File : sem_aggr.adb


   1 ------------------------------------------------------------------------------
   2 --                                                                          --
   3 --                         GNAT COMPILER COMPONENTS                         --
   4 --                                                                          --
   5 --                             S E M _ A G G R                              --
   6 --                                                                          --
   7 --                                 B o d y                                  --
   8 --                                                                          --
   9 --          Copyright (C) 1992-2016, Free Software Foundation, Inc.         --
  10 --                                                                          --
  11 -- GNAT is free software;  you can  redistribute it  and/or modify it under --
  12 -- terms of the  GNU General Public License as published  by the Free Soft- --
  13 -- ware  Foundation;  either version 3,  or (at your option) any later ver- --
  14 -- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
  15 -- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
  16 -- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
  17 -- for  more details.  You should have  received  a copy of the GNU General --
  18 -- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
  19 -- http://www.gnu.org/licenses for a complete copy of the license.          --
  20 --                                                                          --
  21 -- GNAT was originally developed  by the GNAT team at  New York University. --
  22 -- Extensive contributions were provided by Ada Core Technologies Inc.      --
  23 --                                                                          --
  24 ------------------------------------------------------------------------------
  25 
  26 with Aspects;  use Aspects;
  27 with Atree;    use Atree;
  28 with Checks;   use Checks;
  29 with Einfo;    use Einfo;
  30 with Elists;   use Elists;
  31 with Errout;   use Errout;
  32 with Expander; use Expander;
  33 with Exp_Tss;  use Exp_Tss;
  34 with Exp_Util; use Exp_Util;
  35 with Freeze;   use Freeze;
  36 with Itypes;   use Itypes;
  37 with Lib;      use Lib;
  38 with Lib.Xref; use Lib.Xref;
  39 with Namet;    use Namet;
  40 with Namet.Sp; use Namet.Sp;
  41 with Nmake;    use Nmake;
  42 with Nlists;   use Nlists;
  43 with Opt;      use Opt;
  44 with Restrict; use Restrict;
  45 with Rident;   use Rident;
  46 with Sem;      use Sem;
  47 with Sem_Aux;  use Sem_Aux;
  48 with Sem_Cat;  use Sem_Cat;
  49 with Sem_Ch3;  use Sem_Ch3;
  50 with Sem_Ch8;  use Sem_Ch8;
  51 with Sem_Ch13; use Sem_Ch13;
  52 with Sem_Dim;  use Sem_Dim;
  53 with Sem_Eval; use Sem_Eval;
  54 with Sem_Res;  use Sem_Res;
  55 with Sem_Util; use Sem_Util;
  56 with Sem_Type; use Sem_Type;
  57 with Sem_Warn; use Sem_Warn;
  58 with Sinfo;    use Sinfo;
  59 with Snames;   use Snames;
  60 with Stringt;  use Stringt;
  61 with Stand;    use Stand;
  62 with Style;    use Style;
  63 with Targparm; use Targparm;
  64 with Tbuild;   use Tbuild;
  65 with Uintp;    use Uintp;
  66 
  67 package body Sem_Aggr is
  68 
  69    type Case_Bounds is record
  70       Lo : Node_Id;
  71       --  Low bound of choice. Once we sort the Case_Table, then entries
  72       --  will be in order of ascending Choice_Lo values.
  73 
  74       Hi : Node_Id;
  75       --  High Bound of choice. The sort does not pay any attention to the
  76       --  high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
  77 
  78       Highest : Uint;
  79       --  If there are duplicates or missing entries, then in the sorted
  80       --  table, this records the highest value among Choice_Hi values
  81       --  seen so far, including this entry.
  82 
  83       Choice : Node_Id;
  84       --  The node of the choice
  85    end record;
  86 
  87    type Case_Table_Type is array (Nat range <>) of Case_Bounds;
  88    --  Table type used by Check_Case_Choices procedure. Entry zero is not
  89    --  used (reserved for the sort). Real entries start at one.
  90 
  91    -----------------------
  92    -- Local Subprograms --
  93    -----------------------
  94 
  95    procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
  96    --  Sort the Case Table using the Lower Bound of each Choice as the key. A
  97    --  simple insertion sort is used since the choices in a case statement will
  98    --  usually be in near sorted order.
  99 
 100    procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
 101    --  Ada 2005 (AI-231): Check bad usage of null for a component for which
 102    --  null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
 103    --  the array case (the component type of the array will be used) or an
 104    --  E_Component/E_Discriminant entity in the record case, in which case the
 105    --  type of the component will be used for the test. If Typ is any other
 106    --  kind of entity, the call is ignored. Expr is the component node in the
 107    --  aggregate which is known to have a null value. A warning message will be
 108    --  issued if the component is null excluding.
 109    --
 110    --  It would be better to pass the proper type for Typ ???
 111 
 112    procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
 113    --  Check that Expr is either not limited or else is one of the cases of
 114    --  expressions allowed for a limited component association (namely, an
 115    --  aggregate, function call, or <> notation). Report error for violations.
 116    --  Expression is also OK in an instance or inlining context, because we
 117    --  have already pre-analyzed and it is known to be type correct.
 118 
 119    procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id);
 120    --  Given aggregate Expr, check that sub-aggregates of Expr that are nested
 121    --  at Level are qualified. If Level = 0, this applies to Expr directly.
 122    --  Only issue errors in formal verification mode.
 123 
 124    function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean;
 125    --  Return True of Expr is an aggregate not contained directly in another
 126    --  aggregate.
 127 
 128    ------------------------------------------------------
 129    -- Subprograms used for RECORD AGGREGATE Processing --
 130    ------------------------------------------------------
 131 
 132    procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
 133    --  This procedure performs all the semantic checks required for record
 134    --  aggregates. Note that for aggregates analysis and resolution go
 135    --  hand in hand. Aggregate analysis has been delayed up to here and
 136    --  it is done while resolving the aggregate.
 137    --
 138    --    N is the N_Aggregate node.
 139    --    Typ is the record type for the aggregate resolution
 140    --
 141    --  While performing the semantic checks, this procedure builds a new
 142    --  Component_Association_List where each record field appears alone in a
 143    --  Component_Choice_List along with its corresponding expression. The
 144    --  record fields in the Component_Association_List appear in the same order
 145    --  in which they appear in the record type Typ.
 146    --
 147    --  Once this new Component_Association_List is built and all the semantic
 148    --  checks performed, the original aggregate subtree is replaced with the
 149    --  new named record aggregate just built. Note that subtree substitution is
 150    --  performed with Rewrite so as to be able to retrieve the original
 151    --  aggregate.
 152    --
 153    --  The aggregate subtree manipulation performed by Resolve_Record_Aggregate
 154    --  yields the aggregate format expected by Gigi. Typically, this kind of
 155    --  tree manipulations are done in the expander. However, because the
 156    --  semantic checks that need to be performed on record aggregates really go
 157    --  hand in hand with the record aggregate normalization, the aggregate
 158    --  subtree transformation is performed during resolution rather than
 159    --  expansion. Had we decided otherwise we would have had to duplicate most
 160    --  of the code in the expansion procedure Expand_Record_Aggregate. Note,
 161    --  however, that all the expansion concerning aggregates for tagged records
 162    --  is done in Expand_Record_Aggregate.
 163    --
 164    --  The algorithm of Resolve_Record_Aggregate proceeds as follows:
 165    --
 166    --  1. Make sure that the record type against which the record aggregate
 167    --     has to be resolved is not abstract. Furthermore if the type is a
 168    --     null aggregate make sure the input aggregate N is also null.
 169    --
 170    --  2. Verify that the structure of the aggregate is that of a record
 171    --     aggregate. Specifically, look for component associations and ensure
 172    --     that each choice list only has identifiers or the N_Others_Choice
 173    --     node. Also make sure that if present, the N_Others_Choice occurs
 174    --     last and by itself.
 175    --
 176    --  3. If Typ contains discriminants, the values for each discriminant is
 177    --     looked for. If the record type Typ has variants, we check that the
 178    --     expressions corresponding to each discriminant ruling the (possibly
 179    --     nested) variant parts of Typ, are static. This allows us to determine
 180    --     the variant parts to which the rest of the aggregate must conform.
 181    --     The names of discriminants with their values are saved in a new
 182    --     association list, New_Assoc_List which is later augmented with the
 183    --     names and values of the remaining components in the record type.
 184    --
 185    --     During this phase we also make sure that every discriminant is
 186    --     assigned exactly one value. Note that when several values for a given
 187    --     discriminant are found, semantic processing continues looking for
 188    --     further errors. In this case it's the first discriminant value found
 189    --     which we will be recorded.
 190    --
 191    --     IMPORTANT NOTE: For derived tagged types this procedure expects
 192    --     First_Discriminant and Next_Discriminant to give the correct list
 193    --     of discriminants, in the correct order.
 194    --
 195    --  4. After all the discriminant values have been gathered, we can set the
 196    --     Etype of the record aggregate. If Typ contains no discriminants this
 197    --     is straightforward: the Etype of N is just Typ, otherwise a new
 198    --     implicit constrained subtype of Typ is built to be the Etype of N.
 199    --
 200    --  5. Gather the remaining record components according to the discriminant
 201    --     values. This involves recursively traversing the record type
 202    --     structure to see what variants are selected by the given discriminant
 203    --     values. This processing is a little more convoluted if Typ is a
 204    --     derived tagged types since we need to retrieve the record structure
 205    --     of all the ancestors of Typ.
 206    --
 207    --  6. After gathering the record components we look for their values in the
 208    --     record aggregate and emit appropriate error messages should we not
 209    --     find such values or should they be duplicated.
 210    --
 211    --  7. We then make sure no illegal component names appear in the record
 212    --     aggregate and make sure that the type of the record components
 213    --     appearing in a same choice list is the same. Finally we ensure that
 214    --     the others choice, if present, is used to provide the value of at
 215    --     least a record component.
 216    --
 217    --  8. The original aggregate node is replaced with the new named aggregate
 218    --     built in steps 3 through 6, as explained earlier.
 219    --
 220    --  Given the complexity of record aggregate resolution, the primary goal of
 221    --  this routine is clarity and simplicity rather than execution and storage
 222    --  efficiency. If there are only positional components in the aggregate the
 223    --  running time is linear. If there are associations the running time is
 224    --  still linear as long as the order of the associations is not too far off
 225    --  the order of the components in the record type. If this is not the case
 226    --  the running time is at worst quadratic in the size of the association
 227    --  list.
 228 
 229    procedure Check_Misspelled_Component
 230      (Elements  : Elist_Id;
 231       Component : Node_Id);
 232    --  Give possible misspelling diagnostic if Component is likely to be a
 233    --  misspelling of one of the components of the Assoc_List. This is called
 234    --  by Resolve_Aggr_Expr after producing an invalid component error message.
 235 
 236    procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id);
 237    --  An optimization: determine whether a discriminated subtype has a static
 238    --  constraint, and contains array components whose length is also static,
 239    --  either because they are constrained by the discriminant, or because the
 240    --  original component bounds are static.
 241 
 242    -----------------------------------------------------
 243    -- Subprograms used for ARRAY AGGREGATE Processing --
 244    -----------------------------------------------------
 245 
 246    function Resolve_Array_Aggregate
 247      (N              : Node_Id;
 248       Index          : Node_Id;
 249       Index_Constr   : Node_Id;
 250       Component_Typ  : Entity_Id;
 251       Others_Allowed : Boolean) return Boolean;
 252    --  This procedure performs the semantic checks for an array aggregate.
 253    --  True is returned if the aggregate resolution succeeds.
 254    --
 255    --  The procedure works by recursively checking each nested aggregate.
 256    --  Specifically, after checking a sub-aggregate nested at the i-th level
 257    --  we recursively check all the subaggregates at the i+1-st level (if any).
 258    --  Note that for aggregates analysis and resolution go hand in hand.
 259    --  Aggregate analysis has been delayed up to here and it is done while
 260    --  resolving the aggregate.
 261    --
 262    --    N is the current N_Aggregate node to be checked.
 263    --
 264    --    Index is the index node corresponding to the array sub-aggregate that
 265    --    we are currently checking (RM 4.3.3 (8)). Its Etype is the
 266    --    corresponding index type (or subtype).
 267    --
 268    --    Index_Constr is the node giving the applicable index constraint if
 269    --    any (RM 4.3.3 (10)). It "is a constraint provided by certain
 270    --    contexts [...] that can be used to determine the bounds of the array
 271    --    value specified by the aggregate". If Others_Allowed below is False
 272    --    there is no applicable index constraint and this node is set to Index.
 273    --
 274    --    Component_Typ is the array component type.
 275    --
 276    --    Others_Allowed indicates whether an others choice is allowed
 277    --    in the context where the top-level aggregate appeared.
 278    --
 279    --  The algorithm of Resolve_Array_Aggregate proceeds as follows:
 280    --
 281    --  1. Make sure that the others choice, if present, is by itself and
 282    --     appears last in the sub-aggregate. Check that we do not have
 283    --     positional and named components in the array sub-aggregate (unless
 284    --     the named association is an others choice). Finally if an others
 285    --     choice is present, make sure it is allowed in the aggregate context.
 286    --
 287    --  2. If the array sub-aggregate contains discrete_choices:
 288    --
 289    --     (A) Verify their validity. Specifically verify that:
 290    --
 291    --        (a) If a null range is present it must be the only possible
 292    --            choice in the array aggregate.
 293    --
 294    --        (b) Ditto for a non static range.
 295    --
 296    --        (c) Ditto for a non static expression.
 297    --
 298    --        In addition this step analyzes and resolves each discrete_choice,
 299    --        making sure that its type is the type of the corresponding Index.
 300    --        If we are not at the lowest array aggregate level (in the case of
 301    --        multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
 302    --        recursively on each component expression. Otherwise, resolve the
 303    --        bottom level component expressions against the expected component
 304    --        type ONLY IF the component corresponds to a single discrete choice
 305    --        which is not an others choice (to see why read the DELAYED
 306    --        COMPONENT RESOLUTION below).
 307    --
 308    --     (B) Determine the bounds of the sub-aggregate and lowest and
 309    --         highest choice values.
 310    --
 311    --  3. For positional aggregates:
 312    --
 313    --     (A) Loop over the component expressions either recursively invoking
 314    --         Resolve_Array_Aggregate on each of these for multi-dimensional
 315    --         array aggregates or resolving the bottom level component
 316    --         expressions against the expected component type.
 317    --
 318    --     (B) Determine the bounds of the positional sub-aggregates.
 319    --
 320    --  4. Try to determine statically whether the evaluation of the array
 321    --     sub-aggregate raises Constraint_Error. If yes emit proper
 322    --     warnings. The precise checks are the following:
 323    --
 324    --     (A) Check that the index range defined by aggregate bounds is
 325    --         compatible with corresponding index subtype.
 326    --         We also check against the base type. In fact it could be that
 327    --         Low/High bounds of the base type are static whereas those of
 328    --         the index subtype are not. Thus if we can statically catch
 329    --         a problem with respect to the base type we are guaranteed
 330    --         that the same problem will arise with the index subtype
 331    --
 332    --     (B) If we are dealing with a named aggregate containing an others
 333    --         choice and at least one discrete choice then make sure the range
 334    --         specified by the discrete choices does not overflow the
 335    --         aggregate bounds. We also check against the index type and base
 336    --         type bounds for the same reasons given in (A).
 337    --
 338    --     (C) If we are dealing with a positional aggregate with an others
 339    --         choice make sure the number of positional elements specified
 340    --         does not overflow the aggregate bounds. We also check against
 341    --         the index type and base type bounds as mentioned in (A).
 342    --
 343    --     Finally construct an N_Range node giving the sub-aggregate bounds.
 344    --     Set the Aggregate_Bounds field of the sub-aggregate to be this
 345    --     N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
 346    --     to build the appropriate aggregate subtype. Aggregate_Bounds
 347    --     information is needed during expansion.
 348    --
 349    --  DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
 350    --  expressions in an array aggregate may call Duplicate_Subexpr or some
 351    --  other routine that inserts code just outside the outermost aggregate.
 352    --  If the array aggregate contains discrete choices or an others choice,
 353    --  this may be wrong. Consider for instance the following example.
 354    --
 355    --    type Rec is record
 356    --       V : Integer := 0;
 357    --    end record;
 358    --
 359    --    type Acc_Rec is access Rec;
 360    --    Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
 361    --
 362    --  Then the transformation of "new Rec" that occurs during resolution
 363    --  entails the following code modifications
 364    --
 365    --    P7b : constant Acc_Rec := new Rec;
 366    --    RecIP (P7b.all);
 367    --    Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
 368    --
 369    --  This code transformation is clearly wrong, since we need to call
 370    --  "new Rec" for each of the 3 array elements. To avoid this problem we
 371    --  delay resolution of the components of non positional array aggregates
 372    --  to the expansion phase. As an optimization, if the discrete choice
 373    --  specifies a single value we do not delay resolution.
 374 
 375    function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
 376    --  This routine returns the type or subtype of an array aggregate.
 377    --
 378    --    N is the array aggregate node whose type we return.
 379    --
 380    --    Typ is the context type in which N occurs.
 381    --
 382    --  This routine creates an implicit array subtype whose bounds are
 383    --  those defined by the aggregate. When this routine is invoked
 384    --  Resolve_Array_Aggregate has already processed aggregate N. Thus the
 385    --  Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
 386    --  sub-aggregate bounds. When building the aggregate itype, this function
 387    --  traverses the array aggregate N collecting such Aggregate_Bounds and
 388    --  constructs the proper array aggregate itype.
 389    --
 390    --  Note that in the case of multidimensional aggregates each inner
 391    --  sub-aggregate corresponding to a given array dimension, may provide a
 392    --  different bounds. If it is possible to determine statically that
 393    --  some sub-aggregates corresponding to the same index do not have the
 394    --  same bounds, then a warning is emitted. If such check is not possible
 395    --  statically (because some sub-aggregate bounds are dynamic expressions)
 396    --  then this job is left to the expander. In all cases the particular
 397    --  bounds that this function will chose for a given dimension is the first
 398    --  N_Range node for a sub-aggregate corresponding to that dimension.
 399    --
 400    --  Note that the Raises_Constraint_Error flag of an array aggregate
 401    --  whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
 402    --  is set in Resolve_Array_Aggregate but the aggregate is not
 403    --  immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
 404    --  first construct the proper itype for the aggregate (Gigi needs
 405    --  this). After constructing the proper itype we will eventually replace
 406    --  the top-level aggregate with a raise CE (done in Resolve_Aggregate).
 407    --  Of course in cases such as:
 408    --
 409    --     type Arr is array (integer range <>) of Integer;
 410    --     A : Arr := (positive range -1 .. 2 => 0);
 411    --
 412    --  The bounds of the aggregate itype are cooked up to look reasonable
 413    --  (in this particular case the bounds will be 1 .. 2).
 414 
 415    procedure Make_String_Into_Aggregate (N : Node_Id);
 416    --  A string literal can appear in a context in which a one dimensional
 417    --  array of characters is expected. This procedure simply rewrites the
 418    --  string as an aggregate, prior to resolution.
 419 
 420    ------------------------
 421    -- Array_Aggr_Subtype --
 422    ------------------------
 423 
 424    function Array_Aggr_Subtype
 425      (N   : Node_Id;
 426       Typ : Entity_Id) return Entity_Id
 427    is
 428       Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
 429       --  Number of aggregate index dimensions
 430 
 431       Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
 432       --  Constrained N_Range of each index dimension in our aggregate itype
 433 
 434       Aggr_Low  : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
 435       Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
 436       --  Low and High bounds for each index dimension in our aggregate itype
 437 
 438       Is_Fully_Positional : Boolean := True;
 439 
 440       procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
 441       --  N is an array (sub-)aggregate. Dim is the dimension corresponding
 442       --  to (sub-)aggregate N. This procedure collects and removes the side
 443       --  effects of the constrained N_Range nodes corresponding to each index
 444       --  dimension of our aggregate itype. These N_Range nodes are collected
 445       --  in Aggr_Range above.
 446       --
 447       --  Likewise collect in Aggr_Low & Aggr_High above the low and high
 448       --  bounds of each index dimension. If, when collecting, two bounds
 449       --  corresponding to the same dimension are static and found to differ,
 450       --  then emit a warning, and mark N as raising Constraint_Error.
 451 
 452       -------------------------
 453       -- Collect_Aggr_Bounds --
 454       -------------------------
 455 
 456       procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
 457          This_Range : constant Node_Id := Aggregate_Bounds (N);
 458          --  The aggregate range node of this specific sub-aggregate
 459 
 460          This_Low  : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
 461          This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
 462          --  The aggregate bounds of this specific sub-aggregate
 463 
 464          Assoc : Node_Id;
 465          Expr  : Node_Id;
 466 
 467       begin
 468          Remove_Side_Effects (This_Low,  Variable_Ref => True);
 469          Remove_Side_Effects (This_High, Variable_Ref => True);
 470 
 471          --  Collect the first N_Range for a given dimension that you find.
 472          --  For a given dimension they must be all equal anyway.
