SECTION);
  93    pragma Import (Stdcall, EnterCriticalSection, "EnterCriticalSection");
  94 
  95    procedure LeaveCriticalSection (pCriticalSection : access RTS_Lock);
  96    procedure LeaveCriticalSection (pCriticalSection : access CRITICAL_SECTION);
  97    pragma Import (Stdcall, LeaveCriticalSection, "LeaveCriticalSection");
  98 
  99    procedure DeleteCriticalSection (pCriticalSection : access RTS_Lock);
 100    procedure DeleteCriticalSection
 101      (pCriticalSection : access CRITICAL_SECTION);
 102    pragma Import (Stdcall, DeleteCriticalSection, "DeleteCriticalSection");
 103 
 104    ----------------
 105    -- Local Data --
 106    ----------------
 107 
 108    Environment_Task_Id : Task_Id;
 109    --  A variable to hold Task_Id for the environment task
 110 
 111    Single_RTS_Lock : aliased RTS_Lock;
 112    --  This is a lock to allow only one thread of control in the RTS at
 113    --  a time; it is used to execute in mutual exclusion from all other tasks.
 114    --  Used mainly in Single_Lock mode, but also to protect All_Tasks_List
 115 
 116    Time_Slice_Val : Integer;
 117    pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
 118 
 119    Dispatching_Policy : Character;
 120    pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
 121 
 122    function Get_Policy (Prio : System.Any_Priority) return Character;
 123    pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
 124    --  Get priority specific dispatching policy
 125 
 126    Foreign_Task_Elaborated : aliased Boolean := True;
 127    --  Used to identified fake tasks (i.e., non-Ada Threads)
 128 
 129    Null_Thread_Id : constant Thread_Id := 0;
 130    --  Constant to indicate that the thread identifier has not yet been
 131    --  initialized.
 132 
 133    ------------------------------------
 134    -- The thread local storage index --
 135    ------------------------------------
 136 
 137    TlsIndex : DWORD;
 138    pragma Export (Ada, TlsIndex);
 139    --  To ensure that this variable won't be local to this package, since
 140    --  in some cases, inlining forces this variable to be global anyway.
 141 
 142    --------------------
 143    -- Local Packages --
 144    --------------------
 145 
 146    package Specific is
 147 
 148       function Is_Valid_Task return Boolean;
 149       pragma Inline (Is_Valid_Task);
 150       --  Does executing thread have a TCB?
 151 
 152       procedure Set (Self_Id : Task_Id);
 153       pragma Inline (Set);
 154       --  Set the self id for the current task
 155 
 156    end Specific;
 157 
 158    package body Specific is
 159 
 160       function Is_Valid_Task return Boolean is
 161       begin
 162          return TlsGetValue (TlsIndex) /= System.Null_Address;
 163       end Is_Valid_Task;
 164 
 165       procedure Set (Self_Id : Task_Id) is
 166          Succeeded : BOOL;
 167       begin
 168          Succeeded := TlsSetValue (TlsIndex, To_Address (Self_Id));
 169          pragma Assert (Succeeded = Win32.TRUE);
 170       end Set;
 171 
 172    end Specific;
 173 
 174    ----------------------------------
 175    -- ATCB allocation/deallocation --
 176    ----------------------------------
 177 
 178    package body ATCB_Allocation is separate;
 179    --  The body of this package is shared across several targets
 180 
 181    ---------------------------------
 182    -- Support for foreign threads --
 183    ---------------------------------
 184 
 185    function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
 186    --  Allocate and Initialize a new ATCB for the current Thread
 187 
 188    function Register_Foreign_Thread
 189      (Thread : Thread_Id) return Task_Id is separate;
 190 
 191    ----------------------------------
 192    -- Condition Variable Functions --
 193    ----------------------------------
 194 
 195    procedure Initialize_Cond (Cond : not null access Condition_Variable);
 196    --  Initialize given condition variable Cond
 197 
 198    procedure Finalize_Cond (Cond : not null access Condition_Variable);
 199    --  Finalize given condition variable Cond
 200 
 201    procedure Cond_Signal (Cond : not null access Condition_Variable);
 202    --  Signal condition variable Cond
 203 
 204    procedure Cond_Wait
 205      (Cond : not null access Condition_Variable;
 206       L    : not null access RTS_Lock);
 207    --  Wait on conditional variable Cond, using lock L
 208 
 209    procedure Cond_Timed_Wait
 210      (Cond      : not null access Condition_Variable;
 211       L         : not null access RTS_Lock;
 212       Rel_Time  : Duration;
 213       Timed_Out : out Boolean;
 214       Status    : out Integer);
 215    --  Do timed wait on condition variable Cond using lock L. The duration
 216    --  of the timed wait is given by Rel_Time. When the condition is
 217    --  signalled, Timed_Out shows whether or not a time out occurred.
 218    --  Status is only valid if Timed_Out is False, in which case it
 219    --  shows whether Cond_Timed_Wait completed successfully.
 220 
 221    ---------------------
 222    -- Initialize_Cond --
 223    ---------------------
 224 
 225    procedure Initialize_Cond (Cond : not null access Condition_Variable) is
 226       hEvent : HANDLE;
 227    begin
 228       hEvent := CreateEvent (null, Win32.TRUE, Win32.FALSE, Null_Ptr);
 229       pragma Assert (hEvent /= 0);
 230       Cond.all := Condition_Variable (hEvent);
 231    end Initialize_Cond;
 232 
 233    -------------------
 234    -- Finalize_Cond --
 235    -------------------
 236 
 237    --  No such problem here, DosCloseEventSem has been derived.
