File : sem_util.ads


   1 ------------------------------------------------------------------------------
   2 --                                                                          --
   3 --                         GNAT COMPILER COMPONENTS                         --
   4 --                                                                          --
   5 --                             S E M _ U T I L                              --
   6 --                                                                          --
   7 --                                 S p e c                                  --
   8 --                                                                          --
   9 --          Copyright (C) 1992-2016, Free Software Foundation, Inc.         --
  10 --                                                                          --
  11 -- GNAT is free software;  you can  redistribute it  and/or modify it under --
  12 -- terms of the  GNU General Public License as published  by the Free Soft- --
  13 -- ware  Foundation;  either version 3,  or (at your option) any later ver- --
  14 -- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
  15 -- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
  16 -- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
  17 -- for  more details.  You should have  received  a copy of the GNU General --
  18 -- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
  19 -- http://www.gnu.org/licenses for a complete copy of the license.          --
  20 --                                                                          --
  21 -- GNAT was originally developed  by the GNAT team at  New York University. --
  22 -- Extensive contributions were provided by Ada Core Technologies Inc.      --
  23 --                                                                          --
  24 ------------------------------------------------------------------------------
  25 
  26 --  Package containing utility procedures used throughout the semantics
  27 
  28 with Einfo;   use Einfo;
  29 with Exp_Tss; use Exp_Tss;
  30 with Namet;   use Namet;
  31 with Opt;     use Opt;
  32 with Snames;  use Snames;
  33 with Types;   use Types;
  34 with Uintp;   use Uintp;
  35 with Urealp;  use Urealp;
  36 
  37 package Sem_Util is
  38 
  39    function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
  40    --  Given a type that implements interfaces look for its associated
  41    --  definition node and return its list of interfaces.
  42 
  43    procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
  44    --  Add A to the list of access types to process when expanding the
  45    --  freeze node of E.
  46 
  47    procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id);
  48    --  Given a block statement N, generate an internal E_Block label and make
  49    --  it the identifier of the block. Id denotes the generated entity. If the
  50    --  block already has an identifier, Id returns the entity of its label.
  51 
  52    procedure Add_Global_Declaration (N : Node_Id);
  53    --  These procedures adds a declaration N at the library level, to be
  54    --  elaborated before any other code in the unit. It is used for example
  55    --  for the entity that marks whether a unit has been elaborated. The
  56    --  declaration is added to the Declarations list of the Aux_Decls_Node
  57    --  for the current unit. The declarations are added in the current scope,
  58    --  so the caller should push a new scope as required before the call.
  59 
  60    function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
  61    --  Returns the name of E adding Suffix
  62 
  63    function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
  64    --  Given two types, returns True if we are in Allow_Integer_Address mode
  65    --  and one of the types is (a descendant of) System.Address (and this type
  66    --  is private), and the other type is any integer type.
  67 
  68    function Address_Value (N : Node_Id) return Node_Id;
  69    --  Return the underlying value of the expression N of an address clause
  70 
  71    function Addressable (V : Uint) return Boolean;
  72    function Addressable (V : Int)  return Boolean;
  73    pragma Inline (Addressable);
  74    --  Returns True if the value of V is the word size or an addressable factor
  75    --  of the word size (typically 8, 16, 32 or 64).
  76 
  77    procedure Aggregate_Constraint_Checks
  78      (Exp       : Node_Id;
  79       Check_Typ : Entity_Id);
  80    --  Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
  81    --  and Check_Typ a constrained record type with discriminants, we generate
  82    --  the appropriate discriminant checks. If Exp is an array aggregate then
  83    --  emit the appropriate length checks. If Exp is a scalar type, or a string
  84    --  literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
  85    --  are performed at run time. Also used for expressions in the argument of
  86    --  'Update, which shares some of the features of an aggregate.
  87 
  88    function Alignment_In_Bits (E : Entity_Id) return Uint;
  89    --  If the alignment of the type or object E is currently known to the
  90    --  compiler, then this function returns the alignment value in bits.
  91    --  Otherwise Uint_0 is returned, indicating that the alignment of the
  92    --  entity is not yet known to the compiler.
  93 
  94    function All_Composite_Constraints_Static (Constr : Node_Id) return Boolean;
  95    --  Used to implement pragma Restrictions (No_Dynamic_Sized_Objects).
  96    --  Given a constraint or subtree of a constraint on a composite
  97    --  subtype/object, returns True if there are no nonstatic constraints,
  98    --  which might cause objects to be created with dynamic size.
  99    --  Called for subtype declarations (including implicit ones created for
 100    --  subtype indications in object declarations, as well as discriminated
 101    --  record aggregate cases). For record aggregates, only records containing
 102    --  discriminant-dependent arrays matter, because the discriminants must be
 103    --  static when governing a variant part. Access discriminants are
 104    --  irrelevant. Also called for array aggregates, but only named notation,
 105    --  because those are the only dynamic cases.
 106 
 107    procedure Append_Inherited_Subprogram (S : Entity_Id);
 108    --  If the parent of the operation is declared in the visible part of
 109    --  the current scope, the inherited operation is visible even though the
 110    --  derived type that inherits the operation may be completed in the private
 111    --  part of the current package.
 112 
 113    procedure Apply_Compile_Time_Constraint_Error
 114      (N      : Node_Id;
 115       Msg    : String;
 116       Reason : RT_Exception_Code;
 117       Ent    : Entity_Id  := Empty;
 118       Typ    : Entity_Id  := Empty;
 119       Loc    : Source_Ptr := No_Location;
 120       Rep    : Boolean    := True;
 121       Warn   : Boolean    := False);
 122    --  N is a subexpression which will raise constraint error when evaluated
 123    --  at runtime. Msg is a message that explains the reason for raising the
 124    --  exception. The last character is ? if the message is always a warning,
 125    --  even in Ada 95, and is not a ? if the message represents an illegality
 126    --  (because of violation of static expression rules) in Ada 95 (but not
 127    --  in Ada 83). Typically this routine posts all messages at the Sloc of
 128    --  node N. However, if Loc /= No_Location, Loc is the Sloc used to output
 129    --  the message. After posting the appropriate message, and if the flag
 130    --  Rep is set, this routine replaces the expression with an appropriate
 131    --  N_Raise_Constraint_Error node using the given Reason code. This node
 132    --  is then marked as being static if the original node is static, but
 133    --  sets the flag Raises_Constraint_Error, preventing further evaluation.
 134    --  The error message may contain a } or & insertion character. This
 135    --  normally references Etype (N), unless the Ent argument is given
 136    --  explicitly, in which case it is used instead. The type of the raise
 137    --  node that is built is normally Etype (N), but if the Typ parameter
 138    --  is present, this is used instead. Warn is normally False. If it is
 139    --  True then the message is treated as a warning even though it does
 140    --  not end with a ? (this is used when the caller wants to parameterize
 141    --  whether an error or warning is given), or when the message should be
 142    --  treated as a warning even when SPARK_Mode is On (which otherwise would
 143    --  force an error).
 144 
 145    function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
 146    --  Given the entity of an abstract state or a variable, determine whether
 147    --  Id is subject to external property Async_Readers and if it is, the
 148    --  related expression evaluates to True.
 149 
 150    function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
 151    --  Given the entity of an abstract state or a variable, determine whether
 152    --  Id is subject to external property Async_Writers and if it is, the
 153    --  related expression evaluates to True.
 154 
 155    function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
 156    --  If at the point of declaration an array type has a private or limited
 157    --  component, several array operations are not avaiable on the type, and
 158    --  the array type is flagged accordingly. If in the immediate scope of
 159    --  the array type the component becomes non-private or non-limited, these
 160    --  operations become avaiable. This can happen if the scopes of both types
 161    --  are open, and the scope of the array is not outside the scope of the
 162    --  component.
 163 
 164    procedure Bad_Attribute
 165      (N    : Node_Id;
 166       Nam  : Name_Id;
 167       Warn : Boolean := False);
 168    --  Called when node N is expected to contain a valid attribute name, and
 169    --  Nam is found instead. If Warn is set True this is a warning, else this
 170    --  is an error.
 171 
 172    procedure Bad_Predicated_Subtype_Use
 173      (Msg            : String;
 174       N              : Node_Id;
 175       Typ            : Entity_Id;
 176       Suggest_Static : Boolean := False);
 177    --  This is called when Typ, a predicated subtype, is used in a context
 178    --  which does not allow the use of a predicated subtype. Msg is passed to
 179    --  Error_Msg_FE to output an appropriate message using N as the location,
 180    --  and Typ as the entity. The caller must set up any insertions other than
 181    --  the & for the type itself. Note that if Typ is a generic actual type,
 182    --  then the message will be output as a warning, and a raise Program_Error
 183    --  is inserted using Insert_Action with node N as the insertion point. Node
 184    --  N also supplies the source location for construction of the raise node.
 185    --  If Typ does not have any predicates, the call has no effect. Set flag
 186    --  Suggest_Static when the context warrants an advice on how to avoid the
 187    --  use error.
 188 
 189    function Bad_Unordered_Enumeration_Reference
 190      (N : Node_Id;
 191       T : Entity_Id) return Boolean;
 192    --  Node N contains a potentially dubious reference to type T, either an
 193    --  explicit comparison, or an explicit range. This function returns True
 194    --  if the type T is an enumeration type for which No pragma Order has been
 195    --  given, and the reference N is not in the same extended source unit as
 196    --  the declaration of T.
 197 
 198    function Build_Actual_Subtype
 199      (T : Entity_Id;
 200       N : Node_Or_Entity_Id) return Node_Id;
 201    --  Build an anonymous subtype for an entity or expression, using the
 202    --  bounds of the entity or the discriminants of the enclosing record.
 203    --  T is the type for which the actual subtype is required, and N is either
 204    --  a defining identifier, or any subexpression.
 205 
 206    function Build_Actual_Subtype_Of_Component
 207      (T : Entity_Id;
 208       N : Node_Id) return Node_Id;
 209    --  Determine whether a selected component has a type that depends on
 210    --  discriminants, and build actual subtype for it if so.
 211 
 212    function Build_Default_Init_Cond_Call
 213      (Loc    : Source_Ptr;
 214       Obj_Id : Entity_Id;
 215       Typ    : Entity_Id) return Node_Id;
 216    --  Build a call to the default initial condition procedure of type Typ with
 217    --  Obj_Id as the actual parameter.
 218 
 219    procedure Build_Default_Init_Cond_Procedure_Bodies (Priv_Decls : List_Id);
 220    --  Inspect the contents of private declarations Priv_Decls and build the
 221    --  bodies the default initial condition procedures for all types subject
 222    --  to pragma Default_Initial_Condition.
 223 
 224    procedure Build_Default_Init_Cond_Procedure_Declaration (Typ : Entity_Id);
 225    --  If private type Typ is subject to pragma Default_Initial_Condition,
 226    --  build the declaration of the procedure which verifies the assumption
 227    --  of the pragma at runtime. The declaration is inserted after the related
 228    --  pragma.
 229 
 230    function Build_Default_Subtype
 231      (T : Entity_Id;
 232       N : Node_Id) return Entity_Id;
 233    --  If T is an unconstrained type with defaulted discriminants, build a
 234    --  subtype constrained by the default values, insert the subtype
 235    --  declaration in the tree before N, and return the entity of that
 236    --  subtype. Otherwise, simply return T.
 237 
 238    function Build_Discriminal_Subtype_Of_Component
 239      (T : Entity_Id) return Node_Id;
 240    --  Determine whether a record component has a type that depends on
 241    --  discriminants, and build actual subtype for it if so.
 242 
 243    procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
 244    --  Given a compilation unit node N, allocate an elaboration counter for
 245    --  the compilation unit, and install it in the Elaboration_Entity field
 246    --  of Spec_Id, the entity for the compilation unit.
 247 
 248    procedure Build_Explicit_Dereference
 249      (Expr : Node_Id;
 250       Disc : Entity_Id);
 251    --  AI05-139: Names with implicit dereference. If the expression N is a
 252    --  reference type and the context imposes the corresponding designated
 253    --  type, convert N into N.Disc.all. Such expressions are always over-
 254    --  loaded with both interpretations, and the dereference interpretation
 255    --  carries the name of the reference discriminant.
 256 
 257    function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
 258    --  Returns True if the expression cannot possibly raise Constraint_Error.
 259    --  The response is conservative in the sense that a result of False does
 260    --  not necessarily mean that CE could be raised, but a response of True
 261    --  means that for sure CE cannot be raised.
 262 
 263    procedure Check_Dynamically_Tagged_Expression
 264      (Expr        : Node_Id;
 265       Typ         : Entity_Id;
 266       Related_Nod : Node_Id);
 267    --  Check wrong use of dynamically tagged expression
 268 
 269    procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
 270    --  Verify that the full declaration of type T has been seen. If not, place
 271    --  error message on node N. Used in object declarations, type conversions
 272    --  and qualified expressions.
 273 
 274    procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id);
 275    --  A subprogram that has an Address parameter and is declared in a Pure
 276    --  package is not considered Pure, because the parameter may be used as a
 277    --  pointer and the referenced data may change even if the address value
 278    --  itself does not.
 279    --  If the programmer gave an explicit Pure_Function pragma, then we respect
 280    --  the pragma and leave the subprogram Pure.
 281 
 282    procedure Check_Function_Writable_Actuals (N : Node_Id);
 283    --  (Ada 2012): If the construct N has two or more direct constituents that
 284    --  are names or expressions whose evaluation may occur in an arbitrary
 285    --  order, at least one of which contains a function call with an in out or
 286    --  out parameter, then the construct is legal only if: for each name that
 287    --  is passed as a parameter of mode in out or out to some inner function
 288    --  call C2 (not including the construct N itself), there is no other name
 289    --  anywhere within a direct constituent of the construct C other than
 290    --  the one containing C2, that is known to refer to the same object (RM
 291    --  6.4.1(6.17/3)).
