File : sem_res.adb


   1 ------------------------------------------------------------------------------
   2 --                                                                          --
   3 --                         GNAT COMPILER COMPONENTS                         --
   4 --                                                                          --
   5 --                              S E M _ R E S                               --
   6 --                                                                          --
   7 --                                 B o d y                                  --
   8 --                                                                          --
   9 --          Copyright (C) 1992-2016, Free Software Foundation, Inc.         --
  10 --                                                                          --
  11 -- GNAT is free software;  you can  redistribute it  and/or modify it under --
  12 -- terms of the  GNU General Public License as published  by the Free Soft- --
  13 -- ware  Foundation;  either version 3,  or (at your option) any later ver- --
  14 -- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
  15 -- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
  16 -- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
  17 -- for  more details.  You should have  received  a copy of the GNU General --
  18 -- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
  19 -- http://www.gnu.org/licenses for a complete copy of the license.          --
  20 --                                                                          --
  21 -- GNAT was originally developed  by the GNAT team at  New York University. --
  22 -- Extensive contributions were provided by Ada Core Technologies Inc.      --
  23 --                                                                          --
  24 ------------------------------------------------------------------------------
  25 
  26 with Atree;    use Atree;
  27 with Checks;   use Checks;
  28 with Debug;    use Debug;
  29 with Debug_A;  use Debug_A;
  30 with Einfo;    use Einfo;
  31 with Errout;   use Errout;
  32 with Expander; use Expander;
  33 with Exp_Disp; use Exp_Disp;
  34 with Exp_Ch6;  use Exp_Ch6;
  35 with Exp_Ch7;  use Exp_Ch7;
  36 with Exp_Tss;  use Exp_Tss;
  37 with Exp_Util; use Exp_Util;
  38 with Fname;    use Fname;
  39 with Freeze;   use Freeze;
  40 with Ghost;    use Ghost;
  41 with Inline;   use Inline;
  42 with Itypes;   use Itypes;
  43 with Lib;      use Lib;
  44 with Lib.Xref; use Lib.Xref;
  45 with Namet;    use Namet;
  46 with Nmake;    use Nmake;
  47 with Nlists;   use Nlists;
  48 with Opt;      use Opt;
  49 with Output;   use Output;
  50 with Par_SCO;  use Par_SCO;
  51 with Restrict; use Restrict;
  52 with Rident;   use Rident;
  53 with Rtsfind;  use Rtsfind;
  54 with Sem;      use Sem;
  55 with Sem_Aux;  use Sem_Aux;
  56 with Sem_Aggr; use Sem_Aggr;
  57 with Sem_Attr; use Sem_Attr;
  58 with Sem_Cat;  use Sem_Cat;
  59 with Sem_Ch4;  use Sem_Ch4;
  60 with Sem_Ch3;  use Sem_Ch3;
  61 with Sem_Ch6;  use Sem_Ch6;
  62 with Sem_Ch8;  use Sem_Ch8;
  63 with Sem_Ch13; use Sem_Ch13;
  64 with Sem_Dim;  use Sem_Dim;
  65 with Sem_Disp; use Sem_Disp;
  66 with Sem_Dist; use Sem_Dist;
  67 with Sem_Elim; use Sem_Elim;
  68 with Sem_Elab; use Sem_Elab;
  69 with Sem_Eval; use Sem_Eval;
  70 with Sem_Intr; use Sem_Intr;
  71 with Sem_Util; use Sem_Util;
  72 with Targparm; use Targparm;
  73 with Sem_Type; use Sem_Type;
  74 with Sem_Warn; use Sem_Warn;
  75 with Sinfo;    use Sinfo;
  76 with Sinfo.CN; use Sinfo.CN;
  77 with Snames;   use Snames;
  78 with Stand;    use Stand;
  79 with Stringt;  use Stringt;
  80 with Style;    use Style;
  81 with Tbuild;   use Tbuild;
  82 with Uintp;    use Uintp;
  83 with Urealp;   use Urealp;
  84 
  85 package body Sem_Res is
  86 
  87    -----------------------
  88    -- Local Subprograms --
  89    -----------------------
  90 
  91    --  Second pass (top-down) type checking and overload resolution procedures
  92    --  Typ is the type required by context. These procedures propagate the
  93    --  type information recursively to the descendants of N. If the node is not
  94    --  overloaded, its Etype is established in the first pass. If overloaded,
  95    --  the Resolve routines set the correct type. For arithmetic operators, the
  96    --  Etype is the base type of the context.
  97 
  98    --  Note that Resolve_Attribute is separated off in Sem_Attr
  99 
 100    procedure Check_Discriminant_Use (N : Node_Id);
 101    --  Enforce the restrictions on the use of discriminants when constraining
 102    --  a component of a discriminated type (record or concurrent type).
 103 
 104    procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
 105    --  Given a node for an operator associated with type T, check that the
 106    --  operator is visible. Operators all of whose operands are universal must
 107    --  be checked for visibility during resolution because their type is not
 108    --  determinable based on their operands.
 109 
 110    procedure Check_Fully_Declared_Prefix
 111      (Typ  : Entity_Id;
 112       Pref : Node_Id);
 113    --  Check that the type of the prefix of a dereference is not incomplete
 114 
 115    function Check_Infinite_Recursion (N : Node_Id) return Boolean;
 116    --  Given a call node, N, which is known to occur immediately within the
 117    --  subprogram being called, determines whether it is a detectable case of
 118    --  an infinite recursion, and if so, outputs appropriate messages. Returns
 119    --  True if an infinite recursion is detected, and False otherwise.
 120 
 121    procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
 122    --  If the type of the object being initialized uses the secondary stack
 123    --  directly or indirectly, create a transient scope for the call to the
 124    --  init proc. This is because we do not create transient scopes for the
 125    --  initialization of individual components within the init proc itself.
 126    --  Could be optimized away perhaps?
 127 
 128    procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
 129    --  N is the node for a logical operator. If the operator is predefined, and
 130    --  the root type of the operands is Standard.Boolean, then a check is made
 131    --  for restriction No_Direct_Boolean_Operators. This procedure also handles
 132    --  the style check for Style_Check_Boolean_And_Or.
 133 
 134    function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
 135    --  N is either an indexed component or a selected component. This function
 136    --  returns true if the prefix refers to an object that has an address
 137    --  clause (the case in which we may want to issue a warning).
 138 
 139    function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
 140    --  Determine whether E is an access type declared by an access declaration,
 141    --  and not an (anonymous) allocator type.
 142 
 143    function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
 144    --  Utility to check whether the entity for an operator is a predefined
 145    --  operator, in which case the expression is left as an operator in the
 146    --  tree (else it is rewritten into a call). An instance of an intrinsic
 147    --  conversion operation may be given an operator name, but is not treated
 148    --  like an operator. Note that an operator that is an imported back-end
 149    --  builtin has convention Intrinsic, but is expected to be rewritten into
 150    --  a call, so such an operator is not treated as predefined by this
 151    --  predicate.
 152 
 153    procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
 154    --  If a default expression in entry call N depends on the discriminants
 155    --  of the task, it must be replaced with a reference to the discriminant
 156    --  of the task being called.
 157 
 158    procedure Resolve_Op_Concat_Arg
 159      (N       : Node_Id;
 160       Arg     : Node_Id;
 161       Typ     : Entity_Id;
 162       Is_Comp : Boolean);
 163    --  Internal procedure for Resolve_Op_Concat to resolve one operand of
 164    --  concatenation operator.  The operand is either of the array type or of
 165    --  the component type. If the operand is an aggregate, and the component
 166    --  type is composite, this is ambiguous if component type has aggregates.
 167 
 168    procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
 169    --  Does the first part of the work of Resolve_Op_Concat
 170 
 171    procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
 172    --  Does the "rest" of the work of Resolve_Op_Concat, after the left operand
 173    --  has been resolved. See Resolve_Op_Concat for details.
 174 
 175    procedure Resolve_Allocator                 (N : Node_Id; Typ : Entity_Id);
 176    procedure Resolve_Arithmetic_Op             (N : Node_Id; Typ : Entity_Id);
 177    procedure Resolve_Call                      (N : Node_Id; Typ : Entity_Id);
 178    procedure Resolve_Case_Expression           (N : Node_Id; Typ : Entity_Id);
 179    procedure Resolve_Character_Literal         (N : Node_Id; Typ : Entity_Id);
 180    procedure Resolve_Comparison_Op             (N : Node_Id; Typ : Entity_Id);
 181    procedure Resolve_Entity_Name               (N : Node_Id; Typ : Entity_Id);
 182    procedure Resolve_Equality_Op               (N : Node_Id; Typ : Entity_Id);
 183    procedure Resolve_Explicit_Dereference      (N : Node_Id; Typ : Entity_Id);
 184    procedure Resolve_Expression_With_Actions   (N : Node_Id; Typ : Entity_Id);
 185    procedure Resolve_If_Expression             (N : Node_Id; Typ : Entity_Id);
 186    procedure Resolve_Generalized_Indexing      (N : Node_Id; Typ : Entity_Id);
 187    procedure Resolve_Indexed_Component         (N : Node_Id; Typ : Entity_Id);
 188    procedure Resolve_Integer_Literal           (N : Node_Id; Typ : Entity_Id);
 189    procedure Resolve_Logical_Op                (N : Node_Id; Typ : Entity_Id);
 190    procedure Resolve_Membership_Op             (N : Node_Id; Typ : Entity_Id);
 191    procedure Resolve_Null                      (N : Node_Id; Typ : Entity_Id);
 192    procedure Resolve_Operator_Symbol           (N : Node_Id; Typ : Entity_Id);
 193    procedure Resolve_Op_Concat                 (N : Node_Id; Typ : Entity_Id);
 194    procedure Resolve_Op_Expon                  (N : Node_Id; Typ : Entity_Id);
 195    procedure Resolve_Op_Not                    (N : Node_Id; Typ : Entity_Id);
 196    procedure Resolve_Qualified_Expression      (N : Node_Id; Typ : Entity_Id);
 197    procedure Resolve_Raise_Expression          (N : Node_Id; Typ : Entity_Id);
 198    procedure Resolve_Range                     (N : Node_Id; Typ : Entity_Id);
 199    procedure Resolve_Real_Literal              (N : Node_Id; Typ : Entity_Id);
 200    procedure Resolve_Reference                 (N : Node_Id; Typ : Entity_Id);
 201    procedure Resolve_Selected_Component        (N : Node_Id; Typ : Entity_Id);
 202    procedure Resolve_Shift                     (N : Node_Id; Typ : Entity_Id);
 203    procedure Resolve_Short_Circuit             (N : Node_Id; Typ : Entity_Id);
 204    procedure Resolve_Slice                     (N : Node_Id; Typ : Entity_Id);
 205    procedure Resolve_String_Literal            (N : Node_Id; Typ : Entity_Id);
 206    procedure Resolve_Type_Conversion           (N : Node_Id; Typ : Entity_Id);
 207    procedure Resolve_Unary_Op                  (N : Node_Id; Typ : Entity_Id);
 208    procedure Resolve_Unchecked_Expression      (N : Node_Id; Typ : Entity_Id);
 209    procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
 210 
 211    function Operator_Kind
 212      (Op_Name   : Name_Id;
 213       Is_Binary : Boolean) return Node_Kind;
 214    --  Utility to map the name of an operator into the corresponding Node. Used
 215    --  by other node rewriting procedures.
 216 
 217    procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
 218    --  Resolve actuals of call, and add default expressions for missing ones.
 219    --  N is the Node_Id for the subprogram call, and Nam is the entity of the
 220    --  called subprogram.
 221 
 222    procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
 223    --  Called from Resolve_Call, when the prefix denotes an entry or element
 224    --  of entry family. Actuals are resolved as for subprograms, and the node
 225    --  is rebuilt as an entry call. Also called for protected operations. Typ
 226    --  is the context type, which is used when the operation is a protected
 227    --  function with no arguments, and the return value is indexed.
 228 
 229    procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
 230    --  A call to a user-defined intrinsic operator is rewritten as a call to
 231    --  the corresponding predefined operator, with suitable conversions. Note
 232    --  that this applies only for intrinsic operators that denote predefined
 233    --  operators, not ones that are intrinsic imports of back-end builtins.
 234 
 235    procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
 236    --  Ditto, for arithmetic unary operators
 237 
 238    procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
 239    --  If an operator node resolves to a call to a user-defined operator,
 240    --  rewrite the node as a function call.
 241 
 242    procedure Make_Call_Into_Operator
 243      (N     : Node_Id;
 244       Typ   : Entity_Id;
 245       Op_Id : Entity_Id);
 246    --  Inverse transformation: if an operator is given in functional notation,
 247    --  then after resolving the node, transform into an operator node, so that
 248    --  operands are resolved properly. Recall that predefined operators do not
 249    --  have a full signature and special resolution rules apply.
 250 
 251    procedure Rewrite_Renamed_Operator
 252      (N   : Node_Id;
 253       Op  : Entity_Id;
 254       Typ : Entity_Id);
 255    --  An operator can rename another, e.g. in an instantiation. In that
 256    --  case, the proper operator node must be constructed and resolved.
 257 
 258    procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
 259    --  The String_Literal_Subtype is built for all strings that are not
 260    --  operands of a static concatenation operation. If the argument is not
 261    --  a N_String_Literal node, then the call has no effect.
 262 
 263    procedure Set_Slice_Subtype (N : Node_Id);
 264    --  Build subtype of array type, with the range specified by the slice
 265 
 266    procedure Simplify_Type_Conversion (N : Node_Id);
 267    --  Called after N has been resolved and evaluated, but before range checks
 268    --  have been applied. Currently simplifies a combination of floating-point
 269    --  to integer conversion and Rounding or Truncation attribute.
 270 
 271    function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
 272    --  A universal_fixed expression in an universal context is unambiguous if
 273    --  there is only one applicable fixed point type. Determining whether there
 274    --  is only one requires a search over all visible entities, and happens
 275    --  only in very pathological cases (see 6115-006).
 276 
 277    -------------------------
 278    -- Ambiguous_Character --
 279    -------------------------
 280 
 281    procedure Ambiguous_Character (C : Node_Id) is
 282       E : Entity_Id;
 283 
 284    begin
 285       if Nkind (C) = N_Character_Literal then
 286          Error_Msg_N ("ambiguous character literal", C);
 287 
 288          --  First the ones in Standard
 289 
 290          Error_Msg_N ("\\possible interpretation: Character!", C);
 291          Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
 292 
 293          --  Include Wide_Wide_Character in Ada 2005 mode
 294 
 295          if Ada_Version >= Ada_2005 then
 296             Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
 297          end if;
 298 
 299          --  Now any other types that match
 300 
 301          E := Current_Entity (C);
 302          while Present (E) loop
 303             Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
 304             E := Homonym (E);
 305          end loop;
 306       end if;
 307    end Ambiguous_Character;
 308 
 309    -------------------------
 310    -- Analyze_And_Resolve --
 311    -------------------------
 312 
 313    procedure Analyze_And_Resolve (N : Node_Id) is
 314    begin
 315       Analyze (N);
 316       Resolve (N);
 317    end Analyze_And_Resolve;
 318 
 319    procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
 320    begin
 321       Analyze (N);
 322       Resolve (N, Typ);
 323    end Analyze_And_Resolve;
 324 
 325    --  Versions with check(s) suppressed
 326 
 327    procedure Analyze_And_Resolve
 328      (N        : Node_Id;
 329       Typ      : Entity_Id;
 330       Suppress : Check_Id)
 331    is
 332       Scop : constant Entity_Id := Current_Scope;
 333 
 334    begin
 335       if Suppress = All_Checks then
 336          declare
 337             Sva : constant Suppress_Array := Scope_Suppress.Suppress;
 338          begin
 339             Scope_Suppress.Suppress := (others => True);
 340             Analyze_And_Resolve (N, Typ);
 341             Scope_Suppress.Suppress := Sva;
 342          end;
 343 
 344       else
 345          declare
 346             Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
 347          begin
 348             Scope_Suppress.Suppress (Suppress) := True;
 349             Analyze_And_Resolve (N, Typ);
 350             Scope_Suppress.Suppress (Suppress) := Svg;
 351          end;
 352       end if;
 353 
 354       if Current_Scope /= Scop
 355         and then Scope_Is_Transient
 356       then
 357          --  This can only happen if a transient scope was created for an inner
 358          --  expression, which will be removed upon completion of the analysis
 359          --  of an enclosing construct. The transient scope must have the
 360          --  suppress status of the enclosing environment, not of this Analyze
 361          --  call.
 362 
 363          Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
 364            Scope_Suppress;
 365       end if;
 366    end Analyze_And_Resolve;
 367 
 368    procedure Analyze_And_Resolve
 369      (N        : Node_Id;
 370       Suppress : Check_Id)
 371    is
 372       Scop : constant Entity_Id := Current_Scope;
 373 
 374    begin
 375       if Suppress = All_Checks then
 376          declare
 377             Sva : constant Suppress_Array := Scope_Suppress.Suppress;
 378          begin
 379             Scope_Suppress.Suppress := (others => True);
 380             Analyze_And_Resolve (N);
 381             Scope_Suppress.Suppress := Sva;
 382          end;
 383 
 384       else
 385          declare
 386             Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
 387          begin
 388             Scope_Suppress.Suppress (Suppress) := True;
 389             Analyze_And_Resolve (N);
 390             Scope_Suppress.Suppress (Suppress) := Svg;
 391          end;
 392       end if;
 393 
 394       if Current_Scope /= Scop and then Scope_Is_Transient then
 395          Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
 396            Scope_Suppress;
 397       end if;
 398    end Analyze_And_Resolve;
 399 
 400    ----------------------------
 401    -- Check_Discriminant_Use --
 402    ----------------------------
 403 
 404    procedure Check_Discriminant_Use (N : Node_Id) is
 405       PN   : constant Node_Id   := Parent (N);
 406       Disc : constant Entity_Id := Entity (N);
 407       P    : Node_Id;
 408       D    : Node_Id;
 409 
 410    begin
 411       --  Any use in a spec-expression is legal
 412 
 413       if In_Spec_Expression then
 414          null;
 415 
 416       elsif Nkind (PN) = N_Range then
 417 
 418          --  Discriminant cannot be used to constrain a scalar type
 419 
 420          P := Parent (PN);
 421 
 422          if Nkind (P) = N_Range_Constraint
 423            and then Nkind (Parent (P)) = N_Subtype_Indication
 424            and then Nkind (Parent (Parent (P))) = N_Component_Definition
 425          then
 426             Error_Msg_N ("discriminant cannot constrain scalar type", N);
 427 
 428          elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
 429 
 430             --  The following check catches the unusual case where a
 431             --  discriminant appears within an index constraint that is part
 432             --  of a larger expression within a constraint on a component,
 433             --  e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
 434             --  check case of record components, and note that a similar check
 435             --  should also apply in the case of discriminant constraints
 436             --  below. ???
 437 
 438             --  Note that the check for N_Subtype_Declaration below is to
 439             --  detect the valid use of discriminants in the constraints of a
 440             --  subtype declaration when this subtype declaration appears
 441             --  inside the scope of a record type (which is syntactically
 442             --  illegal, but which may be created as part of derived type
 443             --  processing for records). See Sem_Ch3.Build_Derived_Record_Type
 444             --  for more info.
 445 
 446             if Ekind (Current_Scope) = E_Record_Type
 447               and then Scope (Disc) = Current_Scope
 448               and then not
 449                 (Nkind (Parent (P)) = N_Subtype_Indication
 450                   and then
 451                     Nkind_In (Parent (Parent (P)), N_Component_Definition,
 452                                                    N_Subtype_Declaration)
 453                   and then Paren_Count (N) = 0)
 454             then
 455                Error_Msg_N
 456                  ("discriminant must appear alone in component constraint", N);
 457                return;
 458             end if;
 459 
 460             --   Detect a common error:
 461 
 462             --   type R (D : Positive := 100) is record
 463             --     Name : String (1 .. D);
 464             --   end record;
 465 
 466             --  The default value causes an object of type R to be allocated
 467             --  with room for Positive'Last characters. The RM does not mandate
 468             --  the allocation of the maximum size, but that is what GNAT does
 469             --  so we should warn the programmer that there is a problem.
 470 
 471             Check_Large : declare
 472                SI : Node_Id;
 473                T  : Entity_Id;
 474                TB : Node_Id;
 475                CB : Entity_Id;
 476 
 477                function Large_Storage_Type (T : Entity_Id) return Boolean;
 478                --  Return True if type T has a large enough range that any
 479                --  array whose index type covered the whole range of the type
 480                --  would likely raise Storage_Error.
 481 
 482                ------------------------
 483                -- Large_Storage_Type --
 484                ------------------------
 485 
 486                function Large_Storage_Type (T : Entity_Id) return Boolean is
 487                begin
 488                   --  The type is considered large if its bounds are known at
 489                   --  compile time and if it requires at least as many bits as
 490                   --  a Positive to store the possible values.
 491 
 492                   return Compile_Time_Known_Value (Type_Low_Bound (T))
 493                     and then Compile_Time_Known_Value (Type_High_Bound (T))
 494                     and then
 495                       Minimum_Size (T, Biased => True) >=
 496                         RM_Size (Standard_Positive);
 497                end Large_Storage_Type;
 498 
 499             --  Start of processing for Check_Large
 500 
 501             begin
 502                --  Check that the Disc has a large range
 503 
 504                if not Large_Storage_Type (Etype (Disc)) then
 505                   goto No_Danger;
 506                end if;
 507 
 508                --  If the enclosing type is limited, we allocate only the
 509                --  default value, not the maximum, and there is no need for
 510                --  a warning.
 511 
 512                if Is_Limited_Type (Scope (Disc)) then
 513                   goto No_Danger;
 514                end if;
 515 
 516                --  Check that it is the high bound
 517 
 518                if N /= High_Bound (PN)
 519                  or else No (Discriminant_Default_Value (Disc))
 520                then
 521                   goto No_Danger;
 522                end if;
 523 
 524                --  Check the array allows a large range at this bound. First
 525                --  find the array
 526 
 527                SI := Parent (P);
 528 
 529                if Nkind (SI) /= N_Subtype_Indication then
 530                   goto No_Danger;
 531                end if;
 532 
 533                T := Entity (Subtype_Mark (SI));
 534 
 535                if not Is_Array_Type (T) then
 536                   goto No_Danger;
 537                end if;
 538 
 539                --  Next, find the dimension
 540 
 541                TB := First_Index (T);
 542                CB := First (Constraints (P));
 543                while True
 544                  and then Present (TB)
 545                  and then Present (CB)
 546                  and then CB /= PN
 547                loop
 548                   Next_Index (TB);
 549                   Next (CB);
 550                end loop;
 551 
 552                if CB /= PN then
 553                   goto No_Danger;
 554                end if;
 555 
 556                --  Now, check the dimension has a large range
 557 
 558                if not Large_Storage_Type (Etype (TB)) then
 559                   goto No_Danger;
 560                end if;
 561 
 562                --  Warn about the danger
 563 
 564                Error_Msg_N
 565                  ("??creation of & object may raise Storage_Error!",
 566                   Scope (Disc));
 567 
 568                <<No_Danger>>
 569                   null;
 570 
 571             end Check_Large;
 572          end if;
 573 
 574       --  Legal case is in index or discriminant constraint
 575 
 576       elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
 577                           N_Discriminant_Association)
 578       then
 579          if Paren_Count (N) > 0 then
 580             Error_Msg_N
 581               ("discriminant in constraint must appear alone",  N);
 582 
 583          elsif Nkind (N) = N_Expanded_Name
 584            and then Comes_From_Source (N)
 585          then
 586             Error_Msg_N
 587               ("discriminant must appear alone as a direct name", N);
 588          end if;
 589 
 590          return;
 591 
 592       --  Otherwise, context is an expression. It should not be within (i.e. a
 593       --  subexpression of) a constraint for a component.
 594 
 595       else
 596          D := PN;
 597          P := Parent (PN);
 598          while not Nkind_In (P, N_Component_Declaration,
 599                                 N_Subtype_Indication,
 600                                 N_Entry_Declaration)
 601          loop
 602             D := P;
 603             P := Parent (P);
 604             exit when No (P);
 605          end loop;
 606 
 607          --  If the discriminant is used in an expression that is a bound of a
 608          --  scalar type, an Itype is created and the bounds are attached to
 609          --  its range, not to the original subtype indication. Such use is of
 610          --  course a double fault.
 611 
 612          if (Nkind (P) = N_Subtype_Indication
 613               and then Nkind_In (Parent (P), N_Component_Definition,
 614                                              N_Derived_Type_Definition)
 615               and then D = Constraint (P))
 616 
 617            --  The constraint itself may be given by a subtype indication,
 618            --  rather than by a more common discrete range.
 619 
 620            or else (Nkind (P) = N_Subtype_Indication
 621                       and then
 622                     Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
 623            or else Nkind (P) = N_Entry_Declaration
 624            or else Nkind (D) = N_Defining_Identifier
 625          then
 626             Error_Msg_N
 627               ("discriminant in constraint must appear alone",  N);
 628          end if;
 629       end if;
 630    end Check_Discriminant_Use;
 631 
 632    --------------------------------
 633    -- Check_For_Visible_Operator --
 634    --------------------------------
 635 
 636    procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
 637    begin
 638       if Is_Invisible_Operator (N, T) then
 639          Error_Msg_NE -- CODEFIX
 640            ("operator for} is not directly visible!", N, First_Subtype (T));
 641          Error_Msg_N -- CODEFIX
 642            ("use clause would make operation legal!", N);
 643       end if;
 644    end Check_For_Visible_Operator;
 645 
 646    ----------------------------------
 647    --  Check_Fully_Declared_Prefix --
 648    ----------------------------------
 649 
 650    procedure Check_Fully_Declared_Prefix
 651      (Typ  : Entity_Id;
 652       Pref : Node_Id)
 653    is
 654    begin
 655       --  Check that the designated type of the prefix of a dereference is
 656       --  not an incomplete type. This cannot be done unconditionally, because
 657       --  dereferences of private types are legal in default expressions. This
 658       --  case is taken care of in Check_Fully_Declared, called below. There
 659       --  are also 2005 cases where it is legal for the prefix to be unfrozen.
 660 
 661       --  This consideration also applies to similar checks for allocators,
 662       --  qualified expressions, and type conversions.
 663 
 664       --  An additional exception concerns other per-object expressions that
 665       --  are not directly related to component declarations, in particular
 666       --  representation pragmas for tasks. These will be per-object
 667       --  expressions if they depend on discriminants or some global entity.
 668       --  If the task has access discriminants, the designated type may be
 669       --  incomplete at the point the expression is resolved. This resolution
 670       --  takes place within the body of the initialization procedure, where
 671       --  the discriminant is replaced by its discriminal.
 672 
 673       if Is_Entity_Name (Pref)
 674         and then Ekind (Entity (Pref)) = E_In_Parameter
 675       then
 676          null;
 677 
 678       --  Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
 679       --  are handled by Analyze_Access_Attribute, Analyze_Assignment,
 680       --  Analyze_Object_Renaming, and Freeze_Entity.
 681 
 682       elsif Ada_Version >= Ada_2005
 683         and then Is_Entity_Name (Pref)
 684         and then Is_Access_Type (Etype (Pref))
 685         and then Ekind (Directly_Designated_Type (Etype (Pref))) =
 686                                                        E_Incomplete_Type
 687         and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
 688       then
 689          null;
 690       else
 691          Check_Fully_Declared (Typ, Parent (Pref));
 692       end if;
 693    end Check_Fully_Declared_Prefix;
 694 
 695    ------------------------------
 696    -- Check_Infinite_Recursion --
 697    ------------------------------
 698 
 699    function Check_Infinite_Recursion (N : Node_Id) return Boolean is
 700       P : Node_Id;
 701       C : Node_Id;
 702 
 703       function Same_Argument_List return Boolean;
 704       --  Check whether list of actuals is identical to list of formals of
 705       --  called function (which is also the enclosing scope).
 706 
 707       ------------------------
 708       -- Same_Argument_List --
 709       ------------------------
 710 
 711       function Same_Argument_List return Boolean is
 712          A    : Node_Id;
 713          F    : Entity_Id;
 714          Subp : Entity_Id;
 715 
 716       begin
 717          if not Is_Entity_Name (Name (N)) then
 718             return False;
 719          else
 720             Subp := Entity (Name (N));
 721          end if;
 722 
 723          F := First_Formal (Subp);
 724          A := First_Actual (N);
 725          while Present (F) and then Present (A) loop
 726             if not Is_Entity_Name (A) or else Entity (A) /= F then
 727                return False;
 728             end if;
 729 
 730             Next_Actual (A);
 731             Next_Formal (F);
 732          end loop;
 733 
 734          return True;
 735       end Same_Argument_List;
 736 
 737    --  Start of processing for Check_Infinite_Recursion
 738 
 739    begin
 740       --  Special case, if this is a procedure call and is a call to the
 741       --  current procedure with the same argument list, then this is for
 742       --  sure an infinite recursion and we insert a call to raise SE.
 743 
 744       if Is_List_Member (N)
 745         and then List_Length (List_Containing (N)) = 1
 746         and then Same_Argument_List
 747       then
 748          declare
 749             P : constant Node_Id := Parent (N);
 750          begin
 751             if Nkind (P) = N_Handled_Sequence_Of_Statements
 752               and then Nkind (Parent (P)) = N_Subprogram_Body
 753               and then Is_Empty_List (Declarations (Parent (P)))
 754             then
 755                Error_Msg_Warn := SPARK_Mode /= On;
 756                Error_Msg_N ("!infinite recursion<<", N);
 757                Error_Msg_N ("\!Storage_Error [<<", N);
 758                Insert_Action (N,
 759                  Make_Raise_Storage_Error (Sloc (N),
 760                    Reason => SE_Infinite_Recursion));
 761                return True;
 762             end if;
 763          end;
 764       end if;
 765 
 766       --  If not that special case, search up tree, quitting if we reach a
 767       --  construct (e.g. a conditional) that tells us that this is not a
 768       --  case for an infinite recursion warning.
 769 
 770       C := N;
 771       loop
 772          P := Parent (C);
 773 
 774          --  If no parent, then we were not inside a subprogram, this can for
 775          --  example happen when processing certain pragmas in a spec. Just
 776          --  return False in this case.
 777 
 778          if No (P) then
 779             return False;
 780          end if;
 781 
 782          --  Done if we get to subprogram body, this is definitely an infinite
 783          --  recursion case if we did not find anything to stop us.
 784 
 785          exit when Nkind (P) = N_Subprogram_Body;
 786 
 787          --  If appearing in conditional, result is false
 788 
 789          if Nkind_In (P, N_Or_Else,
 790                          N_And_Then,
 791                          N_Case_Expression,
 792                          N_Case_Statement,
 793                          N_If_Expression,
 794                          N_If_Statement)
 795          then
 796             return False;
 797 
 798          elsif Nkind (P) = N_Handled_Sequence_Of_Statements
 799            and then C /= First (Statements (P))
 800          then
 801             --  If the call is the expression of a return statement and the
 802             --  actuals are identical to the formals, it's worth a warning.
 803             --  However, we skip this if there is an immediately preceding
 804             --  raise statement, since the call is never executed.
 805 
 806             --  Furthermore, this corresponds to a common idiom:
 807 
 808             --    function F (L : Thing) return Boolean is
 809             --    begin
 810             --       raise Program_Error;
 811             --       return F (L);
 812             --    end F;
 813 
 814             --  for generating a stub function
 815 
 816             if Nkind (Parent (N)) = N_Simple_Return_Statement
 817               and then Same_Argument_List
 818             then
 819                exit when not Is_List_Member (Parent (N));
 820 
 821                --  OK, return statement is in a statement list, look for raise
 822 
 823                declare
 824                   Nod : Node_Id;
 825 
 826                begin
 827                   --  Skip past N_Freeze_Entity nodes generated by expansion
 828 
 829                   Nod := Prev (Parent (N));
 830                   while Present (Nod)
 831                     and then Nkind (Nod) = N_Freeze_Entity
 832                   loop
 833                      Prev (Nod);
 834                   end loop;
 835 
 836                   --  If no raise statement, give warning. We look at the
 837                   --  original node, because in the case of "raise ... with
 838                   --  ...", the node has been transformed into a call.
 839 
 840                   exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
 841                     and then
 842                       (Nkind (Nod) not in N_Raise_xxx_Error
 843                         or else Present (Condition (Nod)));
 844                end;
 845             end if;
 846 
 847             return False;
 848 
 849          else
 850             C := P;
 851          end if;
 852       end loop;
 853 
 854       Error_Msg_Warn := SPARK_Mode /= On;
 855       Error_Msg_N ("!possible infinite recursion<<", N);
 856       Error_Msg_N ("\!??Storage_Error ]<<", N);
 857 
 858       return True;
 859    end Check_Infinite_Recursion;
 860 
 861    -------------------------------
 862    -- Check_Initialization_Call --
 863    -------------------------------
 864 
 865    procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
 866       Typ : constant Entity_Id := Etype (First_Formal (Nam));
 867 
 868       function Uses_SS (T : Entity_Id) return Boolean;
 869       --  Check whether the creation of an object of the type will involve
 870       --  use of the secondary stack. If T is a record type, this is true
 871       --  if the expression for some component uses the secondary stack, e.g.
 872       --  through a call to a function that returns an unconstrained value.
 873       --  False if T is controlled, because cleanups occur elsewhere.
 874 
 875       -------------
 876       -- Uses_SS --
 877       -------------
 878 
 879       function Uses_SS (T : Entity_Id) return Boolean is
 880          Comp      : Entity_Id;
 881          Expr      : Node_Id;
 882          Full_Type : Entity_Id := Underlying_Type (T);
 883 
 884       begin
 885          --  Normally we want to use the underlying type, but if it's not set
 886          --  then continue with T.
 887 
 888          if not Present (Full_Type) then
 889             Full_Type := T;
 890          end if;
 891 
 892          if Is_Controlled (Full_Type) then
 893             return False;
 894 
 895          elsif Is_Array_Type (Full_Type) then
 896             return Uses_SS (Component_Type (Full_Type));
 897 
 898          elsif Is_Record_Type (Full_Type) then
 899             Comp := First_Component (Full_Type);
 900             while Present (Comp) loop
 901                if Ekind (Comp) = E_Component
 902                  and then Nkind (Parent (Comp)) = N_Component_Declaration
 903                then
 904                   --  The expression for a dynamic component may be rewritten
 905                   --  as a dereference, so retrieve original node.
 906 
 907                   Expr := Original_Node (Expression (Parent (Comp)));
 908 
 909                   --  Return True if the expression is a call to a function
 910                   --  (including an attribute function such as Image, or a
 911                   --  user-defined operator) with a result that requires a
 912                   --  transient scope.
 913 
 914                   if (Nkind (Expr) = N_Function_Call
 915                        or else Nkind (Expr) in N_Op
 916                        or else (Nkind (Expr) = N_Attribute_Reference
 917                                  and then Present (Expressions (Expr))))
 918                     and then Requires_Transient_Scope (Etype (Expr))
 919                   then
 920                      return True;
 921 
 922                   elsif Uses_SS (Etype (Comp)) then
 923                      return True;
 924                   end if;
 925                end if;
 926 
 927                Next_Component (Comp);
 928             end loop;
 929 
 930             return False;
 931 
 932          else
 933             return False;
 934          end if;
 935       end Uses_SS;
 936 
 937    --  Start of processing for Check_Initialization_Call
 938 
 939    begin
 940       --  Establish a transient scope if the type needs it
 941 
 942       if Uses_SS (Typ) then
 943          Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
 944       end if;
 945    end Check_Initialization_Call;
 946 
 947    ---------------------------------------
 948    -- Check_No_Direct_Boolean_Operators --
 949    ---------------------------------------
 950 
 951    procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
 952    begin
 953       if Scope (Entity (N)) = Standard_Standard
 954         and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
 955       then
 956          --  Restriction only applies to original source code
 957 
 958          if Comes_From_Source (N) then
 959             Check_Restriction (No_Direct_Boolean_Operators, N);
 960          end if;
 961       end if;
 962 
 963       --  Do style check (but skip if in instance, error is on template)
 964 
 965       if Style_Check then
 966          if not In_Instance then
 967             Check_Boolean_Operator (N);
 968          end if;
 969       end if;
 970    end Check_No_Direct_Boolean_Operators;
 971 
 972    ------------------------------
 973    -- Check_Parameterless_Call --
 974    ------------------------------
 975 
 976    procedure Check_Parameterless_Call (N : Node_Id) is
 977       Nam : Node_Id;
 978 
 979       function Prefix_Is_Access_Subp return Boolean;
 980       --  If the prefix is of an access_to_subprogram type, the node must be
 981       --  rewritten as a call. Ditto if the prefix is overloaded and all its
 982       --  interpretations are access to subprograms.
 983 
 984       ---------------------------
 985       -- Prefix_Is_Access_Subp --
 986       ---------------------------
 987 
 988       function Prefix_Is_Access_Subp return Boolean is
 989          I   : Interp_Index;
 990          It  : Interp;
 991 
 992       begin
 993          --  If the context is an attribute reference that can apply to
 994          --  functions, this is never a parameterless call (RM 4.1.4(6)).
 995 
 996          if Nkind (Parent (N)) = N_Attribute_Reference
 997             and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
 998                                                           Name_Code_Address,
 999                                                           Name_Access)
1000          then
1001             return False;
1002          end if;
1003 
1004          if not Is_Overloaded (N) then
1005             return
1006               Ekind (Etype (N)) = E_Subprogram_Type
1007                 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1008          else
1009             Get_First_Interp (N, I, It);
1010             while Present (It.Typ) loop
1011                if Ekind (It.Typ) /= E_Subprogram_Type
1012                  or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1013                then
1014                   return False;
1015                end if;
1016 
1017                Get_Next_Interp (I, It);
1018             end loop;
1019 
1020             return True;
1021          end if;
1022       end Prefix_Is_Access_Subp;
1023 
1024    --  Start of processing for Check_Parameterless_Call
1025 
1026    begin
1027       --  Defend against junk stuff if errors already detected
1028 
1029       if Total_Errors_Detected /= 0 then
1030          if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1031             return;
1032          elsif Nkind (N) in N_Has_Chars
1033            and then Chars (N) in Error_Name_Or_No_Name
1034          then
1035             return;
1036          end if;
1037 
1038          Require_Entity (N);
1039       end if;
1040 
1041       --  If the context expects a value, and the name is a procedure, this is
1042       --  most likely a missing 'Access. Don't try to resolve the parameterless
1043       --  call, error will be caught when the outer call is analyzed.
1044 
1045       if Is_Entity_Name (N)
1046         and then Ekind (Entity (N)) = E_Procedure
1047         and then not Is_Overloaded (N)
1048         and then
1049          Nkind_In (Parent (N), N_Parameter_Association,
1050                                N_Function_Call,
1051                                N_Procedure_Call_Statement)
1052       then
1053          return;
1054       end if;
1055 
1056       --  Rewrite as call if overloadable entity that is (or could be, in the
1057       --  overloaded case) a function call. If we know for sure that the entity
1058       --  is an enumeration literal, we do not rewrite it.
1059 
1060       --  If the entity is the name of an operator, it cannot be a call because
1061       --  operators cannot have default parameters. In this case, this must be
1062       --  a string whose contents coincide with an operator name. Set the kind
1063       --  of the node appropriately.
1064 
1065       if (Is_Entity_Name (N)
1066             and then Nkind (N) /= N_Operator_Symbol
1067             and then Is_Overloadable (Entity (N))
1068             and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1069                        or else Is_Overloaded (N)))
1070 
1071       --  Rewrite as call if it is an explicit dereference of an expression of
1072       --  a subprogram access type, and the subprogram type is not that of a
1073       --  procedure or entry.
1074 
1075       or else
1076         (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1077 
1078       --  Rewrite as call if it is a selected component which is a function,
1079       --  this is the case of a call to a protected function (which may be
1080       --  overloaded with other protected operations).
1081 
1082       or else
1083         (Nkind (N) = N_Selected_Component
1084           and then (Ekind (Entity (Selector_Name (N))) = E_Function
1085                      or else
1086                        (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1087                                                               E_Procedure)
1088                          and then Is_Overloaded (Selector_Name (N)))))
1089 
1090       --  If one of the above three conditions is met, rewrite as call. Apply
1091       --  the rewriting only once.
1092 
1093       then
1094          if Nkind (Parent (N)) /= N_Function_Call
1095            or else N /= Name (Parent (N))
1096          then
1097 
1098             --  This may be a prefixed call that was not fully analyzed, e.g.
1099             --  an actual in an instance.
1100 
1101             if Ada_Version >= Ada_2005
1102               and then Nkind (N) = N_Selected_Component
1103               and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1104             then
1105                Analyze_Selected_Component (N);
1106 
1107                if Nkind (N) /= N_Selected_Component then
1108                   return;
1109                end if;
1110             end if;
1111 
1112             --  The node is the name of the parameterless call. Preserve its
1113             --  descendants, which may be complex expressions.
1114 
1115             Nam := Relocate_Node (N);
1116 
1117             --  If overloaded, overload set belongs to new copy
1118 
1119             Save_Interps (N, Nam);
1120 
1121             --  Change node to parameterless function call (note that the
1122             --  Parameter_Associations associations field is left set to Empty,
1123             --  its normal default value since there are no parameters)
1124 
1125             Change_Node (N, N_Function_Call);
1126             Set_Name (N, Nam);
1127             Set_Sloc (N, Sloc (Nam));
1128             Analyze_Call (N);
1129          end if;
1130 
1131       elsif Nkind (N) = N_Parameter_Association then
1132          Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1133 
1134       elsif Nkind (N) = N_Operator_Symbol then
1135          Change_Operator_Symbol_To_String_Literal (N);
1136          Set_Is_Overloaded (N, False);
1137          Set_Etype (N, Any_String);
1138       end if;
1139    end Check_Parameterless_Call;
1140 
1141    --------------------------------
1142    -- Is_Atomic_Ref_With_Address --
1143    --------------------------------
1144 
1145    function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1146       Pref : constant Node_Id := Prefix (N);
1147 
1148    begin
1149       if not Is_Entity_Name (Pref) then
1150          return False;
1151 
1152       else
1153          declare
1154             Pent : constant Entity_Id := Entity (Pref);
1155             Ptyp : constant Entity_Id := Etype (Pent);
1156          begin
1157             return not Is_Access_Type (Ptyp)
1158               and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1159               and then Present (Address_Clause (Pent));
1160          end;
1161       end if;
1162    end Is_Atomic_Ref_With_Address;
1163 
1164    -----------------------------
1165    -- Is_Definite_Access_Type --
1166    -----------------------------
1167 
1168    function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1169       Btyp : constant Entity_Id := Base_Type (E);
1170    begin
1171       return Ekind (Btyp) = E_Access_Type
1172         or else (Ekind (Btyp) = E_Access_Subprogram_Type
1173                   and then Comes_From_Source (Btyp));
1174    end Is_Definite_Access_Type;
1175 
1176    ----------------------
1177    -- Is_Predefined_Op --
1178    ----------------------
1179 
1180    function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1181    begin
1182       --  Predefined operators are intrinsic subprograms
1183 
1184       if not Is_Intrinsic_Subprogram (Nam) then
1185          return False;
1186       end if;
1187 
1188       --  A call to a back-end builtin is never a predefined operator
1189 
1190       if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1191          return False;
1192       end if;
1193 
1194       return not Is_Generic_Instance (Nam)
1195         and then Chars (Nam) in Any_Operator_Name
1196         and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1197    end Is_Predefined_Op;
1198 
1199    -----------------------------
1200    -- Make_Call_Into_Operator --
1201    -----------------------------
1202 
1203    procedure Make_Call_Into_Operator
1204      (N     : Node_Id;
1205       Typ   : Entity_Id;
1206       Op_Id : Entity_Id)
1207    is
1208       Op_Name   : constant Name_Id := Chars (Op_Id);
1209       Act1      : Node_Id := First_Actual (N);
1210       Act2      : Node_Id := Next_Actual (Act1);
1211       Error     : Boolean := False;
1212       Func      : constant Entity_Id := Entity (Name (N));
1213       Is_Binary : constant Boolean   := Present (Act2);
1214       Op_Node   : Node_Id;
1215       Opnd_Type : Entity_Id;
1216       Orig_Type : Entity_Id := Empty;
1217       Pack      : Entity_Id;
1218 
1219       type Kind_Test is access function (E : Entity_Id) return Boolean;
1220 
1221       function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1222       --  If the operand is not universal, and the operator is given by an
1223       --  expanded name, verify that the operand has an interpretation with a
1224       --  type defined in the given scope of the operator.
1225 
1226       function Type_In_P (Test : Kind_Test) return Entity_Id;
1227       --  Find a type of the given class in package Pack that contains the
1228       --  operator.
1229 
1230       ---------------------------
1231       -- Operand_Type_In_Scope --
1232       ---------------------------
1233 
1234       function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1235          Nod : constant Node_Id := Right_Opnd (Op_Node);
1236          I   : Interp_Index;
1237          It  : Interp;
1238 
1239       begin
1240          if not Is_Overloaded (Nod) then
1241             return Scope (Base_Type (Etype (Nod))) = S;
1242 
1243          else
1244             Get_First_Interp (Nod, I, It);
1245             while Present (It.Typ) loop
1246                if Scope (Base_Type (It.Typ)) = S then
1247                   return True;
1248                end if;
1249 
1250                Get_Next_Interp (I, It);
1251             end loop;
1252 
1253             return False;
1254          end if;
1255       end Operand_Type_In_Scope;
1256 
1257       ---------------
1258       -- Type_In_P --
1259       ---------------
1260 
1261       function Type_In_P (Test : Kind_Test) return Entity_Id is
1262          E : Entity_Id;
1263 
1264          function In_Decl return Boolean;
1265          --  Verify that node is not part of the type declaration for the
1266          --  candidate type, which would otherwise be invisible.
1267 
1268          -------------
1269          -- In_Decl --
1270          -------------
1271 
1272          function In_Decl return Boolean is
1273             Decl_Node : constant Node_Id := Parent (E);
1274             N2        : Node_Id;
1275 
1276          begin
1277             N2 := N;
1278 
1279             if Etype (E) = Any_Type then
1280                return True;
1281 
1282             elsif No (Decl_Node) then
1283                return False;
1284 
1285             else
1286                while Present (N2)
1287                  and then Nkind (N2) /= N_Compilation_Unit
1288                loop
1289                   if N2 = Decl_Node then
1290                      return True;
1291                   else
1292                      N2 := Parent (N2);
1293                   end if;
1294                end loop;
1295 
1296                return False;
1297             end if;
1298          end In_Decl;
1299 
1300       --  Start of processing for Type_In_P
1301 
1302       begin
1303          --  If the context type is declared in the prefix package, this is the
1304          --  desired base type.
1305 
1306          if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1307             return Base_Type (Typ);
1308 
1309          else
1310             E := First_Entity (Pack);
1311             while Present (E) loop
1312                if Test (E) and then not In_Decl then
1313                   return E;
1314                end if;
1315 
1316                Next_Entity (E);
1317             end loop;
1318 
1319             return Empty;
1320          end if;
1321       end Type_In_P;
1322 
1323    --  Start of processing for Make_Call_Into_Operator
1324 
1325    begin
1326       Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1327 
1328       --  Binary operator
1329 
1330       if Is_Binary then
1331          Set_Left_Opnd  (Op_Node, Relocate_Node (Act1));
1332          Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1333          Save_Interps (Act1, Left_Opnd  (Op_Node));
1334          Save_Interps (Act2, Right_Opnd (Op_Node));
1335          Act1 := Left_Opnd (Op_Node);
1336          Act2 := Right_Opnd (Op_Node);
1337 
1338       --  Unary operator
1339 
1340       else
1341          Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1342          Save_Interps (Act1, Right_Opnd (Op_Node));
1343          Act1 := Right_Opnd (Op_Node);
1344       end if;
1345 
1346       --  If the operator is denoted by an expanded name, and the prefix is
1347       --  not Standard, but the operator is a predefined one whose scope is
1348       --  Standard, then this is an implicit_operator, inserted as an
1349       --  interpretation by the procedure of the same name. This procedure
1350       --  overestimates the presence of implicit operators, because it does
1351       --  not examine the type of the operands. Verify now that the operand
1352       --  type appears in the given scope. If right operand is universal,
1353       --  check the other operand. In the case of concatenation, either
1354       --  argument can be the component type, so check the type of the result.
1355       --  If both arguments are literals, look for a type of the right kind
1356       --  defined in the given scope. This elaborate nonsense is brought to
1357       --  you courtesy of b33302a. The type itself must be frozen, so we must
1358       --  find the type of the proper class in the given scope.
1359 
1360       --  A final wrinkle is the multiplication operator for fixed point types,
1361       --  which is defined in Standard only, and not in the scope of the
1362       --  fixed point type itself.
1363 
1364       if Nkind (Name (N)) = N_Expanded_Name then
1365          Pack := Entity (Prefix (Name (N)));
1366 
1367          --  If this is a package renaming, get renamed entity, which will be
1368          --  the scope of the operands if operaton is type-correct.
1369 
1370          if Present (Renamed_Entity (Pack)) then
1371             Pack := Renamed_Entity (Pack);
1372          end if;
1373 
1374          --  If the entity being called is defined in the given package, it is
1375          --  a renaming of a predefined operator, and known to be legal.
1376 
1377          if Scope (Entity (Name (N))) = Pack
1378             and then Pack /= Standard_Standard
1379          then
1380             null;
1381 
1382          --  Visibility does not need to be checked in an instance: if the
1383          --  operator was not visible in the generic it has been diagnosed
1384          --  already, else there is an implicit copy of it in the instance.
1385 
1386          elsif In_Instance then
1387             null;
1388 
1389          elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1390            and then Is_Fixed_Point_Type (Etype (Left_Opnd  (Op_Node)))
1391            and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1392          then
1393             if Pack /= Standard_Standard then
1394                Error := True;
1395             end if;
1396 
1397          --  Ada 2005 AI-420: Predefined equality on Universal_Access is
1398          --  available.
1399 
1400          elsif Ada_Version >= Ada_2005
1401            and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1402            and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1403          then
1404             null;
1405 
1406          else
1407             Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1408 
1409             if Op_Name = Name_Op_Concat then
1410                Opnd_Type := Base_Type (Typ);
1411 
1412             elsif (Scope (Opnd_Type) = Standard_Standard
1413                      and then Is_Binary)
1414               or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1415                         and then Is_Binary
1416                         and then not Comes_From_Source (Opnd_Type))
1417             then
1418                Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1419             end if;
1420 
1421             if Scope (Opnd_Type) = Standard_Standard then
1422 
1423                --  Verify that the scope contains a type that corresponds to
1424                --  the given literal. Optimize the case where Pack is Standard.
1425 
1426                if Pack /= Standard_Standard then
1427 
1428                   if Opnd_Type = Universal_Integer then
1429                      Orig_Type := Type_In_P (Is_Integer_Type'Access);
1430 
1431                   elsif Opnd_Type = Universal_Real then
1432                      Orig_Type := Type_In_P (Is_Real_Type'Access);
1433 
1434                   elsif Opnd_Type = Any_String then
1435                      Orig_Type := Type_In_P (Is_String_Type'Access);
1436 
1437                   elsif Opnd_Type = Any_Access then
1438                      Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1439 
1440                   elsif Opnd_Type = Any_Composite then
1441                      Orig_Type := Type_In_P (Is_Composite_Type'Access);
1442 
1443                      if Present (Orig_Type) then
1444                         if Has_Private_Component (Orig_Type) then
1445                            Orig_Type := Empty;
1446                         else
1447                            Set_Etype (Act1, Orig_Type);
1448 
1449                            if Is_Binary then
1450                               Set_Etype (Act2, Orig_Type);
1451                            end if;
1452                         end if;
1453                      end if;
1454 
1455                   else
1456                      Orig_Type := Empty;
1457                   end if;
1458 
1459                   Error := No (Orig_Type);
1460                end if;
1461 
1462             elsif Ekind (Opnd_Type) = E_Allocator_Type
1463                and then No (Type_In_P (Is_Definite_Access_Type'Access))
1464             then
1465                Error := True;
1466 
1467             --  If the type is defined elsewhere, and the operator is not
1468             --  defined in the given scope (by a renaming declaration, e.g.)
1469             --  then this is an error as well. If an extension of System is
1470             --  present, and the type may be defined there, Pack must be
1471             --  System itself.
1472 
1473             elsif Scope (Opnd_Type) /= Pack
1474               and then Scope (Op_Id) /= Pack
1475               and then (No (System_Aux_Id)
1476                          or else Scope (Opnd_Type) /= System_Aux_Id
1477                          or else Pack /= Scope (System_Aux_Id))
1478             then
1479                if not Is_Overloaded (Right_Opnd (Op_Node)) then
1480                   Error := True;
1481                else
1482                   Error := not Operand_Type_In_Scope (Pack);
1483                end if;
1484 
1485             elsif Pack = Standard_Standard
1486               and then not Operand_Type_In_Scope (Standard_Standard)
1487             then
1488                Error := True;
1489             end if;
1490          end if;
1491 
1492          if Error then
1493             Error_Msg_Node_2 := Pack;
1494             Error_Msg_NE
1495               ("& not declared in&", N, Selector_Name (Name (N)));
1496             Set_Etype (N, Any_Type);
1497             return;
1498 
1499          --  Detect a mismatch between the context type and the result type
1500          --  in the named package, which is otherwise not detected if the
1501          --  operands are universal. Check is only needed if source entity is
1502          --  an operator, not a function that renames an operator.
1503 
1504          elsif Nkind (Parent (N)) /= N_Type_Conversion
1505            and then Ekind (Entity (Name (N))) = E_Operator
1506            and then Is_Numeric_Type (Typ)
1507            and then not Is_Universal_Numeric_Type (Typ)
1508            and then Scope (Base_Type (Typ)) /= Pack
1509            and then not In_Instance
1510          then
1511             if Is_Fixed_Point_Type (Typ)
1512               and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1513             then
1514                --  Already checked above
1515 
1516                null;
1517 
1518             --  Operator may be defined in an extension of System
1519 
1520             elsif Present (System_Aux_Id)
1521               and then Scope (Opnd_Type) = System_Aux_Id
1522             then
1523                null;
1524 
1525             else
1526                --  Could we use Wrong_Type here??? (this would require setting
1527                --  Etype (N) to the actual type found where Typ was expected).
1528 
1529                Error_Msg_NE ("expect }", N, Typ);
1530             end if;
1531          end if;
1532       end if;
1533 
1534       Set_Chars  (Op_Node, Op_Name);
1535 
1536       if not Is_Private_Type (Etype (N)) then
1537          Set_Etype (Op_Node, Base_Type (Etype (N)));
1538       else
1539          Set_Etype (Op_Node, Etype (N));
1540       end if;
1541 
1542       --  If this is a call to a function that renames a predefined equality,
1543       --  the renaming declaration provides a type that must be used to
1544       --  resolve the operands. This must be done now because resolution of
1545       --  the equality node will not resolve any remaining ambiguity, and it
1546       --  assumes that the first operand is not overloaded.
1547 
1548       if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1549         and then Ekind (Func) = E_Function
1550         and then Is_Overloaded (Act1)
1551       then
1552          Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1553          Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1554       end if;
1555 
1556       Set_Entity (Op_Node, Op_Id);
1557       Generate_Reference (Op_Id, N, ' ');
1558 
1559       --  Do rewrite setting Comes_From_Source on the result if the original
1560       --  call came from source. Although it is not strictly the case that the
1561       --  operator as such comes from the source, logically it corresponds
1562       --  exactly to the function call in the source, so it should be marked
1563       --  this way (e.g. to make sure that validity checks work fine).