 238    --  What does such refer to in above comment???
 239 
 240    procedure Finalize_Cond (Cond : not null access Condition_Variable) is
 241       Result : BOOL;
 242    begin
 243       Result := CloseHandle (HANDLE (Cond.all));
 244       pragma Assert (Result = Win32.TRUE);
 245    end Finalize_Cond;
 246 
 247    -----------------
 248    -- Cond_Signal --
 249    -----------------
 250 
 251    procedure Cond_Signal (Cond : not null access Condition_Variable) is
 252       Result : BOOL;
 253    begin
 254       Result := SetEvent (HANDLE (Cond.all));
 255       pragma Assert (Result = Win32.TRUE);
 256    end Cond_Signal;
 257 
 258    ---------------
 259    -- Cond_Wait --
 260    ---------------
 261 
 262    --  Pre-condition: Cond is posted
 263    --                 L is locked.
 264 
 265    --  Post-condition: Cond is posted
 266    --                  L is locked.
 267 
 268    procedure Cond_Wait
 269      (Cond : not null access Condition_Variable;
 270       L    : not null access RTS_Lock)
 271    is
 272       Result      : DWORD;
 273       Result_Bool : BOOL;
 274 
 275    begin
 276       --  Must reset Cond BEFORE L is unlocked
 277 
 278       Result_Bool := ResetEvent (HANDLE (Cond.all));
 279       pragma Assert (Result_Bool = Win32.TRUE);
 280       Unlock (L, Global_Lock => True);
 281 
 282       --  No problem if we are interrupted here: if the condition is signaled,
 283       --  WaitForSingleObject will simply not block
 284 
 285       Result := WaitForSingleObject (HANDLE (Cond.all), Wait_Infinite);
 286       pragma Assert (Result = 0);
 287 
 288       Write_Lock (L, Global_Lock => True);
 289    end Cond_Wait;
 290 
 291    ---------------------
 292    -- Cond_Timed_Wait --
 293    ---------------------
 294 
 295    --  Pre-condition: Cond is posted
 296    --                 L is locked.
 297 
 298    --  Post-condition: Cond is posted
 299    --                  L is locked.
 300 
 301    procedure Cond_Timed_Wait
 302      (Cond      : not null access Condition_Variable;
 303       L         : not null access RTS_Lock;
 304       Rel_Time  : Duration;
 305       Timed_Out : out Boolean;
 306       Status    : out Integer)
 307    is
 308       Time_Out_Max : constant DWORD := 16#FFFF0000#;
 309       --  NT 4 can't handle excessive timeout values (e.g. DWORD'Last - 1)
 310 
 311       Time_Out    : DWORD;
 312       Result      : BOOL;
 313       Wait_Result : DWORD;
 314 
 315    begin
 316       --  Must reset Cond BEFORE L is unlocked
 317 
 318       Result := ResetEvent (HANDLE (Cond.all));
 319       pragma Assert (Result = Win32.TRUE);
 320       Unlock (L, Global_Lock => True);
 321 
 322       --  No problem if we are interrupted here: if the condition is signaled,
 323       --  WaitForSingleObject will simply not block.
 324 
 325       if Rel_Time <= 0.0 then
 326          Timed_Out := True;
 327          Wait_Result := 0;
 328 
 329       else
 330          Time_Out :=
 331            (if Rel_Time >= Duration (Time_Out_Max) / 1000
 332             then Time_Out_Max
 333             else DWORD (Rel_Time * 1000));
 334 
 335          Wait_Result := WaitForSingleObject (HANDLE (Cond.all), Time_Out);
 336 
 337          if Wait_Result = WAIT_TIMEOUT then
 338             Timed_Out := True;
 339             Wait_Result := 0;
 340          else
 341             Timed_Out := False;
 342          end if;
 343       end if;
 344 
 345       Write_Lock (L, Global_Lock => True);
 346 
 347       --  Ensure post-condition
 348 
 349       if Timed_Out then
 350          Result := SetEvent (HANDLE (Cond.all));
 351          pragma Assert (Result = Win32.TRUE);
 352       end if;
 353 
 354       Status := Integer (Wait_Result);
 355    end Cond_Timed_Wait;
 356 
 357    ------------------
 358    -- Stack_Guard  --
 359    ------------------
 360 
 361    --  The underlying thread system sets a guard page at the bottom of a thread
 362    --  stack, so nothing is needed.
 363    --  ??? Check the comment above
 364 
 365    procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
 366       pragma Unreferenced (T, On);
 367    begin
 368       null;
 369    end Stack_Guard;
 370 
 371    --------------------
 372    -- Get_Thread_Id  --
 373    --------------------
 374 
 375    function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
 376    begin
 377       return T.Common.LL.Thread;
 378    end Get_Thread_Id;
 379 
 380    ----------
 381    -- Self --
 382    ----------
 383 
 384    function Self return Task_Id is
 385       Self_Id : constant Task_Id := To_Task_Id (TlsGetValue (TlsIndex));
 386    begin
 387       if Self_Id = null then
 388          return Register_Foreign_Thread (GetCurrentThread);
 389       else
 390          return Self_Id;
 391       end if;
 392    end Self;
 393 
 394    ---------------------
 395    -- Initialize_Lock --
 396    ---------------------
 397 
 398    --  Note: mutexes and cond_variables needed per-task basis are initialized
 399    --  in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
 400    --  as RTS_Lock, Memory_Lock...) used in the RTS is initialized before any
 401    --  status change of RTS. Therefore raising Storage_Error in the following
 402    --  routines should be able to be handled safely.