 473 
 474          if No (Aggr_Range (Dim)) then
 475             Aggr_Low (Dim)   := This_Low;
 476             Aggr_High (Dim)  := This_High;
 477             Aggr_Range (Dim) := This_Range;
 478 
 479          else
 480             if Compile_Time_Known_Value (This_Low) then
 481                if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
 482                   Aggr_Low (Dim) := This_Low;
 483 
 484                elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
 485                   Set_Raises_Constraint_Error (N);
 486                   Error_Msg_Warn := SPARK_Mode /= On;
 487                   Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
 488                   Error_Msg_N ("\Constraint_Error [<<", N);
 489                end if;
 490             end if;
 491 
 492             if Compile_Time_Known_Value (This_High) then
 493                if not Compile_Time_Known_Value (Aggr_High (Dim)) then
 494                   Aggr_High (Dim) := This_High;
 495 
 496                elsif
 497                  Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
 498                then
 499                   Set_Raises_Constraint_Error (N);
 500                   Error_Msg_Warn := SPARK_Mode /= On;
 501                   Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
 502                   Error_Msg_N ("\Constraint_Error [<<", N);
 503                end if;
 504             end if;
 505          end if;
 506 
 507          if Dim < Aggr_Dimension then
 508 
 509             --  Process positional components
 510 
 511             if Present (Expressions (N)) then
 512                Expr := First (Expressions (N));
 513                while Present (Expr) loop
 514                   Collect_Aggr_Bounds (Expr, Dim + 1);
 515                   Next (Expr);
 516                end loop;
 517             end if;
 518 
 519             --  Process component associations
 520 
 521             if Present (Component_Associations (N)) then
 522                Is_Fully_Positional := False;
 523 
 524                Assoc := First (Component_Associations (N));
 525                while Present (Assoc) loop
 526                   Expr := Expression (Assoc);
 527                   Collect_Aggr_Bounds (Expr, Dim + 1);
 528                   Next (Assoc);
 529                end loop;
 530             end if;
 531          end if;
 532       end Collect_Aggr_Bounds;
 533 
 534       --  Array_Aggr_Subtype variables
 535 
 536       Itype : Entity_Id;
 537       --  The final itype of the overall aggregate
 538 
 539       Index_Constraints : constant List_Id := New_List;
 540       --  The list of index constraints of the aggregate itype
 541 
 542    --  Start of processing for Array_Aggr_Subtype
 543 
 544    begin
 545       --  Make sure that the list of index constraints is properly attached to
 546       --  the tree, and then collect the aggregate bounds.
 547 
 548       Set_Parent (Index_Constraints, N);
 549       Collect_Aggr_Bounds (N, 1);
 550 
 551       --  Build the list of constrained indexes of our aggregate itype
 552 
 553       for J in 1 .. Aggr_Dimension loop
 554          Create_Index : declare
 555             Index_Base : constant Entity_Id :=
 556                            Base_Type (Etype (Aggr_Range (J)));
 557             Index_Typ  : Entity_Id;
 558 
 559          begin
 560             --  Construct the Index subtype, and associate it with the range
 561             --  construct that generates it.
 562 
 563             Index_Typ :=
 564               Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
 565 
 566             Set_Etype (Index_Typ, Index_Base);
 567 
 568             if Is_Character_Type (Index_Base) then
 569                Set_Is_Character_Type (Index_Typ);
 570             end if;
 571 
 572             Set_Size_Info      (Index_Typ,                (Index_Base));
 573             Set_RM_Size        (Index_Typ, RM_Size        (Index_Base));
 574             Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
 575             Set_Scalar_Range   (Index_Typ, Aggr_Range (J));
 576 
 577             if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
 578                Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
 579             end if;
 580 
 581             Set_Etype (Aggr_Range (J), Index_Typ);
 582 
 583             Append (Aggr_Range (J), To => Index_Constraints);
 584          end Create_Index;
 585       end loop;
 586 
 587       --  Now build the Itype
 588 
 589       Itype := Create_Itype (E_Array_Subtype, N);
 590 
 591       Set_First_Rep_Item         (Itype, First_Rep_Item        (Typ));
 592       Set_Convention             (Itype, Convention            (Typ));
 593       Set_Depends_On_Private     (Itype, Has_Private_Component (Typ));
 594       Set_Etype                  (Itype, Base_Type             (Typ));
 595       Set_Has_Alignment_Clause   (Itype, Has_Alignment_Clause  (Typ));
 596       Set_Is_Aliased             (Itype, Is_Aliased            (Typ));
 597       Set_Depends_On_Private     (Itype, Depends_On_Private    (Typ));
 598 
 599       Copy_Suppress_Status (Index_Check,  Typ, Itype);
 600       Copy_Suppress_Status (Length_Check, Typ, Itype);
 601 
 602       Set_First_Index    (Itype, First (Index_Constraints));
 603       Set_Is_Constrained (Itype, True);
 604       Set_Is_Internal    (Itype, True);
 605 
 606       --  A simple optimization: purely positional aggregates of static
 607       --  components should be passed to gigi unexpanded whenever possible, and
 608       --  regardless of the staticness of the bounds themselves. Subsequent
 609       --  checks in exp_aggr verify that type is not packed, etc.
 610 
 611       Set_Size_Known_At_Compile_Time
 612         (Itype,
 613          Is_Fully_Positional
 614            and then Comes_From_Source (N)
 615            and then Size_Known_At_Compile_Time (Component_Type (Typ)));
 616 
 617       --  We always need a freeze node for a packed array subtype, so that we
 618       --  can build the Packed_Array_Impl_Type corresponding to the subtype. If
 619       --  expansion is disabled, the packed array subtype is not built, and we
 620       --  must not generate a freeze node for the type, or else it will appear
 621       --  incomplete to gigi.
 622 
 623       if Is_Packed (Itype)
 624         and then not In_Spec_Expression
 625         and then Expander_Active
 626       then
 627          Freeze_Itype (Itype, N);
 628       end if;
 629 
 630       return Itype;
 631    end Array_Aggr_Subtype;
 632 
 633    --------------------------------
 634    -- Check_Misspelled_Component --
 635    --------------------------------
 636 
 637    procedure Check_Misspelled_Component
 638      (Elements  : Elist_Id;
 639       Component : Node_Id)
 640    is
 641       Max_Suggestions   : constant := 2;
 642 
 643       Nr_Of_Suggestions : Natural := 0;
 644       Suggestion_1      : Entity_Id := Empty;
 645       Suggestion_2      : Entity_Id := Empty;
 646       Component_Elmt    : Elmt_Id;
 647 
 648    begin
 649       --  All the components of List are matched against Component and a count
 650       --  is maintained of possible misspellings. When at the end of the
 651       --  analysis there are one or two (not more) possible misspellings,
 652       --  these misspellings will be suggested as possible corrections.
 653 
 654       Component_Elmt := First_Elmt (Elements);
 655       while Nr_Of_Suggestions <= Max_Suggestions
 656         and then Present (Component_Elmt)
 657       loop
 658          if Is_Bad_Spelling_Of
 659               (Chars (Node (Component_Elmt)),
 660                Chars (Component))
 661          then
 662             Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
 663 
 664             case Nr_Of_Suggestions is
 665                when 1      => Suggestion_1 := Node (Component_Elmt);
 666                when 2      => Suggestion_2 := Node (Component_Elmt);
 667                when others => null;
 668             end case;
 669          end if;
 670 
 671          Next_Elmt (Component_Elmt);
 672       end loop;
 673 
 674       --  Report at most two suggestions
 675 
 676       if Nr_Of_Suggestions = 1 then
 677          Error_Msg_NE -- CODEFIX
 678            ("\possible misspelling of&", Component, Suggestion_1);
 679 
 680       elsif Nr_Of_Suggestions = 2 then
 681          Error_Msg_Node_2 := Suggestion_2;
 682          Error_Msg_NE -- CODEFIX
 683            ("\possible misspelling of& or&", Component, Suggestion_1);
 684       end if;
 685    end Check_Misspelled_Component;
 686 
 687    ----------------------------------------
 688    -- Check_Expr_OK_In_Limited_Aggregate --
 689    ----------------------------------------
 690 
 691    procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
 692    begin
 693       if Is_Limited_Type (Etype (Expr))
 694          and then Comes_From_Source (Expr)
 695       then
 696          if In_Instance_Body or else In_Inlined_Body then
 697             null;
 698 
 699          elsif not OK_For_Limited_Init (Etype (Expr), Expr) then
 700             Error_Msg_N
 701               ("initialization not allowed for limited types", Expr);
 702             Explain_Limited_Type (Etype (Expr), Expr);
 703          end if;
 704       end if;
 705    end Check_Expr_OK_In_Limited_Aggregate;
 706 
 707    -------------------------------
 708    -- Check_Qualified_Aggregate --
 709    -------------------------------
 710 
 711    procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id) is
 712       Comp_Expr : Node_Id;
 713       Comp_Assn : Node_Id;
 714 
 715    begin
 716       if Level = 0 then
 717          if Nkind (Parent (Expr)) /= N_Qualified_Expression then
 718             Check_SPARK_05_Restriction ("aggregate should be qualified", Expr);
 719          end if;
 720 
 721       else
 722          Comp_Expr := First (Expressions (Expr));
 723          while Present (Comp_Expr) loop
 724             if Nkind (Comp_Expr) = N_Aggregate then
 725                Check_Qualified_Aggregate (Level - 1, Comp_Expr);
 726             end if;
 727 
 728             Comp_Expr := Next (Comp_Expr);
 729          end loop;
 730 
 731          Comp_Assn := First (Component_Associations (Expr));
 732          while Present (Comp_Assn) loop
 733             Comp_Expr := Expression (Comp_Assn);
 734 
 735             if Nkind (Comp_Expr) = N_Aggregate then
 736                Check_Qualified_Aggregate (Level - 1, Comp_Expr);
 737             end if;
 738 
 739             Comp_Assn := Next (Comp_Assn);
 740          end loop;
 741       end if;
 742    end Check_Qualified_Aggregate;
 743 
 744    ----------------------------------------
 745    -- Check_Static_Discriminated_Subtype --
 746    ----------------------------------------
 747 
 748    procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is
 749       Disc : constant Entity_Id := First_Discriminant (T);
 750       Comp : Entity_Id;
 751       Ind  : Entity_Id;
 752 
 753    begin
 754       if Has_Record_Rep_Clause (T) then
 755          return;
 756 
 757       elsif Present (Next_Discriminant (Disc)) then
 758          return;
 759 
 760       elsif Nkind (V) /= N_Integer_Literal then
 761          return;
 762       end if;
 763 
 764       Comp := First_Component (T);
 765       while Present (Comp) loop
 766          if Is_Scalar_Type (Etype (Comp)) then
 767             null;
 768 
 769          elsif Is_Private_Type (Etype (Comp))
 770            and then Present (Full_View (Etype (Comp)))
 771            and then Is_Scalar_Type (Full_View (Etype (Comp)))
 772          then
 773             null;
 774 
 775          elsif Is_Array_Type (Etype (Comp)) then
 776             if Is_Bit_Packed_Array (Etype (Comp)) then
 777                return;
 778             end if;
 779 
 780             Ind := First_Index (Etype (Comp));
 781             while Present (Ind) loop
 782                if Nkind (Ind) /= N_Range
 783                  or else Nkind (Low_Bound (Ind))  /= N_Integer_Literal
 784                  or else Nkind (High_Bound (Ind)) /= N_Integer_Literal
 785                then
 786                   return;
 787                end if;
 788 
 789                Next_Index (Ind);
 790             end loop;
 791 
 792          else
 793             return;
 794          end if;
 795 
 796          Next_Component (Comp);
 797       end loop;
 798 
 799       --  On exit, all components have statically known sizes
 800 
 801       Set_Size_Known_At_Compile_Time (T);
 802    end Check_Static_Discriminated_Subtype;
 803 
 804    -------------------------
 805    -- Is_Others_Aggregate --
 806    -------------------------
 807 
 808    function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
 809    begin
 810       return No (Expressions (Aggr))
 811         and then
 812           Nkind (First (Choices (First (Component_Associations (Aggr))))) =
 813                                                               N_Others_Choice;
 814    end Is_Others_Aggregate;
 815 
 816    ----------------------------
 817    -- Is_Top_Level_Aggregate --
 818    ----------------------------
 819 
 820    function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean is
 821    begin
 822       return Nkind (Parent (Expr)) /= N_Aggregate
 823         and then (Nkind (Parent (Expr)) /= N_Component_Association
 824                    or else Nkind (Parent (Parent (Expr))) /= N_Aggregate);
 825    end Is_Top_Level_Aggregate;
 826 
 827    --------------------------------
 828    -- Make_String_Into_Aggregate --
 829    --------------------------------
 830 
 831    procedure Make_String_Into_Aggregate (N : Node_Id) is
 832       Exprs  : constant List_Id    := New_List;
 833       Loc    : constant Source_Ptr := Sloc (N);
 834       Str    : constant String_Id  := Strval (N);
 835       Strlen : constant Nat        := String_Length (Str);
 836       C      : Char_Code;
 837       C_Node : Node_Id;
 838       New_N  : Node_Id;
 839       P      : Source_Ptr;
 840 
 841    begin
 842       P := Loc + 1;
 843       for J in  1 .. Strlen loop
 844          C := Get_String_Char (Str, J);
 845          Set_Character_Literal_Name (C);
 846 
 847          C_Node :=
 848            Make_Character_Literal (P,
 849              Chars              => Name_Find,
 850              Char_Literal_Value => UI_From_CC (C));
 851          Set_Etype (C_Node, Any_Character);
 852          Append_To (Exprs, C_Node);
 853 
 854          P := P + 1;
 855          --  Something special for wide strings???
 856       end loop;
 857 
 858       New_N := Make_Aggregate (Loc, Expressions => Exprs);
 859       Set_Analyzed (New_N);
 860       Set_Etype (New_N, Any_Composite);
 861 
 862       Rewrite (N, New_N);
 863    end Make_String_Into_Aggregate;
 864 
 865    -----------------------
 866    -- Resolve_Aggregate --
 867    -----------------------
 868 
 869    procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
 870       Loc   : constant Source_Ptr := Sloc (N);
 871       Pkind : constant Node_Kind  := Nkind (Parent (N));
 872 
 873       Aggr_Subtyp : Entity_Id;
 874       --  The actual aggregate subtype. This is not necessarily the same as Typ
 875       --  which is the subtype of the context in which the aggregate was found.
 876 
 877    begin
 878       --  Ignore junk empty aggregate resulting from parser error
 879 
 880       if No (Expressions (N))
 881         and then No (Component_Associations (N))
 882         and then not Null_Record_Present (N)
 883       then
 884          return;
 885       end if;
 886 
 887       --  If the aggregate has box-initialized components, its type must be
 888       --  frozen so that initialization procedures can properly be called
 889       --  in the resolution that follows.  The replacement of boxes with
 890       --  initialization calls is properly an expansion activity but it must
 891       --  be done during resolution.
 892 
 893       if Expander_Active
 894         and then Present (Component_Associations (N))
 895       then
 896          declare
 897             Comp : Node_Id;
 898 
 899          begin
 900             Comp := First (Component_Associations (N));
 901             while Present (Comp) loop
 902                if Box_Present (Comp) then
 903                   Insert_Actions (N, Freeze_Entity (Typ, N));
 904                   exit;
 905                end if;
 906 
 907                Next (Comp);
 908             end loop;
 909          end;
 910       end if;
 911 
 912       --  An unqualified aggregate is restricted in SPARK to:
 913 
 914       --    An aggregate item inside an aggregate for a multi-dimensional array
 915 
 916       --    An expression being assigned to an unconstrained array, but only if
 917       --    the aggregate specifies a value for OTHERS only.
 918 
 919       if Nkind (Parent (N)) = N_Qualified_Expression then
 920          if Is_Array_Type (Typ) then
 921             Check_Qualified_Aggregate (Number_Dimensions (Typ), N);
 922          else
 923             Check_Qualified_Aggregate (1, N);
 924          end if;
 925       else
 926          if Is_Array_Type (Typ)
 927            and then Nkind (Parent (N)) = N_Assignment_Statement
 928            and then not Is_Constrained (Etype (Name (Parent (N))))
 929          then
 930             if not Is_Others_Aggregate (N) then
 931                Check_SPARK_05_Restriction
 932                  ("array aggregate should have only OTHERS", N);
 933             end if;
 934 
 935          elsif Is_Top_Level_Aggregate (N) then
 936             Check_SPARK_05_Restriction ("aggregate should be qualified", N);
 937 
 938          --  The legality of this unqualified aggregate is checked by calling
 939          --  Check_Qualified_Aggregate from one of its enclosing aggregate,
 940          --  unless one of these already causes an error to be issued.
 941 
 942          else
 943             null;
 944          end if;
 945       end if;
 946 
 947       --  Check for aggregates not allowed in configurable run-time mode.
 948       --  We allow all cases of aggregates that do not come from source, since
 949       --  these are all assumed to be small (e.g. bounds of a string literal).
 950       --  We also allow aggregates of types we know to be small.
 951 
 952       if not Support_Aggregates_On_Target
 953         and then Comes_From_Source (N)
 954         and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
 955       then
 956          Error_Msg_CRT ("aggregate", N);
 957       end if;
 958 
 959       --  Ada 2005 (AI-287): Limited aggregates allowed
 960 
 961       --  In an instance, ignore aggregate subcomponents tnat may be limited,
 962       --  because they originate in view conflicts. If the original aggregate
 963       --  is legal and the actuals are legal, the aggregate itself is legal.
 964 
 965       if Is_Limited_Type (Typ)
 966         and then Ada_Version < Ada_2005
 967         and then not In_Instance
 968       then
 969          Error_Msg_N ("aggregate type cannot be limited", N);
 970          Explain_Limited_Type (Typ, N);
 971 
 972       elsif Is_Class_Wide_Type (Typ) then
 973          Error_Msg_N ("type of aggregate cannot be class-wide", N);
 974 
 975       elsif Typ = Any_String
 976         or else Typ = Any_Composite
 977       then
 978          Error_Msg_N ("no unique type for aggregate", N);
 979          Set_Etype (N, Any_Composite);
 980 
 981       elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
 982          Error_Msg_N ("null record forbidden in array aggregate", N);
 983 
 984       elsif Is_Record_Type (Typ) then
 985          Resolve_Record_Aggregate (N, Typ);
 986 
 987       elsif Is_Array_Type (Typ) then
 988 
 989          --  First a special test, for the case of a positional aggregate
 990          --  of characters which can be replaced by a string literal.
 991 
 992          --  Do not perform this transformation if this was a string literal to
 993          --  start with, whose components needed constraint checks, or if the
 994          --  component type is non-static, because it will require those checks
 995          --  and be transformed back into an aggregate.
 996 
 997          if Number_Dimensions (Typ) = 1
 998            and then Is_Standard_Character_Type (Component_Type (Typ))
 999            and then No (Component_Associations (N))
1000            and then not Is_Limited_Composite (Typ)
1001            and then not Is_Private_Composite (Typ)
1002            and then not Is_Bit_Packed_Array (Typ)
1003            and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
1004            and then Is_OK_Static_Subtype (Component_Type (Typ))
1005          then
1006             declare
1007                Expr : Node_Id;
1008 
1009             begin
1010                Expr := First (Expressions (N));
1011                while Present (Expr) loop
1012                   exit when Nkind (Expr) /= N_Character_Literal;
1013                   Next (Expr);
1014                end loop;
1015 
1016                if No (Expr) then
1017                   Start_String;
1018 
1019                   Expr := First (Expressions (N));
1020                   while Present (Expr) loop
1021                      Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
1022                      Next (Expr);
1023                   end loop;
1024 
1025                   Rewrite (N, Make_String_Literal (Loc, End_String));
1026 
1027                   Analyze_And_Resolve (N, Typ);
1028                   return;
1029                end if;
1030             end;
1031          end if;
1032 
1033          --  Here if we have a real aggregate to deal with
1034 
1035          Array_Aggregate : declare
1036             Aggr_Resolved : Boolean;
1037 
1038             Aggr_Typ : constant Entity_Id := Etype (Typ);
1039             --  This is the unconstrained array type, which is the type against
1040             --  which the aggregate is to be resolved. Typ itself is the array
1041             --  type of the context which may not be the same subtype as the
1042             --  subtype for the final aggregate.
1043 
1044          begin
1045             --  In the following we determine whether an OTHERS choice is
1046             --  allowed inside the array aggregate. The test checks the context
1047             --  in which the array aggregate occurs. If the context does not
1048             --  permit it, or the aggregate type is unconstrained, an OTHERS
1049             --  choice is not allowed (except that it is always allowed on the
1050             --  right-hand side of an assignment statement; in this case the
1051             --  constrainedness of the type doesn't matter).
1052 
1053             --  If expansion is disabled (generic context, or semantics-only
1054             --  mode) actual subtypes cannot be constructed, and the type of an
1055             --  object may be its unconstrained nominal type. However, if the
1056             --  context is an assignment, we assume that OTHERS is allowed,
1057             --  because the target of the assignment will have a constrained
1058             --  subtype when fully compiled.
1059 
1060             --  Note that there is no node for Explicit_Actual_Parameter.
1061             --  To test for this context we therefore have to test for node
1062             --  N_Parameter_Association which itself appears only if there is a
1063             --  formal parameter. Consequently we also need to test for
1064             --  N_Procedure_Call_Statement or N_Function_Call.
1065 
1066             --  The context may be an N_Reference node, created by expansion.
1067             --  Legality of the others clause was established in the source,
1068             --  so the context is legal.
1069 
1070             Set_Etype (N, Aggr_Typ);  --  May be overridden later on
1071 
1072             if Pkind = N_Assignment_Statement
1073               or else (Is_Constrained (Typ)
1074                         and then
1075                           (Pkind = N_Parameter_Association     or else
1076                            Pkind = N_Function_Call             or else
1077                            Pkind = N_Procedure_Call_Statement  or else
1078                            Pkind = N_Generic_Association       or else
1079                            Pkind = N_Formal_Object_Declaration or else
1080                            Pkind = N_Simple_Return_Statement   or else
1081                            Pkind = N_Object_Declaration        or else
1082                            Pkind = N_Component_Declaration     or else
1083                            Pkind = N_Parameter_Specification   or else
1084                            Pkind = N_Qualified_Expression      or else
1085                            Pkind = N_Reference                 or else
1086                            Pkind = N_Aggregate                 or else
1087                            Pkind = N_Extension_Aggregate       or else
1088                            Pkind = N_Component_Association))
1089             then
1090                Aggr_Resolved :=
1091                  Resolve_Array_Aggregate
1092                    (N,
1093                     Index          => First_Index (Aggr_Typ),
1094                     Index_Constr   => First_Index (Typ),
1095                     Component_Typ  => Component_Type (Typ),
1096                     Others_Allowed => True);
1097             else
1098                Aggr_Resolved :=
1099                  Resolve_Array_Aggregate
1100                    (N,
1101                     Index          => First_Index (Aggr_Typ),
1102                     Index_Constr   => First_Index (Aggr_Typ),
1103                     Component_Typ  => Component_Type (Typ),
1104                     Others_Allowed => False);
1105             end if;
1106 
1107             if not Aggr_Resolved then
1108 
1109                --  A parenthesized expression may have been intended as an
1110                --  aggregate, leading to a type error when analyzing the
1111                --  component. This can also happen for a nested component
1112                --  (see Analyze_Aggr_Expr).
