
Pest

S. Datskovskiy

Version 0xFA

Contents

1 Why Pest? 6

1.1 Exodus from IRC, and Resisting “User Domestication”. 6

1.2 How Pest Differs from IRC and Other Chat Protocols. 7

1.3 Pest Nets. 7

1.4 Identity is Decentralized. 8

1.5 Station Operator is Answerable Only to Peers. 8

1.6 Unrestricted Network Topology. 8

1.7 Connectionless and Medium-Agnostic. 9

2 The Philosophy of Pest: The Three “Nothings”. 10

2.1 “Nothing to the Stranger.” . 10

2.1.1 “Martians”. 10

2.1.2 Malformed. 10

2.1.3 Stales. 11

2.1.4 Duplicates. 11

2.2 “Nothing to the Snoop.” . 12

2.2.1 No Plaintext Fields in Pest Packets. 12

2.2.2 Chaff. 12

2.3 “Nothing to the Snitch.” . 13

2.3.1 Pest Messages are Authenticable, but not Opposable. . . 13

2.3.2 Caveats. 13

3 Pest Station Basics. 14

3.1 Peers and Keys. 14

3.2 The WOT. 14

3.3 The AT. 14

1

4 The Pest Transport Protocol. 16

4.1 Packets. 17

4.1.1 Black Packet. 17

4.1.1.1 Ciphertext . 17

4.1.1.2 Seal . 17

4.1.2 “Redding” and “Blacking”. 18

4.1.3 Red Packet. 19

4.1.3.1 Bounce . 19

4.1.3.2 Version . 19

4.1.3.3 Reserved . 20

4.1.3.4 Command . 20

4.1.3.5 Message . 20

4.2 Classes of Message. 21

4.2.1 Chained Message. 21

4.2.1.1 Timestamp . 21

4.2.1.2 SelfChain . 22

4.2.1.3 NetChain . 22

4.2.1.4 Speaker . 22

4.2.1.5 Text . 22

4.2.2 Chained Multipart Message. 23

4.2.2.1 Timestamp . 23

4.2.2.2 SelfChain . 24

4.2.2.3 NetChain . 24

4.2.2.4 Speaker . 24

4.2.2.5 Chunk . 24

4.2.2.6 N . 24

4.2.2.7 Of . 24

4.2.2.8 TextHash . 24

4.2.3 Unchained Message. 25

4.2.3.1 Timestamp . 25

4.2.3.2 Speaker . 25

4.2.3.3 UnchainedData 25

4.2.4 Binary Message. 26

4.2.4.1 Timestamp . 26

4.2.4.2 BinaryData . 26

5 The Pest Message. 27

2

5.1 The Three Paths of a Pest Message. 27

5.1.1 Direct. 27

5.1.2 Broadcast. 27

5.1.2.1 Immediate . 27

5.1.2.2 Hearsay . 27

5.2 Broadcast Propagation. 28

5.3 Message Storage. 29

5.3.1 The Filter. 29

5.3.2 The Log. 29

5.4 Defined Message Types. 30

5.4.1 BroadcastText . 31

5.4.1.1 Timestamp . 31

5.4.1.2 SelfChain . 31

5.4.1.3 NetChain . 31

5.4.1.4 Speaker . 31

5.4.1.5 Text . 31

5.4.2 DirectText . 32

5.4.2.1 Timestamp . 32

5.4.2.2 SelfChain . 32

5.4.2.3 NetChain . 32

5.4.2.4 Speaker . 32

5.4.2.5 Text . 32

5.4.3 Prod . 33

5.4.3.1 Timestamp . 33

5.4.3.2 Speaker . 33

5.4.3.3 ACK . 33

5.4.3.4 Address . 33

5.4.3.5 BroadcastSelfChain 34

5.4.3.6 BroadcastNetChain 34

5.4.3.7 DirectSelfChain 34

5.4.3.8 Banner . 34

5.4.4 GetData . 35

5.4.4.1 Timestamp . 35

5.4.4.2 Speaker . 35

5.4.4.3 WantHash . 35

5.4.5 KeyOffer . 36

5.4.5.1 Timestamp . 36

3

5.4.5.2 Speaker . 36

5.4.5.3 Offer . 36

5.4.6 KeySlice . 37

5.4.6.1 Timestamp . 37

5.4.6.2 Speaker . 37

5.4.6.3 Slice . 37

5.4.7 BroadcastTextM . 38

5.4.8 DirectTextM . 39

5.4.9 Inv . 40

5.4.9.1 Timestamp . 40

5.4.9.2 N . 40

5.4.9.3 Hashi . 40

5.4.10 AddressCast . 41

5.4.10.1 Timestamp . 41

5.4.10.2 Speaker . 41

5.4.10.3 Ciphertext . 41

5.4.10.4 Seal . 42

5.4.10.5 Flag . 42

5.4.10.6 Address . 42

5.4.11 Ignore . 43

5.4.11.1 Timestamp . 43

5.4.11.2 Speaker . 43

6 Operator Console 44

7 Rekeying 45

8 NAT Penetration 46

A Appendix. 47

A.1 Fundamental Data Types. 47

A.1.1 Zero . 47

A.1.2 Integer . 47

A.1.3 Noise . 47

A.1.4 Time . 47

A.1.5 AString . 47

A.1.6 UString . 48

A.1.7 Address . 48

4

A.1.8 Key . 49

A.1.9 Ciphertext . 49

A.1.10 Nonce . 50

A.1.11 Seal . 50

A.1.12 Plaintext . 50

A.1.13 Payload . 50

A.1.14 Hash256 . 50

A.1.15 Hash512 . 50

A.2 Knobs . 51

A.2.1 MaxBounce . 51

A.2.2 GetDataWait . 51

A.2.3 GetDataTries . 51

A.2.4 ColdTime . 51

A.2.5 AddrCastPeriod . 52

A.2.6 IgnorePeriod . 52

A.2.7 HammerWait . 52

A.2.8 HammerShots . 52

5

1 Why Pest?

Pest is a peer-to-peer network protocol for secure real-time communication1

between mutually-consenting parties. It is designed for decentralization of
control, obstruction of eavesdropping and traffic analysis, resistance to natural
and artificial interference, and mechanical simplicity – in that order.

1.1 Exodus from IRC, and Resisting “User Domestication”.

Pest was originally devised in reaction against the odiously centralizing design of
IRC. An IRC relay is typically inhabited by a multitude of casual users, who can-
not communicate directly2 with one another, and interact via the relay strictly
at the mercy of a small group of administrators. The latter typically oversee
a network of such relays, and determine which users may log in, use particular
handles, create and manage particular channels, etc. and may temporarily
delegate this authority to others.