 403 
 404    procedure Initialize_Lock
 405      (Prio : System.Any_Priority;
 406       L    : not null access Lock)
 407    is
 408    begin
 409       InitializeCriticalSection (L.Mutex'Access);
 410       L.Owner_Priority := 0;
 411       L.Priority := Prio;
 412    end Initialize_Lock;
 413 
 414    procedure Initialize_Lock
 415      (L : not null access RTS_Lock; Level : Lock_Level)
 416    is
 417       pragma Unreferenced (Level);
 418    begin
 419       InitializeCriticalSection (L);
 420    end Initialize_Lock;
 421 
 422    -------------------
 423    -- Finalize_Lock --
 424    -------------------
 425 
 426    procedure Finalize_Lock (L : not null access Lock) is
 427    begin
 428       DeleteCriticalSection (L.Mutex'Access);
 429    end Finalize_Lock;
 430 
 431    procedure Finalize_Lock (L : not null access RTS_Lock) is
 432    begin
 433       DeleteCriticalSection (L);
 434    end Finalize_Lock;
 435 
 436    ----------------
 437    -- Write_Lock --
 438    ----------------
 439 
 440    procedure Write_Lock
 441      (L : not null access Lock; Ceiling_Violation : out Boolean) is
 442    begin
 443       L.Owner_Priority := Get_Priority (Self);
 444 
 445       if L.Priority < L.Owner_Priority then
 446          Ceiling_Violation := True;
 447          return;
 448       end if;
 449 
 450       EnterCriticalSection (L.Mutex'Access);
 451 
 452       Ceiling_Violation := False;
 453    end Write_Lock;
 454 
 455    procedure Write_Lock
 456      (L           : not null access RTS_Lock;
 457       Global_Lock : Boolean := False)
 458    is
 459    begin
 460       if not Single_Lock or else Global_Lock then
 461          EnterCriticalSection (L);
 462       end if;
 463    end Write_Lock;
 464 
 465    procedure Write_Lock (T : Task_Id) is
 466    begin
 467       if not Single_Lock then
 468          EnterCriticalSection (T.Common.LL.L'Access);
 469       end if;
 470    end Write_Lock;
 471 
 472    ---------------
 473    -- Read_Lock --
 474    ---------------
 475 
 476    procedure Read_Lock
 477      (L : not null access Lock; Ceiling_Violation : out Boolean) is
 478    begin
 479       Write_Lock (L, Ceiling_Violation);
 480    end Read_Lock;
 481 
 482    ------------
 483    -- Unlock --
 484    ------------
 485 
 486    procedure Unlock (L : not null access Lock) is
 487    begin
 488       LeaveCriticalSection (L.Mutex'Access);
 489    end Unlock;
 490 
 491    procedure Unlock
 492      (L : not null access RTS_Lock; Global_Lock : Boolean := False) is
 493    begin
 494       if not Single_Lock or else Global_Lock then
 495          LeaveCriticalSection (L);
 496       end if;
 497    end Unlock;
 498 
 499    procedure Unlock (T : Task_Id) is
 500    begin
 501       if not Single_Lock then
 502          LeaveCriticalSection (T.Common.LL.L'Access);
 503       end if;
 504    end Unlock;
 505 
 506    -----------------
 507    -- Set_Ceiling --
 508    -----------------
 509 
 510    --  Dynamic priority ceilings are not supported by the underlying system
 511 
 512    procedure Set_Ceiling
 513      (L    : not null access Lock;
 514       Prio : System.Any_Priority)
 515    is
 516       pragma Unreferenced (L, Prio);
 517    begin
 518       null;
 519    end Set_Ceiling;
 520 
 521    -----------
 522    -- Sleep --
 523    -----------
 524 
 525    procedure Sleep
 526      (Self_ID : Task_Id;
 527       Reason  : System.Tasking.Task_States)
 528    is
 529       pragma Unreferenced (Reason);
 530 
 531    begin
 532       pragma Assert (Self_ID = Self);
 533 
 534       if Single_Lock then
 535          Cond_Wait (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
 536       else
 537          Cond_Wait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
 538       end if;
 539 
 540       if Self_ID.Deferral_Level = 0
 541         and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
 542       then
 543          Unlock (Self_ID);
 544          raise Standard'Abort_Signal;
 545       end if;
 546    end Sleep;
 547 
 548    -----------------
 549    -- Timed_Sleep --
 550    -----------------
 551 
 552    --  This is for use within the run-time system, so abort is assumed to be
 553    --  already deferred, and the caller should be holding its own ATCB lock.