 292 
 293    procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
 294    --  AI05-139-2: Accessors and iterators for containers. This procedure
 295    --  checks whether T is a reference type, and if so it adds an interprettion
 296    --  to N whose type is the designated type of the reference_discriminant.
 297    --  If N is a generalized indexing operation, the interpretation is added
 298    --  both to the corresponding function call, and to the indexing node.
 299 
 300    procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
 301    --  Within a protected function, the current object is a constant, and
 302    --  internal calls to a procedure or entry are illegal. Similarly, other
 303    --  uses of a protected procedure in a renaming or a generic instantiation
 304    --  in the context of a protected function are illegal (AI05-0225).
 305 
 306    procedure Check_Later_Vs_Basic_Declarations
 307      (Decls          : List_Id;
 308       During_Parsing : Boolean);
 309    --  If During_Parsing is True, check for misplacement of later vs basic
 310    --  declarations in Ada 83. If During_Parsing is False, and the SPARK
 311    --  restriction is set, do the same: although SPARK 95 removes the
 312    --  distinction between initial and later declarative items, the distinction
 313    --  remains in the Examiner (JB01-005). Note that the Examiner does not
 314    --  count package declarations in later declarative items.
 315 
 316    procedure Check_No_Hidden_State (Id : Entity_Id);
 317    --  Determine whether object or state Id introduces a hidden state. If this
 318    --  is the case, emit an error.
 319 
 320    procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id);
 321    --  Verify that the profile of nonvolatile function Func_Id does not contain
 322    --  effectively volatile parameters or return type.
 323 
 324    procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id);
 325    --  Verify the legality of reference Ref to variable Var_Id when the
 326    --  variable is a constituent of a single protected/task type.
 327 
 328    procedure Check_Potentially_Blocking_Operation (N : Node_Id);
 329    --  N is one of the statement forms that is a potentially blocking
 330    --  operation. If it appears within a protected action, emit warning.
 331 
 332    procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
 333    --  Determine whether the contract of subprogram Subp_Id mentions attribute
 334    --  'Result and it contains an expression that evaluates differently in pre-
 335    --  and post-state.
 336 
 337    procedure Check_State_Refinements
 338      (Context      : Node_Id;
 339       Is_Main_Unit : Boolean := False);
 340    --  Verify that all abstract states declared in a block statement, entry
 341    --  body, package body, protected body, subprogram body, task body, or a
 342    --  package declaration denoted by Context have proper refinement. Emit an
 343    --  error if this is not the case. Flag Is_Main_Unit should be set when
 344    --  Context denotes the main compilation unit.
 345 
 346    procedure Check_Unused_Body_States (Body_Id : Entity_Id);
 347    --  Verify that all abstract states and objects declared in the state space
 348    --  of package body Body_Id are used as constituents. Emit an error if this
 349    --  is not the case.
 350 
 351    procedure Check_Unprotected_Access
 352      (Context : Node_Id;
 353       Expr    : Node_Id);
 354    --  Check whether the expression is a pointer to a protected component,
 355    --  and the context is external to the protected operation, to warn against
 356    --  a possible unlocked access to data.
 357 
 358    function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id;
 359    --  Gather the entities of all abstract states and objects declared in the
 360    --  body state space of package body Body_Id.
 361 
 362    procedure Collect_Interfaces
 363      (T               : Entity_Id;
 364       Ifaces_List     : out Elist_Id;
 365       Exclude_Parents : Boolean := False;
 366       Use_Full_View   : Boolean := True);
 367    --  Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
 368    --  directly or indirectly implemented by T. Exclude_Parents is used to
 369    --  avoid the addition of inherited interfaces to the generated list.
 370    --  Use_Full_View is used to collect the interfaces using the full-view
 371    --  (if available).
 372 
 373    procedure Collect_Interface_Components
 374      (Tagged_Type     : Entity_Id;
 375       Components_List : out Elist_Id);
 376    --  Ada 2005 (AI-251): Collect all the tag components associated with the
 377    --  secondary dispatch tables of a tagged type.
 378 
 379    procedure Collect_Interfaces_Info
 380      (T               : Entity_Id;
 381       Ifaces_List     : out Elist_Id;
 382       Components_List : out Elist_Id;
 383       Tags_List       : out Elist_Id);
 384    --  Ada 2005 (AI-251): Collect all the interfaces associated with T plus
 385    --  the record component and tag associated with each of these interfaces.
 386    --  On exit Ifaces_List, Components_List and Tags_List have the same number
 387    --  of elements, and elements at the same position on these tables provide
 388    --  information on the same interface type.
 389 
 390    procedure Collect_Parents
 391      (T             : Entity_Id;
 392       List          : out Elist_Id;
 393       Use_Full_View : Boolean := True);
 394    --  Collect all the parents of Typ. Use_Full_View is used to collect them
 395    --  using the full-view of private parents (if available).
 396 
 397    function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
 398    --  Called upon type derivation and extension. We scan the declarative part
 399    --  in which the type appears, and collect subprograms that have one
 400    --  subsidiary subtype of the type. These subprograms can only appear after
 401    --  the type itself.
 402 
 403    function Compile_Time_Constraint_Error
 404      (N    : Node_Id;
 405       Msg  : String;
 406       Ent  : Entity_Id  := Empty;
 407       Loc  : Source_Ptr := No_Location;
 408       Warn : Boolean    := False) return Node_Id;
 409    --  This is similar to Apply_Compile_Time_Constraint_Error in that it
 410    --  generates a warning (or error) message in the same manner, but it does
 411    --  not replace any nodes. For convenience, the function always returns its
 412    --  first argument. The message is a warning if the message ends with ?, or
 413    --  we are operating in Ada 83 mode, or the Warn parameter is set to True.
 414 
 415    procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
 416    --  Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag of
 417    --  Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false).
 418 
 419    function Contains_Refined_State (Prag : Node_Id) return Boolean;
 420    --  Determine whether pragma Prag contains a reference to the entity of an
 421    --  abstract state with a visible refinement. Prag must denote one of the
 422    --  following pragmas:
 423    --    Depends
 424    --    Global
 425 
 426    function Copy_Component_List
 427      (R_Typ : Entity_Id;
 428       Loc   : Source_Ptr) return List_Id;
 429    --  Copy components from record type R_Typ that come from source. Used to
 430    --  create a new compatible record type. Loc is the source location assigned
 431    --  to the created nodes.
 432 
 433    function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
 434    --  Utility to create a parameter profile for a new subprogram spec, when
 435    --  the subprogram has a body that acts as spec. This is done for some cases
 436    --  of inlining, and for private protected ops. Also used to create bodies
 437    --  for stubbed subprograms.
 438 
 439    function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id;
 440    --  Replicate a function or a procedure specification denoted by Spec. The
 441    --  resulting tree is an exact duplicate of the original tree. New entities
 442    --  are created for the unit name and the formal parameters.
 443 
 444    function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
 445    --  If a type is a generic actual type, return the corresponding formal in
 446    --  the generic parent unit. There is no direct link in the tree for this
 447    --  attribute, except in the case of formal private and derived types.
 448    --  Possible optimization???
 449 
 450    function Current_Entity (N : Node_Id) return Entity_Id;
 451    pragma Inline (Current_Entity);
 452    --  Find the currently visible definition for a given identifier, that is to
 453    --  say the first entry in the visibility chain for the Chars of N.
 454 
 455    function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
 456    --  Find whether there is a previous definition for identifier N in the
 457    --  current scope. Because declarations for a scope are not necessarily
 458    --  contiguous (e.g. for packages) the first entry on the visibility chain
 459    --  for N is not necessarily in the current scope.
 460 
 461    function Current_Scope return Entity_Id;
 462    --  Get entity representing current scope
 463 
 464    function Current_Scope_No_Loops return Entity_Id;
 465    --  Return the current scope ignoring internally generated loops
 466 
 467    function Current_Subprogram return Entity_Id;
 468    --  Returns current enclosing subprogram. If Current_Scope is a subprogram,
 469    --  then that is what is returned, otherwise the Enclosing_Subprogram of the
 470    --  Current_Scope is returned. The returned value is Empty if this is called
 471    --  from a library package which is not within any subprogram.
 472 
 473    function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
 474    --  Same as Type_Access_Level, except that if the type is the type of an Ada
 475    --  2012 stand-alone object of an anonymous access type, then return the
 476    --  static accesssibility level of the object. In that case, the dynamic
 477    --  accessibility level of the object may take on values in a range. The low
 478    --  bound of that range is returned by Type_Access_Level; this function
 479    --  yields the high bound of that range. Also differs from Type_Access_Level
 480    --  in the case of a descendant of a generic formal type (returns Int'Last
 481    --  instead of 0).
 482 
 483    function Defining_Entity
 484      (N               : Node_Id;
 485       Empty_On_Errors : Boolean := False) return Entity_Id;
 486    --  Given a declaration N, returns the associated defining entity. If the
 487    --  declaration has a specification, the entity is obtained from the
 488    --  specification. If the declaration has a defining unit name, then the
 489    --  defining entity is obtained from the defining unit name ignoring any
 490    --  child unit prefixes.
 491    --
 492    --  Iterator loops also have a defining entity, which holds the list of
 493    --  local entities declared during loop expansion. These entities need
 494    --  debugging information, generated through Qualify_Entity_Names, and
 495    --  the loop declaration must be placed in the table Name_Qualify_Units.
 496    --
 497    --  Set flag Empty_On_Error to change the behavior of this routine as
 498    --  follows:
 499    --
 500    --    * True  - A declaration that lacks a defining entity returns Empty.
 501    --      A node that does not allow for a defining entity returns Empty.
 502    --
 503    --    * False - A declaration that lacks a defining entity is given a new
 504    --      internally generated entity which is subsequently returned. A node
 505    --      that does not allow for a defining entity raises Program_Error.
 506    --
 507    --  The former semantics is appropriate for the back end; the latter
 508    --  semantics is appropriate for the front end.
 509 
 510    function Denotes_Discriminant
 511      (N                : Node_Id;
 512       Check_Concurrent : Boolean := False) return Boolean;
 513    --  Returns True if node N is an Entity_Name node for a discriminant. If the
 514    --  flag Check_Concurrent is true, function also returns true when N denotes
 515    --  the discriminal of the discriminant of a concurrent type. This is needed
 516    --  to disable some optimizations on private components of protected types,
 517    --  and constraint checks on entry families constrained by discriminants.
 518 
 519    function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
 520    --  Detect suspicious overlapping between actuals in a call, when both are
 521    --  writable (RM 2012 6.4.1(6.4/3))
 522 
 523    function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
 524    --  Functions to detect suspicious overlapping between actuals in a call,
 525    --  when one of them is writable. The predicates are those proposed in
 526    --  AI05-0144, to detect dangerous order dependence in complex calls.
 527    --  I would add a parameter Warn which enables more extensive testing of
 528    --  cases as we find appropriate when we are only warning ??? Or perhaps
 529    --  return an indication of (Error, Warn, OK) ???
 530 
 531    function Denotes_Variable (N : Node_Id) return Boolean;
 532    --  Returns True if node N denotes a single variable without parentheses
 533 
 534    function Depends_On_Discriminant (N : Node_Id) return Boolean;
 535    --  Returns True if N denotes a discriminant or if N is a range, a subtype
 536    --  indication or a scalar subtype where one of the bounds is a
 537    --  discriminant.
 538 
 539    function Designate_Same_Unit
 540      (Name1 : Node_Id;
 541       Name2 : Node_Id) return  Boolean;
 542    --  Returns True if Name1 and Name2 designate the same unit name; each of
 543    --  these names is supposed to be a selected component name, an expanded
 544    --  name, a defining program unit name or an identifier.
 545 
 546    function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id;
 547    --  Expr should be an expression of an access type. Builds an integer
 548    --  literal except in cases involving anonymous access types where
 549    --  accessibility levels are tracked at runtime (access parameters and Ada
 550    --  2012 stand-alone objects).
 551 
 552    function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
 553    --  Same as Einfo.Extra_Accessibility except thtat object renames
 554    --  are looked through.
 555 
 556    function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
 557    --  Given the entity of an abstract state or a variable, determine whether
 558    --  Id is subject to external property Effective_Reads and if it is, the
 559    --  related expression evaluates to True.
 560 
 561    function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
 562    --  Given the entity of an abstract state or a variable, determine whether
 563    --  Id is subject to external property Effective_Writes and if it is, the
 564    --  related expression evaluates to True.
 565 
 566    function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
 567    --  Returns the enclosing N_Compilation_Unit node that is the root of a
 568    --  subtree containing N.
 569 
 570    function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
 571    --  Returns the closest ancestor of Typ that is a CPP type.
 572 
 573    function Enclosing_Declaration (N : Node_Id) return Node_Id;
 574    --  Returns the declaration node enclosing N (including possibly N itself),
 575    --  if any, or Empty otherwise.
 576 
 577    function Enclosing_Generic_Body
 578      (N : Node_Id) return Node_Id;
 579    --  Returns the Node_Id associated with the innermost enclosing generic
 580    --  body, if any. If none, then returns Empty.
 581 
 582    function Enclosing_Generic_Unit
 583      (N : Node_Id) return Node_Id;
 584    --  Returns the Node_Id associated with the innermost enclosing generic
 585    --  unit, if any. If none, then returns Empty.
 586 
 587    function Enclosing_Lib_Unit_Entity
 588      (E : Entity_Id := Current_Scope) return Entity_Id;
 589    --  Returns the entity of enclosing library unit node which is the root of
 590    --  the current scope (which must not be Standard_Standard, and the caller
 591    --  is responsible for ensuring this condition) or other specified entity.