1113 
1114                if Paren_Count (N) > 0 then
1115                   Error_Msg_N
1116                     ("positional aggregate cannot have one component", N);
1117                end if;
1118 
1119                Aggr_Subtyp := Any_Composite;
1120 
1121             else
1122                Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1123             end if;
1124 
1125             Set_Etype (N, Aggr_Subtyp);
1126          end Array_Aggregate;
1127 
1128       elsif Is_Private_Type (Typ)
1129         and then Present (Full_View (Typ))
1130         and then (In_Inlined_Body or In_Instance_Body)
1131         and then Is_Composite_Type (Full_View (Typ))
1132       then
1133          Resolve (N, Full_View (Typ));
1134 
1135       else
1136          Error_Msg_N ("illegal context for aggregate", N);
1137       end if;
1138 
1139       --  If we can determine statically that the evaluation of the aggregate
1140       --  raises Constraint_Error, then replace the aggregate with an
1141       --  N_Raise_Constraint_Error node, but set the Etype to the right
1142       --  aggregate subtype. Gigi needs this.
1143 
1144       if Raises_Constraint_Error (N) then
1145          Aggr_Subtyp := Etype (N);
1146          Rewrite (N,
1147            Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
1148          Set_Raises_Constraint_Error (N);
1149          Set_Etype (N, Aggr_Subtyp);
1150          Set_Analyzed (N);
1151       end if;
1152 
1153       Check_Function_Writable_Actuals (N);
1154    end Resolve_Aggregate;
1155 
1156    -----------------------------
1157    -- Resolve_Array_Aggregate --
1158    -----------------------------
1159 
1160    function Resolve_Array_Aggregate
1161      (N              : Node_Id;
1162       Index          : Node_Id;
1163       Index_Constr   : Node_Id;
1164       Component_Typ  : Entity_Id;
1165       Others_Allowed : Boolean) return Boolean
1166    is
1167       Loc : constant Source_Ptr := Sloc (N);
1168 
1169       Failure : constant Boolean := False;
1170       Success : constant Boolean := True;
1171 
1172       Index_Typ      : constant Entity_Id := Etype (Index);
1173       Index_Typ_Low  : constant Node_Id   := Type_Low_Bound  (Index_Typ);
1174       Index_Typ_High : constant Node_Id   := Type_High_Bound (Index_Typ);
1175       --  The type of the index corresponding to the array sub-aggregate along
1176       --  with its low and upper bounds.
1177 
1178       Index_Base      : constant Entity_Id := Base_Type (Index_Typ);
1179       Index_Base_Low  : constant Node_Id   := Type_Low_Bound (Index_Base);
1180       Index_Base_High : constant Node_Id   := Type_High_Bound (Index_Base);
1181       --  Ditto for the base type
1182 
1183       function Add (Val : Uint; To : Node_Id) return Node_Id;
1184       --  Creates a new expression node where Val is added to expression To.
1185       --  Tries to constant fold whenever possible. To must be an already
1186       --  analyzed expression.
1187 
1188       procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1189       --  Checks that AH (the upper bound of an array aggregate) is less than
1190       --  or equal to BH (the upper bound of the index base type). If the check
1191       --  fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1192       --  set, and AH is replaced with a duplicate of BH.
1193 
1194       procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1195       --  Checks that range AL .. AH is compatible with range L .. H. Emits a
1196       --  warning if not and sets the Raises_Constraint_Error flag in N.
1197 
1198       procedure Check_Length (L, H : Node_Id; Len : Uint);
1199       --  Checks that range L .. H contains at least Len elements. Emits a
1200       --  warning if not and sets the Raises_Constraint_Error flag in N.
1201 
1202       function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
1203       --  Returns True if range L .. H is dynamic or null
1204 
1205       procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1206       --  Given expression node From, this routine sets OK to False if it
1207       --  cannot statically evaluate From. Otherwise it stores this static
1208       --  value into Value.
1209 
1210       function Resolve_Aggr_Expr
1211         (Expr        : Node_Id;
1212          Single_Elmt : Boolean) return Boolean;
1213       --  Resolves aggregate expression Expr. Returns False if resolution
1214       --  fails. If Single_Elmt is set to False, the expression Expr may be
1215       --  used to initialize several array aggregate elements (this can happen
1216       --  for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1217       --  In this event we do not resolve Expr unless expansion is disabled.
1218       --  To know why, see the DELAYED COMPONENT RESOLUTION note above.
1219       --
1220       --  NOTE: In the case of "... => <>", we pass the in the
1221       --  N_Component_Association node as Expr, since there is no Expression in
1222       --  that case, and we need a Sloc for the error message.
1223 
1224       ---------
1225       -- Add --
1226       ---------
1227 
1228       function Add (Val : Uint; To : Node_Id) return Node_Id is
1229          Expr_Pos : Node_Id;
1230          Expr     : Node_Id;
1231          To_Pos   : Node_Id;
1232 
1233       begin
1234          if Raises_Constraint_Error (To) then
1235             return To;
1236          end if;
1237 
1238          --  First test if we can do constant folding
1239 
1240          if Compile_Time_Known_Value (To)
1241            or else Nkind (To) = N_Integer_Literal
1242          then
1243             Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1244             Set_Is_Static_Expression (Expr_Pos);
1245             Set_Etype (Expr_Pos, Etype (To));
1246             Set_Analyzed (Expr_Pos, Analyzed (To));
1247 
1248             if not Is_Enumeration_Type (Index_Typ) then
1249                Expr := Expr_Pos;
1250 
1251             --  If we are dealing with enumeration return
1252             --     Index_Typ'Val (Expr_Pos)
1253 
1254             else
1255                Expr :=
1256                  Make_Attribute_Reference
1257                    (Loc,
1258                     Prefix         => New_Occurrence_Of (Index_Typ, Loc),
1259                     Attribute_Name => Name_Val,
1260                     Expressions    => New_List (Expr_Pos));
1261             end if;
1262 
1263             return Expr;
1264          end if;
1265 
1266          --  If we are here no constant folding possible
1267 
1268          if not Is_Enumeration_Type (Index_Base) then
1269             Expr :=
1270               Make_Op_Add (Loc,
1271                 Left_Opnd  => Duplicate_Subexpr (To),
1272                 Right_Opnd => Make_Integer_Literal (Loc, Val));
1273 
1274          --  If we are dealing with enumeration return
1275          --    Index_Typ'Val (Index_Typ'Pos (To) + Val)
1276 
1277          else
1278             To_Pos :=
1279               Make_Attribute_Reference
1280                 (Loc,
1281                  Prefix         => New_Occurrence_Of (Index_Typ, Loc),
1282                  Attribute_Name => Name_Pos,
1283                  Expressions    => New_List (Duplicate_Subexpr (To)));
1284 
1285             Expr_Pos :=
1286               Make_Op_Add (Loc,
1287                 Left_Opnd  => To_Pos,
1288                 Right_Opnd => Make_Integer_Literal (Loc, Val));
1289 
1290             Expr :=
1291               Make_Attribute_Reference
1292                 (Loc,
1293                  Prefix         => New_Occurrence_Of (Index_Typ, Loc),
1294                  Attribute_Name => Name_Val,
1295                  Expressions    => New_List (Expr_Pos));
1296 
1297             --  If the index type has a non standard representation, the
1298             --  attributes 'Val and 'Pos expand into function calls and the
1299             --  resulting expression is considered non-safe for reevaluation
1300             --  by the backend. Relocate it into a constant temporary in order
1301             --  to make it safe for reevaluation.
1302 
1303             if Has_Non_Standard_Rep (Etype (N)) then
1304                declare
1305                   Def_Id : Entity_Id;
1306 
1307                begin
1308                   Def_Id := Make_Temporary (Loc, 'R', Expr);
1309                   Set_Etype (Def_Id, Index_Typ);
1310                   Insert_Action (N,
1311                     Make_Object_Declaration (Loc,
1312                       Defining_Identifier => Def_Id,
1313                       Object_Definition   =>
1314                         New_Occurrence_Of (Index_Typ, Loc),
1315                       Constant_Present    => True,
1316                       Expression          => Relocate_Node (Expr)));
1317 
1318                   Expr := New_Occurrence_Of (Def_Id, Loc);
1319                end;
1320             end if;
1321          end if;
1322 
1323          return Expr;
1324       end Add;
1325 
1326       -----------------
1327       -- Check_Bound --
1328       -----------------
1329 
1330       procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1331          Val_BH : Uint;
1332          Val_AH : Uint;
1333 
1334          OK_BH : Boolean;
1335          OK_AH : Boolean;
1336 
1337       begin
1338          Get (Value => Val_BH, From => BH, OK => OK_BH);
1339          Get (Value => Val_AH, From => AH, OK => OK_AH);
1340 
1341          if OK_BH and then OK_AH and then Val_BH < Val_AH then
1342             Set_Raises_Constraint_Error (N);
1343             Error_Msg_Warn := SPARK_Mode /= On;
1344             Error_Msg_N ("upper bound out of range<<", AH);
1345             Error_Msg_N ("\Constraint_Error [<<", AH);
1346 
1347             --  You need to set AH to BH or else in the case of enumerations
1348             --  indexes we will not be able to resolve the aggregate bounds.
1349 
1350             AH := Duplicate_Subexpr (BH);
1351          end if;
1352       end Check_Bound;
1353 
1354       ------------------
1355       -- Check_Bounds --
1356       ------------------
1357 
1358       procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1359          Val_L  : Uint;
1360          Val_H  : Uint;
1361          Val_AL : Uint;
1362          Val_AH : Uint;
1363 
1364          OK_L : Boolean;
1365          OK_H : Boolean;
1366 
1367          OK_AL : Boolean;
1368          OK_AH  : Boolean;
1369          pragma Warnings (Off, OK_AL);
1370          pragma Warnings (Off, OK_AH);
1371 
1372       begin
1373          if Raises_Constraint_Error (N)
1374            or else Dynamic_Or_Null_Range (AL, AH)
1375          then
1376             return;
1377          end if;
1378 
1379          Get (Value => Val_L, From => L, OK => OK_L);
1380          Get (Value => Val_H, From => H, OK => OK_H);
1381 
1382          Get (Value => Val_AL, From => AL, OK => OK_AL);
1383          Get (Value => Val_AH, From => AH, OK => OK_AH);
1384 
1385          if OK_L and then Val_L > Val_AL then
1386             Set_Raises_Constraint_Error (N);
1387             Error_Msg_Warn := SPARK_Mode /= On;
1388             Error_Msg_N ("lower bound of aggregate out of range<<", N);
1389             Error_Msg_N ("\Constraint_Error [<<", N);
1390          end if;
1391 
1392          if OK_H and then Val_H < Val_AH then
1393             Set_Raises_Constraint_Error (N);
1394             Error_Msg_Warn := SPARK_Mode /= On;
1395             Error_Msg_N ("upper bound of aggregate out of range<<", N);
1396             Error_Msg_N ("\Constraint_Error [<<", N);
1397          end if;
1398       end Check_Bounds;
1399 
1400       ------------------
1401       -- Check_Length --
1402       ------------------
1403 
1404       procedure Check_Length (L, H : Node_Id; Len : Uint) is
1405          Val_L  : Uint;
1406          Val_H  : Uint;
1407 
1408          OK_L  : Boolean;
1409          OK_H  : Boolean;
1410 
1411          Range_Len : Uint;
1412 
1413       begin
1414          if Raises_Constraint_Error (N) then
1415             return;
1416          end if;
1417 
1418          Get (Value => Val_L, From => L, OK => OK_L);
1419          Get (Value => Val_H, From => H, OK => OK_H);
1420 
1421          if not OK_L or else not OK_H then
1422             return;
1423          end if;
1424 
1425          --  If null range length is zero
1426 
1427          if Val_L > Val_H then
1428             Range_Len := Uint_0;
1429          else
1430             Range_Len := Val_H - Val_L + 1;
1431          end if;
1432 
1433          if Range_Len < Len then
1434             Set_Raises_Constraint_Error (N);
1435             Error_Msg_Warn := SPARK_Mode /= On;
1436             Error_Msg_N ("too many elements<<", N);
1437             Error_Msg_N ("\Constraint_Error [<<", N);
1438          end if;
1439       end Check_Length;
1440 
1441       ---------------------------
1442       -- Dynamic_Or_Null_Range --
1443       ---------------------------
1444 
1445       function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1446          Val_L : Uint;
1447          Val_H : Uint;
1448 
1449          OK_L  : Boolean;
1450          OK_H  : Boolean;
1451 
1452       begin
1453          Get (Value => Val_L, From => L, OK => OK_L);
1454          Get (Value => Val_H, From => H, OK => OK_H);
1455 
1456          return not OK_L or else not OK_H
1457            or else not Is_OK_Static_Expression (L)
1458            or else not Is_OK_Static_Expression (H)
1459            or else Val_L > Val_H;
1460       end Dynamic_Or_Null_Range;
1461 
1462       ---------
1463       -- Get --
1464       ---------
1465 
1466       procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1467       begin
1468          OK := True;
1469 
1470          if Compile_Time_Known_Value (From) then
1471             Value := Expr_Value (From);
1472 
1473          --  If expression From is something like Some_Type'Val (10) then
1474          --  Value = 10.
1475 
1476          elsif Nkind (From) = N_Attribute_Reference
1477            and then Attribute_Name (From) = Name_Val
1478            and then Compile_Time_Known_Value (First (Expressions (From)))
1479          then
1480             Value := Expr_Value (First (Expressions (From)));
1481          else
1482             Value := Uint_0;
1483             OK := False;
1484          end if;
1485       end Get;
1486 
1487       -----------------------
1488       -- Resolve_Aggr_Expr --
1489       -----------------------
1490 
1491       function Resolve_Aggr_Expr
1492         (Expr        : Node_Id;
1493          Single_Elmt : Boolean) return Boolean
1494       is
1495          Nxt_Ind        : constant Node_Id := Next_Index (Index);
1496          Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
1497          --  Index is the current index corresponding to the expression
1498 
1499          Resolution_OK : Boolean := True;
1500          --  Set to False if resolution of the expression failed
1501 
1502       begin
1503          --  Defend against previous errors
1504 
1505          if Nkind (Expr) = N_Error
1506            or else Error_Posted (Expr)
1507          then
1508             return True;
1509          end if;
1510 
1511          --  If the array type against which we are resolving the aggregate
1512          --  has several dimensions, the expressions nested inside the
1513          --  aggregate must be further aggregates (or strings).
1514 
1515          if Present (Nxt_Ind) then
1516             if Nkind (Expr) /= N_Aggregate then
1517 
1518                --  A string literal can appear where a one-dimensional array
1519                --  of characters is expected. If the literal looks like an
1520                --  operator, it is still an operator symbol, which will be
1521                --  transformed into a string when analyzed.
1522 
1523                if Is_Character_Type (Component_Typ)
1524                  and then No (Next_Index (Nxt_Ind))
1525                  and then Nkind_In (Expr, N_String_Literal, N_Operator_Symbol)
1526                then
1527                   --  A string literal used in a multidimensional array
1528                   --  aggregate in place of the final one-dimensional
1529                   --  aggregate must not be enclosed in parentheses.
1530 
1531                   if Paren_Count (Expr) /= 0 then
1532                      Error_Msg_N ("no parenthesis allowed here", Expr);
1533                   end if;
1534 
1535                   Make_String_Into_Aggregate (Expr);
1536 
1537                else
1538                   Error_Msg_N ("nested array aggregate expected", Expr);
1539 
1540                   --  If the expression is parenthesized, this may be
1541                   --  a missing component association for a 1-aggregate.
1542 
1543                   if Paren_Count (Expr) > 0 then
1544                      Error_Msg_N
1545                        ("\if single-component aggregate is intended, "
1546                         & "write e.g. (1 ='> ...)", Expr);
1547                   end if;
1548 
1549                   return Failure;
1550                end if;
1551             end if;
1552 
1553             --  If it's "... => <>", nothing to resolve
1554 
1555             if Nkind (Expr) = N_Component_Association then
1556                pragma Assert (Box_Present (Expr));
1557                return Success;
1558             end if;
1559 
1560             --  Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1561             --  Required to check the null-exclusion attribute (if present).
1562             --  This value may be overridden later on.
1563 
1564             Set_Etype (Expr, Etype (N));
1565 
1566             Resolution_OK := Resolve_Array_Aggregate
1567               (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1568 
1569          else
1570             --  If it's "... => <>", nothing to resolve
1571 
1572             if Nkind (Expr) = N_Component_Association then
1573                pragma Assert (Box_Present (Expr));
1574                return Success;
1575             end if;
1576 
1577             --  Do not resolve the expressions of discrete or others choices
1578             --  unless the expression covers a single component, or the
1579             --  expander is inactive.
1580 
1581             --  In SPARK mode, expressions that can perform side-effects will
1582             --  be recognized by the gnat2why back-end, and the whole
1583             --  subprogram will be ignored. So semantic analysis can be
1584             --  performed safely.
1585 
1586             if Single_Elmt
1587               or else not Expander_Active
1588               or else In_Spec_Expression
1589             then
1590                Analyze_And_Resolve (Expr, Component_Typ);
1591                Check_Expr_OK_In_Limited_Aggregate (Expr);
1592                Check_Non_Static_Context (Expr);
1593                Aggregate_Constraint_Checks (Expr, Component_Typ);
1594                Check_Unset_Reference (Expr);
1595             end if;
1596          end if;
1597 
1598          --  If an aggregate component has a type with predicates, an explicit
1599          --  predicate check must be applied, as for an assignment statement,
1600          --  because the aggegate might not be expanded into individual
1601          --  component assignments. If the expression covers several components
1602          --  the analysis and the predicate check take place later.
1603 
1604          if Present (Predicate_Function (Component_Typ))
1605            and then Analyzed (Expr)
1606          then
1607             Apply_Predicate_Check (Expr, Component_Typ);
1608          end if;
1609 
1610          if Raises_Constraint_Error (Expr)
1611            and then Nkind (Parent (Expr)) /= N_Component_Association
1612          then
1613             Set_Raises_Constraint_Error (N);
1614          end if;
1615 
1616          --  If the expression has been marked as requiring a range check,
1617          --  then generate it here. It's a bit odd to be generating such
1618          --  checks in the analyzer, but harmless since Generate_Range_Check
1619          --  does nothing (other than making sure Do_Range_Check is set) if
1620          --  the expander is not active.
1621 
1622          if Do_Range_Check (Expr) then
1623             Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1624          end if;
1625 
1626          return Resolution_OK;
1627       end Resolve_Aggr_Expr;
1628 
1629       --  Variables local to Resolve_Array_Aggregate
1630 
1631       Assoc   : Node_Id;
1632       Choice  : Node_Id;
1633       Expr    : Node_Id;
1634       Discard : Node_Id;
1635 
1636       Delete_Choice : Boolean;
1637       --  Used when replacing a subtype choice with predicate by a list
1638 
1639       Aggr_Low  : Node_Id := Empty;
1640       Aggr_High : Node_Id := Empty;
1641       --  The actual low and high bounds of this sub-aggregate
1642 
1643       Choices_Low  : Node_Id := Empty;
1644       Choices_High : Node_Id := Empty;
1645       --  The lowest and highest discrete choices values for a named aggregate
1646 
1647       Nb_Elements : Uint := Uint_0;
1648       --  The number of elements in a positional aggregate
1649 
1650       Others_Present : Boolean := False;
1651 
1652       Nb_Choices : Nat := 0;
1653       --  Contains the overall number of named choices in this sub-aggregate
1654 
1655       Nb_Discrete_Choices : Nat := 0;
1656       --  The overall number of discrete choices (not counting others choice)
1657 
1658       Case_Table_Size : Nat;
1659       --  Contains the size of the case table needed to sort aggregate choices
1660 
1661    --  Start of processing for Resolve_Array_Aggregate
1662 
1663    begin
1664       --  Ignore junk empty aggregate resulting from parser error
1665 
1666       if No (Expressions (N))
1667         and then No (Component_Associations (N))
1668         and then not Null_Record_Present (N)
1669       then
1670          return False;
1671       end if;
1672 
1673       --  STEP 1: make sure the aggregate is correctly formatted
1674 
1675       if Present (Component_Associations (N)) then
1676          Assoc := First (Component_Associations (N));
1677          while Present (Assoc) loop
1678             Choice := First (Choices (Assoc));
1679             Delete_Choice := False;
1680             while Present (Choice) loop
1681                if Nkind (Choice) = N_Others_Choice then
1682                   Others_Present := True;
1683 
1684                   if Choice /= First (Choices (Assoc))
1685                     or else Present (Next (Choice))
1686                   then
1687                      Error_Msg_N
1688                        ("OTHERS must appear alone in a choice list", Choice);
1689                      return Failure;
1690                   end if;
1691 
1692                   if Present (Next (Assoc)) then
1693                      Error_Msg_N
1694                        ("OTHERS must appear last in an aggregate", Choice);
1695                      return Failure;
1696                   end if;
1697 
1698                   if Ada_Version = Ada_83
1699                     and then Assoc /= First (Component_Associations (N))
1700                     and then Nkind_In (Parent (N), N_Assignment_Statement,
1701                                                    N_Object_Declaration)
1702                   then
1703                      Error_Msg_N
1704                        ("(Ada 83) illegal context for OTHERS choice", N);
1705                   end if;
1706 
1707                elsif Is_Entity_Name (Choice) then
1708                   Analyze (Choice);
1709 
1710                   declare
1711                      E      : constant Entity_Id := Entity (Choice);
1712                      New_Cs : List_Id;
1713                      P      : Node_Id;
1714                      C      : Node_Id;
1715 
1716                   begin
1717                      if Is_Type (E) and then Has_Predicates (E) then
1718                         Freeze_Before (N, E);
1719 
1720                         if Has_Dynamic_Predicate_Aspect (E) then
1721                            Error_Msg_NE
1722                              ("subtype& has dynamic predicate, not allowed "
1723                               & "in aggregate choice", Choice, E);
1724 
1725                         elsif not Is_OK_Static_Subtype (E) then
1726                            Error_Msg_NE
1727                              ("non-static subtype& has predicate, not allowed "
1728                               & "in aggregate choice", Choice, E);
1729                         end if;
1730 
1731                         --  If the subtype has a static predicate, replace the
1732                         --  original choice with the list of individual values
1733                         --  covered by the predicate.