 554 
 555    procedure Timed_Sleep
 556      (Self_ID  : Task_Id;
 557       Time     : Duration;
 558       Mode     : ST.Delay_Modes;
 559       Reason   : System.Tasking.Task_States;
 560       Timedout : out Boolean;
 561       Yielded  : out Boolean)
 562    is
 563       pragma Unreferenced (Reason);
 564       Check_Time : Duration := Monotonic_Clock;
 565       Rel_Time   : Duration;
 566       Abs_Time   : Duration;
 567 
 568       Result : Integer;
 569       pragma Unreferenced (Result);
 570 
 571       Local_Timedout : Boolean;
 572 
 573    begin
 574       Timedout := True;
 575       Yielded  := False;
 576 
 577       if Mode = Relative then
 578          Rel_Time := Time;
 579          Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
 580       else
 581          Rel_Time := Time - Check_Time;
 582          Abs_Time := Time;
 583       end if;
 584 
 585       if Rel_Time > 0.0 then
 586          loop
 587             exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
 588 
 589             if Single_Lock then
 590                Cond_Timed_Wait
 591                  (Self_ID.Common.LL.CV'Access,
 592                   Single_RTS_Lock'Access,
 593                   Rel_Time, Local_Timedout, Result);
 594             else
 595                Cond_Timed_Wait
 596                  (Self_ID.Common.LL.CV'Access,
 597                   Self_ID.Common.LL.L'Access,
 598                   Rel_Time, Local_Timedout, Result);
 599             end if;
 600 
 601             Check_Time := Monotonic_Clock;
 602             exit when Abs_Time <= Check_Time;
 603 
 604             if not Local_Timedout then
 605 
 606                --  Somebody may have called Wakeup for us
 607 
 608                Timedout := False;
 609                exit;
 610             end if;
 611 
 612             Rel_Time := Abs_Time - Check_Time;
 613          end loop;
 614       end if;
 615    end Timed_Sleep;
 616 
 617    -----------------
 618    -- Timed_Delay --
 619    -----------------
 620 
 621    procedure Timed_Delay
 622      (Self_ID : Task_Id;
 623       Time    : Duration;
 624       Mode    : ST.Delay_Modes)
 625    is
 626       Check_Time : Duration := Monotonic_Clock;
 627       Rel_Time   : Duration;
 628       Abs_Time   : Duration;
 629 
 630       Timedout : Boolean;
 631       Result   : Integer;
 632       pragma Unreferenced (Timedout, Result);
 633 
 634    begin
 635       if Single_Lock then
 636          Lock_RTS;
 637       end if;
 638 
 639       Write_Lock (Self_ID);
 640 
 641       if Mode = Relative then
 642          Rel_Time := Time;
 643          Abs_Time := Time + Check_Time;
 644       else
 645          Rel_Time := Time - Check_Time;
 646          Abs_Time := Time;
 647       end if;
 648 
 649       if Rel_Time > 0.0 then
 650          Self_ID.Common.State := Delay_Sleep;
 651 
 652          loop
 653             exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
 654 
 655             if Single_Lock then
 656                Cond_Timed_Wait
 657                  (Self_ID.Common.LL.CV'Access,
 658                   Single_RTS_Lock'Access,
 659                   Rel_Time, Timedout, Result);
 660             else
 661                Cond_Timed_Wait
 662                  (Self_ID.Common.LL.CV'Access,
 663                   Self_ID.Common.LL.L'Access,
 664                   Rel_Time, Timedout, Result);
 665             end if;
 666 
 667             Check_Time := Monotonic_Clock;
 668             exit when Abs_Time <= Check_Time;
 669 
 670             Rel_Time := Abs_Time - Check_Time;
 671          end loop;
 672 
 673          Self_ID.Common.State := Runnable;
 674       end if;
 675 
 676       Unlock (Self_ID);
 677 
 678       if Single_Lock then
 679          Unlock_RTS;
 680       end if;
 681 
 682       Yield;
 683    end Timed_Delay;
 684 
 685    ------------
 686    -- Wakeup --
 687    ------------
 688 
 689    procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
 690       pragma Unreferenced (Reason);
 691    begin
 692       Cond_Signal (T.Common.LL.CV'Access);
 693    end Wakeup;
 694 
 695    -----------
 696    -- Yield --
 697    -----------
 698 
 699    procedure Yield (Do_Yield : Boolean := True) is
 700    begin
 701       --  Note: in a previous implementation if Do_Yield was False, then we
 702       --  introduced a delay of 1 millisecond in an attempt to get closer to
 703       --  annex D semantics, and in particular to make ACATS CXD8002 pass. But
 704       --  this change introduced a huge performance regression evaluating the
 705       --  Count attribute. So we decided to remove this processing.
 706 
 707       --  Moreover, CXD8002 appears to pass on Windows (although we do not
 708       --  guarantee full Annex D compliance on Windows in any case).
 709 
 710       if Do_Yield then
 711          SwitchToThread;
 712       end if;
 713    end Yield;
 714 
 715    ------------------
 716    -- Set_Priority --
 717    ------------------
 718 
 719    procedure Set_Priority
 720      (T                   : Task_Id;
 721       Prio                : System.Any_Priority;
 722       Loss_Of_Inheritance : Boolean := False)
 723    is
 724       Res : BOOL;
 725       pragma Unreferenced (Loss_Of_Inheritance);
 726 
 727    begin
 728       Res :=
 729         SetThreadPriority
 730           (T.Common.LL.Thread,
 731            Interfaces.C.int (Underlying_Priorities (Prio)));
 732       pragma Assert (Res = Win32.TRUE);
 733 
 734       --  Note: Annex D (RM D.2.3(5/2)) requires the task to be placed at the
 735       --  head of its priority queue when decreasing its priority as a result
 736       --  of a loss of inherited priority. This is not the case, but we
 737       --  consider it an acceptable variation (RM 1.1.3(6)), given this is
 738       --  the built-in behavior offered by the Windows operating system.