The typical outcome of any conflict between IRC users and administrators
is the expulsion of the former from the network. Even when a dispute reaches a
boiling point and users begin to “emigrate” en masse, any refuge they may choose
is quickly found to resemble the place from which they escaped – whether they
move to another IRC network, or start a new one where the “rebels” immediately
take their own turn as “tyrants” over a fresh crop of powerless users. And often
enough, the escapees take to using commercial chat services – dispensing with
IRC’s threadbare imitation of decentralization entirely.

Interestingly, IRC suffers from a design defect which makes true decentral-
ization impossible even if every user were to operate a personal relay: the
protocol’s intolerance of cyclic routing requires relays to be arranged in a tree
topology, where every well-connected participant is a central point of failure.
IRC offers relay operators no defense against denial-of-service3 attacks; but
even in the absence of attacks, its acyclic networks are fragile. Their frequent
net splits make reliable logging of public conversations difficult, further helping
commercial chat service providers to lure away IRC users.

On top of this, IRC makes no provisions for secure end-to-end commu-
nication, or in fact for any kind of censorship resistance whatsoever – the
protocol trivially lends itself to detection and inspection en route, and ISPs
have been known to block it. Commercial chat services increasingly market
themselves with misleading, or outright false (but impressive to nontechnical
audiences) claims concerning privacy and censorship resistance. In every case,
their actual objective is user domestication – any commercial entity’s claim to
decentralization4 is nothing more than bait for the gullible and the desperate.

1At the time of this writing, there are two prototypes which implement IRC-style chat.
Planned extensions include file sharing and WWW hosting.

2Outside of special cases, e.g. DCC file transfer, a kludge which still requires relay mediation.
3IRC, like every other protocol built on top of TCP, is inherently vulnerable to DDOS.
4Or, more egregiously still, of defying governmental snoops.

6

https://archive.ph/21b4o

R1

R2

R3

R4

U

U

U

U

U

U

U U

U

U U

U

U

U

U

U

Figure 1: An IRC net with 4 relays and 16 users. Dashed lines represent
prohibited cyclic connections. Failure of R1 would split this net into 3 islands.

1.2 How Pest Differs from IRC and Other Chat Protocols.

In contrast to an IRC relay or a commercial chat server, a Pest station is
inhabited by exactly one user: its operator . It sends and receives authenticably-
encrypted UDP packets, communicating exclusively with an operator-selected set
of peer stations known as its WOT (web of trust.) Each of these stations, in turn,
may have its own set of peers, ad infinitum, forming a fully-decentralized net
with unrestricted connection topology.

Pest does not rely on any centralized Internet services (in particular, it does
not use DNS, NTP, or the master-keyed pseudo-cryptography of SSL) and offers
resilience to communication disruptions, as well as compatibility with ad-hoc
alternatives to traditional Internet connectivity.

The simplicity of the Pest protocol allows for multiple independent, interop-
erable implementations. Writing a working Pest client ab initio does not require
knowledge of university-level mathematics. Neither does it demand the use of
bulky (and invariably bug-ridden) cryptographic libraries.

1.3 Pest Nets.

Pest stations organize into nets. A net is formed by a group of station operators
with a common interest. An operator who wishes to join a net must peer with at
least one existing station in that net. Nets may easily and organically combine

7

http://www.loper-os.org/?p=1299

into larger nets, or, on the contrary, undergo schismatic splits, whenever the
individual station operators so desire.

1.4 Identity is Decentralized.

A prospective Pest station operator does not need to ask permission from
anyone; and the only other people who will need to know about the mere
existence of the station will be its peers. To join a Pest net, an operator must
simply find one or more current members of that net who would like to peer with
his station, and securely exchange5 a small amount of information to establish
the peering. An active Pest station may have as few as one peer, or as many as
its hardware is able to service at the desired bandwidth capacity.

A Pest station operator may choose any handle he likes, so long as it does
not collide with that of a peer. Importantly, one person may easily operate
multiple Pest stations, and inhabit multiple disjoint nets; and may use, if he
wishes, a different handle on each net.

1.5 Station Operator is Answerable Only to Peers.

Unlike IRC or commercial chat services, Pest does not impose a hierarchical
structure of control, and therefore offers no direct equivalents to IRC’s "kick" and
"ban". Instead, an annoying, tedious, or habitually-spamming station operator
may be rebuked by his peers; if he persists in his misbehaviour – ignored via
Usenet-style killfiles; and, if he proves incorrigible – unpeered. Sooner or later,
the malefactor will find himself where he belongs: either alone or in the company
of his own kind.

1.6 Unrestricted Network Topology.

Pest broadcasts are flood-routed – i.e. they traverse all available propagation
paths. Unlike IRC relays, Pest stations may be connected in any topology
their operators prefer; concretely, loops are permitted, in the interest of de-
centralization. Packet storms are prevented via deduplication at the station
level – rather than by prohibiting loops, or via a spanning tree protocol, or
any other traditional routing schemes which enforce acyclic connection graphs
by demanding the existence of "root nodes", "supernodes", centrally-imposed
precedence tables, etc.

Pest station operators are not merely permitted, but in fact encouraged to
form richly cyclic connection graphs for the highest attainable resiliency.

5Through a secure communication channel external to Pest – e.g. via GPG-encrypted mail,
or over “sneakernet.”

8

1.7 Connectionless and Medium-Agnostic.

Every Pest Message travels in an individual authenticably-encrypted packet.
The receiver of a packet determines the identity of its sender strictly by at-
tempting Seal verification against each of the Keys in his WOT, in random order6.
If and when a Seal verification succeeds, the packet is attributed to the peer
whose Key verified it, and the Message is decrypted and processed.

A Pest station is able to quickly reject malformed, spurious, corrupted, or
duplicate incoming messages. At the same time, the address fields provided by
the IP protocol are not used in the validation of a Pest packet. Consequently,
Pest traffic may be easily and safely carried over an otherwise-unsecured and
“addressless” shared-everything medium, such as radio, or via several conven-
tional Internet connections operated in tandem7.

Pest Messages carry hashes of their predecessors to enable detection of loss
in transit and allow for retransmission requests. As a result, Pest is insensitive
to connectivity disruptions (whether planned, accidental, or malicious), and
Pest traffic may be carried reliably over lossy channels (radio, poor-quality or
short-lived Internet connections, etc.)

6To interfere with a snoop’s attempts to infer packet senders’ identities – or to distinguish
the act of receiving a valid, rather than bogus packet – via traffic analysis.

7This enables – among other things – an arbitrary degree of resistance to DDOS, even on a
miserly budget.

9

2 The Philosophy of Pest: The Three “Nothings”.

Pest is designed around the intent of “cutting off the oxygen” to three species
of vermin: the stranger – who brings DDOS and spam; the snoop – who steals
“anything not bolted down”; and the snitch – who betrays trust.