1734 
1735                         if Present (Static_Discrete_Predicate (E)) then
1736                            Delete_Choice := True;
1737 
1738                            New_Cs := New_List;
1739                            P := First (Static_Discrete_Predicate (E));
1740                            while Present (P) loop
1741                               C := New_Copy (P);
1742                               Set_Sloc (C, Sloc (Choice));
1743                               Append_To (New_Cs, C);
1744                               Next (P);
1745                            end loop;
1746 
1747                            Insert_List_After (Choice, New_Cs);
1748                         end if;
1749                      end if;
1750                   end;
1751                end if;
1752 
1753                Nb_Choices := Nb_Choices + 1;
1754 
1755                declare
1756                   C : constant Node_Id := Choice;
1757 
1758                begin
1759                   Next (Choice);
1760 
1761                   if Delete_Choice then
1762                      Remove (C);
1763                      Nb_Choices := Nb_Choices - 1;
1764                      Delete_Choice := False;
1765                   end if;
1766                end;
1767             end loop;
1768 
1769             Next (Assoc);
1770          end loop;
1771       end if;
1772 
1773       --  At this point we know that the others choice, if present, is by
1774       --  itself and appears last in the aggregate. Check if we have mixed
1775       --  positional and discrete associations (other than the others choice).
1776 
1777       if Present (Expressions (N))
1778         and then (Nb_Choices > 1
1779                    or else (Nb_Choices = 1 and then not Others_Present))
1780       then
1781          Error_Msg_N
1782            ("named association cannot follow positional association",
1783             First (Choices (First (Component_Associations (N)))));
1784          return Failure;
1785       end if;
1786 
1787       --  Test for the validity of an others choice if present
1788 
1789       if Others_Present and then not Others_Allowed then
1790          Error_Msg_N
1791            ("OTHERS choice not allowed here",
1792             First (Choices (First (Component_Associations (N)))));
1793          return Failure;
1794       end if;
1795 
1796       --  Protect against cascaded errors
1797 
1798       if Etype (Index_Typ) = Any_Type then
1799          return Failure;
1800       end if;
1801 
1802       --  STEP 2: Process named components
1803 
1804       if No (Expressions (N)) then
1805          if Others_Present then
1806             Case_Table_Size := Nb_Choices - 1;
1807          else
1808             Case_Table_Size := Nb_Choices;
1809          end if;
1810 
1811          Step_2 : declare
1812             function Empty_Range (A : Node_Id) return Boolean;
1813             --  If an association covers an empty range, some warnings on the
1814             --  expression of the association can be disabled.
1815 
1816             -----------------
1817             -- Empty_Range --
1818             -----------------
1819 
1820             function Empty_Range (A : Node_Id) return Boolean is
1821                R : constant Node_Id := First (Choices (A));
1822             begin
1823                return No (Next (R))
1824                  and then Nkind (R) = N_Range
1825                  and then Compile_Time_Compare
1826                             (Low_Bound (R), High_Bound (R), False) = GT;
1827             end Empty_Range;
1828 
1829             --  Local variables
1830 
1831             Low  : Node_Id;
1832             High : Node_Id;
1833             --  Denote the lowest and highest values in an aggregate choice
1834 
1835             S_Low  : Node_Id := Empty;
1836             S_High : Node_Id := Empty;
1837             --  if a choice in an aggregate is a subtype indication these
1838             --  denote the lowest and highest values of the subtype
1839 
1840             Table : Case_Table_Type (0 .. Case_Table_Size);
1841             --  Used to sort all the different choice values. Entry zero is
1842             --  reserved for sorting purposes.
1843 
1844             Single_Choice : Boolean;
1845             --  Set to true every time there is a single discrete choice in a
1846             --  discrete association
1847 
1848             Prev_Nb_Discrete_Choices : Nat;
1849             --  Used to keep track of the number of discrete choices in the
1850             --  current association.
1851 
1852             Errors_Posted_On_Choices : Boolean := False;
1853             --  Keeps track of whether any choices have semantic errors
1854 
1855          --  Start of processing for Step_2
1856 
1857          begin
1858             --  STEP 2 (A): Check discrete choices validity
1859 
1860             Assoc := First (Component_Associations (N));
1861             while Present (Assoc) loop
1862                Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
1863                Choice := First (Choices (Assoc));
1864                loop
1865                   Analyze (Choice);
1866 
1867                   if Nkind (Choice) = N_Others_Choice then
1868                      Single_Choice := False;
1869                      exit;
1870 
1871                   --  Test for subtype mark without constraint
1872 
1873                   elsif Is_Entity_Name (Choice) and then
1874                     Is_Type (Entity (Choice))
1875                   then
1876                      if Base_Type (Entity (Choice)) /= Index_Base then
1877                         Error_Msg_N
1878                           ("invalid subtype mark in aggregate choice",
1879                            Choice);
1880                         return Failure;
1881                      end if;
1882 
1883                   --  Case of subtype indication
1884 
1885                   elsif Nkind (Choice) = N_Subtype_Indication then
1886                      Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
1887 
1888                      if Has_Dynamic_Predicate_Aspect
1889                        (Entity (Subtype_Mark (Choice)))
1890                      then
1891                         Error_Msg_NE
1892                           ("subtype& has dynamic predicate, "
1893                            & "not allowed in aggregate choice",
1894                            Choice, Entity (Subtype_Mark (Choice)));
1895                      end if;
1896 
1897                      --  Does the subtype indication evaluation raise CE?
1898 
1899                      Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
1900                      Get_Index_Bounds (Choice, Low, High);
1901                      Check_Bounds (S_Low, S_High, Low, High);
1902 
1903                   --  Case of range or expression
1904 
1905                   else
1906                      Resolve (Choice, Index_Base);
1907                      Check_Unset_Reference (Choice);
1908                      Check_Non_Static_Context (Choice);
1909 
1910                      --  If semantic errors were posted on the choice, then
1911                      --  record that for possible early return from later
1912                      --  processing (see handling of enumeration choices).
1913 
1914                      if Error_Posted (Choice) then
1915                         Errors_Posted_On_Choices := True;
1916                      end if;
1917 
1918                      --  Do not range check a choice. This check is redundant
1919                      --  since this test is already done when we check that the
1920                      --  bounds of the array aggregate are within range.
1921 
1922                      Set_Do_Range_Check (Choice, False);
1923 
1924                      --  In SPARK, the choice must be static
1925 
1926                      if not (Is_OK_Static_Expression (Choice)
1927                               or else (Nkind (Choice) = N_Range
1928                                         and then Is_OK_Static_Range (Choice)))
1929                      then
1930                         Check_SPARK_05_Restriction
1931                           ("choice should be static", Choice);
1932                      end if;
1933                   end if;
1934 
1935                   --  If we could not resolve the discrete choice stop here
1936 
1937                   if Etype (Choice) = Any_Type then
1938                      return Failure;
1939 
1940                   --  If the discrete choice raises CE get its original bounds
1941 
1942                   elsif Nkind (Choice) = N_Raise_Constraint_Error then
1943                      Set_Raises_Constraint_Error (N);
1944                      Get_Index_Bounds (Original_Node (Choice), Low, High);
1945 
1946                   --  Otherwise get its bounds as usual
1947 
1948                   else
1949                      Get_Index_Bounds (Choice, Low, High);
1950                   end if;
1951 
1952                   if (Dynamic_Or_Null_Range (Low, High)
1953                        or else (Nkind (Choice) = N_Subtype_Indication
1954                                  and then
1955                                    Dynamic_Or_Null_Range (S_Low, S_High)))
1956                     and then Nb_Choices /= 1
1957                   then
1958                      Error_Msg_N
1959                        ("dynamic or empty choice in aggregate "
1960                         & "must be the only choice", Choice);
1961                      return Failure;
1962                   end if;
1963 
1964                   if not (All_Composite_Constraints_Static (Low)
1965                             and then All_Composite_Constraints_Static (High)
1966                             and then All_Composite_Constraints_Static (S_Low)
1967                             and then All_Composite_Constraints_Static (S_High))
1968                   then
1969                      Check_Restriction (No_Dynamic_Sized_Objects, Choice);
1970                   end if;
1971 
1972                   Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
1973                   Table (Nb_Discrete_Choices).Lo := Low;
1974                   Table (Nb_Discrete_Choices).Hi := High;
1975                   Table (Nb_Discrete_Choices).Choice := Choice;
1976 
1977                   Next (Choice);
1978 
1979                   if No (Choice) then
1980 
1981                      --  Check if we have a single discrete choice and whether
1982                      --  this discrete choice specifies a single value.
1983 
1984                      Single_Choice :=
1985                        (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
1986                          and then (Low = High);
1987 
1988                      exit;
1989                   end if;
1990                end loop;
1991 
1992                --  Ada 2005 (AI-231)
1993 
1994                if Ada_Version >= Ada_2005
1995                  and then Known_Null (Expression (Assoc))
1996                  and then not Empty_Range (Assoc)
1997                then
1998                   Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
1999                end if;
2000 
2001                --  Ada 2005 (AI-287): In case of default initialized component
2002                --  we delay the resolution to the expansion phase.
2003 
2004                if Box_Present (Assoc) then
2005 
2006                   --  Ada 2005 (AI-287): In case of default initialization of a
2007                   --  component the expander will generate calls to the
2008                   --  corresponding initialization subprogram. We need to call
2009                   --  Resolve_Aggr_Expr to check the rules about
2010                   --  dimensionality.
2011 
2012                   if not Resolve_Aggr_Expr
2013                            (Assoc, Single_Elmt => Single_Choice)
2014                   then
2015                      return Failure;
2016                   end if;
2017 
2018                elsif not Resolve_Aggr_Expr
2019                            (Expression (Assoc), Single_Elmt => Single_Choice)
2020                then
2021                   return Failure;
2022 
2023                --  Check incorrect use of dynamically tagged expression
2024 
2025                --  We differentiate here two cases because the expression may
2026                --  not be decorated. For example, the analysis and resolution
2027                --  of the expression associated with the others choice will be
2028                --  done later with the full aggregate. In such case we
2029                --  duplicate the expression tree to analyze the copy and
2030                --  perform the required check.
2031 
2032                elsif not Present (Etype (Expression (Assoc))) then
2033                   declare
2034                      Save_Analysis : constant Boolean := Full_Analysis;
2035                      Expr          : constant Node_Id :=
2036                                        New_Copy_Tree (Expression (Assoc));
2037 
2038                   begin
2039                      Expander_Mode_Save_And_Set (False);
2040                      Full_Analysis := False;
2041 
2042                      --  Analyze the expression, making sure it is properly
2043                      --  attached to the tree before we do the analysis.
2044 
2045                      Set_Parent (Expr, Parent (Expression (Assoc)));
2046                      Analyze (Expr);
2047 
2048                      --  Compute its dimensions now, rather than at the end of
2049                      --  resolution, because in the case of multidimensional
2050                      --  aggregates subsequent expansion may lead to spurious
2051                      --  errors.
2052 
2053                      Check_Expression_Dimensions (Expr, Component_Typ);
2054 
2055                      --  If the expression is a literal, propagate this info
2056                      --  to the expression in the association, to enable some
2057                      --  optimizations downstream.
2058 
2059                      if Is_Entity_Name (Expr)
2060                        and then Present (Entity (Expr))
2061                        and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2062                      then
2063                         Analyze_And_Resolve
2064                           (Expression (Assoc), Component_Typ);
2065                      end if;
2066 
2067                      Full_Analysis := Save_Analysis;
2068                      Expander_Mode_Restore;
2069 
2070                      if Is_Tagged_Type (Etype (Expr)) then
2071                         Check_Dynamically_Tagged_Expression
2072                           (Expr => Expr,
2073                            Typ  => Component_Type (Etype (N)),
2074                            Related_Nod => N);
2075                      end if;
2076                   end;
2077 
2078                elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2079                   Check_Dynamically_Tagged_Expression
2080                     (Expr        => Expression (Assoc),
2081                      Typ         => Component_Type (Etype (N)),
2082                      Related_Nod => N);
2083                end if;
2084 
2085                Next (Assoc);
2086             end loop;
2087 
2088             --  If aggregate contains more than one choice then these must be
2089             --  static. Check for duplicate and missing values.
2090 
2091             --  Note: there is duplicated code here wrt Check_Choice_Set in
2092             --  the body of Sem_Case, and it is possible we could just reuse
2093             --  that procedure. To be checked ???
2094 
2095             if Nb_Discrete_Choices > 1 then
2096                Check_Choices : declare
2097                   Choice : Node_Id;
2098                   --  Location of choice for messages
2099 
2100                   Hi_Val : Uint;
2101                   Lo_Val : Uint;
2102                   --  High end of one range and Low end of the next. Should be
2103                   --  contiguous if there is no hole in the list of values.
2104 
2105                   Lo_Dup : Uint;
2106                   Hi_Dup : Uint;
2107                   --  End points of duplicated range
2108 
2109                   Missing_Or_Duplicates : Boolean := False;
2110                   --  Set True if missing or duplicate choices found
2111 
2112                   procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
2113                   --  Output continuation message with a representation of the
2114                   --  bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2115                   --  choice node where the message is to be posted.
2116 
2117                   ------------------------
2118                   -- Output_Bad_Choices --
2119                   ------------------------
2120 
2121                   procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
2122                   begin
2123                      --  Enumeration type case
2124 
2125                      if Is_Enumeration_Type (Index_Typ) then
2126                         Error_Msg_Name_1 :=
2127                           Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
2128                         Error_Msg_Name_2 :=
2129                           Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
2130 
2131                         if Lo = Hi then
2132                            Error_Msg_N ("\\  %!", C);
2133                         else
2134                            Error_Msg_N ("\\  % .. %!", C);
2135                         end if;
2136 
2137                         --  Integer types case
2138 
2139                      else
2140                         Error_Msg_Uint_1 := Lo;
2141                         Error_Msg_Uint_2 := Hi;
2142 
2143                         if Lo = Hi then
2144                            Error_Msg_N ("\\  ^!", C);
2145                         else
2146                            Error_Msg_N ("\\  ^ .. ^!", C);
2147                         end if;
2148                      end if;
2149                   end Output_Bad_Choices;
2150 
2151                --  Start of processing for Check_Choices
2152 
2153                begin
2154                   Sort_Case_Table (Table);
2155 
2156                   --  First we do a quick linear loop to find out if we have
2157                   --  any duplicates or missing entries (usually we have a
2158                   --  legal aggregate, so this will get us out quickly).
2159 
2160                   for J in 1 .. Nb_Discrete_Choices - 1 loop
2161                      Hi_Val := Expr_Value (Table (J).Hi);
2162                      Lo_Val := Expr_Value (Table (J + 1).Lo);
2163 
2164                      if Lo_Val <= Hi_Val
2165                        or else (Lo_Val > Hi_Val + 1
2166                                  and then not Others_Present)
2167                      then
2168                         Missing_Or_Duplicates := True;
2169                         exit;
2170                      end if;
2171                   end loop;
2172 
2173                   --  If we have missing or duplicate entries, first fill in
2174                   --  the Highest entries to make life easier in the following
2175                   --  loops to detect bad entries.
2176 
2177                   if Missing_Or_Duplicates then
2178                      Table (1).Highest := Expr_Value (Table (1).Hi);
2179 
2180                      for J in 2 .. Nb_Discrete_Choices loop
2181                         Table (J).Highest :=
2182                           UI_Max
2183                             (Table (J - 1).Highest, Expr_Value (Table (J).Hi));
2184                      end loop;
2185 
2186                      --  Loop through table entries to find duplicate indexes
2187 
2188                      for J in 2 .. Nb_Discrete_Choices loop
2189                         Lo_Val := Expr_Value (Table (J).Lo);
2190                         Hi_Val := Expr_Value (Table (J).Hi);
2191 
2192                         --  Case where we have duplicates (the lower bound of
2193                         --  this choice is less than or equal to the highest
2194                         --  high bound found so far).
2195 
2196                         if Lo_Val <= Table (J - 1).Highest then
2197 
2198                            --  We move backwards looking for duplicates. We can
2199                            --  abandon this loop as soon as we reach a choice
2200                            --  highest value that is less than Lo_Val.
2201 
2202                            for K in reverse 1 .. J - 1 loop
2203                               exit when Table (K).Highest < Lo_Val;
2204 
2205                               --  Here we may have duplicates between entries
2206                               --  for K and J. Get range of duplicates.
2207 
2208                               Lo_Dup :=
2209                                 UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
2210                               Hi_Dup :=
2211                                 UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
2212 
2213                               --  Nothing to do if duplicate range is null
2214 
2215                               if Lo_Dup > Hi_Dup then
2216                                  null;
2217 
2218                               --  Otherwise place proper message
2219 
2220                               else
2221                                  --  We place message on later choice, with a
2222                                  --  line reference to the earlier choice.
2223 
2224                                  if Sloc (Table (J).Choice) <
2225                                    Sloc (Table (K).Choice)
2226                                  then
2227                                     Choice := Table (K).Choice;
2228                                     Error_Msg_Sloc := Sloc (Table (J).Choice);
2229                                  else
2230                                     Choice := Table (J).Choice;
2231                                     Error_Msg_Sloc := Sloc (Table (K).Choice);
2232                                  end if;
2233 
2234                                  if Lo_Dup = Hi_Dup then
2235                                     Error_Msg_N
2236                                       ("index value in array aggregate "
2237                                        & "duplicates the one given#!", Choice);
2238                                  else
2239                                     Error_Msg_N
2240                                       ("index values in array aggregate "
2241                                        & "duplicate those given#!", Choice);
2242                                  end if;
2243 
2244                                  Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
2245                               end if;
2246                            end loop;
2247                         end if;
2248                      end loop;
2249 
2250                      --  Loop through entries in table to find missing indexes.
2251                      --  Not needed if others, since missing impossible.
2252 
2253                      if not Others_Present then
2254                         for J in 2 .. Nb_Discrete_Choices loop
2255                            Lo_Val := Expr_Value (Table (J).Lo);
2256                            Hi_Val := Table (J - 1).Highest;
2257 
2258                            if Lo_Val > Hi_Val + 1 then
2259 
2260                               declare
2261                                  Error_Node : Node_Id;
2262 
2263                               begin
2264                                  --  If the choice is the bound of a range in
2265                                  --  a subtype indication, it is not in the
2266                                  --  source lists for the aggregate itself, so
2267                                  --  post the error on the aggregate. Otherwise
2268                                  --  post it on choice itself.
2269 
2270                                  Choice := Table (J).Choice;
2271 
2272                                  if Is_List_Member (Choice) then
2273                                     Error_Node := Choice;
2274                                  else
2275                                     Error_Node := N;
2276                                  end if;
2277 
2278                                  if Hi_Val + 1 = Lo_Val - 1 then
2279                                     Error_Msg_N
2280                                       ("missing index value "
2281                                        & "in array aggregate!", Error_Node);
2282                                  else
2283                                     Error_Msg_N
2284                                       ("missing index values "
2285                                        & "in array aggregate!", Error_Node);
2286                                  end if;
2287 
2288                                  Output_Bad_Choices
2289                                    (Hi_Val + 1, Lo_Val - 1, Error_Node);
2290                               end;
2291                            end if;
2292                         end loop;
2293                      end if;
2294 
2295                      --  If either missing or duplicate values, return failure
2296 
2297                      Set_Etype (N, Any_Composite);
2298                      return Failure;
2299                   end if;
2300                end Check_Choices;
2301             end if;
2302 
2303             --  STEP 2 (B): Compute aggregate bounds and min/max choices values
2304 
2305             if Nb_Discrete_Choices > 0 then
2306                Choices_Low  := Table (1).Lo;
2307                Choices_High := Table (Nb_Discrete_Choices).Hi;
2308             end if;
2309 
2310             --  If Others is present, then bounds of aggregate come from the
2311             --  index constraint (not the choices in the aggregate itself).
2312 
2313             if Others_Present then
2314                Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2315 
2316                --  Abandon processing if either bound is already signalled as
2317                --  an error (prevents junk cascaded messages and blow ups).
2318 
2319                if Nkind (Aggr_Low) = N_Error
2320                     or else
2321                   Nkind (Aggr_High) = N_Error
2322                then
2323                   return False;
2324                end if;
2325 
2326             --  No others clause present
2327 
2328             else
2329                --  Special processing if others allowed and not present. This
2330                --  means that the bounds of the aggregate come from the index
2331                --  constraint (and the length must match).
2332 
2333                if Others_Allowed then
2334                   Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2335 
2336                   --  Abandon processing if either bound is already signalled
2337                   --  as an error (stop junk cascaded messages and blow ups).