 739 
 740       --  In older versions we attempted to better approximate the Annex D
 741       --  required behavior, but this simulation was not entirely accurate,
 742       --  and it seems better to live with the standard Windows semantics.
 743 
 744       T.Common.Current_Priority := Prio;
 745    end Set_Priority;
 746 
 747    ------------------
 748    -- Get_Priority --
 749    ------------------
 750 
 751    function Get_Priority (T : Task_Id) return System.Any_Priority is
 752    begin
 753       return T.Common.Current_Priority;
 754    end Get_Priority;
 755 
 756    ----------------
 757    -- Enter_Task --
 758    ----------------
 759 
 760    --  There were two paths were we needed to call Enter_Task :
 761    --  1) from System.Task_Primitives.Operations.Initialize
 762    --  2) from System.Tasking.Stages.Task_Wrapper
 763 
 764    --  The thread initialisation has to be done only for the first case
 765 
 766    --  This is because the GetCurrentThread NT call does not return the real
 767    --  thread handler but only a "pseudo" one. It is not possible to release
 768    --  the thread handle and free the system resources from this "pseudo"
 769    --  handle. So we really want to keep the real thread handle set in
 770    --  System.Task_Primitives.Operations.Create_Task during thread creation.
 771 
 772    procedure Enter_Task (Self_ID : Task_Id) is
 773       procedure Get_Stack_Bounds (Base : Address; Limit : Address);
 774       pragma Import (C, Get_Stack_Bounds, "__gnat_get_stack_bounds");
 775       --  Get stack boundaries
 776    begin
 777       Specific.Set (Self_ID);
 778 
 779       --  Properly initializes the FPU for x86 systems
 780 
 781       System.Float_Control.Reset;
 782 
 783       if Self_ID.Common.Task_Info /= null
 784         and then
 785           Self_ID.Common.Task_Info.CPU >= CPU_Number (Number_Of_Processors)
 786       then
 787          raise Invalid_CPU_Number;
 788       end if;
 789 
 790       Self_ID.Common.LL.Thread_Id := GetCurrentThreadId;
 791 
 792       Get_Stack_Bounds
 793         (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Base'Address,
 794          Self_ID.Common.Compiler_Data.Pri_Stack_Info.Limit'Address);
 795    end Enter_Task;
 796 
 797    -------------------
 798    -- Is_Valid_Task --
 799    -------------------
 800 
 801    function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
 802 
 803    -----------------------------
 804    -- Register_Foreign_Thread --
 805    -----------------------------
 806 
 807    function Register_Foreign_Thread return Task_Id is
 808    begin
 809       if Is_Valid_Task then
 810          return Self;
 811       else
 812          return Register_Foreign_Thread (GetCurrentThread);
 813       end if;
 814    end Register_Foreign_Thread;
 815 
 816    --------------------
 817    -- Initialize_TCB --
 818    --------------------
 819 
 820    procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
 821    begin
 822       --  Initialize thread ID to 0, this is needed to detect threads that
 823       --  are not yet activated.
 824 
 825       Self_ID.Common.LL.Thread := Null_Thread_Id;
 826 
 827       Initialize_Cond (Self_ID.Common.LL.CV'Access);
 828 
 829       if not Single_Lock then
 830          Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
 831       end if;
 832 
 833       Succeeded := True;
 834    end Initialize_TCB;
 835 
 836    -----------------
 837    -- Create_Task --
 838    -----------------
 839 
 840    procedure Create_Task
 841      (T          : Task_Id;
 842       Wrapper    : System.Address;
 843       Stack_Size : System.Parameters.Size_Type;
 844       Priority   : System.Any_Priority;
 845       Succeeded  : out Boolean)
 846    is
 847       Initial_Stack_Size : constant := 1024;
 848       --  We set the initial stack size to 1024. On Windows version prior to XP
 849       --  there is no way to fix a task stack size. Only the initial stack size
 850       --  can be set, the operating system will raise the task stack size if
 851       --  needed.
 852 
 853       function Is_Windows_XP return Integer;
 854       pragma Import (C, Is_Windows_XP, "__gnat_is_windows_xp");
 855       --  Returns 1 if running on Windows XP
 856 
 857       hTask          : HANDLE;
 858       TaskId         : aliased DWORD;
 859       pTaskParameter : Win32.PVOID;
 860       Result         : DWORD;
 861       Entry_Point    : PTHREAD_START_ROUTINE;
 862 
 863       use type System.Multiprocessors.CPU_Range;
 864 
 865    begin
 866       --  Check whether both Dispatching_Domain and CPU are specified for the
 867       --  task, and the CPU value is not contained within the range of
 868       --  processors for the domain.
