
Op. 52

Constructing Digital Signatures from a One Way Function

Leslie Lamport

Computer Science Laboratory

SRI International

18 October 1979

CSL - 98

333 Ravenswood Ave. • Menlo Park, California 94025

(415) 326-6200 • Cable: SRI INTL MPK • TWX: 910-373-1246



1

1. Introduction

A digital signature created by a sender P for a document m is a data

item Op(m) having the property that upon receiving m and ap(m) , one can

determine (and if necessary prove in a court of law) that P generated the

document m .

A one way function is a function that is easy to compute, but whose

inverse is difficult to compute [1]. More precisely a one way function <t> is

a function from a set of data objects to a set of values having the following

two properties:

1. Given any value v , it is computationally infeasible to find a

data object d such that <t>(d) = v .

2. Given any data object d , it is computationally infeasible to find

a different data object df such that <t>(d!) = <!>(d) •

If the set of data objects is larger than the set of values, then such a

function is sometimes called a one way hashing function.

We will describe a method for constructing digital signatures from such a

one way function <t> . Our method is an improvement of a method devised by

Rabin [2]. Like Rabin's, it requires the sender P to deposit a piece of

data oc in some trusted public repository for each document he wishes to

sign. This repository must have the following properties:

- ot can be read by anyone who wants to verify Pfs signature.

- It can be proven in a court of law that P was the creater of oc .

Once oc has been placed in the repository, P can use it to generate a

signature for any single document he wishes to send.

Rabin's method has the following drawbacks not present in ours.

1. The document m must be sent to a single recipient Q , who then

requests additional information from P to validate the signature.

P cannot divulge any additional validating information without

compromising information that must remain private to prevent

someone else from generating a new document mf with a valid

signature ap(mf) .

2. For a court of law to determine if the signature is valid, it is

necessary for P to give the court additional private information.



This has the following implications.

. P — or a trusted representative of P — must be available

to the court,

- P must maintain private information whose accidental

disclosure would enable someone else to forge his signature on

a document.

With our method, P generates a signature that is verifiable by anyone,

with no further action on Pfs part. After generating the signature, P can

destroy the private information that would enable someone else to forge his

signature. The advantages of our method over Rabin's are illustrated by the

following considerations when the signed document m is a check from P

payable to Q .

1. It is easy for Q to endorse the check payable to a third party

R by sending him the signed message "make m payable to R lf.

However, with Rabin's scheme, R cannot determine if the check m

was really signed by P , so he must worry about forgery by Q as

well as whether or not P can cover the check. With our method,

there is no way for Q to forge the check, so the endorsed check

is as good as a check payable directly to R signed by P .

(However, some additional mechanism must be introduced to prevent

0 from cashing the original check after he has signed it over to

R .)

2. If P dies without leaving the executors of his estate the

information he used to generate his signatures, then Rabin's method

cannot prevent Q from undetectably altering the check m — for

example, by changing the amount of money payable. Such posthumous

forgery is impossible with our method.

3. With Rabin's method, to be able to successfully challenge any

attempt by Q to modify the check before cashing it, P must

maintain the private information he used to generate his signature.

If anyone (not just Q ) stole that information, that person could

forge a check from P payable to him. Our method allows P to

destroy this private information after signing the check.

2. The Algorithm

We assume a set M of possible documents, a set IC of possible keys ,

1The elements of K are not keys in the usual cryptographic sense, but are
arbitrary data items. We call them keys because they play the same role as

the keys in Rabin's algorithm.



and a set V^ of possible values. Let 2 denote the set of all subsets of

{1, ... , 40} containing exactly 20 elements. (The numbers 40 and 20 are

arbitrary, and could be replaced by 2n and n . We are using these numbers

because they were used by Rabin, and we wish to make it easy for the reader to

compare our method with his.)

We assume the following two functions.

1. A function F : IC -> V_ with the following two properties:

a. Given any value v in V f it is computationally infeasible

to find a key k in K such that F(k) = v .

b. For any small set of values v1f ... , vffl , it is easy to

find a key k such that F(k) is not equal to any of the

vi •

2. A function G : M^ -> 2 with the property that given any document

m in M , it is computationally infeasible to find a document

m1 i m such that G(mf) = G(m) .

For the function F , we can use any one way function <|> whose domain is

the set of keys. The second property of F follows easily from the second

property of the one way function <t> . We will discuss later how the function

G can be constructed from an ordinary one way function.

For convenience, we assume that P wants to generate only a single

signed document. Later, we indicate how he can sign many different documents.

The sender P first chooses 40 keys k^ such that all the values FCk.^) are

distinct. (Our second assumption about F makes this easy to do.) He puts

in a public repository the data item at = (F(k.|), ... , F(kjj0)) . Note that

P does not divulge the keys ^ , which by our first assumption about F

cannot be computed from a .

To generate a signature for a document ra , P first computes G(m) to

obtain a set li-j, ... , i2o^ °^ integers. The signature consists of the 20

keys k, , ... , L . More precisely, we have ap(m) = (k_. k_. ) ,
i1 i2Q r i1 i20

where the i- are defined by the following two requirements:

(i) G(m) = Ult ... , i20} .



(ii) i1 < ... < i20

After generating the signature, P can destroy all record of the 20 keys kc

with s not in G(m) .