 592 
 593    function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
 594    --  Returns the N_Compilation_Unit node of the library unit that is directly
 595    --  or indirectly (through a subunit) at the root of a subtree containing
 596    --  N. This may be either the same as Enclosing_Comp_Unit_Node, or if
 597    --  Enclosing_Comp_Unit_Node returns a subunit, then the corresponding
 598    --  library unit. If no such item is found, returns Empty.
 599 
 600    function Enclosing_Package (E : Entity_Id) return Entity_Id;
 601    --  Utility function to return the Ada entity of the package enclosing
 602    --  the entity E, if any. Returns Empty if no enclosing package.
 603 
 604    function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id;
 605    --  Returns the entity of the package or subprogram enclosing E, if any.
 606    --  Returns Empty if no enclosing package or subprogram.
 607 
 608    function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
 609    --  Utility function to return the Ada entity of the subprogram enclosing
 610    --  the entity E, if any. Returns Empty if no enclosing subprogram.
 611 
 612    procedure Ensure_Freeze_Node (E : Entity_Id);
 613    --  Make sure a freeze node is allocated for entity E. If necessary, build
 614    --  and initialize a new freeze node and set Has_Delayed_Freeze True for E.
 615 
 616    procedure Enter_Name (Def_Id : Entity_Id);
 617    --  Insert new name in symbol table of current scope with check for
 618    --  duplications (error message is issued if a conflict is found).
 619    --  Note: Enter_Name is not used for overloadable entities, instead these
 620    --  are entered using Sem_Ch6.Enter_Overloadable_Entity.
 621 
 622    function Entity_Of (N : Node_Id) return Entity_Id;
 623    --  Return the entity of N or Empty. If N is a renaming, return the entity
 624    --  of the root renamed object.
 625 
 626    procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
 627    --  This procedure is called after issuing a message complaining about an
 628    --  inappropriate use of limited type T. If useful, it adds additional
 629    --  continuation lines to the message explaining why type T is limited.
 630    --  Messages are placed at node N.
 631 
 632    type Extensions_Visible_Mode is
 633      (Extensions_Visible_None,
 634       --  Extensions_Visible does not yield a mode when SPARK_Mode is off. This
 635       --  value acts as a default in a non-SPARK compilation.
 636 
 637       Extensions_Visible_False,
 638       --  A value of "False" signifies that Extensions_Visible is either
 639       --  missing or the pragma is present and the value of its Boolean
 640       --  expression is False.
 641 
 642       Extensions_Visible_True);
 643       --  A value of "True" signifies that Extensions_Visible is present and
 644       --  the value of its Boolean expression is True.
 645 
 646    function Extensions_Visible_Status
 647      (Id : Entity_Id) return Extensions_Visible_Mode;
 648    --  Given the entity of a subprogram or formal parameter subject to pragma
 649    --  Extensions_Visible, return the Boolean value denoted by the expression
 650    --  of the pragma.
 651 
 652    procedure Find_Actual
 653      (N      : Node_Id;
 654       Formal : out Entity_Id;
 655       Call   : out Node_Id);
 656    --  Determines if the node N is an actual parameter of a function or a
 657    --  procedure call. If so, then Formal points to the entity for the formal
 658    --  (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
 659    --  Call is set to the node for the corresponding call. If the node N is not
 660    --  an actual parameter then Formal and Call are set to Empty.
 661 
 662    function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
 663    --  Find specific type of a class-wide type, and handle the case of an
 664    --  incomplete type coming either from a limited_with clause or from an
 665    --  incomplete type declaration. If resulting type is private return its
 666    --  full view.
 667 
 668    function Find_Body_Discriminal
 669      (Spec_Discriminant : Entity_Id) return Entity_Id;
 670    --  Given a discriminant of the record type that implements a task or
 671    --  protected type, return the discriminal of the corresponding discriminant
 672    --  of the actual concurrent type.
 673 
 674    function Find_Corresponding_Discriminant
 675      (Id   : Node_Id;
 676       Typ  : Entity_Id) return Entity_Id;
 677    --  Because discriminants may have different names in a generic unit and in
 678    --  an instance, they are resolved positionally when possible. A reference
 679    --  to a discriminant carries the discriminant that it denotes when it is
 680    --  analyzed. Subsequent uses of this id on a different type denotes the
 681    --  discriminant at the same position in this new type.
 682 
 683    function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
 684    --  Given an arbitrary entity, try to find the nearest enclosing iterator
 685    --  loop. If such a loop is found, return the entity of its identifier (the
 686    --  E_Loop scope), otherwise return Empty.
 687 
 688    function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
 689    --  Find the nested loop statement in a conditional block. Loops subject to
 690    --  attribute 'Loop_Entry are transformed into blocks. Parts of the original
 691    --  loop are nested within the block.
 692 
 693    procedure Find_Overlaid_Entity
 694      (N   : Node_Id;
 695       Ent : out Entity_Id;
 696       Off : out Boolean);
 697    --  The node N should be an address representation clause. Determines if
 698    --  the target expression is the address of an entity with an optional
 699    --  offset. If so, set Ent to the entity and, if there is an offset, set
 700    --  Off to True, otherwise to False. If N is not an address representation
 701    --  clause, or if it is not possible to determine that the address is of
 702    --  this form, then set Ent to Empty.
 703 
 704    function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
 705    --  Return the type of formal parameter Param as determined by its
 706    --  specification.
 707 
 708    --  The following type describes the placement of an arbitrary entity with
 709    --  respect to SPARK visible / hidden state space.
 710 
 711    type State_Space_Kind is
 712      (Not_In_Package,
 713       --  An entity is not in the visible, private or body state space when
 714       --  the immediate enclosing construct is not a package.
 715 
 716       Visible_State_Space,
 717       --  An entity is in the visible state space when it appears immediately
 718       --  within the visible declarations of a package or when it appears in
 719       --  the visible state space of a nested package which in turn is declared
 720       --  in the visible declarations of an enclosing package:
 721 
 722       --    package Pack is
 723       --       Visible_Variable : ...
 724       --       package Nested
 725       --         with Abstract_State => Visible_State
 726       --       is
 727       --          Visible_Nested_Variable : ...
 728       --       end Nested;
 729       --    end Pack;
 730 
 731       --  Entities associated with a package instantiation inherit the state
 732       --  space from the instance placement:
 733 
 734       --     generic
 735       --     package Gen is
 736       --        Generic_Variable : ...
 737       --     end Gen;
 738 
 739       --     with Gen;
 740       --     package Pack is
 741       --        package Inst is new Gen;
 742       --        --  Generic_Variable is in the visible state space of Pack
 743       --     end Pack;
 744 
 745       Private_State_Space,
 746       --  An entity is in the private state space when it appears immediately
 747       --  within the private declarations of a package or when it appears in
 748       --  the visible state space of a nested package which in turn is declared
 749       --  in the private declarations of an enclosing package:
 750 
 751       --    package Pack is
 752       --    private
 753       --       Private_Variable : ...
 754       --       package Nested
 755       --         with Abstract_State => Private_State
 756       --       is
 757       --          Private_Nested_Variable : ...
 758       --       end Nested;
 759       --    end Pack;
 760 
 761       --  The same placement principle applies to package instantiations
 762 
 763       Body_State_Space);
 764       --  An entity is in the body state space when it appears immediately
 765       --  within the declarations of a package body or when it appears in the
 766       --  visible state space of a nested package which in turn is declared in
 767       --  the declarations of an enclosing package body:
 768 
 769       --    package body Pack is
 770       --       Body_Variable : ...
 771       --       package Nested
 772       --         with Abstract_State => Body_State
 773       --       is
 774       --          Body_Nested_Variable : ...
 775       --       end Nested;
 776       --    end Pack;
 777 
 778       --  The same placement principle applies to package instantiations
 779 
 780    procedure Find_Placement_In_State_Space
 781      (Item_Id   : Entity_Id;
 782       Placement : out State_Space_Kind;
 783       Pack_Id   : out Entity_Id);
 784    --  Determine the state space placement of an item. Item_Id denotes the
 785    --  entity of an abstract state, object or package instantiation. Placement
 786    --  captures the precise placement of the item in the enclosing state space.
 787    --  If the state space is that of a package, Pack_Id denotes its entity,
 788    --  otherwise Pack_Id is Empty.
 789 
 790    function Find_Static_Alternative (N : Node_Id) return Node_Id;
 791    --  N is a case statement whose expression is a compile-time value.
 792    --  Determine the alternative chosen, so that the code of non-selected
 793    --  alternatives, and the warnings that may apply to them, are removed.
 794 
 795    function First_Actual (Node : Node_Id) return Node_Id;
 796    --  Node is an N_Function_Call, N_Procedure_Call_Statement or
 797    --  N_Entry_Call_Statement node. The result returned is the first actual
 798    --  parameter in declaration order (not the order of parameters as they
 799    --  appeared in the source, which can be quite different as a result of the
 800    --  use of named parameters). Empty is returned for a call with no
 801    --  parameters. The procedure for iterating through the actuals in
 802    --  declaration order is to use this function to find the first actual, and
 803    --  then use Next_Actual to obtain the next actual in declaration order.
 804    --  Note that the value returned is always the expression (not the
 805    --  N_Parameter_Association nodes, even if named association is used).
 806 
 807    function Fix_Msg (Id : Entity_Id; Msg : String) return String;
 808    --  Replace all occurrences of a particular word in string Msg depending on
 809    --  the Ekind of Id as follows:
 810    --    * Replace "subprogram" with
 811    --      - "entry" when Id is an entry [family]
 812    --      - "task type" when Id is a single task object, task type or task
 813    --         body.
 814    --    * Replace "protected" with
 815    --      - "task" when Id is a single task object, task type or task body
 816    --  All other non-matching words remain as is
 817 
 818    procedure Gather_Components
 819      (Typ           : Entity_Id;
 820       Comp_List     : Node_Id;
 821       Governed_By   : List_Id;
 822       Into          : Elist_Id;
 823       Report_Errors : out Boolean);
 824    --  The purpose of this procedure is to gather the valid components in a
 825    --  record type according to the values of its discriminants, in order to
 826    --  validate the components of a record aggregate.
 827    --
 828    --    Typ is the type of the aggregate when its constrained discriminants
 829    --      need to be collected, otherwise it is Empty.
 830    --
 831    --    Comp_List is an N_Component_List node.
 832    --
 833    --    Governed_By is a list of N_Component_Association nodes, where each
 834    --     choice list contains the name of a discriminant and the expression
 835    --     field gives its value. The values of the discriminants governing
 836    --     the (possibly nested) variant parts in Comp_List are found in this
 837    --     Component_Association List.
 838    --
 839    --    Into is the list where the valid components are appended. Note that
 840    --     Into need not be an Empty list. If it's not, components are attached
 841    --     to its tail.
 842    --
 843    --    Report_Errors is set to True if the values of the discriminants are
 844    --     non-static.
 845    --
 846    --  This procedure is also used when building a record subtype. If the
 847    --  discriminant constraint of the subtype is static, the components of the
 848    --  subtype are only those of the variants selected by the values of the
 849    --  discriminants. Otherwise all components of the parent must be included
 850    --  in the subtype for semantic analysis.
 851 
 852    function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
 853    --  Given a node for an expression, obtain the actual subtype of the
 854    --  expression. In the case of a parameter where the formal is an
 855    --  unconstrained array or discriminated type, this will be the previously
 856    --  constructed subtype of the actual. Note that this is not quite the
 857    --  "Actual Subtype" of the RM, since it is always a constrained type, i.e.
 858    --  it is the subtype of the value of the actual. The actual subtype is also
 859    --  returned in other cases where it has already been constructed for an
 860    --  object. Otherwise the expression type is returned unchanged, except for
 861    --  the case of an unconstrained array type, where an actual subtype is
 862    --  created, using Insert_Actions if necessary to insert any associated
 863    --  actions.
 864 
 865    function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
 866    --  This is like Get_Actual_Subtype, except that it never constructs an
 867    --  actual subtype. If an actual subtype is already available, i.e. the
 868    --  Actual_Subtype field of the corresponding entity is set, then it is
 869    --  returned. Otherwise the Etype of the node is returned.
 870 
 871    function Get_Body_From_Stub (N : Node_Id) return Node_Id;
 872    --  Return the body node for a stub
 873 
 874    function Get_Cursor_Type
 875      (Aspect : Node_Id;
 876       Typ    : Entity_Id) return Entity_Id;
 877    --  Find Cursor type in scope of type Typ with Iterable aspect, by locating
 878    --  primitive operation First. For use in resolving the other primitive
 879    --  operations of an Iterable type and expanding loops and quantified
 880    --  expressions over formal containers.
 881 
 882    function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
 883    --  Find Cursor type in scope of type Typ with Iterable aspect, by locating
 884    --  primitive operation First. For use after resolving the primitive
 885    --  operations of an Iterable type.
 886 
 887    function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
 888    --  This is used to construct the string literal node representing a
 889    --  default external name, i.e. one that is constructed from the name of an
 890    --  entity, or (in the case of extended DEC import/export pragmas, an
 891    --  identifier provided as the external name. Letters in the name are
 892    --  according to the setting of Opt.External_Name_Default_Casing.
 893 
 894    function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
 895    --  If expression N references a part of an object, return this object.
 896    --  Otherwise return Empty. Expression N should have been resolved already.
 897 
 898    function Get_Generic_Entity (N : Node_Id) return Entity_Id;
 899    --  Returns the true generic entity in an instantiation. If the name in the
 900    --  instantiation is a renaming, the function returns the renamed generic.
 901 
 902    function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
 903    --  Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
 904    --  in a child unit a derived type is within the derivation class of an
 905    --  ancestor declared in a parent unit, even if there is an intermediate
 906    --  derivation that does not see the full view of that ancestor.
 907 
 908    procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id);
 909    --  This procedure assigns to L and H respectively the values of the low and
 910    --  high bounds of node N, which must be a range, subtype indication, or the
 911    --  name of a scalar subtype. The result in L, H may be set to Error if
 912    --  there was an earlier error in the range.