 869 
 870       if T.Common.Domain /= null
 871         and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
 872         and then
 873           (T.Common.Base_CPU not in T.Common.Domain'Range
 874             or else not T.Common.Domain (T.Common.Base_CPU))
 875       then
 876          Succeeded := False;
 877          return;
 878       end if;
 879 
 880       pTaskParameter := To_Address (T);
 881 
 882       Entry_Point := To_PTHREAD_START_ROUTINE (Wrapper);
 883 
 884       if Is_Windows_XP = 1 then
 885          hTask := CreateThread
 886            (null,
 887             DWORD (Stack_Size),
 888             Entry_Point,
 889             pTaskParameter,
 890             DWORD (Create_Suspended) or
 891               DWORD (Stack_Size_Param_Is_A_Reservation),
 892             TaskId'Unchecked_Access);
 893       else
 894          hTask := CreateThread
 895            (null,
 896             Initial_Stack_Size,
 897             Entry_Point,
 898             pTaskParameter,
 899             DWORD (Create_Suspended),
 900             TaskId'Unchecked_Access);
 901       end if;
 902 
 903       --  Step 1: Create the thread in blocked mode
 904 
 905       if hTask = 0 then
 906          Succeeded := False;
 907          return;
 908       end if;
 909 
 910       --  Step 2: set its TCB
 911 
 912       T.Common.LL.Thread := hTask;
 913 
 914       --  Note: it would be useful to initialize Thread_Id right away to avoid
 915       --  a race condition in gdb where Thread_ID may not have the right value
 916       --  yet, but GetThreadId is a Vista specific API, not available under XP:
 917       --  T.Common.LL.Thread_Id := GetThreadId (hTask); so instead we set the
 918       --  field to 0 to avoid having a random value. Thread_Id is initialized
 919       --  in Enter_Task anyway.
 920 
 921       T.Common.LL.Thread_Id := 0;
 922 
 923       --  Step 3: set its priority (child has inherited priority from parent)
 924 
 925       Set_Priority (T, Priority);
 926 
 927       if Time_Slice_Val = 0
 928         or else Dispatching_Policy = 'F'
 929         or else Get_Policy (Priority) = 'F'
 930       then
 931          --  Here we need Annex D semantics so we disable the NT priority
 932          --  boost. A priority boost is temporarily given by the system to
 933          --  a thread when it is taken out of a wait state.
 934 
 935          SetThreadPriorityBoost (hTask, DisablePriorityBoost => Win32.TRUE);
 936       end if;
 937 
 938       --  Step 4: Handle pragma CPU and Task_Info
 939 
 940       Set_Task_Affinity (T);
 941 
 942       --  Step 5: Now, start it for good
 943 
 944       Result := ResumeThread (hTask);
 945       pragma Assert (Result = 1);
 946 
 947       Succeeded := Result = 1;
 948    end Create_Task;
 949 
 950    ------------------
 951    -- Finalize_TCB --
 952    ------------------
 953 
 954    procedure Finalize_TCB (T : Task_Id) is
 955       Succeeded : BOOL;
 956 
 957    begin
 958       if not Single_Lock then
 959          Finalize_Lock (T.Common.LL.L'Access);
 960       end if;
 961 
 962       Finalize_Cond (T.Common.LL.CV'Access);
 963 
 964       if T.Known_Tasks_Index /= -1 then
 965          Known_Tasks (T.Known_Tasks_Index) := null;
 966       end if;
 967 
 968       if T.Common.LL.Thread /= 0 then
 969 
 970          --  This task has been activated. Close the thread handle. This
 971          --  is needed to release system resources.
 972 
 973          Succeeded := CloseHandle (T.Common.LL.Thread);
 974          pragma Assert (Succeeded = Win32.TRUE);
 975       end if;
 976 
 977       ATCB_Allocation.Free_ATCB (T);
 978    end Finalize_TCB;
 979 
 980    ---------------
 981    -- Exit_Task --
 982    ---------------
 983 
 984    procedure Exit_Task is
 985    begin
 986       Specific.Set (null);
 987    end Exit_Task;
 988 
 989    ----------------
 990    -- Abort_Task --
 991    ----------------
 992 
 993    procedure Abort_Task (T : Task_Id) is
 994       pragma Unreferenced (T);
 995    begin
 996       null;
 997    end Abort_Task;
 998 
 999    ----------------------
1000    -- Environment_Task --
1001    ----------------------
1002 
1003    function Environment_Task return Task_Id is
1004    begin
1005       return Environment_Task_Id;
1006    end Environment_Task;
1007 
1008    --------------
1009    -- Lock_RTS --
1010    --------------
1011 
1012    procedure Lock_RTS is
1013    begin
1014       Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1015    end Lock_RTS;
1016 
1017    ----------------
1018    -- Unlock_RTS --
1019    ----------------
1020 
1021    procedure Unlock_RTS is
1022    begin
1023       Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1024    end Unlock_RTS;
1025 
1026    ----------------
1027    -- Initialize --
1028    ----------------
1029 
1030    procedure Initialize (Environment_Task : Task_Id) is
1031       Discard : BOOL;
1032 
1033    begin
1034       Environment_Task_Id := Environment_Task;
1035       OS_Primitives.Initialize;
1036       Interrupt_Management.Initialize;
1037 
1038       if Time_Slice_Val = 0 or else Dispatching_Policy = 'F' then
1039          --  Here we need Annex D semantics, switch the current process to the
1040          --  Realtime_Priority_Class.