2338 
2339                   if Nkind (Aggr_Low) = N_Error
2340                        or else
2341                      Nkind (Aggr_High) = N_Error
2342                   then
2343                      return False;
2344                   end if;
2345 
2346                   --  If others allowed, and no others present, then the array
2347                   --  should cover all index values. If it does not, we will
2348                   --  get a length check warning, but there is two cases where
2349                   --  an additional warning is useful:
2350 
2351                   --  If we have no positional components, and the length is
2352                   --  wrong (which we can tell by others being allowed with
2353                   --  missing components), and the index type is an enumeration
2354                   --  type, then issue appropriate warnings about these missing
2355                   --  components. They are only warnings, since the aggregate
2356                   --  is fine, it's just the wrong length. We skip this check
2357                   --  for standard character types (since there are no literals
2358                   --  and it is too much trouble to concoct them), and also if
2359                   --  any of the bounds have values that are not known at
2360                   --  compile time.
2361 
2362                   --  Another case warranting a warning is when the length
2363                   --  is right, but as above we have an index type that is
2364                   --  an enumeration, and the bounds do not match. This is a
2365                   --  case where dubious sliding is allowed and we generate a
2366                   --  warning that the bounds do not match.
2367 
2368                   if No (Expressions (N))
2369                     and then Nkind (Index) = N_Range
2370                     and then Is_Enumeration_Type (Etype (Index))
2371                     and then not Is_Standard_Character_Type (Etype (Index))
2372                     and then Compile_Time_Known_Value (Aggr_Low)
2373                     and then Compile_Time_Known_Value (Aggr_High)
2374                     and then Compile_Time_Known_Value (Choices_Low)
2375                     and then Compile_Time_Known_Value (Choices_High)
2376                   then
2377                      --  If any of the expressions or range bounds in choices
2378                      --  have semantic errors, then do not attempt further
2379                      --  resolution, to prevent cascaded errors.
2380 
2381                      if Errors_Posted_On_Choices then
2382                         return Failure;
2383                      end if;
2384 
2385                      declare
2386                         ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2387                         AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2388                         CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2389                         CHi : constant Node_Id := Expr_Value_E (Choices_High);
2390 
2391                         Ent : Entity_Id;
2392 
2393                      begin
2394                         --  Warning case 1, missing values at start/end. Only
2395                         --  do the check if the number of entries is too small.
2396 
2397                         if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2398                               <
2399                            (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2400                         then
2401                            Error_Msg_N
2402                              ("missing index value(s) in array aggregate??",
2403                               N);
2404 
2405                            --  Output missing value(s) at start
2406 
2407                            if Chars (ALo) /= Chars (CLo) then
2408                               Ent := Prev (CLo);
2409 
2410                               if Chars (ALo) = Chars (Ent) then
2411                                  Error_Msg_Name_1 := Chars (ALo);
2412                                  Error_Msg_N ("\  %??", N);
2413                               else
2414                                  Error_Msg_Name_1 := Chars (ALo);
2415                                  Error_Msg_Name_2 := Chars (Ent);
2416                                  Error_Msg_N ("\  % .. %??", N);
2417                               end if;
2418                            end if;
2419 
2420                            --  Output missing value(s) at end
2421 
2422                            if Chars (AHi) /= Chars (CHi) then
2423                               Ent := Next (CHi);
2424 
2425                               if Chars (AHi) = Chars (Ent) then
2426                                  Error_Msg_Name_1 := Chars (Ent);
2427                                  Error_Msg_N ("\  %??", N);
2428                               else
2429                                  Error_Msg_Name_1 := Chars (Ent);
2430                                  Error_Msg_Name_2 := Chars (AHi);
2431                                  Error_Msg_N ("\  % .. %??", N);
2432                               end if;
2433                            end if;
2434 
2435                         --  Warning case 2, dubious sliding. The First_Subtype
2436                         --  test distinguishes between a constrained type where
2437                         --  sliding is not allowed (so we will get a warning
2438                         --  later that Constraint_Error will be raised), and
2439                         --  the unconstrained case where sliding is permitted.
2440 
2441                         elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2442                                  =
2443                               (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2444                           and then Chars (ALo) /= Chars (CLo)
2445                           and then
2446                             not Is_Constrained (First_Subtype (Etype (N)))
2447                         then
2448                            Error_Msg_N
2449                              ("bounds of aggregate do not match target??", N);
2450                         end if;
2451                      end;
2452                   end if;
2453                end if;
2454 
2455                --  If no others, aggregate bounds come from aggregate
2456 
2457                Aggr_Low  := Choices_Low;
2458                Aggr_High := Choices_High;
2459             end if;
2460          end Step_2;
2461 
2462       --  STEP 3: Process positional components
2463 
2464       else
2465          --  STEP 3 (A): Process positional elements
2466 
2467          Expr := First (Expressions (N));
2468          Nb_Elements := Uint_0;
2469          while Present (Expr) loop
2470             Nb_Elements := Nb_Elements + 1;
2471 
2472             --  Ada 2005 (AI-231)
2473 
2474             if Ada_Version >= Ada_2005 and then Known_Null (Expr) then
2475                Check_Can_Never_Be_Null (Etype (N), Expr);
2476             end if;
2477 
2478             if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2479                return Failure;
2480             end if;
2481 
2482             --  Check incorrect use of dynamically tagged expression
2483 
2484             if Is_Tagged_Type (Etype (Expr)) then
2485                Check_Dynamically_Tagged_Expression
2486                  (Expr => Expr,
2487                   Typ  => Component_Type (Etype (N)),
2488                   Related_Nod => N);
2489             end if;
2490 
2491             Next (Expr);
2492          end loop;
2493 
2494          if Others_Present then
2495             Assoc := Last (Component_Associations (N));
2496 
2497             --  Ada 2005 (AI-231)
2498 
2499             if Ada_Version >= Ada_2005 and then Known_Null (Assoc) then
2500                Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2501             end if;
2502 
2503             --  Ada 2005 (AI-287): In case of default initialized component,
2504             --  we delay the resolution to the expansion phase.
2505 
2506             if Box_Present (Assoc) then
2507 
2508                --  Ada 2005 (AI-287): In case of default initialization of a
2509                --  component the expander will generate calls to the
2510                --  corresponding initialization subprogram. We need to call
2511                --  Resolve_Aggr_Expr to check the rules about
2512                --  dimensionality.
2513 
2514                if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
2515                   return Failure;
2516                end if;
2517 
2518             elsif not Resolve_Aggr_Expr (Expression (Assoc),
2519                                          Single_Elmt => False)
2520             then
2521                return Failure;
2522 
2523             --  Check incorrect use of dynamically tagged expression. The
2524             --  expression of the others choice has not been resolved yet.
2525             --  In order to diagnose the semantic error we create a duplicate
2526             --  tree to analyze it and perform the check.
2527 
2528             else
2529                declare
2530                   Save_Analysis : constant Boolean := Full_Analysis;
2531                   Expr          : constant Node_Id :=
2532                                     New_Copy_Tree (Expression (Assoc));
2533 
2534                begin
2535                   Expander_Mode_Save_And_Set (False);
2536                   Full_Analysis := False;
2537                   Analyze (Expr);
2538                   Full_Analysis := Save_Analysis;
2539                   Expander_Mode_Restore;
2540 
2541                   if Is_Tagged_Type (Etype (Expr)) then
2542                      Check_Dynamically_Tagged_Expression
2543                        (Expr        => Expr,
2544                         Typ         => Component_Type (Etype (N)),
2545                         Related_Nod => N);
2546                   end if;
2547                end;
2548             end if;
2549          end if;
2550 
2551          --  STEP 3 (B): Compute the aggregate bounds
2552 
2553          if Others_Present then
2554             Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2555 
2556          else
2557             if Others_Allowed then
2558                Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
2559             else
2560                Aggr_Low := Index_Typ_Low;
2561             end if;
2562 
2563             Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2564             Check_Bound (Index_Base_High, Aggr_High);
2565          end if;
2566       end if;
2567 
2568       --  STEP 4: Perform static aggregate checks and save the bounds
2569 
2570       --  Check (A)
2571 
2572       Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2573       Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2574 
2575       --  Check (B)
2576 
2577       if Others_Present and then Nb_Discrete_Choices > 0 then
2578          Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2579          Check_Bounds (Index_Typ_Low, Index_Typ_High,
2580                        Choices_Low, Choices_High);
2581          Check_Bounds (Index_Base_Low, Index_Base_High,
2582                        Choices_Low, Choices_High);
2583 
2584       --  Check (C)
2585 
2586       elsif Others_Present and then Nb_Elements > 0 then
2587          Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2588          Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2589          Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
2590       end if;
2591 
2592       if Raises_Constraint_Error (Aggr_Low)
2593         or else Raises_Constraint_Error (Aggr_High)
2594       then
2595          Set_Raises_Constraint_Error (N);
2596       end if;
2597 
2598       Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2599 
2600       --  Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2601       --  since the addition node returned by Add is not yet analyzed. Attach
2602       --  to tree and analyze first. Reset analyzed flag to ensure it will get
2603       --  analyzed when it is a literal bound whose type must be properly set.
2604 
2605       if Others_Present or else Nb_Discrete_Choices > 0 then
2606          Aggr_High := Duplicate_Subexpr (Aggr_High);
2607 
2608          if Etype (Aggr_High) = Universal_Integer then
2609             Set_Analyzed (Aggr_High, False);
2610          end if;
2611       end if;
2612 
2613       --  If the aggregate already has bounds attached to it, it means this is
2614       --  a positional aggregate created as an optimization by
2615       --  Exp_Aggr.Convert_To_Positional, so we don't want to change those
2616       --  bounds.
2617 
2618       if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
2619          Aggr_Low  := Low_Bound  (Aggregate_Bounds (N));
2620          Aggr_High := High_Bound (Aggregate_Bounds (N));
2621       end if;
2622 
2623       Set_Aggregate_Bounds
2624         (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2625 
2626       --  The bounds may contain expressions that must be inserted upwards.
2627       --  Attach them fully to the tree. After analysis, remove side effects
2628       --  from upper bound, if still needed.
2629 
2630       Set_Parent (Aggregate_Bounds (N), N);
2631       Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
2632       Check_Unset_Reference (Aggregate_Bounds (N));
2633 
2634       if not Others_Present and then Nb_Discrete_Choices = 0 then
2635          Set_High_Bound
2636            (Aggregate_Bounds (N),
2637             Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
2638       end if;
2639 
2640       --  Check the dimensions of each component in the array aggregate
2641 
2642       Analyze_Dimension_Array_Aggregate (N, Component_Typ);
2643 
2644       return Success;
2645    end Resolve_Array_Aggregate;
2646 
2647    ---------------------------------
2648    -- Resolve_Extension_Aggregate --
2649    ---------------------------------
2650 
2651    --  There are two cases to consider:
2652 
2653    --  a) If the ancestor part is a type mark, the components needed are the
2654    --  difference between the components of the expected type and the
2655    --  components of the given type mark.
2656 
2657    --  b) If the ancestor part is an expression, it must be unambiguous, and
2658    --  once we have its type we can also compute the needed components as in
2659    --  the previous case. In both cases, if the ancestor type is not the
2660    --  immediate ancestor, we have to build this ancestor recursively.
2661 
2662    --  In both cases, discriminants of the ancestor type do not play a role in
2663    --  the resolution of the needed components, because inherited discriminants
2664    --  cannot be used in a type extension. As a result we can compute
2665    --  independently the list of components of the ancestor type and of the
2666    --  expected type.
2667 
2668    procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
2669       A      : constant Node_Id := Ancestor_Part (N);
2670       A_Type : Entity_Id;
2671       I      : Interp_Index;
2672       It     : Interp;
2673 
2674       function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
2675       --  If the type is limited, verify that the ancestor part is a legal
2676       --  expression (aggregate or function call, including 'Input)) that does
2677       --  not require a copy, as specified in 7.5(2).
2678 
2679       function Valid_Ancestor_Type return Boolean;
2680       --  Verify that the type of the ancestor part is a non-private ancestor
2681       --  of the expected type, which must be a type extension.
2682 
2683       ----------------------------
2684       -- Valid_Limited_Ancestor --
2685       ----------------------------
2686 
2687       function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
2688       begin
2689          if Is_Entity_Name (Anc) and then Is_Type (Entity (Anc)) then
2690             return True;
2691 
2692          --  The ancestor must be a call or an aggregate, but a call may
2693          --  have been expanded into a temporary, so check original node.
2694 
2695          elsif Nkind_In (Anc, N_Aggregate,
2696                               N_Extension_Aggregate,
2697                               N_Function_Call)
2698          then
2699             return True;
2700 
2701          elsif Nkind (Original_Node (Anc)) = N_Function_Call then
2702             return True;
2703 
2704          elsif Nkind (Anc) = N_Attribute_Reference
2705            and then Attribute_Name (Anc) = Name_Input
2706          then
2707             return True;
2708 
2709          elsif Nkind (Anc) = N_Qualified_Expression then
2710             return Valid_Limited_Ancestor (Expression (Anc));
2711 
2712          else
2713             return False;
2714          end if;
2715       end Valid_Limited_Ancestor;
2716 
2717       -------------------------
2718       -- Valid_Ancestor_Type --
2719       -------------------------
2720 
2721       function Valid_Ancestor_Type return Boolean is
2722          Imm_Type : Entity_Id;
2723 
2724       begin
2725          Imm_Type := Base_Type (Typ);
2726          while Is_Derived_Type (Imm_Type) loop
2727             if Etype (Imm_Type) = Base_Type (A_Type) then
2728                return True;
2729 
2730             --  The base type of the parent type may appear as a private
2731             --  extension if it is declared as such in a parent unit of the
2732             --  current one. For consistency of the subsequent analysis use
2733             --  the partial view for the ancestor part.
2734 
2735             elsif Is_Private_Type (Etype (Imm_Type))
2736               and then Present (Full_View (Etype (Imm_Type)))
2737               and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
2738             then
2739                A_Type := Etype (Imm_Type);
2740                return True;
2741 
2742             --  The parent type may be a private extension. The aggregate is
2743             --  legal if the type of the aggregate is an extension of it that
2744             --  is not a private extension.
2745 
2746             elsif Is_Private_Type (A_Type)
2747               and then not Is_Private_Type (Imm_Type)
2748               and then Present (Full_View (A_Type))
2749               and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
2750             then
2751                return True;
2752 
2753             else
2754                Imm_Type := Etype (Base_Type (Imm_Type));
2755             end if;
2756          end loop;
2757 
2758          --  If previous loop did not find a proper ancestor, report error
2759 
2760          Error_Msg_NE ("expect ancestor type of &", A, Typ);
2761          return False;
2762       end Valid_Ancestor_Type;
2763 
2764    --  Start of processing for Resolve_Extension_Aggregate
2765 
2766    begin
2767       --  Analyze the ancestor part and account for the case where it is a
2768       --  parameterless function call.
2769 
2770       Analyze (A);
2771       Check_Parameterless_Call (A);
2772 
2773       --  In SPARK, the ancestor part cannot be a type mark
2774 
2775       if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
2776          Check_SPARK_05_Restriction ("ancestor part cannot be a type mark", A);
2777 
2778          --  AI05-0115: if the ancestor part is a subtype mark, the ancestor
2779          --  must not have unknown discriminants.
2780 
2781          if Has_Unknown_Discriminants (Root_Type (Typ)) then
2782             Error_Msg_NE
2783               ("aggregate not available for type& whose ancestor "
2784                  & "has unknown discriminants", N, Typ);
2785          end if;
2786       end if;
2787 
2788       if not Is_Tagged_Type (Typ) then
2789          Error_Msg_N ("type of extension aggregate must be tagged", N);
2790          return;
2791 
2792       elsif Is_Limited_Type (Typ) then
2793 
2794          --  Ada 2005 (AI-287): Limited aggregates are allowed
2795 
2796          if Ada_Version < Ada_2005 then
2797             Error_Msg_N ("aggregate type cannot be limited", N);
2798             Explain_Limited_Type (Typ, N);
2799             return;
2800 
2801          elsif Valid_Limited_Ancestor (A) then
2802             null;
2803 
2804          else
2805             Error_Msg_N
2806               ("limited ancestor part must be aggregate or function call", A);
2807          end if;
2808 
2809       elsif Is_Class_Wide_Type (Typ) then
2810          Error_Msg_N ("aggregate cannot be of a class-wide type", N);
2811          return;
2812       end if;
2813 
2814       if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
2815          A_Type := Get_Full_View (Entity (A));
2816 
2817          if Valid_Ancestor_Type then
2818             Set_Entity (A, A_Type);
2819             Set_Etype  (A, A_Type);
2820 
2821             Validate_Ancestor_Part (N);
2822             Resolve_Record_Aggregate (N, Typ);
2823          end if;
2824 
2825       elsif Nkind (A) /= N_Aggregate then
2826          if Is_Overloaded (A) then
2827             A_Type := Any_Type;
2828 
2829             Get_First_Interp (A, I, It);
2830             while Present (It.Typ) loop
2831 
2832                --  Only consider limited interpretations in the Ada 2005 case
2833 
2834                if Is_Tagged_Type (It.Typ)
2835                  and then (Ada_Version >= Ada_2005
2836                             or else not Is_Limited_Type (It.Typ))
2837                then
2838                   if A_Type /= Any_Type then
2839                      Error_Msg_N ("cannot resolve expression", A);
2840                      return;
2841                   else
2842                      A_Type := It.Typ;
2843                   end if;
2844                end if;
2845 
2846                Get_Next_Interp (I, It);
2847             end loop;
2848 
2849             if A_Type = Any_Type then
2850                if Ada_Version >= Ada_2005 then
2851                   Error_Msg_N
2852                     ("ancestor part must be of a tagged type", A);
2853                else
2854                   Error_Msg_N
2855                     ("ancestor part must be of a nonlimited tagged type", A);
2856                end if;
2857 
2858                return;
2859             end if;
2860 
2861          else
2862             A_Type := Etype (A);
2863          end if;
2864 
2865          if Valid_Ancestor_Type then
2866             Resolve (A, A_Type);
2867             Check_Unset_Reference (A);
2868             Check_Non_Static_Context (A);
2869 
2870             --  The aggregate is illegal if the ancestor expression is a call
2871             --  to a function with a limited unconstrained result, unless the
2872             --  type of the aggregate is a null extension. This restriction
2873             --  was added in AI05-67 to simplify implementation.
2874 
2875             if Nkind (A) = N_Function_Call
2876               and then Is_Limited_Type (A_Type)
2877               and then not Is_Null_Extension (Typ)
2878               and then not Is_Constrained (A_Type)
2879             then
2880                Error_Msg_N
2881                  ("type of limited ancestor part must be constrained", A);
2882 
2883             --  Reject the use of CPP constructors that leave objects partially
2884             --  initialized. For example:
2885 
2886             --    type CPP_Root is tagged limited record ...
2887             --    pragma Import (CPP, CPP_Root);
2888 
2889             --    type CPP_DT is new CPP_Root and Iface ...
2890             --    pragma Import (CPP, CPP_DT);
2891 
2892             --    type Ada_DT is new CPP_DT with ...
2893 
2894             --    Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
2895 
2896             --  Using the constructor of CPP_Root the slots of the dispatch
2897             --  table of CPP_DT cannot be set, and the secondary tag of
2898             --  CPP_DT is unknown.
2899 
2900             elsif Nkind (A) = N_Function_Call
2901               and then Is_CPP_Constructor_Call (A)
2902               and then Enclosing_CPP_Parent (Typ) /= A_Type
2903             then
2904                Error_Msg_NE
2905                  ("??must use 'C'P'P constructor for type &", A,
2906                   Enclosing_CPP_Parent (Typ));
2907 
2908                --  The following call is not needed if the previous warning
2909                --  is promoted to an error.
2910 
2911                Resolve_Record_Aggregate (N, Typ);
2912 
2913             elsif Is_Class_Wide_Type (Etype (A))
2914               and then Nkind (Original_Node (A)) = N_Function_Call
2915             then
2916                --  If the ancestor part is a dispatching call, it appears
2917                --  statically to be a legal ancestor, but it yields any member
2918                --  of the class, and it is not possible to determine whether
2919                --  it is an ancestor of the extension aggregate (much less
2920                --  which ancestor). It is not possible to determine the
2921                --  components of the extension part.
2922 
2923                --  This check implements AI-306, which in fact was motivated by
2924                --  an AdaCore query to the ARG after this test was added.
2925 
2926                Error_Msg_N ("ancestor part must be statically tagged", A);
2927             else
2928                Resolve_Record_Aggregate (N, Typ);
2929             end if;
2930          end if;
2931 
2932       else
2933          Error_Msg_N ("no unique type for this aggregate",  A);
2934       end if;
2935 
2936       Check_Function_Writable_Actuals (N);
2937    end Resolve_Extension_Aggregate;
2938 
2939    ------------------------------
2940    -- Resolve_Record_Aggregate --
2941    ------------------------------
2942 
2943    procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
2944       Assoc : Node_Id;
2945       --  N_Component_Association node belonging to the input aggregate N
2946 
2947       Expr            : Node_Id;
2948       Positional_Expr : Node_Id;
2949       Component       : Entity_Id;
2950       Component_Elmt  : Elmt_Id;
2951 
2952       Components : constant Elist_Id := New_Elmt_List;
2953       --  Components is the list of the record components whose value must be
2954       --  provided in the aggregate. This list does include discriminants.
2955 
2956       New_Assoc_List : constant List_Id := New_List;
2957       New_Assoc      : Node_Id;
2958       --  New_Assoc_List is the newly built list of N_Component_Association
2959       --  nodes. New_Assoc is one such N_Component_Association node in it.
2960       --  Note that while Assoc and New_Assoc contain the same kind of nodes,
2961       --  they are used to iterate over two different N_Component_Association
2962       --  lists.
2963 
2964       Others_Etype : Entity_Id := Empty;
2965       --  This variable is used to save the Etype of the last record component
2966       --  that takes its value from the others choice. Its purpose is:
2967       --
2968       --    (a) make sure the others choice is useful
2969       --
2970       --    (b) make sure the type of all the components whose value is
2971       --        subsumed by the others choice are the same.
2972       --
2973       --  This variable is updated as a side effect of function Get_Value.