 913 
 914    function Get_Enum_Lit_From_Pos
 915      (T   : Entity_Id;
 916       Pos : Uint;
 917       Loc : Source_Ptr) return Node_Id;
 918    --  This function returns an identifier denoting the E_Enumeration_Literal
 919    --  entity for the specified value from the enumeration type or subtype T.
 920    --  The second argument is the Pos value, which is assumed to be in range.
 921    --  The third argument supplies a source location for constructed nodes
 922    --  returned by this function.
 923 
 924    function Get_Iterable_Type_Primitive
 925      (Typ : Entity_Id;
 926       Nam : Name_Id) return Entity_Id;
 927    --  Retrieve one of the primitives First, Next, Has_Element, Element from
 928    --  the value of the Iterable aspect of a formal type.
 929 
 930    procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
 931    --  Retrieve the fully expanded name of the library unit declared by
 932    --  Decl_Node into the name buffer.
 933 
 934    function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
 935    pragma Inline (Get_Name_Entity_Id);
 936    --  An entity value is associated with each name in the name table. The
 937    --  Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
 938    --  is the innermost visible entity with the given name. See the body of
 939    --  Sem_Ch8 for further details on handling of entity visibility.
 940 
 941    function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
 942    --  Return the Name component of Test_Case pragma N
 943    --  Bad name now that this no longer applies to Contract_Case ???
 944 
 945    function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
 946    --  Get defining entity of parent unit of a child unit. In most cases this
 947    --  is the defining entity of the unit, but for a child instance whose
 948    --  parent needs a body for inlining, the instantiation node of the parent
 949    --  has not yet been rewritten as a package declaration, and the entity has
 950    --  to be retrieved from the Instance_Spec of the unit.
 951 
 952    function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
 953    pragma Inline (Get_Pragma_Id);
 954    --  Obtains the Pragma_Id from the Chars field of Pragma_Identifier (N)
 955 
 956    function Get_Qualified_Name
 957      (Id     : Entity_Id;
 958       Suffix : Entity_Id := Empty) return Name_Id;
 959    --  Obtain the fully qualified form of entity Id. The format is:
 960    --    scope_of_id-1__scope_of_id__chars_of_id__chars_of_suffix
 961 
 962    function Get_Qualified_Name
 963      (Nam    : Name_Id;
 964       Suffix : Name_Id   := No_Name;
 965       Scop   : Entity_Id := Current_Scope) return Name_Id;
 966    --  Obtain the fully qualified form of name Nam assuming it appears in scope
 967    --  Scop. The format is:
 968    --    scop-1__scop__nam__suffix
 969 
 970    procedure Get_Reason_String (N : Node_Id);
 971    --  Recursive routine to analyze reason argument for pragma Warnings. The
 972    --  value of the reason argument is appended to the current string using
 973    --  Store_String_Chars. The reason argument is expected to be a string
 974    --  literal or concatenation of string literals. An error is given for
 975    --  any other form.
 976 
 977    function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id;
 978    --  If Typ has Implicit_Dereference, return discriminant specified in the
 979    --  corresponding aspect.
 980 
 981    function Get_Referenced_Object (N : Node_Id) return Node_Id;
 982    --  Given a node, return the renamed object if the node represents a renamed
 983    --  object, otherwise return the node unchanged. The node may represent an
 984    --  arbitrary expression.
 985 
 986    function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
 987    --  Given an entity for an exception, package, subprogram or generic unit,
 988    --  returns the ultimately renamed entity if this is a renaming. If this is
 989    --  not a renamed entity, returns its argument. It is an error to call this
 990    --  with any other kind of entity.
 991 
 992    function Get_Return_Object (N : Node_Id) return Entity_Id;
 993    --  Given an extended return statement, return the corresponding return
 994    --  object, identified as the one for which Is_Return_Object = True.
 995 
 996    function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
 997    --  Nod is either a procedure call statement, or a function call, or an
 998    --  accept statement node. This procedure finds the Entity_Id of the related
 999    --  subprogram or entry and returns it, or if no subprogram can be found,
1000    --  returns Empty.
1001 
1002    function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id;
1003    pragma Inline (Get_Task_Body_Procedure);
1004    --  Given an entity for a task type or subtype, retrieves the
1005    --  Task_Body_Procedure field from the corresponding task type declaration.
1006 
1007    function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id;
1008    --  For a type entity, return the entity of the primitive equality function
1009    --  for the type if it exists, otherwise return Empty.
1010 
1011    procedure Get_Views
1012      (Typ       : Entity_Id;
1013       Priv_Typ  : out Entity_Id;
1014       Full_Typ  : out Entity_Id;
1015       Full_Base : out Entity_Id;
1016       CRec_Typ  : out Entity_Id);
1017    --  Obtain the partial and full view of type Typ and in addition any extra
1018    --  types the full view may have. The return entities are as follows:
1019    --
1020    --    Priv_Typ  - the partial view (a private type)
1021    --    Full_Typ  - the full view
1022    --    Full_Base - the base type of the full view
1023    --    CRec_Typ  - the corresponding record type of the full view
1024 
1025    function Has_Access_Values (T : Entity_Id) return Boolean;
1026    --  Returns true if type or subtype T is an access type, or has a component
1027    --  (at any recursive level) that is an access type. This is a conservative
1028    --  predicate, if it is not known whether or not T contains access values
1029    --  (happens for generic formals in some cases), then False is returned.
1030    --  Note that tagged types return False. Even though the tag is implemented
1031    --  as an access type internally, this function tests only for access types
1032    --  known to the programmer. See also Has_Tagged_Component.
1033 
1034    type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
1035    --  Result of Has_Compatible_Alignment test, description found below. Note
1036    --  that the values are arranged in increasing order of problematicness.
1037 
1038    function Has_Compatible_Alignment
1039      (Obj         : Entity_Id;
1040       Expr        : Node_Id;
1041       Layout_Done : Boolean) return Alignment_Result;
1042    --  Obj is an object entity, and expr is a node for an object reference. If
1043    --  the alignment of the object referenced by Expr is known to be compatible
1044    --  with the alignment of Obj (i.e. is larger or the same), then the result
1045    --  is Known_Compatible. If the alignment of the object referenced by Expr
1046    --  is known to be less than the alignment of Obj, then Known_Incompatible
1047    --  is returned. If neither condition can be reliably established at compile
1048    --  time, then Unknown is returned. If Layout_Done is True, the function can
1049    --  assume that the information on size and alignment of types and objects
1050    --  is present in the tree. This is used to determine if alignment checks
1051    --  are required for address clauses (Layout_Done is False in this case) as
1052    --  well as to issue appropriate warnings for them in the post compilation
1053    --  phase (Layout_Done is True in this case).
1054    --
1055    --  Note: Known_Incompatible does not mean that at run time the alignment
1056    --  of Expr is known to be wrong for Obj, just that it can be determined
1057    --  that alignments have been explicitly or implicitly specified which are
1058    --  incompatible (whereas Unknown means that even this is not known). The
1059    --  appropriate reaction of a caller to Known_Incompatible is to treat it as
1060    --  Unknown, but issue a warning that there may be an alignment error.
1061 
1062    function Has_Declarations (N : Node_Id) return Boolean;
1063    --  Determines if the node can have declarations
1064 
1065    function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
1066    --  Simple predicate to test for defaulted discriminants
1067 
1068    function Has_Denormals (E : Entity_Id) return Boolean;
1069    --  Determines if the floating-point type E supports denormal numbers.
1070    --  Returns False if E is not a floating-point type.
1071 
1072    function Has_Discriminant_Dependent_Constraint
1073      (Comp : Entity_Id) return Boolean;
1074    --  Returns True if and only if Comp has a constrained subtype that depends
1075    --  on a discriminant.
1076 
1077    function Has_Effectively_Volatile_Profile
1078      (Subp_Id : Entity_Id) return Boolean;
1079    --  Determine whether subprogram Subp_Id has an effectively volatile formal
1080    --  parameter or returns an effectively volatile value.
1081 
1082    function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean;
1083    --  Determine whether type Typ defines "full default initialization" as
1084    --  specified by SPARK RM 3.1. To qualify as such, the type must be
1085    --    * A scalar type with specified Default_Value
1086    --    * An array-of-scalar type with specified Default_Component_Value
1087    --    * An array type whose element type defines full default initialization
1088    --    * A protected type, record type or type extension whose components
1089    --      either include a default expression or have a type which defines
1090    --      full default initialization. In the case of type extensions, the
1091    --      parent type defines full default initialization.
1092    --   * A task type
1093    --   * A private type whose Default_Initial_Condition is non-null
1094 
1095    function Has_Infinities (E : Entity_Id) return Boolean;
1096    --  Determines if the range of the floating-point type E includes
1097    --  infinities. Returns False if E is not a floating-point type.
1098 
1099    function Has_Interfaces
1100      (T             : Entity_Id;
1101       Use_Full_View : Boolean := True) return Boolean;
1102    --  Where T is a concurrent type or a record type, returns true if T covers
1103    --  any abstract interface types. In case of private types the argument
1104    --  Use_Full_View controls if the check is done using its full view (if
1105    --  available).
1106 
1107    function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
1108    --  This is a simple minded function for determining whether an expression
1109    --  has no obvious side effects. It is used only for determining whether
1110    --  warnings are needed in certain situations, and is not guaranteed to
1111    --  be accurate in either direction. Exceptions may mean an expression
1112    --  does in fact have side effects, but this may be ignored and True is
1113    --  returned, or a complex expression may in fact be side effect free
1114    --  but we don't recognize it here and return False. The Side_Effect_Free
1115    --  routine in Remove_Side_Effects is much more extensive and perhaps could
1116    --  be shared, so that this routine would be more accurate.
1117 
1118    function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean;
1119    --  Determine whether abstract state Id has at least one nonnull constituent
1120    --  as expressed in pragma Refined_State. This function does not take into
1121    --  account the visible refinement region of abstract state Id.
1122 
1123    function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
1124    --  Determine whether the body of procedure Proc_Id contains a sole
1125    --  null statement, possibly followed by an optional return. Used to
1126    --  optimize useless calls to assertion checks.
1127 
1128    function Has_Null_Exclusion (N : Node_Id) return Boolean;
1129    --  Determine whether node N has a null exclusion
1130 
1131    function Has_Null_Refinement (Id : Entity_Id) return Boolean;
1132    --  Determine whether abstract state Id has a null refinement as expressed
1133    --  in pragma Refined_State. This function does not take into account the
1134    --  visible refinement region of abstract state Id.
1135 
1136    function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
1137    --  Predicate to determine whether a controlled type has a user-defined
1138    --  Initialize primitive (and, in Ada 2012, whether that primitive is
1139    --  non-null), which causes the type to not have preelaborable
1140    --  initialization.
1141 
1142    function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
1143    --  Return True iff type E has preelaborable initialization as defined in
1144    --  Ada 2005 (see AI-161 for details of the definition of this attribute).
1145 
1146    function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1147    --  Check if a type has a (sub)component of a private type that has not
1148    --  yet received a full declaration.
1149 
1150    function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1151    --  Determines if the floating-point type E supports signed zeros.
1152    --  Returns False if E is not a floating-point type.
1153 
1154    function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1155    --  Determine whether subprogram [body] Subp_Id has a significant contract.
1156    --  All subprograms have a N_Contract node, but this does not mean that the
1157    --  contract is useful.
1158 
1159    function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1160    --  Return whether an array type has static bounds
1161 
1162    function Has_Stream (T : Entity_Id) return Boolean;
1163    --  Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1164    --  case of a composite type, has a component for which this predicate is
1165    --  True, and if so returns True. Otherwise a result of False means that
1166    --  there is no Stream type in sight. For a private type, the test is
1167    --  applied to the underlying type (or returns False if there is no
1168    --  underlying type).
1169 
1170    function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1171    --  Returns true if the last character of E is Suffix. Used in Assertions.
1172 
1173    function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1174    --  Returns True if Typ is a composite type (array or record) which is
1175    --  either itself a tagged type, or has a component (recursively) which is
1176    --  a tagged type. Returns False for non-composite type, or if no tagged
1177    --  component is present. This function is used to check if "=" has to be
1178    --  expanded into a bunch component comparisons.
1179 
1180    function Has_Undefined_Reference (Expr : Node_Id) return Boolean;
1181    --  Given arbitrary expression Expr, determine whether it contains at
1182    --  least one name whose entity is Any_Id.
1183 
1184    function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1185    --  Given arbitrary type Typ, determine whether it contains at least one
1186    --  volatile component.
1187 
1188    function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1189    --  Subp is a subprogram marked with pragma Implemented. Return the specific
1190    --  implementation requirement which the pragma imposes. The return value is
1191    --  either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1192 
1193    function Implements_Interface
1194      (Typ_Ent         : Entity_Id;
1195       Iface_Ent       : Entity_Id;
1196       Exclude_Parents : Boolean := False) return Boolean;
1197    --  Returns true if the Typ_Ent implements interface Iface_Ent
1198 
1199    function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1200    --  Returns True if node N appears within a pragma that acts as an assertion
1201    --  expression. See Sem_Prag for the list of qualifying pragmas.
1202 
1203    function In_Instance return Boolean;
1204    --  Returns True if the current scope is within a generic instance
1205 
1206    function In_Instance_Body return Boolean;
1207    --  Returns True if current scope is within the body of an instance, where
1208    --  several semantic checks (e.g. accessibility checks) are relaxed.
1209 
1210    function In_Instance_Not_Visible return Boolean;
1211    --  Returns True if current scope is with the private part or the body of
1212    --  an instance. Other semantic checks are suppressed in this context.
1213 
1214    function In_Instance_Visible_Part return Boolean;
1215    --  Returns True if current scope is within the visible part of a package
1216    --  instance, where several additional semantic checks apply.