1564 
1565       declare
1566          CS : constant Boolean := Comes_From_Source (N);
1567       begin
1568          Rewrite (N, Op_Node);
1569          Set_Comes_From_Source (N, CS);
1570       end;
1571 
1572       --  If this is an arithmetic operator and the result type is private,
1573       --  the operands and the result must be wrapped in conversion to
1574       --  expose the underlying numeric type and expand the proper checks,
1575       --  e.g. on division.
1576 
1577       if Is_Private_Type (Typ) then
1578          case Nkind (N) is
1579             when N_Op_Add   | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1580                  N_Op_Expon | N_Op_Mod      | N_Op_Rem      =>
1581                Resolve_Intrinsic_Operator (N, Typ);
1582 
1583             when N_Op_Plus  | N_Op_Minus    | N_Op_Abs      =>
1584                Resolve_Intrinsic_Unary_Operator (N, Typ);
1585 
1586             when others =>
1587                Resolve (N, Typ);
1588          end case;
1589       else
1590          Resolve (N, Typ);
1591       end if;
1592 
1593       --  If in ASIS_Mode, propagate operand types to original actuals of
1594       --  function call, which would otherwise not be fully resolved. If
1595       --  the call has already been constant-folded, nothing to do. We
1596       --  relocate the operand nodes rather than copy them, to preserve
1597       --  original_node pointers, given that the operands themselves may
1598       --  have been rewritten. If the call was itself a rewriting of an
1599       --  operator node, nothing to do.
1600 
1601       if ASIS_Mode
1602         and then Nkind (N) in N_Op
1603         and then Nkind (Original_Node (N)) = N_Function_Call
1604       then
1605          declare
1606             L : Node_Id;
1607             R : constant Node_Id := Right_Opnd (N);
1608 
1609             Old_First : constant Node_Id :=
1610                           First (Parameter_Associations (Original_Node (N)));
1611             Old_Sec   : Node_Id;
1612 
1613          begin
1614             if Is_Binary then
1615                L       := Left_Opnd (N);
1616                Old_Sec := Next (Old_First);
1617 
1618                --  If the original call has named associations, replace the
1619                --  explicit actual parameter in the association with the proper
1620                --  resolved operand.
1621 
1622                if Nkind (Old_First) = N_Parameter_Association then
1623                   if Chars (Selector_Name (Old_First)) =
1624                      Chars (First_Entity (Op_Id))
1625                   then
1626                      Rewrite (Explicit_Actual_Parameter (Old_First),
1627                        Relocate_Node (L));
1628                   else
1629                      Rewrite (Explicit_Actual_Parameter (Old_First),
1630                        Relocate_Node (R));
1631                   end if;
1632 
1633                else
1634                   Rewrite (Old_First, Relocate_Node (L));
1635                end if;
1636 
1637                if Nkind (Old_Sec) = N_Parameter_Association then
1638                   if Chars (Selector_Name (Old_Sec)) =
1639                      Chars (First_Entity (Op_Id))
1640                   then
1641                      Rewrite (Explicit_Actual_Parameter (Old_Sec),
1642                        Relocate_Node (L));
1643                   else
1644                      Rewrite (Explicit_Actual_Parameter (Old_Sec),
1645                        Relocate_Node (R));
1646                   end if;
1647 
1648                else
1649                   Rewrite (Old_Sec, Relocate_Node (R));
1650                end if;
1651 
1652             else
1653                if Nkind (Old_First) = N_Parameter_Association then
1654                   Rewrite (Explicit_Actual_Parameter (Old_First),
1655                     Relocate_Node (R));
1656                else
1657                   Rewrite (Old_First, Relocate_Node (R));
1658                end if;
1659             end if;
1660          end;
1661 
1662          Set_Parent (Original_Node (N), Parent (N));
1663       end if;
1664    end Make_Call_Into_Operator;
1665 
1666    -------------------
1667    -- Operator_Kind --
1668    -------------------
1669 
1670    function Operator_Kind
1671      (Op_Name   : Name_Id;
1672       Is_Binary : Boolean) return Node_Kind
1673    is
1674       Kind : Node_Kind;
1675 
1676    begin
1677       --  Use CASE statement or array???
1678 
1679       if Is_Binary then
1680          if    Op_Name = Name_Op_And      then
1681             Kind := N_Op_And;
1682          elsif Op_Name = Name_Op_Or       then
1683             Kind := N_Op_Or;
1684          elsif Op_Name = Name_Op_Xor      then
1685             Kind := N_Op_Xor;
1686          elsif Op_Name = Name_Op_Eq       then
1687             Kind := N_Op_Eq;
1688          elsif Op_Name = Name_Op_Ne       then
1689             Kind := N_Op_Ne;
1690          elsif Op_Name = Name_Op_Lt       then
1691             Kind := N_Op_Lt;
1692          elsif Op_Name = Name_Op_Le       then
1693             Kind := N_Op_Le;
1694          elsif Op_Name = Name_Op_Gt       then
1695             Kind := N_Op_Gt;
1696          elsif Op_Name = Name_Op_Ge       then
1697             Kind := N_Op_Ge;
1698          elsif Op_Name = Name_Op_Add      then
1699             Kind := N_Op_Add;
1700          elsif Op_Name = Name_Op_Subtract then
1701             Kind := N_Op_Subtract;
1702          elsif Op_Name = Name_Op_Concat   then
1703             Kind := N_Op_Concat;
1704          elsif Op_Name = Name_Op_Multiply then
1705             Kind := N_Op_Multiply;
1706          elsif Op_Name = Name_Op_Divide   then
1707             Kind := N_Op_Divide;
1708          elsif Op_Name = Name_Op_Mod      then
1709             Kind := N_Op_Mod;
1710          elsif Op_Name = Name_Op_Rem      then
1711             Kind := N_Op_Rem;
1712          elsif Op_Name = Name_Op_Expon    then
1713             Kind := N_Op_Expon;
1714          else
1715             raise Program_Error;
1716          end if;
1717 
1718       --  Unary operators
1719 
1720       else
1721          if    Op_Name = Name_Op_Add      then
1722             Kind := N_Op_Plus;
1723          elsif Op_Name = Name_Op_Subtract then
1724             Kind := N_Op_Minus;
1725          elsif Op_Name = Name_Op_Abs      then
1726             Kind := N_Op_Abs;
1727          elsif Op_Name = Name_Op_Not      then
1728             Kind := N_Op_Not;
1729          else
1730             raise Program_Error;
1731          end if;
1732       end if;
1733 
1734       return Kind;
1735    end Operator_Kind;
1736 
1737    ----------------------------
1738    -- Preanalyze_And_Resolve --
1739    ----------------------------
1740 
1741    procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1742       Save_Full_Analysis : constant Boolean := Full_Analysis;
1743 
1744    begin
1745       Full_Analysis := False;
1746       Expander_Mode_Save_And_Set (False);
1747 
1748       --  Normally, we suppress all checks for this preanalysis. There is no
1749       --  point in processing them now, since they will be applied properly
1750       --  and in the proper location when the default expressions reanalyzed
1751       --  and reexpanded later on. We will also have more information at that
1752       --  point for possible suppression of individual checks.
1753 
1754       --  However, in SPARK mode, most expansion is suppressed, and this
1755       --  later reanalysis and reexpansion may not occur. SPARK mode does
1756       --  require the setting of checking flags for proof purposes, so we
1757       --  do the SPARK preanalysis without suppressing checks.
1758 
1759       --  This special handling for SPARK mode is required for example in the
1760       --  case of Ada 2012 constructs such as quantified expressions, which are
1761       --  expanded in two separate steps.
1762 
1763       if GNATprove_Mode then
1764          Analyze_And_Resolve (N, T);
1765       else
1766          Analyze_And_Resolve (N, T, Suppress => All_Checks);
1767       end if;
1768 
1769       Expander_Mode_Restore;
1770       Full_Analysis := Save_Full_Analysis;
1771    end Preanalyze_And_Resolve;
1772 
1773    --  Version without context type
1774 
1775    procedure Preanalyze_And_Resolve (N : Node_Id) is
1776       Save_Full_Analysis : constant Boolean := Full_Analysis;
1777 
1778    begin
1779       Full_Analysis := False;
1780       Expander_Mode_Save_And_Set (False);
1781 
1782       Analyze (N);
1783       Resolve (N, Etype (N), Suppress => All_Checks);
1784 
1785       Expander_Mode_Restore;
1786       Full_Analysis := Save_Full_Analysis;
1787    end Preanalyze_And_Resolve;
1788 
1789    ----------------------------------
1790    -- Replace_Actual_Discriminants --
1791    ----------------------------------
1792 
1793    procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1794       Loc : constant Source_Ptr := Sloc (N);
1795       Tsk : Node_Id := Empty;
1796 
1797       function Process_Discr (Nod : Node_Id) return Traverse_Result;
1798       --  Comment needed???
1799 
1800       -------------------
1801       -- Process_Discr --
1802       -------------------
1803 
1804       function Process_Discr (Nod : Node_Id) return Traverse_Result is
1805          Ent : Entity_Id;
1806 
1807       begin
1808          if Nkind (Nod) = N_Identifier then
1809             Ent := Entity (Nod);
1810 
1811             if Present (Ent)
1812               and then Ekind (Ent) = E_Discriminant
1813             then
1814                Rewrite (Nod,
1815                  Make_Selected_Component (Loc,
1816                    Prefix        => New_Copy_Tree (Tsk, New_Sloc => Loc),
1817                    Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1818 
1819                Set_Etype (Nod, Etype (Ent));
1820             end if;
1821 
1822          end if;
1823 
1824          return OK;
1825       end Process_Discr;
1826 
1827       procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1828 
1829    --  Start of processing for Replace_Actual_Discriminants
1830 
1831    begin
1832       if not Expander_Active then
1833          return;
1834       end if;
1835 
1836       if Nkind (Name (N)) = N_Selected_Component then
1837          Tsk := Prefix (Name (N));
1838 
1839       elsif Nkind (Name (N)) = N_Indexed_Component then
1840          Tsk := Prefix (Prefix (Name (N)));
1841       end if;
1842 
1843       if No (Tsk) then
1844          return;
1845       else
1846          Replace_Discrs (Default);
1847       end if;
1848    end Replace_Actual_Discriminants;
1849 
1850    -------------
1851    -- Resolve --
1852    -------------
1853 
1854    procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1855       Ambiguous : Boolean   := False;
1856       Ctx_Type  : Entity_Id := Typ;
1857       Expr_Type : Entity_Id := Empty; -- prevent junk warning
1858       Err_Type  : Entity_Id := Empty;
1859       Found     : Boolean   := False;
1860       From_Lib  : Boolean;
1861       I         : Interp_Index;
1862       I1        : Interp_Index := 0;  -- prevent junk warning
1863       It        : Interp;
1864       It1       : Interp;
1865       Seen      : Entity_Id := Empty; -- prevent junk warning
1866 
1867       function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1868       --  Determine whether a node comes from a predefined library unit or
1869       --  Standard.
1870 
1871       procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1872       --  Try and fix up a literal so that it matches its expected type. New
1873       --  literals are manufactured if necessary to avoid cascaded errors.
1874 
1875       procedure Report_Ambiguous_Argument;
1876       --  Additional diagnostics when an ambiguous call has an ambiguous
1877       --  argument (typically a controlling actual).
1878 
1879       procedure Resolution_Failed;
1880       --  Called when attempt at resolving current expression fails
1881 
1882       ------------------------------------
1883       -- Comes_From_Predefined_Lib_Unit --
1884       -------------------------------------
1885 
1886       function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1887       begin
1888          return
1889            Sloc (Nod) = Standard_Location
1890              or else Is_Predefined_File_Name
1891                        (Unit_File_Name (Get_Source_Unit (Sloc (Nod))));
1892       end Comes_From_Predefined_Lib_Unit;
1893 
1894       --------------------
1895       -- Patch_Up_Value --
1896       --------------------
1897 
1898       procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1899       begin
1900          if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1901             Rewrite (N,
1902               Make_Real_Literal (Sloc (N),
1903                 Realval => UR_From_Uint (Intval (N))));
1904             Set_Etype (N, Universal_Real);
1905             Set_Is_Static_Expression (N);
1906 
1907          elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1908             Rewrite (N,
1909               Make_Integer_Literal (Sloc (N),
1910                 Intval => UR_To_Uint (Realval (N))));
1911             Set_Etype (N, Universal_Integer);
1912             Set_Is_Static_Expression (N);
1913 
1914          elsif Nkind (N) = N_String_Literal
1915                  and then Is_Character_Type (Typ)
1916          then
1917             Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1918             Rewrite (N,
1919               Make_Character_Literal (Sloc (N),
1920                 Chars => Name_Find,
1921                 Char_Literal_Value =>
1922                   UI_From_Int (Character'Pos ('A'))));
1923             Set_Etype (N, Any_Character);
1924             Set_Is_Static_Expression (N);
1925 
1926          elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1927             Rewrite (N,
1928               Make_String_Literal (Sloc (N),
1929                 Strval => End_String));
1930 
1931          elsif Nkind (N) = N_Range then
1932             Patch_Up_Value (Low_Bound (N),  Typ);
1933             Patch_Up_Value (High_Bound (N), Typ);
1934          end if;
1935       end Patch_Up_Value;
1936 
1937       -------------------------------
1938       -- Report_Ambiguous_Argument --
1939       -------------------------------
1940 
1941       procedure Report_Ambiguous_Argument is
1942          Arg : constant Node_Id := First (Parameter_Associations (N));
1943          I   : Interp_Index;
1944          It  : Interp;
1945 
1946       begin
1947          if Nkind (Arg) = N_Function_Call
1948            and then Is_Entity_Name (Name (Arg))
1949            and then Is_Overloaded (Name (Arg))
1950          then
1951             Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1952 
1953             --  Could use comments on what is going on here???
1954 
1955             Get_First_Interp (Name (Arg), I, It);
1956             while Present (It.Nam) loop
1957                Error_Msg_Sloc := Sloc (It.Nam);
1958 
1959                if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1960                   Error_Msg_N ("interpretation (inherited) #!", Arg);
1961                else
1962                   Error_Msg_N ("interpretation #!", Arg);
1963                end if;
1964 
1965                Get_Next_Interp (I, It);
1966             end loop;
1967          end if;
1968       end Report_Ambiguous_Argument;
1969 
1970       -----------------------
1971       -- Resolution_Failed --
1972       -----------------------
1973 
1974       procedure Resolution_Failed is
1975       begin
1976          Patch_Up_Value (N, Typ);
1977 
1978          --  Set the type to the desired one to minimize cascaded errors. Note
1979          --  that this is an approximation and does not work in all cases.
1980 
1981          Set_Etype (N, Typ);
1982 
1983          Debug_A_Exit ("resolving  ", N, " (done, resolution failed)");
1984          Set_Is_Overloaded (N, False);
1985 
1986          --  The caller will return without calling the expander, so we need
1987          --  to set the analyzed flag. Note that it is fine to set Analyzed
1988          --  to True even if we are in the middle of a shallow analysis,
1989          --  (see the spec of sem for more details) since this is an error
1990          --  situation anyway, and there is no point in repeating the
1991          --  analysis later (indeed it won't work to repeat it later, since
1992          --  we haven't got a clear resolution of which entity is being
1993          --  referenced.)
1994 
1995          Set_Analyzed (N, True);
1996          return;
1997       end Resolution_Failed;
1998 
1999       --  Local variables
2000 
2001       Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
2002 
2003    --  Start of processing for Resolve
2004 
2005    begin
2006       if N = Error then
2007          return;
2008       end if;
2009 
2010       --  A declaration may be subject to pragma Ghost. Set the mode now to
2011       --  ensure that any nodes generated during analysis and expansion are
2012       --  marked as Ghost.
2013 
2014       if Is_Declaration (N) then
2015          Set_Ghost_Mode (N);
2016       end if;
2017 
2018       --  Access attribute on remote subprogram cannot be used for a non-remote
2019       --  access-to-subprogram type.
2020 
2021       if Nkind (N) = N_Attribute_Reference
2022         and then Nam_In (Attribute_Name (N), Name_Access,
2023                                              Name_Unrestricted_Access,
2024                                              Name_Unchecked_Access)
2025         and then Comes_From_Source (N)
2026         and then Is_Entity_Name (Prefix (N))
2027         and then Is_Subprogram (Entity (Prefix (N)))
2028         and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2029         and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2030       then
2031          Error_Msg_N
2032            ("prefix must statically denote a non-remote subprogram", N);
2033       end if;
2034 
2035       From_Lib := Comes_From_Predefined_Lib_Unit (N);
2036 
2037       --  If the context is a Remote_Access_To_Subprogram, access attributes
2038       --  must be resolved with the corresponding fat pointer. There is no need
2039       --  to check for the attribute name since the return type of an
2040       --  attribute is never a remote type.
2041 
2042       if Nkind (N) = N_Attribute_Reference
2043         and then Comes_From_Source (N)
2044         and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2045       then
2046          declare
2047             Attr      : constant Attribute_Id :=
2048                           Get_Attribute_Id (Attribute_Name (N));
2049             Pref      : constant Node_Id      := Prefix (N);
2050             Decl      : Node_Id;
2051             Spec      : Node_Id;
2052             Is_Remote : Boolean := True;
2053 
2054          begin
2055             --  Check that Typ is a remote access-to-subprogram type
2056 
2057             if Is_Remote_Access_To_Subprogram_Type (Typ) then
2058 
2059                --  Prefix (N) must statically denote a remote subprogram
2060                --  declared in a package specification.
2061 
2062                if Attr = Attribute_Access           or else
2063                   Attr = Attribute_Unchecked_Access or else
2064                   Attr = Attribute_Unrestricted_Access
2065                then
2066                   Decl := Unit_Declaration_Node (Entity (Pref));
2067 
2068                   if Nkind (Decl) = N_Subprogram_Body then
2069                      Spec := Corresponding_Spec (Decl);
2070 
2071                      if Present (Spec) then
2072                         Decl := Unit_Declaration_Node (Spec);
2073                      end if;
2074                   end if;
2075 
2076                   Spec := Parent (Decl);
2077 
2078                   if not Is_Entity_Name (Prefix (N))
2079                     or else Nkind (Spec) /= N_Package_Specification
2080                     or else
2081                       not Is_Remote_Call_Interface (Defining_Entity (Spec))
2082                   then
2083                      Is_Remote := False;
2084                      Error_Msg_N
2085                        ("prefix must statically denote a remote subprogram ",
2086                         N);
2087                   end if;
2088 
2089                   --  If we are generating code in distributed mode, perform
2090                   --  semantic checks against corresponding remote entities.
2091 
2092                   if Expander_Active
2093                     and then Get_PCS_Name /= Name_No_DSA
2094                   then
2095                      Check_Subtype_Conformant
2096                        (New_Id  => Entity (Prefix (N)),
2097                         Old_Id  => Designated_Type
2098                                      (Corresponding_Remote_Type (Typ)),
2099                         Err_Loc => N);
2100 
2101                      if Is_Remote then
2102                         Process_Remote_AST_Attribute (N, Typ);
2103                      end if;
2104                   end if;
2105                end if;
2106             end if;
2107          end;
2108       end if;
2109 
2110       Debug_A_Entry ("resolving  ", N);
2111 
2112       if Debug_Flag_V then
2113          Write_Overloads (N);
2114       end if;
2115 
2116       if Comes_From_Source (N) then
2117          if Is_Fixed_Point_Type (Typ) then
2118             Check_Restriction (No_Fixed_Point, N);
2119 
2120          elsif Is_Floating_Point_Type (Typ)
2121            and then Typ /= Universal_Real
2122            and then Typ /= Any_Real
2123          then
2124             Check_Restriction (No_Floating_Point, N);
2125          end if;
2126       end if;
2127 
2128       --  Return if already analyzed
2129 
2130       if Analyzed (N) then
2131          Debug_A_Exit ("resolving  ", N, "  (done, already analyzed)");
2132          Analyze_Dimension (N);
2133          Ghost_Mode := Save_Ghost_Mode;
2134          return;
2135 
2136       --  Any case of Any_Type as the Etype value means that we had a
2137       --  previous error.
2138 
2139       elsif Etype (N) = Any_Type then
2140          Debug_A_Exit ("resolving  ", N, "  (done, Etype = Any_Type)");
2141          Ghost_Mode := Save_Ghost_Mode;
2142          return;
2143       end if;
2144 
2145       Check_Parameterless_Call (N);
2146 
2147       --  The resolution of an Expression_With_Actions is determined by
2148       --  its Expression.
2149 
2150       if Nkind (N) = N_Expression_With_Actions then
2151          Resolve (Expression (N), Typ);
2152 
2153          Found := True;
2154          Expr_Type := Etype (Expression (N));
2155 
2156       --  If not overloaded, then we know the type, and all that needs doing
2157       --  is to check that this type is compatible with the context.
2158 
2159       elsif not Is_Overloaded (N) then
2160          Found := Covers (Typ, Etype (N));
2161          Expr_Type := Etype (N);
2162 
2163       --  In the overloaded case, we must select the interpretation that
2164       --  is compatible with the context (i.e. the type passed to Resolve)
2165 
2166       else
2167          --  Loop through possible interpretations
2168 
2169          Get_First_Interp (N, I, It);
2170          Interp_Loop : while Present (It.Typ) loop
2171             if Debug_Flag_V then
2172                Write_Str ("Interp: ");
2173                Write_Interp (It);
2174             end if;
2175 
2176             --  We are only interested in interpretations that are compatible
2177             --  with the expected type, any other interpretations are ignored.
2178 
2179             if not Covers (Typ, It.Typ) then
2180                if Debug_Flag_V then
2181                   Write_Str ("    interpretation incompatible with context");
2182                   Write_Eol;
2183                end if;
2184 
2185             else
2186                --  Skip the current interpretation if it is disabled by an
2187                --  abstract operator. This action is performed only when the
2188                --  type against which we are resolving is the same as the
2189                --  type of the interpretation.
2190 
2191                if Ada_Version >= Ada_2005
2192                  and then It.Typ = Typ
2193                  and then Typ /= Universal_Integer
2194                  and then Typ /= Universal_Real
2195                  and then Present (It.Abstract_Op)
2196                then
2197                   if Debug_Flag_V then
2198                      Write_Line ("Skip.");
2199                   end if;
2200 
2201                   goto Continue;
2202                end if;
2203 
2204                --  First matching interpretation
2205 
2206                if not Found then
2207                   Found := True;
2208                   I1    := I;
2209                   Seen  := It.Nam;
2210                   Expr_Type := It.Typ;
2211 
2212                --  Matching interpretation that is not the first, maybe an
2213                --  error, but there are some cases where preference rules are
2214                --  used to choose between the two possibilities. These and
2215                --  some more obscure cases are handled in Disambiguate.
2216 
2217                else
2218                   --  If the current statement is part of a predefined library
2219                   --  unit, then all interpretations which come from user level
2220                   --  packages should not be considered. Check previous and
2221                   --  current one.
2222 
2223                   if From_Lib then
2224                      if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2225                         goto Continue;
2226 
2227                      elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2228 
2229                         --  Previous interpretation must be discarded
2230 
2231                         I1 := I;
2232                         Seen := It.Nam;
2233                         Expr_Type := It.Typ;
2234                         Set_Entity (N, Seen);
2235                         goto Continue;
2236                      end if;
2237                   end if;
2238 
2239                   --  Otherwise apply further disambiguation steps
2240 
2241                   Error_Msg_Sloc := Sloc (Seen);
2242                   It1 := Disambiguate (N, I1, I, Typ);
2243 
2244                   --  Disambiguation has succeeded. Skip the remaining
2245                   --  interpretations.
2246 
2247                   if It1 /= No_Interp then
2248                      Seen := It1.Nam;
2249                      Expr_Type := It1.Typ;
2250 
2251                      while Present (It.Typ) loop
2252                         Get_Next_Interp (I, It);
2253                      end loop;
2254 
2255                   else
2256                      --  Before we issue an ambiguity complaint, check for the
2257                      --  case of a subprogram call where at least one of the
2258                      --  arguments is Any_Type, and if so suppress the message,
2259                      --  since it is a cascaded error. This can also happen for
2260                      --  a generalized indexing operation.
2261 
2262                      if Nkind (N) in N_Subprogram_Call
2263                        or else (Nkind (N) = N_Indexed_Component
2264                                  and then Present (Generalized_Indexing (N)))
2265                      then
2266                         declare
2267                            A : Node_Id;
2268                            E : Node_Id;
2269 
2270                         begin
2271                            if Nkind (N) = N_Indexed_Component then
2272                               Rewrite (N, Generalized_Indexing (N));
2273                            end if;
2274 
2275                            A := First_Actual (N);
2276                            while Present (A) loop
2277                               E := A;
2278 
2279                               if Nkind (E) = N_Parameter_Association then
2280                                  E := Explicit_Actual_Parameter (E);
2281                               end if;
2282 
2283                               if Etype (E) = Any_Type then
2284                                  if Debug_Flag_V then
2285                                     Write_Str ("Any_Type in call");
2286                                     Write_Eol;
2287                                  end if;
2288 
2289                                  exit Interp_Loop;
2290                               end if;
2291 
2292                               Next_Actual (A);
2293                            end loop;
2294                         end;
2295 
2296                      elsif Nkind (N) in N_Binary_Op
2297                        and then (Etype (Left_Opnd (N)) = Any_Type
2298                                   or else Etype (Right_Opnd (N)) = Any_Type)
2299                      then
2300                         exit Interp_Loop;
2301 
2302                      elsif Nkind (N) in N_Unary_Op
2303                        and then Etype (Right_Opnd (N)) = Any_Type
2304                      then
2305                         exit Interp_Loop;
2306                      end if;
2307 
2308                      --  Not that special case, so issue message using the flag
2309                      --  Ambiguous to control printing of the header message
2310                      --  only at the start of an ambiguous set.
2311 
2312                      if not Ambiguous then
2313                         if Nkind (N) = N_Function_Call
2314                           and then Nkind (Name (N)) = N_Explicit_Dereference
2315                         then
2316                            Error_Msg_N
2317                              ("ambiguous expression (cannot resolve indirect "
2318                               & "call)!", N);
2319                         else
2320                            Error_Msg_NE -- CODEFIX
2321                              ("ambiguous expression (cannot resolve&)!",
2322                               N, It.Nam);
2323                         end if;
2324 
2325                         Ambiguous := True;
2326 
2327                         if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2328                            Error_Msg_N
2329                              ("\\possible interpretation (inherited)#!", N);
2330                         else
2331                            Error_Msg_N -- CODEFIX
2332                              ("\\possible interpretation#!", N);
2333                         end if;
2334 
2335                         if Nkind (N) in N_Subprogram_Call
2336                           and then Present (Parameter_Associations (N))
2337                         then
2338                            Report_Ambiguous_Argument;
2339                         end if;
2340                      end if;
2341 
2342                      Error_Msg_Sloc := Sloc (It.Nam);
2343 
2344                      --  By default, the error message refers to the candidate
2345                      --  interpretation. But if it is a predefined operator, it
2346                      --  is implicitly declared at the declaration of the type
2347                      --  of the operand. Recover the sloc of that declaration
2348                      --  for the error message.
2349 
2350                      if Nkind (N) in N_Op
2351                        and then Scope (It.Nam) = Standard_Standard
2352                        and then not Is_Overloaded (Right_Opnd (N))
2353                        and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2354                                                              Standard_Standard
2355                      then
2356                         Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2357 
2358                         if Comes_From_Source (Err_Type)
2359                           and then Present (Parent (Err_Type))
2360                         then
2361                            Error_Msg_Sloc := Sloc (Parent (Err_Type));
2362                         end if;
2363 
2364                      elsif Nkind (N) in N_Binary_Op
2365                        and then Scope (It.Nam) = Standard_Standard
2366                        and then not Is_Overloaded (Left_Opnd (N))
2367                        and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2368                                                              Standard_Standard
2369                      then
2370                         Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2371 
2372                         if Comes_From_Source (Err_Type)
2373                           and then Present (Parent (Err_Type))
2374                         then
2375                            Error_Msg_Sloc := Sloc (Parent (Err_Type));
2376                         end if;
2377 
2378                      --  If this is an indirect call, use the subprogram_type
2379                      --  in the message, to have a meaningful location. Also
2380                      --  indicate if this is an inherited operation, created
2381                      --  by a type declaration.
2382 
2383                      elsif Nkind (N) = N_Function_Call
2384                        and then Nkind (Name (N)) = N_Explicit_Dereference
2385                        and then Is_Type (It.Nam)
2386                      then
2387                         Err_Type := It.Nam;
2388                         Error_Msg_Sloc :=
2389                           Sloc (Associated_Node_For_Itype (Err_Type));
2390                      else
2391                         Err_Type := Empty;
2392                      end if;
2393 
2394                      if Nkind (N) in N_Op
2395                        and then Scope (It.Nam) = Standard_Standard
2396                        and then Present (Err_Type)
2397                      then
2398                         --  Special-case the message for universal_fixed
2399                         --  operators, which are not declared with the type
2400                         --  of the operand, but appear forever in Standard.
2401 
2402                         if It.Typ = Universal_Fixed
2403                           and then Scope (It.Nam) = Standard_Standard
2404                         then
2405                            Error_Msg_N
2406                              ("\\possible interpretation as universal_fixed "
2407                               & "operation (RM 4.5.5 (19))", N);
2408                         else
2409                            Error_Msg_N
2410                              ("\\possible interpretation (predefined)#!", N);
2411                         end if;
2412 
2413                      elsif
2414                        Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2415                      then
2416                         Error_Msg_N
2417                           ("\\possible interpretation (inherited)#!", N);
2418                      else
2419                         Error_Msg_N -- CODEFIX
2420                           ("\\possible interpretation#!", N);
2421                      end if;
2422 
2423                   end if;
2424                end if;
2425 
2426                --  We have a matching interpretation, Expr_Type is the type
2427                --  from this interpretation, and Seen is the entity.
2428 
2429                --  For an operator, just set the entity name. The type will be
2430                --  set by the specific operator resolution routine.
2431 
2432                if Nkind (N) in N_Op then
2433                   Set_Entity (N, Seen);
2434                   Generate_Reference (Seen, N);
2435 
2436                elsif Nkind (N) = N_Case_Expression then
2437                   Set_Etype (N, Expr_Type);
2438 
2439                elsif Nkind (N) = N_Character_Literal then
2440                   Set_Etype (N, Expr_Type);
2441 
2442                elsif Nkind (N) = N_If_Expression then
2443                   Set_Etype (N, Expr_Type);
2444 
2445                --  AI05-0139-2: Expression is overloaded because type has
2446                --  implicit dereference. If type matches context, no implicit
2447                --  dereference is involved.
2448 
2449                elsif Has_Implicit_Dereference (Expr_Type) then
2450                   Set_Etype (N, Expr_Type);
2451                   Set_Is_Overloaded (N, False);
2452                   exit Interp_Loop;
2453 
2454                elsif Is_Overloaded (N)
2455                  and then Present (It.Nam)
2456                  and then Ekind (It.Nam) = E_Discriminant
2457                  and then Has_Implicit_Dereference (It.Nam)
2458                then
2459                   --  If the node is a general indexing, the dereference is
2460                   --  is inserted when resolving the rewritten form, else
2461                   --  insert it now.
2462 
2463                   if Nkind (N) /= N_Indexed_Component
2464                     or else No (Generalized_Indexing (N))
2465                   then
2466                      Build_Explicit_Dereference (N, It.Nam);
2467                   end if;
2468 
2469                --  For an explicit dereference, attribute reference, range,
2470                --  short-circuit form (which is not an operator node), or call
2471                --  with a name that is an explicit dereference, there is
2472                --  nothing to be done at this point.
2473 
2474                elsif Nkind_In (N, N_Explicit_Dereference,
2475                                   N_Attribute_Reference,
2476                                   N_And_Then,
2477                                   N_Indexed_Component,
2478                                   N_Or_Else,
2479                                   N_Range,
2480                                   N_Selected_Component,
2481                                   N_Slice)
2482                  or else Nkind (Name (N)) = N_Explicit_Dereference
2483                then
2484                   null;
2485 
2486                --  For procedure or function calls, set the type of the name,
2487                --  and also the entity pointer for the prefix.
2488 
2489                elsif Nkind (N) in N_Subprogram_Call
2490                  and then Is_Entity_Name (Name (N))
2491                then
2492                   Set_Etype  (Name (N), Expr_Type);
2493                   Set_Entity (Name (N), Seen);
2494                   Generate_Reference (Seen, Name (N));
2495 
2496                elsif Nkind (N) = N_Function_Call
2497                  and then Nkind (Name (N)) = N_Selected_Component
2498                then
2499                   Set_Etype (Name (N), Expr_Type);
2500                   Set_Entity (Selector_Name (Name (N)), Seen);
2501                   Generate_Reference (Seen, Selector_Name (Name (N)));
2502 
2503                --  For all other cases, just set the type of the Name
2504 
2505                else
2506                   Set_Etype (Name (N), Expr_Type);
2507                end if;
2508 
2509             end if;
2510 
2511             <<Continue>>
2512 
2513             --  Move to next interpretation
2514 
2515             exit Interp_Loop when No (It.Typ);
2516 
2517             Get_Next_Interp (I, It);
2518          end loop Interp_Loop;
2519       end if;
2520 
2521       --  At this stage Found indicates whether or not an acceptable
2522       --  interpretation exists. If not, then we have an error, except that if
2523       --  the context is Any_Type as a result of some other error, then we
2524       --  suppress the error report.
2525 
2526       if not Found then
2527          if Typ /= Any_Type then
2528 
2529             --  If type we are looking for is Void, then this is the procedure
2530             --  call case, and the error is simply that what we gave is not a
2531             --  procedure name (we think of procedure calls as expressions with
2532             --  types internally, but the user doesn't think of them this way).
2533 
2534             if Typ = Standard_Void_Type then
2535 
2536                --  Special case message if function used as a procedure
2537 
2538                if Nkind (N) = N_Procedure_Call_Statement
2539                  and then Is_Entity_Name (Name (N))
2540                  and then Ekind (Entity (Name (N))) = E_Function
2541                then
2542                   Error_Msg_NE
2543                     ("cannot use function & in a procedure call",
2544                      Name (N), Entity (Name (N)));
2545 
2546                --  Otherwise give general message (not clear what cases this
2547                --  covers, but no harm in providing for them).
2548 
2549                else
2550                   Error_Msg_N ("expect procedure name in procedure call", N);
2551                end if;
2552 
2553                Found := True;
2554 
2555             --  Otherwise we do have a subexpression with the wrong type
2556 
2557             --  Check for the case of an allocator which uses an access type
2558             --  instead of the designated type. This is a common error and we
2559             --  specialize the message, posting an error on the operand of the
2560             --  allocator, complaining that we expected the designated type of
2561             --  the allocator.
2562 
2563             elsif Nkind (N) = N_Allocator
2564               and then Is_Access_Type (Typ)
2565               and then Is_Access_Type (Etype (N))
2566               and then Designated_Type (Etype (N)) = Typ
2567             then
2568                Wrong_Type (Expression (N), Designated_Type (Typ));
2569                Found := True;
2570 
2571             --  Check for view mismatch on Null in instances, for which the
2572             --  view-swapping mechanism has no identifier.
2573 
2574             elsif (In_Instance or else In_Inlined_Body)
2575               and then (Nkind (N) = N_Null)
2576               and then Is_Private_Type (Typ)
2577               and then Is_Access_Type (Full_View (Typ))
2578             then
2579                Resolve (N, Full_View (Typ));
2580                Set_Etype (N, Typ);
2581                Ghost_Mode := Save_Ghost_Mode;
2582                return;
2583 
2584             --  Check for an aggregate. Sometimes we can get bogus aggregates
2585             --  from misuse of parentheses, and we are about to complain about
2586             --  the aggregate without even looking inside it.
2587 
2588             --  Instead, if we have an aggregate of type Any_Composite, then
2589             --  analyze and resolve the component fields, and then only issue
2590             --  another message if we get no errors doing this (otherwise
2591             --  assume that the errors in the aggregate caused the problem).
2592 
2593             elsif Nkind (N) = N_Aggregate
2594               and then Etype (N) = Any_Composite
2595             then
2596                --  Disable expansion in any case. If there is a type mismatch
2597                --  it may be fatal to try to expand the aggregate. The flag
2598                --  would otherwise be set to false when the error is posted.
2599 
2600                Expander_Active := False;
2601 
2602                declare
2603                   procedure Check_Aggr (Aggr : Node_Id);
2604                   --  Check one aggregate, and set Found to True if we have a
2605                   --  definite error in any of its elements
2606 
2607                   procedure Check_Elmt (Aelmt : Node_Id);
2608                   --  Check one element of aggregate and set Found to True if
2609                   --  we definitely have an error in the element.
2610 
2611                   ----------------
2612                   -- Check_Aggr --
2613                   ----------------
2614 
2615                   procedure Check_Aggr (Aggr : Node_Id) is
2616                      Elmt : Node_Id;
2617 
2618                   begin
2619                      if Present (Expressions (Aggr)) then
2620                         Elmt := First (Expressions (Aggr));
2621                         while Present (Elmt) loop
2622                            Check_Elmt (Elmt);
2623                            Next (Elmt);
2624                         end loop;
2625                      end if;
2626 
2627                      if Present (Component_Associations (Aggr)) then
2628                         Elmt := First (Component_Associations (Aggr));
2629                         while Present (Elmt) loop
2630 
2631                            --  If this is a default-initialized component, then
2632                            --  there is nothing to check. The box will be
2633                            --  replaced by the appropriate call during late
2634                            --  expansion.
2635 
2636                            if not Box_Present (Elmt) then
2637                               Check_Elmt (Expression (Elmt));
2638                            end if;
2639 
2640                            Next (Elmt);
2641                         end loop;
2642                      end if;
2643                   end Check_Aggr;
2644 
2645                   ----------------
2646                   -- Check_Elmt --
2647                   ----------------
2648 
2649                   procedure Check_Elmt (Aelmt : Node_Id) is
2650                   begin
2651                      --  If we have a nested aggregate, go inside it (to
2652                      --  attempt a naked analyze-resolve of the aggregate can
2653                      --  cause undesirable cascaded errors). Do not resolve
2654                      --  expression if it needs a type from context, as for
2655                      --  integer * fixed expression.
2656 
2657                      if Nkind (Aelmt) = N_Aggregate then
2658                         Check_Aggr (Aelmt);
2659 
2660                      else
2661                         Analyze (Aelmt);
2662 
2663                         if not Is_Overloaded (Aelmt)
2664                           and then Etype (Aelmt) /= Any_Fixed
2665                         then
2666                            Resolve (Aelmt);
2667                         end if;
2668 
2669                         if Etype (Aelmt) = Any_Type then
2670                            Found := True;
2671                         end if;
2672                      end if;
2673                   end Check_Elmt;
2674 
2675                begin
2676                   Check_Aggr (N);
2677                end;
2678             end if;
2679 
2680             --  Looks like we have a type error, but check for special case
2681             --  of Address wanted, integer found, with the configuration pragma
2682             --  Allow_Integer_Address active. If we have this case, introduce
2683             --  an unchecked conversion to allow the integer expression to be
2684             --  treated as an Address. The reverse case of integer wanted,
2685             --  Address found, is treated in an analogous manner.
2686 
2687             if Address_Integer_Convert_OK (Typ, Etype (N)) then
2688                Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2689                Analyze_And_Resolve (N, Typ);
2690                Ghost_Mode := Save_Ghost_Mode;
2691                return;
2692 
2693             --  Under relaxed RM semantics silently replace occurrences of null
2694             --  by System.Address_Null.
2695 
2696             elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2697                Replace_Null_By_Null_Address (N);
2698                Analyze_And_Resolve (N, Typ);
2699                return;
2700             end if;
2701 
2702             --  That special Allow_Integer_Address check did not apply, so we
2703             --  have a real type error. If an error message was issued already,
2704             --  Found got reset to True, so if it's still False, issue standard
2705             --  Wrong_Type message.
2706 
2707             if not Found then
2708                if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2709                   declare
2710                      Subp_Name : Node_Id;
2711 
2712                   begin
2713                      if Is_Entity_Name (Name (N)) then
2714                         Subp_Name := Name (N);
2715 
2716                      elsif Nkind (Name (N)) = N_Selected_Component then
2717 
2718                         --  Protected operation: retrieve operation name
2719 
2720                         Subp_Name := Selector_Name (Name (N));
2721 
2722                      else
2723                         raise Program_Error;
2724                      end if;
2725 
2726                      Error_Msg_Node_2 := Typ;
2727                      Error_Msg_NE
2728                        ("no visible interpretation of& "
2729                         & "matches expected type&", N, Subp_Name);
2730                   end;
2731 
2732                   if All_Errors_Mode then
2733                      declare
2734                         Index : Interp_Index;
2735                         It    : Interp;
2736 
2737                      begin
2738                         Error_Msg_N ("\\possible interpretations:", N);
2739 
2740                         Get_First_Interp (Name (N), Index, It);
2741                         while Present (It.Nam) loop
2742                            Error_Msg_Sloc := Sloc (It.Nam);
2743                            Error_Msg_Node_2 := It.Nam;
2744                            Error_Msg_NE
2745                              ("\\  type& for & declared#", N, It.Typ);
2746                            Get_Next_Interp (Index, It);
2747                         end loop;
2748                      end;
2749 
2750                   else
2751                      Error_Msg_N ("\use -gnatf for details", N);
2752                   end if;
2753 
2754                else
2755                   Wrong_Type (N, Typ);
2756                end if;
2757             end if;
2758          end if;
2759 
2760          Resolution_Failed;
2761          Ghost_Mode := Save_Ghost_Mode;
2762          return;
2763 
2764       --  Test if we have more than one interpretation for the context
2765 
2766       elsif Ambiguous then
2767          Resolution_Failed;
2768          Ghost_Mode := Save_Ghost_Mode;
2769          return;
2770 
2771       --  Only one intepretation
2772 
2773       else
2774          --  In Ada 2005, if we have something like "X : T := 2 + 2;", where
2775          --  the "+" on T is abstract, and the operands are of universal type,
2776          --  the above code will have (incorrectly) resolved the "+" to the
2777          --  universal one in Standard. Therefore check for this case and give
2778          --  an error. We can't do this earlier, because it would cause legal
2779          --  cases to get errors (when some other type has an abstract "+").
2780 
2781          if Ada_Version >= Ada_2005
2782            and then Nkind (N) in N_Op
2783            and then Is_Overloaded (N)
2784            and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2785          then
2786             Get_First_Interp (N, I, It);
2787             while Present (It.Typ) loop
2788                if Present (It.Abstract_Op) and then
2789                  Etype (It.Abstract_Op) = Typ
2790                then
2791                   Error_Msg_NE
2792                     ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2793                   return;
2794                end if;
2795 
2796                Get_Next_Interp (I, It);
2797             end loop;
2798          end if;
2799 
2800          --  Here we have an acceptable interpretation for the context
2801 
2802          --  Propagate type information and normalize tree for various
2803          --  predefined operations. If the context only imposes a class of
2804          --  types, rather than a specific type, propagate the actual type
2805          --  downward.
2806 
2807          if Typ = Any_Integer or else
2808             Typ = Any_Boolean or else
2809             Typ = Any_Modular or else
2810             Typ = Any_Real    or else
2811             Typ = Any_Discrete
2812          then
2813             Ctx_Type := Expr_Type;
2814 
2815             --  Any_Fixed is legal in a real context only if a specific fixed-
2816             --  point type is imposed. If Norman Cohen can be confused by this,
2817             --  it deserves a separate message.
2818 
2819             if Typ = Any_Real
2820               and then Expr_Type = Any_Fixed
2821             then
2822                Error_Msg_N ("illegal context for mixed mode operation", N);
2823                Set_Etype (N, Universal_Real);
2824                Ctx_Type := Universal_Real;
2825             end if;
2826          end if;
2827 
2828          --  A user-defined operator is transformed into a function call at
2829          --  this point, so that further processing knows that operators are
2830          --  really operators (i.e. are predefined operators). User-defined
2831          --  operators that are intrinsic are just renamings of the predefined
2832          --  ones, and need not be turned into calls either, but if they rename
2833          --  a different operator, we must transform the node accordingly.
2834          --  Instantiations of Unchecked_Conversion are intrinsic but are
2835          --  treated as functions, even if given an operator designator.
2836 
2837          if Nkind (N) in N_Op
2838            and then Present (Entity (N))
2839            and then Ekind (Entity (N)) /= E_Operator
2840          then
2841 
2842             if not Is_Predefined_Op (Entity (N)) then
2843                Rewrite_Operator_As_Call (N, Entity (N));
2844 
2845             elsif Present (Alias (Entity (N)))
2846               and then
2847                 Nkind (Parent (Parent (Entity (N)))) =
2848                                     N_Subprogram_Renaming_Declaration
2849             then
2850                Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2851 
2852                --  If the node is rewritten, it will be fully resolved in
2853                --  Rewrite_Renamed_Operator.
2854 
2855                if Analyzed (N) then
2856                   Ghost_Mode := Save_Ghost_Mode;
2857                   return;
2858                end if;
2859             end if;
2860          end if;
2861 
2862          case N_Subexpr'(Nkind (N)) is
2863 
2864             when N_Aggregate => Resolve_Aggregate                (N, Ctx_Type);
2865 
2866             when N_Allocator => Resolve_Allocator                (N, Ctx_Type);
2867 
2868             when N_Short_Circuit
2869                              => Resolve_Short_Circuit            (N, Ctx_Type);
2870 
2871             when N_Attribute_Reference
2872                              => Resolve_Attribute                (N, Ctx_Type);
2873 
2874             when N_Case_Expression
2875                              => Resolve_Case_Expression          (N, Ctx_Type);
2876 
2877             when N_Character_Literal
2878                              => Resolve_Character_Literal        (N, Ctx_Type);
2879 
2880             when N_Expanded_Name
2881                              => Resolve_Entity_Name              (N, Ctx_Type);
2882 
2883             when N_Explicit_Dereference
2884                              => Resolve_Explicit_Dereference     (N, Ctx_Type);
2885 
2886             when N_Expression_With_Actions
2887                              => Resolve_Expression_With_Actions  (N, Ctx_Type);
2888 
2889             when N_Extension_Aggregate
2890                              => Resolve_Extension_Aggregate      (N, Ctx_Type);
2891 
2892             when N_Function_Call
2893                              => Resolve_Call                     (N, Ctx_Type);
2894 
2895             when N_Identifier
2896                              => Resolve_Entity_Name              (N, Ctx_Type);
2897 
2898             when N_If_Expression
2899                              => Resolve_If_Expression            (N, Ctx_Type);
2900 
2901             when N_Indexed_Component
2902                              => Resolve_Indexed_Component        (N, Ctx_Type);
2903 
2904             when N_Integer_Literal
2905                              => Resolve_Integer_Literal          (N, Ctx_Type);
2906 
2907             when N_Membership_Test
2908                              => Resolve_Membership_Op            (N, Ctx_Type);
2909 
2910             when N_Null      => Resolve_Null                     (N, Ctx_Type);
2911 
2912             when N_Op_And | N_Op_Or | N_Op_Xor
2913                              => Resolve_Logical_Op               (N, Ctx_Type);
2914 
2915             when N_Op_Eq | N_Op_Ne
2916                              => Resolve_Equality_Op              (N, Ctx_Type);
2917 
2918             when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2919                              => Resolve_Comparison_Op            (N, Ctx_Type);
2920 
2921             when N_Op_Not    => Resolve_Op_Not                   (N, Ctx_Type);
2922 
2923             when N_Op_Add    | N_Op_Subtract | N_Op_Multiply |
2924                  N_Op_Divide | N_Op_Mod      | N_Op_Rem
2925 
2926                              => Resolve_Arithmetic_Op            (N, Ctx_Type);
2927 
2928             when N_Op_Concat => Resolve_Op_Concat                (N, Ctx_Type);
2929 
2930             when N_Op_Expon  => Resolve_Op_Expon                 (N, Ctx_Type);
2931 
2932             when N_Op_Plus | N_Op_Minus  | N_Op_Abs
2933                              => Resolve_Unary_Op                 (N, Ctx_Type);
2934 
2935             when N_Op_Shift  => Resolve_Shift                    (N, Ctx_Type);
2936 
2937             when N_Procedure_Call_Statement
2938                              => Resolve_Call                     (N, Ctx_Type);
2939 
2940             when N_Operator_Symbol
2941                              => Resolve_Operator_Symbol          (N, Ctx_Type);
2942 
2943             when N_Qualified_Expression
2944                              => Resolve_Qualified_Expression     (N, Ctx_Type);
2945 
2946             --  Why is the following null, needs a comment ???
2947 
2948             when N_Quantified_Expression
2949                              => null;
2950 
2951             when N_Raise_Expression
2952                              => Resolve_Raise_Expression         (N, Ctx_Type);
2953 
2954             when N_Raise_xxx_Error
2955                              => Set_Etype (N, Ctx_Type);
2956 
2957             when N_Range     => Resolve_Range                    (N, Ctx_Type);
2958 
2959             when N_Real_Literal
2960                              => Resolve_Real_Literal             (N, Ctx_Type);
2961 
2962             when N_Reference => Resolve_Reference                (N, Ctx_Type);
2963 
2964             when N_Selected_Component
2965                              => Resolve_Selected_Component       (N, Ctx_Type);
2966 
2967             when N_Slice     => Resolve_Slice                    (N, Ctx_Type);
2968 
2969             when N_String_Literal
2970                              => Resolve_String_Literal           (N, Ctx_Type);
2971 
2972             when N_Type_Conversion
2973                              => Resolve_Type_Conversion          (N, Ctx_Type);
2974 
2975             when N_Unchecked_Expression =>
2976                Resolve_Unchecked_Expression                      (N, Ctx_Type);
2977 
2978             when N_Unchecked_Type_Conversion =>
2979                Resolve_Unchecked_Type_Conversion                 (N, Ctx_Type);
2980          end case;
2981 
2982          --  Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2983          --  expression of an anonymous access type that occurs in the context
2984          --  of a named general access type, except when the expression is that
2985          --  of a membership test. This ensures proper legality checking in
2986          --  terms of allowed conversions (expressions that would be illegal to
2987          --  convert implicitly are allowed in membership tests).
2988 
2989          if Ada_Version >= Ada_2012
2990            and then Ekind (Ctx_Type) = E_General_Access_Type
2991            and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2992            and then Nkind (Parent (N)) not in N_Membership_Test
2993          then
2994             Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2995             Analyze_And_Resolve (N, Ctx_Type);
2996          end if;
2997 
2998          --  If the subexpression was replaced by a non-subexpression, then
2999          --  all we do is to expand it. The only legitimate case we know of
3000          --  is converting procedure call statement to entry call statements,
3001          --  but there may be others, so we are making this test general.
3002 
3003          if Nkind (N) not in N_Subexpr then
3004             Debug_A_Exit ("resolving  ", N, "  (done)");
3005             Expand (N);
3006             Ghost_Mode := Save_Ghost_Mode;
3007             return;
3008          end if;
3009 
3010          --  The expression is definitely NOT overloaded at this point, so
3011          --  we reset the Is_Overloaded flag to avoid any confusion when
3012          --  reanalyzing the node.
3013 
3014          Set_Is_Overloaded (N, False);
3015 
3016          --  Freeze expression type, entity if it is a name, and designated
3017          --  type if it is an allocator (RM 13.14(10,11,13)).
3018 
3019          --  Now that the resolution of the type of the node is complete, and
3020          --  we did not detect an error, we can expand this node. We skip the
3021          --  expand call if we are in a default expression, see section
3022          --  "Handling of Default Expressions" in Sem spec.
3023 
3024          Debug_A_Exit ("resolving  ", N, "  (done)");
3025 
3026          --  We unconditionally freeze the expression, even if we are in
3027          --  default expression mode (the Freeze_Expression routine tests this
3028          --  flag and only freezes static types if it is set).
3029 
3030          --  Ada 2012 (AI05-177): The declaration of an expression function
3031          --  does not cause freezing, but we never reach here in that case.
3032          --  Here we are resolving the corresponding expanded body, so we do
3033          --  need to perform normal freezing.
3034 
3035          Freeze_Expression (N);
3036 
3037          --  Now we can do the expansion
3038 
3039          Expand (N);
3040       end if;
3041 
3042       Ghost_Mode := Save_Ghost_Mode;
3043    end Resolve;
3044 
3045    -------------
3046    -- Resolve --
3047    -------------
3048 
3049    --  Version with check(s) suppressed
3050 
3051    procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3052    begin
3053       if Suppress = All_Checks then
3054          declare
3055             Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3056          begin
3057             Scope_Suppress.Suppress := (others => True);
3058             Resolve (N, Typ);
3059             Scope_Suppress.Suppress := Sva;
3060          end;
3061 
3062       else
3063          declare
3064             Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3065          begin
3066             Scope_Suppress.Suppress (Suppress) := True;
3067             Resolve (N, Typ);
3068             Scope_Suppress.Suppress (Suppress) := Svg;
3069          end;
3070       end if;
3071    end Resolve;
3072 
3073    -------------
3074    -- Resolve --
3075    -------------
3076 
3077    --  Version with implicit type
3078 
3079    procedure Resolve (N : Node_Id) is
3080    begin
3081       Resolve (N, Etype (N));
3082    end Resolve;
3083 
3084    ---------------------
3085    -- Resolve_Actuals --
3086    ---------------------
3087 
3088    procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3089       Loc    : constant Source_Ptr := Sloc (N);
3090       A      : Node_Id;
3091       A_Id   : Entity_Id;
3092       A_Typ  : Entity_Id;
3093       F      : Entity_Id;
3094       F_Typ  : Entity_Id;
3095       Prev   : Node_Id := Empty;
3096       Orig_A : Node_Id;
3097       Real_F : Entity_Id;
3098 
3099       Real_Subp : Entity_Id;
3100       --  If the subprogram being called is an inherited operation for
3101       --  a formal derived type in an instance, Real_Subp is the subprogram
3102       --  that will be called. It may have different formal names than the
3103       --  operation of the formal in the generic, so after actual is resolved
3104       --  the name of the actual in a named association must carry the name
3105       --  of the actual of the subprogram being called.
3106 
3107       procedure Check_Aliased_Parameter;
3108       --  Check rules on aliased parameters and related accessibility rules
3109       --  in (RM 3.10.2 (10.2-10.4)).
3110 
3111       procedure Check_Argument_Order;
3112       --  Performs a check for the case where the actuals are all simple
3113       --  identifiers that correspond to the formal names, but in the wrong
3114       --  order, which is considered suspicious and cause for a warning.
3115 
3116       procedure Check_Prefixed_Call;
3117       --  If the original node is an overloaded call in prefix notation,
3118       --  insert an 'Access or a dereference as needed over the first actual.
3119       --  Try_Object_Operation has already verified that there is a valid
3120       --  interpretation, but the form of the actual can only be determined
3121       --  once the primitive operation is identified.
3122 
3123       procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3124       --  Emit an error concerning the illegal usage of an effectively volatile
3125       --  object in interfering context (SPARK RM 7.13(12)).
3126 
3127       procedure Insert_Default;
3128       --  If the actual is missing in a call, insert in the actuals list
3129       --  an instance of the default expression. The insertion is always
3130       --  a named association.
3131 
3132       procedure Property_Error
3133         (Var      : Node_Id;
3134          Var_Id   : Entity_Id;
3135          Prop_Nam : Name_Id);
3136       --  Emit an error concerning variable Var with entity Var_Id that has
3137       --  enabled property Prop_Nam when it acts as an actual parameter in a
3138       --  call and the corresponding formal parameter is of mode IN.