2974 
2975       Box_Node       : Node_Id;
2976       Is_Box_Present : Boolean := False;
2977       Others_Box     : Integer := 0;
2978 
2979       --  Ada 2005 (AI-287): Variables used in case of default initialization
2980       --  to provide a functionality similar to Others_Etype. Box_Present
2981       --  indicates that the component takes its default initialization;
2982       --  Others_Box counts the number of components of the current aggregate
2983       --  (which may be a sub-aggregate of a larger one) that are default-
2984       --  initialized. A value of One indicates that an others_box is present.
2985       --  Any larger value indicates that the others_box is not redundant.
2986       --  These variables, similar to Others_Etype, are also updated as a
2987       --  side effect of function Get_Value.
2988       --  Box_Node is used to place a warning on a redundant others_box.
2989 
2990       procedure Add_Association
2991         (Component      : Entity_Id;
2992          Expr           : Node_Id;
2993          Assoc_List     : List_Id;
2994          Is_Box_Present : Boolean := False);
2995       --  Builds a new N_Component_Association node which associates Component
2996       --  to expression Expr and adds it to the association list being built,
2997       --  either New_Assoc_List, or the association being built for an inner
2998       --  aggregate.
2999 
3000       function Discr_Present (Discr : Entity_Id) return Boolean;
3001       --  If aggregate N is a regular aggregate this routine will return True.
3002       --  Otherwise, if N is an extension aggregate, Discr is a discriminant
3003       --  whose value may already have been specified by N's ancestor part.
3004       --  This routine checks whether this is indeed the case and if so returns
3005       --  False, signaling that no value for Discr should appear in N's
3006       --  aggregate part. Also, in this case, the routine appends to
3007       --  New_Assoc_List the discriminant value specified in the ancestor part.
3008       --
3009       --  If the aggregate is in a context with expansion delayed, it will be
3010       --  reanalyzed. The inherited discriminant values must not be reinserted
3011       --  in the component list to prevent spurious errors, but they must be
3012       --  present on first analysis to build the proper subtype indications.
3013       --  The flag Inherited_Discriminant is used to prevent the re-insertion.
3014 
3015       function Get_Value
3016         (Compon                 : Node_Id;
3017          From                   : List_Id;
3018          Consider_Others_Choice : Boolean := False)
3019          return                   Node_Id;
3020       --  Given a record component stored in parameter Compon, this function
3021       --  returns its value as it appears in the list From, which is a list
3022       --  of N_Component_Association nodes.
3023       --
3024       --  If no component association has a choice for the searched component,
3025       --  the value provided by the others choice is returned, if there is one,
3026       --  and Consider_Others_Choice is set to true. Otherwise Empty is
3027       --  returned. If there is more than one component association giving a
3028       --  value for the searched record component, an error message is emitted
3029       --  and the first found value is returned.
3030       --
3031       --  If Consider_Others_Choice is set and the returned expression comes
3032       --  from the others choice, then Others_Etype is set as a side effect.
3033       --  An error message is emitted if the components taking their value from
3034       --  the others choice do not have same type.
3035 
3036       function New_Copy_Tree_And_Copy_Dimensions
3037         (Source    : Node_Id;
3038          Map       : Elist_Id   := No_Elist;
3039          New_Sloc  : Source_Ptr := No_Location;
3040          New_Scope : Entity_Id  := Empty) return Node_Id;
3041       --  Same as New_Copy_Tree (defined in Sem_Util), except that this routine
3042       --  also copies the dimensions of Source to the returned node.
3043 
3044       procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id);
3045       --  Analyzes and resolves expression Expr against the Etype of the
3046       --  Component. This routine also applies all appropriate checks to Expr.
3047       --  It finally saves a Expr in the newly created association list that
3048       --  will be attached to the final record aggregate. Note that if the
3049       --  Parent pointer of Expr is not set then Expr was produced with a
3050       --  New_Copy_Tree or some such.
3051 
3052       ---------------------
3053       -- Add_Association --
3054       ---------------------
3055 
3056       procedure Add_Association
3057         (Component      : Entity_Id;
3058          Expr           : Node_Id;
3059          Assoc_List     : List_Id;
3060          Is_Box_Present : Boolean := False)
3061       is
3062          Loc : Source_Ptr;
3063          Choice_List : constant List_Id := New_List;
3064          New_Assoc   : Node_Id;
3065 
3066       begin
3067          --  If this is a box association the expression is missing, so
3068          --  use the Sloc of the aggregate itself for the new association.
3069 
3070          if Present (Expr) then
3071             Loc := Sloc (Expr);
3072          else
3073             Loc := Sloc (N);
3074          end if;
3075 
3076          Append (New_Occurrence_Of (Component, Loc), Choice_List);
3077          New_Assoc :=
3078            Make_Component_Association (Loc,
3079              Choices     => Choice_List,
3080              Expression  => Expr,
3081              Box_Present => Is_Box_Present);
3082          Append (New_Assoc, Assoc_List);
3083       end Add_Association;
3084 
3085       -------------------
3086       -- Discr_Present --
3087       -------------------
3088 
3089       function Discr_Present (Discr : Entity_Id) return Boolean is
3090          Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
3091 
3092          Loc : Source_Ptr;
3093 
3094          Ancestor     : Node_Id;
3095          Comp_Assoc   : Node_Id;
3096          Discr_Expr   : Node_Id;
3097 
3098          Ancestor_Typ : Entity_Id;
3099          Orig_Discr   : Entity_Id;
3100          D            : Entity_Id;
3101          D_Val        : Elmt_Id := No_Elmt; -- stop junk warning
3102 
3103          Ancestor_Is_Subtyp : Boolean;
3104 
3105       begin
3106          if Regular_Aggr then
3107             return True;
3108          end if;
3109 
3110          --  Check whether inherited discriminant values have already been
3111          --  inserted in the aggregate. This will be the case if we are
3112          --  re-analyzing an aggregate whose expansion was delayed.
3113 
3114          if Present (Component_Associations (N)) then
3115             Comp_Assoc := First (Component_Associations (N));
3116             while Present (Comp_Assoc) loop
3117                if Inherited_Discriminant (Comp_Assoc) then
3118                   return True;
3119                end if;
3120 
3121                Next (Comp_Assoc);
3122             end loop;
3123          end if;
3124 
3125          Ancestor     := Ancestor_Part (N);
3126          Ancestor_Typ := Etype (Ancestor);
3127          Loc          := Sloc (Ancestor);
3128 
3129          --  For a private type with unknown discriminants, use the underlying
3130          --  record view if it is available.
3131 
3132          if Has_Unknown_Discriminants (Ancestor_Typ)
3133            and then Present (Full_View (Ancestor_Typ))
3134            and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
3135          then
3136             Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
3137          end if;
3138 
3139          Ancestor_Is_Subtyp :=
3140            Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
3141 
3142          --  If the ancestor part has no discriminants clearly N's aggregate
3143          --  part must provide a value for Discr.
3144 
3145          if not Has_Discriminants (Ancestor_Typ) then
3146             return True;
3147 
3148          --  If the ancestor part is an unconstrained subtype mark then the
3149          --  Discr must be present in N's aggregate part.
3150 
3151          elsif Ancestor_Is_Subtyp
3152            and then not Is_Constrained (Entity (Ancestor))
3153          then
3154             return True;
3155          end if;
3156 
3157          --  Now look to see if Discr was specified in the ancestor part
3158 
3159          if Ancestor_Is_Subtyp then
3160             D_Val := First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
3161          end if;
3162 
3163          Orig_Discr := Original_Record_Component (Discr);
3164 
3165          D := First_Discriminant (Ancestor_Typ);
3166          while Present (D) loop
3167 
3168             --  If Ancestor has already specified Disc value then insert its
3169             --  value in the final aggregate.
3170 
3171             if Original_Record_Component (D) = Orig_Discr then
3172                if Ancestor_Is_Subtyp then
3173                   Discr_Expr := New_Copy_Tree (Node (D_Val));
3174                else
3175                   Discr_Expr :=
3176                     Make_Selected_Component (Loc,
3177                       Prefix        => Duplicate_Subexpr (Ancestor),
3178                       Selector_Name => New_Occurrence_Of (Discr, Loc));
3179                end if;
3180 
3181                Resolve_Aggr_Expr (Discr_Expr, Discr);
3182                Set_Inherited_Discriminant (Last (New_Assoc_List));
3183                return False;
3184             end if;
3185 
3186             Next_Discriminant (D);
3187 
3188             if Ancestor_Is_Subtyp then
3189                Next_Elmt (D_Val);
3190             end if;
3191          end loop;
3192 
3193          return True;
3194       end Discr_Present;
3195 
3196       ---------------
3197       -- Get_Value --
3198       ---------------
3199 
3200       function Get_Value
3201         (Compon                 : Node_Id;
3202          From                   : List_Id;
3203          Consider_Others_Choice : Boolean := False)
3204          return                   Node_Id
3205       is
3206          Typ           : constant Entity_Id := Etype (Compon);
3207          Assoc         : Node_Id;
3208          Expr          : Node_Id := Empty;
3209          Selector_Name : Node_Id;
3210 
3211       begin
3212          Is_Box_Present := False;
3213 
3214          if No (From) then
3215             return Empty;
3216          end if;
3217 
3218          Assoc := First (From);
3219          while Present (Assoc) loop
3220             Selector_Name := First (Choices (Assoc));
3221             while Present (Selector_Name) loop
3222                if Nkind (Selector_Name) = N_Others_Choice then
3223                   if Consider_Others_Choice and then No (Expr) then
3224 
3225                      --  We need to duplicate the expression for each
3226                      --  successive component covered by the others choice.
3227                      --  This is redundant if the others_choice covers only
3228                      --  one component (small optimization possible???), but
3229                      --  indispensable otherwise, because each one must be
3230                      --  expanded individually to preserve side-effects.
3231 
3232                      --  Ada 2005 (AI-287): In case of default initialization
3233                      --  of components, we duplicate the corresponding default
3234                      --  expression (from the record type declaration). The
3235                      --  copy must carry the sloc of the association (not the
3236                      --  original expression) to prevent spurious elaboration
3237                      --  checks when the default includes function calls.
3238 
3239                      if Box_Present (Assoc) then
3240                         Others_Box     := Others_Box + 1;
3241                         Is_Box_Present := True;
3242 
3243                         if Expander_Active then
3244                            return
3245                              New_Copy_Tree_And_Copy_Dimensions
3246                                (Expression (Parent (Compon)),
3247                                 New_Sloc => Sloc (Assoc));
3248                         else
3249                            return Expression (Parent (Compon));
3250                         end if;
3251 
3252                      else
3253                         if Present (Others_Etype)
3254                           and then Base_Type (Others_Etype) /= Base_Type (Typ)
3255                         then
3256                            --  If the components are of an anonymous access
3257                            --  type they are distinct, but this is legal in
3258                            --  Ada 2012 as long as designated types match.
3259 
3260                            if (Ekind (Typ) = E_Anonymous_Access_Type
3261                                 or else Ekind (Typ) =
3262                                             E_Anonymous_Access_Subprogram_Type)
3263                              and then Designated_Type (Typ) =
3264                                             Designated_Type (Others_Etype)
3265                            then
3266                               null;
3267                            else
3268                               Error_Msg_N
3269                                 ("components in OTHERS choice must "
3270                                  & "have same type", Selector_Name);
3271                            end if;
3272                         end if;
3273 
3274                         Others_Etype := Typ;
3275 
3276                         --  Copy expression so that it is resolved
3277                         --  independently for each component, This is needed
3278                         --  for accessibility checks on compoents of anonymous
3279                         --  access types, even in compile_only mode.
3280 
3281                         if not Inside_A_Generic then
3282 
3283                            --  In ASIS mode, preanalyze the expression in an
3284                            --  others association before making copies for
3285                            --  separate resolution and accessibility checks.
3286                            --  This ensures that the type of the expression is
3287                            --  available to ASIS in all cases, in particular if
3288                            --  the expression is itself an aggregate.
3289 
3290                            if ASIS_Mode then
3291                               Preanalyze_And_Resolve (Expression (Assoc), Typ);
3292                            end if;
3293 
3294                            return
3295                              New_Copy_Tree_And_Copy_Dimensions
3296                                (Expression (Assoc));
3297 
3298                         else
3299                            return Expression (Assoc);
3300                         end if;
3301                      end if;
3302                   end if;
3303 
3304                elsif Chars (Compon) = Chars (Selector_Name) then
3305                   if No (Expr) then
3306 
3307                      --  Ada 2005 (AI-231)
3308 
3309                      if Ada_Version >= Ada_2005
3310                        and then Known_Null (Expression (Assoc))
3311                      then
3312                         Check_Can_Never_Be_Null (Compon, Expression (Assoc));
3313                      end if;
3314 
3315                      --  We need to duplicate the expression when several
3316                      --  components are grouped together with a "|" choice.
3317                      --  For instance "filed1 | filed2 => Expr"
3318 
3319                      --  Ada 2005 (AI-287)
3320 
3321                      if Box_Present (Assoc) then
3322                         Is_Box_Present := True;
3323 
3324                         --  Duplicate the default expression of the component
3325                         --  from the record type declaration, so a new copy
3326                         --  can be attached to the association.
3327 
3328                         --  Note that we always copy the default expression,
3329                         --  even when the association has a single choice, in
3330                         --  order to create a proper association for the
3331                         --  expanded aggregate.
3332 
3333                         --  Component may have no default, in which case the
3334                         --  expression is empty and the component is default-
3335                         --  initialized, but an association for the component
3336                         --  exists, and it is not covered by an others clause.
3337 
3338                         --  Scalar and private types have no initialization
3339                         --  procedure, so they remain uninitialized. If the
3340                         --  target of the aggregate is a constant this
3341                         --  deserves a warning.
3342 
3343                         if No (Expression (Parent (Compon)))
3344                           and then not Has_Non_Null_Base_Init_Proc (Typ)
3345                           and then not Has_Aspect (Typ, Aspect_Default_Value)
3346                           and then not Is_Concurrent_Type (Typ)
3347                           and then Nkind (Parent (N)) = N_Object_Declaration
3348                           and then Constant_Present (Parent (N))
3349                         then
3350                            Error_Msg_Node_2 := Typ;
3351                            Error_Msg_NE
3352                              ("component&? of type& is uninitialized",
3353                               Assoc, Selector_Name);
3354 
3355                            --  An additional reminder if the component type
3356                            --  is a generic formal.
3357 
3358                            if Is_Generic_Type (Base_Type (Typ)) then
3359                               Error_Msg_NE
3360                                 ("\instance should provide actual type with "
3361                                  & "initialization for&", Assoc, Typ);
3362                            end if;
3363                         end if;
3364 
3365                         return
3366                           New_Copy_Tree_And_Copy_Dimensions
3367                             (Expression (Parent (Compon)));
3368 
3369                      else
3370                         if Present (Next (Selector_Name)) then
3371                            Expr := New_Copy_Tree_And_Copy_Dimensions
3372                                      (Expression (Assoc));
3373                         else
3374                            Expr := Expression (Assoc);
3375                         end if;
3376                      end if;
3377 
3378                      Generate_Reference (Compon, Selector_Name, 'm');
3379 
3380                   else
3381                      Error_Msg_NE
3382                        ("more than one value supplied for &",
3383                         Selector_Name, Compon);
3384 
3385                   end if;
3386                end if;
3387 
3388                Next (Selector_Name);
3389             end loop;
3390 
3391             Next (Assoc);
3392          end loop;
3393 
3394          return Expr;
3395       end Get_Value;
3396 
3397       ---------------------------------------
3398       -- New_Copy_Tree_And_Copy_Dimensions --
3399       ---------------------------------------
3400 
3401       function New_Copy_Tree_And_Copy_Dimensions
3402         (Source    : Node_Id;
3403          Map       : Elist_Id   := No_Elist;
3404          New_Sloc  : Source_Ptr := No_Location;
3405          New_Scope : Entity_Id  := Empty) return Node_Id
3406       is
3407          New_Copy : constant Node_Id :=
3408                       New_Copy_Tree (Source, Map, New_Sloc, New_Scope);
3409 
3410       begin
3411          --  Move the dimensions of Source to New_Copy
3412 
3413          Copy_Dimensions (Source, New_Copy);
3414          return New_Copy;
3415       end New_Copy_Tree_And_Copy_Dimensions;
3416 
3417       -----------------------
3418       -- Resolve_Aggr_Expr --
3419       -----------------------
3420 
3421       procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id) is
3422          function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
3423          --  If the expression is an aggregate (possibly qualified) then its
3424          --  expansion is delayed until the enclosing aggregate is expanded
3425          --  into assignments. In that case, do not generate checks on the
3426          --  expression, because they will be generated later, and will other-
3427          --  wise force a copy (to remove side-effects) that would leave a
3428          --  dynamic-sized aggregate in the code, something that gigi cannot
3429          --  handle.
3430 
3431          ---------------------------
3432          -- Has_Expansion_Delayed --
3433          ---------------------------
3434 
3435          function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
3436             Kind : constant Node_Kind := Nkind (Expr);
3437          begin
3438             return (Nkind_In (Kind, N_Aggregate, N_Extension_Aggregate)
3439                      and then Present (Etype (Expr))
3440                      and then Is_Record_Type (Etype (Expr))
3441                      and then Expansion_Delayed (Expr))
3442               or else (Kind = N_Qualified_Expression
3443                         and then Has_Expansion_Delayed (Expression (Expr)));
3444          end Has_Expansion_Delayed;
3445 
3446          --  Local variables
3447 
3448          Expr_Type : Entity_Id := Empty;
3449          New_C     : Entity_Id := Component;
3450          New_Expr  : Node_Id;
3451 
3452          Relocate : Boolean;
3453          --  Set to True if the resolved Expr node needs to be relocated when
3454          --  attached to the newly created association list. This node need not
3455          --  be relocated if its parent pointer is not set. In fact in this
3456          --  case Expr is the output of a New_Copy_Tree call. If Relocate is
3457          --  True then we have analyzed the expression node in the original
3458          --  aggregate and hence it needs to be relocated when moved over to
3459          --  the new association list.
3460 
3461       --  Start of processing for Resolve_Aggr_Expr
3462 
3463       begin
3464          --  If the type of the component is elementary or the type of the
3465          --  aggregate does not contain discriminants, use the type of the
3466          --  component to resolve Expr.
3467 
3468          if Is_Elementary_Type (Etype (Component))
3469            or else not Has_Discriminants (Etype (N))
3470          then
3471             Expr_Type := Etype (Component);
3472 
3473          --  Otherwise we have to pick up the new type of the component from
3474          --  the new constrained subtype of the aggregate. In fact components
3475          --  which are of a composite type might be constrained by a
3476          --  discriminant, and we want to resolve Expr against the subtype were
3477          --  all discriminant occurrences are replaced with their actual value.
3478 
3479          else
3480             New_C := First_Component (Etype (N));
3481             while Present (New_C) loop
3482                if Chars (New_C) = Chars (Component) then
3483                   Expr_Type := Etype (New_C);
3484                   exit;
3485                end if;
3486 
3487                Next_Component (New_C);
3488             end loop;
3489 
3490             pragma Assert (Present (Expr_Type));
3491 
3492             --  For each range in an array type where a discriminant has been
3493             --  replaced with the constraint, check that this range is within
3494             --  the range of the base type. This checks is done in the init
3495             --  proc for regular objects, but has to be done here for
3496             --  aggregates since no init proc is called for them.
3497 
3498             if Is_Array_Type (Expr_Type) then
3499                declare
3500                   Index : Node_Id;
3501                   --  Range of the current constrained index in the array
3502 
3503                   Orig_Index : Node_Id := First_Index (Etype (Component));
3504                   --  Range corresponding to the range Index above in the
3505                   --  original unconstrained record type. The bounds of this
3506                   --  range may be governed by discriminants.
3507 
3508                   Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
3509                   --  Range corresponding to the range Index above for the
3510                   --  unconstrained array type. This range is needed to apply
3511                   --  range checks.
3512 
3513                begin
3514                   Index := First_Index (Expr_Type);
3515                   while Present (Index) loop
3516                      if Depends_On_Discriminant (Orig_Index) then
3517                         Apply_Range_Check (Index, Etype (Unconstr_Index));
3518                      end if;
3519 
3520                      Next_Index (Index);
3521                      Next_Index (Orig_Index);
3522                      Next_Index (Unconstr_Index);
3523                   end loop;
3524                end;
3525             end if;
3526          end if;
3527 
3528          --  If the Parent pointer of Expr is not set, Expr is an expression
3529          --  duplicated by New_Tree_Copy (this happens for record aggregates
3530          --  that look like (Field1 | Filed2 => Expr) or (others => Expr)).
3531          --  Such a duplicated expression must be attached to the tree
3532          --  before analysis and resolution to enforce the rule that a tree
3533          --  fragment should never be analyzed or resolved unless it is
3534          --  attached to the current compilation unit.
3535 
3536          if No (Parent (Expr)) then
3537             Set_Parent (Expr, N);
3538             Relocate := False;
3539          else
3540             Relocate := True;
3541          end if;
3542 
3543          Analyze_And_Resolve (Expr, Expr_Type);
3544          Check_Expr_OK_In_Limited_Aggregate (Expr);
3545          Check_Non_Static_Context (Expr);
3546          Check_Unset_Reference (Expr);
3547 
3548          --  Check wrong use of class-wide types
3549 
3550          if Is_Class_Wide_Type (Etype (Expr)) then
3551             Error_Msg_N ("dynamically tagged expression not allowed", Expr);
3552          end if;
3553 
3554          if not Has_Expansion_Delayed (Expr) then
3555             Aggregate_Constraint_Checks (Expr, Expr_Type);
3556          end if;
3557 
3558          --  If an aggregate component has a type with predicates, an explicit
3559          --  predicate check must be applied, as for an assignment statement,
3560          --  because the aggegate might not be expanded into individual
3561          --  component assignments.