1217 
1218    function In_Package_Body return Boolean;
1219    --  Returns True if current scope is within a package body
1220 
1221    function In_Parameter_Specification (N : Node_Id) return Boolean;
1222    --  Returns True if node N belongs to a parameter specification
1223 
1224    function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1225    --  Returns true if the expression N occurs within a pragma with name Nam
1226 
1227    function In_Pre_Post_Condition (N : Node_Id) return Boolean;
1228    --  Returns True if node N appears within a pre/postcondition pragma. Note
1229    --  the pragma Check equivalents are NOT considered.
1230 
1231    function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1232    --  Returns True if N denotes a component or subcomponent in a record or
1233    --  array that has Reverse_Storage_Order.
1234 
1235    function In_Subprogram_Or_Concurrent_Unit return Boolean;
1236    --  Determines if the current scope is within a subprogram compilation unit
1237    --  (inside a subprogram declaration, subprogram body, or generic subprogram
1238    --  declaration) or within a task or protected body. The test is for
1239    --  appearing anywhere within such a construct (that is it does not need
1240    --  to be directly within).
1241 
1242    function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1243    --  Determine whether a declaration occurs within the visible part of a
1244    --  package specification. The package must be on the scope stack, and the
1245    --  corresponding private part must not.
1246 
1247    function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1248    --  Given the entity of a constant or a type, retrieve the incomplete or
1249    --  partial view of the same entity. Note that Id may not have a partial
1250    --  view in which case the function returns Empty.
1251 
1252    function Indexed_Component_Bit_Offset (N : Node_Id) return Uint;
1253    --  Given an N_Indexed_Component node, return the first bit position of the
1254    --  component if it is known at compile time. A value of No_Uint means that
1255    --  either the value is not yet known before back-end processing or it is
1256    --  not known at compile time after back-end processing.
1257 
1258    procedure Inherit_Default_Init_Cond_Procedure (Typ : Entity_Id);
1259    --  Inherit the default initial condition procedure from the parent type of
1260    --  derived type Typ.
1261 
1262    procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1263    --  Inherit the rep item chain of type From_Typ without clobbering any
1264    --  existing rep items on Typ's chain. Typ is the destination type.
1265 
1266    procedure Insert_Explicit_Dereference (N : Node_Id);
1267    --  In a context that requires a composite or subprogram type and where a
1268    --  prefix is an access type, rewrite the access type node N (which is the
1269    --  prefix, e.g. of an indexed component) as an explicit dereference.
1270 
1271    procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1272    --  Examine all deferred constants in the declaration list Decls and check
1273    --  whether they have been completed by a full constant declaration or an
1274    --  Import pragma. Emit the error message if that is not the case.
1275 
1276    procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1277    --  Install both the generic formal parameters and the formal parameters of
1278    --  generic subprogram Subp_Id into visibility.
1279 
1280    function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1281    --  Determines if N is an actual parameter of out mode in a subprogram call
1282 
1283    function Is_Actual_Parameter (N : Node_Id) return Boolean;
1284    --  Determines if N is an actual parameter in a subprogram call
1285 
1286    function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1287    --  Determines if N is an actual parameter of a formal of tagged type in a
1288    --  subprogram call.
1289 
1290    function Is_Aliased_View (Obj : Node_Id) return Boolean;
1291    --  Determine if Obj is an aliased view, i.e. the name of an object to which
1292    --  'Access or 'Unchecked_Access can apply. Note that this routine uses the
1293    --  rules of the language, it does not take into account the restriction
1294    --  No_Implicit_Aliasing, so it can return True if the restriction is active
1295    --  and Obj violates the restriction. The caller is responsible for calling
1296    --  Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1297    --  requirement for obeying the restriction in the call context.
1298 
1299    function Is_Ancestor_Package
1300      (E1 : Entity_Id;
1301       E2 : Entity_Id) return Boolean;
1302    --  Determine whether package E1 is an ancestor of E2
1303 
1304    function Is_Atomic_Object (N : Node_Id) return Boolean;
1305    --  Determines if the given node denotes an atomic object in the sense of
1306    --  the legality checks described in RM C.6(12).
1307 
1308    function Is_Atomic_Or_VFA_Object (N : Node_Id) return Boolean;
1309    --  Determines if the given node is an atomic object (Is_Atomic_Object true)
1310    --  or else is an object for which VFA is present.
1311 
1312    function Is_Attribute_Result (N : Node_Id) return Boolean;
1313    --  Determine whether node N denotes attribute 'Result
1314 
1315    function Is_Attribute_Update (N : Node_Id) return Boolean;
1316    --  Determine whether node N denotes attribute 'Update
1317 
1318    function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
1319    --  Determine whether node N denotes a body or a package declaration
1320 
1321    function Is_Bounded_String (T : Entity_Id) return Boolean;
1322    --  True if T is a bounded string type. Used to make sure "=" composes
1323    --  properly for bounded string types.
1324 
1325    function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1326    --  Exp is the expression for an array bound. Determines whether the
1327    --  bound is a compile-time known value, or a constant entity, or an
1328    --  enumeration literal, or an expression composed of constant-bound
1329    --  subexpressions which are evaluated by means of standard operators.
1330 
1331    function Is_Container_Element (Exp : Node_Id) return Boolean;
1332    --  This routine recognizes expressions that denote an element of one of
1333    --  the predefined containers, when the source only contains an indexing
1334    --  operation and an implicit dereference is inserted by the compiler.
1335    --  In the absence of this optimization, the indexing creates a temporary
1336    --  controlled cursor that sets the tampering bit of the container, and
1337    --  restricts the use of the convenient notation C (X) to contexts that
1338    --  do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1339    --  explicit dereference. The transformation applies when it has the form
1340    --  F (X).Discr.all.
1341 
1342    function Is_Contract_Annotation (Item : Node_Id) return Boolean;
1343    --  Determine whether aspect specification or pragma Item is a contract
1344    --  annotation.
1345 
1346    function Is_Controlling_Limited_Procedure
1347      (Proc_Nam : Entity_Id) return Boolean;
1348    --  Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1349    --  of a limited interface with a controlling first parameter.
1350 
1351    function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1352    --  Returns True if N is a call to a CPP constructor
1353 
1354    function Is_Child_Or_Sibling
1355      (Pack_1 : Entity_Id;
1356       Pack_2 : Entity_Id) return Boolean;
1357    --  Determine the following relations between two arbitrary packages:
1358    --    1) One package is the parent of a child package
1359    --    2) Both packages are siblings and share a common parent
1360 
1361    function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1362    --  First determine whether type T is an interface and then check whether
1363    --  it is of protected, synchronized or task kind.
1364 
1365    function Is_Current_Instance (N : Node_Id) return Boolean;
1366    --  Predicate is true if N legally denotes a type name within its own
1367    --  declaration. Prior to Ada 2012 this covered only synchronized type
1368    --  declarations. In Ada 2012 it also covers type and subtype declarations
1369    --  with aspects: Invariant, Predicate, and Default_Initial_Condition.
1370 
1371    function Is_Declaration (N : Node_Id) return Boolean;
1372    --  Determine whether arbitrary node N denotes a declaration
1373 
1374    function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
1375    --  Returns True iff component Comp is declared within a variant part
1376 
1377    function Is_Dependent_Component_Of_Mutable_Object
1378      (Object : Node_Id) return Boolean;
1379    --  Returns True if Object is the name of a subcomponent that depends on
1380    --  discriminants of a variable whose nominal subtype is unconstrained and
1381    --  not indefinite, and the variable is not aliased. Otherwise returns
1382    --  False. The nodes passed to this function are assumed to denote objects.
1383 
1384    function Is_Dereferenced (N : Node_Id) return Boolean;
1385    --  N is a subexpression node of an access type. This function returns true
1386    --  if N appears as the prefix of a node that does a dereference of the
1387    --  access value (selected/indexed component, explicit dereference or a
1388    --  slice), and false otherwise.
1389 
1390    function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1391    --  Returns True if type T1 is a descendant of type T2, and false otherwise.
1392    --  This is the RM definition, a type is a descendant of another type if it
1393    --  is the same type or is derived from a descendant of the other type.
1394 
1395    function Is_Descendant_Of_Suspension_Object
1396      (Typ : Entity_Id) return Boolean;
1397    --  Determine whether type Typ is a descendant of type Suspension_Object
1398    --  defined in Ada.Synchronous_Task_Control. This version is different from
1399    --  Is_Descendant_Of as the detection of Suspension_Object does not involve
1400    --  an entity and by extension a call to RTSfind.
1401 
1402    function Is_Double_Precision_Floating_Point_Type
1403      (E : Entity_Id) return Boolean;
1404    --  Return whether E is a double precision floating point type,
1405    --  characterized by:
1406    --  . machine_radix = 2
1407    --  . machine_mantissa = 53
1408    --  . machine_emax = 2**10
1409    --  . machine_emin = 3 - machine_emax
1410 
1411    function Is_Effectively_Volatile (Id : Entity_Id) return Boolean;
1412    --  Determine whether a type or object denoted by entity Id is effectively
1413    --  volatile (SPARK RM 7.1.2). To qualify as such, the entity must be either
1414    --    * Volatile
1415    --    * An array type subject to aspect Volatile_Components
1416    --    * An array type whose component type is effectively volatile
1417    --    * A protected type
1418    --    * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
1419 
1420    function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean;
1421    --  Determine whether an arbitrary node denotes an effectively volatile
1422    --  object (SPARK RM 7.1.2).
1423 
1424    function Is_Entry_Body (Id : Entity_Id) return Boolean;
1425    --  Determine whether entity Id is the body entity of an entry [family]
1426 
1427    function Is_Entry_Declaration (Id : Entity_Id) return Boolean;
1428    --  Determine whether entity Id is the spec entity of an entry [family]
1429 
1430    function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean;
1431    --  Check whether a function in a call is an expanded priority attribute,
1432    --  which is transformed into an Rtsfind call to Get_Ceiling. This expansion
1433    --  does not take place in a configurable runtime.
1434 
1435    function Is_Expression_Function (Subp : Entity_Id) return Boolean;
1436    --  Determine whether subprogram [body] Subp denotes an expression function
1437 
1438    function Is_Expression_Function_Or_Completion
1439      (Subp : Entity_Id) return Boolean;
1440    --  Determine whether subprogram [body] Subp denotes an expression function
1441    --  or is completed by an expression function body.
1442 
1443    function Is_EVF_Expression (N : Node_Id) return Boolean;
1444    --  Determine whether node N denotes a reference to a formal parameter of
1445    --  a specific tagged type whose related subprogram is subject to pragma
1446    --  Extensions_Visible with value "False" (SPARK RM 6.1.7). Several other
1447    --  constructs fall under this category:
1448    --    1) A qualified expression whose operand is EVF
1449    --    2) A type conversion whose operand is EVF
1450    --    3) An if expression with at least one EVF dependent_expression
1451    --    4) A case expression with at least one EVF dependent_expression
1452 
1453    function Is_False (U : Uint) return Boolean;
1454    pragma Inline (Is_False);
1455    --  The argument is a Uint value which is the Boolean'Pos value of a Boolean
1456    --  operand (i.e. is either 0 for False, or 1 for True). This function tests
1457    --  if it is False (i.e. zero).
1458 
1459    function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
1460    --  Returns True iff the number U is a model number of the fixed-point type
1461    --  T, i.e. if it is an exact multiple of Small.
1462 
1463    function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
1464    --  Typ is a type entity. This function returns true if this type is fully
1465    --  initialized, meaning that an object of the type is fully initialized.
1466    --  Note that initialization resulting from use of pragma Normalize_Scalars
1467    --  does not count. Note that this is only used for the purpose of issuing
1468    --  warnings for objects that are potentially referenced uninitialized. This
1469    --  means that the result returned is not crucial, but should err on the
1470    --  side of thinking things are fully initialized if it does not know.
1471 
1472    function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean;
1473    --  Determine whether arbitrary declaration Decl denotes a generic package,
1474    --  a generic subprogram or a generic body.
1475 
1476    function Is_Inherited_Operation (E : Entity_Id) return Boolean;
1477    --  E is a subprogram. Return True is E is an implicit operation inherited
1478    --  by a derived type declaration.
1479 
1480    function Is_Inherited_Operation_For_Type
1481      (E   : Entity_Id;
1482       Typ : Entity_Id) return Boolean;
1483    --  E is a subprogram. Return True is E is an implicit operation inherited
1484    --  by the derived type declaration for type Typ.
1485 
1486    function Is_Iterator (Typ : Entity_Id) return Boolean;
1487    --  AI05-0139-2: Check whether Typ is one of the predefined interfaces in
1488    --  Ada.Iterator_Interfaces, or it is derived from one.
1489 
1490    function Is_Iterator_Over_Array (N : Node_Id) return Boolean;
1491    --  N is an iterator specification. Returns True iff N is an iterator over
1492    --  an array, either inside a loop of the form 'for X of A' or a quantified
1493    --  expression of the form 'for all/some X of A' where A is of array type.
1494 
1495    type Is_LHS_Result is (Yes, No, Unknown);
1496    function Is_LHS (N : Node_Id) return Is_LHS_Result;
1497    --  Returns Yes if N is definitely used as Name in an assignment statement.
1498    --  Returns No if N is definitely NOT used as a Name in an assignment
1499    --  statement. Returns Unknown if we can't tell at this stage (happens in
1500    --  the case where we don't know the type of N yet, and we have something
1501    --  like N.A := 3, where this counts as N being used on the left side of
1502    --  an assignment only if N is not an access type. If it is an access type
1503    --  then it is N.all.A that is assigned, not N.
1504 
1505    function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
1506    --  A library-level declaration is one that is accessible from Standard,
1507    --  i.e. a library unit or an entity declared in a library package.