3139 
3140       function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3141       --  Check whether T1 and T2, or their full views, are derived from a
3142       --  common type. Used to enforce the restrictions on array conversions
3143       --  of AI95-00246.
3144 
3145       function Static_Concatenation (N : Node_Id) return Boolean;
3146       --  Predicate to determine whether an actual that is a concatenation
3147       --  will be evaluated statically and does not need a transient scope.
3148       --  This must be determined before the actual is resolved and expanded
3149       --  because if needed the transient scope must be introduced earlier.
3150 
3151       -----------------------------
3152       -- Check_Aliased_Parameter --
3153       -----------------------------
3154 
3155       procedure Check_Aliased_Parameter is
3156          Nominal_Subt : Entity_Id;
3157 
3158       begin
3159          if Is_Aliased (F) then
3160             if Is_Tagged_Type (A_Typ) then
3161                null;
3162 
3163             elsif Is_Aliased_View (A) then
3164                if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3165                   Nominal_Subt := Base_Type (A_Typ);
3166                else
3167                   Nominal_Subt := A_Typ;
3168                end if;
3169 
3170                if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3171                   null;
3172 
3173                --  In a generic body assume the worst for generic formals:
3174                --  they can have a constrained partial view (AI05-041).
3175 
3176                elsif Has_Discriminants (F_Typ)
3177                  and then not Is_Constrained (F_Typ)
3178                  and then not Has_Constrained_Partial_View (F_Typ)
3179                  and then not Is_Generic_Type (F_Typ)
3180                then
3181                   null;
3182 
3183                else
3184                   Error_Msg_NE ("untagged actual does not match "
3185                                 & "aliased formal&", A, F);
3186                end if;
3187 
3188             else
3189                Error_Msg_NE ("actual for aliased formal& must be "
3190                              & "aliased object", A, F);
3191             end if;
3192 
3193             if Ekind (Nam) = E_Procedure then
3194                null;
3195 
3196             elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3197                if Nkind (Parent (N)) = N_Type_Conversion
3198                  and then Type_Access_Level (Etype (Parent (N))) <
3199                                                         Object_Access_Level (A)
3200                then
3201                   Error_Msg_N ("aliased actual has wrong accessibility", A);
3202                end if;
3203 
3204             elsif Nkind (Parent (N)) = N_Qualified_Expression
3205               and then Nkind (Parent (Parent (N))) = N_Allocator
3206               and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3207                                                         Object_Access_Level (A)
3208             then
3209                Error_Msg_N
3210                  ("aliased actual in allocator has wrong accessibility", A);
3211             end if;
3212          end if;
3213       end Check_Aliased_Parameter;
3214 
3215       --------------------------
3216       -- Check_Argument_Order --
3217       --------------------------
3218 
3219       procedure Check_Argument_Order is
3220       begin
3221          --  Nothing to do if no parameters, or original node is neither a
3222          --  function call nor a procedure call statement (happens in the
3223          --  operator-transformed-to-function call case), or the call does
3224          --  not come from source, or this warning is off.
3225 
3226          if not Warn_On_Parameter_Order
3227            or else No (Parameter_Associations (N))
3228            or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3229            or else not Comes_From_Source (N)
3230          then
3231             return;
3232          end if;
3233 
3234          declare
3235             Nargs : constant Nat := List_Length (Parameter_Associations (N));
3236 
3237          begin
3238             --  Nothing to do if only one parameter
3239 
3240             if Nargs < 2 then
3241                return;
3242             end if;
3243 
3244             --  Here if at least two arguments
3245 
3246             declare
3247                Actuals : array (1 .. Nargs) of Node_Id;
3248                Actual  : Node_Id;
3249                Formal  : Node_Id;
3250 
3251                Wrong_Order : Boolean := False;
3252                --  Set True if an out of order case is found
3253 
3254             begin
3255                --  Collect identifier names of actuals, fail if any actual is
3256                --  not a simple identifier, and record max length of name.
3257 
3258                Actual := First (Parameter_Associations (N));
3259                for J in Actuals'Range loop
3260                   if Nkind (Actual) /= N_Identifier then
3261                      return;
3262                   else
3263                      Actuals (J) := Actual;
3264                      Next (Actual);
3265                   end if;
3266                end loop;
3267 
3268                --  If we got this far, all actuals are identifiers and the list
3269                --  of their names is stored in the Actuals array.
3270 
3271                Formal := First_Formal (Nam);
3272                for J in Actuals'Range loop
3273 
3274                   --  If we ran out of formals, that's odd, probably an error
3275                   --  which will be detected elsewhere, but abandon the search.
3276 
3277                   if No (Formal) then
3278                      return;
3279                   end if;
3280 
3281                   --  If name matches and is in order OK
3282 
3283                   if Chars (Formal) = Chars (Actuals (J)) then
3284                      null;
3285 
3286                   else
3287                      --  If no match, see if it is elsewhere in list and if so
3288                      --  flag potential wrong order if type is compatible.
3289 
3290                      for K in Actuals'Range loop
3291                         if Chars (Formal) = Chars (Actuals (K))
3292                           and then
3293                             Has_Compatible_Type (Actuals (K), Etype (Formal))
3294                         then
3295                            Wrong_Order := True;
3296                            goto Continue;
3297                         end if;
3298                      end loop;
3299 
3300                      --  No match
3301 
3302                      return;
3303                   end if;
3304 
3305                   <<Continue>> Next_Formal (Formal);
3306                end loop;
3307 
3308                --  If Formals left over, also probably an error, skip warning
3309 
3310                if Present (Formal) then
3311                   return;
3312                end if;
3313 
3314                --  Here we give the warning if something was out of order
3315 
3316                if Wrong_Order then
3317                   Error_Msg_N
3318                     ("?P?actuals for this call may be in wrong order", N);
3319                end if;
3320             end;
3321          end;
3322       end Check_Argument_Order;
3323 
3324       -------------------------
3325       -- Check_Prefixed_Call --
3326       -------------------------
3327 
3328       procedure Check_Prefixed_Call is
3329          Act    : constant Node_Id   := First_Actual (N);
3330          A_Type : constant Entity_Id := Etype (Act);
3331          F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3332          Orig   : constant Node_Id := Original_Node (N);
3333          New_A  : Node_Id;
3334 
3335       begin
3336          --  Check whether the call is a prefixed call, with or without
3337          --  additional actuals.
3338 
3339          if Nkind (Orig) = N_Selected_Component
3340            or else
3341              (Nkind (Orig) = N_Indexed_Component
3342                and then Nkind (Prefix (Orig)) = N_Selected_Component
3343                and then Is_Entity_Name (Prefix (Prefix (Orig)))
3344                and then Is_Entity_Name (Act)
3345                and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3346          then
3347             if Is_Access_Type (A_Type)
3348               and then not Is_Access_Type (F_Type)
3349             then
3350                --  Introduce dereference on object in prefix
3351 
3352                New_A :=
3353                  Make_Explicit_Dereference (Sloc (Act),
3354                    Prefix => Relocate_Node (Act));
3355                Rewrite (Act, New_A);
3356                Analyze (Act);
3357 
3358             elsif Is_Access_Type (F_Type)
3359               and then not Is_Access_Type (A_Type)
3360             then
3361                --  Introduce an implicit 'Access in prefix
3362 
3363                if not Is_Aliased_View (Act) then
3364                   Error_Msg_NE
3365                     ("object in prefixed call to& must be aliased "
3366                      & "(RM 4.1.3 (13 1/2))",
3367                     Prefix (Act), Nam);
3368                end if;
3369 
3370                Rewrite (Act,
3371                  Make_Attribute_Reference (Loc,
3372                    Attribute_Name => Name_Access,
3373                    Prefix         => Relocate_Node (Act)));
3374             end if;
3375 
3376             Analyze (Act);
3377          end if;
3378       end Check_Prefixed_Call;
3379 
3380       ---------------------------------------
3381       -- Flag_Effectively_Volatile_Objects --
3382       ---------------------------------------
3383 
3384       procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3385          function Flag_Object (N : Node_Id) return Traverse_Result;
3386          --  Determine whether arbitrary node N denotes an effectively volatile
3387          --  object and if it does, emit an error.
3388 
3389          -----------------
3390          -- Flag_Object --
3391          -----------------
3392 
3393          function Flag_Object (N : Node_Id) return Traverse_Result is
3394             Id : Entity_Id;
3395 
3396          begin
3397             --  Do not consider nested function calls because they have already
3398             --  been processed during their own resolution.
3399 
3400             if Nkind (N) = N_Function_Call then
3401                return Skip;
3402 
3403             elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3404                Id := Entity (N);
3405 
3406                if Is_Object (Id)
3407                  and then Is_Effectively_Volatile (Id)
3408                  and then (Async_Writers_Enabled (Id)
3409                             or else Effective_Reads_Enabled (Id))
3410                then
3411                   Error_Msg_N
3412                     ("volatile object cannot appear in this context (SPARK "
3413                      & "RM 7.1.3(11))", N);
3414                   return Skip;
3415                end if;
3416             end if;
3417 
3418             return OK;
3419          end Flag_Object;
3420 
3421          procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3422 
3423       --  Start of processing for Flag_Effectively_Volatile_Objects
3424 
3425       begin
3426          Flag_Objects (Expr);
3427       end Flag_Effectively_Volatile_Objects;
3428 
3429       --------------------
3430       -- Insert_Default --
3431       --------------------
3432 
3433       procedure Insert_Default is
3434          Actval : Node_Id;
3435          Assoc  : Node_Id;
3436 
3437       begin
3438          --  Missing argument in call, nothing to insert
3439 
3440          if No (Default_Value (F)) then
3441             return;
3442 
3443          else
3444             --  Note that we do a full New_Copy_Tree, so that any associated
3445             --  Itypes are properly copied. This may not be needed any more,
3446             --  but it does no harm as a safety measure. Defaults of a generic
3447             --  formal may be out of bounds of the corresponding actual (see
3448             --  cc1311b) and an additional check may be required.
3449 
3450             Actval :=
3451               New_Copy_Tree
3452                 (Default_Value (F),
3453                  New_Scope => Current_Scope,
3454                  New_Sloc  => Loc);
3455 
3456             --  Propagate dimension information, if any.
3457 
3458             Copy_Dimensions (Default_Value (F), Actval);
3459 
3460             if Is_Concurrent_Type (Scope (Nam))
3461               and then Has_Discriminants (Scope (Nam))
3462             then
3463                Replace_Actual_Discriminants (N, Actval);
3464             end if;
3465 
3466             if Is_Overloadable (Nam)
3467               and then Present (Alias (Nam))
3468             then
3469                if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3470                  and then not Is_Tagged_Type (Etype (F))
3471                then
3472                   --  If default is a real literal, do not introduce a
3473                   --  conversion whose effect may depend on the run-time
3474                   --  size of universal real.
3475 
3476                   if Nkind (Actval) = N_Real_Literal then
3477                      Set_Etype (Actval, Base_Type (Etype (F)));
3478                   else
3479                      Actval := Unchecked_Convert_To (Etype (F), Actval);
3480                   end if;
3481                end if;
3482 
3483                if Is_Scalar_Type (Etype (F)) then
3484                   Enable_Range_Check (Actval);
3485                end if;
3486 
3487                Set_Parent (Actval, N);
3488 
3489                --  Resolve aggregates with their base type, to avoid scope
3490                --  anomalies: the subtype was first built in the subprogram
3491                --  declaration, and the current call may be nested.
3492 
3493                if Nkind (Actval) = N_Aggregate then
3494                   Analyze_And_Resolve (Actval, Etype (F));
3495                else
3496                   Analyze_And_Resolve (Actval, Etype (Actval));
3497                end if;
3498 
3499             else
3500                Set_Parent (Actval, N);
3501 
3502                --  See note above concerning aggregates
3503 
3504                if Nkind (Actval) = N_Aggregate
3505                  and then Has_Discriminants (Etype (Actval))
3506                then
3507                   Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3508 
3509                --  Resolve entities with their own type, which may differ from
3510                --  the type of a reference in a generic context (the view
3511                --  swapping mechanism did not anticipate the re-analysis of
3512                --  default values in calls).
3513 
3514                elsif Is_Entity_Name (Actval) then
3515                   Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3516 
3517                else
3518                   Analyze_And_Resolve (Actval, Etype (Actval));
3519                end if;
3520             end if;
3521 
3522             --  If default is a tag indeterminate function call, propagate tag
3523             --  to obtain proper dispatching.
3524 
3525             if Is_Controlling_Formal (F)
3526               and then Nkind (Default_Value (F)) = N_Function_Call
3527             then
3528                Set_Is_Controlling_Actual (Actval);
3529             end if;
3530          end if;
3531 
3532          --  If the default expression raises constraint error, then just
3533          --  silently replace it with an N_Raise_Constraint_Error node, since
3534          --  we already gave the warning on the subprogram spec. If node is
3535          --  already a Raise_Constraint_Error leave as is, to prevent loops in
3536          --  the warnings removal machinery.
3537 
3538          if Raises_Constraint_Error (Actval)
3539            and then Nkind (Actval) /= N_Raise_Constraint_Error
3540          then
3541             Rewrite (Actval,
3542               Make_Raise_Constraint_Error (Loc,
3543                 Reason => CE_Range_Check_Failed));
3544             Set_Raises_Constraint_Error (Actval);
3545             Set_Etype (Actval, Etype (F));
3546          end if;
3547 
3548          Assoc :=
3549            Make_Parameter_Association (Loc,
3550              Explicit_Actual_Parameter => Actval,
3551              Selector_Name => Make_Identifier (Loc, Chars (F)));
3552 
3553          --  Case of insertion is first named actual
3554 
3555          if No (Prev) or else
3556             Nkind (Parent (Prev)) /= N_Parameter_Association
3557          then
3558             Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3559             Set_First_Named_Actual (N, Actval);
3560 
3561             if No (Prev) then
3562                if No (Parameter_Associations (N)) then
3563                   Set_Parameter_Associations (N, New_List (Assoc));
3564                else
3565                   Append (Assoc, Parameter_Associations (N));
3566                end if;
3567 
3568             else
3569                Insert_After (Prev, Assoc);
3570             end if;
3571 
3572          --  Case of insertion is not first named actual
3573 
3574          else
3575             Set_Next_Named_Actual
3576               (Assoc, Next_Named_Actual (Parent (Prev)));
3577             Set_Next_Named_Actual (Parent (Prev), Actval);
3578             Append (Assoc, Parameter_Associations (N));
3579          end if;
3580 
3581          Mark_Rewrite_Insertion (Assoc);
3582          Mark_Rewrite_Insertion (Actval);
3583 
3584          Prev := Actval;
3585       end Insert_Default;
3586 
3587       --------------------
3588       -- Property_Error --
3589       --------------------
3590 
3591       procedure Property_Error
3592         (Var      : Node_Id;
3593          Var_Id   : Entity_Id;
3594          Prop_Nam : Name_Id)
3595       is
3596       begin
3597          Error_Msg_Name_1 := Prop_Nam;
3598          Error_Msg_NE
3599            ("external variable & with enabled property % cannot appear as "
3600             & "actual in procedure call (SPARK RM 7.1.3(10))", Var, Var_Id);
3601          Error_Msg_N ("\\corresponding formal parameter has mode In", Var);
3602       end Property_Error;
3603 
3604       -------------------
3605       -- Same_Ancestor --
3606       -------------------
3607 
3608       function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3609          FT1 : Entity_Id := T1;
3610          FT2 : Entity_Id := T2;
3611 
3612       begin
3613          if Is_Private_Type (T1)
3614            and then Present (Full_View (T1))
3615          then
3616             FT1 := Full_View (T1);
3617          end if;
3618 
3619          if Is_Private_Type (T2)
3620            and then Present (Full_View (T2))
3621          then
3622             FT2 := Full_View (T2);
3623          end if;
3624 
3625          return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3626       end Same_Ancestor;
3627 
3628       --------------------------
3629       -- Static_Concatenation --
3630       --------------------------
3631 
3632       function Static_Concatenation (N : Node_Id) return Boolean is
3633       begin
3634          case Nkind (N) is
3635             when N_String_Literal =>
3636                return True;
3637 
3638             when N_Op_Concat =>
3639 
3640                --  Concatenation is static when both operands are static and
3641                --  the concatenation operator is a predefined one.
3642 
3643                return Scope (Entity (N)) = Standard_Standard
3644                         and then
3645                       Static_Concatenation (Left_Opnd (N))
3646                         and then
3647                       Static_Concatenation (Right_Opnd (N));
3648 
3649             when others =>
3650                if Is_Entity_Name (N) then
3651                   declare
3652                      Ent : constant Entity_Id := Entity (N);
3653                   begin
3654                      return Ekind (Ent) = E_Constant
3655                               and then Present (Constant_Value (Ent))
3656                               and then
3657                                 Is_OK_Static_Expression (Constant_Value (Ent));
3658                   end;
3659 
3660                else
3661                   return False;
3662                end if;
3663          end case;
3664       end Static_Concatenation;
3665 
3666    --  Start of processing for Resolve_Actuals
3667 
3668    begin
3669       Check_Argument_Order;
3670 
3671       if Is_Overloadable (Nam)
3672         and then Is_Inherited_Operation (Nam)
3673         and then In_Instance
3674         and then Present (Alias (Nam))
3675         and then Present (Overridden_Operation (Alias (Nam)))
3676       then
3677          Real_Subp := Alias (Nam);
3678       else
3679          Real_Subp := Empty;
3680       end if;
3681 
3682       if Present (First_Actual (N)) then
3683          Check_Prefixed_Call;
3684       end if;
3685 
3686       A := First_Actual (N);
3687       F := First_Formal (Nam);
3688 
3689       if Present (Real_Subp) then
3690          Real_F := First_Formal (Real_Subp);
3691       end if;
3692 
3693       while Present (F) loop
3694          if No (A) and then Needs_No_Actuals (Nam) then
3695             null;
3696 
3697          --  If we have an error in any actual or formal, indicated by a type
3698          --  of Any_Type, then abandon resolution attempt, and set result type
3699          --  to Any_Type. Skip this if the actual is a Raise_Expression, whose
3700          --  type is imposed from context.
3701 
3702          elsif (Present (A) and then Etype (A) = Any_Type)
3703            or else Etype (F) = Any_Type
3704          then
3705             if Nkind (A) /= N_Raise_Expression then
3706                Set_Etype (N, Any_Type);
3707                return;
3708             end if;
3709          end if;
3710 
3711          --  Case where actual is present
3712 
3713          --  If the actual is an entity, generate a reference to it now. We
3714          --  do this before the actual is resolved, because a formal of some
3715          --  protected subprogram, or a task discriminant, will be rewritten
3716          --  during expansion, and the source entity reference may be lost.
3717 
3718          if Present (A)
3719            and then Is_Entity_Name (A)
3720            and then Comes_From_Source (A)
3721          then
3722             Orig_A := Entity (A);
3723 
3724             if Present (Orig_A) then
3725                if Is_Formal (Orig_A)
3726                  and then Ekind (F) /= E_In_Parameter
3727                then
3728                   Generate_Reference (Orig_A, A, 'm');
3729 
3730                elsif not Is_Overloaded (A) then
3731                   if Ekind (F) /= E_Out_Parameter then
3732                      Generate_Reference (Orig_A, A);
3733 
3734                   --  RM 6.4.1(12): For an out parameter that is passed by
3735                   --  copy, the formal parameter object is created, and:
3736 
3737                   --  * For an access type, the formal parameter is initialized
3738                   --    from the value of the actual, without checking that the
3739                   --    value satisfies any constraint, any predicate, or any
3740                   --    exclusion of the null value.
3741 
3742                   --  * For a scalar type that has the Default_Value aspect
3743                   --    specified, the formal parameter is initialized from the
3744                   --    value of the actual, without checking that the value
3745                   --    satisfies any constraint or any predicate.
3746                   --  I do not understand why this case is included??? this is
3747                   --  not a case where an OUT parameter is treated as IN OUT.
3748 
3749                   --  * For a composite type with discriminants or that has
3750                   --    implicit initial values for any subcomponents, the
3751                   --    behavior is as for an in out parameter passed by copy.
3752 
3753                   --  Hence for these cases we generate the read reference now
3754                   --  (the write reference will be generated later by
3755                   --   Note_Possible_Modification).
3756 
3757                   elsif Is_By_Copy_Type (Etype (F))
3758                     and then
3759                       (Is_Access_Type (Etype (F))
3760                          or else
3761                            (Is_Scalar_Type (Etype (F))
3762                               and then
3763                                 Present (Default_Aspect_Value (Etype (F))))
3764                          or else
3765                            (Is_Composite_Type (Etype (F))
3766                               and then (Has_Discriminants (Etype (F))
3767                                          or else Is_Partially_Initialized_Type
3768                                                    (Etype (F)))))
3769                   then
3770                      Generate_Reference (Orig_A, A);
3771                   end if;
3772                end if;
3773             end if;
3774          end if;
3775 
3776          if Present (A)
3777            and then (Nkind (Parent (A)) /= N_Parameter_Association
3778                       or else Chars (Selector_Name (Parent (A))) = Chars (F))
3779          then
3780             --  If style checking mode on, check match of formal name
3781 
3782             if Style_Check then
3783                if Nkind (Parent (A)) = N_Parameter_Association then
3784                   Check_Identifier (Selector_Name (Parent (A)), F);
3785                end if;
3786             end if;
3787 
3788             --  If the formal is Out or In_Out, do not resolve and expand the
3789             --  conversion, because it is subsequently expanded into explicit
3790             --  temporaries and assignments. However, the object of the
3791             --  conversion can be resolved. An exception is the case of tagged
3792             --  type conversion with a class-wide actual. In that case we want
3793             --  the tag check to occur and no temporary will be needed (no
3794             --  representation change can occur) and the parameter is passed by
3795             --  reference, so we go ahead and resolve the type conversion.
3796             --  Another exception is the case of reference to component or
3797             --  subcomponent of a bit-packed array, in which case we want to
3798             --  defer expansion to the point the in and out assignments are
3799             --  performed.
3800 
3801             if Ekind (F) /= E_In_Parameter
3802               and then Nkind (A) = N_Type_Conversion
3803               and then not Is_Class_Wide_Type (Etype (Expression (A)))
3804             then
3805                if Ekind (F) = E_In_Out_Parameter
3806                  and then Is_Array_Type (Etype (F))
3807                then
3808                   --  In a view conversion, the conversion must be legal in
3809                   --  both directions, and thus both component types must be
3810                   --  aliased, or neither (4.6 (8)).
3811 
3812                   --  The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3813                   --  the privacy requirement should not apply to generic
3814                   --  types, and should be checked in an instance. ARG query
3815                   --  is in order ???
3816 
3817                   if Has_Aliased_Components (Etype (Expression (A))) /=
3818                      Has_Aliased_Components (Etype (F))
3819                   then
3820                      Error_Msg_N
3821                        ("both component types in a view conversion must be"
3822                          & " aliased, or neither", A);
3823 
3824                   --  Comment here??? what set of cases???
3825 
3826                   elsif
3827                      not Same_Ancestor (Etype (F), Etype (Expression (A)))
3828                   then
3829                      --  Check view conv between unrelated by ref array types
3830 
3831                      if Is_By_Reference_Type (Etype (F))
3832                         or else Is_By_Reference_Type (Etype (Expression (A)))
3833                      then
3834                         Error_Msg_N
3835                           ("view conversion between unrelated by reference "
3836                            & "array types not allowed (\'A'I-00246)", A);
3837 
3838                      --  In Ada 2005 mode, check view conversion component
3839                      --  type cannot be private, tagged, or volatile. Note
3840                      --  that we only apply this to source conversions. The
3841                      --  generated code can contain conversions which are
3842                      --  not subject to this test, and we cannot extract the
3843                      --  component type in such cases since it is not present.
3844 
3845                      elsif Comes_From_Source (A)
3846                        and then Ada_Version >= Ada_2005
3847                      then
3848                         declare
3849                            Comp_Type : constant Entity_Id :=
3850                                          Component_Type
3851                                            (Etype (Expression (A)));
3852                         begin
3853                            if (Is_Private_Type (Comp_Type)
3854                                  and then not Is_Generic_Type (Comp_Type))
3855                              or else Is_Tagged_Type (Comp_Type)
3856                              or else Is_Volatile (Comp_Type)
3857                            then
3858                               Error_Msg_N
3859                                 ("component type of a view conversion cannot"
3860                                    & " be private, tagged, or volatile"
3861                                    & " (RM 4.6 (24))",
3862                                    Expression (A));
3863                            end if;
3864                         end;
3865                      end if;
3866                   end if;
3867                end if;
3868 
3869                --  Resolve expression if conversion is all OK
3870 
3871                if (Conversion_OK (A)
3872                     or else Valid_Conversion (A, Etype (A), Expression (A)))
3873                  and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3874                then
3875                   Resolve (Expression (A));
3876                end if;
3877 
3878             --  If the actual is a function call that returns a limited
3879             --  unconstrained object that needs finalization, create a
3880             --  transient scope for it, so that it can receive the proper
3881             --  finalization list.
3882 
3883             elsif Nkind (A) = N_Function_Call
3884               and then Is_Limited_Record (Etype (F))
3885               and then not Is_Constrained (Etype (F))
3886               and then Expander_Active
3887               and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3888             then
3889                Establish_Transient_Scope (A, Sec_Stack => False);
3890                Resolve (A, Etype (F));
3891 
3892             --  A small optimization: if one of the actuals is a concatenation
3893             --  create a block around a procedure call to recover stack space.
3894             --  This alleviates stack usage when several procedure calls in
3895             --  the same statement list use concatenation. We do not perform
3896             --  this wrapping for code statements, where the argument is a
3897             --  static string, and we want to preserve warnings involving
3898             --  sequences of such statements.
3899 
3900             elsif Nkind (A) = N_Op_Concat
3901               and then Nkind (N) = N_Procedure_Call_Statement
3902               and then Expander_Active
3903               and then
3904                 not (Is_Intrinsic_Subprogram (Nam)
3905                       and then Chars (Nam) = Name_Asm)
3906               and then not Static_Concatenation (A)
3907             then
3908                Establish_Transient_Scope (A, Sec_Stack => False);
3909                Resolve (A, Etype (F));
3910 
3911             else
3912                if Nkind (A) = N_Type_Conversion
3913                  and then Is_Array_Type (Etype (F))
3914                  and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3915                  and then
3916                   (Is_Limited_Type (Etype (F))
3917                     or else Is_Limited_Type (Etype (Expression (A))))
3918                then
3919                   Error_Msg_N
3920                     ("conversion between unrelated limited array types "
3921                      & "not allowed ('A'I-00246)", A);
3922 
3923                   if Is_Limited_Type (Etype (F)) then
3924                      Explain_Limited_Type (Etype (F), A);
3925                   end if;
3926 
3927                   if Is_Limited_Type (Etype (Expression (A))) then
3928                      Explain_Limited_Type (Etype (Expression (A)), A);
3929                   end if;
3930                end if;
3931 
3932                --  (Ada 2005: AI-251): If the actual is an allocator whose
3933                --  directly designated type is a class-wide interface, we build
3934                --  an anonymous access type to use it as the type of the
3935                --  allocator. Later, when the subprogram call is expanded, if
3936                --  the interface has a secondary dispatch table the expander
3937                --  will add a type conversion to force the correct displacement
3938                --  of the pointer.
3939 
3940                if Nkind (A) = N_Allocator then
3941                   declare
3942                      DDT : constant Entity_Id :=
3943                              Directly_Designated_Type (Base_Type (Etype (F)));
3944 
3945                      New_Itype : Entity_Id;
3946 
3947                   begin
3948                      if Is_Class_Wide_Type (DDT)
3949                        and then Is_Interface (DDT)
3950                      then
3951                         New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3952                         Set_Etype (New_Itype, Etype (A));
3953                         Set_Directly_Designated_Type
3954                           (New_Itype, Directly_Designated_Type (Etype (A)));
3955                         Set_Etype (A, New_Itype);
3956                      end if;
3957 
3958                      --  Ada 2005, AI-162:If the actual is an allocator, the
3959                      --  innermost enclosing statement is the master of the
3960                      --  created object. This needs to be done with expansion
3961                      --  enabled only, otherwise the transient scope will not
3962                      --  be removed in the expansion of the wrapped construct.
3963 
3964                      if (Is_Controlled (DDT) or else Has_Task (DDT))
3965                        and then Expander_Active
3966                      then
3967                         Establish_Transient_Scope (A, Sec_Stack => False);
3968                      end if;
3969                   end;
3970 
3971                   if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3972                      Check_Restriction (No_Access_Parameter_Allocators, A);
3973                   end if;
3974                end if;
3975 
3976                --  (Ada 2005): The call may be to a primitive operation of a
3977                --  tagged synchronized type, declared outside of the type. In
3978                --  this case the controlling actual must be converted to its
3979                --  corresponding record type, which is the formal type. The
3980                --  actual may be a subtype, either because of a constraint or
3981                --  because it is a generic actual, so use base type to locate
3982                --  concurrent type.
3983 
3984                F_Typ := Base_Type (Etype (F));
3985 
3986                if Is_Tagged_Type (F_Typ)
3987                  and then (Is_Concurrent_Type (F_Typ)
3988                             or else Is_Concurrent_Record_Type (F_Typ))
3989                then
3990                   --  If the actual is overloaded, look for an interpretation
3991                   --  that has a synchronized type.
3992 
3993                   if not Is_Overloaded (A) then
3994                      A_Typ := Base_Type (Etype (A));
3995 
3996                   else
3997                      declare
3998                         Index : Interp_Index;
3999                         It    : Interp;
4000 
4001                      begin
4002                         Get_First_Interp (A, Index, It);
4003                         while Present (It.Typ) loop
4004                            if Is_Concurrent_Type (It.Typ)
4005                              or else Is_Concurrent_Record_Type (It.Typ)
4006                            then
4007                               A_Typ := Base_Type (It.Typ);
4008                               exit;
4009                            end if;
4010 
4011                            Get_Next_Interp (Index, It);
4012                         end loop;
4013                      end;
4014                   end if;
4015 
4016                   declare
4017                      Full_A_Typ : Entity_Id;
4018 
4019                   begin
4020                      if Present (Full_View (A_Typ)) then
4021                         Full_A_Typ := Base_Type (Full_View (A_Typ));
4022                      else
4023                         Full_A_Typ := A_Typ;
4024                      end if;
4025 
4026                      --  Tagged synchronized type (case 1): the actual is a
4027                      --  concurrent type.
4028 
4029                      if Is_Concurrent_Type (A_Typ)
4030                        and then Corresponding_Record_Type (A_Typ) = F_Typ
4031                      then
4032                         Rewrite (A,
4033                           Unchecked_Convert_To
4034                             (Corresponding_Record_Type (A_Typ), A));
4035                         Resolve (A, Etype (F));
4036 
4037                      --  Tagged synchronized type (case 2): the formal is a
4038                      --  concurrent type.
4039 
4040                      elsif Ekind (Full_A_Typ) = E_Record_Type
4041                        and then Present
4042                                (Corresponding_Concurrent_Type (Full_A_Typ))
4043                        and then Is_Concurrent_Type (F_Typ)
4044                        and then Present (Corresponding_Record_Type (F_Typ))
4045                        and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4046                      then
4047                         Resolve (A, Corresponding_Record_Type (F_Typ));
4048 
4049                      --  Common case
4050 
4051                      else
4052                         Resolve (A, Etype (F));
4053                      end if;
4054                   end;
4055 
4056                --  Not a synchronized operation
4057 
4058                else
4059                   Resolve (A, Etype (F));
4060                end if;
4061             end if;
4062 
4063             A_Typ := Etype (A);
4064             F_Typ := Etype (F);
4065 
4066             --  An actual cannot be an untagged formal incomplete type
4067 
4068             if Ekind (A_Typ) = E_Incomplete_Type
4069               and then not Is_Tagged_Type (A_Typ)
4070               and then Is_Generic_Type (A_Typ)
4071             then
4072                Error_Msg_N
4073                  ("invalid use of untagged formal incomplete type", A);
4074             end if;
4075 
4076             if Comes_From_Source (Original_Node (N))
4077               and then Nkind_In (Original_Node (N), N_Function_Call,
4078                                                     N_Procedure_Call_Statement)
4079             then
4080                --  In formal mode, check that actual parameters matching
4081                --  formals of tagged types are objects (or ancestor type
4082                --  conversions of objects), not general expressions.
4083 
4084                if Is_Actual_Tagged_Parameter (A) then
4085                   if Is_SPARK_05_Object_Reference (A) then
4086                      null;
4087 
4088                   elsif Nkind (A) = N_Type_Conversion then
4089                      declare
4090                         Operand     : constant Node_Id   := Expression (A);
4091                         Operand_Typ : constant Entity_Id := Etype (Operand);
4092                         Target_Typ  : constant Entity_Id := A_Typ;
4093 
4094                      begin
4095                         if not Is_SPARK_05_Object_Reference (Operand) then
4096                            Check_SPARK_05_Restriction
4097                              ("object required", Operand);
4098 
4099                         --  In formal mode, the only view conversions are those
4100                         --  involving ancestor conversion of an extended type.
4101 
4102                         elsif not
4103                           (Is_Tagged_Type (Target_Typ)
4104                            and then not Is_Class_Wide_Type (Target_Typ)
4105                            and then Is_Tagged_Type (Operand_Typ)
4106                            and then not Is_Class_Wide_Type (Operand_Typ)
4107                            and then Is_Ancestor (Target_Typ, Operand_Typ))
4108                         then
4109                            if Ekind_In
4110                              (F, E_Out_Parameter, E_In_Out_Parameter)
4111                            then
4112                               Check_SPARK_05_Restriction
4113                                 ("ancestor conversion is the only permitted "
4114                                  & "view conversion", A);
4115                            else
4116                               Check_SPARK_05_Restriction
4117                                 ("ancestor conversion required", A);
4118                            end if;
4119 
4120                         else
4121                            null;
4122                         end if;
4123                      end;
4124 
4125                   else
4126                      Check_SPARK_05_Restriction ("object required", A);
4127                   end if;
4128 
4129                --  In formal mode, the only view conversions are those
4130                --  involving ancestor conversion of an extended type.
4131 
4132                elsif Nkind (A) = N_Type_Conversion
4133                  and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4134                then
4135                   Check_SPARK_05_Restriction
4136                     ("ancestor conversion is the only permitted view "
4137                      & "conversion", A);
4138                end if;
4139             end if;
4140 
4141             --  has warnings suppressed, then we reset Never_Set_In_Source for
4142             --  the calling entity. The reason for this is to catch cases like
4143             --  GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4144             --  uses trickery to modify an IN parameter.
4145 
4146             if Ekind (F) = E_In_Parameter
4147               and then Is_Entity_Name (A)
4148               and then Present (Entity (A))
4149               and then Ekind (Entity (A)) = E_Variable
4150               and then Has_Warnings_Off (F_Typ)
4151             then
4152                Set_Never_Set_In_Source (Entity (A), False);
4153             end if;
4154 
4155             --  Perform error checks for IN and IN OUT parameters
4156 
4157             if Ekind (F) /= E_Out_Parameter then
4158 
4159                --  Check unset reference. For scalar parameters, it is clearly
4160                --  wrong to pass an uninitialized value as either an IN or
4161                --  IN-OUT parameter. For composites, it is also clearly an
4162                --  error to pass a completely uninitialized value as an IN
4163                --  parameter, but the case of IN OUT is trickier. We prefer
4164                --  not to give a warning here. For example, suppose there is
4165                --  a routine that sets some component of a record to False.
4166                --  It is perfectly reasonable to make this IN-OUT and allow
4167                --  either initialized or uninitialized records to be passed
4168                --  in this case.
4169 
4170                --  For partially initialized composite values, we also avoid
4171                --  warnings, since it is quite likely that we are passing a
4172                --  partially initialized value and only the initialized fields
4173                --  will in fact be read in the subprogram.
4174 
4175                if Is_Scalar_Type (A_Typ)
4176                  or else (Ekind (F) = E_In_Parameter
4177                            and then not Is_Partially_Initialized_Type (A_Typ))
4178                then
4179                   Check_Unset_Reference (A);
4180                end if;
4181 
4182                --  In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4183                --  actual to a nested call, since this constitutes a reading of
4184                --  the parameter, which is not allowed.
4185 
4186                if Ada_Version = Ada_83
4187                  and then Is_Entity_Name (A)
4188                  and then Ekind (Entity (A)) = E_Out_Parameter
4189                then
4190                   Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4191                end if;
4192             end if;
4193 
4194             --  Case of OUT or IN OUT parameter
4195 
4196             if Ekind (F) /= E_In_Parameter then
4197 
4198                --  For an Out parameter, check for useless assignment. Note
4199                --  that we can't set Last_Assignment this early, because we may
4200                --  kill current values in Resolve_Call, and that call would
4201                --  clobber the Last_Assignment field.
4202 
4203                --  Note: call Warn_On_Useless_Assignment before doing the check
4204                --  below for Is_OK_Variable_For_Out_Formal so that the setting
4205                --  of Referenced_As_LHS/Referenced_As_Out_Formal properly
4206                --  reflects the last assignment, not this one.
4207 
4208                if Ekind (F) = E_Out_Parameter then
4209                   if Warn_On_Modified_As_Out_Parameter (F)
4210                     and then Is_Entity_Name (A)
4211                     and then Present (Entity (A))
4212                     and then Comes_From_Source (N)
4213                   then
4214                      Warn_On_Useless_Assignment (Entity (A), A);
4215                   end if;
4216                end if;
4217 
4218                --  Validate the form of the actual. Note that the call to
4219                --  Is_OK_Variable_For_Out_Formal generates the required
4220                --  reference in this case.
4221 
4222                --  A call to an initialization procedure for an aggregate
4223                --  component may initialize a nested component of a constant
4224                --  designated object. In this context the object is variable.
4225 
4226                if not Is_OK_Variable_For_Out_Formal (A)
4227                  and then not Is_Init_Proc (Nam)
4228                then
4229                   Error_Msg_NE ("actual for& must be a variable", A, F);
4230 
4231                   if Is_Subprogram (Current_Scope) then
4232                      if Is_Invariant_Procedure (Current_Scope)
4233                        or else Is_Partial_Invariant_Procedure (Current_Scope)
4234                      then
4235                         Error_Msg_N
4236                           ("function used in invariant cannot modify its "
4237                            & "argument", F);
4238 
4239                      elsif Is_Predicate_Function (Current_Scope) then
4240                         Error_Msg_N
4241                           ("function used in predicate cannot modify its "
4242                            & "argument", F);
4243                      end if;
4244                   end if;
4245                end if;
4246 
4247                --  What's the following about???
4248 
4249                if Is_Entity_Name (A) then
4250                   Kill_Checks (Entity (A));
4251                else
4252                   Kill_All_Checks;
4253                end if;
4254             end if;
4255 
4256             if Etype (A) = Any_Type then
4257                Set_Etype (N, Any_Type);
4258                return;
4259             end if;
4260 
4261             --  Apply appropriate constraint/predicate checks for IN [OUT] case
4262 
4263             if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4264 
4265                --  Apply predicate tests except in certain special cases. Note
4266                --  that it might be more consistent to apply these only when
4267                --  expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4268                --  for the outbound predicate tests ???
4269 
4270                if Predicate_Tests_On_Arguments (Nam) then
4271                   Apply_Predicate_Check (A, F_Typ);
4272                end if;
4273 
4274                --  Apply required constraint checks
4275 
4276                --  Gigi looks at the check flag and uses the appropriate types.
4277                --  For now since one flag is used there is an optimization
4278                --  which might not be done in the IN OUT case since Gigi does
4279                --  not do any analysis. More thought required about this ???
4280 
4281                --  In fact is this comment obsolete??? doesn't the expander now
4282                --  generate all these tests anyway???
4283 
4284                if Is_Scalar_Type (Etype (A)) then
4285                   Apply_Scalar_Range_Check (A, F_Typ);
4286 
4287                elsif Is_Array_Type (Etype (A)) then
4288                   Apply_Length_Check (A, F_Typ);
4289 
4290                elsif Is_Record_Type (F_Typ)
4291                  and then Has_Discriminants (F_Typ)
4292                  and then Is_Constrained (F_Typ)
4293                  and then (not Is_Derived_Type (F_Typ)
4294                             or else Comes_From_Source (Nam))
4295                then
4296                   Apply_Discriminant_Check (A, F_Typ);
4297 
4298                   --  For view conversions of a discriminated object, apply
4299                   --  check to object itself, the conversion alreay has the
4300                   --  proper type.
4301 
4302                   if Nkind (A) = N_Type_Conversion
4303                     and then Is_Constrained (Etype (Expression (A)))
4304                   then
4305                      Apply_Discriminant_Check (Expression (A), F_Typ);
4306                   end if;
4307 
4308                elsif Is_Access_Type (F_Typ)
4309                  and then Is_Array_Type (Designated_Type (F_Typ))
4310                  and then Is_Constrained (Designated_Type (F_Typ))
4311                then
4312                   Apply_Length_Check (A, F_Typ);
4313 
4314                elsif Is_Access_Type (F_Typ)
4315                  and then Has_Discriminants (Designated_Type (F_Typ))
4316                  and then Is_Constrained (Designated_Type (F_Typ))
4317                then
4318                   Apply_Discriminant_Check (A, F_Typ);
4319 
4320                else
4321                   Apply_Range_Check (A, F_Typ);
4322                end if;
4323 
4324                --  Ada 2005 (AI-231): Note that the controlling parameter case
4325                --  already existed in Ada 95, which is partially checked
4326                --  elsewhere (see Checks), and we don't want the warning
4327                --  message to differ.
4328 
4329                if Is_Access_Type (F_Typ)
4330                  and then Can_Never_Be_Null (F_Typ)
4331                  and then Known_Null (A)
4332                then
4333                   if Is_Controlling_Formal (F) then
4334                      Apply_Compile_Time_Constraint_Error
4335                        (N      => A,
4336                         Msg    => "null value not allowed here??",
4337                         Reason => CE_Access_Check_Failed);
4338 
4339                   elsif Ada_Version >= Ada_2005 then
4340                      Apply_Compile_Time_Constraint_Error
4341                        (N      => A,
4342                         Msg    => "(Ada 2005) null not allowed in "
4343                                   & "null-excluding formal??",
4344                         Reason => CE_Null_Not_Allowed);
4345                   end if;
4346                end if;
4347             end if;
4348 
4349             --  Checks for OUT parameters and IN OUT parameters
4350 
4351             if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4352 
4353                --  If there is a type conversion, to make sure the return value
4354                --  meets the constraints of the variable before the conversion.
4355 
4356                if Nkind (A) = N_Type_Conversion then
4357                   if Is_Scalar_Type (A_Typ) then
4358                      Apply_Scalar_Range_Check
4359                        (Expression (A), Etype (Expression (A)), A_Typ);
4360                   else
4361                      Apply_Range_Check
4362                        (Expression (A), Etype (Expression (A)), A_Typ);
4363                   end if;
4364 
4365                --  If no conversion apply scalar range checks and length checks
4366                --  base on the subtype of the actual (NOT that of the formal).
4367 
4368                else
4369                   if Is_Scalar_Type (F_Typ) then
4370                      Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4371                   elsif Is_Array_Type (F_Typ)
4372                     and then Ekind (F) = E_Out_Parameter
4373                   then
4374                      Apply_Length_Check (A, F_Typ);
4375                   else
4376                      Apply_Range_Check (A, A_Typ, F_Typ);
4377                   end if;
4378                end if;
4379 
4380                --  Note: we do not apply the predicate checks for the case of
4381                --  OUT and IN OUT parameters. They are instead applied in the
4382                --  Expand_Actuals routine in Exp_Ch6.
4383             end if;
4384 
4385             --  An actual associated with an access parameter is implicitly
4386             --  converted to the anonymous access type of the formal and must
4387             --  satisfy the legality checks for access conversions.
4388 
4389             if Ekind (F_Typ) = E_Anonymous_Access_Type then
4390                if not Valid_Conversion (A, F_Typ, A) then
4391                   Error_Msg_N
4392                     ("invalid implicit conversion for access parameter", A);
4393                end if;
4394 
4395                --  If the actual is an access selected component of a variable,
4396                --  the call may modify its designated object. It is reasonable
4397                --  to treat this as a potential modification of the enclosing
4398                --  record, to prevent spurious warnings that it should be
4399                --  declared as a constant, because intuitively programmers
4400                --  regard the designated subcomponent as part of the record.
4401 
4402                if Nkind (A) = N_Selected_Component
4403                  and then Is_Entity_Name (Prefix (A))
4404                  and then not Is_Constant_Object (Entity (Prefix (A)))
4405                then
4406                   Note_Possible_Modification (A, Sure => False);
4407                end if;
4408             end if;
4409 
4410             --  Check bad case of atomic/volatile argument (RM C.6(12))
4411 
4412             if Is_By_Reference_Type (Etype (F))
4413               and then Comes_From_Source (N)
4414             then
4415                if Is_Atomic_Object (A)
4416                  and then not Is_Atomic (Etype (F))
4417                then
4418                   Error_Msg_NE
4419                     ("cannot pass atomic argument to non-atomic formal&",
4420                      A, F);
4421 
4422                elsif Is_Volatile_Object (A)
4423                  and then not Is_Volatile (Etype (F))
4424                then
4425                   Error_Msg_NE
4426                     ("cannot pass volatile argument to non-volatile formal&",
4427                      A, F);
4428                end if;
4429             end if;
4430 
4431             --  Check that subprograms don't have improper controlling
4432             --  arguments (RM 3.9.2 (9)).
4433 
4434             --  A primitive operation may have an access parameter of an
4435             --  incomplete tagged type, but a dispatching call is illegal
4436             --  if the type is still incomplete.
4437 
4438             if Is_Controlling_Formal (F) then
4439                Set_Is_Controlling_Actual (A);
4440 
4441                if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4442                   declare
4443                      Desig : constant Entity_Id := Designated_Type (Etype (F));
4444                   begin
4445                      if Ekind (Desig) = E_Incomplete_Type
4446                        and then No (Full_View (Desig))
4447                        and then No (Non_Limited_View (Desig))
4448                      then
4449                         Error_Msg_NE
4450                           ("premature use of incomplete type& "
4451                            & "in dispatching call", A, Desig);
4452                      end if;
4453                   end;
4454                end if;
4455 
4456             elsif Nkind (A) = N_Explicit_Dereference then
4457                Validate_Remote_Access_To_Class_Wide_Type (A);
4458             end if;
4459 
4460             --  Apply legality rule 3.9.2  (9/1)
4461 
4462             if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4463               and then not Is_Class_Wide_Type (F_Typ)
4464               and then not Is_Controlling_Formal (F)
4465               and then not In_Instance
4466             then
4467                Error_Msg_N ("class-wide argument not allowed here!", A);
4468 
4469                if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4470                   Error_Msg_Node_2 := F_Typ;
4471                   Error_Msg_NE
4472                     ("& is not a dispatching operation of &!", A, Nam);
4473                end if;
4474 
4475             --  Apply the checks described in 3.10.2(27): if the context is a
4476             --  specific access-to-object, the actual cannot be class-wide.
4477             --  Use base type to exclude access_to_subprogram cases.
4478 
4479             elsif Is_Access_Type (A_Typ)
4480               and then Is_Access_Type (F_Typ)
4481               and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4482               and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4483                          or else (Nkind (A) = N_Attribute_Reference
4484                                    and then
4485                                      Is_Class_Wide_Type (Etype (Prefix (A)))))
4486               and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4487               and then not Is_Controlling_Formal (F)
4488 
4489               --  Disable these checks for call to imported C++ subprograms
4490 
4491               and then not
4492                 (Is_Entity_Name (Name (N))
4493                   and then Is_Imported (Entity (Name (N)))
4494                   and then Convention (Entity (Name (N))) = Convention_CPP)
4495             then
4496                Error_Msg_N
4497                  ("access to class-wide argument not allowed here!", A);
4498 
4499                if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4500                   Error_Msg_Node_2 := Designated_Type (F_Typ);
4501                   Error_Msg_NE
4502                     ("& is not a dispatching operation of &!", A, Nam);
4503                end if;
4504             end if;
4505 
4506             Check_Aliased_Parameter;
4507 
4508             Eval_Actual (A);
4509 
4510             --  If it is a named association, treat the selector_name as a
4511             --  proper identifier, and mark the corresponding entity.
4512 
4513             if Nkind (Parent (A)) = N_Parameter_Association
4514 
4515               --  Ignore reference in SPARK mode, as it refers to an entity not
4516               --  in scope at the point of reference, so the reference should
4517               --  be ignored for computing effects of subprograms.
4518 
4519               and then not GNATprove_Mode
4520             then
4521                --  If subprogram is overridden, use name of formal that
4522                --  is being called.
4523 
4524                if Present (Real_Subp) then
4525                   Set_Entity (Selector_Name (Parent (A)), Real_F);
4526                   Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4527 
4528                else
4529                   Set_Entity (Selector_Name (Parent (A)), F);
4530                   Generate_Reference (F, Selector_Name (Parent (A)));
4531                   Set_Etype (Selector_Name (Parent (A)), F_Typ);
4532                   Generate_Reference (F_Typ, N, ' ');
4533                end if;
4534             end if;
4535 
4536             Prev := A;
4537 
4538             if Ekind (F) /= E_Out_Parameter then
4539                Check_Unset_Reference (A);
4540             end if;
4541 
4542             --  The following checks are only relevant when SPARK_Mode is on as
4543             --  they are not standard Ada legality rule. Internally generated
4544             --  temporaries are ignored.
4545 
4546             if SPARK_Mode = On and then Comes_From_Source (A) then
4547 
4548                --  An effectively volatile object may act as an actual when the
4549                --  corresponding formal is of a non-scalar effectively volatile
4550                --  type (SPARK RM 7.1.3(11)).
4551 
4552                if not Is_Scalar_Type (Etype (F))
4553                  and then Is_Effectively_Volatile (Etype (F))
4554                then
4555                   null;
4556 
4557                --  An effectively volatile object may act as an actual in a
4558                --  call to an instance of Unchecked_Conversion.
4559                --  (SPARK RM 7.1.3(11)).
4560 
4561                elsif Is_Unchecked_Conversion_Instance (Nam) then
4562                   null;
4563 
4564                --  The actual denotes an object
4565 
4566                elsif Is_Effectively_Volatile_Object (A) then
4567                   Error_Msg_N
4568                     ("volatile object cannot act as actual in a call (SPARK "
4569                      & "RM 7.1.3(11))", A);
4570 
4571                --  Otherwise the actual denotes an expression. Inspect the
4572                --  expression and flag each effectively volatile object with
4573                --  enabled property Async_Writers or Effective_Reads as illegal
4574                --  because it apprears within an interfering context. Note that
4575                --  this is usually done in Resolve_Entity_Name, but when the
4576                --  effectively volatile object appears as an actual in a call,
4577                --  the call must be resolved first.
4578 
4579                else
4580                   Flag_Effectively_Volatile_Objects (A);
4581                end if;
4582 
4583                --  Detect an external variable with an enabled property that
4584                --  does not match the mode of the corresponding formal in a
4585                --  procedure call. Functions are not considered because they
4586                --  cannot have effectively volatile formal parameters in the
4587                --  first place.
4588 
4589                if Ekind (Nam) = E_Procedure
4590                  and then Ekind (F) = E_In_Parameter
4591                  and then Is_Entity_Name (A)
4592                  and then Present (Entity (A))
4593                  and then Ekind (Entity (A)) = E_Variable
4594                then
4595                   A_Id := Entity (A);
4596 
4597                   if Async_Readers_Enabled (A_Id) then
4598                      Property_Error (A, A_Id, Name_Async_Readers);
4599                   elsif Effective_Reads_Enabled (A_Id) then
4600                      Property_Error (A, A_Id, Name_Effective_Reads);
4601                   elsif Effective_Writes_Enabled (A_Id) then
4602                      Property_Error (A, A_Id, Name_Effective_Writes);
4603                   end if;
4604                end if;
4605             end if;
4606 
4607             --  A formal parameter of a specific tagged type whose related
4608             --  subprogram is subject to pragma Extensions_Visible with value
4609             --  "False" cannot act as an actual in a subprogram with value
4610             --  "True" (SPARK RM 6.1.7(3)).
4611 
4612             if Is_EVF_Expression (A)
4613               and then Extensions_Visible_Status (Nam) =
4614                        Extensions_Visible_True
4615             then
4616                Error_Msg_N
4617                  ("formal parameter cannot act as actual parameter when "
4618                   & "Extensions_Visible is False", A);
4619                Error_Msg_NE
4620                  ("\subprogram & has Extensions_Visible True", A, Nam);
4621             end if;
4622 
4623             --  The actual parameter of a Ghost subprogram whose formal is of
4624             --  mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4625 
4626             if Comes_From_Source (Nam)
4627               and then Is_Ghost_Entity (Nam)
4628               and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4629               and then Is_Entity_Name (A)
4630               and then Present (Entity (A))
4631               and then not Is_Ghost_Entity (Entity (A))
4632             then
4633                Error_Msg_NE
4634                  ("non-ghost variable & cannot appear as actual in call to "
4635                   & "ghost procedure", A, Entity (A));
4636 
4637                if Ekind (F) = E_In_Out_Parameter then
4638                   Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4639                else
4640                   Error_Msg_N ("\corresponding formal has mode OUT", A);
4641                end if;
4642             end if;
4643 
4644             Next_Actual (A);
4645 
4646          --  Case where actual is not present
4647 
4648          else
4649             Insert_Default;
4650          end if;
4651 
4652          Next_Formal (F);
4653 
4654          if Present (Real_Subp) then
4655             Next_Formal (Real_F);
4656          end if;
4657       end loop;
4658    end Resolve_Actuals;
4659 
4660    -----------------------
4661    -- Resolve_Allocator --
4662    -----------------------
4663 
4664    procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4665       Desig_T  : constant Entity_Id := Designated_Type (Typ);
4666       E        : constant Node_Id   := Expression (N);
4667       Subtyp   : Entity_Id;
4668       Discrim  : Entity_Id;
4669       Constr   : Node_Id;
4670       Aggr     : Node_Id;
4671       Assoc    : Node_Id := Empty;
4672       Disc_Exp : Node_Id;
4673 
4674       procedure Check_Allocator_Discrim_Accessibility
4675         (Disc_Exp  : Node_Id;
4676          Alloc_Typ : Entity_Id);
4677       --  Check that accessibility level associated with an access discriminant
4678       --  initialized in an allocator by the expression Disc_Exp is not deeper
4679       --  than the level of the allocator type Alloc_Typ. An error message is
4680       --  issued if this condition is violated. Specialized checks are done for
4681       --  the cases of a constraint expression which is an access attribute or
4682       --  an access discriminant.
4683 
4684       function In_Dispatching_Context return Boolean;
4685       --  If the allocator is an actual in a call, it is allowed to be class-
4686       --  wide when the context is not because it is a controlling actual.
4687 
4688       -------------------------------------------
4689       -- Check_Allocator_Discrim_Accessibility --
4690       -------------------------------------------
4691 
4692       procedure Check_Allocator_Discrim_Accessibility
4693         (Disc_Exp  : Node_Id;
4694          Alloc_Typ : Entity_Id)
4695       is
4696       begin
4697          if Type_Access_Level (Etype (Disc_Exp)) >
4698             Deepest_Type_Access_Level (Alloc_Typ)
4699          then
4700             Error_Msg_N
4701               ("operand type has deeper level than allocator type", Disc_Exp);
4702 
4703          --  When the expression is an Access attribute the level of the prefix
4704          --  object must not be deeper than that of the allocator's type.