3562 
3563          if Present (Predicate_Function (Expr_Type))
3564            and then Analyzed (Expr)
3565          then
3566             Apply_Predicate_Check (Expr, Expr_Type);
3567          end if;
3568 
3569          if Raises_Constraint_Error (Expr) then
3570             Set_Raises_Constraint_Error (N);
3571          end if;
3572 
3573          --  If the expression has been marked as requiring a range check, then
3574          --  generate it here. It's a bit odd to be generating such checks in
3575          --  the analyzer, but harmless since Generate_Range_Check does nothing
3576          --  (other than making sure Do_Range_Check is set) if the expander is
3577          --  not active.
3578 
3579          if Do_Range_Check (Expr) then
3580             Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
3581          end if;
3582 
3583          if Relocate then
3584             New_Expr := Relocate_Node (Expr);
3585 
3586             --  Since New_Expr is not gonna be analyzed later on, we need to
3587             --  propagate here the dimensions form Expr to New_Expr.
3588 
3589             Copy_Dimensions (Expr, New_Expr);
3590 
3591          else
3592             New_Expr := Expr;
3593          end if;
3594 
3595          Add_Association (New_C, New_Expr, New_Assoc_List);
3596       end Resolve_Aggr_Expr;
3597 
3598    --  Start of processing for Resolve_Record_Aggregate
3599 
3600    begin
3601       --  A record aggregate is restricted in SPARK:
3602 
3603       --    Each named association can have only a single choice.
3604       --    OTHERS cannot be used.
3605       --    Positional and named associations cannot be mixed.
3606 
3607       if Present (Component_Associations (N))
3608         and then Present (First (Component_Associations (N)))
3609       then
3610 
3611          if Present (Expressions (N)) then
3612             Check_SPARK_05_Restriction
3613               ("named association cannot follow positional one",
3614                First (Choices (First (Component_Associations (N)))));
3615          end if;
3616 
3617          declare
3618             Assoc : Node_Id;
3619 
3620          begin
3621             Assoc := First (Component_Associations (N));
3622             while Present (Assoc) loop
3623                if List_Length (Choices (Assoc)) > 1 then
3624                   Check_SPARK_05_Restriction
3625                     ("component association in record aggregate must "
3626                      & "contain a single choice", Assoc);
3627                end if;
3628 
3629                if Nkind (First (Choices (Assoc))) = N_Others_Choice then
3630                   Check_SPARK_05_Restriction
3631                     ("record aggregate cannot contain OTHERS", Assoc);
3632                end if;
3633 
3634                Assoc := Next (Assoc);
3635             end loop;
3636          end;
3637       end if;
3638 
3639       --  We may end up calling Duplicate_Subexpr on expressions that are
3640       --  attached to New_Assoc_List. For this reason we need to attach it
3641       --  to the tree by setting its parent pointer to N. This parent point
3642       --  will change in STEP 8 below.
3643 
3644       Set_Parent (New_Assoc_List, N);
3645 
3646       --  STEP 1: abstract type and null record verification
3647 
3648       if Is_Abstract_Type (Typ) then
3649          Error_Msg_N ("type of aggregate cannot be abstract",  N);
3650       end if;
3651 
3652       if No (First_Entity (Typ)) and then Null_Record_Present (N) then
3653          Set_Etype (N, Typ);
3654          return;
3655 
3656       elsif Present (First_Entity (Typ))
3657         and then Null_Record_Present (N)
3658         and then not Is_Tagged_Type (Typ)
3659       then
3660          Error_Msg_N ("record aggregate cannot be null", N);
3661          return;
3662 
3663       --  If the type has no components, then the aggregate should either
3664       --  have "null record", or in Ada 2005 it could instead have a single
3665       --  component association given by "others => <>". For Ada 95 we flag an
3666       --  error at this point, but for Ada 2005 we proceed with checking the
3667       --  associations below, which will catch the case where it's not an
3668       --  aggregate with "others => <>". Note that the legality of a <>
3669       --  aggregate for a null record type was established by AI05-016.
3670 
3671       elsif No (First_Entity (Typ))
3672          and then Ada_Version < Ada_2005
3673       then
3674          Error_Msg_N ("record aggregate must be null", N);
3675          return;
3676       end if;
3677 
3678       --  STEP 2: Verify aggregate structure
3679 
3680       Step_2 : declare
3681          Selector_Name : Node_Id;
3682          Bad_Aggregate : Boolean := False;
3683 
3684       begin
3685          if Present (Component_Associations (N)) then
3686             Assoc := First (Component_Associations (N));
3687          else
3688             Assoc := Empty;
3689          end if;
3690 
3691          while Present (Assoc) loop
3692             Selector_Name := First (Choices (Assoc));
3693             while Present (Selector_Name) loop
3694                if Nkind (Selector_Name) = N_Identifier then
3695                   null;
3696 
3697                elsif Nkind (Selector_Name) = N_Others_Choice then
3698                   if Selector_Name /= First (Choices (Assoc))
3699                     or else Present (Next (Selector_Name))
3700                   then
3701                      Error_Msg_N
3702                        ("OTHERS must appear alone in a choice list",
3703                         Selector_Name);
3704                      return;
3705 
3706                   elsif Present (Next (Assoc)) then
3707                      Error_Msg_N
3708                        ("OTHERS must appear last in an aggregate",
3709                         Selector_Name);
3710                      return;
3711 
3712                   --  (Ada 2005): If this is an association with a box,
3713                   --  indicate that the association need not represent
3714                   --  any component.
3715 
3716                   elsif Box_Present (Assoc) then
3717                      Others_Box := 1;
3718                      Box_Node   := Assoc;
3719                   end if;
3720 
3721                else
3722                   Error_Msg_N
3723                     ("selector name should be identifier or OTHERS",
3724                      Selector_Name);
3725                   Bad_Aggregate := True;
3726                end if;
3727 
3728                Next (Selector_Name);
3729             end loop;
3730 
3731             Next (Assoc);
3732          end loop;
3733 
3734          if Bad_Aggregate then
3735             return;
3736          end if;
3737       end Step_2;
3738 
3739       --  STEP 3: Find discriminant Values
3740 
3741       Step_3 : declare
3742          Discrim               : Entity_Id;
3743          Missing_Discriminants : Boolean := False;
3744 
3745       begin
3746          if Present (Expressions (N)) then
3747             Positional_Expr := First (Expressions (N));
3748          else
3749             Positional_Expr := Empty;
3750          end if;
3751 
3752          --  AI05-0115: if the ancestor part is a subtype mark, the ancestor
3753          --  must not have unknown discriminants.
3754 
3755          if Is_Derived_Type (Typ)
3756            and then Has_Unknown_Discriminants (Root_Type (Typ))
3757            and then Nkind (N) /= N_Extension_Aggregate
3758          then
3759             Error_Msg_NE
3760               ("aggregate not available for type& whose ancestor "
3761                & "has unknown discriminants ", N, Typ);
3762          end if;
3763 
3764          if Has_Unknown_Discriminants (Typ)
3765            and then Present (Underlying_Record_View (Typ))
3766          then
3767             Discrim := First_Discriminant (Underlying_Record_View (Typ));
3768          elsif Has_Discriminants (Typ) then
3769             Discrim := First_Discriminant (Typ);
3770          else
3771             Discrim := Empty;
3772          end if;
3773 
3774          --  First find the discriminant values in the positional components
3775 
3776          while Present (Discrim) and then Present (Positional_Expr) loop
3777             if Discr_Present (Discrim) then
3778                Resolve_Aggr_Expr (Positional_Expr, Discrim);
3779 
3780                --  Ada 2005 (AI-231)
3781 
3782                if Ada_Version >= Ada_2005
3783                  and then Known_Null (Positional_Expr)
3784                then
3785                   Check_Can_Never_Be_Null (Discrim, Positional_Expr);
3786                end if;
3787 
3788                Next (Positional_Expr);
3789             end if;
3790 
3791             if Present (Get_Value (Discrim, Component_Associations (N))) then
3792                Error_Msg_NE
3793                  ("more than one value supplied for discriminant&",
3794                   N, Discrim);
3795             end if;
3796 
3797             Next_Discriminant (Discrim);
3798          end loop;
3799 
3800          --  Find remaining discriminant values if any among named components
3801 
3802          while Present (Discrim) loop
3803             Expr := Get_Value (Discrim, Component_Associations (N), True);
3804 
3805             if not Discr_Present (Discrim) then
3806                if Present (Expr) then
3807                   Error_Msg_NE
3808                     ("more than one value supplied for discriminant &",
3809                      N, Discrim);
3810                end if;
3811 
3812             elsif No (Expr) then
3813                Error_Msg_NE
3814                  ("no value supplied for discriminant &", N, Discrim);
3815                Missing_Discriminants := True;
3816 
3817             else
3818                Resolve_Aggr_Expr (Expr, Discrim);
3819             end if;
3820 
3821             Next_Discriminant (Discrim);
3822          end loop;
3823 
3824          if Missing_Discriminants then
3825             return;
3826          end if;
3827 
3828          --  At this point and until the beginning of STEP 6, New_Assoc_List
3829          --  contains only the discriminants and their values.
3830 
3831       end Step_3;
3832 
3833       --  STEP 4: Set the Etype of the record aggregate
3834 
3835       --  ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
3836       --  routine should really be exported in sem_util or some such and used
3837       --  in sem_ch3 and here rather than have a copy of the code which is a
3838       --  maintenance nightmare.
3839 
3840       --  ??? Performance WARNING. The current implementation creates a new
3841       --  itype for all aggregates whose base type is discriminated. This means
3842       --  that for record aggregates nested inside an array aggregate we will
3843       --  create a new itype for each record aggregate if the array component
3844       --  type has discriminants. For large aggregates this may be a problem.
3845       --  What should be done in this case is to reuse itypes as much as
3846       --  possible.
3847 
3848       if Has_Discriminants (Typ)
3849         or else (Has_Unknown_Discriminants (Typ)
3850                   and then Present (Underlying_Record_View (Typ)))
3851       then
3852          Build_Constrained_Itype : declare
3853             Loc         : constant Source_Ptr := Sloc (N);
3854             Indic       : Node_Id;
3855             Subtyp_Decl : Node_Id;
3856             Def_Id      : Entity_Id;
3857 
3858             C : constant List_Id := New_List;
3859 
3860          begin
3861             New_Assoc := First (New_Assoc_List);
3862             while Present (New_Assoc) loop
3863                Append (Duplicate_Subexpr (Expression (New_Assoc)), To => C);
3864                Next (New_Assoc);
3865             end loop;
3866 
3867             if Has_Unknown_Discriminants (Typ)
3868               and then Present (Underlying_Record_View (Typ))
3869             then
3870                Indic :=
3871                  Make_Subtype_Indication (Loc,
3872                    Subtype_Mark =>
3873                      New_Occurrence_Of (Underlying_Record_View (Typ), Loc),
3874                    Constraint   =>
3875                      Make_Index_Or_Discriminant_Constraint (Loc, C));
3876             else
3877                Indic :=
3878                  Make_Subtype_Indication (Loc,
3879                    Subtype_Mark =>
3880                      New_Occurrence_Of (Base_Type (Typ), Loc),
3881                    Constraint   =>
3882                      Make_Index_Or_Discriminant_Constraint (Loc, C));
3883             end if;
3884 
3885             Def_Id := Create_Itype (Ekind (Typ), N);
3886 
3887             Subtyp_Decl :=
3888               Make_Subtype_Declaration (Loc,
3889                 Defining_Identifier => Def_Id,
3890                 Subtype_Indication  => Indic);
3891             Set_Parent (Subtyp_Decl, Parent (N));
3892 
3893             --  Itypes must be analyzed with checks off (see itypes.ads)
3894 
3895             Analyze (Subtyp_Decl, Suppress => All_Checks);
3896 
3897             Set_Etype (N, Def_Id);
3898             Check_Static_Discriminated_Subtype
3899               (Def_Id, Expression (First (New_Assoc_List)));
3900          end Build_Constrained_Itype;
3901 
3902       else
3903          Set_Etype (N, Typ);
3904       end if;
3905 
3906       --  STEP 5: Get remaining components according to discriminant values
3907 
3908       Step_5 : declare
3909          Record_Def      : Node_Id;
3910          Parent_Typ      : Entity_Id;
3911          Root_Typ        : Entity_Id;
3912          Parent_Typ_List : Elist_Id;
3913          Parent_Elmt     : Elmt_Id;
3914          Errors_Found    : Boolean := False;
3915          Dnode           : Node_Id;
3916 
3917          function Find_Private_Ancestor return Entity_Id;
3918          --  AI05-0115: Find earlier ancestor in the derivation chain that is
3919          --  derived from a private view. Whether the aggregate is legal
3920          --  depends on the current visibility of the type as well as that
3921          --  of the parent of the ancestor.
3922 
3923          ---------------------------
3924          -- Find_Private_Ancestor --
3925          ---------------------------
3926 
3927          function Find_Private_Ancestor return Entity_Id is
3928             Par : Entity_Id;
3929 
3930          begin
3931             Par := Typ;
3932             loop
3933                if Has_Private_Ancestor (Par)
3934                  and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
3935                then
3936                   return Par;
3937 
3938                elsif not Is_Derived_Type (Par) then
3939                   return Empty;
3940 
3941                else
3942                   Par := Etype (Base_Type (Par));
3943                end if;
3944             end loop;
3945          end Find_Private_Ancestor;
3946 
3947       --  Start of processing for Step_5
3948 
3949       begin
3950          if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
3951             Parent_Typ_List := New_Elmt_List;
3952 
3953             --  If this is an extension aggregate, the component list must
3954             --  include all components that are not in the given ancestor type.
3955             --  Otherwise, the component list must include components of all
3956             --  ancestors, starting with the root.
3957 
3958             if Nkind (N) = N_Extension_Aggregate then
3959                Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
3960 
3961             else
3962                --  AI05-0115:  check legality of aggregate for type with
3963                --  aa private ancestor.
3964 
3965                Root_Typ := Root_Type (Typ);
3966                if Has_Private_Ancestor (Typ) then
3967                   declare
3968                      Ancestor      : constant Entity_Id :=
3969                        Find_Private_Ancestor;
3970                      Ancestor_Unit : constant Entity_Id :=
3971                        Cunit_Entity (Get_Source_Unit (Ancestor));
3972                      Parent_Unit   : constant Entity_Id :=
3973                        Cunit_Entity
3974                          (Get_Source_Unit (Base_Type (Etype (Ancestor))));
3975                   begin
3976                      --  Check whether we are in a scope that has full view
3977                      --  over the private ancestor and its parent. This can
3978                      --  only happen if the derivation takes place in a child
3979                      --  unit of the unit that declares the parent, and we are
3980                      --  in the private part or body of that child unit, else
3981                      --  the aggregate is illegal.
3982 
3983                      if Is_Child_Unit (Ancestor_Unit)
3984                        and then Scope (Ancestor_Unit) = Parent_Unit
3985                        and then In_Open_Scopes (Scope (Ancestor))
3986                        and then
3987                         (In_Private_Part (Scope (Ancestor))
3988                           or else In_Package_Body (Scope (Ancestor)))
3989                      then
3990                         null;
3991 
3992                      else
3993                         Error_Msg_NE
3994                           ("type of aggregate has private ancestor&!",
3995                            N, Root_Typ);
3996                         Error_Msg_N ("must use extension aggregate!", N);
3997                         return;
3998                      end if;
3999                   end;
4000                end if;
4001 
4002                Dnode := Declaration_Node (Base_Type (Root_Typ));
4003 
4004                --  If we don't get a full declaration, then we have some error
4005                --  which will get signalled later so skip this part. Otherwise
4006                --  gather components of root that apply to the aggregate type.
4007                --  We use the base type in case there is an applicable stored
4008                --  constraint that renames the discriminants of the root.
4009 
4010                if Nkind (Dnode) = N_Full_Type_Declaration then
4011                   Record_Def := Type_Definition (Dnode);
4012                   Gather_Components
4013                     (Base_Type (Typ),
4014                      Component_List (Record_Def),
4015                      Governed_By   => New_Assoc_List,
4016                      Into          => Components,
4017                      Report_Errors => Errors_Found);
4018 
4019                   if Errors_Found then
4020                      Error_Msg_N
4021                        ("discriminant controlling variant part is not static",
4022                         N);
4023                      return;
4024                   end if;
4025                end if;
4026             end if;
4027 
4028             Parent_Typ := Base_Type (Typ);
4029             while Parent_Typ /= Root_Typ loop
4030                Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
4031                Parent_Typ := Etype (Parent_Typ);
4032 
4033                if Nkind (Parent (Base_Type (Parent_Typ))) =
4034                                         N_Private_Type_Declaration
4035                  or else Nkind (Parent (Base_Type (Parent_Typ))) =
4036                                         N_Private_Extension_Declaration
4037                then
4038                   if Nkind (N) /= N_Extension_Aggregate then
4039                      Error_Msg_NE
4040                        ("type of aggregate has private ancestor&!",
4041                         N, Parent_Typ);
4042                      Error_Msg_N  ("must use extension aggregate!", N);
4043                      return;
4044 
4045                   elsif Parent_Typ /= Root_Typ then
4046                      Error_Msg_NE
4047                        ("ancestor part of aggregate must be private type&",
4048                          Ancestor_Part (N), Parent_Typ);
4049                      return;
4050                   end if;
4051 
4052                --  The current view of ancestor part may be a private type,
4053                --  while the context type is always non-private.
4054 
4055                elsif Is_Private_Type (Root_Typ)
4056                  and then Present (Full_View (Root_Typ))
4057                  and then Nkind (N) = N_Extension_Aggregate
4058                then
4059                   exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
4060                end if;
4061             end loop;
4062 
4063             --  Now collect components from all other ancestors, beginning
4064             --  with the current type. If the type has unknown discriminants
4065             --  use the component list of the Underlying_Record_View, which
4066             --  needs to be used for the subsequent expansion of the aggregate
4067             --  into assignments.
4068 
4069             Parent_Elmt := First_Elmt (Parent_Typ_List);
4070             while Present (Parent_Elmt) loop
4071                Parent_Typ := Node (Parent_Elmt);
4072 
4073                if Has_Unknown_Discriminants (Parent_Typ)
4074                  and then Present (Underlying_Record_View (Typ))
4075                then
4076                   Parent_Typ := Underlying_Record_View (Parent_Typ);
4077                end if;
4078 
4079                Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
4080                Gather_Components (Empty,
4081                  Component_List (Record_Extension_Part (Record_Def)),
4082                  Governed_By   => New_Assoc_List,
4083                  Into          => Components,
4084                  Report_Errors => Errors_Found);
4085 
4086                Next_Elmt (Parent_Elmt);
4087             end loop;
4088 
4089          --  Typ is not a derived tagged type
4090 
4091          else
4092             Record_Def := Type_Definition (Parent (Base_Type (Typ)));
4093 
4094             if Null_Present (Record_Def) then
4095                null;
4096 
4097             elsif not Has_Unknown_Discriminants (Typ) then
4098                Gather_Components
4099                  (Base_Type (Typ),
4100                   Component_List (Record_Def),
4101                   Governed_By   => New_Assoc_List,
4102                   Into          => Components,
4103                   Report_Errors => Errors_Found);
4104 
4105             else
4106                Gather_Components
4107                  (Base_Type (Underlying_Record_View (Typ)),
4108                   Component_List (Record_Def),
4109                   Governed_By   => New_Assoc_List,
4110                   Into          => Components,
4111                   Report_Errors => Errors_Found);
4112             end if;
4113          end if;
4114 
4115          if Errors_Found then
4116             return;
4117          end if;
4118       end Step_5;
4119 
4120       --  STEP 6: Find component Values
4121 
4122       Component := Empty;
4123       Component_Elmt := First_Elmt (Components);
4124 
4125       --  First scan the remaining positional associations in the aggregate.
4126       --  Remember that at this point Positional_Expr contains the current
4127       --  positional association if any is left after looking for discriminant
4128       --  values in step 3.
4129 
4130       while Present (Positional_Expr) and then Present (Component_Elmt) loop
4131          Component := Node (Component_Elmt);
4132          Resolve_Aggr_Expr (Positional_Expr, Component);
4133 
4134          --  Ada 2005 (AI-231)
4135 
4136          if Ada_Version >= Ada_2005 and then Known_Null (Positional_Expr) then
4137             Check_Can_Never_Be_Null (Component, Positional_Expr);
4138          end if;
4139 
4140          if Present (Get_Value (Component, Component_Associations (N))) then
4141             Error_Msg_NE
4142               ("more than one value supplied for Component &", N, Component);
4143          end if;
4144 
4145          Next (Positional_Expr);
4146          Next_Elmt (Component_Elmt);
4147       end loop;
4148 
4149       if Present (Positional_Expr) then
4150          Error_Msg_N
4151            ("too many components for record aggregate", Positional_Expr);
4152       end if;
4153 
4154       --  Now scan for the named arguments of the aggregate
4155 
4156       while Present (Component_Elmt) loop
4157          Component := Node (Component_Elmt);
4158          Expr := Get_Value (Component, Component_Associations (N), True);
4159 
4160          --  Note: The previous call to Get_Value sets the value of the
4161          --  variable Is_Box_Present.
4162 
4163          --  Ada 2005 (AI-287): Handle components with default initialization.
4164          --  Note: This feature was originally added to Ada 2005 for limited
4165          --  but it was finally allowed with any type.
4166 
4167          if Is_Box_Present then
4168             Check_Box_Component : declare
4169                Ctyp : constant Entity_Id := Etype (Component);
4170 
4171             begin
4172                --  If there is a default expression for the aggregate, copy
4173                --  it into a new association. This copy must modify the scopes
4174                --  of internal types that may be attached to the expression
4175                --  (e.g. index subtypes of arrays) because in general the type
4176                --  declaration and the aggregate appear in different scopes,
4177                --  and the backend requires the scope of the type to match the
4178                --  point at which it is elaborated.
4179 
4180                --  If the component has an initialization procedure (IP) we
4181                --  pass the component to the expander, which will generate
4182                --  the call to such IP.