1508 
1509    function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
1510    --  Determine whether a given type is a limited class-wide type, in which
1511    --  case it needs a Master_Id, because extensions of its designated type
1512    --  may include task components. A class-wide type that comes from a
1513    --  limited view must be treated in the same way.
1514 
1515    function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
1516    --  Determines whether Expr is a reference to a variable or IN OUT mode
1517    --  parameter of the current enclosing subprogram.
1518    --  Why are OUT parameters not considered here ???
1519 
1520    function Is_Nontrivial_Default_Init_Cond_Procedure
1521      (Id : Entity_Id) return Boolean;
1522    --  Determine whether entity Id denotes the procedure that verifies the
1523    --  assertion expression of pragma Default_Initial_Condition and if it does,
1524    --  the encapsulated expression is nontrivial.
1525 
1526    function Is_Null_Record_Type (T : Entity_Id) return Boolean;
1527    --  Determine whether T is declared with a null record definition or a
1528    --  null component list.
1529 
1530    function Is_Object_Reference (N : Node_Id) return Boolean;
1531    --  Determines if the tree referenced by N represents an object. Both
1532    --  variable and constant objects return True (compare Is_Variable).
1533 
1534    function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
1535    --  Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
1536    --  Note that the Is_Variable function is not quite the right test because
1537    --  this is a case in which conversions whose expression is a variable (in
1538    --  the Is_Variable sense) with an untagged type target are considered view
1539    --  conversions and hence variables.
1540 
1541    function Is_OK_Volatile_Context
1542      (Context : Node_Id;
1543       Obj_Ref : Node_Id) return Boolean;
1544    --  Determine whether node Context denotes a "non-interfering context" (as
1545    --  defined in SPARK RM 7.1.3(12)) where volatile reference Obj_Ref can
1546    --  safely reside.
1547 
1548    function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean;
1549    --  Determine whether aspect specification or pragma Item is one of the
1550    --  following package contract annotations:
1551    --    Abstract_State
1552    --    Initial_Condition
1553    --    Initializes
1554    --    Refined_State
1555 
1556    function Is_Partially_Initialized_Type
1557      (Typ              : Entity_Id;
1558       Include_Implicit : Boolean := True) return Boolean;
1559    --  Typ is a type entity. This function returns true if this type is partly
1560    --  initialized, meaning that an object of the type is at least partly
1561    --  initialized (in particular in the record case, that at least one
1562    --  component has an initialization expression). Note that initialization
1563    --  resulting from the use of pragma Normalize_Scalars does not count.
1564    --  Include_Implicit controls whether implicit initialization of access
1565    --  values to null, and of discriminant values, is counted as making the
1566    --  type be partially initialized. For the default setting of True, these
1567    --  implicit cases do count, and discriminated types or types containing
1568    --  access values not explicitly initialized will return True. Otherwise
1569    --  if Include_Implicit is False, these cases do not count as making the
1570    --  type be partially initialized.
1571 
1572    function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
1573    --  Predicate to implement definition given in RM 6.1.1 (20/3)
1574 
1575    function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
1576    --  Determines if type T is a potentially persistent type. A potentially
1577    --  persistent type is defined (recursively) as a scalar type, an untagged
1578    --  record whose components are all of a potentially persistent type, or an
1579    --  array with all static constraints whose component type is potentially
1580    --  persistent. A private type is potentially persistent if the full type
1581    --  is potentially persistent.
1582 
1583    function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
1584    --  Return True if node N denotes a protected type name which represents
1585    --  the current instance of a protected object according to RM 9.4(21/2).
1586 
1587    function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
1588    --  Return True if a compilation unit is the specification or the
1589    --  body of a remote call interface package.
1590 
1591    function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
1592    --  Return True if E is a remote access-to-class-wide type
1593 
1594    function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
1595    --  Return True if E is a remote access to subprogram type
1596 
1597    function Is_Remote_Call (N : Node_Id) return Boolean;
1598    --  Return True if N denotes a potentially remote call
1599 
1600    function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
1601    --  Return True if Proc_Nam is a procedure renaming of an entry
1602 
1603    function Is_Renaming_Declaration (N : Node_Id) return Boolean;
1604    --  Determine whether arbitrary node N denotes a renaming declaration
1605 
1606    function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
1607    --  AI05-0139-2: Check whether Typ is derived from the predefined interface
1608    --  Ada.Iterator_Interfaces.Reversible_Iterator.
1609 
1610    function Is_Selector_Name (N : Node_Id) return Boolean;
1611    --  Given an N_Identifier node N, determines if it is a Selector_Name.
1612    --  As described in Sinfo, Selector_Names are special because they
1613    --  represent use of the N_Identifier node for a true identifier, when
1614    --  normally such nodes represent a direct name.
1615 
1616    function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean;
1617    --  Determine whether arbitrary entity Id denotes the anonymous object
1618    --  created for a single protected or single task type.
1619 
1620    function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean;
1621    --  Determine whether arbitrary entity Id denotes a single protected or
1622    --  single task type.
1623 
1624    function Is_Single_Concurrent_Type_Declaration (N : Node_Id) return Boolean;
1625    --  Determine whether arbitrary node N denotes the declaration of a single
1626    --  protected type or single task type.
1627 
1628    function Is_Single_Precision_Floating_Point_Type
1629      (E : Entity_Id) return Boolean;
1630    --  Return whether E is a single precision floating point type,
1631    --  characterized by:
1632    --  . machine_radix = 2
1633    --  . machine_mantissa = 24
1634    --  . machine_emax = 2**7
1635    --  . machine_emin = 3 - machine_emax
1636 
1637    function Is_Single_Protected_Object (Id : Entity_Id) return Boolean;
1638    --  Determine whether arbitrary entity Id denotes the anonymous object
1639    --  created for a single protected type.
1640 
1641    function Is_Single_Task_Object (Id : Entity_Id) return Boolean;
1642    --  Determine whether arbitrary entity Id denotes the anonymous object
1643    --  created for a single task type.
1644 
1645    function Is_SPARK_05_Initialization_Expr (N : Node_Id) return Boolean;
1646    --  Determines if the tree referenced by N represents an initialization
1647    --  expression in SPARK 2005, suitable for initializing an object in an
1648    --  object declaration.
1649 
1650    function Is_SPARK_05_Object_Reference (N : Node_Id) return Boolean;
1651    --  Determines if the tree referenced by N represents an object in SPARK
1652    --  2005. This differs from Is_Object_Reference in that only variables,
1653    --  constants, formal parameters, and selected_components of those are
1654    --  valid objects in SPARK 2005.
1655 
1656    function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
1657    --  Determine whether an arbitrary [private] type is specifically tagged
1658 
1659    function Is_Statement (N : Node_Id) return Boolean;
1660    pragma Inline (Is_Statement);
1661    --  Check if the node N is a statement node. Note that this includes
1662    --  the case of procedure call statements (unlike the direct use of
1663    --  the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
1664    --  Note that a label is *not* a statement, and will return False.
1665 
1666    function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean;
1667    --  Determine whether aspect specification or pragma Item is one of the
1668    --  following subprogram contract annotations:
1669    --    Contract_Cases
1670    --    Depends
1671    --    Extensions_Visible
1672    --    Global
1673    --    Post
1674    --    Post_Class
1675    --    Postcondition
1676    --    Pre
1677    --    Pre_Class
1678    --    Precondition
1679    --    Refined_Depends
1680    --    Refined_Global
1681    --    Refined_Post
1682    --    Test_Case
1683 
1684    function Is_Subprogram_Stub_Without_Prior_Declaration
1685      (N : Node_Id) return Boolean;
1686    --  Return True if N is a subprogram stub with no prior subprogram
1687    --  declaration.
1688 
1689    function Is_Suspension_Object (Id : Entity_Id) return Boolean;
1690    --  Determine whether arbitrary entity Id denotes Suspension_Object defined
1691    --  in Ada.Synchronous_Task_Control.
1692 
1693    function Is_Synchronized_Object (Id : Entity_Id) return Boolean;
1694    --  Determine whether entity Id denotes an object and if it does, whether
1695    --  this object is synchronized as specified in SPARK RM 9.1. To qualify as
1696    --  such, the object must be
1697    --    * Of a type that yields a synchronized object
1698    --    * An atomic object with enabled Async_Writers
1699    --    * A constant
1700    --    * A variable subject to pragma Constant_After_Elaboration
1701 
1702    function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
1703    --  Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
1704 
1705    function Is_Transfer (N : Node_Id) return Boolean;
1706    --  Returns True if the node N is a statement which is known to cause an
1707    --  unconditional transfer of control at runtime, i.e. the following
1708    --  statement definitely will not be executed.
1709 
1710    function Is_True (U : Uint) return Boolean;
1711    pragma Inline (Is_True);
1712    --  The argument is a Uint value which is the Boolean'Pos value of a Boolean
1713    --  operand (i.e. is either 0 for False, or 1 for True). This function tests
1714    --  if it is True (i.e. non-zero).
1715 
1716    function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
1717    --  Determine whether an arbitrary entity denotes an instance of function
1718    --  Ada.Unchecked_Conversion.
1719 
1720    function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
1721    pragma Inline (Is_Universal_Numeric_Type);
1722    --  True if T is Universal_Integer or Universal_Real
1723 
1724    function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
1725    --  Returns true if E has variable size components
1726 
1727    function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
1728    --  Returns true if E has variable size components
1729 
1730    function Is_Variable
1731      (N                 : Node_Id;
1732       Use_Original_Node : Boolean := True) return Boolean;
1733    --  Determines if the tree referenced by N represents a variable, i.e. can
1734    --  appear on the left side of an assignment. There is one situation (formal
1735    --  parameters) in which untagged type conversions are also considered
1736    --  variables, but Is_Variable returns False for such cases, since it has
1737    --  no knowledge of the context. Note that this is the point at which
1738    --  Assignment_OK is checked, and True is returned for any tree thus marked.
1739    --  Use_Original_Node is used to perform the test on Original_Node (N). By
1740    --  default is True since this routine is commonly invoked as part of the
1741    --  semantic analysis and it must not be disturbed by the rewriten nodes.
1742 
1743    function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
1744    --  Check whether T is derived from a visibly controlled type. This is true
1745    --  if the root type is declared in Ada.Finalization. If T is derived
1746    --  instead from a private type whose full view is controlled, an explicit
1747    --  Initialize/Adjust/Finalize subprogram does not override the inherited
1748    --  one.
1749 
1750    function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean;
1751    --  Determine whether [generic] function Func_Id is subject to enabled
1752    --  pragma Volatile_Function. Protected functions are treated as volatile
1753    --  (SPARK RM 7.1.2).
1754 
1755    function Is_Volatile_Object (N : Node_Id) return Boolean;
1756    --  Determines if the given node denotes an volatile object in the sense of
1757    --  the legality checks described in RM C.6(12). Note that the test here is
1758    --  for something actually declared as volatile, not for an object that gets
1759    --  treated as volatile (see Einfo.Treat_As_Volatile).
1760 
1761    function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
1762    --  Applies to Itypes. True if the Itype is attached to a declaration for
1763    --  the type through its Parent field, which may or not be present in the
1764    --  tree.
1765 
1766    procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
1767    --  This procedure is called to clear all constant indications from all
1768    --  entities in the current scope and in any parent scopes if the current
1769    --  scope is a block or a package (and that recursion continues to the top
1770    --  scope that is not a block or a package). This is used when the
1771    --  sequential flow-of-control assumption is violated (occurrence of a
1772    --  label, head of a loop, or start of an exception handler). The effect of
1773    --  the call is to clear the Current_Value field (but we do not need to
1774    --  clear the Is_True_Constant flag, since that only gets reset if there
1775    --  really is an assignment somewhere in the entity scope). This procedure
1776    --  also calls Kill_All_Checks, since this is a special case of needing to
1777    --  forget saved values. This procedure also clears the Is_Known_Null and
1778    --  Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
1779    --  parameters since these are also not known to be trustable any more.
1780    --
1781    --  The Last_Assignment_Only flag is set True to clear only Last_Assignment
1782    --  fields and leave other fields unchanged. This is used when we encounter
1783    --  an unconditional flow of control change (return, goto, raise). In such
1784    --  cases we don't need to clear the current values, since it may be that
1785    --  the flow of control change occurs in a conditional context, and if it
1786    --  is not taken, then it is just fine to keep the current values. But the
1787    --  Last_Assignment field is different, if we have a sequence assign-to-v,
1788    --  conditional-return, assign-to-v, we do not want to complain that the
1789    --  second assignment clobbers the first.
1790 
1791    procedure Kill_Current_Values
1792      (Ent                  : Entity_Id;
1793       Last_Assignment_Only : Boolean := False);
1794    --  This performs the same processing as described above for the form with
1795    --  no argument, but for the specific entity given. The call has no effect
1796    --  if the entity Ent is not for an object. Last_Assignment_Only has the
1797    --  same meaning as for the call with no Ent.
1798 
1799    procedure Kill_Size_Check_Code (E : Entity_Id);
1800    --  Called when an address clause or pragma Import is applied to an entity.
1801    --  If the entity is a variable or a constant, and size check code is
1802    --  present, this size check code is killed, since the object will not be
1803    --  allocated by the program.
1804 
1805    function Known_To_Be_Assigned (N : Node_Id) return Boolean;
1806    --  The node N is an entity reference. This function determines whether the
1807    --  reference is for sure an assignment of the entity, returning True if
1808    --  so. This differs from May_Be_Lvalue in that it defaults in the other
1809    --  direction. Cases which may possibly be assignments but are not known to
1810    --  be may return True from May_Be_Lvalue, but False from this function.
1811 
1812    function Last_Source_Statement (HSS : Node_Id) return Node_Id;
1813    --  HSS is a handled statement sequence. This function returns the last
1814    --  statement in Statements (HSS) that has Comes_From_Source set. If no
1815    --  such statement exists, Empty is returned.