2.1 “Nothing to the Stranger.”

From a Pest station’s point of view, a stranger is any Internet-connected
machine other than a current WOT peer. This category includes former peers, as
well as members of Pest nets disjoint from the given station’s. Unlike virtually
all traditional Internet protocols, Pest does not talk to strangers. At all.

Strangers may, of course, send arbitrary packets to anywhere at all – includ-
ing a Pest station. However, because a stranger (by definition) does not possess
any of the Keys in that station’s WOT, all such packets will be deemed bogus and
immediately discarded. A bogus packet will not trigger any kind of response
from a Pest station.

A stranger who somehow comes across a packet previously sent to a Pest
station by one of its peers, and retransmits copies of it to that station (“replay
attack”) will not succeed in flooding the station or its net with garbage or
exhausting the station’s machine resources: such a packet will be inexpensively
determined to be a duplicate or stale and discarded as bogus.

A bogus8 packet is one which the receiving station identifies as martian,
malformed , duplicate, or stale. Such packets are silently discarded. Conversely,
packets which are found to be neither martian, malformed, duplicate, nor stale
are considered valid, and will be processed by the station in the order in which
they were received.

2.1.1 “Martians”.

An incorrectly-sized9 packet received by a Pest station – or a correctly-sized
one which does not bear a valid Seal from one of its peers is referred to as a
martian. All such packets are silently discarded.

2.1.2 Malformed.

An incoming packet carrying a Message which violates a formatting rule is
referred to as malformed. All such packets are silently discarded.

8Bogus packets do not necessarily come from strangers – they may be sent by peers; at
times – deliberately.

9I.e. of length above or below 496 bytes.

10

2.1.3 Stales.

Any packet bearing a Message which has expired, or appears to come "from the
future" is deemed stale and – even though it may be valid in every other respect
– silently discarded10.

2.1.4 Duplicates.

An incoming packet which is found to be neither martian nor stale may be
deemed a duplicate if the Message it bears is found to be identical to one
encountered in any previously-received valid packet. Duplicates are silently
discarded.

10Unless the station is currently expecting a GetData response, and the message’s hash is
found to equal the requested one.

11

2.2 “Nothing to the Snoop.”

A stranger who is able to capture some or all of the packets entering or leaving
a Pest station is referred to as a snoop.

2.2.1 No Plaintext Fields in Pest Packets.

Pest packets traveling between stations contain no unencrypted information
whatsoever11 – and in particular, feature no "magic numbers" or other fields
with meaningful or predictable values of any kind which could identify them to
a third party as Pest packets or reveal any information at all concerning their
Payloads to anyone lacking the requisite Key.

Consequently, a Pest packet intercepted en route conveys no useful informa-
tion to a snoop, apart from the mere fact that a particular machine had sent a
string of 496 apparently-random bytes12 to a certain other.

2.2.2 Chaff.

In the interest of thwarting traffic analysis, a Pest station will occasionally
transmit rubbish packets – indistinguishable, to a snoop, from other Pest traffic
– to peers, or even to randomly-generated IP addresses.

Additionally, a station may occasionally transmit copies of a packet keyed for
a given addressee to one or more randomly-selected other peers, in random order.
All recipients other than the intended addressee will harmlessly reject the martian;
while the task of a snoop charged with determining "who is talking to whom"
becomes rather unenviable.

11Pest Seals could be considered “plaintext” information, but are computed strictly over

Ciphertext, using a peer-unique HMAC sealing key separate from the peer’s cipher key; and
therefore reveal nothing to a party not in possession of the requisite sealing key.

12A network of Pest peers may, by mutual agreement, pad their packets beyond the
default size, to circumvent a (hypothethetical) ISP ban against 496-byte packets. However,
steganographic techniques, necessary as they may one day become, are beyond the scope of
this document.

12

2.3 “Nothing to the Snitch.”

If you give me six lines written by

the hand of the most honest of

men, I will find something in

them which will hang him.

Cardinal Richelieu.

In the context of Pest, a snitch is a traitor or infiltrator who would divulge
to a third party some information he had been given in confidence by one of
his Pest peers – in an attempt to implicate the latter in a “thoughtcrime” or
scandal, or otherwise tarnish his reputation.

2.3.1 Pest Messages are Authenticable, but not Opposable.

All Pest Messages are authenticable – a station will only process an incoming
message if it carries a valid Seal (i.e. signature) from a peer. However, they
are also repudiatable (i.e. non-opposable). Seals are produced using symmetric
cryptography – a peering Key is exactly the same on both sides of a peering.
Therefore, a snitch cannot, at any point in time, prove to anyone that he was
not himself the author of a message he may claim to have received.

2.3.2 Caveats.

• Even though all traffic between Pest peers is encrypted, a Pest broadcast
should usually be thought of as public speech – its originator can have
no certain knowledge of where it may eventually propagate to. You may
know your peers well, but how well do you know all of their peers? The
same is true of a direct message sent to someone with whom you do not
have a strong relationship of trust.

• A Pest hearsay should be thought of as a rumour – it may originate from
virtually any participant of a given Pest net, and may claim to have been
authored by virtually anyone.

• A traitorous or incompetent peer may expose your shared peering Key to
third parties, and consequently his side of the peering may begin to suffer
from “multiple personality disease”. Do not hesitate to unpeer him!

• Peering Keys are only as secure as the devices they are stored in. Remem-
ber that anyone who succeeds in stealing a Key will be able to impersonate
either side of the peering defined by that Key. Avoid exchanging Pest keys
in public places or via unsecured communication channels. (Use e.g. GPG.)
Beware of shared hosting services which may expose your keys to snoops.

• If you end up revealing a genuinely valuable secret to a traitor, the gods
themselves cannot save you!

13

3 Pest Station Basics.

The operator of a Pest station – who may be a human or a bot – has absolute
control of the station and its configuration. A station communicates exclusively
with:

1. The operator – via the operator console.

2. An operator-selected set of remote peer stations – via ciphered and signed
UDP packets.

3.1 Peers and Keys.

In order for a pair of Pest stations to communicate, their operators must decide
to peer them by agreeing on a shared secret Key. Every packet sent by one peer
to the other is enciphered and signed by the sender, and will be verified and
deciphered by the receiver using this Key.

Additionally, the peers must establish one another’s reachable Addresses. If
one or both of them has a routable, static public IP, this may be accomplished
via the AT Command; otherwise it will take place automatically, supposing both
of the peers are able to reach a given net.

If, at some future time, the operator of either station no longer wishes to
continue in this relationship, he may terminate the peering unilaterally, and the
two stations will then be said to have unpeered. A former peer is treated exactly
the same as any other stranger .