4705 
4706          elsif Nkind (Disc_Exp) = N_Attribute_Reference
4707            and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4708                       Attribute_Access
4709            and then Object_Access_Level (Prefix (Disc_Exp)) >
4710                       Deepest_Type_Access_Level (Alloc_Typ)
4711          then
4712             Error_Msg_N
4713               ("prefix of attribute has deeper level than allocator type",
4714                Disc_Exp);
4715 
4716          --  When the expression is an access discriminant the check is against
4717          --  the level of the prefix object.
4718 
4719          elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4720            and then Nkind (Disc_Exp) = N_Selected_Component
4721            and then Object_Access_Level (Prefix (Disc_Exp)) >
4722                       Deepest_Type_Access_Level (Alloc_Typ)
4723          then
4724             Error_Msg_N
4725               ("access discriminant has deeper level than allocator type",
4726                Disc_Exp);
4727 
4728          --  All other cases are legal
4729 
4730          else
4731             null;
4732          end if;
4733       end Check_Allocator_Discrim_Accessibility;
4734 
4735       ----------------------------
4736       -- In_Dispatching_Context --
4737       ----------------------------
4738 
4739       function In_Dispatching_Context return Boolean is
4740          Par : constant Node_Id := Parent (N);
4741 
4742       begin
4743          return Nkind (Par) in N_Subprogram_Call
4744            and then Is_Entity_Name (Name (Par))
4745            and then Is_Dispatching_Operation (Entity (Name (Par)));
4746       end In_Dispatching_Context;
4747 
4748    --  Start of processing for Resolve_Allocator
4749 
4750    begin
4751       --  Replace general access with specific type
4752 
4753       if Ekind (Etype (N)) = E_Allocator_Type then
4754          Set_Etype (N, Base_Type (Typ));
4755       end if;
4756 
4757       if Is_Abstract_Type (Typ) then
4758          Error_Msg_N ("type of allocator cannot be abstract",  N);
4759       end if;
4760 
4761       --  For qualified expression, resolve the expression using the given
4762       --  subtype (nothing to do for type mark, subtype indication)
4763 
4764       if Nkind (E) = N_Qualified_Expression then
4765          if Is_Class_Wide_Type (Etype (E))
4766            and then not Is_Class_Wide_Type (Desig_T)
4767            and then not In_Dispatching_Context
4768          then
4769             Error_Msg_N
4770               ("class-wide allocator not allowed for this access type", N);
4771          end if;
4772 
4773          Resolve (Expression (E), Etype (E));
4774          Check_Non_Static_Context (Expression (E));
4775          Check_Unset_Reference (Expression (E));
4776 
4777          --  Allocators generated by the build-in-place expansion mechanism
4778          --  are explicitly marked as coming from source but do not need to be
4779          --  checked for limited initialization. To exclude this case, ensure
4780          --  that the parent of the allocator is a source node.
4781 
4782          if Is_Limited_Type (Etype (E))
4783            and then Comes_From_Source (N)
4784            and then Comes_From_Source (Parent (N))
4785            and then not In_Instance_Body
4786          then
4787             if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4788                if Nkind (Parent (N)) = N_Assignment_Statement then
4789                   Error_Msg_N
4790                     ("illegal expression for initialized allocator of a "
4791                      & "limited type (RM 7.5 (2.7/2))", N);
4792                else
4793                   Error_Msg_N
4794                     ("initialization not allowed for limited types", N);
4795                end if;
4796 
4797                Explain_Limited_Type (Etype (E), N);
4798             end if;
4799          end if;
4800 
4801          --  A qualified expression requires an exact match of the type. Class-
4802          --  wide matching is not allowed.
4803 
4804          if (Is_Class_Wide_Type (Etype (Expression (E)))
4805               or else Is_Class_Wide_Type (Etype (E)))
4806            and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4807          then
4808             Wrong_Type (Expression (E), Etype (E));
4809          end if;
4810 
4811          --  Calls to build-in-place functions are not currently supported in
4812          --  allocators for access types associated with a simple storage pool.
4813          --  Supporting such allocators may require passing additional implicit
4814          --  parameters to build-in-place functions (or a significant revision
4815          --  of the current b-i-p implementation to unify the handling for
4816          --  multiple kinds of storage pools). ???
4817 
4818          if Is_Limited_View (Desig_T)
4819            and then Nkind (Expression (E)) = N_Function_Call
4820          then
4821             declare
4822                Pool : constant Entity_Id :=
4823                         Associated_Storage_Pool (Root_Type (Typ));
4824             begin
4825                if Present (Pool)
4826                  and then
4827                    Present (Get_Rep_Pragma
4828                               (Etype (Pool), Name_Simple_Storage_Pool_Type))
4829                then
4830                   Error_Msg_N
4831                     ("limited function calls not yet supported in simple "
4832                      & "storage pool allocators", Expression (E));
4833                end if;
4834             end;
4835          end if;
4836 
4837          --  A special accessibility check is needed for allocators that
4838          --  constrain access discriminants. The level of the type of the
4839          --  expression used to constrain an access discriminant cannot be
4840          --  deeper than the type of the allocator (in contrast to access
4841          --  parameters, where the level of the actual can be arbitrary).
4842 
4843          --  We can't use Valid_Conversion to perform this check because in
4844          --  general the type of the allocator is unrelated to the type of
4845          --  the access discriminant.
4846 
4847          if Ekind (Typ) /= E_Anonymous_Access_Type
4848            or else Is_Local_Anonymous_Access (Typ)
4849          then
4850             Subtyp := Entity (Subtype_Mark (E));
4851 
4852             Aggr := Original_Node (Expression (E));
4853 
4854             if Has_Discriminants (Subtyp)
4855               and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4856             then
4857                Discrim := First_Discriminant (Base_Type (Subtyp));
4858 
4859                --  Get the first component expression of the aggregate
4860 
4861                if Present (Expressions (Aggr)) then
4862                   Disc_Exp := First (Expressions (Aggr));
4863 
4864                elsif Present (Component_Associations (Aggr)) then
4865                   Assoc := First (Component_Associations (Aggr));
4866 
4867                   if Present (Assoc) then
4868                      Disc_Exp := Expression (Assoc);
4869                   else
4870                      Disc_Exp := Empty;
4871                   end if;
4872 
4873                else
4874                   Disc_Exp := Empty;
4875                end if;
4876 
4877                while Present (Discrim) and then Present (Disc_Exp) loop
4878                   if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4879                      Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4880                   end if;
4881 
4882                   Next_Discriminant (Discrim);
4883 
4884                   if Present (Discrim) then
4885                      if Present (Assoc) then
4886                         Next (Assoc);
4887                         Disc_Exp := Expression (Assoc);
4888 
4889                      elsif Present (Next (Disc_Exp)) then
4890                         Next (Disc_Exp);
4891 
4892                      else
4893                         Assoc := First (Component_Associations (Aggr));
4894 
4895                         if Present (Assoc) then
4896                            Disc_Exp := Expression (Assoc);
4897                         else
4898                            Disc_Exp := Empty;
4899                         end if;
4900                      end if;
4901                   end if;
4902                end loop;
4903             end if;
4904          end if;
4905 
4906       --  For a subtype mark or subtype indication, freeze the subtype
4907 
4908       else
4909          Freeze_Expression (E);
4910 
4911          if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4912             Error_Msg_N
4913               ("initialization required for access-to-constant allocator", N);
4914          end if;
4915 
4916          --  A special accessibility check is needed for allocators that
4917          --  constrain access discriminants. The level of the type of the
4918          --  expression used to constrain an access discriminant cannot be
4919          --  deeper than the type of the allocator (in contrast to access
4920          --  parameters, where the level of the actual can be arbitrary).
4921          --  We can't use Valid_Conversion to perform this check because
4922          --  in general the type of the allocator is unrelated to the type
4923          --  of the access discriminant.
4924 
4925          if Nkind (Original_Node (E)) = N_Subtype_Indication
4926            and then (Ekind (Typ) /= E_Anonymous_Access_Type
4927                       or else Is_Local_Anonymous_Access (Typ))
4928          then
4929             Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4930 
4931             if Has_Discriminants (Subtyp) then
4932                Discrim := First_Discriminant (Base_Type (Subtyp));
4933                Constr := First (Constraints (Constraint (Original_Node (E))));
4934                while Present (Discrim) and then Present (Constr) loop
4935                   if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4936                      if Nkind (Constr) = N_Discriminant_Association then
4937                         Disc_Exp := Original_Node (Expression (Constr));
4938                      else
4939                         Disc_Exp := Original_Node (Constr);
4940                      end if;
4941 
4942                      Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4943                   end if;
4944 
4945                   Next_Discriminant (Discrim);
4946                   Next (Constr);
4947                end loop;
4948             end if;
4949          end if;
4950       end if;
4951 
4952       --  Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4953       --  check that the level of the type of the created object is not deeper
4954       --  than the level of the allocator's access type, since extensions can
4955       --  now occur at deeper levels than their ancestor types. This is a
4956       --  static accessibility level check; a run-time check is also needed in
4957       --  the case of an initialized allocator with a class-wide argument (see
4958       --  Expand_Allocator_Expression).
4959 
4960       if Ada_Version >= Ada_2005
4961         and then Is_Class_Wide_Type (Desig_T)
4962       then
4963          declare
4964             Exp_Typ : Entity_Id;
4965 
4966          begin
4967             if Nkind (E) = N_Qualified_Expression then
4968                Exp_Typ := Etype (E);
4969             elsif Nkind (E) = N_Subtype_Indication then
4970                Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4971             else
4972                Exp_Typ := Entity (E);
4973             end if;
4974 
4975             if Type_Access_Level (Exp_Typ) >
4976                  Deepest_Type_Access_Level (Typ)
4977             then
4978                if In_Instance_Body then
4979                   Error_Msg_Warn := SPARK_Mode /= On;
4980                   Error_Msg_N
4981                     ("type in allocator has deeper level than "
4982                      & "designated class-wide type<<", E);
4983                   Error_Msg_N ("\Program_Error [<<", E);
4984                   Rewrite (N,
4985                     Make_Raise_Program_Error (Sloc (N),
4986                       Reason => PE_Accessibility_Check_Failed));
4987                   Set_Etype (N, Typ);
4988 
4989                --  Do not apply Ada 2005 accessibility checks on a class-wide
4990                --  allocator if the type given in the allocator is a formal
4991                --  type. A run-time check will be performed in the instance.
4992 
4993                elsif not Is_Generic_Type (Exp_Typ) then
4994                   Error_Msg_N ("type in allocator has deeper level than "
4995                                & "designated class-wide type", E);
4996                end if;
4997             end if;
4998          end;
4999       end if;
5000 
5001       --  Check for allocation from an empty storage pool
5002 
5003       if No_Pool_Assigned (Typ) then
5004          Error_Msg_N ("allocation from empty storage pool!", N);
5005 
5006       --  If the context is an unchecked conversion, as may happen within an
5007       --  inlined subprogram, the allocator is being resolved with its own
5008       --  anonymous type. In that case, if the target type has a specific
5009       --  storage pool, it must be inherited explicitly by the allocator type.
5010 
5011       elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5012         and then No (Associated_Storage_Pool (Typ))
5013       then
5014          Set_Associated_Storage_Pool
5015            (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5016       end if;
5017 
5018       if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5019          Check_Restriction (No_Anonymous_Allocators, N);
5020       end if;
5021 
5022       --  Check that an allocator with task parts isn't for a nested access
5023       --  type when restriction No_Task_Hierarchy applies.
5024 
5025       if not Is_Library_Level_Entity (Base_Type (Typ))
5026         and then Has_Task (Base_Type (Desig_T))
5027       then
5028          Check_Restriction (No_Task_Hierarchy, N);
5029       end if;
5030 
5031       --  An illegal allocator may be rewritten as a raise Program_Error
5032       --  statement.
5033 
5034       if Nkind (N) = N_Allocator then
5035 
5036          --  An anonymous access discriminant is the definition of a
5037          --  coextension.
5038 
5039          if Ekind (Typ) = E_Anonymous_Access_Type
5040            and then Nkind (Associated_Node_For_Itype (Typ)) =
5041                       N_Discriminant_Specification
5042          then
5043             declare
5044                Discr : constant Entity_Id :=
5045                          Defining_Identifier (Associated_Node_For_Itype (Typ));
5046 
5047             begin
5048                Check_Restriction (No_Coextensions, N);
5049 
5050                --  Ada 2012 AI05-0052: If the designated type of the allocator
5051                --  is limited, then the allocator shall not be used to define
5052                --  the value of an access discriminant unless the discriminated
5053                --  type is immutably limited.
5054 
5055                if Ada_Version >= Ada_2012
5056                  and then Is_Limited_Type (Desig_T)
5057                  and then not Is_Limited_View (Scope (Discr))
5058                then
5059                   Error_Msg_N
5060                     ("only immutably limited types can have anonymous "
5061                      & "access discriminants designating a limited type", N);
5062                end if;
5063             end;
5064 
5065             --  Avoid marking an allocator as a dynamic coextension if it is
5066             --  within a static construct.
5067 
5068             if not Is_Static_Coextension (N) then
5069                Set_Is_Dynamic_Coextension (N);
5070             end if;
5071 
5072          --  Cleanup for potential static coextensions
5073 
5074          else
5075             Set_Is_Dynamic_Coextension (N, False);
5076             Set_Is_Static_Coextension  (N, False);
5077          end if;
5078       end if;
5079 
5080       --  Report a simple error: if the designated object is a local task,
5081       --  its body has not been seen yet, and its activation will fail an
5082       --  elaboration check.
5083 
5084       if Is_Task_Type (Desig_T)
5085         and then Scope (Base_Type (Desig_T)) = Current_Scope
5086         and then Is_Compilation_Unit (Current_Scope)
5087         and then Ekind (Current_Scope) = E_Package
5088         and then not In_Package_Body (Current_Scope)
5089       then
5090          Error_Msg_Warn := SPARK_Mode /= On;
5091          Error_Msg_N ("cannot activate task before body seen<<", N);
5092          Error_Msg_N ("\Program_Error [<<", N);
5093       end if;
5094 
5095       --  Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5096       --  type with a task component on a subpool. This action must raise
5097       --  Program_Error at runtime.
5098 
5099       if Ada_Version >= Ada_2012
5100         and then Nkind (N) = N_Allocator
5101         and then Present (Subpool_Handle_Name (N))
5102         and then Has_Task (Desig_T)
5103       then
5104          Error_Msg_Warn := SPARK_Mode /= On;
5105          Error_Msg_N ("cannot allocate task on subpool<<", N);
5106          Error_Msg_N ("\Program_Error [<<", N);
5107 
5108          Rewrite (N,
5109            Make_Raise_Program_Error (Sloc (N),
5110              Reason => PE_Explicit_Raise));
5111          Set_Etype (N, Typ);
5112       end if;
5113    end Resolve_Allocator;
5114 
5115    ---------------------------
5116    -- Resolve_Arithmetic_Op --
5117    ---------------------------
5118 
5119    --  Used for resolving all arithmetic operators except exponentiation
5120 
5121    procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5122       L   : constant Node_Id := Left_Opnd (N);
5123       R   : constant Node_Id := Right_Opnd (N);
5124       TL  : constant Entity_Id := Base_Type (Etype (L));
5125       TR  : constant Entity_Id := Base_Type (Etype (R));
5126       T   : Entity_Id;
5127       Rop : Node_Id;
5128 
5129       B_Typ : constant Entity_Id := Base_Type (Typ);
5130       --  We do the resolution using the base type, because intermediate values
5131       --  in expressions always are of the base type, not a subtype of it.
5132 
5133       function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5134       --  Returns True if N is in a context that expects "any real type"
5135 
5136       function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5137       --  Return True iff given type is Integer or universal real/integer
5138 
5139       procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5140       --  Choose type of integer literal in fixed-point operation to conform
5141       --  to available fixed-point type. T is the type of the other operand,
5142       --  which is needed to determine the expected type of N.
5143 
5144       procedure Set_Operand_Type (N : Node_Id);
5145       --  Set operand type to T if universal
5146 
5147       -------------------------------
5148       -- Expected_Type_Is_Any_Real --
5149       -------------------------------
5150 
5151       function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5152       begin
5153          --  N is the expression after "delta" in a fixed_point_definition;
5154          --  see RM-3.5.9(6):
5155 
5156          return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5157                                       N_Decimal_Fixed_Point_Definition,
5158 
5159          --  N is one of the bounds in a real_range_specification;
5160          --  see RM-3.5.7(5):
5161 
5162                                       N_Real_Range_Specification,
5163 
5164          --  N is the expression of a delta_constraint;
5165          --  see RM-J.3(3):
5166 
5167                                       N_Delta_Constraint);
5168       end Expected_Type_Is_Any_Real;
5169 
5170       -----------------------------
5171       -- Is_Integer_Or_Universal --
5172       -----------------------------
5173 
5174       function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5175          T     : Entity_Id;
5176          Index : Interp_Index;
5177          It    : Interp;
5178 
5179       begin
5180          if not Is_Overloaded (N) then
5181             T := Etype (N);
5182             return Base_Type (T) = Base_Type (Standard_Integer)
5183               or else T = Universal_Integer
5184               or else T = Universal_Real;
5185          else
5186             Get_First_Interp (N, Index, It);
5187             while Present (It.Typ) loop
5188                if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5189                  or else It.Typ = Universal_Integer
5190                  or else It.Typ = Universal_Real
5191                then
5192                   return True;
5193                end if;
5194 
5195                Get_Next_Interp (Index, It);
5196             end loop;
5197          end if;
5198 
5199          return False;
5200       end Is_Integer_Or_Universal;
5201 
5202       ----------------------------
5203       -- Set_Mixed_Mode_Operand --
5204       ----------------------------
5205 
5206       procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5207          Index : Interp_Index;
5208          It    : Interp;
5209 
5210       begin
5211          if Universal_Interpretation (N) = Universal_Integer then
5212 
5213             --  A universal integer literal is resolved as standard integer
5214             --  except in the case of a fixed-point result, where we leave it
5215             --  as universal (to be handled by Exp_Fixd later on)
5216 
5217             if Is_Fixed_Point_Type (T) then
5218                Resolve (N, Universal_Integer);
5219             else
5220                Resolve (N, Standard_Integer);
5221             end if;
5222 
5223          elsif Universal_Interpretation (N) = Universal_Real
5224            and then (T = Base_Type (Standard_Integer)
5225                       or else T = Universal_Integer
5226                       or else T = Universal_Real)
5227          then
5228             --  A universal real can appear in a fixed-type context. We resolve
5229             --  the literal with that context, even though this might raise an
5230             --  exception prematurely (the other operand may be zero).
5231 
5232             Resolve (N, B_Typ);
5233 
5234          elsif Etype (N) = Base_Type (Standard_Integer)
5235            and then T = Universal_Real
5236            and then Is_Overloaded (N)
5237          then
5238             --  Integer arg in mixed-mode operation. Resolve with universal
5239             --  type, in case preference rule must be applied.
5240 
5241             Resolve (N, Universal_Integer);
5242 
5243          elsif Etype (N) = T
5244            and then B_Typ /= Universal_Fixed
5245          then
5246             --  Not a mixed-mode operation, resolve with context
5247 
5248             Resolve (N, B_Typ);
5249 
5250          elsif Etype (N) = Any_Fixed then
5251 
5252             --  N may itself be a mixed-mode operation, so use context type
5253 
5254             Resolve (N, B_Typ);
5255 
5256          elsif Is_Fixed_Point_Type (T)
5257            and then B_Typ = Universal_Fixed
5258            and then Is_Overloaded (N)
5259          then
5260             --  Must be (fixed * fixed) operation, operand must have one
5261             --  compatible interpretation.
5262 
5263             Resolve (N, Any_Fixed);
5264 
5265          elsif Is_Fixed_Point_Type (B_Typ)
5266            and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5267            and then Is_Overloaded (N)
5268          then
5269             --  C * F(X) in a fixed context, where C is a real literal or a
5270             --  fixed-point expression. F must have either a fixed type
5271             --  interpretation or an integer interpretation, but not both.
5272 
5273             Get_First_Interp (N, Index, It);
5274             while Present (It.Typ) loop
5275                if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5276                   if Analyzed (N) then
5277                      Error_Msg_N ("ambiguous operand in fixed operation", N);
5278                   else
5279                      Resolve (N, Standard_Integer);
5280                   end if;
5281 
5282                elsif Is_Fixed_Point_Type (It.Typ) then
5283                   if Analyzed (N) then
5284                      Error_Msg_N ("ambiguous operand in fixed operation", N);
5285                   else
5286                      Resolve (N, It.Typ);
5287                   end if;
5288                end if;
5289 
5290                Get_Next_Interp (Index, It);
5291             end loop;
5292 
5293             --  Reanalyze the literal with the fixed type of the context. If
5294             --  context is Universal_Fixed, we are within a conversion, leave
5295             --  the literal as a universal real because there is no usable
5296             --  fixed type, and the target of the conversion plays no role in
5297             --  the resolution.
5298 
5299             declare
5300                Op2 : Node_Id;
5301                T2  : Entity_Id;
5302 
5303             begin
5304                if N = L then
5305                   Op2 := R;
5306                else
5307                   Op2 := L;
5308                end if;
5309 
5310                if B_Typ = Universal_Fixed
5311                   and then Nkind (Op2) = N_Real_Literal
5312                then
5313                   T2 := Universal_Real;
5314                else
5315                   T2 := B_Typ;
5316                end if;
5317 
5318                Set_Analyzed (Op2, False);
5319                Resolve (Op2, T2);
5320             end;
5321 
5322          else
5323             Resolve (N);
5324          end if;
5325       end Set_Mixed_Mode_Operand;
5326 
5327       ----------------------
5328       -- Set_Operand_Type --
5329       ----------------------
5330 
5331       procedure Set_Operand_Type (N : Node_Id) is
5332       begin
5333          if Etype (N) = Universal_Integer
5334            or else Etype (N) = Universal_Real
5335          then
5336             Set_Etype (N, T);
5337          end if;
5338       end Set_Operand_Type;
5339 
5340    --  Start of processing for Resolve_Arithmetic_Op
5341 
5342    begin
5343       if Comes_From_Source (N)
5344         and then Ekind (Entity (N)) = E_Function
5345         and then Is_Imported (Entity (N))
5346         and then Is_Intrinsic_Subprogram (Entity (N))
5347       then
5348          Resolve_Intrinsic_Operator (N, Typ);
5349          return;
5350 
5351       --  Special-case for mixed-mode universal expressions or fixed point type
5352       --  operation: each argument is resolved separately. The same treatment
5353       --  is required if one of the operands of a fixed point operation is
5354       --  universal real, since in this case we don't do a conversion to a
5355       --  specific fixed-point type (instead the expander handles the case).
5356 
5357       --  Set the type of the node to its universal interpretation because
5358       --  legality checks on an exponentiation operand need the context.
5359 
5360       elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5361         and then Present (Universal_Interpretation (L))
5362         and then Present (Universal_Interpretation (R))
5363       then
5364          Set_Etype (N, B_Typ);
5365          Resolve (L, Universal_Interpretation (L));
5366          Resolve (R, Universal_Interpretation (R));
5367 
5368       elsif (B_Typ = Universal_Real
5369               or else Etype (N) = Universal_Fixed
5370               or else (Etype (N) = Any_Fixed
5371                         and then Is_Fixed_Point_Type (B_Typ))
5372               or else (Is_Fixed_Point_Type (B_Typ)
5373                         and then (Is_Integer_Or_Universal (L)
5374                                     or else
5375                                   Is_Integer_Or_Universal (R))))
5376         and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5377       then
5378          if TL = Universal_Integer or else TR = Universal_Integer then
5379             Check_For_Visible_Operator (N, B_Typ);
5380          end if;
5381 
5382          --  If context is a fixed type and one operand is integer, the other
5383          --  is resolved with the type of the context.
5384 
5385          if Is_Fixed_Point_Type (B_Typ)
5386            and then (Base_Type (TL) = Base_Type (Standard_Integer)
5387                       or else TL = Universal_Integer)
5388          then
5389             Resolve (R, B_Typ);
5390             Resolve (L, TL);
5391 
5392          elsif Is_Fixed_Point_Type (B_Typ)
5393            and then (Base_Type (TR) = Base_Type (Standard_Integer)
5394                       or else TR = Universal_Integer)
5395          then
5396             Resolve (L, B_Typ);
5397             Resolve (R, TR);
5398 
5399          else
5400             Set_Mixed_Mode_Operand (L, TR);
5401             Set_Mixed_Mode_Operand (R, TL);
5402          end if;
5403 
5404          --  Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5405          --  multiplying operators from being used when the expected type is
5406          --  also universal_fixed. Note that B_Typ will be Universal_Fixed in
5407          --  some cases where the expected type is actually Any_Real;
5408          --  Expected_Type_Is_Any_Real takes care of that case.
5409 
5410          if Etype (N) = Universal_Fixed
5411            or else Etype (N) = Any_Fixed
5412          then
5413             if B_Typ = Universal_Fixed
5414               and then not Expected_Type_Is_Any_Real (N)
5415               and then not Nkind_In (Parent (N), N_Type_Conversion,
5416                                                  N_Unchecked_Type_Conversion)
5417             then
5418                Error_Msg_N ("type cannot be determined from context!", N);
5419                Error_Msg_N ("\explicit conversion to result type required", N);
5420 
5421                Set_Etype (L, Any_Type);
5422                Set_Etype (R, Any_Type);
5423 
5424             else
5425                if Ada_Version = Ada_83
5426                  and then Etype (N) = Universal_Fixed
5427                  and then not
5428                    Nkind_In (Parent (N), N_Type_Conversion,
5429                                          N_Unchecked_Type_Conversion)
5430                then
5431                   Error_Msg_N
5432                     ("(Ada 83) fixed-point operation needs explicit "
5433                      & "conversion", N);
5434                end if;
5435 
5436                --  The expected type is "any real type" in contexts like
5437 
5438                --    type T is delta <universal_fixed-expression> ...
5439 
5440                --  in which case we need to set the type to Universal_Real
5441                --  so that static expression evaluation will work properly.
5442 
5443                if Expected_Type_Is_Any_Real (N) then
5444                   Set_Etype (N, Universal_Real);
5445                else
5446                   Set_Etype (N, B_Typ);
5447                end if;
5448             end if;
5449 
5450          elsif Is_Fixed_Point_Type (B_Typ)
5451            and then (Is_Integer_Or_Universal (L)
5452                        or else Nkind (L) = N_Real_Literal
5453                        or else Nkind (R) = N_Real_Literal
5454                        or else Is_Integer_Or_Universal (R))
5455          then
5456             Set_Etype (N, B_Typ);
5457 
5458          elsif Etype (N) = Any_Fixed then
5459 
5460             --  If no previous errors, this is only possible if one operand is
5461             --  overloaded and the context is universal. Resolve as such.
5462 
5463             Set_Etype (N, B_Typ);
5464          end if;
5465 
5466       else
5467          if (TL = Universal_Integer or else TL = Universal_Real)
5468                and then
5469             (TR = Universal_Integer or else TR = Universal_Real)
5470          then
5471             Check_For_Visible_Operator (N, B_Typ);
5472          end if;
5473 
5474          --  If the context is Universal_Fixed and the operands are also
5475          --  universal fixed, this is an error, unless there is only one
5476          --  applicable fixed_point type (usually Duration).
5477 
5478          if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5479             T := Unique_Fixed_Point_Type (N);
5480 
5481             if T  = Any_Type then
5482                Set_Etype (N, T);
5483                return;
5484             else
5485                Resolve (L, T);
5486                Resolve (R, T);
5487             end if;
5488 
5489          else
5490             Resolve (L, B_Typ);
5491             Resolve (R, B_Typ);
5492          end if;
5493 
5494          --  If one of the arguments was resolved to a non-universal type.
5495          --  label the result of the operation itself with the same type.
5496          --  Do the same for the universal argument, if any.
5497 
5498          T := Intersect_Types (L, R);
5499          Set_Etype (N, Base_Type (T));
5500          Set_Operand_Type (L);
5501          Set_Operand_Type (R);
5502       end if;
5503 
5504       Generate_Operator_Reference (N, Typ);
5505       Analyze_Dimension (N);
5506       Eval_Arithmetic_Op (N);
5507 
5508       --  In SPARK, a multiplication or division with operands of fixed point
5509       --  types must be qualified or explicitly converted to identify the
5510       --  result type.
5511 
5512       if (Is_Fixed_Point_Type (Etype (L))
5513            or else Is_Fixed_Point_Type (Etype (R)))
5514         and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5515         and then
5516           not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5517       then
5518          Check_SPARK_05_Restriction
5519            ("operation should be qualified or explicitly converted", N);
5520       end if;
5521 
5522       --  Set overflow and division checking bit
5523 
5524       if Nkind (N) in N_Op then
5525          if not Overflow_Checks_Suppressed (Etype (N)) then
5526             Enable_Overflow_Check (N);
5527          end if;
5528 
5529          --  Give warning if explicit division by zero
5530 
5531          if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5532            and then not Division_Checks_Suppressed (Etype (N))
5533          then
5534             Rop := Right_Opnd (N);
5535 
5536             if Compile_Time_Known_Value (Rop)
5537               and then ((Is_Integer_Type (Etype (Rop))
5538                           and then Expr_Value (Rop) = Uint_0)
5539                          or else
5540                            (Is_Real_Type (Etype (Rop))
5541                              and then Expr_Value_R (Rop) = Ureal_0))
5542             then
5543                --  Specialize the warning message according to the operation.
5544                --  When SPARK_Mode is On, force a warning instead of an error
5545                --  in that case, as this likely corresponds to deactivated
5546                --  code. The following warnings are for the case
5547 
5548                case Nkind (N) is
5549                   when N_Op_Divide =>
5550 
5551                      --  For division, we have two cases, for float division
5552                      --  of an unconstrained float type, on a machine where
5553                      --  Machine_Overflows is false, we don't get an exception
5554                      --  at run-time, but rather an infinity or Nan. The Nan
5555                      --  case is pretty obscure, so just warn about infinities.
5556 
5557                      if Is_Floating_Point_Type (Typ)
5558                        and then not Is_Constrained (Typ)
5559                        and then not Machine_Overflows_On_Target
5560                      then
5561                         Error_Msg_N
5562                           ("float division by zero, may generate "
5563                            & "'+'/'- infinity??", Right_Opnd (N));
5564 
5565                      --  For all other cases, we get a Constraint_Error
5566 
5567                      else
5568                         Apply_Compile_Time_Constraint_Error
5569                           (N, "division by zero??", CE_Divide_By_Zero,
5570                            Loc  => Sloc (Right_Opnd (N)),
5571                            Warn => SPARK_Mode = On);
5572                      end if;
5573 
5574                   when N_Op_Rem =>
5575                      Apply_Compile_Time_Constraint_Error
5576                        (N, "rem with zero divisor??", CE_Divide_By_Zero,
5577                         Loc  => Sloc (Right_Opnd (N)),
5578                         Warn => SPARK_Mode = On);
5579 
5580                   when N_Op_Mod =>
5581                      Apply_Compile_Time_Constraint_Error
5582                        (N, "mod with zero divisor??", CE_Divide_By_Zero,
5583                         Loc  => Sloc (Right_Opnd (N)),
5584                         Warn => SPARK_Mode = On);
5585 
5586                   --  Division by zero can only happen with division, rem,
5587                   --  and mod operations.
5588 
5589                   when others =>
5590                      raise Program_Error;
5591                end case;
5592 
5593                --  In GNATprove mode, we enable the division check so that
5594                --  GNATprove will issue a message if it cannot be proved.
5595 
5596                if GNATprove_Mode then
5597                   Activate_Division_Check (N);
5598                end if;
5599 
5600             --  Otherwise just set the flag to check at run time
5601 
5602             else
5603                Activate_Division_Check (N);
5604             end if;
5605          end if;
5606 
5607          --  If Restriction No_Implicit_Conditionals is active, then it is
5608          --  violated if either operand can be negative for mod, or for rem
5609          --  if both operands can be negative.
5610 
5611          if Restriction_Check_Required (No_Implicit_Conditionals)
5612            and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5613          then
5614             declare
5615                Lo : Uint;
5616                Hi : Uint;
5617                OK : Boolean;
5618 
5619                LNeg : Boolean;
5620                RNeg : Boolean;
5621                --  Set if corresponding operand might be negative
5622 
5623             begin
5624                Determine_Range
5625                  (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5626                LNeg := (not OK) or else Lo < 0;
5627 
5628                Determine_Range
5629                  (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5630                RNeg := (not OK) or else Lo < 0;
5631 
5632                --  Check if we will be generating conditionals. There are two
5633                --  cases where that can happen, first for REM, the only case
5634                --  is largest negative integer mod -1, where the division can
5635                --  overflow, but we still have to give the right result. The
5636                --  front end generates a test for this annoying case. Here we
5637                --  just test if both operands can be negative (that's what the
5638                --  expander does, so we match its logic here).
5639 
5640                --  The second case is mod where either operand can be negative.
5641                --  In this case, the back end has to generate additional tests.
5642 
5643                if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5644                      or else
5645                   (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5646                then
5647                   Check_Restriction (No_Implicit_Conditionals, N);
5648                end if;
5649             end;
5650          end if;
5651       end if;
5652 
5653       Check_Unset_Reference (L);
5654       Check_Unset_Reference (R);
5655    end Resolve_Arithmetic_Op;
5656 
5657    ------------------
5658    -- Resolve_Call --
5659    ------------------
5660 
5661    procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5662       function Same_Or_Aliased_Subprograms
5663         (S : Entity_Id;
5664          E : Entity_Id) return Boolean;
5665       --  Returns True if the subprogram entity S is the same as E or else
5666       --  S is an alias of E.
5667 
5668       ---------------------------------
5669       -- Same_Or_Aliased_Subprograms --
5670       ---------------------------------
5671 
5672       function Same_Or_Aliased_Subprograms
5673         (S : Entity_Id;
5674          E : Entity_Id) return Boolean
5675       is
5676          Subp_Alias : constant Entity_Id := Alias (S);
5677       begin
5678          return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5679       end Same_Or_Aliased_Subprograms;
5680 
5681       --  Local variables
5682 
5683       Loc      : constant Source_Ptr := Sloc (N);
5684       Subp     : constant Node_Id    := Name (N);
5685       Body_Id  : Entity_Id;
5686       I        : Interp_Index;
5687       It       : Interp;
5688       Nam      : Entity_Id;
5689       Nam_Decl : Node_Id;
5690       Nam_UA   : Entity_Id;
5691       Norm_OK  : Boolean;
5692       Rtype    : Entity_Id;
5693       Scop     : Entity_Id;
5694 
5695    --  Start of processing for Resolve_Call
5696 
5697    begin
5698       --  The context imposes a unique interpretation with type Typ on a
5699       --  procedure or function call. Find the entity of the subprogram that
5700       --  yields the expected type, and propagate the corresponding formal
5701       --  constraints on the actuals. The caller has established that an
5702       --  interpretation exists, and emitted an error if not unique.
5703 
5704       --  First deal with the case of a call to an access-to-subprogram,
5705       --  dereference made explicit in Analyze_Call.
5706 
5707       if Ekind (Etype (Subp)) = E_Subprogram_Type then
5708          if not Is_Overloaded (Subp) then
5709             Nam := Etype (Subp);
5710 
5711          else
5712             --  Find the interpretation whose type (a subprogram type) has a
5713             --  return type that is compatible with the context. Analysis of
5714             --  the node has established that one exists.
5715 
5716             Nam := Empty;
5717 
5718             Get_First_Interp (Subp,  I, It);
5719             while Present (It.Typ) loop
5720                if Covers (Typ, Etype (It.Typ)) then
5721                   Nam := It.Typ;
5722                   exit;
5723                end if;
5724 
5725                Get_Next_Interp (I, It);
5726             end loop;
5727 
5728             if No (Nam) then
5729                raise Program_Error;
5730             end if;
5731          end if;
5732 
5733          --  If the prefix is not an entity, then resolve it
5734 
5735          if not Is_Entity_Name (Subp) then
5736             Resolve (Subp, Nam);
5737          end if;
5738 
5739          --  For an indirect call, we always invalidate checks, since we do not
5740          --  know whether the subprogram is local or global. Yes we could do
5741          --  better here, e.g. by knowing that there are no local subprograms,
5742          --  but it does not seem worth the effort. Similarly, we kill all
5743          --  knowledge of current constant values.
5744 
5745          Kill_Current_Values;
5746 
5747       --  If this is a procedure call which is really an entry call, do
5748       --  the conversion of the procedure call to an entry call. Protected
5749       --  operations use the same circuitry because the name in the call
5750       --  can be an arbitrary expression with special resolution rules.
5751 
5752       elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5753         or else (Is_Entity_Name (Subp)
5754                   and then Ekind (Entity (Subp)) = E_Entry)
5755       then
5756          Resolve_Entry_Call (N, Typ);
5757          Check_Elab_Call (N);
5758 
5759          --  Kill checks and constant values, as above for indirect case
5760          --  Who knows what happens when another task is activated?
5761 
5762          Kill_Current_Values;
5763          return;
5764 
5765       --  Normal subprogram call with name established in Resolve
5766 
5767       elsif not (Is_Type (Entity (Subp))) then
5768          Nam := Entity (Subp);
5769          Set_Entity_With_Checks (Subp, Nam);
5770 
5771       --  Otherwise we must have the case of an overloaded call
5772 
5773       else
5774          pragma Assert (Is_Overloaded (Subp));
5775 
5776          --  Initialize Nam to prevent warning (we know it will be assigned
5777          --  in the loop below, but the compiler does not know that).
5778 
5779          Nam := Empty;
5780 
5781          Get_First_Interp (Subp,  I, It);
5782          while Present (It.Typ) loop
5783             if Covers (Typ, It.Typ) then
5784                Nam := It.Nam;
5785                Set_Entity_With_Checks (Subp, Nam);
5786                exit;
5787             end if;
5788 
5789             Get_Next_Interp (I, It);
5790          end loop;
5791       end if;
5792 
5793       if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5794         and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5795         and then Nkind (Subp) /= N_Explicit_Dereference
5796         and then Present (Parameter_Associations (N))
5797       then
5798          --  The prefix is a parameterless function call that returns an access
5799          --  to subprogram. If parameters are present in the current call, add
5800          --  add an explicit dereference. We use the base type here because
5801          --  within an instance these may be subtypes.
5802 
5803          --  The dereference is added either in Analyze_Call or here. Should
5804          --  be consolidated ???
5805 
5806          Set_Is_Overloaded (Subp, False);
5807          Set_Etype (Subp, Etype (Nam));
5808          Insert_Explicit_Dereference (Subp);
5809          Nam := Designated_Type (Etype (Nam));
5810          Resolve (Subp, Nam);
5811       end if;
5812 
5813       --  Check that a call to Current_Task does not occur in an entry body
5814 
5815       if Is_RTE (Nam, RE_Current_Task) then
5816          declare
5817             P : Node_Id;
5818 
5819          begin
5820             P := N;
5821             loop
5822                P := Parent (P);
5823 
5824                --  Exclude calls that occur within the default of a formal
5825                --  parameter of the entry, since those are evaluated outside
5826                --  of the body.
5827 
5828                exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5829 
5830                if Nkind (P) = N_Entry_Body
5831                  or else (Nkind (P) = N_Subprogram_Body
5832                            and then Is_Entry_Barrier_Function (P))
5833                then
5834                   Rtype := Etype (N);
5835                   Error_Msg_Warn := SPARK_Mode /= On;
5836                   Error_Msg_NE
5837                     ("& should not be used in entry body (RM C.7(17))<<",
5838                      N, Nam);
5839                   Error_Msg_NE ("\Program_Error [<<", N, Nam);
5840                   Rewrite (N,
5841                     Make_Raise_Program_Error (Loc,
5842                       Reason => PE_Current_Task_In_Entry_Body));
5843                   Set_Etype (N, Rtype);
5844                   return;
5845                end if;
5846             end loop;
5847          end;
5848       end if;
5849 
5850       --  Check that a procedure call does not occur in the context of the
5851       --  entry call statement of a conditional or timed entry call. Note that
5852       --  the case of a call to a subprogram renaming of an entry will also be
5853       --  rejected. The test for N not being an N_Entry_Call_Statement is
5854       --  defensive, covering the possibility that the processing of entry
5855       --  calls might reach this point due to later modifications of the code
5856       --  above.
5857 
5858       if Nkind (Parent (N)) = N_Entry_Call_Alternative
5859         and then Nkind (N) /= N_Entry_Call_Statement
5860         and then Entry_Call_Statement (Parent (N)) = N
5861       then
5862          if Ada_Version < Ada_2005 then
5863             Error_Msg_N ("entry call required in select statement", N);
5864 
5865          --  Ada 2005 (AI-345): If a procedure_call_statement is used
5866          --  for a procedure_or_entry_call, the procedure_name or
5867          --  procedure_prefix of the procedure_call_statement shall denote
5868          --  an entry renamed by a procedure, or (a view of) a primitive
5869          --  subprogram of a limited interface whose first parameter is
5870          --  a controlling parameter.
5871 
5872          elsif Nkind (N) = N_Procedure_Call_Statement
5873            and then not Is_Renamed_Entry (Nam)
5874            and then not Is_Controlling_Limited_Procedure (Nam)
5875          then
5876             Error_Msg_N
5877              ("entry call or dispatching primitive of interface required", N);
5878          end if;
5879       end if;
5880 
5881       --  If the SPARK_05 restriction is active, we are not allowed
5882       --  to have a call to a subprogram before we see its completion.
5883 
5884       if not Has_Completion (Nam)
5885         and then Restriction_Check_Required (SPARK_05)
5886 
5887         --  Don't flag strange internal calls
5888 
5889         and then Comes_From_Source (N)
5890         and then Comes_From_Source (Nam)
5891 
5892         --  Only flag calls in extended main source
5893 
5894         and then In_Extended_Main_Source_Unit (Nam)
5895         and then In_Extended_Main_Source_Unit (N)
5896 
5897         --  Exclude enumeration literals from this processing
5898 
5899         and then Ekind (Nam) /= E_Enumeration_Literal
5900       then
5901          Check_SPARK_05_Restriction
5902            ("call to subprogram cannot appear before its body", N);
5903       end if;
5904 
5905       --  Check that this is not a call to a protected procedure or entry from
5906       --  within a protected function.
5907 
5908       Check_Internal_Protected_Use (N, Nam);
5909 
5910       --  Freeze the subprogram name if not in a spec-expression. Note that
5911       --  we freeze procedure calls as well as function calls. Procedure calls
5912       --  are not frozen according to the rules (RM 13.14(14)) because it is
5913       --  impossible to have a procedure call to a non-frozen procedure in
5914       --  pure Ada, but in the code that we generate in the expander, this
5915       --  rule needs extending because we can generate procedure calls that
5916       --  need freezing.
5917 
5918       --  In Ada 2012, expression functions may be called within pre/post
5919       --  conditions of subsequent functions or expression functions. Such
5920       --  calls do not freeze when they appear within generated bodies,
5921       --  (including the body of another expression function) which would
5922       --  place the freeze node in the wrong scope. An expression function
5923       --  is frozen in the usual fashion, by the appearance of a real body,
5924       --  or at the end of a declarative part.
5925 
5926       if Is_Entity_Name (Subp)
5927         and then not In_Spec_Expression
5928         and then not Is_Expression_Function_Or_Completion (Current_Scope)
5929         and then
5930           (not Is_Expression_Function_Or_Completion (Entity (Subp))
5931             or else Scope (Entity (Subp)) = Current_Scope)
5932       then
5933          Freeze_Expression (Subp);
5934       end if;
5935 
5936       --  For a predefined operator, the type of the result is the type imposed
5937       --  by context, except for a predefined operation on universal fixed.
5938       --  Otherwise The type of the call is the type returned by the subprogram
5939       --  being called.
5940 
5941       if Is_Predefined_Op (Nam) then
5942          if Etype (N) /= Universal_Fixed then
5943             Set_Etype (N, Typ);
5944          end if;
5945 
5946       --  If the subprogram returns an array type, and the context requires the
5947       --  component type of that array type, the node is really an indexing of
5948       --  the parameterless call. Resolve as such. A pathological case occurs
5949       --  when the type of the component is an access to the array type. In
5950       --  this case the call is truly ambiguous.
5951 
5952       elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
5953         and then
5954           ((Is_Array_Type (Etype (Nam))
5955              and then Covers (Typ, Component_Type (Etype (Nam))))
5956            or else
5957              (Is_Access_Type (Etype (Nam))
5958                and then Is_Array_Type (Designated_Type (Etype (Nam)))
5959                and then
5960                  Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))))
5961       then
5962          declare
5963             Index_Node : Node_Id;
5964             New_Subp   : Node_Id;
5965             Ret_Type   : constant Entity_Id := Etype (Nam);
5966 
5967          begin
5968             if Is_Access_Type (Ret_Type)
5969               and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
5970             then
5971                Error_Msg_N
5972                  ("cannot disambiguate function call and indexing", N);
5973             else
5974                New_Subp := Relocate_Node (Subp);
5975 
5976                --  The called entity may be an explicit dereference, in which
5977                --  case there is no entity to set.
5978 
5979                if Nkind (New_Subp) /= N_Explicit_Dereference then
5980                   Set_Entity (Subp, Nam);
5981                end if;
5982 
5983                if (Is_Array_Type (Ret_Type)
5984                     and then Component_Type (Ret_Type) /= Any_Type)
5985                  or else
5986                   (Is_Access_Type (Ret_Type)
5987                     and then
5988                       Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
5989                then
5990                   if Needs_No_Actuals (Nam) then
5991 
5992                      --  Indexed call to a parameterless function
5993 
5994                      Index_Node :=
5995                        Make_Indexed_Component (Loc,
5996                          Prefix      =>
5997                            Make_Function_Call (Loc, Name => New_Subp),
5998                          Expressions => Parameter_Associations (N));
5999                   else
6000                      --  An Ada 2005 prefixed call to a primitive operation
6001                      --  whose first parameter is the prefix. This prefix was
6002                      --  prepended to the parameter list, which is actually a
6003                      --  list of indexes. Remove the prefix in order to build
6004                      --  the proper indexed component.
6005 
6006                      Index_Node :=
6007                         Make_Indexed_Component (Loc,
6008                           Prefix       =>
6009                             Make_Function_Call (Loc,
6010                                Name                   => New_Subp,
6011                                Parameter_Associations =>
6012                                  New_List
6013                                    (Remove_Head (Parameter_Associations (N)))),
6014                            Expressions => Parameter_Associations (N));
6015                   end if;
6016 
6017                   --  Preserve the parenthesis count of the node
6018 
6019                   Set_Paren_Count (Index_Node, Paren_Count (N));
6020 
6021                   --  Since we are correcting a node classification error made
6022                   --  by the parser, we call Replace rather than Rewrite.
6023 
6024                   Replace (N, Index_Node);
6025 
6026                   Set_Etype (Prefix (N), Ret_Type);
6027                   Set_Etype (N, Typ);
6028                   Resolve_Indexed_Component (N, Typ);
6029                   Check_Elab_Call (Prefix (N));
6030                end if;
6031             end if;
6032 
6033             return;
6034          end;
6035 
6036       else
6037          Set_Etype (N, Etype (Nam));
6038       end if;
6039 
6040       --  In the case where the call is to an overloaded subprogram, Analyze
6041       --  calls Normalize_Actuals once per overloaded subprogram. Therefore in
6042       --  such a case Normalize_Actuals needs to be called once more to order
6043       --  the actuals correctly. Otherwise the call will have the ordering
6044       --  given by the last overloaded subprogram whether this is the correct
6045       --  one being called or not.
6046 
6047       if Is_Overloaded (Subp) then
6048          Normalize_Actuals (N, Nam, False, Norm_OK);
6049          pragma Assert (Norm_OK);
6050       end if;
6051 
6052       --  In any case, call is fully resolved now. Reset Overload flag, to
6053       --  prevent subsequent overload resolution if node is analyzed again
6054 
6055       Set_Is_Overloaded (Subp, False);
6056       Set_Is_Overloaded (N, False);
6057 
6058       --  A Ghost entity must appear in a specific context
6059 
6060       if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6061          Check_Ghost_Context (Nam, N);
6062       end if;
6063 
6064       --  If we are calling the current subprogram from immediately within its
6065       --  body, then that is the case where we can sometimes detect cases of
6066       --  infinite recursion statically. Do not try this in case restriction
6067       --  No_Recursion is in effect anyway, and do it only for source calls.
6068 
6069       if Comes_From_Source (N) then
6070          Scop := Current_Scope;
6071 
6072          --  Check violation of SPARK_05 restriction which does not permit
6073          --  a subprogram body to contain a call to the subprogram directly.
6074 
6075          if Restriction_Check_Required (SPARK_05)
6076            and then Same_Or_Aliased_Subprograms (Nam, Scop)
6077          then
6078             Check_SPARK_05_Restriction
6079               ("subprogram may not contain direct call to itself", N);
6080          end if;
6081 
6082          --  Issue warning for possible infinite recursion in the absence
6083          --  of the No_Recursion restriction.
6084 
6085          if Same_Or_Aliased_Subprograms (Nam, Scop)
6086            and then not Restriction_Active (No_Recursion)
6087            and then Check_Infinite_Recursion (N)
6088          then
6089             --  Here we detected and flagged an infinite recursion, so we do
6090             --  not need to test the case below for further warnings. Also we
6091             --  are all done if we now have a raise SE node.
6092 
6093             if Nkind (N) = N_Raise_Storage_Error then
6094                return;
6095             end if;
6096 
6097          --  If call is to immediately containing subprogram, then check for
6098          --  the case of a possible run-time detectable infinite recursion.
6099 
6100          else
6101             Scope_Loop : while Scop /= Standard_Standard loop
6102                if Same_Or_Aliased_Subprograms (Nam, Scop) then
6103 
6104                   --  Although in general case, recursion is not statically
6105                   --  checkable, the case of calling an immediately containing
6106                   --  subprogram is easy to catch.
6107 
6108                   Check_Restriction (No_Recursion, N);
6109 
6110                   --  If the recursive call is to a parameterless subprogram,
6111                   --  then even if we can't statically detect infinite
6112                   --  recursion, this is pretty suspicious, and we output a
6113                   --  warning. Furthermore, we will try later to detect some
6114                   --  cases here at run time by expanding checking code (see
6115                   --  Detect_Infinite_Recursion in package Exp_Ch6).
6116 
6117                   --  If the recursive call is within a handler, do not emit a
6118                   --  warning, because this is a common idiom: loop until input
6119                   --  is correct, catch illegal input in handler and restart.
6120 
6121                   if No (First_Formal (Nam))
6122                     and then Etype (Nam) = Standard_Void_Type
6123                     and then not Error_Posted (N)
6124                     and then Nkind (Parent (N)) /= N_Exception_Handler
6125                   then
6126                      --  For the case of a procedure call. We give the message
6127                      --  only if the call is the first statement in a sequence
6128                      --  of statements, or if all previous statements are
6129                      --  simple assignments. This is simply a heuristic to
6130                      --  decrease false positives, without losing too many good
6131                      --  warnings. The idea is that these previous statements
6132                      --  may affect global variables the procedure depends on.
6133                      --  We also exclude raise statements, that may arise from
6134                      --  constraint checks and are probably unrelated to the
6135                      --  intended control flow.
6136 
6137                      if Nkind (N) = N_Procedure_Call_Statement
6138                        and then Is_List_Member (N)
6139                      then
6140                         declare
6141                            P : Node_Id;
6142                         begin
6143                            P := Prev (N);
6144                            while Present (P) loop
6145                               if not Nkind_In (P, N_Assignment_Statement,
6146                                                   N_Raise_Constraint_Error)
6147                               then
6148                                  exit Scope_Loop;
6149                               end if;
6150 
6151                               Prev (P);
6152                            end loop;
6153                         end;
6154                      end if;
6155 
6156                      --  Do not give warning if we are in a conditional context
6157 
6158                      declare
6159                         K : constant Node_Kind := Nkind (Parent (N));
6160                      begin
6161                         if (K = N_Loop_Statement
6162                              and then Present (Iteration_Scheme (Parent (N))))
6163                           or else K = N_If_Statement
6164                           or else K = N_Elsif_Part
6165                           or else K = N_Case_Statement_Alternative
6166                         then
6167                            exit Scope_Loop;
6168                         end if;
6169                      end;
6170 
6171                      --  Here warning is to be issued
6172 
6173                      Set_Has_Recursive_Call (Nam);
6174                      Error_Msg_Warn := SPARK_Mode /= On;
6175                      Error_Msg_N ("possible infinite recursion<<!", N);
6176                      Error_Msg_N ("\Storage_Error ]<<!", N);
6177                   end if;
6178 
6179                   exit Scope_Loop;
6180                end if;
6181 
6182                Scop := Scope (Scop);
6183             end loop Scope_Loop;
6184          end if;
6185       end if;
6186 
6187       --  Check obsolescent reference to Ada.Characters.Handling subprogram
6188 
6189       Check_Obsolescent_2005_Entity (Nam, Subp);
6190 
6191       --  If subprogram name is a predefined operator, it was given in
6192       --  functional notation. Replace call node with operator node, so
6193       --  that actuals can be resolved appropriately.
6194 
6195       if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6196          Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6197          return;
6198 
6199       elsif Present (Alias (Nam))
6200         and then Is_Predefined_Op (Alias (Nam))
6201       then
6202          Resolve_Actuals (N, Nam);
6203          Make_Call_Into_Operator (N, Typ, Alias (Nam));
6204          return;
6205       end if;
6206 
6207       --  Create a transient scope if the resulting type requires it
6208 
6209       --  There are several notable exceptions:
6210 
6211       --  a) In init procs, the transient scope overhead is not needed, and is
6212       --  even incorrect when the call is a nested initialization call for a
6213       --  component whose expansion may generate adjust calls. However, if the
6214       --  call is some other procedure call within an initialization procedure
6215       --  (for example a call to Create_Task in the init_proc of the task
6216       --  run-time record) a transient scope must be created around this call.
6217 
6218       --  b) Enumeration literal pseudo-calls need no transient scope
6219 
6220       --  c) Intrinsic subprograms (Unchecked_Conversion and source info
6221       --  functions) do not use the secondary stack even though the return
6222       --  type may be unconstrained.
6223 
6224       --  d) Calls to a build-in-place function, since such functions may
6225       --  allocate their result directly in a target object, and cases where
6226       --  the result does get allocated in the secondary stack are checked for
6227       --  within the specialized Exp_Ch6 procedures for expanding those
6228       --  build-in-place calls.
6229 
6230       --  e) If the subprogram is marked Inline_Always, then even if it returns
6231       --  an unconstrained type the call does not require use of the secondary
6232       --  stack. However, inlining will only take place if the body to inline
6233       --  is already present. It may not be available if e.g. the subprogram is
6234       --  declared in a child instance.
6235 
6236       --  If this is an initialization call for a type whose construction
6237       --  uses the secondary stack, and it is not a nested call to initialize
6238       --  a component, we do need to create a transient scope for it. We
6239       --  check for this by traversing the type in Check_Initialization_Call.