1816 
1817    function Matching_Static_Array_Bounds
1818      (L_Typ : Node_Id;
1819       R_Typ : Node_Id) return Boolean;
1820    --  L_Typ and R_Typ are two array types. Returns True when they have the
1821    --  same number of dimensions, and the same static bounds for each index
1822    --  position.
1823 
1824    procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
1825    --  Given a node which designates the context of analysis and an origin in
1826    --  the tree, traverse from Root_Nod and mark all allocators as either
1827    --  dynamic or static depending on Context_Nod. Any incorrect marking is
1828    --  cleaned up during resolution.
1829 
1830    function May_Be_Lvalue (N : Node_Id) return Boolean;
1831    --  Determines if N could be an lvalue (e.g. an assignment left hand side).
1832    --  An lvalue is defined as any expression which appears in a context where
1833    --  a name is required by the syntax, and the identity, rather than merely
1834    --  the value of the node is needed (for example, the prefix of an Access
1835    --  attribute is in this category). Note that, as implied by the name, this
1836    --  test is conservative. If it cannot be sure that N is NOT an lvalue, then
1837    --  it returns True. It tries hard to get the answer right, but it is hard
1838    --  to guarantee this in all cases. Note that it is more possible to give
1839    --  correct answer if the tree is fully analyzed.
1840 
1841    function Needs_One_Actual (E : Entity_Id) return Boolean;
1842    --  Returns True if a function has defaults for all but its first
1843    --  formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
1844    --  results from an indexing of a function call written in prefix form.
1845 
1846    function New_Copy_List_Tree (List : List_Id) return List_Id;
1847    --  Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
1848    --  below. As for New_Copy_Tree, it is illegal to attempt to copy extended
1849    --  nodes (entities) either directly or indirectly using this function.
1850 
1851    function New_Copy_Tree
1852      (Source    : Node_Id;
1853       Map       : Elist_Id   := No_Elist;
1854       New_Sloc  : Source_Ptr := No_Location;
1855       New_Scope : Entity_Id  := Empty) return Node_Id;
1856    --  Given a node that is the root of a subtree, Copy_Tree copies the entire
1857    --  syntactic subtree, including recursively any descendants whose parent
1858    --  field references a copied node (descendants not linked to a copied node
1859    --  by the parent field are not copied, instead the copied tree references
1860    --  the same descendant as the original in this case, which is appropriate
1861    --  for non-syntactic fields such as Etype). The parent pointers in the
1862    --  copy are properly set. Copy_Tree (Empty/Error) returns Empty/Error.
1863    --  The one exception to the rule of not copying semantic fields is that
1864    --  any implicit types attached to the subtree are duplicated, so that
1865    --  the copy contains a distinct set of implicit type entities. Thus this
1866    --  function is used when it is necessary to duplicate an analyzed tree,
1867    --  declared in the same or some other compilation unit. This function is
1868    --  declared here rather than in atree because it uses semantic information
1869    --  in particular concerning the structure of itypes and the generation of
1870    --  public symbols.
1871 
1872    --  The Map argument, if set to a non-empty Elist, specifies a set of
1873    --  mappings to be applied to entities in the tree. The map has the form:
1874    --
1875    --     old entity 1
1876    --     new entity to replace references to entity 1
1877    --     old entity 2
1878    --     new entity to replace references to entity 2
1879    --     ...
1880    --
1881    --  The call destroys the contents of Map in this case
1882    --
1883    --  The parameter New_Sloc, if set to a value other than No_Location, is
1884    --  used as the Sloc value for all nodes in the new copy. If New_Sloc is
1885    --  set to its default value No_Location, then the Sloc values of the
1886    --  nodes in the copy are simply copied from the corresponding original.
1887    --
1888    --  The Comes_From_Source indication is unchanged if New_Sloc is set to
1889    --  the default No_Location value, but is reset if New_Sloc is given, since
1890    --  in this case the result clearly is neither a source node or an exact
1891    --  copy of a source node.
1892    --
1893    --  The parameter New_Scope, if set to a value other than Empty, is the
1894    --  value to use as the Scope for any Itypes that are copied. The most
1895    --  typical value for this parameter, if given, is Current_Scope.
1896 
1897    function New_External_Entity
1898      (Kind         : Entity_Kind;
1899       Scope_Id     : Entity_Id;
1900       Sloc_Value   : Source_Ptr;
1901       Related_Id   : Entity_Id;
1902       Suffix       : Character;
1903       Suffix_Index : Nat := 0;
1904       Prefix       : Character := ' ') return Entity_Id;
1905    --  This function creates an N_Defining_Identifier node for an internal
1906    --  created entity, such as an implicit type or subtype, or a record
1907    --  initialization procedure. The entity name is constructed with a call
1908    --  to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
1909    --  that the generated name may be referenced as a public entry, and the
1910    --  Is_Public flag is set if needed (using Set_Public_Status). If the
1911    --  entity is for a type or subtype, the size/align fields are initialized
1912    --  to unknown (Uint_0).
1913 
1914    function New_Internal_Entity
1915      (Kind       : Entity_Kind;
1916       Scope_Id   : Entity_Id;
1917       Sloc_Value : Source_Ptr;
1918       Id_Char    : Character) return Entity_Id;
1919    --  This function is similar to New_External_Entity, except that the
1920    --  name is constructed by New_Internal_Name (Id_Char). This is used
1921    --  when the resulting entity does not have to be referenced as a
1922    --  public entity (and in this case Is_Public is not set).
1923 
1924    procedure Next_Actual (Actual_Id : in out Node_Id);
1925    pragma Inline (Next_Actual);
1926    --  Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
1927    --  inline this procedural form, but not the functional form that follows.
1928 
1929    function Next_Actual (Actual_Id : Node_Id) return Node_Id;
1930    --  Find next actual parameter in declaration order. As described for
1931    --  First_Actual, this is the next actual in the declaration order, not
1932    --  the call order, so this does not correspond to simply taking the
1933    --  next entry of the Parameter_Associations list. The argument is an
1934    --  actual previously returned by a call to First_Actual or Next_Actual.
1935    --  Note that the result produced is always an expression, not a parameter
1936    --  association node, even if named notation was used.
1937 
1938    procedure Normalize_Actuals
1939      (N       : Node_Id;
1940       S       : Entity_Id;
1941       Report  : Boolean;
1942       Success : out Boolean);
1943    --  Reorders lists of actuals according to names of formals, value returned
1944    --  in Success indicates success of reordering. For more details, see body.
1945    --  Errors are reported only if Report is set to True.
1946 
1947    procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
1948    --  This routine is called if the sub-expression N maybe the target of
1949    --  an assignment (e.g. it is the left side of an assignment, used as
1950    --  an out parameters, or used as prefixes of access attributes). It
1951    --  sets May_Be_Modified in the associated entity if there is one,
1952    --  taking into account the rule that in the case of renamed objects,
1953    --  it is the flag in the renamed object that must be set.
1954    --
1955    --  The parameter Sure is set True if the modification is sure to occur
1956    --  (e.g. target of assignment, or out parameter), and to False if the
1957    --  modification is only potential (e.g. address of entity taken).
1958 
1959    function Null_To_Null_Address_Convert_OK
1960      (N   : Node_Id;
1961       Typ : Entity_Id := Empty) return Boolean;
1962    --  Return True if we are compiling in relaxed RM semantics mode and:
1963    --   1) N is a N_Null node and Typ is a descendant of System.Address, or
1964    --   2) N is a comparison operator, one of the operands is null, and the
1965    --      type of the other operand is a descendant of System.Address.
1966 
1967    function Object_Access_Level (Obj : Node_Id) return Uint;
1968    --  Return the accessibility level of the view of the object Obj. For
1969    --  convenience, qualified expressions applied to object names are also
1970    --  allowed as actuals for this function.
1971 
1972    function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
1973    --  Retrieve the name of aspect or pragma N taking into account a possible
1974    --  rewrite and whether the pragma is generated from an aspect as the names
1975    --  may be different. The routine also deals with 'Class in which case it
1976    --  returns the following values:
1977    --
1978    --    Invariant            -> Name_uInvariant
1979    --    Post'Class           -> Name_uPost
1980    --    Pre'Class            -> Name_uPre
1981    --    Type_Invariant       -> Name_uType_Invariant
1982    --    Type_Invariant'Class -> Name_uType_Invariant
1983 
1984    function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
1985    --  [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
1986    --  or overrides an inherited dispatching primitive S2, the original
1987    --  corresponding operation of S is the original corresponding operation of
1988    --  S2. Otherwise, it is S itself.
1989 
1990    procedure Output_Entity (Id : Entity_Id);
1991    --  Print entity Id to standard output. The name of the entity appears in
1992    --  fully qualified form.
1993    --
1994    --  WARNING: this routine should be used in debugging scenarios such as
1995    --  tracking down undefined symbols as it is fairly low level.
1996 
1997    procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope);
1998    --  Print name Nam to standard output. The name appears in fully qualified
1999    --  form assuming it appears in scope Scop. Note that this may not reflect
2000    --  the final qualification as the entity which carries the name may be
2001    --  relocated to a different scope.
2002    --
2003    --  WARNING: this routine should be used in debugging scenarios such as
2004    --  tracking down undefined symbols as it is fairly low level.
2005 
2006    function Policy_In_Effect (Policy : Name_Id) return Name_Id;
2007    --  Given a policy, return the policy identifier associated with it. If no
2008    --  such policy is in effect, the value returned is No_Name.
2009 
2010    function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
2011    --  Subp is the entity for a subprogram call. This function returns True if
2012    --  predicate tests are required for the arguments in this call (this is the
2013    --  normal case). It returns False for special cases where these predicate
2014    --  tests should be skipped (see body for details).
2015 
2016    function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
2017    --  Returns True if the names of both entities correspond with matching
2018    --  primitives. This routine includes support for the case in which one
2019    --  or both entities correspond with entities built by Derive_Subprogram
2020    --  with a special name to avoid being overridden (i.e. return true in case
2021    --  of entities with names "nameP" and "name" or vice versa).
2022 
2023    function Private_Component (Type_Id : Entity_Id) return Entity_Id;
2024    --  Returns some private component (if any) of the given Type_Id.
2025    --  Used to enforce the rules on visibility of operations on composite
2026    --  types, that depend on the full view of the component type. For a
2027    --  record type there may be several such components, we just return
2028    --  the first one.
2029 
2030    procedure Process_End_Label
2031      (N   : Node_Id;
2032       Typ : Character;
2033       Ent : Entity_Id);
2034    --  N is a node whose End_Label is to be processed, generating all
2035    --  appropriate cross-reference entries, and performing style checks
2036    --  for any identifier references in the end label. Typ is either
2037    --  'e' or 't indicating the type of the cross-reference entity
2038    --  (e for spec, t for body, see Lib.Xref spec for details). The
2039    --  parameter Ent gives the entity to which the End_Label refers,
2040    --  and to which cross-references are to be generated.
2041 
2042    procedure Propagate_Invariant_Attributes
2043      (Typ      : Entity_Id;
2044       From_Typ : Entity_Id);
2045    --  Inherit all invariant-related attributes form type From_Typ. Typ is the
2046    --  destination type.
2047 
2048    procedure Propagate_Concurrent_Flags
2049      (Typ      : Entity_Id;
2050       Comp_Typ : Entity_Id);
2051    --  Set Has_Task, Has_Protected and Has_Timing_Event on Typ when the flags
2052    --  are set on Comp_Typ. This follows the definition of these flags which
2053    --  are set (recursively) on any composite type which has a component marked
2054    --  by one of these flags. This procedure can only set flags for Typ, and
2055    --  never clear them. Comp_Typ is the type of a component or a parent.
2056 
2057    procedure Record_Possible_Part_Of_Reference
2058      (Var_Id : Entity_Id;
2059       Ref    : Node_Id);
2060    --  Save reference Ref to variable Var_Id when the variable is subject to
2061    --  pragma Part_Of. If the variable is known to be a constituent of a single
2062    --  protected/task type, the legality of the reference is verified and the
2063    --  save does not take place.
2064 
2065    function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
2066    --  Determine whether entity Id is referenced within expression Expr
2067 
2068    function References_Generic_Formal_Type (N : Node_Id) return Boolean;
2069    --  Returns True if the expression Expr contains any references to a generic
2070    --  type. This can only happen within a generic template.
2071 
2072    procedure Remove_Homonym (E : Entity_Id);
2073    --  Removes E from the homonym chain
2074 
2075    procedure Remove_Overloaded_Entity (Id : Entity_Id);
2076    --  Remove arbitrary entity Id from the homonym chain, the scope chain and
2077    --  the primitive operations list of the associated controlling type. NOTE:
2078    --  the removal performed by this routine does not affect the visibility of
2079    --  existing homonyms.
2080 
2081    function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
2082    --  Returns the name of E without Suffix
2083 
2084    procedure Replace_Null_By_Null_Address (N : Node_Id);
2085    --  N is N_Null or a binary comparison operator, we are compiling in relaxed
2086    --  RM semantics mode, and one of the operands is null. Replace null with
2087    --  System.Null_Address.
2088 
2089    function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
2090    --  This is used to construct the second argument in a call to Rep_To_Pos
2091    --  which is Standard_True if range checks are enabled (E is an entity to
2092    --  which the Range_Checks_Suppressed test is applied), and Standard_False
2093    --  if range checks are suppressed. Loc is the location for the node that
2094    --  is returned (which is a New_Occurrence of the appropriate entity).
2095    --
2096    --  Note: one might think that it would be fine to always use True and
2097    --  to ignore the suppress in this case, but it is generally better to
2098    --  believe a request to suppress exceptions if possible, and further
2099    --  more there is at least one case in the generated code (the code for
2100    --  array assignment in a loop) that depends on this suppression.