3.2 The WOT.

A Pest station may have any number of peers. One or more13 known Key for each
peer is kept in a data structure referred to as the station’s WOT. The operator
may alter this structure at any time, and changes take effect immediately. The
WOT is never altered by the station except by direct command of the operator.
Each peer entry in the WOT also contains one or more Handles known to be in
use by the peer.

3.3 The AT.

A Pest station has another data structure, the AT (Address Table), which holds
the last known reachable Address of each WOT peer. The AT is used exclusively
for determining where to send outgoing packets.

13Multiple Keys associated with one peer are permitted. This is convenient when phasing
out an old Key in favour of a new one. The converse (the use of one Key for multiple peers) is
prohibited. When addressing outgoing packets to a peer for whom multiple Keys are known,
the one which validated the packet most recently received from that peer is to be used.

14

Like the WOT, the AT may also be altered by the operator at any time.
Unlike the WOT, the AT is automatically updated by the station when a packet
attributed to a given peer is received from a new (i.e. not currently in the AT

entry for that peer) Address. The AT holds one entry per WOT peer.

15

4 The Pest Transport Protocol.

16

4.1 Packets.

4.1.1 Black Packet.

All Pest network traffic without exception consists of black14 packets. Every
black packet is precisely 496 bytes long15, and consists of a 448-byte Ciphertext
followed by a 48-byte Seal:

448 bytes
︷ ︸︸ ︷

48 bytes
︷ ︸︸ ︷

Ciphertext[448] Seal

Such a packet is easily authenticated and deciphered by its intended ad-
dressee, but entirely meaningless to snoops – who, by definition, lack the Key

against which the Ciphertext and Seal were created, and therefore cannot
decipher or authenticate the packet, distinguish it from random noise, or craft
a plausible – in whole or in part – spurious replacement.

4.1.1.1 Ciphertext in a black packet is produced from a 448-byte Plaintext
via the Serpent cipher, keyed to the Ciphrator component of a Key known to
both the sender and the addressee. The Plaintext, in turn, always consists of
a 16-byte random Nonce followed by a 432-byte Payload – also referred to as a
red packet :

N
o
n
c
e Payload[432]

(Red Packet)

Given as Serpent is used in the Cipher Block Chaining mode of operation,
the Nonce provides a reasonable guarantee that no two black packets emitted
by a Pest station will ever be identical, or similar in any meaningful respect,
irrespective of their Payloads.

4.1.1.2 Seal in a black packet allows the addressee (and only the addressee)
to uniquely identify the sender and verify the integrity of its Ciphertext. It is
generated via HMAC-384, keyed to the Sealer component of the addressee’s Key
and computed over the Ciphertext.

14Convenient shorthand borrowed from American bureaucracies, where all information is
distinguished into “black” and “red”; the former – suitably encrypted, and may be safely carried
via public networks, radio, unattended parcels, and the like; the latter – confidential plaintext,
strictly for use in a guarded location by politically-reliable personnel.

15Excluding IP and UDP headers.

17

4.1.2 “Redding” and “Blacking”.

The addressee of a black packet identifies its sender simply by computing a Seal

of its Ciphertext against every Sealer in his WOT, in random order16. If one of
these is found to match the packet’s Seal, the Ciphertext is deciphered with
the corresponding Ciphrator, and the resulting red packet – now attributable
to a particular peer – is processed. However, if no such match is found, the
packet is deemed a martian and silently discarded.

The process of “redding” a black packet is illustrated below. The first step is
performed against every Key in the receiver’s WOT; if a matching Seal is found,
the decipherment and extraction of the red packet takes place as shown:

“Black” Packet (496 bytes)
︷ ︸︸ ︷

Ciphertext[448] Seal

m HMAC-384(Key⇒Sealer, Ciphertext) ⇔ Seal m

Ciphertext[448]

m Ciphertext ⇔ Serpent(Key⇒Ciphrator) ⇔ Plaintext m

Plaintext[448]

m=m

N
o
n
c
e

Payload[432]

m Nonce m

“Red” Packet

︸ ︷︷ ︸

432 bytes

“Blacking” simply goes in reverse (bottom to top), with the main difference
being that the addressee is known apriori, and so only one Seal is computed.

16Or – where hardware permits – in parallel. But in either case, without giving hints to
snoops, via a timing side-channel, about whether any given packet was successfully verified
by the receiving station.

18

4.1.3 Red Packet.

A Payload[432] – whether newly-created or deciphered from a black packet –
is known as a red packet. It is the basic unit of all peer-to-peer communication
in Pest. Red packets are never exposed to public networks – they
comes into existence only inside a Pest station, and are always blacked prior
to transmission. Every red packet consists of a 4-byte preamble followed by a
428-byte Message:

0 1 2 3

Bounce Version Reserved Command

Message

(428 bytes)
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

432 bytes

4.1.3.1 Bounce is an Integer[1] and initially set to zero when a red packet
is originated17. Along with Command, Bounce is examined immediately following
Version when an incoming red packet is processed. The treatment of Bounce

depends on the supplied Command’s propagation type, as shown below:

Bounce Direct Commands Broadcast Commands

N = 0 Direct (No Relay) Immediate (Relayable)
0 < N < MaxBounce Malformed Hearsay (Relayable)
N ≥ MaxBounce Malformed Hearsay (No Relay)

Combinations marked Malformed indicate a packet which must be silently dis-
carded. Note that combinations marked Relayable simply refer to the packet
being marked for relay after full validation, rather than being immediately
relayed to peers.

4.1.3.2 Version is the first field examined after deciphering a red

packet, and is an Integer[1] representing a "degrees Kelvin" (decrementing)
version of the Pest protocol conformed to by a red packet. If the protocol version
in use at a given station is known to represent a breaking change from previous
versions, an incoming packet marked with a higher (i.e. older) version must be
silently discarded18.

17Note that a response to a GetData request for a broadcast packet must be sent with that
packet’s original – from the responder’s point of view – Bounce.

18Unless the station is running a Pest implementation designed to correctly process packets
with multiple incompatible versions of the protocol.

19

4.1.3.3 Reserved is mandatorily a Zero[1] in the current version of the
protocol (0xFA).

4.1.3.4 Command is an Integer[1] which indicates the purpose of the red
packet’s Message. (See § 5.4.)

4.1.3.5 Message represents the useful cargo of a red packet. See § 4.2.

20

4.2 Classes of Message.

Every Pest Message occupies precisely 428 bytes. These are organized in several
possible ways, depending on the class of the Message:

4.2.1 Chained Message.

Chained Messages transport human-readable Text between peers, with a claimed
authorship indicated by Speaker, and allow for linkage with preceding Chained
Messages via their SelfChain and NetChain hashes19. Only Chained Messages
are stored in a station’s Log, displayed to a station’s operator console, and
retrievable via GetData.