To verify that a 20-tuple (h1t ... f h2g) is a valid signature ap(m)

for the document m , one first computes G(m) to find the i. and then uses
j

oc to check that for all j , hj is the ij^h key. More precisely, the

signature is valid if and only if for each j with 1 £ j _< 20 :

F(h^) = a.- f where oc.- denotes the itji component of oc , and the i^ are
j ij J

defined by the above two requirements.

To demonstrate that this method correctly implements digital signatures,

we prove that it has the following properties.

1. If P does not reveal any of the keys k^ , then no-one else can

generate a valid signature CTp(m) for any document m .

2. If P does not reveal any of the keys kj except the ones that

are contained in the signature ap(rn) , tnen no-one else can

generate a valid signature CpCm1; for any document mf i m .

The first property is obvious, since the signature ap(m) must contain

20 keys ki such that FCkj) = o^ , and our first assumption about F states

that it is computationally infeasible to find the keys ki just knowing the

values F(ki) .

To prove the second property, note that since no-one else can obtain any

of the keys ki , we.must have ap(mf) = ap(m) . Moreover, since the o^ are

all distinct, for the validation test to be passed by ap(mf) , we must also

have G(mf) = G(m) . However, our assumption about G states that it is

computationally infeasible to find such a document mf . This proves the

correctness of our method.

For P to send many different documents, he must use a different oc for

each one. This means that their must be a sequence of 40-tuples oc<|, oc2, ...

and the document must indicate which o^ is used to generate that document's



signature. The details are simple, and will be omitted,

3. Constructing the Function G

One way functions have been proposed whose domain is the set of documents

and whose range is a set of integers of the form {0, ... , 2n-1} , for any

reasonably large value of n . (It is necessary for n to be large enough to

make exhaustive searching over the range of <|> computationally infeasible.)

Such functions are described in [1] and [2]. The obvious way to construct the

required function G is to let $ be such a one way function, and define

G(m) to equal R(<t>(m)) , where R : {0, ... , 2n-1} -» 2 .

It is easy to construct a function R having the required range and

domain. For example, one can compute R(s) inductively as follows:

1. Divide s by 40 to obtain a quotient q and a remainder r

2. Use r to choose an element x from {1, ... , 40} . (This is

easy to do, since 0 £ r j< 40 .)

3. Use q to choose 19 elements from the set {1, ... , 40} - {x} as

follows:

a. Divide q by 39 to obtain a quotient ...

It requires a careful analysis of the properties of the one way function <t>

to be sure that the resulting function G has the required property. We

suspect that for most one way functions <t> , this method would work. However,

we cannot prove this.

The reason constructing G in this manner might not work is that the

function R from {0, ... , 2n} into 2 is a many to one mapping, and the

resulting "collapsing11 of the domain might defeat the one way nature of <t> .

However, it is easy to show that if the function R is one to one, then

property (ii) of <t> implies that G has the required property. To construct

G , we need only find an easily computable one to one function R from

{0, ... , 2n-1} into 2 , for a reasonably large value of n .

We can simplify our task by observing that the function G need not be

defined on the entire set of documents. It suffices that for any document



m , it is easy to modify m in a harmless way to get a new document that is

in the domain of G . For example, one might include a meaningless number as

part of the document, and choose different values of that number until he

obtains a document that is in the domain of G . This is an acceptable

procedure if (i) it is easy to determine whether a document is in the domain,

and (ii) the expected number of choices one must make before finding a

document in the domain is small.

With this in mind, we let n = MO and define R(s) as follows: if the

binary representation of s contains exactly 20 ones, then R(s) = {i : the

itji bit of s equals one} , otherwise R(s) is undefined. Approximately

13% of all 40 bit numbers contain exactly 20 ones. Hence, if the one way

function <}> is sufficiently randomizing, there is a .13 probability that any

given document will be in the domain of G . This means that randomly

choosing documents (or modifications to a document), the expected number of

choices before finding one in the domain of G is approximately 8. Moreover,

after 17p choices, the probability of not having found a document in the

domain of G is about 1/10^. (If we use 60 keys instead of 40, the expected

number of choices to find a document in the domain becomes about 10, and 22p

choices are needed to reduce the probability of not finding one to 1/10p.)

If the one way function k is easy to compute, then these numbers

indicate that the expected amount of effort to compute G is reasonable.

However, it does seem undesirable to have to try so many documents before

finding one in the domain of G . We hope that someone can find a more

elegant method for constructing the function G , perhaps by finding a one to .

one function R which is defined on a larger subset of {0, ... , 2n} .

Note; We have thus far insisted that G(m) be a subset of

{1, ... , 40} consisting of exactly 20 elements. It is clear that the

generation and verification procedure can be applied if G(m) is any proper

subset. An examination of our correctness proof shows that if we allow G(m)



to have any number of elements less than 40, then our method would still have

the same correctness properties if G satisfies the following property:

- For any document m f it is computationally infeasible to find a

different document mf such that G(mf) is a subset of G(m) .

By taking the range of G to be the collection of 20 element subsets, we

insure that G(mf) cannot be a proper subset of G(m) . However, it may be

possible to construct a function G satisfying this requirement without

constraining the range of G in this way.
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