2101 
2102    procedure Require_Entity (N : Node_Id);
2103    --  N is a node which should have an entity value if it is an entity name.
2104    --  If not, then check if there were previous errors. If so, just fill
2105    --  in with Any_Id and ignore. Otherwise signal a program error exception.
2106    --  This is used as a defense mechanism against ill-formed trees caused by
2107    --  previous errors (particularly in -gnatq mode).
2108 
2109    function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
2110    --  Id is a type entity. The result is True when temporaries of this type
2111    --  need to be wrapped in a transient scope to be reclaimed properly when a
2112    --  secondary stack is in use. Examples of types requiring such wrapping are
2113    --  controlled types and variable-sized types including unconstrained
2114    --  arrays.
2115 
2116    procedure Reset_Analyzed_Flags (N : Node_Id);
2117    --  Reset the Analyzed flags in all nodes of the tree whose root is N
2118 
2119    procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type);
2120    --  Set the current SPARK_Mode to whatever Mode denotes. This routime must
2121    --  be used in tandem with Save_SPARK_Mode_And_Set.
2122 
2123    function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
2124    --  Return true if Subp is a function that returns an unconstrained type
2125 
2126    function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
2127    --  Similar to attribute Root_Type, but this version always follows the
2128    --  Full_View of a private type (if available) while searching for the
2129    --  ultimate derivation ancestor.
2130 
2131    function Safe_To_Capture_Value
2132      (N    : Node_Id;
2133       Ent  : Entity_Id;
2134       Cond : Boolean := False) return Boolean;
2135    --  The caller is interested in capturing a value (either the current value,
2136    --  or an indication that the value is non-null) for the given entity Ent.
2137    --  This value can only be captured if sequential execution semantics can be
2138    --  properly guaranteed so that a subsequent reference will indeed be sure
2139    --  that this current value indication is correct. The node N is the
2140    --  construct which resulted in the possible capture of the value (this
2141    --  is used to check if we are in a conditional).
2142    --
2143    --  Cond is used to skip the test for being inside a conditional. It is used
2144    --  in the case of capturing values from if/while tests, which already do a
2145    --  proper job of handling scoping issues without this help.
2146    --
2147    --  The only entities whose values can be captured are OUT and IN OUT formal
2148    --  parameters, and variables unless Cond is True, in which case we also
2149    --  allow IN formals, loop parameters and constants, where we cannot ever
2150    --  capture actual value information, but we can capture conditional tests.
2151 
2152    function Same_Name (N1, N2 : Node_Id) return Boolean;
2153    --  Determine if two (possibly expanded) names are the same name. This is
2154    --  a purely syntactic test, and N1 and N2 need not be analyzed.
2155 
2156    function Same_Object (Node1, Node2 : Node_Id) return Boolean;
2157    --  Determine if Node1 and Node2 are known to designate the same object.
2158    --  This is a semantic test and both nodes must be fully analyzed. A result
2159    --  of True is decisively correct. A result of False does not necessarily
2160    --  mean that different objects are designated, just that this could not
2161    --  be reliably determined at compile time.
2162 
2163    function Same_Type (T1, T2 : Entity_Id) return Boolean;
2164    --  Determines if T1 and T2 represent exactly the same type. Two types
2165    --  are the same if they are identical, or if one is an unconstrained
2166    --  subtype of the other, or they are both common subtypes of the same
2167    --  type with identical constraints. The result returned is conservative.
2168    --  It is True if the types are known to be the same, but a result of
2169    --  False is indecisive (e.g. the compiler may not be able to tell that
2170    --  two constraints are identical).
2171 
2172    function Same_Value (Node1, Node2 : Node_Id) return Boolean;
2173    --  Determines if Node1 and Node2 are known to be the same value, which is
2174    --  true if they are both compile time known values and have the same value,
2175    --  or if they are the same object (in the sense of function Same_Object).
2176    --  A result of False does not necessarily mean they have different values,
2177    --  just that it is not possible to determine they have the same value.
2178 
2179    procedure Save_SPARK_Mode_And_Set
2180      (Context : Entity_Id;
2181       Mode    : out SPARK_Mode_Type);
2182    --  Save the current SPARK_Mode in effect in Mode. Establish the SPARK_Mode
2183    --  (if any) of a package or a subprogram denoted by Context. This routine
2184    --  must be used in tandem with Restore_SPARK_Mode.
2185 
2186    function Scalar_Part_Present (T : Entity_Id) return Boolean;
2187    --  Tests if type T can be determined at compile time to have at least one
2188    --  scalar part in the sense of the Valid_Scalars attribute. Returns True if
2189    --  this is the case, and False if no scalar parts are present (meaning that
2190    --  the result of Valid_Scalars applied to T is always vacuously True).
2191 
2192    function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean;
2193    --  Determines if the entity Scope1 is the same as Scope2, or if it is
2194    --  inside it, where both entities represent scopes. Note that scopes
2195    --  are only partially ordered, so Scope_Within_Or_Same (A,B) and
2196    --  Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
2197 
2198    function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean;
2199    --  Like Scope_Within_Or_Same, except that this function returns
2200    --  False in the case where Scope1 and Scope2 are the same scope.
2201 
2202    procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
2203    --  Same as Basic_Set_Convention, but with an extra check for access types.
2204    --  In particular, if E is an access-to-subprogram type, and Val is a
2205    --  foreign convention, then we set Can_Use_Internal_Rep to False on E.
2206    --  Also, if the Etype of E is set and is an anonymous access type with
2207    --  no convention set, this anonymous type inherits the convention of E.
2208 
2209    procedure Set_Current_Entity (E : Entity_Id);
2210    pragma Inline (Set_Current_Entity);
2211    --  Establish the entity E as the currently visible definition of its
2212    --  associated name (i.e. the Node_Id associated with its name).
2213 
2214    procedure Set_Debug_Info_Needed (T : Entity_Id);
2215    --  Sets the Debug_Info_Needed flag on entity T , and also on any entities
2216    --  that are needed by T (for an object, the type of the object is needed,
2217    --  and for a type, various subsidiary types are needed -- see body for
2218    --  details). Never has any effect on T if the Debug_Info_Off flag is set.
2219    --  This routine should always be used instead of Set_Needs_Debug_Info to
2220    --  ensure that subsidiary entities are properly handled.
2221 
2222    procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
2223    --  This procedure has the same calling sequence as Set_Entity, but it
2224    --  performs additional checks as follows:
2225    --
2226    --    If Style_Check is set, then it calls a style checking routine which
2227    --    can check identifier spelling style. This procedure also takes care
2228    --    of checking the restriction No_Implementation_Identifiers.
2229    --
2230    --    If restriction No_Abort_Statements is set, then it checks that the
2231    --    entity is not Ada.Task_Identification.Abort_Task.
2232    --
2233    --    If restriction No_Dynamic_Attachment is set, then it checks that the
2234    --    entity is not one of the restricted names for this restriction.
2235    --
2236    --    If restriction No_Long_Long_Integers is set, then it checks that the
2237    --    entity is not Standard.Long_Long_Integer.
2238    --
2239    --    If restriction No_Implementation_Identifiers is set, then it checks
2240    --    that the entity is not implementation defined.
2241 
2242    procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
2243    pragma Inline (Set_Name_Entity_Id);
2244    --  Sets the Entity_Id value associated with the given name, which is the
2245    --  Id of the innermost visible entity with the given name. See the body
2246    --  of package Sem_Ch8 for further details on the handling of visibility.
2247 
2248    procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
2249    --  The arguments may be parameter associations, whose descendants
2250    --  are the optional formal name and the actual parameter. Positional
2251    --  parameters are already members of a list, and do not need to be
2252    --  chained separately. See also First_Actual and Next_Actual.
2253 
2254    procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
2255    pragma Inline (Set_Optimize_Alignment_Flags);
2256    --  Sets Optimize_Alignment_Space/Time flags in E from current settings
2257 
2258    procedure Set_Public_Status (Id : Entity_Id);
2259    --  If an entity (visible or otherwise) is defined in a library
2260    --  package, or a package that is itself public, then this subprogram
2261    --  labels the entity public as well.
2262 
2263    procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
2264    --  N is the node for either a left hand side (Out_Param set to False),
2265    --  or an Out or In_Out parameter (Out_Param set to True). If there is
2266    --  an assignable entity being referenced, then the appropriate flag
2267    --  (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
2268    --  if Out_Param is True) is set True, and the other flag set False.
2269 
2270    procedure Set_Scope_Is_Transient (V : Boolean := True);
2271    --  Set the flag Is_Transient of the current scope
2272 
2273    procedure Set_Size_Info (T1, T2 : Entity_Id);
2274    pragma Inline (Set_Size_Info);
2275    --  Copies the Esize field and Has_Biased_Representation flag from sub(type)
2276    --  entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
2277    --  in the fixed-point and discrete cases, and also copies the alignment
2278    --  value from T2 to T1. It does NOT copy the RM_Size field, which must be
2279    --  separately set if this is required to be copied also.
2280 
2281    function Scope_Is_Transient return Boolean;
2282    --  True if the current scope is transient
2283 
2284    function Static_Boolean (N : Node_Id) return Uint;
2285    --  This function analyzes the given expression node and then resolves it
2286    --  as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
2287    --  returned corresponding to the value, otherwise an error message is
2288    --  output and No_Uint is returned.
2289 
2290    function Static_Integer (N : Node_Id) return Uint;
2291    --  This function analyzes the given expression node and then resolves it
2292    --  as any integer type. If the result is static, then the value of the
2293    --  universal expression is returned, otherwise an error message is output
2294    --  and a value of No_Uint is returned.
2295 
2296    function Statically_Different (E1, E2 : Node_Id) return Boolean;
2297    --  Return True if it can be statically determined that the Expressions
2298    --  E1 and E2 refer to different objects
2299 
2300    function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
2301    --  Determine whether node N is a loop statement subject to at least one
2302    --  'Loop_Entry attribute.
2303 
2304    function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
2305    --  Return the accessibility level of the view denoted by Subp
2306 
2307    function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
2308    --  Return True if Typ supports the GCC built-in atomic operations (i.e. if
2309    --  Typ is properly sized and aligned).
2310 
2311    procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
2312    --  Print debugging information on entry to each unit being analyzed
2313 
2314    procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
2315    --  Move a list of entities from one scope to another, and recompute
2316    --  Is_Public based upon the new scope.
2317 
2318    function Type_Access_Level (Typ : Entity_Id) return Uint;
2319    --  Return the accessibility level of Typ
2320 
2321    function Type_Without_Stream_Operation
2322      (T  : Entity_Id;
2323       Op : TSS_Name_Type := TSS_Null) return Entity_Id;
2324    --  AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
2325    --  is active then we cannot generate stream subprograms for composite types
2326    --  with elementary subcomponents that lack user-defined stream subprograms.
2327    --  This predicate determines whether a type has such an elementary
2328    --  subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
2329    --  prevents the construction of a composite stream operation. If Op is
2330    --  specified we check only for the given stream operation.
2331 
2332    function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
2333    --  Return the entity which represents declaration N, so that different
2334    --  views of the same entity have the same unique defining entity:
2335    --    * entry declaration and entry body
2336    --    * package spec and body
2337    --    * protected type declaration, protected body stub and protected body
2338    --    * private view and full view of a deferred constant
2339    --    * private view and full view of a type
2340    --    * subprogram declaration, subprogram stub and subprogram body
2341    --    * task type declaration, task body stub and task body
2342    --  In other cases, return the defining entity for N.
2343 
2344    function Unique_Entity (E : Entity_Id) return Entity_Id;
2345    --  Return the unique entity for entity E, which would be returned by
2346    --  Unique_Defining_Entity if applied to the enclosing declaration of E.
2347 
2348    function Unique_Name (E : Entity_Id) return String;
2349    --  Return a unique name for entity E, which could be used to identify E
2350    --  across compilation units.
2351 
2352    function Unit_Is_Visible (U : Entity_Id) return Boolean;
2353    --  Determine whether a compilation unit is visible in the current context,
2354    --  because there is a with_clause that makes the unit available. Used to
2355    --  provide better messages on common visiblity errors on operators.
2356 
2357    function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
2358    --  Yields Universal_Integer or Universal_Real if this is a candidate
2359 
2360    function Unqualify (Expr : Node_Id) return Node_Id;
2361    pragma Inline (Unqualify);
2362    --  Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
2363    --  returns X. If Expr is not a qualified expression, returns Expr.
2364 
2365    function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
2366    --  [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
2367    --  of a type extension or private extension declaration. If the full-view
2368    --  of private parents and progenitors is available then it is used to
2369    --  generate the list of visible ancestors; otherwise their partial
2370    --  view is added to the resulting list.
2371 
2372    function Within_Init_Proc return Boolean;
2373    --  Determines if Current_Scope is within an init proc
2374 
2375    function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
2376    --  Returns True if entity E is declared within scope S
2377 
2378    procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
2379    --  Output error message for incorrectly typed expression. Expr is the node
2380    --  for the incorrectly typed construct (Etype (Expr) is the type found),
2381    --  and Expected_Type is the entity for the expected type. Note that Expr
2382    --  does not have to be a subexpression, anything with an Etype field may
2383    --  be used.
2384 
2385    function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean;
2386    --  Determine whether type Typ "yields synchronized object" as specified by
2387    --  SPARK RM 9.1. To qualify as such, a type must be
2388    --    * An array type whose element type yields a synchronized object
2389    --    * A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
2390    --    * A protected type
2391    --    * A record type or type extension without defaulted discriminants
2392    --      whose components are of a type that yields a synchronized object.
2393    --    * A synchronized interface type
2394    --    * A task type
2395 
2396    function Yields_Universal_Type (N : Node_Id) return Boolean;
2397    --  Determine whether unanalyzed node N yields a universal type
2398 
2399 end Sem_Util;