Currently (as of protocol version 0xFA) the following Command types denote
Chained Messages:

Command Name Propagation

0x00 BroadcastText Broadcast
0x01 DirectText Direct

The layout of a Chained Message is shown below:

Timestamp8 bytes
{

SelfChain32 bytes
{

NetChain32 bytes
{

Speaker32 bytes
{

Text
❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

324 bytes

428 bytes

4.2.1.1 Timestamp is a Time representing the moment this Message came
into being at its originator’s station20. Any Message bearing a Timestamp more
than 15 minutes away, in either direction, from the Time at a receiver’s station
at the time of its receipt, is deemed stale and discarded (unless it is an expected
response to a GetData request.) Every Pest Message carries a Timestamp.

19Each such hash covers the entire 428 bytes of a preceding Message.
20Stations relaying a broadcast must not alter Timestamps (or any other Message fields).

21

4.2.1.2 SelfChain normally identifies the previous Message of the given
type most recently sent by the originator of this one. Note that the SelfChain

of a Message may not refer to one with a Timestamp greater than its own; to
itself; to any Message where Speaker is not equal to its own; or to any Message

not of the same class. Any Message found to contain such a SelfChain is
considered malformed .

4.2.1.3 NetChain normally identifies a previously-existing Message this one
should be considered a logical successor of. Note that the NetChain of a Message
may not refer to one with a Timestamp greater than its own21; to itself; or to
any Message not of the same class. Any Message found to contain such a
NetChain is considered malformed .

4.2.1.4 Speaker is an AString[32] representing the Handle in use by this
Message’s originator. Pest Handles are mandatorily pure ASCII to abolish the
homoglyph impersonation attacks which plagued traditional chat protocols (e.g.
IRC) that permitted the use of UTF in handles.

A Handle may not be less than 3 characters in length. It must consist strictly
of alphanumeric ASCII characters, permitting both upper and lower case letters,
and additionally including the underscore. Messages bearing a value of Speaker
which does not conform to this pattern are considered malformed and silently
discarded.

4.2.1.5 Text is a UString[324] – a human-readable text. In all cases where
a Text in excess of 324 bytes must be sent, a series of Chained Multipart
Messages should be used.

21If someone’s clock is running “fast”, and this results in peer stations having to wait to
transmit, their operators will be informed via the operator console and know which peer to
blame.

22

4.2.2 Chained Multipart Message.

Chained Multipart Messages permit the piecewise transport of a Text in excess
of the 324-byte capacity of a Chained Message, but in all other ways behave
exactly like the latter. Every such Message carries a Chunk of Text; N – the
index of the particular Chunk; Of – the total number of Chunks required for
reassembly; and TextHash – the expected hash of the reassembled Text. A
given series of Chained Multipart Messages may transfer up to 65,535 chunks
of an original Text, 288 bytes at a time, allowing for a reassembled Text of up
to 18,874,080 bytes in length.

A station which receives a sequence of Chained Multipart Messages will
attempt to reassemble the Chunks in the specified order to obtain the original
Text, and will verify the result against TextHash – or indicate to the operator,
via the operator console, if this proved impossible.

Currently (as of protocol version 0xFA) the following Command types denote
Chained Multipart Messages:

Command Name Propagation

0x06 BroadcastTextM Broadcast
0x07 DirectTextM Direct

The layout of a Chained Multipart Message is shown below:

Timestamp8 bytes
{

SelfChain32 bytes
{

NetChain32 bytes
{

Speaker32 bytes
{

Chunk❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

288 bytes

N2 bytes
{

Of2 bytes
{

TextHash32 bytes
{

428 bytes

4.2.2.1 Timestamp must be equal for all Messages carrying the Chunks of
the original Text represented by TextHash. Otherwise, exactly as in Chained
Messages; see § 4.2.1.1.

23

4.2.2.2 SelfChain if N 6= 1, must be equal to the Hash256 of the Chained
Multipart Message carrying Chunk N - 1. Otherwise, exactly as in Chained
Messages; see § 4.2.1.2.

4.2.2.3 NetChain If N 6= 1, must be equal to SelfChain. Otherwise, exactly
as in Chained Messages; see § 4.2.1.3.

4.2.2.4 Speaker must be equal for all Messages carrying the Chunks of
the original Text represented by TextHash. Otherwise, exactly as in Chained
Messages; see § 4.2.1.4.

4.2.2.5 Chunk is a UString[288], and represents the Nth chunk (from total
number Of) of the original Text represented by TextHash. Otherwise, exactly
as in Chained Messages; see § 4.2.1.5.

4.2.2.6 N is an Integer[2], and represents the index (starting with one) of
the particular Chunk of the original Text represented by TextHash carried in
this particular Message. 1 ≤ N ≤ Of.

4.2.2.7 Of is an Integer[2], and represents the total number of Chunks
into which the original Text had been split. It must be equal for all Messages
carrying the Chunks of a particular original Text represented by TextHash.

4.2.2.8 TextHash represents a Hash256 of the complete original Text, prior
to being split into Chunks, and must be equal for all Messages carrying the
Chunks of a particular original Text. It is used by a receiving station to verify
the successful reassembly of a sequence of Chained Multipart Messages into the
intended original Text.

24

4.2.3 Unchained Message.

Unchained Messages transport non-human-readable data between peers. Such
Messages do not allow hash linkage with other Messages, are not stored in a
station’s Log, are not displayed to a station’s operator console, and are not
retrievable via GetData. However, an Unchained Message still has a claimed
authorship indicated by Speaker, and may therefore be a broadcast .

Currently (as of protocol version 0xFA) the following Command types denote
Unchained Messages:

Command Name Propagation

0x02 Prod Direct
0x03 GetData Direct
0x04 KeyOffer Direct
0x05 KeySlice Direct
0xFE AddressCast Broadcast
0xFF Ignore Direct

The layout of an Unchained Message is shown below:

Timestamp8 bytes
{

Noise[64]64 bytes

Speaker32 bytes
{

UnchainedData
❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

324 bytes

428 bytes

4.2.3.1 Timestamp is exactly like a Chained Message’s Timestamp. (See
§ 4.2.1.1.)

4.2.3.2 Speaker is exactly like a Chained Message’s Speaker. (See § 4.2.1.4.)

4.2.3.3 UnchainedData is a custom data structure, specific to a particular
Command.

25

4.2.4 Binary Message.

Binary Messages resemble Unchained Messages, in that they transport non-
human-readable data between peers; however, they do not carry a Speaker

field, and are therefore mandatorily direct .