6240 
6241       if Is_Inlined (Nam)
6242         and then Has_Pragma_Inline (Nam)
6243         and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6244         and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6245       then
6246          null;
6247 
6248       elsif Ekind (Nam) = E_Enumeration_Literal
6249         or else Is_Build_In_Place_Function (Nam)
6250         or else Is_Intrinsic_Subprogram (Nam)
6251       then
6252          null;
6253 
6254       elsif Expander_Active
6255         and then Is_Type (Etype (Nam))
6256         and then Requires_Transient_Scope (Etype (Nam))
6257         and then
6258           (not Within_Init_Proc
6259             or else
6260               (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
6261       then
6262          Establish_Transient_Scope (N, Sec_Stack => True);
6263 
6264          --  If the call appears within the bounds of a loop, it will
6265          --  be rewritten and reanalyzed, nothing left to do here.
6266 
6267          if Nkind (N) /= N_Function_Call then
6268             return;
6269          end if;
6270 
6271       elsif Is_Init_Proc (Nam)
6272         and then not Within_Init_Proc
6273       then
6274          Check_Initialization_Call (N, Nam);
6275       end if;
6276 
6277       --  A protected function cannot be called within the definition of the
6278       --  enclosing protected type, unless it is part of a pre/postcondition
6279       --  on another protected operation.
6280 
6281       if Is_Protected_Type (Scope (Nam))
6282         and then In_Open_Scopes (Scope (Nam))
6283         and then not Has_Completion (Scope (Nam))
6284         and then not In_Spec_Expression
6285       then
6286          Error_Msg_NE
6287            ("& cannot be called before end of protected definition", N, Nam);
6288       end if;
6289 
6290       --  Propagate interpretation to actuals, and add default expressions
6291       --  where needed.
6292 
6293       if Present (First_Formal (Nam)) then
6294          Resolve_Actuals (N, Nam);
6295 
6296       --  Overloaded literals are rewritten as function calls, for purpose of
6297       --  resolution. After resolution, we can replace the call with the
6298       --  literal itself.
6299 
6300       elsif Ekind (Nam) = E_Enumeration_Literal then
6301          Copy_Node (Subp, N);
6302          Resolve_Entity_Name (N, Typ);
6303 
6304          --  Avoid validation, since it is a static function call
6305 
6306          Generate_Reference (Nam, Subp);
6307          return;
6308       end if;
6309 
6310       --  If the subprogram is not global, then kill all saved values and
6311       --  checks. This is a bit conservative, since in many cases we could do
6312       --  better, but it is not worth the effort. Similarly, we kill constant
6313       --  values. However we do not need to do this for internal entities
6314       --  (unless they are inherited user-defined subprograms), since they
6315       --  are not in the business of molesting local values.
6316 
6317       --  If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6318       --  kill all checks and values for calls to global subprograms. This
6319       --  takes care of the case where an access to a local subprogram is
6320       --  taken, and could be passed directly or indirectly and then called
6321       --  from almost any context.
6322 
6323       --  Note: we do not do this step till after resolving the actuals. That
6324       --  way we still take advantage of the current value information while
6325       --  scanning the actuals.
6326 
6327       --  We suppress killing values if we are processing the nodes associated
6328       --  with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6329       --  type kills all the values as part of analyzing the code that
6330       --  initializes the dispatch tables.
6331 
6332       if Inside_Freezing_Actions = 0
6333         and then (not Is_Library_Level_Entity (Nam)
6334                    or else Suppress_Value_Tracking_On_Call
6335                              (Nearest_Dynamic_Scope (Current_Scope)))
6336         and then (Comes_From_Source (Nam)
6337                    or else (Present (Alias (Nam))
6338                              and then Comes_From_Source (Alias (Nam))))
6339       then
6340          Kill_Current_Values;
6341       end if;
6342 
6343       --  If we are warning about unread OUT parameters, this is the place to
6344       --  set Last_Assignment for OUT and IN OUT parameters. We have to do this
6345       --  after the above call to Kill_Current_Values (since that call clears
6346       --  the Last_Assignment field of all local variables).
6347 
6348       if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6349         and then Comes_From_Source (N)
6350         and then In_Extended_Main_Source_Unit (N)
6351       then
6352          declare
6353             F : Entity_Id;
6354             A : Node_Id;
6355 
6356          begin
6357             F := First_Formal (Nam);
6358             A := First_Actual (N);
6359             while Present (F) and then Present (A) loop
6360                if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6361                  and then Warn_On_Modified_As_Out_Parameter (F)
6362                  and then Is_Entity_Name (A)
6363                  and then Present (Entity (A))
6364                  and then Comes_From_Source (N)
6365                  and then Safe_To_Capture_Value (N, Entity (A))
6366                then
6367                   Set_Last_Assignment (Entity (A), A);
6368                end if;
6369 
6370                Next_Formal (F);
6371                Next_Actual (A);
6372             end loop;
6373          end;
6374       end if;
6375 
6376       --  If the subprogram is a primitive operation, check whether or not
6377       --  it is a correct dispatching call.
6378 
6379       if Is_Overloadable (Nam)
6380         and then Is_Dispatching_Operation (Nam)
6381       then
6382          Check_Dispatching_Call (N);
6383 
6384       elsif Ekind (Nam) /= E_Subprogram_Type
6385         and then Is_Abstract_Subprogram (Nam)
6386         and then not In_Instance
6387       then
6388          Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6389       end if;
6390 
6391       --  If this is a dispatching call, generate the appropriate reference,
6392       --  for better source navigation in GPS.
6393 
6394       if Is_Overloadable (Nam)
6395         and then Present (Controlling_Argument (N))
6396       then
6397          Generate_Reference (Nam, Subp, 'R');
6398 
6399       --  Normal case, not a dispatching call: generate a call reference
6400 
6401       else
6402          Generate_Reference (Nam, Subp, 's');
6403       end if;
6404 
6405       if Is_Intrinsic_Subprogram (Nam) then
6406          Check_Intrinsic_Call (N);
6407       end if;
6408 
6409       --  Check for violation of restriction No_Specific_Termination_Handlers
6410       --  and warn on a potentially blocking call to Abort_Task.
6411 
6412       if Restriction_Check_Required (No_Specific_Termination_Handlers)
6413         and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6414                     or else
6415                   Is_RTE (Nam, RE_Specific_Handler))
6416       then
6417          Check_Restriction (No_Specific_Termination_Handlers, N);
6418 
6419       elsif Is_RTE (Nam, RE_Abort_Task) then
6420          Check_Potentially_Blocking_Operation (N);
6421       end if;
6422 
6423       --  A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6424       --  timing event violates restriction No_Relative_Delay (AI-0211). We
6425       --  need to check the second argument to determine whether it is an
6426       --  absolute or relative timing event.
6427 
6428       if Restriction_Check_Required (No_Relative_Delay)
6429         and then Is_RTE (Nam, RE_Set_Handler)
6430         and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6431       then
6432          Check_Restriction (No_Relative_Delay, N);
6433       end if;
6434 
6435       --  Issue an error for a call to an eliminated subprogram. This routine
6436       --  will not perform the check if the call appears within a default
6437       --  expression.
6438 
6439       Check_For_Eliminated_Subprogram (Subp, Nam);
6440 
6441       --  In formal mode, the primitive operations of a tagged type or type
6442       --  extension do not include functions that return the tagged type.
6443 
6444       if Nkind (N) = N_Function_Call
6445         and then Is_Tagged_Type (Etype (N))
6446         and then Is_Entity_Name (Name (N))
6447         and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6448       then
6449          Check_SPARK_05_Restriction ("function not inherited", N);
6450       end if;
6451 
6452       --  Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6453       --  class-wide and the call dispatches on result in a context that does
6454       --  not provide a tag, the call raises Program_Error.
6455 
6456       if Nkind (N) = N_Function_Call
6457         and then In_Instance
6458         and then Is_Generic_Actual_Type (Typ)
6459         and then Is_Class_Wide_Type (Typ)
6460         and then Has_Controlling_Result (Nam)
6461         and then Nkind (Parent (N)) = N_Object_Declaration
6462       then
6463          --  Verify that none of the formals are controlling
6464 
6465          declare
6466             Call_OK : Boolean := False;
6467             F       : Entity_Id;
6468 
6469          begin
6470             F := First_Formal (Nam);
6471             while Present (F) loop
6472                if Is_Controlling_Formal (F) then
6473                   Call_OK := True;
6474                   exit;
6475                end if;
6476 
6477                Next_Formal (F);
6478             end loop;
6479 
6480             if not Call_OK then
6481                Error_Msg_Warn := SPARK_Mode /= On;
6482                Error_Msg_N ("!cannot determine tag of result<<", N);
6483                Error_Msg_N ("\Program_Error [<<!", N);
6484                Insert_Action (N,
6485                  Make_Raise_Program_Error (Sloc (N),
6486                     Reason => PE_Explicit_Raise));
6487             end if;
6488          end;
6489       end if;
6490 
6491       --  Check for calling a function with OUT or IN OUT parameter when the
6492       --  calling context (us right now) is not Ada 2012, so does not allow
6493       --  OUT or IN OUT parameters in function calls. Functions declared in
6494       --  a predefined unit are OK, as they may be called indirectly from a
6495       --  user-declared instantiation.
6496 
6497       if Ada_Version < Ada_2012
6498         and then Ekind (Nam) = E_Function
6499         and then Has_Out_Or_In_Out_Parameter (Nam)
6500         and then not In_Predefined_Unit (Nam)
6501       then
6502          Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6503          Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6504       end if;
6505 
6506       --  Check the dimensions of the actuals in the call. For function calls,
6507       --  propagate the dimensions from the returned type to N.
6508 
6509       Analyze_Dimension_Call (N, Nam);
6510 
6511       --  All done, evaluate call and deal with elaboration issues
6512 
6513       Eval_Call (N);
6514       Check_Elab_Call (N);
6515 
6516       --  In GNATprove mode, expansion is disabled, but we want to inline some
6517       --  subprograms to facilitate formal verification. Indirect calls through
6518       --  a subprogram type or within a generic cannot be inlined. Inlining is
6519       --  performed only for calls subject to SPARK_Mode on.
6520 
6521       if GNATprove_Mode
6522         and then SPARK_Mode = On
6523         and then Is_Overloadable (Nam)
6524         and then not Inside_A_Generic
6525       then
6526          Nam_UA   := Ultimate_Alias (Nam);
6527          Nam_Decl := Unit_Declaration_Node (Nam_UA);
6528 
6529          if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6530             Body_Id := Corresponding_Body (Nam_Decl);
6531 
6532             --  Nothing to do if the subprogram is not eligible for inlining in
6533             --  GNATprove mode.
6534 
6535             if not Is_Inlined_Always (Nam_UA)
6536               or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6537             then
6538                null;
6539 
6540             --  Calls cannot be inlined inside assertions, as GNATprove treats
6541             --  assertions as logic expressions.
6542 
6543             elsif In_Assertion_Expr /= 0 then
6544                Cannot_Inline
6545                  ("cannot inline & (in assertion expression)?", N, Nam_UA);
6546 
6547             --  Calls cannot be inlined inside default expressions
6548 
6549             elsif In_Default_Expr then
6550                Cannot_Inline
6551                  ("cannot inline & (in default expression)?", N, Nam_UA);
6552 
6553             --  Inlining should not be performed during pre-analysis
6554 
6555             elsif Full_Analysis then
6556 
6557                --  With the one-pass inlining technique, a call cannot be
6558                --  inlined if the corresponding body has not been seen yet.
6559 
6560                if No (Body_Id) then
6561                   Cannot_Inline
6562                     ("cannot inline & (body not seen yet)?", N, Nam_UA);
6563 
6564                --  Nothing to do if there is no body to inline, indicating that
6565                --  the subprogram is not suitable for inlining in GNATprove
6566                --  mode.
6567 
6568                elsif No (Body_To_Inline (Nam_Decl)) then
6569                   null;
6570 
6571                --  Do not inline calls inside expression functions, as this
6572                --  would prevent interpreting them as logical formulas in
6573                --  GNATprove.
6574 
6575                elsif Present (Current_Subprogram)
6576                        and then
6577                      Is_Expression_Function_Or_Completion (Current_Subprogram)
6578                then
6579                   Cannot_Inline
6580                     ("cannot inline & (inside expression function)?",
6581                      N, Nam_UA);
6582 
6583                --  Calls cannot be inlined inside potentially unevaluated
6584                --  expressions, as this would create complex actions inside
6585                --  expressions, that are not handled by GNATprove.
6586 
6587                elsif Is_Potentially_Unevaluated (N) then
6588                   Cannot_Inline
6589                     ("cannot inline & (in potentially unevaluated context)?",
6590                      N, Nam_UA);
6591 
6592                --  Otherwise, inline the call
6593 
6594                else
6595                   Expand_Inlined_Call (N, Nam_UA, Nam);
6596                end if;
6597             end if;
6598          end if;
6599       end if;
6600 
6601       Warn_On_Overlapping_Actuals (Nam, N);
6602    end Resolve_Call;
6603 
6604    -----------------------------
6605    -- Resolve_Case_Expression --
6606    -----------------------------
6607 
6608    procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6609       Alt      : Node_Id;
6610       Alt_Expr : Node_Id;
6611       Alt_Typ  : Entity_Id;
6612       Is_Dyn   : Boolean;
6613 
6614    begin
6615       Alt := First (Alternatives (N));
6616       while Present (Alt) loop
6617          Alt_Expr := Expression (Alt);
6618          Resolve (Alt_Expr, Typ);
6619          Alt_Typ := Etype (Alt_Expr);
6620 
6621          --  When the expression is of a scalar subtype different from the
6622          --  result subtype, then insert a conversion to ensure the generation
6623          --  of a constraint check.
6624 
6625          if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6626             Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6627             Analyze_And_Resolve (Alt_Expr, Typ);
6628          end if;
6629 
6630          Next (Alt);
6631       end loop;
6632 
6633       --  Apply RM 4.5.7 (17/3): whether the expression is statically or
6634       --  dynamically tagged must be known statically.
6635 
6636       if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6637          Alt    := First (Alternatives (N));
6638          Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6639 
6640          while Present (Alt) loop
6641             if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6642                Error_Msg_N
6643                  ("all or none of the dependent expressions can be "
6644                   & "dynamically tagged", N);
6645             end if;
6646 
6647             Next (Alt);
6648          end loop;
6649       end if;
6650 
6651       Set_Etype (N, Typ);
6652       Eval_Case_Expression (N);
6653    end Resolve_Case_Expression;
6654 
6655    -------------------------------
6656    -- Resolve_Character_Literal --
6657    -------------------------------
6658 
6659    procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6660       B_Typ : constant Entity_Id := Base_Type (Typ);
6661       C     : Entity_Id;
6662 
6663    begin
6664       --  Verify that the character does belong to the type of the context
6665 
6666       Set_Etype (N, B_Typ);
6667       Eval_Character_Literal (N);
6668 
6669       --  Wide_Wide_Character literals must always be defined, since the set
6670       --  of wide wide character literals is complete, i.e. if a character
6671       --  literal is accepted by the parser, then it is OK for wide wide
6672       --  character (out of range character literals are rejected).
6673 
6674       if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6675          return;
6676 
6677       --  Always accept character literal for type Any_Character, which
6678       --  occurs in error situations and in comparisons of literals, both
6679       --  of which should accept all literals.
6680 
6681       elsif B_Typ = Any_Character then
6682          return;
6683 
6684       --  For Standard.Character or a type derived from it, check that the
6685       --  literal is in range.
6686 
6687       elsif Root_Type (B_Typ) = Standard_Character then
6688          if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6689             return;
6690          end if;
6691 
6692       --  For Standard.Wide_Character or a type derived from it, check that the
6693       --  literal is in range.
6694 
6695       elsif Root_Type (B_Typ) = Standard_Wide_Character then
6696          if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6697             return;
6698          end if;
6699 
6700       --  For Standard.Wide_Wide_Character or a type derived from it, we
6701       --  know the literal is in range, since the parser checked.
6702 
6703       elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6704          return;
6705 
6706       --  If the entity is already set, this has already been resolved in a
6707       --  generic context, or comes from expansion. Nothing else to do.
6708 
6709       elsif Present (Entity (N)) then
6710          return;
6711 
6712       --  Otherwise we have a user defined character type, and we can use the
6713       --  standard visibility mechanisms to locate the referenced entity.
6714 
6715       else
6716          C := Current_Entity (N);
6717          while Present (C) loop
6718             if Etype (C) = B_Typ then
6719                Set_Entity_With_Checks (N, C);
6720                Generate_Reference (C, N);
6721                return;
6722             end if;
6723 
6724             C := Homonym (C);
6725          end loop;
6726       end if;
6727 
6728       --  If we fall through, then the literal does not match any of the
6729       --  entries of the enumeration type. This isn't just a constraint error
6730       --  situation, it is an illegality (see RM 4.2).
6731 
6732       Error_Msg_NE
6733         ("character not defined for }", N, First_Subtype (B_Typ));
6734    end Resolve_Character_Literal;
6735 
6736    ---------------------------
6737    -- Resolve_Comparison_Op --
6738    ---------------------------
6739 
6740    --  Context requires a boolean type, and plays no role in resolution.
6741    --  Processing identical to that for equality operators. The result type is
6742    --  the base type, which matters when pathological subtypes of booleans with
6743    --  limited ranges are used.
6744 
6745    procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6746       L : constant Node_Id := Left_Opnd (N);
6747       R : constant Node_Id := Right_Opnd (N);
6748       T : Entity_Id;
6749 
6750    begin
6751       --  If this is an intrinsic operation which is not predefined, use the
6752       --  types of its declared arguments to resolve the possibly overloaded
6753       --  operands. Otherwise the operands are unambiguous and specify the
6754       --  expected type.
6755 
6756       if Scope (Entity (N)) /= Standard_Standard then
6757          T := Etype (First_Entity (Entity (N)));
6758 
6759       else
6760          T := Find_Unique_Type (L, R);
6761 
6762          if T = Any_Fixed then
6763             T := Unique_Fixed_Point_Type (L);
6764          end if;
6765       end if;
6766 
6767       Set_Etype (N, Base_Type (Typ));
6768       Generate_Reference (T, N, ' ');
6769 
6770       --  Skip remaining processing if already set to Any_Type
6771 
6772       if T = Any_Type then
6773          return;
6774       end if;
6775 
6776       --  Deal with other error cases
6777 
6778       if T = Any_String    or else
6779          T = Any_Composite or else
6780          T = Any_Character
6781       then
6782          if T = Any_Character then
6783             Ambiguous_Character (L);
6784          else
6785             Error_Msg_N ("ambiguous operands for comparison", N);
6786          end if;
6787 
6788          Set_Etype (N, Any_Type);
6789          return;
6790       end if;
6791 
6792       --  Resolve the operands if types OK
6793 
6794       Resolve (L, T);
6795       Resolve (R, T);
6796       Check_Unset_Reference (L);
6797       Check_Unset_Reference (R);
6798       Generate_Operator_Reference (N, T);
6799       Check_Low_Bound_Tested (N);
6800 
6801       --  In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6802       --  types or array types except String.
6803 
6804       if Is_Boolean_Type (T) then
6805          Check_SPARK_05_Restriction
6806            ("comparison is not defined on Boolean type", N);
6807 
6808       elsif Is_Array_Type (T)
6809         and then Base_Type (T) /= Standard_String
6810       then
6811          Check_SPARK_05_Restriction
6812            ("comparison is not defined on array types other than String", N);
6813       end if;
6814 
6815       --  Check comparison on unordered enumeration
6816 
6817       if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6818          Error_Msg_Sloc := Sloc (Etype (L));
6819          Error_Msg_NE
6820            ("comparison on unordered enumeration type& declared#?U?",
6821             N, Etype (L));
6822       end if;
6823 
6824       --  Evaluate the relation (note we do this after the above check since
6825       --  this Eval call may change N to True/False.
6826 
6827       Analyze_Dimension (N);
6828       Eval_Relational_Op (N);
6829    end Resolve_Comparison_Op;
6830 
6831    -----------------------------------------
6832    -- Resolve_Discrete_Subtype_Indication --
6833    -----------------------------------------
6834 
6835    procedure Resolve_Discrete_Subtype_Indication
6836      (N   : Node_Id;
6837       Typ : Entity_Id)
6838    is
6839       R : Node_Id;
6840       S : Entity_Id;
6841 
6842    begin
6843       Analyze (Subtype_Mark (N));
6844       S := Entity (Subtype_Mark (N));
6845 
6846       if Nkind (Constraint (N)) /= N_Range_Constraint then
6847          Error_Msg_N ("expect range constraint for discrete type", N);
6848          Set_Etype (N, Any_Type);
6849 
6850       else
6851          R := Range_Expression (Constraint (N));
6852 
6853          if R = Error then
6854             return;
6855          end if;
6856 
6857          Analyze (R);
6858 
6859          if Base_Type (S) /= Base_Type (Typ) then
6860             Error_Msg_NE
6861               ("expect subtype of }", N, First_Subtype (Typ));
6862 
6863             --  Rewrite the constraint as a range of Typ
6864             --  to allow compilation to proceed further.
6865 
6866             Set_Etype (N, Typ);
6867             Rewrite (Low_Bound (R),
6868               Make_Attribute_Reference (Sloc (Low_Bound (R)),
6869                 Prefix         => New_Occurrence_Of (Typ, Sloc (R)),
6870                 Attribute_Name => Name_First));
6871             Rewrite (High_Bound (R),
6872               Make_Attribute_Reference (Sloc (High_Bound (R)),
6873                 Prefix         => New_Occurrence_Of (Typ, Sloc (R)),
6874                 Attribute_Name => Name_First));
6875 
6876          else
6877             Resolve (R, Typ);
6878             Set_Etype (N, Etype (R));
6879 
6880             --  Additionally, we must check that the bounds are compatible
6881             --  with the given subtype, which might be different from the
6882             --  type of the context.
6883 
6884             Apply_Range_Check (R, S);
6885 
6886             --  ??? If the above check statically detects a Constraint_Error
6887             --  it replaces the offending bound(s) of the range R with a
6888             --  Constraint_Error node. When the itype which uses these bounds
6889             --  is frozen the resulting call to Duplicate_Subexpr generates
6890             --  a new temporary for the bounds.
6891 
6892             --  Unfortunately there are other itypes that are also made depend
6893             --  on these bounds, so when Duplicate_Subexpr is called they get
6894             --  a forward reference to the newly created temporaries and Gigi
6895             --  aborts on such forward references. This is probably sign of a
6896             --  more fundamental problem somewhere else in either the order of
6897             --  itype freezing or the way certain itypes are constructed.
6898 
6899             --  To get around this problem we call Remove_Side_Effects right
6900             --  away if either bounds of R are a Constraint_Error.
6901 
6902             declare
6903                L : constant Node_Id := Low_Bound (R);
6904                H : constant Node_Id := High_Bound (R);
6905 
6906             begin
6907                if Nkind (L) = N_Raise_Constraint_Error then
6908                   Remove_Side_Effects (L);
6909                end if;
6910 
6911                if Nkind (H) = N_Raise_Constraint_Error then
6912                   Remove_Side_Effects (H);
6913                end if;
6914             end;
6915 
6916             Check_Unset_Reference (Low_Bound  (R));
6917             Check_Unset_Reference (High_Bound (R));
6918          end if;
6919       end if;
6920    end Resolve_Discrete_Subtype_Indication;
6921 
6922    -------------------------
6923    -- Resolve_Entity_Name --
6924    -------------------------
6925 
6926    --  Used to resolve identifiers and expanded names
6927 
6928    procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
6929       function Is_Assignment_Or_Object_Expression
6930         (Context : Node_Id;
6931          Expr    : Node_Id) return Boolean;
6932       --  Determine whether node Context denotes an assignment statement or an
6933       --  object declaration whose expression is node Expr.
6934 
6935       ----------------------------------------
6936       -- Is_Assignment_Or_Object_Expression --
6937       ----------------------------------------
6938 
6939       function Is_Assignment_Or_Object_Expression
6940         (Context : Node_Id;
6941          Expr    : Node_Id) return Boolean
6942       is
6943       begin
6944          if Nkind_In (Context, N_Assignment_Statement,
6945                                N_Object_Declaration)
6946            and then Expression (Context) = Expr
6947          then
6948             return True;
6949 
6950          --  Check whether a construct that yields a name is the expression of
6951          --  an assignment statement or an object declaration.
6952 
6953          elsif (Nkind_In (Context, N_Attribute_Reference,
6954                                    N_Explicit_Dereference,
6955                                    N_Indexed_Component,
6956                                    N_Selected_Component,
6957                                    N_Slice)
6958                   and then Prefix (Context) = Expr)
6959            or else
6960                (Nkind_In (Context, N_Type_Conversion,
6961                                    N_Unchecked_Type_Conversion)
6962                   and then Expression (Context) = Expr)
6963          then
6964             return
6965               Is_Assignment_Or_Object_Expression
6966                 (Context => Parent (Context),
6967                  Expr    => Context);
6968 
6969          --  Otherwise the context is not an assignment statement or an object
6970          --  declaration.
6971 
6972          else
6973             return False;
6974          end if;
6975       end Is_Assignment_Or_Object_Expression;
6976 
6977       --  Local variables
6978 
6979       E   : constant Entity_Id := Entity (N);
6980       Par : Node_Id;
6981 
6982    --  Start of processing for Resolve_Entity_Name
6983 
6984    begin
6985       --  If garbage from errors, set to Any_Type and return
6986 
6987       if No (E) and then Total_Errors_Detected /= 0 then
6988          Set_Etype (N, Any_Type);
6989          return;
6990       end if;
6991 
6992       --  Replace named numbers by corresponding literals. Note that this is
6993       --  the one case where Resolve_Entity_Name must reset the Etype, since
6994       --  it is currently marked as universal.
6995 
6996       if Ekind (E) = E_Named_Integer then
6997          Set_Etype (N, Typ);
6998          Eval_Named_Integer (N);
6999 
7000       elsif Ekind (E) = E_Named_Real then
7001          Set_Etype (N, Typ);
7002          Eval_Named_Real (N);
7003 
7004       --  For enumeration literals, we need to make sure that a proper style
7005       --  check is done, since such literals are overloaded, and thus we did
7006       --  not do a style check during the first phase of analysis.
7007 
7008       elsif Ekind (E) = E_Enumeration_Literal then
7009          Set_Entity_With_Checks (N, E);
7010          Eval_Entity_Name (N);
7011 
7012       --  Case of (sub)type name appearing in a context where an expression
7013       --  is expected. This is legal if occurrence is a current instance.
7014       --  See RM 8.6 (17/3).
7015 
7016       elsif Is_Type (E) then
7017          if Is_Current_Instance (N) then
7018             null;
7019 
7020          --  Any other use is an error
7021 
7022          else
7023             Error_Msg_N
7024                ("invalid use of subtype mark in expression or call", N);
7025          end if;
7026 
7027       --  Check discriminant use if entity is discriminant in current scope,
7028       --  i.e. discriminant of record or concurrent type currently being
7029       --  analyzed. Uses in corresponding body are unrestricted.
7030 
7031       elsif Ekind (E) = E_Discriminant
7032         and then Scope (E) = Current_Scope
7033         and then not Has_Completion (Current_Scope)
7034       then
7035          Check_Discriminant_Use (N);
7036 
7037       --  A parameterless generic function cannot appear in a context that
7038       --  requires resolution.
7039 
7040       elsif Ekind (E) = E_Generic_Function then
7041          Error_Msg_N ("illegal use of generic function", N);
7042 
7043       --  In Ada 83 an OUT parameter cannot be read
7044 
7045       elsif Ekind (E) = E_Out_Parameter
7046         and then (Nkind (Parent (N)) in N_Op
7047                    or else Nkind (Parent (N)) = N_Explicit_Dereference
7048                    or else Is_Assignment_Or_Object_Expression
7049                              (Context => Parent (N),
7050                               Expr    => N))
7051       then
7052          if Ada_Version = Ada_83 then
7053             Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7054          end if;
7055 
7056       --  In all other cases, just do the possible static evaluation
7057 
7058       else
7059          --  A deferred constant that appears in an expression must have a
7060          --  completion, unless it has been removed by in-place expansion of
7061          --  an aggregate. A constant that is a renaming does not need
7062          --  initialization.
7063 
7064          if Ekind (E) = E_Constant
7065            and then Comes_From_Source (E)
7066            and then No (Constant_Value (E))
7067            and then Is_Frozen (Etype (E))
7068            and then not In_Spec_Expression
7069            and then not Is_Imported (E)
7070            and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7071          then
7072             if No_Initialization (Parent (E))
7073               or else (Present (Full_View (E))
7074                         and then No_Initialization (Parent (Full_View (E))))
7075             then
7076                null;
7077             else
7078                Error_Msg_N
7079                  ("deferred constant is frozen before completion", N);
7080             end if;
7081          end if;
7082 
7083          Eval_Entity_Name (N);
7084       end if;
7085 
7086       Par := Parent (N);
7087 
7088       --  When the entity appears in a parameter association, retrieve the
7089       --  related subprogram call.
7090 
7091       if Nkind (Par) = N_Parameter_Association then
7092          Par := Parent (Par);
7093       end if;
7094 
7095       if Comes_From_Source (N) then
7096 
7097          --  The following checks are only relevant when SPARK_Mode is on as
7098          --  they are not standard Ada legality rules.
7099 
7100          if SPARK_Mode = On then
7101 
7102             --  An effectively volatile object subject to enabled properties
7103             --  Async_Writers or Effective_Reads must appear in non-interfering
7104             --  context (SPARK RM 7.1.3(12)).
7105 
7106             if Is_Object (E)
7107               and then Is_Effectively_Volatile (E)
7108               and then (Async_Writers_Enabled (E)
7109                          or else Effective_Reads_Enabled (E))
7110               and then not Is_OK_Volatile_Context (Par, N)
7111             then
7112                SPARK_Msg_N
7113                  ("volatile object cannot appear in this context "
7114                   & "(SPARK RM 7.1.3(12))", N);
7115             end if;
7116 
7117             --  Check for possible elaboration issues with respect to reads of
7118             --  variables. The act of renaming the variable is not considered a
7119             --  read as it simply establishes an alias.
7120 
7121             if Ekind (E) = E_Variable
7122               and then Dynamic_Elaboration_Checks
7123               and then Nkind (Par) /= N_Object_Renaming_Declaration
7124             then
7125                Check_Elab_Call (N);
7126             end if;
7127 
7128             --  The variable may eventually become a constituent of a single
7129             --  protected/task type. Record the reference now and verify its
7130             --  legality when analyzing the contract of the variable
7131             --  (SPARK RM 9.3).
7132 
7133             if Ekind (E) = E_Variable then
7134                Record_Possible_Part_Of_Reference (E, N);
7135             end if;
7136          end if;
7137 
7138          --  A Ghost entity must appear in a specific context
7139 
7140          if Is_Ghost_Entity (E) then
7141             Check_Ghost_Context (E, N);
7142          end if;
7143       end if;
7144    end Resolve_Entity_Name;
7145 
7146    -------------------
7147    -- Resolve_Entry --
7148    -------------------
7149 
7150    procedure Resolve_Entry (Entry_Name : Node_Id) is
7151       Loc    : constant Source_Ptr := Sloc (Entry_Name);
7152       Nam    : Entity_Id;
7153       New_N  : Node_Id;
7154       S      : Entity_Id;
7155       Tsk    : Entity_Id;
7156       E_Name : Node_Id;
7157       Index  : Node_Id;
7158 
7159       function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7160       --  If the bounds of the entry family being called depend on task
7161       --  discriminants, build a new index subtype where a discriminant is
7162       --  replaced with the value of the discriminant of the target task.
7163       --  The target task is the prefix of the entry name in the call.
7164 
7165       -----------------------
7166       -- Actual_Index_Type --
7167       -----------------------
7168 
7169       function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7170          Typ   : constant Entity_Id := Entry_Index_Type (E);
7171          Tsk   : constant Entity_Id := Scope (E);
7172          Lo    : constant Node_Id   := Type_Low_Bound  (Typ);
7173          Hi    : constant Node_Id   := Type_High_Bound (Typ);
7174          New_T : Entity_Id;
7175 
7176          function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7177          --  If the bound is given by a discriminant, replace with a reference
7178          --  to the discriminant of the same name in the target task. If the
7179          --  entry name is the target of a requeue statement and the entry is
7180          --  in the current protected object, the bound to be used is the
7181          --  discriminal of the object (see Apply_Range_Checks for details of
7182          --  the transformation).
7183 
7184          -----------------------------
7185          -- Actual_Discriminant_Ref --
7186          -----------------------------
7187 
7188          function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7189             Typ : constant Entity_Id := Etype (Bound);
7190             Ref : Node_Id;
7191 
7192          begin
7193             Remove_Side_Effects (Bound);
7194 
7195             if not Is_Entity_Name (Bound)
7196               or else Ekind (Entity (Bound)) /= E_Discriminant
7197             then
7198                return Bound;
7199 
7200             elsif Is_Protected_Type (Tsk)
7201               and then In_Open_Scopes (Tsk)
7202               and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7203             then
7204                --  Note: here Bound denotes a discriminant of the corresponding
7205                --  record type tskV, whose discriminal is a formal of the
7206                --  init-proc tskVIP. What we want is the body discriminal,
7207                --  which is associated to the discriminant of the original
7208                --  concurrent type tsk.
7209 
7210                return New_Occurrence_Of
7211                         (Find_Body_Discriminal (Entity (Bound)), Loc);
7212 
7213             else
7214                Ref :=
7215                  Make_Selected_Component (Loc,
7216                    Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7217                    Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7218                Analyze (Ref);
7219                Resolve (Ref, Typ);
7220                return Ref;
7221             end if;
7222          end Actual_Discriminant_Ref;
7223 
7224       --  Start of processing for Actual_Index_Type
7225 
7226       begin
7227          if not Has_Discriminants (Tsk)
7228            or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7229          then
7230             return Entry_Index_Type (E);
7231 
7232          else
7233             New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7234             Set_Etype        (New_T, Base_Type (Typ));
7235             Set_Size_Info    (New_T, Typ);
7236             Set_RM_Size      (New_T, RM_Size (Typ));
7237             Set_Scalar_Range (New_T,
7238               Make_Range (Sloc (Entry_Name),
7239                 Low_Bound  => Actual_Discriminant_Ref (Lo),
7240                 High_Bound => Actual_Discriminant_Ref (Hi)));
7241 
7242             return New_T;
7243          end if;
7244       end Actual_Index_Type;
7245 
7246    --  Start of processing for Resolve_Entry
7247 
7248    begin
7249       --  Find name of entry being called, and resolve prefix of name with its
7250       --  own type. The prefix can be overloaded, and the name and signature of
7251       --  the entry must be taken into account.
7252 
7253       if Nkind (Entry_Name) = N_Indexed_Component then
7254 
7255          --  Case of dealing with entry family within the current tasks
7256 
7257          E_Name := Prefix (Entry_Name);
7258 
7259       else
7260          E_Name := Entry_Name;
7261       end if;
7262 
7263       if Is_Entity_Name (E_Name) then
7264 
7265          --  Entry call to an entry (or entry family) in the current task. This
7266          --  is legal even though the task will deadlock. Rewrite as call to
7267          --  current task.
7268 
7269          --  This can also be a call to an entry in an enclosing task. If this
7270          --  is a single task, we have to retrieve its name, because the scope
7271          --  of the entry is the task type, not the object. If the enclosing
7272          --  task is a task type, the identity of the task is given by its own
7273          --  self variable.
7274 
7275          --  Finally this can be a requeue on an entry of the same task or
7276          --  protected object.
7277 
7278          S := Scope (Entity (E_Name));
7279 
7280          for J in reverse 0 .. Scope_Stack.Last loop
7281             if Is_Task_Type (Scope_Stack.Table (J).Entity)
7282               and then not Comes_From_Source (S)
7283             then
7284                --  S is an enclosing task or protected object. The concurrent
7285                --  declaration has been converted into a type declaration, and
7286                --  the object itself has an object declaration that follows
7287                --  the type in the same declarative part.
7288 
7289                Tsk := Next_Entity (S);
7290                while Etype (Tsk) /= S loop
7291                   Next_Entity (Tsk);
7292                end loop;
7293 
7294                S := Tsk;
7295                exit;
7296 
7297             elsif S = Scope_Stack.Table (J).Entity then
7298 
7299                --  Call to current task. Will be transformed into call to Self
7300 
7301                exit;
7302 
7303             end if;
7304          end loop;
7305 
7306          New_N :=
7307            Make_Selected_Component (Loc,
7308              Prefix => New_Occurrence_Of (S, Loc),
7309              Selector_Name =>
7310                New_Occurrence_Of (Entity (E_Name), Loc));
7311          Rewrite (E_Name, New_N);
7312          Analyze (E_Name);
7313 
7314       elsif Nkind (Entry_Name) = N_Selected_Component
7315         and then Is_Overloaded (Prefix (Entry_Name))
7316       then
7317          --  Use the entry name (which must be unique at this point) to find
7318          --  the prefix that returns the corresponding task/protected type.
7319 
7320          declare
7321             Pref : constant Node_Id := Prefix (Entry_Name);
7322             Ent  : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7323             I    : Interp_Index;
7324             It   : Interp;
7325 
7326          begin
7327             Get_First_Interp (Pref, I, It);
7328             while Present (It.Typ) loop
7329                if Scope (Ent) = It.Typ then
7330                   Set_Etype (Pref, It.Typ);
7331                   exit;
7332                end if;
7333 
7334                Get_Next_Interp (I, It);
7335             end loop;
7336          end;
7337       end if;
7338 
7339       if Nkind (Entry_Name) = N_Selected_Component then
7340          Resolve (Prefix (Entry_Name));
7341 
7342       else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7343          Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7344          Resolve (Prefix (Prefix (Entry_Name)));
7345          Index := First (Expressions (Entry_Name));
7346          Resolve (Index, Entry_Index_Type (Nam));
7347 
7348          --  Up to this point the expression could have been the actual in a
7349          --  simple entry call, and be given by a named association.
7350 
7351          if Nkind (Index) = N_Parameter_Association then
7352             Error_Msg_N ("expect expression for entry index", Index);
7353          else
7354             Apply_Range_Check (Index, Actual_Index_Type (Nam));
7355          end if;
7356       end if;
7357    end Resolve_Entry;
7358 
7359    ------------------------
7360    -- Resolve_Entry_Call --
7361    ------------------------
7362 
7363    procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7364       Entry_Name  : constant Node_Id    := Name (N);
7365       Loc         : constant Source_Ptr := Sloc (Entry_Name);
7366       Actuals     : List_Id;
7367       First_Named : Node_Id;
7368       Nam         : Entity_Id;
7369       Norm_OK     : Boolean;
7370       Obj         : Node_Id;
7371       Was_Over    : Boolean;
7372 
7373    begin
7374       --  We kill all checks here, because it does not seem worth the effort to
7375       --  do anything better, an entry call is a big operation.
7376 
7377       Kill_All_Checks;
7378 
7379       --  Processing of the name is similar for entry calls and protected
7380       --  operation calls. Once the entity is determined, we can complete
7381       --  the resolution of the actuals.
7382 
7383       --  The selector may be overloaded, in the case of a protected object
7384       --  with overloaded functions. The type of the context is used for
7385       --  resolution.
7386 
7387       if Nkind (Entry_Name) = N_Selected_Component
7388         and then Is_Overloaded (Selector_Name (Entry_Name))
7389         and then Typ /= Standard_Void_Type
7390       then
7391          declare
7392             I  : Interp_Index;
7393             It : Interp;
7394 
7395          begin
7396             Get_First_Interp (Selector_Name (Entry_Name), I, It);
7397             while Present (It.Typ) loop
7398                if Covers (Typ, It.Typ) then
7399                   Set_Entity (Selector_Name (Entry_Name), It.Nam);
7400                   Set_Etype  (Entry_Name, It.Typ);
7401 
7402                   Generate_Reference (It.Typ, N, ' ');
7403                end if;
7404 
7405                Get_Next_Interp (I, It);
7406             end loop;
7407          end;
7408       end if;
7409 
7410       Resolve_Entry (Entry_Name);
7411 
7412       if Nkind (Entry_Name) = N_Selected_Component then
7413 
7414          --  Simple entry call
7415 
7416          Nam := Entity (Selector_Name (Entry_Name));
7417          Obj := Prefix (Entry_Name);
7418          Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7419 
7420       else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7421 
7422          --  Call to member of entry family
7423 
7424          Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7425          Obj := Prefix (Prefix (Entry_Name));
7426          Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7427       end if;
7428 
7429       --  We cannot in general check the maximum depth of protected entry calls
7430       --  at compile time. But we can tell that any protected entry call at all
7431       --  violates a specified nesting depth of zero.
7432 
7433       if Is_Protected_Type (Scope (Nam)) then
7434          Check_Restriction (Max_Entry_Queue_Length, N);
7435       end if;
7436 
7437       --  Use context type to disambiguate a protected function that can be
7438       --  called without actuals and that returns an array type, and where the
7439       --  argument list may be an indexing of the returned value.
7440 
7441       if Ekind (Nam) = E_Function
7442         and then Needs_No_Actuals (Nam)
7443         and then Present (Parameter_Associations (N))
7444         and then
7445           ((Is_Array_Type (Etype (Nam))
7446              and then Covers (Typ, Component_Type (Etype (Nam))))
7447 
7448             or else (Is_Access_Type (Etype (Nam))
7449                       and then Is_Array_Type (Designated_Type (Etype (Nam)))
7450                       and then
7451                         Covers
7452                          (Typ,
7453                           Component_Type (Designated_Type (Etype (Nam))))))
7454       then
7455          declare
7456             Index_Node : Node_Id;
7457 
7458          begin
7459             Index_Node :=
7460               Make_Indexed_Component (Loc,
7461                 Prefix =>
7462                   Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7463                 Expressions => Parameter_Associations (N));
7464 
7465             --  Since we are correcting a node classification error made by the
7466             --  parser, we call Replace rather than Rewrite.
7467 
7468             Replace (N, Index_Node);
7469             Set_Etype (Prefix (N), Etype (Nam));
7470             Set_Etype (N, Typ);
7471             Resolve_Indexed_Component (N, Typ);
7472             return;
7473          end;
7474       end if;
7475 
7476       if Ekind_In (Nam, E_Entry, E_Entry_Family)
7477         and then Present (Contract_Wrapper (Nam))
7478         and then Current_Scope /= Contract_Wrapper (Nam)
7479       then
7480 
7481          --  Note the entity being called before rewriting the call, so that
7482          --  it appears used at this point.
7483 
7484          Generate_Reference (Nam, Entry_Name, 'r');
7485 
7486          --  Rewrite as call to the precondition wrapper, adding the task
7487          --  object to the list of actuals. If the call is to a member of an
7488          --  entry family, include the index as well.
7489 
7490          declare
7491             New_Call    : Node_Id;
7492             New_Actuals : List_Id;
7493 
7494          begin
7495             New_Actuals := New_List (Obj);
7496 
7497             if Nkind (Entry_Name) = N_Indexed_Component then
7498                Append_To (New_Actuals,
7499                  New_Copy_Tree (First (Expressions (Entry_Name))));
7500             end if;
7501 
7502             Append_List (Parameter_Associations (N), New_Actuals);
7503             New_Call :=
7504               Make_Procedure_Call_Statement (Loc,
7505                 Name                   =>
7506                   New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7507                 Parameter_Associations => New_Actuals);
7508             Rewrite (N, New_Call);
7509 
7510             --  Preanalyze and resolve new call. Current procedure is called
7511             --  from Resolve_Call, after which expansion will take place.
7512 
7513             Preanalyze_And_Resolve (N);
7514             return;
7515          end;
7516       end if;
7517 
7518       --  The operation name may have been overloaded. Order the actuals
7519       --  according to the formals of the resolved entity, and set the return
7520       --  type to that of the operation.
7521 
7522       if Was_Over then
7523          Normalize_Actuals (N, Nam, False, Norm_OK);
7524          pragma Assert (Norm_OK);
7525          Set_Etype (N, Etype (Nam));
7526 
7527          --  Reset the Is_Overloaded flag, since resolution is now completed
7528 
7529          --  Simple entry call
7530 
7531          if Nkind (Entry_Name) = N_Selected_Component then
7532             Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7533 
7534          --  Call to a member of an entry family
7535 
7536          else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7537             Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7538          end if;
7539       end if;
7540 
7541       Resolve_Actuals (N, Nam);
7542       Check_Internal_Protected_Use (N, Nam);
7543 
7544       --  Create a call reference to the entry
7545 
7546       Generate_Reference (Nam, Entry_Name, 's');
7547 
7548       if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7549          Check_Potentially_Blocking_Operation (N);
7550       end if;
7551 
7552       --  Verify that a procedure call cannot masquerade as an entry
7553       --  call where an entry call is expected.
7554 
7555       if Ekind (Nam) = E_Procedure then
7556          if Nkind (Parent (N)) = N_Entry_Call_Alternative
7557            and then N = Entry_Call_Statement (Parent (N))
7558          then
7559             Error_Msg_N ("entry call required in select statement", N);
7560 
7561          elsif Nkind (Parent (N)) = N_Triggering_Alternative
7562            and then N = Triggering_Statement (Parent (N))
7563          then
7564             Error_Msg_N ("triggering statement cannot be procedure call", N);
7565 
7566          elsif Ekind (Scope (Nam)) = E_Task_Type
7567            and then not In_Open_Scopes (Scope (Nam))
7568          then
7569             Error_Msg_N ("task has no entry with this name", Entry_Name);
7570          end if;
7571       end if;
7572 
7573       --  After resolution, entry calls and protected procedure calls are
7574       --  changed into entry calls, for expansion. The structure of the node
7575       --  does not change, so it can safely be done in place. Protected
7576       --  function calls must keep their structure because they are
7577       --  subexpressions.
7578 
7579       if Ekind (Nam) /= E_Function then
7580 
7581          --  A protected operation that is not a function may modify the
7582          --  corresponding object, and cannot apply to a constant. If this
7583          --  is an internal call, the prefix is the type itself.
7584 
7585          if Is_Protected_Type (Scope (Nam))
7586            and then not Is_Variable (Obj)
7587            and then (not Is_Entity_Name (Obj)
7588                        or else not Is_Type (Entity (Obj)))
7589          then
7590             Error_Msg_N
7591               ("prefix of protected procedure or entry call must be variable",
7592                Entry_Name);
7593          end if;
7594 
7595          Actuals := Parameter_Associations (N);
7596          First_Named := First_Named_Actual (N);
7597 
7598          Rewrite (N,
7599            Make_Entry_Call_Statement (Loc,
7600              Name                   => Entry_Name,
7601              Parameter_Associations => Actuals));
7602 
7603          Set_First_Named_Actual (N, First_Named);
7604          Set_Analyzed (N, True);
7605 
7606       --  Protected functions can return on the secondary stack, in which
7607       --  case we must trigger the transient scope mechanism.
7608 
7609       elsif Expander_Active
7610         and then Requires_Transient_Scope (Etype (Nam))
7611       then
7612          Establish_Transient_Scope (N, Sec_Stack => True);
7613       end if;
7614    end Resolve_Entry_Call;
7615 
7616    -------------------------
7617    -- Resolve_Equality_Op --
7618    -------------------------
7619 
7620    --  Both arguments must have the same type, and the boolean context does
7621    --  not participate in the resolution. The first pass verifies that the
7622    --  interpretation is not ambiguous, and the type of the left argument is
7623    --  correctly set, or is Any_Type in case of ambiguity. If both arguments
7624    --  are strings or aggregates, allocators, or Null, they are ambiguous even
7625    --  though they carry a single (universal) type. Diagnose this case here.
7626 
7627    procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7628       L : constant Node_Id   := Left_Opnd (N);
7629       R : constant Node_Id   := Right_Opnd (N);
7630       T : Entity_Id := Find_Unique_Type (L, R);
7631 
7632       procedure Check_If_Expression (Cond : Node_Id);
7633       --  The resolution rule for if expressions requires that each such must
7634       --  have a unique type. This means that if several dependent expressions
7635       --  are of a non-null anonymous access type, and the context does not
7636       --  impose an expected type (as can be the case in an equality operation)
7637       --  the expression must be rejected.
7638 
7639       procedure Explain_Redundancy (N : Node_Id);
7640       --  Attempt to explain the nature of a redundant comparison with True. If
7641       --  the expression N is too complex, this routine issues a general error
7642       --  message.
7643 
7644       function Find_Unique_Access_Type return Entity_Id;
7645       --  In the case of allocators and access attributes, the context must
7646       --  provide an indication of the specific access type to be used. If
7647       --  one operand is of such a "generic" access type, check whether there
7648       --  is a specific visible access type that has the same designated type.
7649       --  This is semantically dubious, and of no interest to any real code,
7650       --  but c48008a makes it all worthwhile.
7651 
7652       -------------------------
7653       -- Check_If_Expression --
7654       -------------------------
7655 
7656       procedure Check_If_Expression (Cond : Node_Id) is
7657          Then_Expr : Node_Id;
7658          Else_Expr : Node_Id;
7659 
7660       begin
7661          if Nkind (Cond) = N_If_Expression then
7662             Then_Expr := Next (First (Expressions (Cond)));
7663             Else_Expr := Next (Then_Expr);
7664 
7665             if Nkind (Then_Expr) /= N_Null
7666               and then Nkind (Else_Expr) /= N_Null
7667             then
7668                Error_Msg_N ("cannot determine type of if expression", Cond);
7669             end if;
7670          end if;
7671       end Check_If_Expression;
7672 
7673       ------------------------
7674       -- Explain_Redundancy --
7675       ------------------------
7676 
7677       procedure Explain_Redundancy (N : Node_Id) is
7678          Error  : Name_Id;
7679          Val    : Node_Id;
7680          Val_Id : Entity_Id;
7681 
7682       begin
7683          Val := N;
7684 
7685          --  Strip the operand down to an entity
7686 
7687          loop
7688             if Nkind (Val) = N_Selected_Component then
7689                Val := Selector_Name (Val);
7690             else
7691                exit;
7692             end if;
7693          end loop;
7694 
7695          --  The construct denotes an entity
7696 
7697          if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7698             Val_Id := Entity (Val);
7699 
7700             --  Do not generate an error message when the comparison is done
7701             --  against the enumeration literal Standard.True.
7702 
7703             if Ekind (Val_Id) /= E_Enumeration_Literal then
7704 
7705                --  Build a customized error message
7706 
7707                Name_Len := 0;
7708                Add_Str_To_Name_Buffer ("?r?");
7709 
7710                if Ekind (Val_Id) = E_Component then
7711                   Add_Str_To_Name_Buffer ("component ");
7712 
7713                elsif Ekind (Val_Id) = E_Constant then
7714                   Add_Str_To_Name_Buffer ("constant ");
7715 
7716                elsif Ekind (Val_Id) = E_Discriminant then
7717                   Add_Str_To_Name_Buffer ("discriminant ");
7718 
7719                elsif Is_Formal (Val_Id) then
7720                   Add_Str_To_Name_Buffer ("parameter ");
7721 
7722                elsif Ekind (Val_Id) = E_Variable then
7723                   Add_Str_To_Name_Buffer ("variable ");
7724                end if;
7725 
7726                Add_Str_To_Name_Buffer ("& is always True!");
7727                Error := Name_Find;
7728 
7729                Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7730             end if;
7731 
7732          --  The construct is too complex to disect, issue a general message
7733 
7734          else
7735             Error_Msg_N ("?r?expression is always True!", Val);
7736          end if;
7737       end Explain_Redundancy;
7738 
7739       -----------------------------
7740       -- Find_Unique_Access_Type --
7741       -----------------------------
7742 
7743       function Find_Unique_Access_Type return Entity_Id is
7744          Acc : Entity_Id;
7745          E   : Entity_Id;
7746          S   : Entity_Id;
7747 
7748       begin
7749          if Ekind_In (Etype (R), E_Allocator_Type,
7750                                  E_Access_Attribute_Type)
7751          then
7752             Acc := Designated_Type (Etype (R));
7753 
7754          elsif Ekind_In (Etype (L), E_Allocator_Type,
7755                                     E_Access_Attribute_Type)
7756          then
7757             Acc := Designated_Type (Etype (L));
7758          else
7759             return Empty;
7760          end if;
7761 
7762          S := Current_Scope;
7763          while S /= Standard_Standard loop
7764             E := First_Entity (S);
7765             while Present (E) loop
7766                if Is_Type (E)
7767                  and then Is_Access_Type (E)
7768                  and then Ekind (E) /= E_Allocator_Type
7769                  and then Designated_Type (E) = Base_Type (Acc)
7770                then
7771                   return E;
7772                end if;
7773 
7774                Next_Entity (E);
7775             end loop;
7776 
7777             S := Scope (S);
7778          end loop;
7779 
7780          return Empty;
7781       end Find_Unique_Access_Type;
7782 
7783    --  Start of processing for Resolve_Equality_Op
7784 
7785    begin
7786       Set_Etype (N, Base_Type (Typ));
7787       Generate_Reference (T, N, ' ');
7788 
7789       if T = Any_Fixed then
7790          T := Unique_Fixed_Point_Type (L);
7791       end if;
7792 
7793       if T /= Any_Type then
7794          if T = Any_String    or else
7795             T = Any_Composite or else
7796             T = Any_Character
7797          then
7798             if T = Any_Character then
7799                Ambiguous_Character (L);
7800             else
7801                Error_Msg_N ("ambiguous operands for equality", N);
7802             end if;
7803 
7804             Set_Etype (N, Any_Type);
7805             return;
7806 
7807          elsif T = Any_Access
7808            or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
7809          then
7810             T := Find_Unique_Access_Type;
7811 
7812             if No (T) then
7813                Error_Msg_N ("ambiguous operands for equality", N);
7814                Set_Etype (N, Any_Type);
7815                return;
7816             end if;
7817 
7818          --  If expressions must have a single type, and if the context does
7819          --  not impose one the dependent expressions cannot be anonymous
7820          --  access types.
7821 
7822          --  Why no similar processing for case expressions???
7823 
7824          elsif Ada_Version >= Ada_2012
7825            and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
7826                                          E_Anonymous_Access_Subprogram_Type)
7827            and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
7828                                          E_Anonymous_Access_Subprogram_Type)
7829          then
7830             Check_If_Expression (L);
7831             Check_If_Expression (R);
7832          end if;
7833 
7834          Resolve (L, T);
7835          Resolve (R, T);
7836 
7837          --  In SPARK, equality operators = and /= for array types other than
7838          --  String are only defined when, for each index position, the
7839          --  operands have equal static bounds.
7840 
7841          if Is_Array_Type (T) then
7842 
7843             --  Protect call to Matching_Static_Array_Bounds to avoid costly
7844             --  operation if not needed.
7845 
7846             if Restriction_Check_Required (SPARK_05)
7847               and then Base_Type (T) /= Standard_String
7848               and then Base_Type (Etype (L)) = Base_Type (Etype (R))
7849               and then Etype (L) /= Any_Composite  --  or else L in error
7850               and then Etype (R) /= Any_Composite  --  or else R in error
7851               and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
7852             then
7853                Check_SPARK_05_Restriction
7854                  ("array types should have matching static bounds", N);
7855             end if;
7856          end if;
7857 
7858          --  If the unique type is a class-wide type then it will be expanded
7859          --  into a dispatching call to the predefined primitive. Therefore we
7860          --  check here for potential violation of such restriction.
7861 
7862          if Is_Class_Wide_Type (T) then
7863             Check_Restriction (No_Dispatching_Calls, N);
7864          end if;
7865 
7866          if Warn_On_Redundant_Constructs
7867            and then Comes_From_Source (N)
7868            and then Comes_From_Source (R)
7869            and then Is_Entity_Name (R)
7870            and then Entity (R) = Standard_True
7871          then
7872             Error_Msg_N -- CODEFIX
7873               ("?r?comparison with True is redundant!", N);
7874             Explain_Redundancy (Original_Node (R));
7875          end if;
7876 
7877          Check_Unset_Reference (L);
7878          Check_Unset_Reference (R);
7879          Generate_Operator_Reference (N, T);
7880          Check_Low_Bound_Tested (N);
7881 
7882          --  If this is an inequality, it may be the implicit inequality
7883          --  created for a user-defined operation, in which case the corres-
7884          --  ponding equality operation is not intrinsic, and the operation
7885          --  cannot be constant-folded. Else fold.