1041 
1042          Discard := OS_Interface.SetPriorityClass
1043                       (GetCurrentProcess, Realtime_Priority_Class);
1044       end if;
1045 
1046       TlsIndex := TlsAlloc;
1047 
1048       --  Initialize the lock used to synchronize chain of all ATCBs
1049 
1050       Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1051 
1052       Environment_Task.Common.LL.Thread := GetCurrentThread;
1053 
1054       --  Make environment task known here because it doesn't go through
1055       --  Activate_Tasks, which does it for all other tasks.
1056 
1057       Known_Tasks (Known_Tasks'First) := Environment_Task;
1058       Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1059 
1060       Enter_Task (Environment_Task);
1061 
1062       --  pragma CPU and dispatching domains for the environment task
1063 
1064       Set_Task_Affinity (Environment_Task);
1065    end Initialize;
1066 
1067    ---------------------
1068    -- Monotonic_Clock --
1069    ---------------------
1070 
1071    function Monotonic_Clock return Duration is
1072       function Internal_Clock return Duration;
1073       pragma Import (Ada, Internal_Clock, "__gnat_monotonic_clock");
1074    begin
1075       return Internal_Clock;
1076    end Monotonic_Clock;
1077 
1078    -------------------
1079    -- RT_Resolution --
1080    -------------------
1081 
1082    function RT_Resolution return Duration is
1083       Ticks_Per_Second : aliased LARGE_INTEGER;
1084    begin
1085       QueryPerformanceFrequency (Ticks_Per_Second'Access);
1086       return Duration (1.0 / Ticks_Per_Second);
1087    end RT_Resolution;
1088 
1089    ----------------
1090    -- Initialize --
1091    ----------------
1092 
1093    procedure Initialize (S : in out Suspension_Object) is
1094    begin
1095       --  Initialize internal state. It is always initialized to False (ARM
1096       --  D.10 par. 6).
1097 
1098       S.State := False;
1099       S.Waiting := False;
1100 
1101       --  Initialize internal mutex
1102 
1103       InitializeCriticalSection (S.L'Access);
1104 
1105       --  Initialize internal condition variable
1106 
1107       S.CV := CreateEvent (null, Win32.TRUE, Win32.FALSE, Null_Ptr);
1108       pragma Assert (S.CV /= 0);
1109    end Initialize;
1110 
1111    --------------
1112    -- Finalize --
1113    --------------
1114 
1115    procedure Finalize (S : in out Suspension_Object) is
1116       Result : BOOL;
1117 
1118    begin
1119       --  Destroy internal mutex
1120 
1121       DeleteCriticalSection (S.L'Access);
1122 
1123       --  Destroy internal condition variable
1124 
1125       Result := CloseHandle (S.CV);
1126       pragma Assert (Result = Win32.TRUE);
1127    end Finalize;
1128 
1129    -------------------
1130    -- Current_State --
1131    -------------------
1132 
1133    function Current_State (S : Suspension_Object) return Boolean is
1134    begin
1135       --  We do not want to use lock on this read operation. State is marked
1136       --  as Atomic so that we ensure that the value retrieved is correct.
1137 
1138       return S.State;
1139    end Current_State;
1140 
1141    ---------------
1142    -- Set_False --
1143    ---------------
1144 
1145    procedure Set_False (S : in out Suspension_Object) is
1146    begin
1147       SSL.Abort_Defer.all;
1148 
1149       EnterCriticalSection (S.L'Access);
1150 
1151       S.State := False;
1152 
1153       LeaveCriticalSection (S.L'Access);
1154 
1155       SSL.Abort_Undefer.all;
1156    end Set_False;
1157 
1158    --------------
1159    -- Set_True --
1160    --------------
1161 
1162    procedure Set_True (S : in out Suspension_Object) is
1163       Result : BOOL;
1164 
1165    begin
1166       SSL.Abort_Defer.all;
1167 
1168       EnterCriticalSection (S.L'Access);
1169 
1170       --  If there is already a task waiting on this suspension object then
1171       --  we resume it, leaving the state of the suspension object to False,
1172       --  as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1173       --  the state to True.
1174 
1175       if S.Waiting then
1176          S.Waiting := False;
1177          S.State := False;
1178 
1179          Result := SetEvent (S.CV);
1180          pragma Assert (Result = Win32.TRUE);
1181 
1182       else
1183          S.State := True;
1184       end if;
1185 
1186       LeaveCriticalSection (S.L'Access);
1187 
1188       SSL.Abort_Undefer.all;
1189    end Set_True;
1190 
1191    ------------------------
1192    -- Suspend_Until_True --
1193    ------------------------
1194 
1195    procedure Suspend_Until_True (S : in out Suspension_Object) is
1196       Result      : DWORD;
1197       Result_Bool : BOOL;
1198 
1199    begin
1200       SSL.Abort_Defer.all;
1201 
1202       EnterCriticalSection (S.L'Access);
1203 
1204       if S.Waiting then
1205 
1206          --  Program_Error must be raised upon calling Suspend_Until_True
1207          --  if another task is already waiting on that suspension object
1208          --  (ARM D.10 par. 10).
1209 
1210          LeaveCriticalSection (S.L'Access);
1211 
1212          SSL.Abort_Undefer.all;
1213 
1214          raise Program_Error;
1215 
1216       else
1217          --  Suspend the task if the state is False. Otherwise, the task
1218          --  continues its execution, and the state of the suspension object
1219          --  is set to False (ARM D.10 par. 9).