Analogously to an Unchained Message, a Binary Message does not allow
hash linkage with other Messages, is not stored in a station’s Log, is not
displayed to a station’s operator console, and is not retrievable via GetData.

Currently (as of protocol version 0xFA) the following Command types are re-

served for Binary Messages:

Command Name Propagation

0x40 Inv Direct
0x41 – 0x80 Reserved (Binary) Direct

The layout of a Binary Message is shown below:

Timestamp8 bytes
{

BinaryData

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

420 bytes

428 bytes

4.2.4.1 Timestamp is exactly like a Chained Message’s Timestamp. (See
§ 4.2.1.1.)

4.2.4.2 BinaryData is a custom data structure, specific to a particular Command.

26

5 The Pest Message.

5.1 The Three Paths of a Pest Message.

5.1.1 Direct.

The Pest equivalent of IRC’s “private message” is called a direct. However, unlike
IRC PMs, Pest directs are authenticably-encrypted and travel straight from the
originator station to the addressee (necessarily a peer of the originator.) A
Direct is considered prima facie authentic: so long as the Key of the peering
has not been compromised, the addressee can be certain that the direct could
not have been forged by a third party or altered in transit.

Author L1Peer
Direct

Bounce = 0

5.1.2 Broadcast.

The Pest equivalent of a message emitted into an IRC channel is the broadcast,
which propagates from peer to peer until it has been seen by every reachable
station22 on a given Pest net. The receiver classifies it as either immediate or
hearsay :

Author L1Peer L2Peer
(Immediate)

Bounce = 0

(Hearsay)

Bounce = 1

5.1.2.1 Immediate refers to a broadcast received directly from its orig-
inator (Bounce = 0). Like directs, immediates are considered prima facie
authentic.

5.1.2.2 Hearsay refers to a copy of a broadcast received from anyone other
than its originator (Bounce 6= 0). Its authorship cannot be cryptographically
verified23 – all that is known for certain is that it was originated by some
participant of the Pest net, and eventually found its way to the receiver via
one or more of his peers. For this reason, hearsays are specially-marked when
displayed to an operator. The marking lists the peers who relayed copies of the
hearsay.

22Broadcast propagation terminates at stations where Bounce ≥ MaxBounce.
23If Pest used public key cryptography – it could be. However, no currently commonplace

hardware can process usefully strong public key signatures, in constant time, at a rate which
would give acceptable DDOS resistance. Nor is an unfragmentable UDP packet large enough
to hold a 4096-bit RSA ciphertext and its signature...

27

5.2 Broadcast Propagation.

Suppose that in the net pictured below, station A originates a broadcast packet
P and transmits immediate copies to its peers B, C, and D. How many copies of
P could reach station D, and with what Bounces?

AB C

DE F

0 0

0

Note that the shortest network path is not necessarily the shortest temporal
path. Packets traveling over public networks are sometimes delayed or even lost
in transit. In addition to the immediate path A → D, there are also four possible
hearsay paths for P: A → B → D, A → C → D, A → B → E → D, and A → C → F

→ D. Station D may receive up to five copies of P – in unknown order.

AB C

DE F

0 0

01
1 11

2 2

TODO

28

5.3 Message Storage.

5.3.1 The Filter.

A station’s Filter is a data structure which retains a hash of every valid
incoming and originated Message24, until such a time that if a duplicate of that
Message were received, it would be deemed stale. Also stored along with the
Message’s hash is its min-Bounce25.

The Filter is used for deduplication: every otherwise-valid (i.e. not martian,
malformed , or stale) incoming Message is hashed and the Filter is queried for
said hash. If it was found to contain the hash, the Message is deemed a duplicate
and discarded. However, if the Message was not originated at the station, and
the Red Packet carrying the duplicate had a Bounce equal or lower to the min-
Bounce associated with the hash in the Filter, the relayer list for that Message
in the Log will be updated to include the peer who supplied the duplicate copy;
and if the duplicate’s Bounce was lower than the stored min-Bounce, the latter
will be updated in both the Log and the Filter.

5.3.2 The Log.

A station’s Log is a non-volatile store which retains every26 valid Chained
Message originated or received by the station, indexed uniquely by hash (and
non-uniquely by Timestamp.) The Time at which a given Message was received
(for incoming Messages strictly; distinctly from its internal originator-given
Timestamp) is stored; as well as the Command code associated with it; as well as
its min-Bounce; and also:

• In the case of a direct27 or immediate: the identity of the peer from whom
the Message originated.

• In the case of a hearsay : a list of all peers from whom a min-Bounce
Red Packet containing the Message was received. If the Message has not
yet expired and exited the Filter, that list may be updated when addi-
tional duplicate copies with a Bounce ≤ min-Bounce (including, possibly,
an immediate copy – in which case the list will be reduced to one peer)
are received by the station.

The Log may be searched or browsed in order (either chronological or by chain)
via the operator console. Arbitrary Messages may be retrieved from the Log via
their hash when processing chains or servicing GetData requests.

24Naturally, along with its Timestamp.
25That is, the Bounce of the Red Packet containing the copy received with the lowest Bounce.

For a hearsay: ≥ 1; for directs, immediates, and any originated Messages, this value is simply
zero.

26Up to an operator-configured disk footprint limit.
27Note that only the peer to whom a direct was originally addressed may request its

retransmission via GetData. It is recommended to store directs separately from broadcasts;
preferably, in such a way that they are encrypted when the station is offline.

29

5.4 Defined Message Types.

As of protocol version 0xFA, the available Command codes for a Message are:

Command Name Propagation Message Class

0x00 BroadcastText Broadcast Chained
0x01 DirectText Direct Chained
0x02 Prod Direct Unchained
0x03 GetData Direct Unchained
0x04 KeyOffer Direct Unchained
0x05 KeySlice Direct Unchained
0x06 BroadcastTextM Broadcast Chained Multipart
0x07 DirectTextM Direct Chained Multipart
0x08 – 0x3F Reserved
0x40 Inv Direct Binary
0x41 – 0x80 Reserved (Binary) Direct Binary
0x81 – 0xFD Reserved
0xFE AddressCast Broadcast Unchained
0xFF Ignore Direct Unchained

30

5.4.1 BroadcastText

Command Description Propagation Message Class

0x00 Broadcast Text Broadcast Chained

Timestamp8 bytes
{

SelfChain32 bytes
{

NetChain32 bytes
{

Speaker32 bytes
{

Text
❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

324 bytes

428 bytes

A BroadcastText carries a human-readable Text. It enters the Filter and
the Log, and a copy is then sent to every peer in the originator’s WOT, and will
be broadcast to their peers, and so on. (See: § 4.1.3.1, § 5.1.2.2, § 5.2.)