4183 
4184                --  If the component has discriminants, their values must
4185                --  be taken from their subtype. This is indispensable for
4186                --  constraints that are given by the current instance of an
4187                --  enclosing type, to allow the expansion of the aggregate to
4188                --  replace the reference to the current instance by the target
4189                --  object of the aggregate.
4190 
4191                if Present (Parent (Component))
4192                  and then
4193                    Nkind (Parent (Component)) = N_Component_Declaration
4194                  and then Present (Expression (Parent (Component)))
4195                then
4196                   Expr :=
4197                     New_Copy_Tree_And_Copy_Dimensions
4198                       (Expression (Parent (Component)),
4199                        New_Scope => Current_Scope,
4200                        New_Sloc  => Sloc (N));
4201 
4202                   Add_Association
4203                     (Component  => Component,
4204                      Expr       => Expr,
4205                      Assoc_List => New_Assoc_List);
4206                   Set_Has_Self_Reference (N);
4207 
4208                --  A box-defaulted access component gets the value null. Also
4209                --  included are components of private types whose underlying
4210                --  type is an access type. In either case set the type of the
4211                --  literal, for subsequent use in semantic checks.
4212 
4213                elsif Present (Underlying_Type (Ctyp))
4214                  and then Is_Access_Type (Underlying_Type (Ctyp))
4215                then
4216                   if not Is_Private_Type (Ctyp) then
4217                      Expr := Make_Null (Sloc (N));
4218                      Set_Etype (Expr, Ctyp);
4219                      Add_Association
4220                        (Component  => Component,
4221                         Expr       => Expr,
4222                         Assoc_List => New_Assoc_List);
4223 
4224                   --  If the component's type is private with an access type as
4225                   --  its underlying type then we have to create an unchecked
4226                   --  conversion to satisfy type checking.
4227 
4228                   else
4229                      declare
4230                         Qual_Null : constant Node_Id :=
4231                                       Make_Qualified_Expression (Sloc (N),
4232                                         Subtype_Mark =>
4233                                           New_Occurrence_Of
4234                                             (Underlying_Type (Ctyp), Sloc (N)),
4235                                         Expression => Make_Null (Sloc (N)));
4236 
4237                         Convert_Null : constant Node_Id :=
4238                                          Unchecked_Convert_To
4239                                            (Ctyp, Qual_Null);
4240 
4241                      begin
4242                         Analyze_And_Resolve (Convert_Null, Ctyp);
4243                         Add_Association
4244                           (Component  => Component,
4245                            Expr       => Convert_Null,
4246                            Assoc_List => New_Assoc_List);
4247                      end;
4248                   end if;
4249 
4250                --  Ada 2012: If component is scalar with default value, use it
4251 
4252                elsif Is_Scalar_Type (Ctyp)
4253                  and then Has_Default_Aspect (Ctyp)
4254                then
4255                   Add_Association
4256                     (Component  => Component,
4257                      Expr       => Default_Aspect_Value
4258                                      (First_Subtype (Underlying_Type (Ctyp))),
4259                      Assoc_List => New_Assoc_List);
4260 
4261                elsif Has_Non_Null_Base_Init_Proc (Ctyp)
4262                  or else not Expander_Active
4263                then
4264                   if Is_Record_Type (Ctyp)
4265                     and then Has_Discriminants (Ctyp)
4266                     and then not Is_Private_Type (Ctyp)
4267                   then
4268                      --  We build a partially initialized aggregate with the
4269                      --  values of the discriminants and box initialization
4270                      --  for the rest, if other components are present.
4271 
4272                      --  The type of the aggregate is the known subtype of
4273                      --  the component. The capture of discriminants must
4274                      --  be recursive because subcomponents may be constrained
4275                      --  (transitively) by discriminants of enclosing types.
4276                      --  For a private type with discriminants, a call to the
4277                      --  initialization procedure will be generated, and no
4278                      --  subaggregate is needed.
4279 
4280                      Capture_Discriminants : declare
4281                         Loc  : constant Source_Ptr := Sloc (N);
4282                         Expr : Node_Id;
4283 
4284                         procedure Add_Discriminant_Values
4285                           (New_Aggr   : Node_Id;
4286                            Assoc_List : List_Id);
4287                         --  The constraint to a component may be given by a
4288                         --  discriminant of the enclosing type, in which case
4289                         --  we have to retrieve its value, which is part of the
4290                         --  enclosing aggregate. Assoc_List provides the
4291                         --  discriminant associations of the current type or
4292                         --  of some enclosing record.
4293 
4294                         procedure Propagate_Discriminants
4295                           (Aggr       : Node_Id;
4296                            Assoc_List : List_Id);
4297                         --  Nested components may themselves be discriminated
4298                         --  types constrained by outer discriminants, whose
4299                         --  values must be captured before the aggregate is
4300                         --  expanded into assignments.
4301 
4302                         -----------------------------
4303                         -- Add_Discriminant_Values --
4304                         -----------------------------
4305 
4306                         procedure Add_Discriminant_Values
4307                           (New_Aggr   : Node_Id;
4308                            Assoc_List : List_Id)
4309                         is
4310                            Assoc      : Node_Id;
4311                            Discr      : Entity_Id;
4312                            Discr_Elmt : Elmt_Id;
4313                            Discr_Val  : Node_Id;
4314                            Val        : Entity_Id;
4315 
4316                         begin
4317                            Discr := First_Discriminant (Etype (New_Aggr));
4318                            Discr_Elmt :=
4319                              First_Elmt
4320                                (Discriminant_Constraint (Etype (New_Aggr)));
4321                            while Present (Discr_Elmt) loop
4322                               Discr_Val := Node (Discr_Elmt);
4323 
4324                               --  If the constraint is given by a discriminant
4325                               --  it is a discriminant of an enclosing record,
4326                               --  and its value has already been placed in the
4327                               --  association list.
4328 
4329                               if Is_Entity_Name (Discr_Val)
4330                                 and then
4331                                   Ekind (Entity (Discr_Val)) = E_Discriminant
4332                               then
4333                                  Val := Entity (Discr_Val);
4334 
4335                                  Assoc := First (Assoc_List);
4336                                  while Present (Assoc) loop
4337                                     if Present
4338                                          (Entity (First (Choices (Assoc))))
4339                                       and then
4340                                         Entity (First (Choices (Assoc))) = Val
4341                                     then
4342                                        Discr_Val := Expression (Assoc);
4343                                        exit;
4344                                     end if;
4345 
4346                                     Next (Assoc);
4347                                  end loop;
4348                               end if;
4349 
4350                               Add_Association
4351                                 (Discr, New_Copy_Tree (Discr_Val),
4352                                  Component_Associations (New_Aggr));
4353 
4354                               --  If the discriminant constraint is a current
4355                               --  instance, mark the current aggregate so that
4356                               --  the self-reference can be expanded later.
4357                               --  The constraint may refer to the subtype of
4358                               --  aggregate, so use base type for comparison.
4359 
4360                               if Nkind (Discr_Val) = N_Attribute_Reference
4361                                 and then Is_Entity_Name (Prefix (Discr_Val))
4362                                 and then Is_Type (Entity (Prefix (Discr_Val)))
4363                                 and then Base_Type (Etype (N)) =
4364                                            Entity (Prefix (Discr_Val))
4365                               then
4366                                  Set_Has_Self_Reference (N);
4367                               end if;
4368 
4369                               Next_Elmt (Discr_Elmt);
4370                               Next_Discriminant (Discr);
4371                            end loop;
4372                         end Add_Discriminant_Values;
4373 
4374                         -----------------------------
4375                         -- Propagate_Discriminants --
4376                         -----------------------------
4377 
4378                         procedure Propagate_Discriminants
4379                           (Aggr       : Node_Id;
4380                            Assoc_List : List_Id)
4381                         is
4382                            Aggr_Type : constant Entity_Id :=
4383                                          Base_Type (Etype (Aggr));
4384                            Def_Node  : constant Node_Id :=
4385                                          Type_Definition
4386                                            (Declaration_Node (Aggr_Type));
4387 
4388                            Comp       : Node_Id;
4389                            Comp_Elmt  : Elmt_Id;
4390                            Components : constant Elist_Id := New_Elmt_List;
4391                            Needs_Box  : Boolean := False;
4392                            Errors     : Boolean;
4393 
4394                            procedure Process_Component (Comp : Entity_Id);
4395                            --  Add one component with a box association to the
4396                            --  inner aggregate, and recurse if component is
4397                            --  itself composite.
4398 
4399                            -----------------------
4400                            -- Process_Component --
4401                            -----------------------
4402 
4403                            procedure Process_Component (Comp : Entity_Id) is
4404                               T        : constant Entity_Id := Etype (Comp);
4405                               New_Aggr : Node_Id;
4406 
4407                            begin
4408                               if Is_Record_Type (T)
4409                                 and then Has_Discriminants (T)
4410                               then
4411                                  New_Aggr :=
4412                                    Make_Aggregate (Loc, New_List, New_List);
4413                                  Set_Etype (New_Aggr, T);
4414                                  Add_Association
4415                                    (Comp, New_Aggr,
4416                                      Component_Associations (Aggr));
4417 
4418                                  --  Collect discriminant values and recurse
4419 
4420                                  Add_Discriminant_Values
4421                                    (New_Aggr, Assoc_List);
4422                                  Propagate_Discriminants
4423                                    (New_Aggr, Assoc_List);
4424 
4425                               else
4426                                  Needs_Box := True;
4427                               end if;
4428                            end Process_Component;
4429 
4430                         --  Start of processing for Propagate_Discriminants
4431 
4432                         begin
4433                            --  The component type may be a variant type, so
4434                            --  collect the components that are ruled by the
4435                            --  known values of the discriminants. Their values
4436                            --  have already been inserted into the component
4437                            --  list of the current aggregate.
4438 
4439                            if Nkind (Def_Node) = N_Record_Definition
4440                              and then Present (Component_List (Def_Node))
4441                              and then
4442                                Present
4443                                  (Variant_Part (Component_List (Def_Node)))
4444                            then
4445                               Gather_Components (Aggr_Type,
4446                                 Component_List (Def_Node),
4447                                 Governed_By   => Component_Associations (Aggr),
4448                                 Into          => Components,
4449                                 Report_Errors => Errors);
4450 
4451                               Comp_Elmt := First_Elmt (Components);
4452                               while Present (Comp_Elmt) loop
4453                                  if Ekind (Node (Comp_Elmt)) /=
4454                                       E_Discriminant
4455                                  then
4456                                     Process_Component (Node (Comp_Elmt));
4457                                  end if;
4458 
4459                                  Next_Elmt (Comp_Elmt);
4460                               end loop;
4461 
4462                            --  No variant part, iterate over all components
4463 
4464                            else
4465                               Comp := First_Component (Etype (Aggr));
4466                               while Present (Comp) loop
4467                                  Process_Component (Comp);
4468                                  Next_Component (Comp);
4469                               end loop;
4470                            end if;
4471 
4472                            if Needs_Box then
4473                               Append_To (Component_Associations (Aggr),
4474                                 Make_Component_Association (Loc,
4475                                   Choices     =>
4476                                     New_List (Make_Others_Choice (Loc)),
4477                                   Expression  => Empty,
4478                                   Box_Present => True));
4479                            end if;
4480                         end Propagate_Discriminants;
4481 
4482                      --  Start of processing for Capture_Discriminants
4483 
4484                      begin
4485                         Expr := Make_Aggregate (Loc, New_List, New_List);
4486                         Set_Etype (Expr, Ctyp);
4487 
4488                         --  If the enclosing type has discriminants, they have
4489                         --  been collected in the aggregate earlier, and they
4490                         --  may appear as constraints of subcomponents.
4491 
4492                         --  Similarly if this component has discriminants, they
4493                         --  might in turn be propagated to their components.
4494 
4495                         if Has_Discriminants (Typ) then
4496                            Add_Discriminant_Values (Expr, New_Assoc_List);
4497                            Propagate_Discriminants (Expr, New_Assoc_List);
4498 
4499                         elsif Has_Discriminants (Ctyp) then
4500                            Add_Discriminant_Values
4501                               (Expr, Component_Associations (Expr));
4502                            Propagate_Discriminants
4503                               (Expr, Component_Associations (Expr));
4504 
4505                         else
4506                            declare
4507                               Comp : Entity_Id;
4508 
4509                            begin
4510                               --  If the type has additional components, create
4511                               --  an OTHERS box association for them.
4512 
4513                               Comp := First_Component (Ctyp);
4514                               while Present (Comp) loop
4515                                  if Ekind (Comp) = E_Component then
4516                                     if not Is_Record_Type (Etype (Comp)) then
4517                                        Append_To
4518                                          (Component_Associations (Expr),
4519                                           Make_Component_Association (Loc,
4520                                             Choices     =>
4521                                               New_List (
4522                                                 Make_Others_Choice (Loc)),
4523                                             Expression  => Empty,
4524                                             Box_Present => True));
4525                                     end if;
4526                                     exit;
4527                                  end if;
4528 
4529                                  Next_Component (Comp);
4530                               end loop;
4531                            end;
4532                         end if;
4533 
4534                         Add_Association
4535                           (Component  => Component,
4536                            Expr       => Expr,
4537                            Assoc_List => New_Assoc_List);
4538                      end Capture_Discriminants;
4539 
4540                   else
4541                      Add_Association
4542                        (Component      => Component,
4543                         Expr           => Empty,
4544                         Assoc_List     => New_Assoc_List,
4545                         Is_Box_Present => True);
4546                   end if;
4547 
4548                --  Otherwise we only need to resolve the expression if the
4549                --  component has partially initialized values (required to
4550                --  expand the corresponding assignments and run-time checks).
4551 
4552                elsif Present (Expr)
4553                  and then Is_Partially_Initialized_Type (Ctyp)
4554                then
4555                   Resolve_Aggr_Expr (Expr, Component);
4556                end if;
4557             end Check_Box_Component;
4558 
4559          elsif No (Expr) then
4560 
4561             --  Ignore hidden components associated with the position of the
4562             --  interface tags: these are initialized dynamically.
4563 
4564             if not Present (Related_Type (Component)) then
4565                Error_Msg_NE
4566                  ("no value supplied for component &!", N, Component);
4567             end if;
4568 
4569          else
4570             Resolve_Aggr_Expr (Expr, Component);
4571          end if;
4572 
4573          Next_Elmt (Component_Elmt);
4574       end loop;
4575 
4576       --  STEP 7: check for invalid components + check type in choice list
4577 
4578       Step_7 : declare
4579          Selectr : Node_Id;
4580          --  Selector name
4581 
4582          Typech : Entity_Id;
4583          --  Type of first component in choice list
4584 
4585       begin
4586          if Present (Component_Associations (N)) then
4587             Assoc := First (Component_Associations (N));
4588          else
4589             Assoc := Empty;
4590          end if;
4591 
4592          Verification : while Present (Assoc) loop
4593             Selectr := First (Choices (Assoc));
4594             Typech := Empty;
4595 
4596             if Nkind (Selectr) = N_Others_Choice then
4597 
4598                --  Ada 2005 (AI-287): others choice may have expression or box
4599 
4600                if No (Others_Etype) and then Others_Box = 0 then
4601                   Error_Msg_N
4602                     ("OTHERS must represent at least one component", Selectr);
4603 
4604                elsif Others_Box = 1 and then Warn_On_Redundant_Constructs then
4605                   Error_Msg_N ("others choice is redundant?", Box_Node);
4606                   Error_Msg_N
4607                     ("\previous choices cover all components?", Box_Node);
4608                end if;
4609 
4610                exit Verification;
4611             end if;
4612 
4613             while Present (Selectr) loop
4614                New_Assoc := First (New_Assoc_List);
4615                while Present (New_Assoc) loop
4616                   Component := First (Choices (New_Assoc));
4617 
4618                   if Chars (Selectr) = Chars (Component) then
4619                      if Style_Check then
4620                         Check_Identifier (Selectr, Entity (Component));
4621                      end if;
4622 
4623                      exit;
4624                   end if;
4625 
4626                   Next (New_Assoc);
4627                end loop;
4628 
4629                --  If no association, this is not a legal component of the type
4630                --  in question, unless its association is provided with a box.
4631 
4632                if No (New_Assoc) then
4633                   if Box_Present (Parent (Selectr)) then
4634 
4635                      --  This may still be a bogus component with a box. Scan
4636                      --  list of components to verify that a component with
4637                      --  that name exists.
4638 
4639                      declare
4640                         C : Entity_Id;
4641 
4642                      begin
4643                         C := First_Component (Typ);
4644                         while Present (C) loop
4645                            if Chars (C) = Chars (Selectr) then
4646 
4647                               --  If the context is an extension aggregate,
4648                               --  the component must not be inherited from
4649                               --  the ancestor part of the aggregate.
4650 
4651                               if Nkind (N) /= N_Extension_Aggregate
4652                                 or else
4653                                   Scope (Original_Record_Component (C)) /=
4654                                                      Etype (Ancestor_Part (N))
4655                               then
4656                                  exit;
4657                               end if;
4658                            end if;
4659 
4660                            Next_Component (C);
4661                         end loop;
4662 
4663                         if No (C) then
4664                            Error_Msg_Node_2 := Typ;
4665                            Error_Msg_N ("& is not a component of}", Selectr);
4666                         end if;
4667                      end;
4668 
4669                   elsif Chars (Selectr) /= Name_uTag
4670                     and then Chars (Selectr) /= Name_uParent
4671                   then
4672                      if not Has_Discriminants (Typ) then
4673                         Error_Msg_Node_2 := Typ;
4674                         Error_Msg_N ("& is not a component of}", Selectr);
4675                      else
4676                         Error_Msg_N
4677                           ("& is not a component of the aggregate subtype",
4678                             Selectr);
4679                      end if;
4680 
4681                      Check_Misspelled_Component (Components, Selectr);
4682                   end if;
4683 
4684                elsif No (Typech) then
4685                   Typech := Base_Type (Etype (Component));
4686 
4687                --  AI05-0199: In Ada 2012, several components of anonymous
4688                --  access types can appear in a choice list, as long as the
4689                --  designated types match.
4690 
4691                elsif Typech /= Base_Type (Etype (Component)) then
4692                   if Ada_Version >= Ada_2012
4693                     and then Ekind (Typech) = E_Anonymous_Access_Type
4694                     and then
4695                        Ekind (Etype (Component)) = E_Anonymous_Access_Type
4696                     and then Base_Type (Designated_Type (Typech)) =
4697                              Base_Type (Designated_Type (Etype (Component)))
4698                     and then
4699                       Subtypes_Statically_Match (Typech, (Etype (Component)))
4700                   then
4701                      null;
4702 
4703                   elsif not Box_Present (Parent (Selectr)) then
4704                      Error_Msg_N
4705                        ("components in choice list must have same type",
4706                         Selectr);
4707                   end if;
4708                end if;
4709 
4710                Next (Selectr);
4711             end loop;
4712 
4713             Next (Assoc);
4714          end loop Verification;
4715       end Step_7;
4716 
4717       --  STEP 8: replace the original aggregate
4718 
4719       Step_8 : declare
4720          New_Aggregate : constant Node_Id := New_Copy (N);
4721 
4722       begin
4723          Set_Expressions            (New_Aggregate, No_List);
4724          Set_Etype                  (New_Aggregate, Etype (N));
4725          Set_Component_Associations (New_Aggregate, New_Assoc_List);
4726          Set_Check_Actuals          (New_Aggregate, Check_Actuals (N));
4727 
4728          Rewrite (N, New_Aggregate);
4729       end Step_8;
4730 
4731       --  Check the dimensions of the components in the record aggregate
4732 
4733       Analyze_Dimension_Extension_Or_Record_Aggregate (N);
4734    end Resolve_Record_Aggregate;
4735 
4736    -----------------------------
4737    -- Check_Can_Never_Be_Null --
4738    -----------------------------
4739 
4740    procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
4741       Comp_Typ : Entity_Id;
4742 
4743    begin
4744       pragma Assert
4745         (Ada_Version >= Ada_2005
4746           and then Present (Expr)
4747           and then Known_Null (Expr));
4748 
4749       case Ekind (Typ) is
4750          when E_Array_Type  =>
4751             Comp_Typ := Component_Type (Typ);
4752 
4753          when E_Component    |
4754               E_Discriminant =>
4755             Comp_Typ := Etype (Typ);
4756 
4757          when others =>
4758             return;
4759       end case;
4760 
4761       if Can_Never_Be_Null (Comp_Typ) then
4762 
4763          --  Here we know we have a constraint error. Note that we do not use
4764          --  Apply_Compile_Time_Constraint_Error here to the Expr, which might
4765          --  seem the more natural approach. That's because in some cases the
4766          --  components are rewritten, and the replacement would be missed.
4767          --  We do not mark the whole aggregate as raising a constraint error,
4768          --  because the association may be a null array range.
4769 
4770          Error_Msg_N
4771            ("(Ada 2005) null not allowed in null-excluding component??", Expr);
4772          Error_Msg_N
4773            ("\Constraint_Error will be raised at run time??", Expr);
4774 
4775          Rewrite (Expr,
4776            Make_Raise_Constraint_Error
4777              (Sloc (Expr), Reason => CE_Access_Check_Failed));
4778          Set_Etype    (Expr, Comp_Typ);
4779          Set_Analyzed (Expr);
4780       end if;
4781    end Check_Can_Never_Be_Null;
4782 
4783    ---------------------
4784    -- Sort_Case_Table --
4785    ---------------------
4786 
4787    procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
4788       U : constant Int := Case_Table'Last;
4789       K : Int;
4790       J : Int;
4791       T : Case_Bounds;
4792 
4793    begin
4794       K := 1;
4795       while K < U loop
4796          T := Case_Table (K + 1);
4797 
4798          J := K + 1;
4799          while J > 1
4800            and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
4801          loop
4802             Case_Table (J) := Case_Table (J - 1);
4803             J := J - 1;
4804          end loop;
4805 
4806          Case_Table (J) := T;
4807          K := K + 1;
4808       end loop;
4809    end Sort_Case_Table;
4810 
4811 end Sem_Aggr;