7886 
7887          if Nkind (N) = N_Op_Eq
7888            or else Comes_From_Source (Entity (N))
7889            or else Ekind (Entity (N)) = E_Operator
7890            or else Is_Intrinsic_Subprogram
7891                      (Corresponding_Equality (Entity (N)))
7892          then
7893             Analyze_Dimension (N);
7894             Eval_Relational_Op (N);
7895 
7896          elsif Nkind (N) = N_Op_Ne
7897            and then Is_Abstract_Subprogram (Entity (N))
7898          then
7899             Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
7900          end if;
7901 
7902          --  Ada 2005: If one operand is an anonymous access type, convert the
7903          --  other operand to it, to ensure that the underlying types match in
7904          --  the back-end. Same for access_to_subprogram, and the conversion
7905          --  verifies that the types are subtype conformant.
7906 
7907          --  We apply the same conversion in the case one of the operands is a
7908          --  private subtype of the type of the other.
7909 
7910          --  Why the Expander_Active test here ???
7911 
7912          if Expander_Active
7913            and then
7914              (Ekind_In (T, E_Anonymous_Access_Type,
7915                            E_Anonymous_Access_Subprogram_Type)
7916                or else Is_Private_Type (T))
7917          then
7918             if Etype (L) /= T then
7919                Rewrite (L,
7920                  Make_Unchecked_Type_Conversion (Sloc (L),
7921                    Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
7922                    Expression   => Relocate_Node (L)));
7923                Analyze_And_Resolve (L, T);
7924             end if;
7925 
7926             if (Etype (R)) /= T then
7927                Rewrite (R,
7928                   Make_Unchecked_Type_Conversion (Sloc (R),
7929                     Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
7930                     Expression   => Relocate_Node (R)));
7931                Analyze_And_Resolve (R, T);
7932             end if;
7933          end if;
7934       end if;
7935    end Resolve_Equality_Op;
7936 
7937    ----------------------------------
7938    -- Resolve_Explicit_Dereference --
7939    ----------------------------------
7940 
7941    procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
7942       Loc   : constant Source_Ptr := Sloc (N);
7943       New_N : Node_Id;
7944       P     : constant Node_Id := Prefix (N);
7945 
7946       P_Typ : Entity_Id;
7947       --  The candidate prefix type, if overloaded
7948 
7949       I     : Interp_Index;
7950       It    : Interp;
7951 
7952    begin
7953       Check_Fully_Declared_Prefix (Typ, P);
7954       P_Typ := Empty;
7955 
7956       --  A useful optimization:  check whether the dereference denotes an
7957       --  element of a container, and if so rewrite it as a call to the
7958       --  corresponding Element function.
7959 
7960       --  Disabled for now, on advice of ARG. A more restricted form of the
7961       --  predicate might be acceptable ???
7962 
7963       --  if Is_Container_Element (N) then
7964       --     return;
7965       --  end if;
7966 
7967       if Is_Overloaded (P) then
7968 
7969          --  Use the context type to select the prefix that has the correct
7970          --  designated type. Keep the first match, which will be the inner-
7971          --  most.
7972 
7973          Get_First_Interp (P, I, It);
7974 
7975          while Present (It.Typ) loop
7976             if Is_Access_Type (It.Typ)
7977               and then Covers (Typ, Designated_Type (It.Typ))
7978             then
7979                if No (P_Typ) then
7980                   P_Typ := It.Typ;
7981                end if;
7982 
7983             --  Remove access types that do not match, but preserve access
7984             --  to subprogram interpretations, in case a further dereference
7985             --  is needed (see below).
7986 
7987             elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
7988                Remove_Interp (I);
7989             end if;
7990 
7991             Get_Next_Interp (I, It);
7992          end loop;
7993 
7994          if Present (P_Typ) then
7995             Resolve (P, P_Typ);
7996             Set_Etype (N, Designated_Type (P_Typ));
7997 
7998          else
7999             --  If no interpretation covers the designated type of the prefix,
8000             --  this is the pathological case where not all implementations of
8001             --  the prefix allow the interpretation of the node as a call. Now
8002             --  that the expected type is known, Remove other interpretations
8003             --  from prefix, rewrite it as a call, and resolve again, so that
8004             --  the proper call node is generated.
8005 
8006             Get_First_Interp (P, I, It);
8007             while Present (It.Typ) loop
8008                if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8009                   Remove_Interp (I);
8010                end if;
8011 
8012                Get_Next_Interp (I, It);
8013             end loop;
8014 
8015             New_N :=
8016               Make_Function_Call (Loc,
8017                 Name =>
8018                   Make_Explicit_Dereference (Loc,
8019                     Prefix => P),
8020                 Parameter_Associations => New_List);
8021 
8022             Save_Interps (N, New_N);
8023             Rewrite (N, New_N);
8024             Analyze_And_Resolve (N, Typ);
8025             return;
8026          end if;
8027 
8028       --  If not overloaded, resolve P with its own type
8029 
8030       else
8031          Resolve (P);
8032       end if;
8033 
8034       --  If the prefix might be null, add an access check
8035 
8036       if Is_Access_Type (Etype (P))
8037         and then not Can_Never_Be_Null (Etype (P))
8038       then
8039          Apply_Access_Check (N);
8040       end if;
8041 
8042       --  If the designated type is a packed unconstrained array type, and the
8043       --  explicit dereference is not in the context of an attribute reference,
8044       --  then we must compute and set the actual subtype, since it is needed
8045       --  by Gigi. The reason we exclude the attribute case is that this is
8046       --  handled fine by Gigi, and in fact we use such attributes to build the
8047       --  actual subtype. We also exclude generated code (which builds actual
8048       --  subtypes directly if they are needed).
8049 
8050       if Is_Array_Type (Etype (N))
8051         and then Is_Packed (Etype (N))
8052         and then not Is_Constrained (Etype (N))
8053         and then Nkind (Parent (N)) /= N_Attribute_Reference
8054         and then Comes_From_Source (N)
8055       then
8056          Set_Etype (N, Get_Actual_Subtype (N));
8057       end if;
8058 
8059       Analyze_Dimension (N);
8060 
8061       --  Note: No Eval processing is required for an explicit dereference,
8062       --  because such a name can never be static.
8063 
8064    end Resolve_Explicit_Dereference;
8065 
8066    -------------------------------------
8067    -- Resolve_Expression_With_Actions --
8068    -------------------------------------
8069 
8070    procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8071    begin
8072       Set_Etype (N, Typ);
8073 
8074       --  If N has no actions, and its expression has been constant folded,
8075       --  then rewrite N as just its expression. Note, we can't do this in
8076       --  the general case of Is_Empty_List (Actions (N)) as this would cause
8077       --  Expression (N) to be expanded again.
8078 
8079       if Is_Empty_List (Actions (N))
8080         and then Compile_Time_Known_Value (Expression (N))
8081       then
8082          Rewrite (N, Expression (N));
8083       end if;
8084    end Resolve_Expression_With_Actions;
8085 
8086    ----------------------------------
8087    -- Resolve_Generalized_Indexing --
8088    ----------------------------------
8089 
8090    procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8091       Indexing : constant Node_Id := Generalized_Indexing (N);
8092       Call     : Node_Id;
8093       Indexes  : List_Id;
8094       Pref     : Node_Id;
8095 
8096    begin
8097       --  In ASIS mode, propagate the information about the indexes back to
8098       --  to the original indexing node. The generalized indexing is either
8099       --  a function call, or a dereference of one. The actuals include the
8100       --  prefix of the original node, which is the container expression.
8101 
8102       if ASIS_Mode then
8103          Resolve (Indexing, Typ);
8104          Set_Etype  (N, Etype (Indexing));
8105          Set_Is_Overloaded (N, False);
8106 
8107          Call := Indexing;
8108          while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8109          loop
8110             Call := Prefix (Call);
8111          end loop;
8112 
8113          if Nkind (Call) = N_Function_Call then
8114             Indexes := Parameter_Associations (Call);
8115             Pref := Remove_Head (Indexes);
8116             Set_Expressions (N, Indexes);
8117 
8118             --  If expression is to be reanalyzed, reset Generalized_Indexing
8119             --  to recreate call node, as is the case when the expression is
8120             --  part of an expression function.
8121 
8122             if In_Spec_Expression then
8123                Set_Generalized_Indexing (N, Empty);
8124             end if;
8125 
8126             Set_Prefix (N, Pref);
8127          end if;
8128 
8129       else
8130          Rewrite (N, Indexing);
8131          Resolve (N, Typ);
8132       end if;
8133    end Resolve_Generalized_Indexing;
8134 
8135    ---------------------------
8136    -- Resolve_If_Expression --
8137    ---------------------------
8138 
8139    procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8140       Condition : constant Node_Id := First (Expressions (N));
8141       Then_Expr : constant Node_Id := Next (Condition);
8142       Else_Expr : Node_Id          := Next (Then_Expr);
8143       Else_Typ  : Entity_Id;
8144       Then_Typ  : Entity_Id;
8145 
8146    begin
8147       Resolve (Condition, Any_Boolean);
8148       Resolve (Then_Expr, Typ);
8149       Then_Typ := Etype (Then_Expr);
8150 
8151       --  When the "then" expression is of a scalar subtype different from the
8152       --  result subtype, then insert a conversion to ensure the generation of
8153       --  a constraint check. The same is done for the else part below, again
8154       --  comparing subtypes rather than base types.
8155 
8156       if Is_Scalar_Type (Then_Typ)
8157         and then Then_Typ /= Typ
8158       then
8159          Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8160          Analyze_And_Resolve (Then_Expr, Typ);
8161       end if;
8162 
8163       --  If ELSE expression present, just resolve using the determined type
8164       --  If type is universal, resolve to any member of the class.
8165 
8166       if Present (Else_Expr) then
8167          if Typ = Universal_Integer then
8168             Resolve (Else_Expr, Any_Integer);
8169 
8170          elsif Typ = Universal_Real then
8171             Resolve (Else_Expr, Any_Real);
8172 
8173          else
8174             Resolve (Else_Expr, Typ);
8175          end if;
8176 
8177          Else_Typ := Etype (Else_Expr);
8178 
8179          if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8180             Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8181             Analyze_And_Resolve (Else_Expr, Typ);
8182 
8183          --  Apply RM 4.5.7 (17/3): whether the expression is statically or
8184          --  dynamically tagged must be known statically.
8185 
8186          elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8187             if Is_Dynamically_Tagged (Then_Expr) /=
8188                Is_Dynamically_Tagged (Else_Expr)
8189             then
8190                Error_Msg_N ("all or none of the dependent expressions "
8191                             & "can be dynamically tagged", N);
8192             end if;
8193          end if;
8194 
8195       --  If no ELSE expression is present, root type must be Standard.Boolean
8196       --  and we provide a Standard.True result converted to the appropriate
8197       --  Boolean type (in case it is a derived boolean type).
8198 
8199       elsif Root_Type (Typ) = Standard_Boolean then
8200          Else_Expr :=
8201            Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8202          Analyze_And_Resolve (Else_Expr, Typ);
8203          Append_To (Expressions (N), Else_Expr);
8204 
8205       else
8206          Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8207          Append_To (Expressions (N), Error);
8208       end if;
8209 
8210       Set_Etype (N, Typ);
8211       Eval_If_Expression (N);
8212    end Resolve_If_Expression;
8213 
8214    -------------------------------
8215    -- Resolve_Indexed_Component --
8216    -------------------------------
8217 
8218    procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8219       Name       : constant Node_Id := Prefix  (N);
8220       Expr       : Node_Id;
8221       Array_Type : Entity_Id := Empty; -- to prevent junk warning
8222       Index      : Node_Id;
8223 
8224    begin
8225       if Present (Generalized_Indexing (N)) then
8226          Resolve_Generalized_Indexing (N, Typ);
8227          return;
8228       end if;
8229 
8230       if Is_Overloaded (Name) then
8231 
8232          --  Use the context type to select the prefix that yields the correct
8233          --  component type.
8234 
8235          declare
8236             I     : Interp_Index;
8237             It    : Interp;
8238             I1    : Interp_Index := 0;
8239             P     : constant Node_Id := Prefix (N);
8240             Found : Boolean := False;
8241 
8242          begin
8243             Get_First_Interp (P, I, It);
8244             while Present (It.Typ) loop
8245                if (Is_Array_Type (It.Typ)
8246                      and then Covers (Typ, Component_Type (It.Typ)))
8247                  or else (Is_Access_Type (It.Typ)
8248                             and then Is_Array_Type (Designated_Type (It.Typ))
8249                             and then
8250                               Covers
8251                                 (Typ,
8252                                  Component_Type (Designated_Type (It.Typ))))
8253                then
8254                   if Found then
8255                      It := Disambiguate (P, I1, I, Any_Type);
8256 
8257                      if It = No_Interp then
8258                         Error_Msg_N ("ambiguous prefix for indexing",  N);
8259                         Set_Etype (N, Typ);
8260                         return;
8261 
8262                      else
8263                         Found := True;
8264                         Array_Type := It.Typ;
8265                         I1 := I;
8266                      end if;
8267 
8268                   else
8269                      Found := True;
8270                      Array_Type := It.Typ;
8271                      I1 := I;
8272                   end if;
8273                end if;
8274 
8275                Get_Next_Interp (I, It);
8276             end loop;
8277          end;
8278 
8279       else
8280          Array_Type := Etype (Name);
8281       end if;
8282 
8283       Resolve (Name, Array_Type);
8284       Array_Type := Get_Actual_Subtype_If_Available (Name);
8285 
8286       --  If prefix is access type, dereference to get real array type.
8287       --  Note: we do not apply an access check because the expander always
8288       --  introduces an explicit dereference, and the check will happen there.
8289 
8290       if Is_Access_Type (Array_Type) then
8291          Array_Type := Designated_Type (Array_Type);
8292       end if;
8293 
8294       --  If name was overloaded, set component type correctly now
8295       --  If a misplaced call to an entry family (which has no index types)
8296       --  return. Error will be diagnosed from calling context.
8297 
8298       if Is_Array_Type (Array_Type) then
8299          Set_Etype (N, Component_Type (Array_Type));
8300       else
8301          return;
8302       end if;
8303 
8304       Index := First_Index (Array_Type);
8305       Expr  := First (Expressions (N));
8306 
8307       --  The prefix may have resolved to a string literal, in which case its
8308       --  etype has a special representation. This is only possible currently
8309       --  if the prefix is a static concatenation, written in functional
8310       --  notation.
8311 
8312       if Ekind (Array_Type) = E_String_Literal_Subtype then
8313          Resolve (Expr, Standard_Positive);
8314 
8315       else
8316          while Present (Index) and Present (Expr) loop
8317             Resolve (Expr, Etype (Index));
8318             Check_Unset_Reference (Expr);
8319 
8320             if Is_Scalar_Type (Etype (Expr)) then
8321                Apply_Scalar_Range_Check (Expr, Etype (Index));
8322             else
8323                Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8324             end if;
8325 
8326             Next_Index (Index);
8327             Next (Expr);
8328          end loop;
8329       end if;
8330 
8331       Analyze_Dimension (N);
8332 
8333       --  Do not generate the warning on suspicious index if we are analyzing
8334       --  package Ada.Tags; otherwise we will report the warning with the
8335       --  Prims_Ptr field of the dispatch table.
8336 
8337       if Scope (Etype (Prefix (N))) = Standard_Standard
8338         or else not
8339           Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8340                   Ada_Tags)
8341       then
8342          Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8343          Eval_Indexed_Component (N);
8344       end if;
8345 
8346       --  If the array type is atomic, and the component is not atomic, then
8347       --  this is worth a warning, since we have a situation where the access
8348       --  to the component may cause extra read/writes of the atomic array
8349       --  object, or partial word accesses, which could be unexpected.
8350 
8351       if Nkind (N) = N_Indexed_Component
8352         and then Is_Atomic_Ref_With_Address (N)
8353         and then not (Has_Atomic_Components (Array_Type)
8354                        or else (Is_Entity_Name (Prefix (N))
8355                                  and then Has_Atomic_Components
8356                                             (Entity (Prefix (N)))))
8357         and then not Is_Atomic (Component_Type (Array_Type))
8358       then
8359          Error_Msg_N
8360            ("??access to non-atomic component of atomic array", Prefix (N));
8361          Error_Msg_N
8362            ("??\may cause unexpected accesses to atomic object", Prefix (N));
8363       end if;
8364    end Resolve_Indexed_Component;
8365 
8366    -----------------------------
8367    -- Resolve_Integer_Literal --
8368    -----------------------------
8369 
8370    procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8371    begin
8372       Set_Etype (N, Typ);
8373       Eval_Integer_Literal (N);
8374    end Resolve_Integer_Literal;
8375 
8376    --------------------------------
8377    -- Resolve_Intrinsic_Operator --
8378    --------------------------------
8379 
8380    procedure Resolve_Intrinsic_Operator  (N : Node_Id; Typ : Entity_Id) is
8381       Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8382       Op   : Entity_Id;
8383       Arg1 : Node_Id;
8384       Arg2 : Node_Id;
8385 
8386       function Convert_Operand (Opnd : Node_Id) return Node_Id;
8387       --  If the operand is a literal, it cannot be the expression in a
8388       --  conversion. Use a qualified expression instead.
8389 
8390       ---------------------
8391       -- Convert_Operand --
8392       ---------------------
8393 
8394       function Convert_Operand (Opnd : Node_Id) return Node_Id is
8395          Loc : constant Source_Ptr := Sloc (Opnd);
8396          Res : Node_Id;
8397 
8398       begin
8399          if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8400             Res :=
8401               Make_Qualified_Expression (Loc,
8402                 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8403                 Expression   => Relocate_Node (Opnd));
8404             Analyze (Res);
8405 
8406          else
8407             Res := Unchecked_Convert_To (Btyp, Opnd);
8408          end if;
8409 
8410          return Res;
8411       end Convert_Operand;
8412 
8413    --  Start of processing for Resolve_Intrinsic_Operator
8414 
8415    begin
8416       --  We must preserve the original entity in a generic setting, so that
8417       --  the legality of the operation can be verified in an instance.
8418 
8419       if not Expander_Active then
8420          return;
8421       end if;
8422 
8423       Op := Entity (N);
8424       while Scope (Op) /= Standard_Standard loop
8425          Op := Homonym (Op);
8426          pragma Assert (Present (Op));
8427       end loop;
8428 
8429       Set_Entity (N, Op);
8430       Set_Is_Overloaded (N, False);
8431 
8432       --  If the result or operand types are private, rewrite with unchecked
8433       --  conversions on the operands and the result, to expose the proper
8434       --  underlying numeric type.
8435 
8436       if Is_Private_Type (Typ)
8437         or else Is_Private_Type (Etype (Left_Opnd (N)))
8438         or else Is_Private_Type (Etype (Right_Opnd (N)))
8439       then
8440          Arg1 := Convert_Operand (Left_Opnd (N));
8441 
8442          if Nkind (N) = N_Op_Expon then
8443             Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8444          else
8445             Arg2 := Convert_Operand (Right_Opnd (N));
8446          end if;
8447 
8448          if Nkind (Arg1) = N_Type_Conversion then
8449             Save_Interps (Left_Opnd (N),  Expression (Arg1));
8450          end if;
8451 
8452          if Nkind (Arg2) = N_Type_Conversion then
8453             Save_Interps (Right_Opnd (N), Expression (Arg2));
8454          end if;
8455 
8456          Set_Left_Opnd  (N, Arg1);
8457          Set_Right_Opnd (N, Arg2);
8458 
8459          Set_Etype (N, Btyp);
8460          Rewrite (N, Unchecked_Convert_To (Typ, N));
8461          Resolve (N, Typ);
8462 
8463       elsif Typ /= Etype (Left_Opnd (N))
8464         or else Typ /= Etype (Right_Opnd (N))
8465       then
8466          --  Add explicit conversion where needed, and save interpretations in
8467          --  case operands are overloaded.
8468 
8469          Arg1 := Convert_To (Typ, Left_Opnd  (N));
8470          Arg2 := Convert_To (Typ, Right_Opnd (N));
8471 
8472          if Nkind (Arg1) = N_Type_Conversion then
8473             Save_Interps (Left_Opnd (N), Expression (Arg1));
8474          else
8475             Save_Interps (Left_Opnd (N), Arg1);
8476          end if;
8477 
8478          if Nkind (Arg2) = N_Type_Conversion then
8479             Save_Interps (Right_Opnd (N), Expression (Arg2));
8480          else
8481             Save_Interps (Right_Opnd (N), Arg2);
8482          end if;
8483 
8484          Rewrite (Left_Opnd  (N), Arg1);
8485          Rewrite (Right_Opnd (N), Arg2);
8486          Analyze (Arg1);
8487          Analyze (Arg2);
8488          Resolve_Arithmetic_Op (N, Typ);
8489 
8490       else
8491          Resolve_Arithmetic_Op (N, Typ);
8492       end if;
8493    end Resolve_Intrinsic_Operator;
8494 
8495    --------------------------------------
8496    -- Resolve_Intrinsic_Unary_Operator --
8497    --------------------------------------
8498 
8499    procedure Resolve_Intrinsic_Unary_Operator
8500      (N   : Node_Id;
8501       Typ : Entity_Id)
8502    is
8503       Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8504       Op   : Entity_Id;
8505       Arg2 : Node_Id;
8506 
8507    begin
8508       Op := Entity (N);
8509       while Scope (Op) /= Standard_Standard loop
8510          Op := Homonym (Op);
8511          pragma Assert (Present (Op));
8512       end loop;
8513 
8514       Set_Entity (N, Op);
8515 
8516       if Is_Private_Type (Typ) then
8517          Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8518          Save_Interps (Right_Opnd (N), Expression (Arg2));
8519 
8520          Set_Right_Opnd (N, Arg2);
8521 
8522          Set_Etype (N, Btyp);
8523          Rewrite (N, Unchecked_Convert_To (Typ, N));
8524          Resolve (N, Typ);
8525 
8526       else
8527          Resolve_Unary_Op (N, Typ);
8528       end if;
8529    end Resolve_Intrinsic_Unary_Operator;
8530 
8531    ------------------------
8532    -- Resolve_Logical_Op --
8533    ------------------------
8534 
8535    procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8536       B_Typ : Entity_Id;
8537 
8538    begin
8539       Check_No_Direct_Boolean_Operators (N);
8540 
8541       --  Predefined operations on scalar types yield the base type. On the
8542       --  other hand, logical operations on arrays yield the type of the
8543       --  arguments (and the context).
8544 
8545       if Is_Array_Type (Typ) then
8546          B_Typ := Typ;
8547       else
8548          B_Typ := Base_Type (Typ);
8549       end if;
8550 
8551       --  The following test is required because the operands of the operation
8552       --  may be literals, in which case the resulting type appears to be
8553       --  compatible with a signed integer type, when in fact it is compatible
8554       --  only with modular types. If the context itself is universal, the
8555       --  operation is illegal.
8556 
8557       if not Valid_Boolean_Arg (Typ) then
8558          Error_Msg_N ("invalid context for logical operation", N);
8559          Set_Etype (N, Any_Type);
8560          return;
8561 
8562       elsif Typ = Any_Modular then
8563          Error_Msg_N
8564            ("no modular type available in this context", N);
8565          Set_Etype (N, Any_Type);
8566          return;
8567 
8568       elsif Is_Modular_Integer_Type (Typ)
8569         and then Etype (Left_Opnd (N)) = Universal_Integer
8570         and then Etype (Right_Opnd (N)) = Universal_Integer
8571       then
8572          Check_For_Visible_Operator (N, B_Typ);
8573       end if;
8574 
8575       --  Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8576       --  is active and the result type is standard Boolean (do not mess with
8577       --  ops that return a nonstandard Boolean type, because something strange
8578       --  is going on).
8579 
8580       --  Note: you might expect this replacement to be done during expansion,
8581       --  but that doesn't work, because when the pragma Short_Circuit_And_Or
8582       --  is used, no part of the right operand of an "and" or "or" operator
8583       --  should be executed if the left operand would short-circuit the
8584       --  evaluation of the corresponding "and then" or "or else". If we left
8585       --  the replacement to expansion time, then run-time checks associated
8586       --  with such operands would be evaluated unconditionally, due to being
8587       --  before the condition prior to the rewriting as short-circuit forms
8588       --  during expansion.
8589 
8590       if Short_Circuit_And_Or
8591         and then B_Typ = Standard_Boolean
8592         and then Nkind_In (N, N_Op_And, N_Op_Or)
8593       then
8594          --  Mark the corresponding putative SCO operator as truly a logical
8595          --  (and short-circuit) operator.
8596 
8597          if Generate_SCO and then Comes_From_Source (N) then
8598             Set_SCO_Logical_Operator (N);
8599          end if;
8600 
8601          if Nkind (N) = N_Op_And then
8602             Rewrite (N,
8603               Make_And_Then (Sloc (N),
8604                 Left_Opnd  => Relocate_Node (Left_Opnd (N)),
8605                 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8606             Analyze_And_Resolve (N, B_Typ);
8607 
8608          --  Case of OR changed to OR ELSE
8609 
8610          else
8611             Rewrite (N,
8612               Make_Or_Else (Sloc (N),
8613                 Left_Opnd  => Relocate_Node (Left_Opnd (N)),
8614                 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8615             Analyze_And_Resolve (N, B_Typ);
8616          end if;
8617 
8618          --  Return now, since analysis of the rewritten ops will take care of
8619          --  other reference bookkeeping and expression folding.
8620 
8621          return;
8622       end if;
8623 
8624       Resolve (Left_Opnd (N), B_Typ);
8625       Resolve (Right_Opnd (N), B_Typ);
8626 
8627       Check_Unset_Reference (Left_Opnd  (N));
8628       Check_Unset_Reference (Right_Opnd (N));
8629 
8630       Set_Etype (N, B_Typ);
8631       Generate_Operator_Reference (N, B_Typ);
8632       Eval_Logical_Op (N);
8633 
8634       --  In SPARK, logical operations AND, OR and XOR for arrays are defined
8635       --  only when both operands have same static lower and higher bounds. Of
8636       --  course the types have to match, so only check if operands are
8637       --  compatible and the node itself has no errors.
8638 
8639       if Is_Array_Type (B_Typ)
8640         and then Nkind (N) in N_Binary_Op
8641       then
8642          declare
8643             Left_Typ  : constant Node_Id := Etype (Left_Opnd (N));
8644             Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8645 
8646          begin
8647             --  Protect call to Matching_Static_Array_Bounds to avoid costly
8648             --  operation if not needed.
8649 
8650             if Restriction_Check_Required (SPARK_05)
8651               and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8652               and then Left_Typ /= Any_Composite  --  or Left_Opnd in error
8653               and then Right_Typ /= Any_Composite  --  or Right_Opnd in error
8654               and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8655             then
8656                Check_SPARK_05_Restriction
8657                  ("array types should have matching static bounds", N);
8658             end if;
8659          end;
8660       end if;
8661    end Resolve_Logical_Op;
8662 
8663    ---------------------------
8664    -- Resolve_Membership_Op --
8665    ---------------------------
8666 
8667    --  The context can only be a boolean type, and does not determine the
8668    --  arguments. Arguments should be unambiguous, but the preference rule for
8669    --  universal types applies.
8670 
8671    procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8672       pragma Warnings (Off, Typ);
8673 
8674       L : constant Node_Id := Left_Opnd  (N);
8675       R : constant Node_Id := Right_Opnd (N);
8676       T : Entity_Id;
8677 
8678       procedure Resolve_Set_Membership;
8679       --  Analysis has determined a unique type for the left operand. Use it to
8680       --  resolve the disjuncts.
8681 
8682       ----------------------------
8683       -- Resolve_Set_Membership --
8684       ----------------------------
8685 
8686       procedure Resolve_Set_Membership is
8687          Alt  : Node_Id;
8688          Ltyp : Entity_Id;
8689 
8690       begin
8691          --  If the left operand is overloaded, find type compatible with not
8692          --  overloaded alternative of the right operand.
8693 
8694          if Is_Overloaded (L) then
8695             Ltyp := Empty;
8696             Alt := First (Alternatives (N));
8697             while Present (Alt) loop
8698                if not Is_Overloaded (Alt) then
8699                   Ltyp := Intersect_Types (L, Alt);
8700                   exit;
8701                else
8702                   Next (Alt);
8703                end if;
8704             end loop;
8705 
8706             --  Unclear how to resolve expression if all alternatives are also
8707             --  overloaded.
8708 
8709             if No (Ltyp) then
8710                Error_Msg_N ("ambiguous expression", N);
8711             end if;
8712 
8713          else
8714             Ltyp := Etype (L);
8715          end if;
8716 
8717          Resolve (L, Ltyp);
8718 
8719          Alt := First (Alternatives (N));
8720          while Present (Alt) loop
8721 
8722             --  Alternative is an expression, a range
8723             --  or a subtype mark.
8724 
8725             if not Is_Entity_Name (Alt)
8726               or else not Is_Type (Entity (Alt))
8727             then
8728                Resolve (Alt, Ltyp);
8729             end if;
8730 
8731             Next (Alt);
8732          end loop;
8733 
8734          --  Check for duplicates for discrete case
8735 
8736          if Is_Discrete_Type (Ltyp) then
8737             declare
8738                type Ent is record
8739                   Alt : Node_Id;
8740                   Val : Uint;
8741                end record;
8742 
8743                Alts  : array (0 .. List_Length (Alternatives (N))) of Ent;
8744                Nalts : Nat;
8745 
8746             begin
8747                --  Loop checking duplicates. This is quadratic, but giant sets
8748                --  are unlikely in this context so it's a reasonable choice.
8749 
8750                Nalts := 0;
8751                Alt := First (Alternatives (N));
8752                while Present (Alt) loop
8753                   if Is_OK_Static_Expression (Alt)
8754                     and then (Nkind_In (Alt, N_Integer_Literal,
8755                                              N_Character_Literal)
8756                                or else Nkind (Alt) in N_Has_Entity)
8757                   then
8758                      Nalts := Nalts + 1;
8759                      Alts (Nalts) := (Alt, Expr_Value (Alt));
8760 
8761                      for J in 1 .. Nalts - 1 loop
8762                         if Alts (J).Val = Alts (Nalts).Val then
8763                            Error_Msg_Sloc := Sloc (Alts (J).Alt);
8764                            Error_Msg_N ("duplicate of value given#??", Alt);
8765                         end if;
8766                      end loop;
8767                   end if;
8768 
8769                   Alt := Next (Alt);
8770                end loop;
8771             end;
8772          end if;
8773       end Resolve_Set_Membership;
8774 
8775    --  Start of processing for Resolve_Membership_Op
8776 
8777    begin
8778       if L = Error or else R = Error then
8779          return;
8780       end if;
8781 
8782       if Present (Alternatives (N)) then
8783          Resolve_Set_Membership;
8784          goto SM_Exit;
8785 
8786       elsif not Is_Overloaded (R)
8787         and then
8788           (Etype (R) = Universal_Integer
8789              or else
8790            Etype (R) = Universal_Real)
8791         and then Is_Overloaded (L)
8792       then
8793          T := Etype (R);
8794 
8795       --  Ada 2005 (AI-251): Support the following case:
8796 
8797       --      type I is interface;
8798       --      type T is tagged ...
8799 
8800       --      function Test (O : I'Class) is
8801       --      begin
8802       --         return O in T'Class.
8803       --      end Test;
8804 
8805       --  In this case we have nothing else to do. The membership test will be
8806       --  done at run time.
8807 
8808       elsif Ada_Version >= Ada_2005
8809         and then Is_Class_Wide_Type (Etype (L))
8810         and then Is_Interface (Etype (L))
8811         and then Is_Class_Wide_Type (Etype (R))
8812         and then not Is_Interface (Etype (R))
8813       then
8814          return;
8815       else
8816          T := Intersect_Types (L, R);
8817       end if;
8818 
8819       --  If mixed-mode operations are present and operands are all literal,
8820       --  the only interpretation involves Duration, which is probably not
8821       --  the intention of the programmer.
8822 
8823       if T = Any_Fixed then
8824          T := Unique_Fixed_Point_Type (N);
8825 
8826          if T = Any_Type then
8827             return;
8828          end if;
8829       end if;
8830 
8831       Resolve (L, T);
8832       Check_Unset_Reference (L);
8833 
8834       if Nkind (R) = N_Range
8835         and then not Is_Scalar_Type (T)
8836       then
8837          Error_Msg_N ("scalar type required for range", R);
8838       end if;
8839 
8840       if Is_Entity_Name (R) then
8841          Freeze_Expression (R);
8842       else
8843          Resolve (R, T);
8844          Check_Unset_Reference (R);
8845       end if;
8846 
8847       --  Here after resolving membership operation
8848 
8849       <<SM_Exit>>
8850 
8851       Eval_Membership_Op (N);
8852    end Resolve_Membership_Op;
8853 
8854    ------------------
8855    -- Resolve_Null --
8856    ------------------
8857 
8858    procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
8859       Loc : constant Source_Ptr := Sloc (N);
8860 
8861    begin
8862       --  Handle restriction against anonymous null access values This
8863       --  restriction can be turned off using -gnatdj.
8864 
8865       --  Ada 2005 (AI-231): Remove restriction
8866 
8867       if Ada_Version < Ada_2005
8868         and then not Debug_Flag_J
8869         and then Ekind (Typ) = E_Anonymous_Access_Type
8870         and then Comes_From_Source (N)
8871       then
8872          --  In the common case of a call which uses an explicitly null value
8873          --  for an access parameter, give specialized error message.
8874 
8875          if Nkind (Parent (N)) in N_Subprogram_Call then
8876             Error_Msg_N
8877               ("null is not allowed as argument for an access parameter", N);
8878 
8879          --  Standard message for all other cases (are there any?)
8880 
8881          else
8882             Error_Msg_N
8883               ("null cannot be of an anonymous access type", N);
8884          end if;
8885       end if;
8886 
8887       --  Ada 2005 (AI-231): Generate the null-excluding check in case of
8888       --  assignment to a null-excluding object
8889 
8890       if Ada_Version >= Ada_2005
8891         and then Can_Never_Be_Null (Typ)
8892         and then Nkind (Parent (N)) = N_Assignment_Statement
8893       then
8894          if not Inside_Init_Proc then
8895             Insert_Action
8896               (Compile_Time_Constraint_Error (N,
8897                  "(Ada 2005) null not allowed in null-excluding objects??"),
8898                Make_Raise_Constraint_Error (Loc,
8899                  Reason => CE_Access_Check_Failed));
8900          else
8901             Insert_Action (N,
8902               Make_Raise_Constraint_Error (Loc,
8903                 Reason => CE_Access_Check_Failed));
8904          end if;
8905       end if;
8906 
8907       --  In a distributed context, null for a remote access to subprogram may
8908       --  need to be replaced with a special record aggregate. In this case,
8909       --  return after having done the transformation.
8910 
8911       if (Ekind (Typ) = E_Record_Type
8912            or else Is_Remote_Access_To_Subprogram_Type (Typ))
8913         and then Remote_AST_Null_Value (N, Typ)
8914       then
8915          return;
8916       end if;
8917 
8918       --  The null literal takes its type from the context
8919 
8920       Set_Etype (N, Typ);
8921    end Resolve_Null;
8922 
8923    -----------------------
8924    -- Resolve_Op_Concat --
8925    -----------------------
8926 
8927    procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
8928 
8929       --  We wish to avoid deep recursion, because concatenations are often
8930       --  deeply nested, as in A&B&...&Z. Therefore, we walk down the left
8931       --  operands nonrecursively until we find something that is not a simple
8932       --  concatenation (A in this case). We resolve that, and then walk back
8933       --  up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
8934       --  to do the rest of the work at each level. The Parent pointers allow
8935       --  us to avoid recursion, and thus avoid running out of memory. See also
8936       --  Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
8937 
8938       NN  : Node_Id := N;
8939       Op1 : Node_Id;
8940 
8941    begin
8942       --  The following code is equivalent to:
8943 
8944       --    Resolve_Op_Concat_First (NN, Typ);
8945       --    Resolve_Op_Concat_Arg (N, ...);
8946       --    Resolve_Op_Concat_Rest (N, Typ);
8947 
8948       --  where the Resolve_Op_Concat_Arg call recurses back here if the left
8949       --  operand is a concatenation.
8950 
8951       --  Walk down left operands
8952 
8953       loop
8954          Resolve_Op_Concat_First (NN, Typ);
8955          Op1 := Left_Opnd (NN);
8956          exit when not (Nkind (Op1) = N_Op_Concat
8957                          and then not Is_Array_Type (Component_Type (Typ))
8958                          and then Entity (Op1) = Entity (NN));
8959          NN := Op1;
8960       end loop;
8961 
8962       --  Now (given the above example) NN is A&B and Op1 is A
8963 
8964       --  First resolve Op1 ...
8965 
8966       Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd  (NN));
8967 
8968       --  ... then walk NN back up until we reach N (where we started), calling
8969       --  Resolve_Op_Concat_Rest along the way.
8970 
8971       loop
8972          Resolve_Op_Concat_Rest (NN, Typ);
8973          exit when NN = N;
8974          NN := Parent (NN);
8975       end loop;
8976 
8977       if Base_Type (Etype (N)) /= Standard_String then
8978          Check_SPARK_05_Restriction
8979            ("result of concatenation should have type String", N);
8980       end if;
8981    end Resolve_Op_Concat;
8982 
8983    ---------------------------
8984    -- Resolve_Op_Concat_Arg --
8985    ---------------------------
8986 
8987    procedure Resolve_Op_Concat_Arg
8988      (N       : Node_Id;
8989       Arg     : Node_Id;
8990       Typ     : Entity_Id;
8991       Is_Comp : Boolean)
8992    is
8993       Btyp : constant Entity_Id := Base_Type (Typ);
8994       Ctyp : constant Entity_Id := Component_Type (Typ);
8995 
8996    begin
8997       if In_Instance then
8998          if Is_Comp
8999            or else (not Is_Overloaded (Arg)
9000                      and then Etype (Arg) /= Any_Composite
9001                      and then Covers (Ctyp, Etype (Arg)))
9002          then
9003             Resolve (Arg, Ctyp);
9004          else
9005             Resolve (Arg, Btyp);
9006          end if;
9007 
9008       --  If both Array & Array and Array & Component are visible, there is a
9009       --  potential ambiguity that must be reported.
9010 
9011       elsif Has_Compatible_Type (Arg, Ctyp) then
9012          if Nkind (Arg) = N_Aggregate
9013            and then Is_Composite_Type (Ctyp)
9014          then
9015             if Is_Private_Type (Ctyp) then
9016                Resolve (Arg, Btyp);
9017 
9018             --  If the operation is user-defined and not overloaded use its
9019             --  profile. The operation may be a renaming, in which case it has
9020             --  been rewritten, and we want the original profile.
9021 
9022             elsif not Is_Overloaded (N)
9023               and then Comes_From_Source (Entity (Original_Node (N)))
9024               and then Ekind (Entity (Original_Node (N))) = E_Function
9025             then
9026                Resolve (Arg,
9027                  Etype
9028                    (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9029                return;
9030 
9031             --  Otherwise an aggregate may match both the array type and the
9032             --  component type.
9033 
9034             else
9035                Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9036                Set_Etype (Arg, Any_Type);
9037             end if;
9038 
9039          else
9040             if Is_Overloaded (Arg)
9041               and then Has_Compatible_Type (Arg, Typ)
9042               and then Etype (Arg) /= Any_Type
9043             then
9044                declare
9045                   I    : Interp_Index;
9046                   It   : Interp;
9047                   Func : Entity_Id;
9048 
9049                begin
9050                   Get_First_Interp (Arg, I, It);
9051                   Func := It.Nam;
9052                   Get_Next_Interp (I, It);
9053 
9054                   --  Special-case the error message when the overloading is
9055                   --  caused by a function that yields an array and can be
9056                   --  called without parameters.
9057 
9058                   if It.Nam = Func then
9059                      Error_Msg_Sloc := Sloc (Func);
9060                      Error_Msg_N ("ambiguous call to function#", Arg);
9061                      Error_Msg_NE
9062                        ("\\interpretation as call yields&", Arg, Typ);
9063                      Error_Msg_NE
9064                        ("\\interpretation as indexing of call yields&",
9065                          Arg, Component_Type (Typ));
9066 
9067                   else
9068                      Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9069 
9070                      Get_First_Interp (Arg, I, It);
9071                      while Present (It.Nam) loop
9072                         Error_Msg_Sloc := Sloc (It.Nam);
9073 
9074                         if Base_Type (It.Typ) = Btyp
9075                              or else
9076                            Base_Type (It.Typ) = Base_Type (Ctyp)
9077                         then
9078                            Error_Msg_N -- CODEFIX
9079                              ("\\possible interpretation#", Arg);
9080                         end if;
9081 
9082                         Get_Next_Interp (I, It);
9083                      end loop;
9084                   end if;
9085                end;
9086             end if;
9087 
9088             Resolve (Arg, Component_Type (Typ));
9089 
9090             if Nkind (Arg) = N_String_Literal then
9091                Set_Etype (Arg, Component_Type (Typ));
9092             end if;
9093 
9094             if Arg = Left_Opnd (N) then
9095                Set_Is_Component_Left_Opnd (N);
9096             else
9097                Set_Is_Component_Right_Opnd (N);
9098             end if;
9099          end if;
9100 
9101       else
9102          Resolve (Arg, Btyp);
9103       end if;
9104 
9105       --  Concatenation is restricted in SPARK: each operand must be either a
9106       --  string literal, the name of a string constant, a static character or
9107       --  string expression, or another concatenation. Arg cannot be a
9108       --  concatenation here as callers of Resolve_Op_Concat_Arg call it
9109       --  separately on each final operand, past concatenation operations.
9110 
9111       if Is_Character_Type (Etype (Arg)) then
9112          if not Is_OK_Static_Expression (Arg) then
9113             Check_SPARK_05_Restriction
9114               ("character operand for concatenation should be static", Arg);
9115          end if;
9116 
9117       elsif Is_String_Type (Etype (Arg)) then
9118          if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9119                   and then Is_Constant_Object (Entity (Arg)))
9120            and then not Is_OK_Static_Expression (Arg)
9121          then
9122             Check_SPARK_05_Restriction
9123               ("string operand for concatenation should be static", Arg);
9124          end if;
9125 
9126       --  Do not issue error on an operand that is neither a character nor a
9127       --  string, as the error is issued in Resolve_Op_Concat.
9128 
9129       else
9130          null;
9131       end if;
9132 
9133       Check_Unset_Reference (Arg);
9134    end Resolve_Op_Concat_Arg;
9135 
9136    -----------------------------
9137    -- Resolve_Op_Concat_First --
9138    -----------------------------
9139 
9140    procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9141       Btyp : constant Entity_Id := Base_Type (Typ);
9142       Op1  : constant Node_Id := Left_Opnd (N);
9143       Op2  : constant Node_Id := Right_Opnd (N);
9144 
9145    begin
9146       --  The parser folds an enormous sequence of concatenations of string
9147       --  literals into "" & "...", where the Is_Folded_In_Parser flag is set
9148       --  in the right operand. If the expression resolves to a predefined "&"
9149       --  operator, all is well. Otherwise, the parser's folding is wrong, so
9150       --  we give an error. See P_Simple_Expression in Par.Ch4.
9151 
9152       if Nkind (Op2) = N_String_Literal
9153         and then Is_Folded_In_Parser (Op2)
9154         and then Ekind (Entity (N)) = E_Function
9155       then
9156          pragma Assert (Nkind (Op1) = N_String_Literal  --  should be ""
9157                and then String_Length (Strval (Op1)) = 0);
9158          Error_Msg_N ("too many user-defined concatenations", N);
9159          return;
9160       end if;
9161 
9162       Set_Etype (N, Btyp);
9163 
9164       if Is_Limited_Composite (Btyp) then
9165          Error_Msg_N ("concatenation not available for limited array", N);
9166          Explain_Limited_Type (Btyp, N);
9167       end if;
9168    end Resolve_Op_Concat_First;
9169 
9170    ----------------------------
9171    -- Resolve_Op_Concat_Rest --
9172    ----------------------------
9173 
9174    procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9175       Op1  : constant Node_Id := Left_Opnd (N);
9176       Op2  : constant Node_Id := Right_Opnd (N);
9177 
9178    begin
9179       Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd  (N));
9180 
9181       Generate_Operator_Reference (N, Typ);
9182 
9183       if Is_String_Type (Typ) then
9184          Eval_Concatenation (N);
9185       end if;
9186 
9187       --  If this is not a static concatenation, but the result is a string
9188       --  type (and not an array of strings) ensure that static string operands
9189       --  have their subtypes properly constructed.
9190 
9191       if Nkind (N) /= N_String_Literal
9192         and then Is_Character_Type (Component_Type (Typ))
9193       then
9194          Set_String_Literal_Subtype (Op1, Typ);
9195          Set_String_Literal_Subtype (Op2, Typ);
9196       end if;
9197    end Resolve_Op_Concat_Rest;
9198 
9199    ----------------------
9200    -- Resolve_Op_Expon --
9201    ----------------------
9202 
9203    procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9204       B_Typ : constant Entity_Id := Base_Type (Typ);
9205 
9206    begin
9207       --  Catch attempts to do fixed-point exponentiation with universal
9208       --  operands, which is a case where the illegality is not caught during
9209       --  normal operator analysis. This is not done in preanalysis mode
9210       --  since the tree is not fully decorated during preanalysis.
9211 
9212       if Full_Analysis then
9213          if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9214             Error_Msg_N ("exponentiation not available for fixed point", N);
9215             return;
9216 
9217          elsif Nkind (Parent (N)) in N_Op
9218            and then Is_Fixed_Point_Type (Etype (Parent (N)))
9219            and then Etype (N) = Universal_Real
9220            and then Comes_From_Source (N)
9221          then
9222             Error_Msg_N ("exponentiation not available for fixed point", N);
9223             return;
9224          end if;
9225       end if;
9226 
9227       if Comes_From_Source (N)
9228         and then Ekind (Entity (N)) = E_Function
9229         and then Is_Imported (Entity (N))
9230         and then Is_Intrinsic_Subprogram (Entity (N))
9231       then
9232          Resolve_Intrinsic_Operator (N, Typ);
9233          return;
9234       end if;
9235 
9236       if Etype (Left_Opnd (N)) = Universal_Integer
9237         or else Etype (Left_Opnd (N)) = Universal_Real
9238       then
9239          Check_For_Visible_Operator (N, B_Typ);
9240       end if;
9241 
9242       --  We do the resolution using the base type, because intermediate values
9243       --  in expressions are always of the base type, not a subtype of it.
9244 
9245       Resolve (Left_Opnd (N), B_Typ);
9246       Resolve (Right_Opnd (N), Standard_Integer);
9247 
9248       --  For integer types, right argument must be in Natural range
9249 
9250       if Is_Integer_Type (Typ) then
9251          Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9252       end if;
9253 
9254       Check_Unset_Reference (Left_Opnd  (N));
9255       Check_Unset_Reference (Right_Opnd (N));
9256 
9257       Set_Etype (N, B_Typ);
9258       Generate_Operator_Reference (N, B_Typ);
9259 
9260       Analyze_Dimension (N);
9261 
9262       if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9263          --  Evaluate the exponentiation operator for dimensioned type
9264 
9265          Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9266       else
9267          Eval_Op_Expon (N);
9268       end if;
9269 
9270       --  Set overflow checking bit. Much cleverer code needed here eventually
9271       --  and perhaps the Resolve routines should be separated for the various
9272       --  arithmetic operations, since they will need different processing. ???
9273 
9274       if Nkind (N) in N_Op then
9275          if not Overflow_Checks_Suppressed (Etype (N)) then
9276             Enable_Overflow_Check (N);
9277          end if;
9278       end if;
9279    end Resolve_Op_Expon;
9280 
9281    --------------------
9282    -- Resolve_Op_Not --
9283    --------------------
9284 
9285    procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9286       B_Typ : Entity_Id;
9287 
9288       function Parent_Is_Boolean return Boolean;
9289       --  This function determines if the parent node is a boolean operator or
9290       --  operation (comparison op, membership test, or short circuit form) and
9291       --  the not in question is the left operand of this operation. Note that
9292       --  if the not is in parens, then false is returned.
9293 
9294       -----------------------
9295       -- Parent_Is_Boolean --
9296       -----------------------
9297 
9298       function Parent_Is_Boolean return Boolean is
9299       begin
9300          if Paren_Count (N) /= 0 then
9301             return False;
9302 
9303          else
9304             case Nkind (Parent (N)) is
9305                when N_Op_And   |
9306                     N_Op_Eq    |
9307                     N_Op_Ge    |
9308                     N_Op_Gt    |
9309                     N_Op_Le    |
9310                     N_Op_Lt    |
9311                     N_Op_Ne    |
9312                     N_Op_Or    |
9313                     N_Op_Xor   |
9314                     N_In       |
9315                     N_Not_In   |
9316                     N_And_Then |
9317                     N_Or_Else  =>
9318 
9319                   return Left_Opnd (Parent (N)) = N;
9320 
9321                when others =>
9322                   return False;
9323             end case;
9324          end if;
9325       end Parent_Is_Boolean;
9326 
9327    --  Start of processing for Resolve_Op_Not
9328 
9329    begin
9330       --  Predefined operations on scalar types yield the base type. On the
9331       --  other hand, logical operations on arrays yield the type of the
9332       --  arguments (and the context).
9333 
9334       if Is_Array_Type (Typ) then
9335          B_Typ := Typ;
9336       else
9337          B_Typ := Base_Type (Typ);
9338       end if;
9339 
9340       --  Straightforward case of incorrect arguments
9341 
9342       if not Valid_Boolean_Arg (Typ) then
9343          Error_Msg_N ("invalid operand type for operator&", N);
9344          Set_Etype (N, Any_Type);
9345          return;
9346 
9347       --  Special case of probable missing parens
9348 
9349       elsif Typ = Universal_Integer or else Typ = Any_Modular then
9350          if Parent_Is_Boolean then
9351             Error_Msg_N
9352               ("operand of not must be enclosed in parentheses",
9353                Right_Opnd (N));
9354          else
9355             Error_Msg_N
9356               ("no modular type available in this context", N);
9357          end if;
9358 
9359          Set_Etype (N, Any_Type);
9360          return;
9361 
9362       --  OK resolution of NOT
9363 
9364       else
9365          --  Warn if non-boolean types involved. This is a case like not a < b
9366          --  where a and b are modular, where we will get (not a) < b and most
9367          --  likely not (a < b) was intended.
9368 
9369          if Warn_On_Questionable_Missing_Parens
9370            and then not Is_Boolean_Type (Typ)
9371            and then Parent_Is_Boolean
9372          then
9373             Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9374          end if;
9375 
9376          --  Warn on double negation if checking redundant constructs
9377 
9378          if Warn_On_Redundant_Constructs
9379            and then Comes_From_Source (N)
9380            and then Comes_From_Source (Right_Opnd (N))
9381            and then Root_Type (Typ) = Standard_Boolean
9382            and then Nkind (Right_Opnd (N)) = N_Op_Not
9383          then
9384             Error_Msg_N ("redundant double negation?r?", N);
9385          end if;
9386 
9387          --  Complete resolution and evaluation of NOT
9388 
9389          Resolve (Right_Opnd (N), B_Typ);
9390          Check_Unset_Reference (Right_Opnd (N));
9391          Set_Etype (N, B_Typ);
9392          Generate_Operator_Reference (N, B_Typ);
9393          Eval_Op_Not (N);
9394       end if;
9395    end Resolve_Op_Not;
9396 
9397    -----------------------------
9398    -- Resolve_Operator_Symbol --
9399    -----------------------------
9400 
9401    --  Nothing to be done, all resolved already
9402 
9403    procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9404       pragma Warnings (Off, N);
9405       pragma Warnings (Off, Typ);
9406 
9407    begin
9408       null;
9409    end Resolve_Operator_Symbol;
9410 
9411    ----------------------------------
9412    -- Resolve_Qualified_Expression --
9413    ----------------------------------
9414 
9415    procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9416       pragma Warnings (Off, Typ);
9417 
9418       Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9419       Expr       : constant Node_Id   := Expression (N);
9420 
9421    begin
9422       Resolve (Expr, Target_Typ);
9423 
9424       --  Protect call to Matching_Static_Array_Bounds to avoid costly
9425       --  operation if not needed.
9426 
9427       if Restriction_Check_Required (SPARK_05)
9428         and then Is_Array_Type (Target_Typ)
9429         and then Is_Array_Type (Etype (Expr))
9430         and then Etype (Expr) /= Any_Composite  --  or else Expr in error
9431         and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9432       then
9433          Check_SPARK_05_Restriction
9434            ("array types should have matching static bounds", N);
9435       end if;
9436 
9437       --  A qualified expression requires an exact match of the type, class-
9438       --  wide matching is not allowed. However, if the qualifying type is
9439       --  specific and the expression has a class-wide type, it may still be
9440       --  okay, since it can be the result of the expansion of a call to a
9441       --  dispatching function, so we also have to check class-wideness of the
9442       --  type of the expression's original node.
9443 
9444       if (Is_Class_Wide_Type (Target_Typ)
9445            or else
9446              (Is_Class_Wide_Type (Etype (Expr))
9447                and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9448         and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9449       then
9450          Wrong_Type (Expr, Target_Typ);
9451       end if;
9452 
9453       --  If the target type is unconstrained, then we reset the type of the
9454       --  result from the type of the expression. For other cases, the actual
9455       --  subtype of the expression is the target type.
9456 
9457       if Is_Composite_Type (Target_Typ)
9458         and then not Is_Constrained (Target_Typ)
9459       then
9460          Set_Etype (N, Etype (Expr));
9461       end if;
9462 
9463       Analyze_Dimension (N);
9464       Eval_Qualified_Expression (N);
9465 
9466       --  If we still have a qualified expression after the static evaluation,
9467       --  then apply a scalar range check if needed. The reason that we do this
9468       --  after the Eval call is that otherwise, the application of the range
9469       --  check may convert an illegal static expression and result in warning
9470       --  rather than giving an error (e.g Integer'(Integer'Last + 1)).
9471 
9472       if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9473          Apply_Scalar_Range_Check (Expr, Typ);
9474       end if;
9475 
9476       --  Finally, check whether a predicate applies to the target type. This
9477       --  comes from AI12-0100. As for type conversions, check the enclosing
9478       --  context to prevent an infinite expansion.
9479 
9480       if Has_Predicates (Target_Typ) then
9481          if Nkind (Parent (N)) = N_Function_Call
9482            and then Present (Name (Parent (N)))
9483            and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9484                        or else
9485                      Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9486          then
9487             null;
9488 
9489          elsif Nkind (N) = N_Qualified_Expression then
9490             Apply_Predicate_Check (N, Target_Typ);
9491          end if;
9492       end if;
9493    end Resolve_Qualified_Expression;
9494 
9495    ------------------------------
9496    -- Resolve_Raise_Expression --
9497    ------------------------------
9498 
9499    procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9500    begin
9501       if Typ = Raise_Type then
9502          Error_Msg_N ("cannot find unique type for raise expression", N);
9503          Set_Etype (N, Any_Type);
9504       else
9505          Set_Etype (N, Typ);
9506       end if;
9507    end Resolve_Raise_Expression;
9508 
9509    -------------------
9510    -- Resolve_Range --
9511    -------------------
9512 
9513    procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9514       L : constant Node_Id := Low_Bound (N);
9515       H : constant Node_Id := High_Bound (N);
9516 
9517       function First_Last_Ref return Boolean;
9518       --  Returns True if N is of the form X'First .. X'Last where X is the
9519       --  same entity for both attributes.