1220 
1221          if S.State then
1222             S.State := False;
1223 
1224             LeaveCriticalSection (S.L'Access);
1225 
1226             SSL.Abort_Undefer.all;
1227 
1228          else
1229             S.Waiting := True;
1230 
1231             --  Must reset CV BEFORE L is unlocked
1232 
1233             Result_Bool := ResetEvent (S.CV);
1234             pragma Assert (Result_Bool = Win32.TRUE);
1235 
1236             LeaveCriticalSection (S.L'Access);
1237 
1238             SSL.Abort_Undefer.all;
1239 
1240             Result := WaitForSingleObject (S.CV, Wait_Infinite);
1241             pragma Assert (Result = 0);
1242          end if;
1243       end if;
1244    end Suspend_Until_True;
1245 
1246    ----------------
1247    -- Check_Exit --
1248    ----------------
1249 
1250    --  Dummy versions, currently this only works for solaris (native)
1251 
1252    function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1253       pragma Unreferenced (Self_ID);
1254    begin
1255       return True;
1256    end Check_Exit;
1257 
1258    --------------------
1259    -- Check_No_Locks --
1260    --------------------
1261 
1262    function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1263       pragma Unreferenced (Self_ID);
1264    begin
1265       return True;
1266    end Check_No_Locks;
1267 
1268    ------------------
1269    -- Suspend_Task --
1270    ------------------
1271 
1272    function Suspend_Task
1273      (T           : ST.Task_Id;
1274       Thread_Self : Thread_Id) return Boolean
1275    is
1276    begin
1277       if T.Common.LL.Thread /= Thread_Self then
1278          return SuspendThread (T.Common.LL.Thread) = NO_ERROR;
1279       else
1280          return True;
1281       end if;
1282    end Suspend_Task;
1283 
1284    -----------------
1285    -- Resume_Task --
1286    -----------------
1287 
1288    function Resume_Task
1289      (T           : ST.Task_Id;
1290       Thread_Self : Thread_Id) return Boolean
1291    is
1292    begin
1293       if T.Common.LL.Thread /= Thread_Self then
1294          return ResumeThread (T.Common.LL.Thread) = NO_ERROR;
1295       else
1296          return True;
1297       end if;
1298    end Resume_Task;
1299 
1300    --------------------
1301    -- Stop_All_Tasks --
1302    --------------------
1303 
1304    procedure Stop_All_Tasks is
1305    begin
1306       null;
1307    end Stop_All_Tasks;
1308 
1309    ---------------
1310    -- Stop_Task --
1311    ---------------
1312 
1313    function Stop_Task (T : ST.Task_Id) return Boolean is
1314       pragma Unreferenced (T);
1315    begin
1316       return False;
1317    end Stop_Task;
1318 
1319    -------------------
1320    -- Continue_Task --
1321    -------------------
1322 
1323    function Continue_Task (T : ST.Task_Id) return Boolean is
1324       pragma Unreferenced (T);
1325    begin
1326       return False;
1327    end Continue_Task;
1328 
1329    -----------------------
1330    -- Set_Task_Affinity --
1331    -----------------------
1332 
1333    procedure Set_Task_Affinity (T : ST.Task_Id) is
1334       Result : DWORD;
1335 
1336       use type System.Multiprocessors.CPU_Range;
1337 
1338    begin
1339       --  Do nothing if the underlying thread has not yet been created. If the
1340       --  thread has not yet been created then the proper affinity will be set
1341       --  during its creation.
1342 
1343       if T.Common.LL.Thread = Null_Thread_Id then
1344          null;
1345 
1346       --  pragma CPU
1347 
1348       elsif T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
1349 
1350          --  The CPU numbering in pragma CPU starts at 1 while the subprogram
1351          --  to set the affinity starts at 0, therefore we must substract 1.
1352 
1353          Result :=
1354            SetThreadIdealProcessor
1355              (T.Common.LL.Thread, ProcessorId (T.Common.Base_CPU) - 1);
1356          pragma Assert (Result = 1);
1357 
1358       --  Task_Info
1359 
1360       elsif T.Common.Task_Info /= null then
1361          if T.Common.Task_Info.CPU /= Task_Info.Any_CPU then
1362             Result :=
1363               SetThreadIdealProcessor
1364                 (T.Common.LL.Thread, T.Common.Task_Info.CPU);
1365             pragma Assert (Result = 1);
1366          end if;
1367 
1368       --  Dispatching domains
1369 
1370       elsif T.Common.Domain /= null
1371         and then (T.Common.Domain /= ST.System_Domain
1372                    or else
1373                      T.Common.Domain.all /=
1374                        (Multiprocessors.CPU'First ..
1375                         Multiprocessors.Number_Of_CPUs => True))
1376       then
1377          declare
1378             CPU_Set : DWORD := 0;
1379 
1380          begin
1381             for Proc in T.Common.Domain'Range loop
1382                if T.Common.Domain (Proc) then
1383 
1384                   --  The thread affinity mask is a bit vector in which each
1385                   --  bit represents a logical processor.
1386 
1387                   CPU_Set := CPU_Set + 2 ** (Integer (Proc) - 1);
1388                end if;
1389             end loop;
1390 
1391             Result := SetThreadAffinityMask (T.Common.LL.Thread, CPU_Set);
1392             pragma Assert (Result = 1);
1393          end;
1394       end if;
1395    end Set_Task_Affinity;
1396 
1397 end System.Task_Primitives.Operations;