5.4.1.1 Timestamp is common to all Pest Messages. (See § 4.2.1.1.)

5.4.1.2 SelfChain is a Hash256 of the most recent BroadcastText previ-
ously sent by the originator. If the originator believes that he is sending a
BroadcastText to the net for the first time, SelfChain may be set to equal
Zero[32]. However, in this case, every receiver of the Message will be warned28

of this fact. See also § 4.2.1.2.

5.4.1.3 NetChain is a Hash256 of a BroadcastText previously sent or re-
ceived by the originator; by default, the most recent – known to the originator
– BroadcastText on the net. NetChain may be set to equal Zero[32], if and
only if29 SelfChain was also set to Zero[32]. See also § 4.2.1.3.

5.4.1.4 Speaker must match a Handle known by each immediately-receiving
peer to be in use by the originator. See § 4.2.1.4.

5.4.1.5 Text See § 4.2.1.5.

28In a CLI operator console, the Speaker of such a Message will be prefixed with an
exclamation point.

29Version of the protocol prior to 0xFA did not require this. Therefore if this condition is
violated, a warning is to be issued to the receiving operator.

31

5.4.2 DirectText

Command Description Propagation Message Class

0x01 Direct Text Direct Chained

Timestamp8 bytes
{

SelfChain32 bytes
{

NetChain32 bytes
{

Speaker32 bytes
{

Text
❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

324 bytes

428 bytes

A DirectText carries a human-readable Text, intended as a confidential
communication to one person. It enters the Filter and the Log, and is then
sent directly to one specified addressee, who must be a peer of the originator.

5.4.2.1 Timestamp is common to all Pest Messages. (See § 4.2.1.1.)

5.4.2.2 SelfChain is a Hash256 of the most recent DirectText previously
sent by the originator to the given addressee. If the originator believes that he
is sending a DirectText to this addressee for the first time, SelfChain may be
set to equal Zero[32]. However, in this case, the receiver of the Message will
be warned of this fact. See also § 4.2.1.2.

5.4.2.3 NetChain is a Hash256 of a DirectText previously sent or received
by the originator to or from the given addressee; by default, the most recent –
known to the originator – such DirectText. NetChain may be set to equal
Zero[32], if and only if SelfChain was also set to Zero[32]. See also § 4.2.1.3.

5.4.2.4 Speaker must match a Handle known by the addressee to be in use
by the originator. See § 4.2.1.4.

5.4.2.5 Text See § 4.2.1.5.

32

5.4.3 Prod

Command Description Propagation Message Class

0x02 Prod Direct Unchained

Timestamp8 bytes
{

Noise[64]64 bytes

Speaker32 bytes
{

ACK2 bytes
{

Address6 bytes
{

BroadcastSelfChain32 bytes
{

BroadcastNetChain32 bytes
{

DirectSelfChain32 bytes
{

Banner
❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

220 bytes

428 bytes

Prod Messages aid Pest stations in NAT penetration (via AddressCast) and
chain synchronization (via GetData). They also allow a station operator to
share an arbitrary string with his peers (e.g. advertising his particular Pest
implementation, a WWW site URL, etc.)

5.4.3.1 Timestamp is common to all Pest Messages. (See § 4.2.1.1.)

5.4.3.2 Speaker is ignored, as this type of Message is direct , and so the
addressee is able to unambiguously identify the originator.

5.4.3.3 ACK is an Integer[2] with permitted values of 0: indicating that
an answer to this Prod, consisting of a Prod from the addressee is requested; or
1: indicating that this Prod is an answer to one previously received from the
addressee.

5.4.3.4 Address is the Address currently found in the sender’s AT entry for
the addressee. It is identical to the one to which the sender intends to transmit

33

the packet bearing this message. This allows a station trapped behind a NAT to
learn its publicly-routable Address, for use with AddressCast.

5.4.3.5 BroadcastSelfChain is the sender’s latest broadcast SelfChain.

5.4.3.6 BroadcastNetChain is the sender’s latest broadcast NetChain.

5.4.3.7 DirectSelfChain is the sender’s latest direct SelfChain with this
addressee.

5.4.3.8 Banner is a UString[220], and is an arbitrary human-readable de-
scription of the sender’s Pest station. This string may be set by an operator via
the BANNER command.

34

5.4.4 GetData

Command Description Propagation Message Class

0x03 GetData Direct Unchained

Timestamp8 bytes
{

Noise[64]64 bytes

Speaker32 bytes
{

WantHash32 bytes
{

Noise[292]❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

292 bytes

428 bytes

A GetData carries a WantHash identifying a previously-existing Chained
Message being requested for retransmission. A BroadcastText may be re-
quested by any peer, but a DirectText may only be retransmitted to the peer
to whom it was originally addressed.

A station issues a GetData upon encountering any SelfChain or NetChain
(including in a Prod) for which no corresponding Message exists in the Log.
The WantHash is added to a non-volatile data structure: AskedFor. At all times
when AskedFor is non-empty, it is queried for the Hash256 of every incoming
Chained Message, at the point immediately prior to the latter being subjected to
the staleness test. If a match occurs, the matching AskedFor entry is removed,
and the received Message is processed without regard to staleness (as it may well
be stale.) It enters the Log and the Filter, and its SelfChain and NetChain are
queried against the Log. Additional GetDatas are then issued, if required. If no
response to a GetData appears within GetDataWait milliseconds, it is reissued,
after the same interval, at most GetDataTries times. A GetData triggered by
a BroadcastText is sent to each of the station’s peers, in random order. A
BroadcastText returned via GetData is not propagated to peers.

5.4.4.1 Timestamp is common to all Pest Messages. (See § 4.2.1.1.)

5.4.4.2 Speaker is ignored, as this type of Message carries no text, and,
since it is direct , its addressee is able to unambiguously identify the originator.

5.4.4.3 WantHash is a Hash256 which identifies the Chained Message the
originator is asking for.

35

5.4.5 KeyOffer

Command Description Propagation Message Class

0x04 Key Offer Direct Unchained

Timestamp8 bytes
{

Noise[64]64 bytes

Speaker32 bytes
{

Offer64 bytes

Noise[260]❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

260 bytes

428 bytes

A KeyOffer carries a Rekeying Offer, i.e. a hash of a proposed xor Slice

for creating a replacement peering Key. The Rekeying procedure begins with the
participants exchanging Offers in order to demonstrate that their Slices were
generated independently of one another. A KeyOffer may be sent to initiate a
Rekeying, or as a response to a KeyOffer previously received from the addressee.

5.4.5.1 Timestamp is common to all Pest Messages. (See § 4.2.1.1.)

5.4.5.2 Speaker is ignored, as this type of Message is direct , and so the
addressee is able to unambiguously identify the originator.