9520 
9521       --------------------
9522       -- First_Last_Ref --
9523       --------------------
9524 
9525       function First_Last_Ref return Boolean is
9526          Lorig : constant Node_Id := Original_Node (L);
9527          Horig : constant Node_Id := Original_Node (H);
9528 
9529       begin
9530          if Nkind (Lorig) = N_Attribute_Reference
9531            and then Nkind (Horig) = N_Attribute_Reference
9532            and then Attribute_Name (Lorig) = Name_First
9533            and then Attribute_Name (Horig) = Name_Last
9534          then
9535             declare
9536                PL : constant Node_Id := Prefix (Lorig);
9537                PH : constant Node_Id := Prefix (Horig);
9538             begin
9539                if Is_Entity_Name (PL)
9540                  and then Is_Entity_Name (PH)
9541                  and then Entity (PL) = Entity (PH)
9542                then
9543                   return True;
9544                end if;
9545             end;
9546          end if;
9547 
9548          return False;
9549       end First_Last_Ref;
9550 
9551    --  Start of processing for Resolve_Range
9552 
9553    begin
9554       Set_Etype (N, Typ);
9555       Resolve (L, Typ);
9556       Resolve (H, Typ);
9557 
9558       --  Check for inappropriate range on unordered enumeration type
9559 
9560       if Bad_Unordered_Enumeration_Reference (N, Typ)
9561 
9562         --  Exclude X'First .. X'Last if X is the same entity for both
9563 
9564         and then not First_Last_Ref
9565       then
9566          Error_Msg_Sloc := Sloc (Typ);
9567          Error_Msg_NE
9568            ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9569       end if;
9570 
9571       Check_Unset_Reference (L);
9572       Check_Unset_Reference (H);
9573 
9574       --  We have to check the bounds for being within the base range as
9575       --  required for a non-static context. Normally this is automatic and
9576       --  done as part of evaluating expressions, but the N_Range node is an
9577       --  exception, since in GNAT we consider this node to be a subexpression,
9578       --  even though in Ada it is not. The circuit in Sem_Eval could check for
9579       --  this, but that would put the test on the main evaluation path for
9580       --  expressions.
9581 
9582       Check_Non_Static_Context (L);
9583       Check_Non_Static_Context (H);
9584 
9585       --  Check for an ambiguous range over character literals. This will
9586       --  happen with a membership test involving only literals.
9587 
9588       if Typ = Any_Character then
9589          Ambiguous_Character (L);
9590          Set_Etype (N, Any_Type);
9591          return;
9592       end if;
9593 
9594       --  If bounds are static, constant-fold them, so size computations are
9595       --  identical between front-end and back-end. Do not perform this
9596       --  transformation while analyzing generic units, as type information
9597       --  would be lost when reanalyzing the constant node in the instance.
9598 
9599       if Is_Discrete_Type (Typ) and then Expander_Active then
9600          if Is_OK_Static_Expression (L) then
9601             Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9602          end if;
9603 
9604          if Is_OK_Static_Expression (H) then
9605             Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9606          end if;
9607       end if;
9608    end Resolve_Range;
9609 
9610    --------------------------
9611    -- Resolve_Real_Literal --
9612    --------------------------
9613 
9614    procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9615       Actual_Typ : constant Entity_Id := Etype (N);
9616 
9617    begin
9618       --  Special processing for fixed-point literals to make sure that the
9619       --  value is an exact multiple of small where this is required. We skip
9620       --  this for the universal real case, and also for generic types.
9621 
9622       if Is_Fixed_Point_Type (Typ)
9623         and then Typ /= Universal_Fixed
9624         and then Typ /= Any_Fixed
9625         and then not Is_Generic_Type (Typ)
9626       then
9627          declare
9628             Val   : constant Ureal := Realval (N);
9629             Cintr : constant Ureal := Val / Small_Value (Typ);
9630             Cint  : constant Uint  := UR_Trunc (Cintr);
9631             Den   : constant Uint  := Norm_Den (Cintr);
9632             Stat  : Boolean;
9633 
9634          begin
9635             --  Case of literal is not an exact multiple of the Small
9636 
9637             if Den /= 1 then
9638 
9639                --  For a source program literal for a decimal fixed-point type,
9640                --  this is statically illegal (RM 4.9(36)).
9641 
9642                if Is_Decimal_Fixed_Point_Type (Typ)
9643                  and then Actual_Typ = Universal_Real
9644                  and then Comes_From_Source (N)
9645                then
9646                   Error_Msg_N ("value has extraneous low order digits", N);
9647                end if;
9648 
9649                --  Generate a warning if literal from source
9650 
9651                if Is_OK_Static_Expression (N)
9652                  and then Warn_On_Bad_Fixed_Value
9653                then
9654                   Error_Msg_N
9655                     ("?b?static fixed-point value is not a multiple of Small!",
9656                      N);
9657                end if;
9658 
9659                --  Replace literal by a value that is the exact representation
9660                --  of a value of the type, i.e. a multiple of the small value,
9661                --  by truncation, since Machine_Rounds is false for all GNAT
9662                --  fixed-point types (RM 4.9(38)).
9663 
9664                Stat := Is_OK_Static_Expression (N);
9665                Rewrite (N,
9666                  Make_Real_Literal (Sloc (N),
9667                    Realval => Small_Value (Typ) * Cint));
9668 
9669                Set_Is_Static_Expression (N, Stat);
9670             end if;
9671 
9672             --  In all cases, set the corresponding integer field
9673 
9674             Set_Corresponding_Integer_Value (N, Cint);
9675          end;
9676       end if;
9677 
9678       --  Now replace the actual type by the expected type as usual
9679 
9680       Set_Etype (N, Typ);
9681       Eval_Real_Literal (N);
9682    end Resolve_Real_Literal;
9683 
9684    -----------------------
9685    -- Resolve_Reference --
9686    -----------------------
9687 
9688    procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9689       P : constant Node_Id := Prefix (N);
9690 
9691    begin
9692       --  Replace general access with specific type
9693 
9694       if Ekind (Etype (N)) = E_Allocator_Type then
9695          Set_Etype (N, Base_Type (Typ));
9696       end if;
9697 
9698       Resolve (P, Designated_Type (Etype (N)));
9699 
9700       --  If we are taking the reference of a volatile entity, then treat it as
9701       --  a potential modification of this entity. This is too conservative,
9702       --  but necessary because remove side effects can cause transformations
9703       --  of normal assignments into reference sequences that otherwise fail to
9704       --  notice the modification.
9705 
9706       if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9707          Note_Possible_Modification (P, Sure => False);
9708       end if;
9709    end Resolve_Reference;
9710 
9711    --------------------------------
9712    -- Resolve_Selected_Component --
9713    --------------------------------
9714 
9715    procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9716       Comp  : Entity_Id;
9717       Comp1 : Entity_Id        := Empty; -- prevent junk warning
9718       P     : constant Node_Id := Prefix (N);
9719       S     : constant Node_Id := Selector_Name (N);
9720       T     : Entity_Id        := Etype (P);
9721       I     : Interp_Index;
9722       I1    : Interp_Index := 0; -- prevent junk warning
9723       It    : Interp;
9724       It1   : Interp;
9725       Found : Boolean;
9726 
9727       function Init_Component return Boolean;
9728       --  Check whether this is the initialization of a component within an
9729       --  init proc (by assignment or call to another init proc). If true,
9730       --  there is no need for a discriminant check.
9731 
9732       --------------------
9733       -- Init_Component --
9734       --------------------
9735 
9736       function Init_Component return Boolean is
9737       begin
9738          return Inside_Init_Proc
9739            and then Nkind (Prefix (N)) = N_Identifier
9740            and then Chars (Prefix (N)) = Name_uInit
9741            and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9742       end Init_Component;
9743 
9744    --  Start of processing for Resolve_Selected_Component
9745 
9746    begin
9747       if Is_Overloaded (P) then
9748 
9749          --  Use the context type to select the prefix that has a selector
9750          --  of the correct name and type.
9751 
9752          Found := False;
9753          Get_First_Interp (P, I, It);
9754 
9755          Search : while Present (It.Typ) loop
9756             if Is_Access_Type (It.Typ) then
9757                T := Designated_Type (It.Typ);
9758             else
9759                T := It.Typ;
9760             end if;
9761 
9762             --  Locate selected component. For a private prefix the selector
9763             --  can denote a discriminant.
9764 
9765             if Is_Record_Type (T) or else Is_Private_Type (T) then
9766 
9767                --  The visible components of a class-wide type are those of
9768                --  the root type.
9769 
9770                if Is_Class_Wide_Type (T) then
9771                   T := Etype (T);
9772                end if;
9773 
9774                Comp := First_Entity (T);
9775                while Present (Comp) loop
9776                   if Chars (Comp) = Chars (S)
9777                     and then Covers (Typ, Etype (Comp))
9778                   then
9779                      if not Found then
9780                         Found := True;
9781                         I1  := I;
9782                         It1 := It;
9783                         Comp1 := Comp;
9784 
9785                      else
9786                         It := Disambiguate (P, I1, I, Any_Type);
9787 
9788                         if It = No_Interp then
9789                            Error_Msg_N
9790                              ("ambiguous prefix for selected component",  N);
9791                            Set_Etype (N, Typ);
9792                            return;
9793 
9794                         else
9795                            It1 := It;
9796 
9797                            --  There may be an implicit dereference. Retrieve
9798                            --  designated record type.
9799 
9800                            if Is_Access_Type (It1.Typ) then
9801                               T := Designated_Type (It1.Typ);
9802                            else
9803                               T := It1.Typ;
9804                            end if;
9805 
9806                            if Scope (Comp1) /= T then
9807 
9808                               --  Resolution chooses the new interpretation.
9809                               --  Find the component with the right name.
9810 
9811                               Comp1 := First_Entity (T);
9812                               while Present (Comp1)
9813                                 and then Chars (Comp1) /= Chars (S)
9814                               loop
9815                                  Comp1 := Next_Entity (Comp1);
9816                               end loop;
9817                            end if;
9818 
9819                            exit Search;
9820                         end if;
9821                      end if;
9822                   end if;
9823 
9824                   Comp := Next_Entity (Comp);
9825                end loop;
9826             end if;
9827 
9828             Get_Next_Interp (I, It);
9829          end loop Search;
9830 
9831          --  There must be a legal interpretation at this point
9832 
9833          pragma Assert (Found);
9834          Resolve (P, It1.Typ);
9835          Set_Etype (N, Typ);
9836          Set_Entity_With_Checks (S, Comp1);
9837 
9838       else
9839          --  Resolve prefix with its type
9840 
9841          Resolve (P, T);
9842       end if;
9843 
9844       --  Generate cross-reference. We needed to wait until full overloading
9845       --  resolution was complete to do this, since otherwise we can't tell if
9846       --  we are an lvalue or not.
9847 
9848       if May_Be_Lvalue (N) then
9849          Generate_Reference (Entity (S), S, 'm');
9850       else
9851          Generate_Reference (Entity (S), S, 'r');
9852       end if;
9853 
9854       --  If prefix is an access type, the node will be transformed into an
9855       --  explicit dereference during expansion. The type of the node is the
9856       --  designated type of that of the prefix.
9857 
9858       if Is_Access_Type (Etype (P)) then
9859          T := Designated_Type (Etype (P));
9860          Check_Fully_Declared_Prefix (T, P);
9861       else
9862          T := Etype (P);
9863       end if;
9864 
9865       --  Set flag for expander if discriminant check required on a component
9866       --  appearing within a variant.
9867 
9868       if Has_Discriminants (T)
9869         and then Ekind (Entity (S)) = E_Component
9870         and then Present (Original_Record_Component (Entity (S)))
9871         and then Ekind (Original_Record_Component (Entity (S))) = E_Component
9872         and then
9873           Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
9874         and then not Discriminant_Checks_Suppressed (T)
9875         and then not Init_Component
9876       then
9877          Set_Do_Discriminant_Check (N);
9878       end if;
9879 
9880       if Ekind (Entity (S)) = E_Void then
9881          Error_Msg_N ("premature use of component", S);
9882       end if;
9883 
9884       --  If the prefix is a record conversion, this may be a renamed
9885       --  discriminant whose bounds differ from those of the original
9886       --  one, so we must ensure that a range check is performed.
9887 
9888       if Nkind (P) = N_Type_Conversion
9889         and then Ekind (Entity (S)) = E_Discriminant
9890         and then Is_Discrete_Type (Typ)
9891       then
9892          Set_Etype (N, Base_Type (Typ));
9893       end if;
9894 
9895       --  Note: No Eval processing is required, because the prefix is of a
9896       --  record type, or protected type, and neither can possibly be static.
9897 
9898       --  If the record type is atomic, and the component is non-atomic, then
9899       --  this is worth a warning, since we have a situation where the access
9900       --  to the component may cause extra read/writes of the atomic array
9901       --  object, or partial word accesses, both of which may be unexpected.
9902 
9903       if Nkind (N) = N_Selected_Component
9904         and then Is_Atomic_Ref_With_Address (N)
9905         and then not Is_Atomic (Entity (S))
9906         and then not Is_Atomic (Etype (Entity (S)))
9907       then
9908          Error_Msg_N
9909            ("??access to non-atomic component of atomic record",
9910             Prefix (N));
9911          Error_Msg_N
9912            ("\??may cause unexpected accesses to atomic object",
9913             Prefix (N));
9914       end if;
9915 
9916       Analyze_Dimension (N);
9917    end Resolve_Selected_Component;
9918 
9919    -------------------
9920    -- Resolve_Shift --
9921    -------------------
9922 
9923    procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
9924       B_Typ : constant Entity_Id := Base_Type (Typ);
9925       L     : constant Node_Id   := Left_Opnd  (N);
9926       R     : constant Node_Id   := Right_Opnd (N);
9927 
9928    begin
9929       --  We do the resolution using the base type, because intermediate values
9930       --  in expressions always are of the base type, not a subtype of it.
9931 
9932       Resolve (L, B_Typ);
9933       Resolve (R, Standard_Natural);
9934 
9935       Check_Unset_Reference (L);
9936       Check_Unset_Reference (R);
9937 
9938       Set_Etype (N, B_Typ);
9939       Generate_Operator_Reference (N, B_Typ);
9940       Eval_Shift (N);
9941    end Resolve_Shift;
9942 
9943    ---------------------------
9944    -- Resolve_Short_Circuit --
9945    ---------------------------
9946 
9947    procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
9948       B_Typ : constant Entity_Id := Base_Type (Typ);
9949       L     : constant Node_Id   := Left_Opnd  (N);
9950       R     : constant Node_Id   := Right_Opnd (N);
9951 
9952    begin
9953       --  Ensure all actions associated with the left operand (e.g.
9954       --  finalization of transient controlled objects) are fully evaluated
9955       --  locally within an expression with actions. This is particularly
9956       --  helpful for coverage analysis. However this should not happen in
9957       --  generics or if Minimize_Expression_With_Actions is set.
9958 
9959       if Expander_Active and not Minimize_Expression_With_Actions then
9960          declare
9961             Reloc_L : constant Node_Id := Relocate_Node (L);
9962          begin
9963             Save_Interps (Old_N => L, New_N => Reloc_L);
9964 
9965             Rewrite (L,
9966               Make_Expression_With_Actions (Sloc (L),
9967                 Actions    => New_List,
9968                 Expression => Reloc_L));
9969 
9970             --  Set Comes_From_Source on L to preserve warnings for unset
9971             --  reference.
9972 
9973             Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
9974          end;
9975       end if;
9976 
9977       Resolve (L, B_Typ);
9978       Resolve (R, B_Typ);
9979 
9980       --  Check for issuing warning for always False assert/check, this happens
9981       --  when assertions are turned off, in which case the pragma Assert/Check
9982       --  was transformed into:
9983 
9984       --     if False and then <condition> then ...
9985 
9986       --  and we detect this pattern
9987 
9988       if Warn_On_Assertion_Failure
9989         and then Is_Entity_Name (R)
9990         and then Entity (R) = Standard_False
9991         and then Nkind (Parent (N)) = N_If_Statement
9992         and then Nkind (N) = N_And_Then
9993         and then Is_Entity_Name (L)
9994         and then Entity (L) = Standard_False
9995       then
9996          declare
9997             Orig : constant Node_Id := Original_Node (Parent (N));
9998 
9999          begin
10000             --  Special handling of Asssert pragma
10001 
10002             if Nkind (Orig) = N_Pragma
10003               and then Pragma_Name (Orig) = Name_Assert
10004             then
10005                declare
10006                   Expr : constant Node_Id :=
10007                            Original_Node
10008                              (Expression
10009                                (First (Pragma_Argument_Associations (Orig))));
10010 
10011                begin
10012                   --  Don't warn if original condition is explicit False,
10013                   --  since obviously the failure is expected in this case.
10014 
10015                   if Is_Entity_Name (Expr)
10016                     and then Entity (Expr) = Standard_False
10017                   then
10018                      null;
10019 
10020                   --  Issue warning. We do not want the deletion of the
10021                   --  IF/AND-THEN to take this message with it. We achieve this
10022                   --  by making sure that the expanded code points to the Sloc
10023                   --  of the expression, not the original pragma.
10024 
10025                   else
10026                      --  Note: Use Error_Msg_F here rather than Error_Msg_N.
10027                      --  The source location of the expression is not usually
10028                      --  the best choice here. For example, it gets located on
10029                      --  the last AND keyword in a chain of boolean expressiond
10030                      --  AND'ed together. It is best to put the message on the
10031                      --  first character of the assertion, which is the effect
10032                      --  of the First_Node call here.
10033 
10034                      Error_Msg_F
10035                        ("?A?assertion would fail at run time!",
10036                         Expression
10037                           (First (Pragma_Argument_Associations (Orig))));
10038                   end if;
10039                end;
10040 
10041             --  Similar processing for Check pragma
10042 
10043             elsif Nkind (Orig) = N_Pragma
10044               and then Pragma_Name (Orig) = Name_Check
10045             then
10046                --  Don't want to warn if original condition is explicit False
10047 
10048                declare
10049                   Expr : constant Node_Id :=
10050                     Original_Node
10051                       (Expression
10052                         (Next (First (Pragma_Argument_Associations (Orig)))));
10053                begin
10054                   if Is_Entity_Name (Expr)
10055                     and then Entity (Expr) = Standard_False
10056                   then
10057                      null;
10058 
10059                   --  Post warning
10060 
10061                   else
10062                      --  Again use Error_Msg_F rather than Error_Msg_N, see
10063                      --  comment above for an explanation of why we do this.
10064 
10065                      Error_Msg_F
10066                        ("?A?check would fail at run time!",
10067                         Expression
10068                           (Last (Pragma_Argument_Associations (Orig))));
10069                   end if;
10070                end;
10071             end if;
10072          end;
10073       end if;
10074 
10075       --  Continue with processing of short circuit
10076 
10077       Check_Unset_Reference (L);
10078       Check_Unset_Reference (R);
10079 
10080       Set_Etype (N, B_Typ);
10081       Eval_Short_Circuit (N);
10082    end Resolve_Short_Circuit;
10083 
10084    -------------------
10085    -- Resolve_Slice --
10086    -------------------
10087 
10088    procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10089       Drange     : constant Node_Id := Discrete_Range (N);
10090       Name       : constant Node_Id := Prefix (N);
10091       Array_Type : Entity_Id        := Empty;
10092       Dexpr      : Node_Id          := Empty;
10093       Index_Type : Entity_Id;
10094 
10095    begin
10096       if Is_Overloaded (Name) then
10097 
10098          --  Use the context type to select the prefix that yields the correct
10099          --  array type.
10100 
10101          declare
10102             I      : Interp_Index;
10103             I1     : Interp_Index := 0;
10104             It     : Interp;
10105             P      : constant Node_Id := Prefix (N);
10106             Found  : Boolean := False;
10107 
10108          begin
10109             Get_First_Interp (P, I,  It);
10110             while Present (It.Typ) loop
10111                if (Is_Array_Type (It.Typ)
10112                     and then Covers (Typ,  It.Typ))
10113                  or else (Is_Access_Type (It.Typ)
10114                            and then Is_Array_Type (Designated_Type (It.Typ))
10115                            and then Covers (Typ, Designated_Type (It.Typ)))
10116                then
10117                   if Found then
10118                      It := Disambiguate (P, I1, I, Any_Type);
10119 
10120                      if It = No_Interp then
10121                         Error_Msg_N ("ambiguous prefix for slicing",  N);
10122                         Set_Etype (N, Typ);
10123                         return;
10124                      else
10125                         Found := True;
10126                         Array_Type := It.Typ;
10127                         I1 := I;
10128                      end if;
10129                   else
10130                      Found := True;
10131                      Array_Type := It.Typ;
10132                      I1 := I;
10133                   end if;
10134                end if;
10135 
10136                Get_Next_Interp (I, It);
10137             end loop;
10138          end;
10139 
10140       else
10141          Array_Type := Etype (Name);
10142       end if;
10143 
10144       Resolve (Name, Array_Type);
10145 
10146       if Is_Access_Type (Array_Type) then
10147          Apply_Access_Check (N);
10148          Array_Type := Designated_Type (Array_Type);
10149 
10150          --  If the prefix is an access to an unconstrained array, we must use
10151          --  the actual subtype of the object to perform the index checks. The
10152          --  object denoted by the prefix is implicit in the node, so we build
10153          --  an explicit representation for it in order to compute the actual
10154          --  subtype.
10155 
10156          if not Is_Constrained (Array_Type) then
10157             Remove_Side_Effects (Prefix (N));
10158 
10159             declare
10160                Obj : constant Node_Id :=
10161                        Make_Explicit_Dereference (Sloc (N),
10162                          Prefix => New_Copy_Tree (Prefix (N)));
10163             begin
10164                Set_Etype (Obj, Array_Type);
10165                Set_Parent (Obj, Parent (N));
10166                Array_Type := Get_Actual_Subtype (Obj);
10167             end;
10168          end if;
10169 
10170       elsif Is_Entity_Name (Name)
10171         or else Nkind (Name) = N_Explicit_Dereference
10172         or else (Nkind (Name) = N_Function_Call
10173                   and then not Is_Constrained (Etype (Name)))
10174       then
10175          Array_Type := Get_Actual_Subtype (Name);
10176 
10177       --  If the name is a selected component that depends on discriminants,
10178       --  build an actual subtype for it. This can happen only when the name
10179       --  itself is overloaded; otherwise the actual subtype is created when
10180       --  the selected component is analyzed.
10181 
10182       elsif Nkind (Name) = N_Selected_Component
10183         and then Full_Analysis
10184         and then Depends_On_Discriminant (First_Index (Array_Type))
10185       then
10186          declare
10187             Act_Decl : constant Node_Id :=
10188                          Build_Actual_Subtype_Of_Component (Array_Type, Name);
10189          begin
10190             Insert_Action (N, Act_Decl);
10191             Array_Type := Defining_Identifier (Act_Decl);
10192          end;
10193 
10194       --  Maybe this should just be "else", instead of checking for the
10195       --  specific case of slice??? This is needed for the case where the
10196       --  prefix is an Image attribute, which gets expanded to a slice, and so
10197       --  has a constrained subtype which we want to use for the slice range
10198       --  check applied below (the range check won't get done if the
10199       --  unconstrained subtype of the 'Image is used).
10200 
10201       elsif Nkind (Name) = N_Slice then
10202          Array_Type := Etype (Name);
10203       end if;
10204 
10205       --  Obtain the type of the array index
10206 
10207       if Ekind (Array_Type) = E_String_Literal_Subtype then
10208          Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10209       else
10210          Index_Type := Etype (First_Index (Array_Type));
10211       end if;
10212 
10213       --  If name was overloaded, set slice type correctly now
10214 
10215       Set_Etype (N, Array_Type);
10216 
10217       --  Handle the generation of a range check that compares the array index
10218       --  against the discrete_range. The check is not applied to internally
10219       --  built nodes associated with the expansion of dispatch tables. Check
10220       --  that Ada.Tags has already been loaded to avoid extra dependencies on
10221       --  the unit.
10222 
10223       if Tagged_Type_Expansion
10224         and then RTU_Loaded (Ada_Tags)
10225         and then Nkind (Prefix (N)) = N_Selected_Component
10226         and then Present (Entity (Selector_Name (Prefix (N))))
10227         and then Entity (Selector_Name (Prefix (N))) =
10228                    RTE_Record_Component (RE_Prims_Ptr)
10229       then
10230          null;
10231 
10232       --  The discrete_range is specified by a subtype indication. Create a
10233       --  shallow copy and inherit the type, parent and source location from
10234       --  the discrete_range. This ensures that the range check is inserted
10235       --  relative to the slice and that the runtime exception points to the
10236       --  proper construct.
10237 
10238       elsif Is_Entity_Name (Drange) then
10239          Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10240 
10241          Set_Etype  (Dexpr, Etype  (Drange));
10242          Set_Parent (Dexpr, Parent (Drange));
10243          Set_Sloc   (Dexpr, Sloc   (Drange));
10244 
10245       --  The discrete_range is a regular range. Resolve the bounds and remove
10246       --  their side effects.
10247 
10248       else
10249          Resolve (Drange, Base_Type (Index_Type));
10250 
10251          if Nkind (Drange) = N_Range then
10252             Force_Evaluation (Low_Bound  (Drange));
10253             Force_Evaluation (High_Bound (Drange));
10254 
10255             Dexpr := Drange;
10256          end if;
10257       end if;
10258 
10259       if Present (Dexpr) then
10260          Apply_Range_Check (Dexpr, Index_Type);
10261       end if;
10262 
10263       Set_Slice_Subtype (N);
10264 
10265       --  Check bad use of type with predicates
10266 
10267       declare
10268          Subt : Entity_Id;
10269 
10270       begin
10271          if Nkind (Drange) = N_Subtype_Indication
10272            and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10273          then
10274             Subt := Entity (Subtype_Mark (Drange));
10275          else
10276             Subt := Etype (Drange);
10277          end if;
10278 
10279          if Has_Predicates (Subt) then
10280             Bad_Predicated_Subtype_Use
10281               ("subtype& has predicate, not allowed in slice", Drange, Subt);
10282          end if;
10283       end;
10284 
10285       --  Otherwise here is where we check suspicious indexes
10286 
10287       if Nkind (Drange) = N_Range then
10288          Warn_On_Suspicious_Index (Name, Low_Bound  (Drange));
10289          Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10290       end if;
10291 
10292       Analyze_Dimension (N);
10293       Eval_Slice (N);
10294    end Resolve_Slice;
10295 
10296    ----------------------------
10297    -- Resolve_String_Literal --
10298    ----------------------------
10299 
10300    procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10301       C_Typ      : constant Entity_Id  := Component_Type (Typ);
10302       R_Typ      : constant Entity_Id  := Root_Type (C_Typ);
10303       Loc        : constant Source_Ptr := Sloc (N);
10304       Str        : constant String_Id  := Strval (N);
10305       Strlen     : constant Nat        := String_Length (Str);
10306       Subtype_Id : Entity_Id;
10307       Need_Check : Boolean;
10308 
10309    begin
10310       --  For a string appearing in a concatenation, defer creation of the
10311       --  string_literal_subtype until the end of the resolution of the
10312       --  concatenation, because the literal may be constant-folded away. This
10313       --  is a useful optimization for long concatenation expressions.
10314 
10315       --  If the string is an aggregate built for a single character (which
10316       --  happens in a non-static context) or a is null string to which special
10317       --  checks may apply, we build the subtype. Wide strings must also get a
10318       --  string subtype if they come from a one character aggregate. Strings
10319       --  generated by attributes might be static, but it is often hard to
10320       --  determine whether the enclosing context is static, so we generate
10321       --  subtypes for them as well, thus losing some rarer optimizations ???
10322       --  Same for strings that come from a static conversion.
10323 
10324       Need_Check :=
10325         (Strlen = 0 and then Typ /= Standard_String)
10326           or else Nkind (Parent (N)) /= N_Op_Concat
10327           or else (N /= Left_Opnd (Parent (N))
10328                     and then N /= Right_Opnd (Parent (N)))
10329           or else ((Typ = Standard_Wide_String
10330                       or else Typ = Standard_Wide_Wide_String)
10331                     and then Nkind (Original_Node (N)) /= N_String_Literal);
10332 
10333       --  If the resolving type is itself a string literal subtype, we can just
10334       --  reuse it, since there is no point in creating another.
10335 
10336       if Ekind (Typ) = E_String_Literal_Subtype then
10337          Subtype_Id := Typ;
10338 
10339       elsif Nkind (Parent (N)) = N_Op_Concat
10340         and then not Need_Check
10341         and then not Nkind_In (Original_Node (N), N_Character_Literal,
10342                                                   N_Attribute_Reference,
10343                                                   N_Qualified_Expression,
10344                                                   N_Type_Conversion)
10345       then
10346          Subtype_Id := Typ;
10347 
10348       --  Do not generate a string literal subtype for the default expression
10349       --  of a formal parameter in GNATprove mode. This is because the string
10350       --  subtype is associated with the freezing actions of the subprogram,
10351       --  however freezing is disabled in GNATprove mode and as a result the
10352       --  subtype is unavailable.
10353 
10354       elsif GNATprove_Mode
10355         and then Nkind (Parent (N)) = N_Parameter_Specification
10356       then
10357          Subtype_Id := Typ;
10358 
10359       --  Otherwise we must create a string literal subtype. Note that the
10360       --  whole idea of string literal subtypes is simply to avoid the need
10361       --  for building a full fledged array subtype for each literal.
10362 
10363       else
10364          Set_String_Literal_Subtype (N, Typ);
10365          Subtype_Id := Etype (N);
10366       end if;
10367 
10368       if Nkind (Parent (N)) /= N_Op_Concat
10369         or else Need_Check
10370       then
10371          Set_Etype (N, Subtype_Id);
10372          Eval_String_Literal (N);
10373       end if;
10374 
10375       if Is_Limited_Composite (Typ)
10376         or else Is_Private_Composite (Typ)
10377       then
10378          Error_Msg_N ("string literal not available for private array", N);
10379          Set_Etype (N, Any_Type);
10380          return;
10381       end if;
10382 
10383       --  The validity of a null string has been checked in the call to
10384       --  Eval_String_Literal.
10385 
10386       if Strlen = 0 then
10387          return;
10388 
10389       --  Always accept string literal with component type Any_Character, which
10390       --  occurs in error situations and in comparisons of literals, both of
10391       --  which should accept all literals.
10392 
10393       elsif R_Typ = Any_Character then
10394          return;
10395 
10396       --  If the type is bit-packed, then we always transform the string
10397       --  literal into a full fledged aggregate.
10398 
10399       elsif Is_Bit_Packed_Array (Typ) then
10400          null;
10401 
10402       --  Deal with cases of Wide_Wide_String, Wide_String, and String
10403 
10404       else
10405          --  For Standard.Wide_Wide_String, or any other type whose component
10406          --  type is Standard.Wide_Wide_Character, we know that all the
10407          --  characters in the string must be acceptable, since the parser
10408          --  accepted the characters as valid character literals.
10409 
10410          if R_Typ = Standard_Wide_Wide_Character then
10411             null;
10412 
10413          --  For the case of Standard.String, or any other type whose component
10414          --  type is Standard.Character, we must make sure that there are no
10415          --  wide characters in the string, i.e. that it is entirely composed
10416          --  of characters in range of type Character.
10417 
10418          --  If the string literal is the result of a static concatenation, the
10419          --  test has already been performed on the components, and need not be
10420          --  repeated.
10421 
10422          elsif R_Typ = Standard_Character
10423            and then Nkind (Original_Node (N)) /= N_Op_Concat
10424          then
10425             for J in 1 .. Strlen loop
10426                if not In_Character_Range (Get_String_Char (Str, J)) then
10427 
10428                   --  If we are out of range, post error. This is one of the
10429                   --  very few places that we place the flag in the middle of
10430                   --  a token, right under the offending wide character. Not
10431                   --  quite clear if this is right wrt wide character encoding
10432                   --  sequences, but it's only an error message.
10433 
10434                   Error_Msg
10435                     ("literal out of range of type Standard.Character",
10436                      Source_Ptr (Int (Loc) + J));
10437                   return;
10438                end if;
10439             end loop;
10440 
10441          --  For the case of Standard.Wide_String, or any other type whose
10442          --  component type is Standard.Wide_Character, we must make sure that
10443          --  there are no wide characters in the string, i.e. that it is
10444          --  entirely composed of characters in range of type Wide_Character.
10445 
10446          --  If the string literal is the result of a static concatenation,
10447          --  the test has already been performed on the components, and need
10448          --  not be repeated.
10449 
10450          elsif R_Typ = Standard_Wide_Character
10451            and then Nkind (Original_Node (N)) /= N_Op_Concat
10452          then
10453             for J in 1 .. Strlen loop
10454                if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10455 
10456                   --  If we are out of range, post error. This is one of the
10457                   --  very few places that we place the flag in the middle of
10458                   --  a token, right under the offending wide character.
10459 
10460                   --  This is not quite right, because characters in general
10461                   --  will take more than one character position ???
10462 
10463                   Error_Msg
10464                     ("literal out of range of type Standard.Wide_Character",
10465                      Source_Ptr (Int (Loc) + J));
10466                   return;
10467                end if;
10468             end loop;
10469 
10470          --  If the root type is not a standard character, then we will convert
10471          --  the string into an aggregate and will let the aggregate code do
10472          --  the checking. Standard Wide_Wide_Character is also OK here.
10473 
10474          else
10475             null;
10476          end if;
10477 
10478          --  See if the component type of the array corresponding to the string
10479          --  has compile time known bounds. If yes we can directly check
10480          --  whether the evaluation of the string will raise constraint error.
10481          --  Otherwise we need to transform the string literal into the
10482          --  corresponding character aggregate and let the aggregate code do
10483          --  the checking.
10484 
10485          if Is_Standard_Character_Type (R_Typ) then
10486 
10487             --  Check for the case of full range, where we are definitely OK
10488 
10489             if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10490                return;
10491             end if;
10492 
10493             --  Here the range is not the complete base type range, so check
10494 
10495             declare
10496                Comp_Typ_Lo : constant Node_Id :=
10497                                Type_Low_Bound (Component_Type (Typ));
10498                Comp_Typ_Hi : constant Node_Id :=
10499                                Type_High_Bound (Component_Type (Typ));
10500 
10501                Char_Val : Uint;
10502 
10503             begin
10504                if Compile_Time_Known_Value (Comp_Typ_Lo)
10505                  and then Compile_Time_Known_Value (Comp_Typ_Hi)
10506                then
10507                   for J in 1 .. Strlen loop
10508                      Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10509 
10510                      if Char_Val < Expr_Value (Comp_Typ_Lo)
10511                        or else Char_Val > Expr_Value (Comp_Typ_Hi)
10512                      then
10513                         Apply_Compile_Time_Constraint_Error
10514                           (N, "character out of range??",
10515                            CE_Range_Check_Failed,
10516                            Loc => Source_Ptr (Int (Loc) + J));
10517                      end if;
10518                   end loop;
10519 
10520                   return;
10521                end if;
10522             end;
10523          end if;
10524       end if;
10525 
10526       --  If we got here we meed to transform the string literal into the
10527       --  equivalent qualified positional array aggregate. This is rather
10528       --  heavy artillery for this situation, but it is hard work to avoid.
10529 
10530       declare
10531          Lits : constant List_Id    := New_List;
10532          P    : Source_Ptr := Loc + 1;
10533          C    : Char_Code;
10534 
10535       begin
10536          --  Build the character literals, we give them source locations that
10537          --  correspond to the string positions, which is a bit tricky given
10538          --  the possible presence of wide character escape sequences.
10539 
10540          for J in 1 .. Strlen loop
10541             C := Get_String_Char (Str, J);
10542             Set_Character_Literal_Name (C);
10543 
10544             Append_To (Lits,
10545               Make_Character_Literal (P,
10546                 Chars              => Name_Find,
10547                 Char_Literal_Value => UI_From_CC (C)));
10548 
10549             if In_Character_Range (C) then
10550                P := P + 1;
10551 
10552             --  Should we have a call to Skip_Wide here ???
10553 
10554             --  ???     else
10555             --             Skip_Wide (P);
10556 
10557             end if;
10558          end loop;
10559 
10560          Rewrite (N,
10561            Make_Qualified_Expression (Loc,
10562              Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10563              Expression   =>
10564                Make_Aggregate (Loc, Expressions => Lits)));
10565 
10566          Analyze_And_Resolve (N, Typ);
10567       end;
10568    end Resolve_String_Literal;
10569 
10570    -----------------------------
10571    -- Resolve_Type_Conversion --
10572    -----------------------------
10573 
10574    procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10575       Conv_OK     : constant Boolean   := Conversion_OK (N);
10576       Operand     : constant Node_Id   := Expression (N);
10577       Operand_Typ : constant Entity_Id := Etype (Operand);
10578       Target_Typ  : constant Entity_Id := Etype (N);
10579       Rop         : Node_Id;
10580       Orig_N      : Node_Id;
10581       Orig_T      : Node_Id;
10582 
10583       Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10584       --  Set to False to suppress cases where we want to suppress the test
10585       --  for redundancy to avoid possible false positives on this warning.
10586 
10587    begin
10588       if not Conv_OK
10589         and then not Valid_Conversion (N, Target_Typ, Operand)
10590       then
10591          return;
10592       end if;
10593 
10594       --  If the Operand Etype is Universal_Fixed, then the conversion is
10595       --  never redundant. We need this check because by the time we have
10596       --  finished the rather complex transformation, the conversion looks
10597       --  redundant when it is not.
10598 
10599       if Operand_Typ = Universal_Fixed then
10600          Test_Redundant := False;
10601 
10602       --  If the operand is marked as Any_Fixed, then special processing is
10603       --  required. This is also a case where we suppress the test for a
10604       --  redundant conversion, since most certainly it is not redundant.
10605 
10606       elsif Operand_Typ = Any_Fixed then
10607          Test_Redundant := False;
10608 
10609          --  Mixed-mode operation involving a literal. Context must be a fixed
10610          --  type which is applied to the literal subsequently.
10611 
10612          if Is_Fixed_Point_Type (Typ) then
10613             Set_Etype (Operand, Universal_Real);
10614 
10615          elsif Is_Numeric_Type (Typ)
10616            and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10617            and then (Etype (Right_Opnd (Operand)) = Universal_Real
10618                        or else
10619                      Etype (Left_Opnd  (Operand)) = Universal_Real)
10620          then
10621             --  Return if expression is ambiguous
10622 
10623             if Unique_Fixed_Point_Type (N) = Any_Type then
10624                return;
10625 
10626             --  If nothing else, the available fixed type is Duration
10627 
10628             else
10629                Set_Etype (Operand, Standard_Duration);
10630             end if;
10631 
10632             --  Resolve the real operand with largest available precision
10633 
10634             if Etype (Right_Opnd (Operand)) = Universal_Real then
10635                Rop := New_Copy_Tree (Right_Opnd (Operand));
10636             else
10637                Rop := New_Copy_Tree (Left_Opnd (Operand));
10638             end if;
10639 
10640             Resolve (Rop, Universal_Real);
10641 
10642             --  If the operand is a literal (it could be a non-static and
10643             --  illegal exponentiation) check whether the use of Duration
10644             --  is potentially inaccurate.
10645 
10646             if Nkind (Rop) = N_Real_Literal
10647               and then Realval (Rop) /= Ureal_0
10648               and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10649             then
10650                Error_Msg_N
10651                  ("??universal real operand can only "
10652                   & "be interpreted as Duration!", Rop);
10653                Error_Msg_N
10654                  ("\??precision will be lost in the conversion!", Rop);
10655             end if;
10656 
10657          elsif Is_Numeric_Type (Typ)
10658            and then Nkind (Operand) in N_Op
10659            and then Unique_Fixed_Point_Type (N) /= Any_Type
10660          then
10661             Set_Etype (Operand, Standard_Duration);
10662 
10663          else
10664             Error_Msg_N ("invalid context for mixed mode operation", N);
10665             Set_Etype (Operand, Any_Type);
10666             return;
10667          end if;
10668       end if;
10669 
10670       Resolve (Operand);
10671 
10672       --  In SPARK, a type conversion between array types should be restricted
10673       --  to types which have matching static bounds.
10674 
10675       --  Protect call to Matching_Static_Array_Bounds to avoid costly
10676       --  operation if not needed.
10677 
10678       if Restriction_Check_Required (SPARK_05)
10679         and then Is_Array_Type (Target_Typ)
10680         and then Is_Array_Type (Operand_Typ)
10681         and then Operand_Typ /= Any_Composite  --  or else Operand in error
10682         and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10683       then
10684          Check_SPARK_05_Restriction
10685            ("array types should have matching static bounds", N);
10686       end if;
10687 
10688       --  In formal mode, the operand of an ancestor type conversion must be an
10689       --  object (not an expression).
10690 
10691       if Is_Tagged_Type (Target_Typ)
10692         and then not Is_Class_Wide_Type (Target_Typ)
10693         and then Is_Tagged_Type (Operand_Typ)
10694         and then not Is_Class_Wide_Type (Operand_Typ)
10695         and then Is_Ancestor (Target_Typ, Operand_Typ)
10696         and then not Is_SPARK_05_Object_Reference (Operand)
10697       then
10698          Check_SPARK_05_Restriction ("object required", Operand);
10699       end if;
10700 
10701       Analyze_Dimension (N);
10702 
10703       --  Note: we do the Eval_Type_Conversion call before applying the
10704       --  required checks for a subtype conversion. This is important, since
10705       --  both are prepared under certain circumstances to change the type
10706       --  conversion to a constraint error node, but in the case of
10707       --  Eval_Type_Conversion this may reflect an illegality in the static
10708       --  case, and we would miss the illegality (getting only a warning
10709       --  message), if we applied the type conversion checks first.
10710 
10711       Eval_Type_Conversion (N);
10712 
10713       --  Even when evaluation is not possible, we may be able to simplify the
10714       --  conversion or its expression. This needs to be done before applying
10715       --  checks, since otherwise the checks may use the original expression
10716       --  and defeat the simplifications. This is specifically the case for
10717       --  elimination of the floating-point Truncation attribute in
10718       --  float-to-int conversions.
10719 
10720       Simplify_Type_Conversion (N);
10721 
10722       --  If after evaluation we still have a type conversion, then we may need
10723       --  to apply checks required for a subtype conversion.
10724 
10725       --  Skip these type conversion checks if universal fixed operands
10726       --  operands involved, since range checks are handled separately for
10727       --  these cases (in the appropriate Expand routines in unit Exp_Fixd).
10728 
10729       if Nkind (N) = N_Type_Conversion
10730         and then not Is_Generic_Type (Root_Type (Target_Typ))
10731         and then Target_Typ  /= Universal_Fixed
10732         and then Operand_Typ /= Universal_Fixed
10733       then
10734          Apply_Type_Conversion_Checks (N);
10735       end if;
10736 
10737       --  Issue warning for conversion of simple object to its own type. We
10738       --  have to test the original nodes, since they may have been rewritten
10739       --  by various optimizations.
10740 
10741       Orig_N := Original_Node (N);
10742 
10743       --  Here we test for a redundant conversion if the warning mode is
10744       --  active (and was not locally reset), and we have a type conversion
10745       --  from source not appearing in a generic instance.
10746 
10747       if Test_Redundant
10748         and then Nkind (Orig_N) = N_Type_Conversion
10749         and then Comes_From_Source (Orig_N)
10750         and then not In_Instance
10751       then
10752          Orig_N := Original_Node (Expression (Orig_N));
10753          Orig_T := Target_Typ;
10754 
10755          --  If the node is part of a larger expression, the Target_Type
10756          --  may not be the original type of the node if the context is a
10757          --  condition. Recover original type to see if conversion is needed.
10758 
10759          if Is_Boolean_Type (Orig_T)
10760           and then Nkind (Parent (N)) in N_Op
10761          then
10762             Orig_T := Etype (Parent (N));
10763          end if;
10764 
10765          --  If we have an entity name, then give the warning if the entity
10766          --  is the right type, or if it is a loop parameter covered by the
10767          --  original type (that's needed because loop parameters have an
10768          --  odd subtype coming from the bounds).
10769 
10770          if (Is_Entity_Name (Orig_N)
10771               and then
10772                 (Etype (Entity (Orig_N)) = Orig_T
10773                   or else
10774                     (Ekind (Entity (Orig_N)) = E_Loop_Parameter
10775                       and then Covers (Orig_T, Etype (Entity (Orig_N))))))
10776 
10777            --  If not an entity, then type of expression must match
10778 
10779            or else Etype (Orig_N) = Orig_T
10780          then
10781             --  One more check, do not give warning if the analyzed conversion
10782             --  has an expression with non-static bounds, and the bounds of the
10783             --  target are static. This avoids junk warnings in cases where the
10784             --  conversion is necessary to establish staticness, for example in
10785             --  a case statement.
10786 
10787             if not Is_OK_Static_Subtype (Operand_Typ)
10788               and then Is_OK_Static_Subtype (Target_Typ)
10789             then
10790                null;
10791 
10792             --  Finally, if this type conversion occurs in a context requiring
10793             --  a prefix, and the expression is a qualified expression then the
10794             --  type conversion is not redundant, since a qualified expression
10795             --  is not a prefix, whereas a type conversion is. For example, "X
10796             --  := T'(Funx(...)).Y;" is illegal because a selected component
10797             --  requires a prefix, but a type conversion makes it legal: "X :=
10798             --  T(T'(Funx(...))).Y;"
10799 
10800             --  In Ada 2012, a qualified expression is a name, so this idiom is
10801             --  no longer needed, but we still suppress the warning because it
10802             --  seems unfriendly for warnings to pop up when you switch to the
10803             --  newer language version.
10804 
10805             elsif Nkind (Orig_N) = N_Qualified_Expression
10806               and then Nkind_In (Parent (N), N_Attribute_Reference,
10807                                              N_Indexed_Component,
10808                                              N_Selected_Component,
10809                                              N_Slice,
10810                                              N_Explicit_Dereference)
10811             then
10812                null;
10813 
10814             --  Never warn on conversion to Long_Long_Integer'Base since
10815             --  that is most likely an artifact of the extended overflow
10816             --  checking and comes from complex expanded code.
10817 
10818             elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
10819                null;
10820 
10821             --  Here we give the redundant conversion warning. If it is an
10822             --  entity, give the name of the entity in the message. If not,
10823             --  just mention the expression.
10824 
10825             --  Shoudn't we test Warn_On_Redundant_Constructs here ???
10826 
10827             else
10828                if Is_Entity_Name (Orig_N) then
10829                   Error_Msg_Node_2 := Orig_T;
10830                   Error_Msg_NE -- CODEFIX
10831                     ("??redundant conversion, & is of type &!",
10832                      N, Entity (Orig_N));
10833                else
10834                   Error_Msg_NE
10835                     ("??redundant conversion, expression is of type&!",
10836                      N, Orig_T);
10837                end if;
10838             end if;
10839          end if;
10840       end if;
10841 
10842       --  Ada 2005 (AI-251): Handle class-wide interface type conversions.
10843       --  No need to perform any interface conversion if the type of the
10844       --  expression coincides with the target type.
10845 
10846       if Ada_Version >= Ada_2005
10847         and then Expander_Active
10848         and then Operand_Typ /= Target_Typ
10849       then
10850          declare
10851             Opnd   : Entity_Id := Operand_Typ;
10852             Target : Entity_Id := Target_Typ;
10853 
10854          begin
10855             --  If the type of the operand is a limited view, use nonlimited
10856             --  view when available. If it is a class-wide type, recover the
10857             --  class-wide type of the nonlimited view.
10858 
10859             if From_Limited_With (Opnd)
10860               and then Has_Non_Limited_View (Opnd)
10861             then
10862                Opnd := Non_Limited_View (Opnd);
10863                Set_Etype (Expression (N), Opnd);
10864             end if;
10865 
10866             if Is_Access_Type (Opnd) then
10867                Opnd := Designated_Type (Opnd);
10868             end if;
10869 
10870             if Is_Access_Type (Target_Typ) then
10871                Target := Designated_Type (Target);
10872             end if;
10873 
10874             if Opnd = Target then
10875                null;
10876 
10877             --  Conversion from interface type
10878 
10879             elsif Is_Interface (Opnd) then
10880 
10881                --  Ada 2005 (AI-217): Handle entities from limited views
10882 
10883                if From_Limited_With (Opnd) then
10884                   Error_Msg_Qual_Level := 99;
10885                   Error_Msg_NE -- CODEFIX
10886                     ("missing WITH clause on package &", N,
10887                     Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
10888                   Error_Msg_N
10889                     ("type conversions require visibility of the full view",
10890                      N);
10891 
10892                elsif From_Limited_With (Target)
10893                  and then not
10894                    (Is_Access_Type (Target_Typ)
10895                       and then Present (Non_Limited_View (Etype (Target))))
10896                then
10897                   Error_Msg_Qual_Level := 99;
10898                   Error_Msg_NE -- CODEFIX
10899                     ("missing WITH clause on package &", N,
10900                     Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
10901                   Error_Msg_N
10902                     ("type conversions require visibility of the full view",
10903                      N);
10904 
10905                else
10906                   Expand_Interface_Conversion (N);
10907                end if;
10908 
10909             --  Conversion to interface type
10910 
10911             elsif Is_Interface (Target) then
10912 
10913                --  Handle subtypes
10914 
10915                if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
10916                   Opnd := Etype (Opnd);
10917                end if;
10918 
10919                if Is_Class_Wide_Type (Opnd)
10920                  or else Interface_Present_In_Ancestor
10921                            (Typ   => Opnd,
10922                             Iface => Target)
10923                then
10924                   Expand_Interface_Conversion (N);
10925                else
10926                   Error_Msg_Name_1 := Chars (Etype (Target));
10927                   Error_Msg_Name_2 := Chars (Opnd);
10928                   Error_Msg_N
10929                     ("wrong interface conversion (% is not a progenitor "
10930                      & "of %)", N);
10931                end if;
10932             end if;
10933          end;
10934       end if;
10935 
10936       --  Ada 2012: if target type has predicates, the result requires a
10937       --  predicate check. If the context is a call to another predicate
10938       --  check we must prevent infinite recursion.
10939 
10940       if Has_Predicates (Target_Typ) then
10941          if Nkind (Parent (N)) = N_Function_Call
10942            and then Present (Name (Parent (N)))
10943            and then (Is_Predicate_Function (Entity (Name (Parent (N))))
10944                        or else
10945                      Is_Predicate_Function_M (Entity (Name (Parent (N)))))
10946          then
10947             null;
10948 
10949          else
10950             Apply_Predicate_Check (N, Target_Typ);
10951          end if;
10952       end if;
10953 
10954       --  If at this stage we have a real to integer conversion, make sure
10955       --  that the Do_Range_Check flag is set, because such conversions in
10956       --  general need a range check. We only need this if expansion is off
10957       --  or we are in GNATProve mode.
10958 
10959       if Nkind (N) = N_Type_Conversion
10960         and then (GNATprove_Mode or not Expander_Active)
10961         and then Is_Integer_Type (Target_Typ)
10962         and then Is_Real_Type (Operand_Typ)
10963       then
10964          Set_Do_Range_Check (Operand);
10965       end if;
10966 
10967       --  Generating C code a type conversion of an access to constrained
10968       --  array type to access to unconstrained array type involves building
10969       --  a fat pointer which in general cannot be generated on the fly. We
10970       --  remove side effects in order to store the result of the conversion
10971       --  into a temporary.
10972 
10973       if Generate_C_Code
10974         and then Nkind (N) = N_Type_Conversion
10975         and then Nkind (Parent (N)) /= N_Object_Declaration
10976         and then Is_Access_Type (Etype (N))
10977         and then Is_Array_Type (Designated_Type (Etype (N)))
10978         and then not Is_Constrained (Designated_Type (Etype (N)))
10979         and then Is_Constrained (Designated_Type (Etype (Expression (N))))
10980       then
10981          Remove_Side_Effects (N);
10982       end if;
10983    end Resolve_Type_Conversion;
10984 
10985    ----------------------
10986    -- Resolve_Unary_Op --
10987    ----------------------
10988 
10989    procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
10990       B_Typ : constant Entity_Id := Base_Type (Typ);
10991       R     : constant Node_Id   := Right_Opnd (N);
10992       OK    : Boolean;
10993       Lo    : Uint;
10994       Hi    : Uint;
10995 
10996    begin
10997       if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
10998          Error_Msg_Name_1 := Chars (Typ);
10999          Check_SPARK_05_Restriction
11000            ("unary operator not defined for modular type%", N);
11001       end if;
11002 
11003       --  Deal with intrinsic unary operators
11004 
11005       if Comes_From_Source (N)
11006         and then Ekind (Entity (N)) = E_Function
11007         and then Is_Imported (Entity (N))
11008         and then Is_Intrinsic_Subprogram (Entity (N))
11009       then
11010          Resolve_Intrinsic_Unary_Operator (N, Typ);
11011          return;
11012       end if;
11013 
11014       --  Deal with universal cases
11015 
11016       if Etype (R) = Universal_Integer
11017            or else
11018          Etype (R) = Universal_Real
11019       then
11020          Check_For_Visible_Operator (N, B_Typ);
11021       end if;
11022 
11023       Set_Etype (N, B_Typ);
11024       Resolve (R, B_Typ);
11025 
11026       --  Generate warning for expressions like abs (x mod 2)
11027 
11028       if Warn_On_Redundant_Constructs
11029         and then Nkind (N) = N_Op_Abs
11030       then
11031          Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11032 
11033          if OK and then Hi >= Lo and then Lo >= 0 then
11034             Error_Msg_N -- CODEFIX
11035              ("?r?abs applied to known non-negative value has no effect", N);
11036          end if;
11037       end if;
11038 
11039       --  Deal with reference generation
11040 
11041       Check_Unset_Reference (R);
11042       Generate_Operator_Reference (N, B_Typ);
11043       Analyze_Dimension (N);
11044       Eval_Unary_Op (N);
11045 
11046       --  Set overflow checking bit. Much cleverer code needed here eventually
11047       --  and perhaps the Resolve routines should be separated for the various
11048       --  arithmetic operations, since they will need different processing ???
11049 
11050       if Nkind (N) in N_Op then
11051          if not Overflow_Checks_Suppressed (Etype (N)) then
11052             Enable_Overflow_Check (N);
11053          end if;
11054       end if;
11055 
11056       --  Generate warning for expressions like -5 mod 3 for integers. No need
11057       --  to worry in the floating-point case, since parens do not affect the
11058       --  result so there is no point in giving in a warning.
11059 
11060       declare
11061          Norig : constant Node_Id := Original_Node (N);
11062          Rorig : Node_Id;
11063          Val   : Uint;
11064          HB    : Uint;
11065          LB    : Uint;
11066          Lval  : Uint;
11067          Opnd  : Node_Id;
11068 
11069       begin
11070          if Warn_On_Questionable_Missing_Parens
11071            and then Comes_From_Source (Norig)
11072            and then Is_Integer_Type (Typ)
11073            and then Nkind (Norig) = N_Op_Minus
11074          then
11075             Rorig := Original_Node (Right_Opnd (Norig));
11076 
11077             --  We are looking for cases where the right operand is not
11078             --  parenthesized, and is a binary operator, multiply, divide, or
11079             --  mod. These are the cases where the grouping can affect results.
11080 
11081             if Paren_Count (Rorig) = 0
11082               and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11083             then
11084                --  For mod, we always give the warning, since the value is
11085                --  affected by the parenthesization (e.g. (-5) mod 315 /=
11086                --  -(5 mod 315)). But for the other cases, the only concern is
11087                --  overflow, e.g. for the case of 8 big signed (-(2 * 64)
11088                --  overflows, but (-2) * 64 does not). So we try to give the
11089                --  message only when overflow is possible.
11090 
11091                if Nkind (Rorig) /= N_Op_Mod
11092                  and then Compile_Time_Known_Value (R)
11093                then
11094                   Val := Expr_Value (R);
11095 
11096                   if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11097                      HB := Expr_Value (Type_High_Bound (Typ));
11098                   else
11099                      HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11100                   end if;
11101 
11102                   if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11103                      LB := Expr_Value (Type_Low_Bound (Typ));
11104                   else
11105                      LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11106                   end if;
11107 
11108                   --  Note that the test below is deliberately excluding the
11109                   --  largest negative number, since that is a potentially
11110                   --  troublesome case (e.g. -2 * x, where the result is the
11111                   --  largest negative integer has an overflow with 2 * x).
11112 
11113                   if Val > LB and then Val <= HB then
11114                      return;
11115                   end if;
11116                end if;
11117 
11118                --  For the multiplication case, the only case we have to worry
11119                --  about is when (-a)*b is exactly the largest negative number
11120                --  so that -(a*b) can cause overflow. This can only happen if
11121                --  a is a power of 2, and more generally if any operand is a
11122                --  constant that is not a power of 2, then the parentheses
11123                --  cannot affect whether overflow occurs. We only bother to
11124                --  test the left most operand
11125 
11126                --  Loop looking at left operands for one that has known value
11127 
11128                Opnd := Rorig;
11129                Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11130                   if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11131                      Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11132 
11133                      --  Operand value of 0 or 1 skips warning
11134 
11135                      if Lval <= 1 then
11136                         return;
11137 
11138                      --  Otherwise check power of 2, if power of 2, warn, if
11139                      --  anything else, skip warning.
11140 
11141                      else
11142                         while Lval /= 2 loop
11143                            if Lval mod 2 = 1 then
11144                               return;
11145                            else
11146                               Lval := Lval / 2;
11147                            end if;
11148                         end loop;
11149 
11150                         exit Opnd_Loop;
11151                      end if;
11152                   end if;
11153 
11154                   --  Keep looking at left operands
11155 
11156                   Opnd := Left_Opnd (Opnd);
11157                end loop Opnd_Loop;
11158 
11159                --  For rem or "/" we can only have a problematic situation
11160                --  if the divisor has a value of minus one or one. Otherwise
11161                --  overflow is impossible (divisor > 1) or we have a case of
11162                --  division by zero in any case.
11163 
11164                if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11165                  and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11166                  and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11167                then
11168                   return;
11169                end if;
11170 
11171                --  If we fall through warning should be issued
11172 
11173                --  Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11174 
11175                Error_Msg_N
11176                  ("??unary minus expression should be parenthesized here!", N);
11177             end if;
11178          end if;
11179       end;
11180    end Resolve_Unary_Op;
11181 
11182    ----------------------------------
11183    -- Resolve_Unchecked_Expression --
11184    ----------------------------------
11185 
11186    procedure Resolve_Unchecked_Expression
11187      (N   : Node_Id;
11188       Typ : Entity_Id)
11189    is
11190    begin
11191       Resolve (Expression (N), Typ, Suppress => All_Checks);
11192       Set_Etype (N, Typ);
11193    end Resolve_Unchecked_Expression;
11194 
11195    ---------------------------------------
11196    -- Resolve_Unchecked_Type_Conversion --
11197    ---------------------------------------
11198 
11199    procedure Resolve_Unchecked_Type_Conversion
11200      (N   : Node_Id;
11201       Typ : Entity_Id)
11202    is
11203       pragma Warnings (Off, Typ);
11204 
11205       Operand   : constant Node_Id   := Expression (N);
11206       Opnd_Type : constant Entity_Id := Etype (Operand);
11207 
11208    begin
11209       --  Resolve operand using its own type
11210 
11211       Resolve (Operand, Opnd_Type);
11212 
11213       --  In an inlined context, the unchecked conversion may be applied
11214       --  to a literal, in which case its type is the type of the context.
11215       --  (In other contexts conversions cannot apply to literals).
11216 
11217       if In_Inlined_Body
11218         and then (Opnd_Type = Any_Character or else
11219                   Opnd_Type = Any_Integer   or else
11220                   Opnd_Type = Any_Real)
11221       then
11222          Set_Etype (Operand, Typ);
11223       end if;
11224 
11225       Analyze_Dimension (N);
11226       Eval_Unchecked_Conversion (N);
11227    end Resolve_Unchecked_Type_Conversion;
11228 
11229    ------------------------------
11230    -- Rewrite_Operator_As_Call --
11231    ------------------------------
11232 
11233    procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11234       Loc     : constant Source_Ptr := Sloc (N);
11235       Actuals : constant List_Id    := New_List;
11236       New_N   : Node_Id;
11237 
11238    begin
11239       if Nkind (N) in N_Binary_Op then
11240          Append (Left_Opnd (N), Actuals);
11241       end if;
11242 
11243       Append (Right_Opnd (N), Actuals);
11244 
11245       New_N :=
11246         Make_Function_Call (Sloc => Loc,
11247           Name => New_Occurrence_Of (Nam, Loc),
11248           Parameter_Associations => Actuals);
11249 
11250       Preserve_Comes_From_Source (New_N, N);
11251       Preserve_Comes_From_Source (Name (New_N), N);
11252       Rewrite (N, New_N);
11253       Set_Etype (N, Etype (Nam));
11254    end Rewrite_Operator_As_Call;
11255 
11256    ------------------------------
11257    -- Rewrite_Renamed_Operator --
11258    ------------------------------
11259 
11260    procedure Rewrite_Renamed_Operator
11261      (N   : Node_Id;
11262       Op  : Entity_Id;
11263       Typ : Entity_Id)
11264    is
11265       Nam       : constant Name_Id := Chars (Op);
11266       Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11267       Op_Node   : Node_Id;
11268 
11269    begin
11270       --  Do not perform this transformation within a pre/postcondition,
11271       --  because the expression will be re-analyzed, and the transformation
11272       --  might affect the visibility of the operator, e.g. in an instance.
11273       --  Note that fully analyzed and expanded pre/postconditions appear as
11274       --  pragma Check equivalents.
11275 
11276       if In_Pre_Post_Condition (N) then
11277          return;
11278       end if;
11279 
11280       --  Rewrite the operator node using the real operator, not its renaming.
11281       --  Exclude user-defined intrinsic operations of the same name, which are
11282       --  treated separately and rewritten as calls.
11283 
11284       if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11285          Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11286          Set_Chars      (Op_Node, Nam);
11287          Set_Etype      (Op_Node, Etype (N));
11288          Set_Entity     (Op_Node, Op);
11289          Set_Right_Opnd (Op_Node, Right_Opnd (N));
11290 
11291          --  Indicate that both the original entity and its renaming are
11292          --  referenced at this point.
11293 
11294          Generate_Reference (Entity (N), N);
11295          Generate_Reference (Op, N);
11296 
11297          if Is_Binary then
11298             Set_Left_Opnd (Op_Node, Left_Opnd (N));
11299          end if;
11300 
11301          Rewrite (N, Op_Node);
11302 
11303          --  If the context type is private, add the appropriate conversions so
11304          --  that the operator is applied to the full view. This is done in the
11305          --  routines that resolve intrinsic operators.
11306 
11307          if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11308             case Nkind (N) is
11309                when N_Op_Add   | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
11310                     N_Op_Expon | N_Op_Mod      | N_Op_Rem      =>
11311                   Resolve_Intrinsic_Operator (N, Typ);
11312 
11313                when N_Op_Plus  | N_Op_Minus    | N_Op_Abs      =>
11314                   Resolve_Intrinsic_Unary_Operator (N, Typ);
11315 
11316                when others =>
11317                   Resolve (N, Typ);
11318             end case;
11319          end if;
11320 
11321       elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11322 
11323          --  Operator renames a user-defined operator of the same name. Use the
11324          --  original operator in the node, which is the one Gigi knows about.
11325 
11326          Set_Entity (N, Op);
11327          Set_Is_Overloaded (N, False);
11328       end if;
11329    end Rewrite_Renamed_Operator;
11330 
11331    -----------------------
11332    -- Set_Slice_Subtype --
11333    -----------------------
11334 
11335    --  Build an implicit subtype declaration to represent the type delivered by
11336    --  the slice. This is an abbreviated version of an array subtype. We define
11337    --  an index subtype for the slice, using either the subtype name or the
11338    --  discrete range of the slice. To be consistent with index usage elsewhere
11339    --  we create a list header to hold the single index. This list is not
11340    --  otherwise attached to the syntax tree.
11341 
11342    procedure Set_Slice_Subtype (N : Node_Id) is
11343       Loc           : constant Source_Ptr := Sloc (N);
11344       Index_List    : constant List_Id    := New_List;
11345       Index         : Node_Id;
11346       Index_Subtype : Entity_Id;
11347       Index_Type    : Entity_Id;
11348       Slice_Subtype : Entity_Id;
11349       Drange        : constant Node_Id := Discrete_Range (N);
11350 
11351    begin
11352       Index_Type := Base_Type (Etype (Drange));
11353 
11354       if Is_Entity_Name (Drange) then
11355          Index_Subtype := Entity (Drange);
11356 
11357       else
11358          --  We force the evaluation of a range. This is definitely needed in
11359          --  the renamed case, and seems safer to do unconditionally. Note in
11360          --  any case that since we will create and insert an Itype referring
11361          --  to this range, we must make sure any side effect removal actions
11362          --  are inserted before the Itype definition.
11363 
11364          if Nkind (Drange) = N_Range then
11365             Force_Evaluation (Low_Bound (Drange));
11366             Force_Evaluation (High_Bound (Drange));
11367 
11368          --  If the discrete range is given by a subtype indication, the
11369          --  type of the slice is the base of the subtype mark.
11370 
11371          elsif Nkind (Drange) = N_Subtype_Indication then
11372             declare
11373                R : constant Node_Id := Range_Expression (Constraint (Drange));
11374             begin
11375                Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11376                Force_Evaluation (Low_Bound  (R));
11377                Force_Evaluation (High_Bound (R));
11378             end;
11379          end if;
11380 
11381          Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11382 
11383          --  Take a new copy of Drange (where bounds have been rewritten to
11384          --  reference side-effect-free names). Using a separate tree ensures
11385          --  that further expansion (e.g. while rewriting a slice assignment
11386          --  into a FOR loop) does not attempt to remove side effects on the
11387          --  bounds again (which would cause the bounds in the index subtype
11388          --  definition to refer to temporaries before they are defined) (the
11389          --  reason is that some names are considered side effect free here
11390          --  for the subtype, but not in the context of a loop iteration
11391          --  scheme).
11392 
11393          Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11394          Set_Parent       (Scalar_Range (Index_Subtype), Index_Subtype);
11395          Set_Etype        (Index_Subtype, Index_Type);
11396          Set_Size_Info    (Index_Subtype, Index_Type);
11397          Set_RM_Size      (Index_Subtype, RM_Size (Index_Type));
11398       end if;
11399 
11400       Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11401 
11402       Index := New_Occurrence_Of (Index_Subtype, Loc);
11403       Set_Etype (Index, Index_Subtype);
11404       Append (Index, Index_List);
11405 
11406       Set_First_Index    (Slice_Subtype, Index);
11407       Set_Etype          (Slice_Subtype, Base_Type (Etype (N)));
11408       Set_Is_Constrained (Slice_Subtype, True);
11409 
11410       Check_Compile_Time_Size (Slice_Subtype);
11411 
11412       --  The Etype of the existing Slice node is reset to this slice subtype.
11413       --  Its bounds are obtained from its first index.
11414 
11415       Set_Etype (N, Slice_Subtype);
11416 
11417       --  For packed slice subtypes, freeze immediately (except in the case of
11418       --  being in a "spec expression" where we never freeze when we first see
11419       --  the expression).
11420 
11421       if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
11422          Freeze_Itype (Slice_Subtype, N);
11423 
11424       --  For all other cases insert an itype reference in the slice's actions
11425       --  so that the itype is frozen at the proper place in the tree (i.e. at
11426       --  the point where actions for the slice are analyzed). Note that this
11427       --  is different from freezing the itype immediately, which might be
11428       --  premature (e.g. if the slice is within a transient scope). This needs
11429       --  to be done only if expansion is enabled.
11430 
11431       elsif Expander_Active then
11432          Ensure_Defined (Typ => Slice_Subtype, N => N);
11433       end if;
11434    end Set_Slice_Subtype;
11435 
11436    --------------------------------
11437    -- Set_String_Literal_Subtype --
11438    --------------------------------
11439 
11440    procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11441       Loc        : constant Source_Ptr := Sloc (N);
11442       Low_Bound  : constant Node_Id :=
11443                      Type_Low_Bound (Etype (First_Index (Typ)));
11444       Subtype_Id : Entity_Id;
11445 
11446    begin
11447       if Nkind (N) /= N_String_Literal then
11448          return;
11449       end if;
11450 
11451       Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11452       Set_String_Literal_Length (Subtype_Id, UI_From_Int
11453                                                (String_Length (Strval (N))));
11454       Set_Etype          (Subtype_Id, Base_Type (Typ));
11455       Set_Is_Constrained (Subtype_Id);
11456       Set_Etype          (N, Subtype_Id);
11457 
11458       --  The low bound is set from the low bound of the corresponding index
11459       --  type. Note that we do not store the high bound in the string literal
11460       --  subtype, but it can be deduced if necessary from the length and the
11461       --  low bound.
11462 
11463       if Is_OK_Static_Expression (Low_Bound) then
11464          Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11465 
11466       --  If the lower bound is not static we create a range for the string
11467       --  literal, using the index type and the known length of the literal.
11468       --  The index type is not necessarily Positive, so the upper bound is
11469       --  computed as T'Val (T'Pos (Low_Bound) + L - 1).
11470 
11471       else
11472          declare
11473             Index_List : constant List_Id   := New_List;
11474             Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11475             High_Bound : constant Node_Id   :=
11476                            Make_Attribute_Reference (Loc,
11477                              Attribute_Name => Name_Val,
11478                              Prefix         =>
11479                                New_Occurrence_Of (Index_Type, Loc),
11480                              Expressions    => New_List (
11481                                Make_Op_Add (Loc,
11482                                  Left_Opnd  =>
11483                                    Make_Attribute_Reference (Loc,
11484                                      Attribute_Name => Name_Pos,
11485                                      Prefix         =>
11486                                        New_Occurrence_Of (Index_Type, Loc),
11487                                      Expressions    =>
11488                                        New_List (New_Copy_Tree (Low_Bound))),
11489                                  Right_Opnd =>
11490                                    Make_Integer_Literal (Loc,
11491                                      String_Length (Strval (N)) - 1))));
11492 
11493             Array_Subtype : Entity_Id;
11494             Drange        : Node_Id;
11495             Index         : Node_Id;
11496             Index_Subtype : Entity_Id;
11497 
11498          begin
11499             if Is_Integer_Type (Index_Type) then
11500                Set_String_Literal_Low_Bound
11501                  (Subtype_Id, Make_Integer_Literal (Loc, 1));
11502 
11503             else
11504                --  If the index type is an enumeration type, build bounds
11505                --  expression with attributes.
11506 
11507                Set_String_Literal_Low_Bound
11508                  (Subtype_Id,
11509                   Make_Attribute_Reference (Loc,
11510                     Attribute_Name => Name_First,
11511                     Prefix         =>
11512                       New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11513                Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11514             end if;
11515 
11516             Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11517 
11518             --  Build bona fide subtype for the string, and wrap it in an
11519             --  unchecked conversion, because the backend expects the
11520             --  String_Literal_Subtype to have a static lower bound.
11521 
11522             Index_Subtype :=
11523               Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11524             Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11525             Set_Scalar_Range (Index_Subtype, Drange);
11526             Set_Parent (Drange, N);
11527             Analyze_And_Resolve (Drange, Index_Type);
11528 
11529             --  In the context, the Index_Type may already have a constraint,
11530             --  so use common base type on string subtype. The base type may
11531             --  be used when generating attributes of the string, for example
11532             --  in the context of a slice assignment.
11533 
11534             Set_Etype     (Index_Subtype, Base_Type (Index_Type));
11535             Set_Size_Info (Index_Subtype, Index_Type);
11536             Set_RM_Size   (Index_Subtype, RM_Size (Index_Type));
11537 
11538             Array_Subtype := Create_Itype (E_Array_Subtype, N);
11539 
11540             Index := New_Occurrence_Of (Index_Subtype, Loc);
11541             Set_Etype (Index, Index_Subtype);
11542             Append (Index, Index_List);
11543 
11544             Set_First_Index    (Array_Subtype, Index);
11545             Set_Etype          (Array_Subtype, Base_Type (Typ));
11546             Set_Is_Constrained (Array_Subtype, True);
11547 
11548             Rewrite (N,
11549               Make_Unchecked_Type_Conversion (Loc,
11550                 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11551                 Expression   => Relocate_Node (N)));
11552             Set_Etype (N, Array_Subtype);
11553          end;
11554       end if;
11555    end Set_String_Literal_Subtype;
11556 
11557    ------------------------------
11558    -- Simplify_Type_Conversion --
11559    ------------------------------
11560 
11561    procedure Simplify_Type_Conversion (N : Node_Id) is
11562    begin
11563       if Nkind (N) = N_Type_Conversion then
11564          declare
11565             Operand    : constant Node_Id   := Expression (N);
11566             Target_Typ : constant Entity_Id := Etype (N);
11567             Opnd_Typ   : constant Entity_Id := Etype (Operand);
11568 
11569          begin
11570             --  Special processing if the conversion is the expression of a
11571             --  Rounding or Truncation attribute reference. In this case we
11572             --  replace:
11573 
11574             --     ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11575 
11576             --  by
11577 
11578             --     ityp (x)
11579 
11580             --  with the Float_Truncate flag set to False or True respectively,
11581             --  which is more efficient.
11582 
11583             if Is_Floating_Point_Type (Opnd_Typ)
11584               and then
11585                 (Is_Integer_Type (Target_Typ)
11586                   or else (Is_Fixed_Point_Type (Target_Typ)
11587                             and then Conversion_OK (N)))
11588               and then Nkind (Operand) = N_Attribute_Reference
11589               and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11590                                                          Name_Truncation)
11591             then
11592                declare
11593                   Truncate : constant Boolean :=
11594                                Attribute_Name (Operand) = Name_Truncation;
11595                begin
11596                   Rewrite (Operand,
11597                     Relocate_Node (First (Expressions (Operand))));
11598                   Set_Float_Truncate (N, Truncate);
11599                end;
11600             end if;
11601          end;
11602       end if;
11603    end Simplify_Type_Conversion;
11604 
11605    -----------------------------
11606    -- Unique_Fixed_Point_Type --
11607    -----------------------------
11608 
11609    function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11610       T1   : Entity_Id := Empty;
11611       T2   : Entity_Id;
11612       Item : Node_Id;
11613       Scop : Entity_Id;
11614 
11615       procedure Fixed_Point_Error;
11616       --  Give error messages for true ambiguity. Messages are posted on node
11617       --  N, and entities T1, T2 are the possible interpretations.
11618 
11619       -----------------------
11620       -- Fixed_Point_Error --
11621       -----------------------
11622 
11623       procedure Fixed_Point_Error is
11624       begin
11625          Error_Msg_N ("ambiguous universal_fixed_expression", N);
11626          Error_Msg_NE ("\\possible interpretation as}", N, T1);
11627          Error_Msg_NE ("\\possible interpretation as}", N, T2);
11628       end Fixed_Point_Error;
11629 
11630    --  Start of processing for Unique_Fixed_Point_Type
11631 
11632    begin
11633       --  The operations on Duration are visible, so Duration is always a
11634       --  possible interpretation.
11635 
11636       T1 := Standard_Duration;
11637 
11638       --  Look for fixed-point types in enclosing scopes
11639 
11640       Scop := Current_Scope;
11641       while Scop /= Standard_Standard loop
11642          T2 := First_Entity (Scop);
11643          while Present (T2) loop
11644             if Is_Fixed_Point_Type (T2)
11645               and then Current_Entity (T2) = T2
11646               and then Scope (Base_Type (T2)) = Scop
11647             then
11648                if Present (T1) then
11649                   Fixed_Point_Error;
11650                   return Any_Type;
11651                else
11652                   T1 := T2;
11653                end if;
11654             end if;
11655 
11656             Next_Entity (T2);
11657          end loop;
11658 
11659          Scop := Scope (Scop);
11660       end loop;
11661 
11662       --  Look for visible fixed type declarations in the context
11663 
11664       Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11665       while Present (Item) loop
11666          if Nkind (Item) = N_With_Clause then
11667             Scop := Entity (Name (Item));
11668             T2 := First_Entity (Scop);
11669             while Present (T2) loop
11670                if Is_Fixed_Point_Type (T2)
11671                  and then Scope (Base_Type (T2)) = Scop
11672                  and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11673                then
11674                   if Present (T1) then
11675                      Fixed_Point_Error;
11676                      return Any_Type;
11677                   else
11678                      T1 := T2;
11679                   end if;
11680                end if;
11681 
11682                Next_Entity (T2);
11683             end loop;
11684          end if;
11685 
11686          Next (Item);
11687       end loop;
11688 
11689       if Nkind (N) = N_Real_Literal then
11690          Error_Msg_NE
11691            ("??real literal interpreted as }!", N, T1);
11692       else
11693          Error_Msg_NE
11694            ("??universal_fixed expression interpreted as }!", N, T1);
11695       end if;
11696 
11697       return T1;
11698    end Unique_Fixed_Point_Type;
11699 
11700    ----------------------
11701    -- Valid_Conversion --
11702    ----------------------
11703 
11704    function Valid_Conversion
11705      (N           : Node_Id;
11706       Target      : Entity_Id;
11707       Operand     : Node_Id;
11708       Report_Errs : Boolean := True) return Boolean
11709    is
11710       Target_Type  : constant Entity_Id := Base_Type (Target);
11711       Opnd_Type    : Entity_Id          := Etype (Operand);
11712       Inc_Ancestor : Entity_Id;
11713 
11714       function Conversion_Check
11715         (Valid : Boolean;
11716          Msg   : String) return Boolean;
11717       --  Little routine to post Msg if Valid is False, returns Valid value
11718 
11719       procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
11720       --  If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11721 
11722       procedure Conversion_Error_NE
11723         (Msg : String;
11724          N   : Node_Or_Entity_Id;
11725          E   : Node_Or_Entity_Id);
11726       --  If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11727 
11728       function Valid_Tagged_Conversion
11729         (Target_Type : Entity_Id;
11730          Opnd_Type   : Entity_Id) return Boolean;
11731       --  Specifically test for validity of tagged conversions
11732 
11733       function Valid_Array_Conversion return Boolean;
11734       --  Check index and component conformance, and accessibility levels if
11735       --  the component types are anonymous access types (Ada 2005).
11736 
11737       ----------------------
11738       -- Conversion_Check --
11739       ----------------------
11740 
11741       function Conversion_Check
11742         (Valid : Boolean;
11743          Msg   : String) return Boolean
11744       is
11745       begin
11746          if not Valid
11747 
11748             --  A generic unit has already been analyzed and we have verified
11749             --  that a particular conversion is OK in that context. Since the
11750             --  instance is reanalyzed without relying on the relationships
11751             --  established during the analysis of the generic, it is possible
11752             --  to end up with inconsistent views of private types. Do not emit
11753             --  the error message in such cases. The rest of the machinery in
11754             --  Valid_Conversion still ensures the proper compatibility of
11755             --  target and operand types.
11756 
11757            and then not In_Instance
11758          then
11759             Conversion_Error_N (Msg, Operand);
11760          end if;
11761 
11762          return Valid;
11763       end Conversion_Check;
11764 
11765       ------------------------
11766       -- Conversion_Error_N --
11767       ------------------------
11768 
11769       procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
11770       begin
11771          if Report_Errs then
11772             Error_Msg_N (Msg, N);
11773          end if;
11774       end Conversion_Error_N;
11775 
11776       -------------------------
11777       -- Conversion_Error_NE --
11778       -------------------------
11779 
11780       procedure Conversion_Error_NE
11781         (Msg : String;
11782          N   : Node_Or_Entity_Id;
11783          E   : Node_Or_Entity_Id)
11784       is
11785       begin
11786          if Report_Errs then
11787             Error_Msg_NE (Msg, N, E);
11788          end if;
11789       end Conversion_Error_NE;
11790 
11791       ----------------------------
11792       -- Valid_Array_Conversion --
11793       ----------------------------
11794 
11795       function Valid_Array_Conversion return Boolean
11796       is
11797          Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
11798          Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
11799 
11800          Opnd_Index      : Node_Id;
11801          Opnd_Index_Type : Entity_Id;
11802 
11803          Target_Comp_Type : constant Entity_Id :=
11804                               Component_Type (Target_Type);
11805          Target_Comp_Base : constant Entity_Id :=
11806                               Base_Type (Target_Comp_Type);
11807 
11808          Target_Index      : Node_Id;
11809          Target_Index_Type : Entity_Id;
11810 
11811       begin
11812          --  Error if wrong number of dimensions
11813 
11814          if
11815            Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
11816          then
11817             Conversion_Error_N
11818               ("incompatible number of dimensions for conversion", Operand);
11819             return False;
11820 
11821          --  Number of dimensions matches
11822 
11823          else
11824             --  Loop through indexes of the two arrays
11825 
11826             Target_Index := First_Index (Target_Type);
11827             Opnd_Index   := First_Index (Opnd_Type);
11828             while Present (Target_Index) and then Present (Opnd_Index) loop
11829                Target_Index_Type := Etype (Target_Index);
11830                Opnd_Index_Type   := Etype (Opnd_Index);
11831 
11832                --  Error if index types are incompatible
11833 
11834                if not (Is_Integer_Type (Target_Index_Type)
11835                        and then Is_Integer_Type (Opnd_Index_Type))
11836                  and then (Root_Type (Target_Index_Type)
11837                            /= Root_Type (Opnd_Index_Type))
11838                then
11839                   Conversion_Error_N
11840                     ("incompatible index types for array conversion",
11841                      Operand);
11842                   return False;
11843                end if;
11844 
11845                Next_Index (Target_Index);
11846                Next_Index (Opnd_Index);
11847             end loop;
11848 
11849             --  If component types have same base type, all set
11850 
11851             if Target_Comp_Base  = Opnd_Comp_Base then
11852                null;
11853 
11854                --  Here if base types of components are not the same. The only
11855                --  time this is allowed is if we have anonymous access types.
11856 
11857                --  The conversion of arrays of anonymous access types can lead
11858                --  to dangling pointers. AI-392 formalizes the accessibility
11859                --  checks that must be applied to such conversions to prevent
11860                --  out-of-scope references.
11861 
11862             elsif Ekind_In
11863                     (Target_Comp_Base, E_Anonymous_Access_Type,
11864                                        E_Anonymous_Access_Subprogram_Type)
11865               and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
11866               and then
11867                 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
11868             then
11869                if Type_Access_Level (Target_Type) <
11870                     Deepest_Type_Access_Level (Opnd_Type)
11871                then
11872                   if In_Instance_Body then
11873                      Error_Msg_Warn := SPARK_Mode /= On;
11874                      Conversion_Error_N
11875                        ("source array type has deeper accessibility "
11876                         & "level than target<<", Operand);
11877                      Conversion_Error_N ("\Program_Error [<<", Operand);
11878                      Rewrite (N,
11879                        Make_Raise_Program_Error (Sloc (N),
11880                          Reason => PE_Accessibility_Check_Failed));
11881                      Set_Etype (N, Target_Type);
11882                      return False;
11883 
11884                   --  Conversion not allowed because of accessibility levels
11885 
11886                   else
11887                      Conversion_Error_N
11888                        ("source array type has deeper accessibility "
11889                         & "level than target", Operand);
11890                      return False;
11891                   end if;
11892 
11893                else
11894                   null;
11895                end if;
11896 
11897             --  All other cases where component base types do not match
11898 
11899             else
11900                Conversion_Error_N
11901                  ("incompatible component types for array conversion",
11902                   Operand);
11903                return False;
11904             end if;
11905 
11906             --  Check that component subtypes statically match. For numeric
11907             --  types this means that both must be either constrained or
11908             --  unconstrained. For enumeration types the bounds must match.
11909             --  All of this is checked in Subtypes_Statically_Match.
11910 
11911             if not Subtypes_Statically_Match
11912                      (Target_Comp_Type, Opnd_Comp_Type)
11913             then
11914                Conversion_Error_N
11915                  ("component subtypes must statically match", Operand);
11916                return False;
11917             end if;
11918          end if;
11919 
11920          return True;
11921       end Valid_Array_Conversion;
11922 
11923       -----------------------------
11924       -- Valid_Tagged_Conversion --
11925       -----------------------------
11926 
11927       function Valid_Tagged_Conversion
11928         (Target_Type : Entity_Id;
11929          Opnd_Type   : Entity_Id) return Boolean
11930       is
11931       begin
11932          --  Upward conversions are allowed (RM 4.6(22))
11933 
11934          if Covers (Target_Type, Opnd_Type)
11935            or else Is_Ancestor (Target_Type, Opnd_Type)
11936          then
11937             return True;
11938 
11939          --  Downward conversion are allowed if the operand is class-wide
11940          --  (RM 4.6(23)).
11941 
11942          elsif Is_Class_Wide_Type (Opnd_Type)
11943            and then Covers (Opnd_Type, Target_Type)
11944          then
11945             return True;
11946 
11947          elsif Covers (Opnd_Type, Target_Type)
11948            or else Is_Ancestor (Opnd_Type, Target_Type)
11949          then
11950             return
11951               Conversion_Check (False,
11952                 "downward conversion of tagged objects not allowed");
11953 
11954          --  Ada 2005 (AI-251): The conversion to/from interface types is
11955          --  always valid. The types involved may be class-wide (sub)types.
11956 
11957          elsif Is_Interface (Etype (Base_Type (Target_Type)))
11958            or else Is_Interface (Etype (Base_Type (Opnd_Type)))
11959          then
11960             return True;
11961 
11962          --  If the operand is a class-wide type obtained through a limited_
11963          --  with clause, and the context includes the nonlimited view, use
11964          --  it to determine whether the conversion is legal.
11965 
11966          elsif Is_Class_Wide_Type (Opnd_Type)
11967            and then From_Limited_With (Opnd_Type)
11968            and then Present (Non_Limited_View (Etype (Opnd_Type)))
11969            and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
11970          then
11971             return True;
11972 
11973          elsif Is_Access_Type (Opnd_Type)
11974            and then Is_Interface (Directly_Designated_Type (Opnd_Type))
11975          then
11976             return True;
11977 
11978          else
11979             Conversion_Error_NE
11980               ("invalid tagged conversion, not compatible with}",
11981                N, First_Subtype (Opnd_Type));
11982             return False;
11983          end if;
11984       end Valid_Tagged_Conversion;
11985 
11986    --  Start of processing for Valid_Conversion
11987 
11988    begin
11989       Check_Parameterless_Call (Operand);
11990 
11991       if Is_Overloaded (Operand) then
11992          declare
11993             I   : Interp_Index;
11994             I1  : Interp_Index;
11995             It  : Interp;
11996             It1 : Interp;
11997             N1  : Entity_Id;
11998             T1  : Entity_Id;
11999 
12000          begin
12001             --  Remove procedure calls, which syntactically cannot appear in
12002             --  this context, but which cannot be removed by type checking,
12003             --  because the context does not impose a type.
12004 
12005             --  The node may be labelled overloaded, but still contain only one
12006             --  interpretation because others were discarded earlier. If this
12007             --  is the case, retain the single interpretation if legal.
12008 
12009             Get_First_Interp (Operand, I, It);
12010             Opnd_Type := It.Typ;
12011             Get_Next_Interp (I, It);
12012 
12013             if Present (It.Typ)
12014               and then Opnd_Type /= Standard_Void_Type
12015             then
12016                --  More than one candidate interpretation is available
12017 
12018                Get_First_Interp (Operand, I, It);
12019                while Present (It.Typ) loop
12020                   if It.Typ = Standard_Void_Type then
12021                      Remove_Interp (I);
12022                   end if;
12023 
12024                   --  When compiling for a system where Address is of a visible
12025                   --  integer type, spurious ambiguities can be produced when
12026                   --  arithmetic operations have a literal operand and return
12027                   --  System.Address or a descendant of it. These ambiguities
12028                   --  are usually resolved by the context, but for conversions
12029                   --  there is no context type and the removal of the spurious
12030                   --  operations must be done explicitly here.
12031 
12032                   if not Address_Is_Private
12033                     and then Is_Descendant_Of_Address (It.Typ)
12034                   then
12035                      Remove_Interp (I);
12036                   end if;
12037 
12038                   Get_Next_Interp (I, It);
12039                end loop;
12040             end if;
12041 
12042             Get_First_Interp (Operand, I, It);
12043             I1  := I;
12044             It1 := It;
12045 
12046             if No (It.Typ) then
12047                Conversion_Error_N ("illegal operand in conversion", Operand);
12048                return False;
12049             end if;
12050 
12051             Get_Next_Interp (I, It);
12052 
12053             if Present (It.Typ) then
12054                N1  := It1.Nam;
12055                T1  := It1.Typ;
12056                It1 := Disambiguate (Operand, I1, I, Any_Type);
12057 
12058                if It1 = No_Interp then
12059                   Conversion_Error_N
12060                     ("ambiguous operand in conversion", Operand);
12061 
12062                   --  If the interpretation involves a standard operator, use
12063                   --  the location of the type, which may be user-defined.
12064 
12065                   if Sloc (It.Nam) = Standard_Location then
12066                      Error_Msg_Sloc := Sloc (It.Typ);
12067                   else
12068                      Error_Msg_Sloc := Sloc (It.Nam);
12069                   end if;
12070 
12071                   Conversion_Error_N -- CODEFIX
12072                     ("\\possible interpretation#!", Operand);
12073 
12074                   if Sloc (N1) = Standard_Location then
12075                      Error_Msg_Sloc := Sloc (T1);
12076                   else
12077                      Error_Msg_Sloc := Sloc (N1);
12078                   end if;
12079 
12080                   Conversion_Error_N -- CODEFIX
12081                     ("\\possible interpretation#!", Operand);
12082 
12083                   return False;
12084                end if;
12085             end if;
12086 
12087             Set_Etype (Operand, It1.Typ);
12088             Opnd_Type := It1.Typ;
12089          end;
12090       end if;
12091 
12092       --  Deal with conversion of integer type to address if the pragma
12093       --  Allow_Integer_Address is in effect. We convert the conversion to
12094       --  an unchecked conversion in this case and we are all done.
12095 
12096       if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12097          Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12098          Analyze_And_Resolve (N, Target_Type);
12099          return True;
12100       end if;
12101 
12102       --  If we are within a child unit, check whether the type of the
12103       --  expression has an ancestor in a parent unit, in which case it
12104       --  belongs to its derivation class even if the ancestor is private.
12105       --  See RM 7.3.1 (5.2/3).
12106 
12107       Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12108 
12109       --  Numeric types
12110 
12111       if Is_Numeric_Type (Target_Type) then
12112 
12113          --  A universal fixed expression can be converted to any numeric type
12114 
12115          if Opnd_Type = Universal_Fixed then
12116             return True;
12117 
12118          --  Also no need to check when in an instance or inlined body, because
12119          --  the legality has been established when the template was analyzed.
12120          --  Furthermore, numeric conversions may occur where only a private
12121          --  view of the operand type is visible at the instantiation point.
12122          --  This results in a spurious error if we check that the operand type
12123          --  is a numeric type.
12124 
12125          --  Note: in a previous version of this unit, the following tests were
12126          --  applied only for generated code (Comes_From_Source set to False),
12127          --  but in fact the test is required for source code as well, since
12128          --  this situation can arise in source code.
12129 
12130          elsif In_Instance or else In_Inlined_Body then
12131             return True;
12132 
12133          --  Otherwise we need the conversion check
12134 
12135          else
12136             return Conversion_Check
12137                      (Is_Numeric_Type (Opnd_Type)
12138                        or else
12139                          (Present (Inc_Ancestor)
12140                            and then Is_Numeric_Type (Inc_Ancestor)),
12141                       "illegal operand for numeric conversion");
12142          end if;
12143 
12144       --  Array types
12145 
12146       elsif Is_Array_Type (Target_Type) then
12147          if not Is_Array_Type (Opnd_Type)
12148            or else Opnd_Type = Any_Composite
12149            or else Opnd_Type = Any_String
12150          then
12151             Conversion_Error_N
12152               ("illegal operand for array conversion", Operand);
12153             return False;
12154 
12155          else
12156             return Valid_Array_Conversion;
12157          end if;
12158 
12159       --  Ada 2005 (AI-251): Internally generated conversions of access to
12160       --  interface types added to force the displacement of the pointer to
12161       --  reference the corresponding dispatch table.
12162 
12163       elsif not Comes_From_Source (N)
12164          and then Is_Access_Type (Target_Type)
12165          and then Is_Interface (Designated_Type (Target_Type))
12166       then
12167          return True;
12168 
12169       --  Ada 2005 (AI-251): Anonymous access types where target references an
12170       --  interface type.
12171 
12172       elsif Is_Access_Type (Opnd_Type)
12173         and then Ekind_In (Target_Type, E_General_Access_Type,
12174                                         E_Anonymous_Access_Type)
12175         and then Is_Interface (Directly_Designated_Type (Target_Type))
12176       then
12177          --  Check the static accessibility rule of 4.6(17). Note that the
12178          --  check is not enforced when within an instance body, since the
12179          --  RM requires such cases to be caught at run time.
12180 
12181          --  If the operand is a rewriting of an allocator no check is needed
12182          --  because there are no accessibility issues.
12183 
12184          if Nkind (Original_Node (N)) = N_Allocator then
12185             null;
12186 
12187          elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12188             if Type_Access_Level (Opnd_Type) >
12189                Deepest_Type_Access_Level (Target_Type)
12190             then
12191                --  In an instance, this is a run-time check, but one we know
12192                --  will fail, so generate an appropriate warning. The raise
12193                --  will be generated by Expand_N_Type_Conversion.
12194 
12195                if In_Instance_Body then
12196                   Error_Msg_Warn := SPARK_Mode /= On;
12197                   Conversion_Error_N
12198                     ("cannot convert local pointer to non-local access type<<",
12199                      Operand);
12200                   Conversion_Error_N ("\Program_Error [<<", Operand);
12201 
12202                else
12203                   Conversion_Error_N
12204                     ("cannot convert local pointer to non-local access type",
12205                      Operand);
12206                   return False;
12207                end if;
12208 
12209             --  Special accessibility checks are needed in the case of access
12210             --  discriminants declared for a limited type.
12211 
12212             elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12213               and then not Is_Local_Anonymous_Access (Opnd_Type)
12214             then
12215                --  When the operand is a selected access discriminant the check
12216                --  needs to be made against the level of the object denoted by
12217                --  the prefix of the selected name (Object_Access_Level handles
12218                --  checking the prefix of the operand for this case).
12219 
12220                if Nkind (Operand) = N_Selected_Component
12221                  and then Object_Access_Level (Operand) >
12222                    Deepest_Type_Access_Level (Target_Type)
12223                then
12224                   --  In an instance, this is a run-time check, but one we know
12225                   --  will fail, so generate an appropriate warning. The raise
12226                   --  will be generated by Expand_N_Type_Conversion.
12227 
12228                   if In_Instance_Body then
12229                      Error_Msg_Warn := SPARK_Mode /= On;
12230                      Conversion_Error_N
12231                        ("cannot convert access discriminant to non-local "
12232                         & "access type<<", Operand);
12233                      Conversion_Error_N ("\Program_Error [<<", Operand);
12234 
12235                   --  Real error if not in instance body
12236 
12237                   else
12238                      Conversion_Error_N
12239                        ("cannot convert access discriminant to non-local "
12240                         & "access type", Operand);
12241                      return False;
12242                   end if;
12243                end if;
12244 
12245                --  The case of a reference to an access discriminant from
12246                --  within a limited type declaration (which will appear as
12247                --  a discriminal) is always illegal because the level of the
12248                --  discriminant is considered to be deeper than any (nameable)
12249                --  access type.
12250 
12251                if Is_Entity_Name (Operand)
12252                  and then not Is_Local_Anonymous_Access (Opnd_Type)
12253                  and then
12254                    Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12255                  and then Present (Discriminal_Link (Entity (Operand)))
12256                then
12257                   Conversion_Error_N
12258                     ("discriminant has deeper accessibility level than target",
12259                      Operand);
12260                   return False;
12261                end if;
12262             end if;
12263          end if;
12264 
12265          return True;
12266 
12267       --  General and anonymous access types
12268 
12269       elsif Ekind_In (Target_Type, E_General_Access_Type,
12270                                    E_Anonymous_Access_Type)
12271           and then
12272             Conversion_Check
12273               (Is_Access_Type (Opnd_Type)
12274                 and then not
12275                   Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12276                                        E_Access_Protected_Subprogram_Type),
12277                "must be an access-to-object type")
12278       then
12279          if Is_Access_Constant (Opnd_Type)
12280            and then not Is_Access_Constant (Target_Type)
12281          then
12282             Conversion_Error_N
12283               ("access-to-constant operand type not allowed", Operand);
12284             return False;
12285          end if;
12286 
12287          --  Check the static accessibility rule of 4.6(17). Note that the
12288          --  check is not enforced when within an instance body, since the RM
12289          --  requires such cases to be caught at run time.
12290 
12291          if Ekind (Target_Type) /= E_Anonymous_Access_Type
12292            or else Is_Local_Anonymous_Access (Target_Type)
12293            or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12294                      N_Object_Declaration
12295          then
12296             --  Ada 2012 (AI05-0149): Perform legality checking on implicit
12297             --  conversions from an anonymous access type to a named general
12298             --  access type. Such conversions are not allowed in the case of
12299             --  access parameters and stand-alone objects of an anonymous
12300             --  access type. The implicit conversion case is recognized by
12301             --  testing that Comes_From_Source is False and that it's been
12302             --  rewritten. The Comes_From_Source test isn't sufficient because
12303             --  nodes in inlined calls to predefined library routines can have
12304             --  Comes_From_Source set to False. (Is there a better way to test
12305             --  for implicit conversions???)
12306 
12307             if Ada_Version >= Ada_2012
12308               and then not Comes_From_Source (N)
12309               and then N /= Original_Node (N)
12310               and then Ekind (Target_Type) = E_General_Access_Type
12311               and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12312             then
12313                if Is_Itype (Opnd_Type) then
12314 
12315                   --  Implicit conversions aren't allowed for objects of an
12316                   --  anonymous access type, since such objects have nonstatic
12317                   --  levels in Ada 2012.
12318 
12319                   if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12320                        N_Object_Declaration
12321                   then
12322                      Conversion_Error_N
12323                        ("implicit conversion of stand-alone anonymous "
12324                         & "access object not allowed", Operand);
12325                      return False;
12326 
12327                   --  Implicit conversions aren't allowed for anonymous access
12328                   --  parameters. The "not Is_Local_Anonymous_Access_Type" test
12329                   --  is done to exclude anonymous access results.
12330 
12331                   elsif not Is_Local_Anonymous_Access (Opnd_Type)
12332                     and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12333                                        N_Function_Specification,
12334                                        N_Procedure_Specification)
12335                   then
12336                      Conversion_Error_N
12337                        ("implicit conversion of anonymous access formal "
12338                         & "not allowed", Operand);
12339                      return False;
12340 
12341                   --  This is a case where there's an enclosing object whose
12342                   --  to which the "statically deeper than" relationship does
12343                   --  not apply (such as an access discriminant selected from
12344                   --  a dereference of an access parameter).
12345 
12346                   elsif Object_Access_Level (Operand)
12347                           = Scope_Depth (Standard_Standard)
12348                   then
12349                      Conversion_Error_N
12350                        ("implicit conversion of anonymous access value "
12351                         & "not allowed", Operand);
12352                      return False;
12353 
12354                   --  In other cases, the level of the operand's type must be
12355                   --  statically less deep than that of the target type, else
12356                   --  implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12357 
12358                   elsif Type_Access_Level (Opnd_Type) >
12359                         Deepest_Type_Access_Level (Target_Type)
12360                   then
12361                      Conversion_Error_N
12362                        ("implicit conversion of anonymous access value "
12363                         & "violates accessibility", Operand);
12364                      return False;
12365                   end if;
12366                end if;
12367 
12368             elsif Type_Access_Level (Opnd_Type) >
12369                     Deepest_Type_Access_Level (Target_Type)
12370             then
12371                --  In an instance, this is a run-time check, but one we know
12372                --  will fail, so generate an appropriate warning. The raise
12373                --  will be generated by Expand_N_Type_Conversion.
12374 
12375                if In_Instance_Body then
12376                   Error_Msg_Warn := SPARK_Mode /= On;
12377                   Conversion_Error_N
12378                     ("cannot convert local pointer to non-local access type<<",
12379                      Operand);
12380                   Conversion_Error_N ("\Program_Error [<<", Operand);
12381 
12382                --  If not in an instance body, this is a real error
12383 
12384                else
12385                   --  Avoid generation of spurious error message
12386 
12387                   if not Error_Posted (N) then
12388                      Conversion_Error_N
12389                       ("cannot convert local pointer to non-local access type",
12390                        Operand);
12391                   end if;
12392 
12393                   return False;
12394                end if;
12395 
12396             --  Special accessibility checks are needed in the case of access
12397             --  discriminants declared for a limited type.
12398 
12399             elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12400               and then not Is_Local_Anonymous_Access (Opnd_Type)
12401             then
12402                --  When the operand is a selected access discriminant the check
12403                --  needs to be made against the level of the object denoted by
12404                --  the prefix of the selected name (Object_Access_Level handles
12405                --  checking the prefix of the operand for this case).
12406 
12407                if Nkind (Operand) = N_Selected_Component
12408                  and then Object_Access_Level (Operand) >
12409                           Deepest_Type_Access_Level (Target_Type)
12410                then
12411                   --  In an instance, this is a run-time check, but one we know
12412                   --  will fail, so generate an appropriate warning. The raise
12413                   --  will be generated by Expand_N_Type_Conversion.
12414 
12415                   if In_Instance_Body then
12416                      Error_Msg_Warn := SPARK_Mode /= On;
12417                      Conversion_Error_N
12418                        ("cannot convert access discriminant to non-local "
12419                         & "access type<<", Operand);
12420                      Conversion_Error_N ("\Program_Error [<<", Operand);
12421 
12422                   --  If not in an instance body, this is a real error
12423 
12424                   else
12425                      Conversion_Error_N
12426                        ("cannot convert access discriminant to non-local "
12427                         & "access type", Operand);
12428                      return False;
12429                   end if;
12430                end if;
12431 
12432                --  The case of a reference to an access discriminant from
12433                --  within a limited type declaration (which will appear as
12434                --  a discriminal) is always illegal because the level of the
12435                --  discriminant is considered to be deeper than any (nameable)
12436                --  access type.
12437 
12438                if Is_Entity_Name (Operand)
12439                  and then
12440                    Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12441                  and then Present (Discriminal_Link (Entity (Operand)))
12442                then
12443                   Conversion_Error_N
12444                     ("discriminant has deeper accessibility level than target",
12445                      Operand);
12446                   return False;
12447                end if;
12448             end if;
12449          end if;
12450 
12451          --  In the presence of limited_with clauses we have to use nonlimited
12452          --  views, if available.
12453 
12454          Check_Limited : declare
12455             function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12456             --  Helper function to handle limited views
12457 
12458             --------------------------
12459             -- Full_Designated_Type --
12460             --------------------------
12461 
12462             function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12463                Desig : constant Entity_Id := Designated_Type (T);
12464 
12465             begin
12466                --  Handle the limited view of a type
12467 
12468                if From_Limited_With (Desig)
12469                  and then Has_Non_Limited_View (Desig)
12470                then
12471                   return Available_View (Desig);
12472                else
12473                   return Desig;
12474                end if;
12475             end Full_Designated_Type;
12476 
12477             --  Local Declarations
12478 
12479             Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12480             Opnd   : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12481 
12482             Same_Base : constant Boolean :=
12483                           Base_Type (Target) = Base_Type (Opnd);
12484 
12485          --  Start of processing for Check_Limited
12486 
12487          begin
12488             if Is_Tagged_Type (Target) then
12489                return Valid_Tagged_Conversion (Target, Opnd);
12490 
12491             else
12492                if not Same_Base then
12493                   Conversion_Error_NE
12494                     ("target designated type not compatible with }",
12495                      N, Base_Type (Opnd));
12496                   return False;
12497 
12498                --  Ada 2005 AI-384: legality rule is symmetric in both
12499                --  designated types. The conversion is legal (with possible
12500                --  constraint check) if either designated type is
12501                --  unconstrained.
12502 
12503                elsif Subtypes_Statically_Match (Target, Opnd)
12504                  or else
12505                    (Has_Discriminants (Target)
12506                      and then
12507                       (not Is_Constrained (Opnd)
12508                         or else not Is_Constrained (Target)))
12509                then
12510                   --  Special case, if Value_Size has been used to make the
12511                   --  sizes different, the conversion is not allowed even
12512                   --  though the subtypes statically match.
12513 
12514                   if Known_Static_RM_Size (Target)
12515                     and then Known_Static_RM_Size (Opnd)
12516                     and then RM_Size (Target) /= RM_Size (Opnd)
12517                   then
12518                      Conversion_Error_NE
12519                        ("target designated subtype not compatible with }",
12520                         N, Opnd);
12521                      Conversion_Error_NE
12522                        ("\because sizes of the two designated subtypes differ",
12523                         N, Opnd);
12524                      return False;
12525 
12526                   --  Normal case where conversion is allowed
12527 
12528                   else
12529                      return True;
12530                   end if;
12531 
12532                else
12533                   Error_Msg_NE
12534                     ("target designated subtype not compatible with }",
12535                      N, Opnd);
12536                   return False;
12537                end if;
12538             end if;
12539          end Check_Limited;
12540 
12541       --  Access to subprogram types. If the operand is an access parameter,
12542       --  the type has a deeper accessibility that any master, and cannot be
12543       --  assigned. We must make an exception if the conversion is part of an
12544       --  assignment and the target is the return object of an extended return
12545       --  statement, because in that case the accessibility check takes place
12546       --  after the return.
12547 
12548       elsif Is_Access_Subprogram_Type (Target_Type)
12549 
12550         --  Note: this test of Opnd_Type is there to prevent entering this
12551         --  branch in the case of a remote access to subprogram type, which
12552         --  is internally represented as an E_Record_Type.
12553 
12554         and then Is_Access_Type (Opnd_Type)
12555       then
12556          if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12557            and then Is_Entity_Name (Operand)
12558            and then Ekind (Entity (Operand)) = E_In_Parameter
12559            and then
12560              (Nkind (Parent (N)) /= N_Assignment_Statement
12561                or else not Is_Entity_Name (Name (Parent (N)))
12562                or else not Is_Return_Object (Entity (Name (Parent (N)))))
12563          then
12564             Conversion_Error_N
12565               ("illegal attempt to store anonymous access to subprogram",
12566                Operand);
12567             Conversion_Error_N
12568               ("\value has deeper accessibility than any master "
12569                & "(RM 3.10.2 (13))",
12570                Operand);
12571 
12572             Error_Msg_NE
12573              ("\use named access type for& instead of access parameter",
12574                Operand, Entity (Operand));
12575          end if;
12576 
12577          --  Check that the designated types are subtype conformant
12578 
12579          Check_Subtype_Conformant (New_Id  => Designated_Type (Target_Type),
12580                                    Old_Id  => Designated_Type (Opnd_Type),
12581                                    Err_Loc => N);
12582 
12583          --  Check the static accessibility rule of 4.6(20)
12584 
12585          if Type_Access_Level (Opnd_Type) >
12586             Deepest_Type_Access_Level (Target_Type)
12587          then
12588             Conversion_Error_N
12589               ("operand type has deeper accessibility level than target",
12590                Operand);
12591 
12592          --  Check that if the operand type is declared in a generic body,
12593          --  then the target type must be declared within that same body
12594          --  (enforces last sentence of 4.6(20)).
12595 
12596          elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12597             declare
12598                O_Gen : constant Node_Id :=
12599                          Enclosing_Generic_Body (Opnd_Type);
12600 
12601                T_Gen : Node_Id;
12602 
12603             begin
12604                T_Gen := Enclosing_Generic_Body (Target_Type);
12605                while Present (T_Gen) and then T_Gen /= O_Gen loop
12606                   T_Gen := Enclosing_Generic_Body (T_Gen);
12607                end loop;
12608 
12609                if T_Gen /= O_Gen then
12610                   Conversion_Error_N
12611                     ("target type must be declared in same generic body "
12612                      & "as operand type", N);
12613                end if;
12614             end;
12615          end if;
12616 
12617          return True;
12618 
12619       --  Remote access to subprogram types
12620 
12621       elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12622         and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12623       then
12624          --  It is valid to convert from one RAS type to another provided
12625          --  that their specification statically match.
12626 
12627          --  Note: at this point, remote access to subprogram types have been
12628          --  expanded to their E_Record_Type representation, and we need to
12629          --  go back to the original access type definition using the
12630          --  Corresponding_Remote_Type attribute in order to check that the
12631          --  designated profiles match.
12632 
12633          pragma Assert (Ekind (Target_Type) = E_Record_Type);
12634          pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
12635 
12636          Check_Subtype_Conformant
12637            (New_Id  =>
12638               Designated_Type (Corresponding_Remote_Type (Target_Type)),
12639             Old_Id  =>
12640               Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
12641             Err_Loc =>
12642               N);
12643          return True;
12644 
12645       --  If it was legal in the generic, it's legal in the instance
12646 
12647       elsif In_Instance_Body then
12648          return True;
12649 
12650       --  If both are tagged types, check legality of view conversions
12651 
12652       elsif Is_Tagged_Type (Target_Type)
12653               and then
12654             Is_Tagged_Type (Opnd_Type)
12655       then
12656          return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
12657 
12658       --  Types derived from the same root type are convertible
12659 
12660       elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
12661          return True;
12662 
12663       --  In an instance or an inlined body, there may be inconsistent views of
12664       --  the same type, or of types derived from a common root.
12665 
12666       elsif (In_Instance or In_Inlined_Body)
12667         and then
12668           Root_Type (Underlying_Type (Target_Type)) =
12669           Root_Type (Underlying_Type (Opnd_Type))
12670       then
12671          return True;
12672 
12673       --  Special check for common access type error case
12674 
12675       elsif Ekind (Target_Type) = E_Access_Type
12676          and then Is_Access_Type (Opnd_Type)
12677       then
12678          Conversion_Error_N ("target type must be general access type!", N);
12679          Conversion_Error_NE -- CODEFIX
12680             ("add ALL to }!", N, Target_Type);
12681          return False;
12682 
12683       --  Here we have a real conversion error
12684 
12685       else
12686          Conversion_Error_NE
12687            ("invalid conversion, not compatible with }", N, Opnd_Type);
12688          return False;
12689       end if;
12690    end Valid_Conversion;
12691 
12692 end Sem_Res;