5.4.5.3 Offer is equal to Hash512(Slice).

36

5.4.6 KeySlice

Command Description Propagation Message Class

0x05 Key Slice Direct Unchained

Timestamp8 bytes
{

Noise[64]64 bytes

Speaker32 bytes
{

Slice64 bytes

Noise[260]❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

260 bytes

428 bytes

A KeySlice carries a proposed Slice for the calculation of a replacement
Key. In the Rekeying procedure, after the participants have exchanged Offers
and determined that they were not identical, each peer reveals his Slice to the
other. The procedure concludes successfully if and only if each of the Slices is
in fact found to hash to its respective previously-sent Offer. The participants
calculate a new Key, equal to the xor of:

• The Key previously shared by the participants, with which the Rekeying
exchange was carried out.

• Each participant’s Slice.

5.4.6.1 Timestamp is common to all Pest Messages. (See § 4.2.1.1.)

5.4.6.2 Speaker is ignored, as this type of Message is direct , and so the
addressee is able to unambiguously identify the originator.

5.4.6.3 Slice is a Noise[64], and must be verified by the addressee to
hash to the Offer that had been sent previously. If this is found to be false,
the addressee will consider the Rekeying process to have been aborted.

37

5.4.7 BroadcastTextM

Command Description Propagation Message Class

0x06 Broadcast Text Multipart Broadcast Chained Multipart

A BroadcastTextM is similar to a BroadcastText, but carries a Chunk of
a multi-part Text; reassembly is attempted upon the successful receipt of all
required Chunks. See: Chained Multipart (§ 4.2.2).

38

5.4.8 DirectTextM

Command Description Propagation Message Class

0x07 Direct Text Multipart Direct Chained Multipart

A DirectTextM is similar to a DirectText, but carries a Chunk of a multi-
part Text; reassembly is attempted upon the successful receipt of all required
Chunks. See: Chained Multipart (§ 4.2.2).

39

5.4.9 Inv

Command Description Propagation Message Class

0x40 Inventory Direct Binary

Timestamp8 bytes
{

N4 bytes
{

Hash1

Hashi
❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

HashN

416 bytes

428 bytes

An Inv supplies a peer with a list of hashes identifying at least one and
up to 13 arbitrary Chained Messages, in descending order of Timestamp. Only
the hashes of such Messages as the addressee may retrieve via GetData (i.e.
BroadcastText, and DirectText originally addressed to him) may appear in
the Inv. The receiver of an Inv may check these hashes against his Log, and may
issue GetData requests to obtain Messages found to be missing in the latter.
The circumstances under which a station emits an Inv are currently unspecified.

5.4.9.1 Timestamp is common to all Pest Messages. (See § 4.2.1.1.)

5.4.9.2 N is an Integer[4], and signifies the number of Message hashes
supplied in this Inv. 1 ≤ N ≤ 13.

5.4.9.3 Hashi is a Message hash. All unused entries in the Inv (i.e. N <

i ≤ 13) must be set to Noise[32].

40

5.4.10 AddressCast

Command Description Propagation Message Class

0xFE Address Cast Broadcast Unchained

Timestamp8 bytes
{

Noise[64]64 bytes

Speaker32 bytes
{

Ciphertext[272]❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

272 bytes

Seal48 bytes

Noise[4]4 bytes
{

428 bytes

Address Casts are periodically broadcast by a station at all times when there
are cold peers in its WOT. A cold peer is one from whom no valid packets have
been received for at least ColdTime milliseconds, or for whom at least one Key

is known but no AT entry currently exists.

Similarly to a black packet, each Address Cast carries a Ciphertext and a
Seal, both of which are Keyed to the target peer. The latter, while at a given
time not directly reachable by the sender of the Address Cast – may be present
on the net and able to receive broadcasts.

The ciphered payload of an Address Cast consists of an Address at which
the sender would like to be reached by the target. Incoming Address Casts are
only deciphered when the receiver has at least one cold peer, and strictly on a
best-effort basis (i.e. when the CPU would otherwise be idle.)

5.4.10.1 Timestamp is common to all Pest Messages. (See § 4.2.1.1.)

5.4.10.2 Speaker must match a Handle known by each immediately-receiving
peer to be in use by the originator. See § 4.2.1.4. The target of the Address
Cast will attempt to decode it using every Key known to be in use by the peer
associated with this Handle, supposing the latter is in fact found in his WOT,
and that peer is currently cold.

5.4.10.3 Ciphertext is a Ciphertext[272], Keyed to the target.

41

5.4.10.4 Seal is a Seal, Keyed to the target. The receiver of an Address
Cast will attempt to decode it, on a best-effort basis, via a process resembling
black packet intake: a Seal verification is attempted against the Sealer belong-
ing to each Key of the peer identified by Speaker, if the latter is cold, in random
order. If a match is found, the Ciphertext will be deciphered with that Key’s
Ciphrator. A successful Address Cast decipherment yields a Plaintext[272].
After discarding the Nonce, what remains is a Payload[256], also referred to
as a Red Address Cast :

Flag4 bytes
{

Address6 bytes
{

Noise[246]❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

246 bytes

256 bytes

5.4.10.5 Flag is a Integer[4]:

• If Flag = 0 : the originator is requesting a single Prod to be sent by the
target to the supplied Address.

• If Flag = 1 : the originator believes that he is trapped behind a symmetric
NAT, and is requesting a port hammering session: a sequence of Prods to
be sent by the target to the IP specified in the supplied Address, each
with a randomly-selected 16-bit port. Hammering is requested to begin
precisely HammerWait milliseconds after the Timestamp of the Address
Cast – so that it can be carried out from both directions. The originator
only proceeds with the hammering if the target confirms the request by
sending an Address Cast to the originator during the HammerWait interval.
A HammerShots number of random ports is tried. If a valid packet is
received from the peer being hammered, the hammering terminates, as
the peer is no longer cold. Incoming requests for hammering sessions are
ignored when such a session is in progress.

• If Flag > 1 : the Message is discarded.

5.4.10.6 Address is an Address at which the originator of the Address Cast
would like to be reached by the target. A target which successfully processes
a Red Address Cast from a cold30 peer will execute an equivalent of the AT

Command, and henceforth use the supplied Address for all outgoing packets
intended to reach the originator.

30A Red Address Cast found to have been originated by a warm (i.e. not cold) peer is
ignored.

42

5.4.11 Ignore

Command Description Propagation Message Class

0xFF Ignore Direct Unchained

Timestamp8 bytes
{

Noise[64]64 bytes

Speaker32 bytes
{

Noise[324]
❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

324 bytes

428 bytes

An Ignore Message resets the ColdTime interval with respect to a given peer-
ing, but otherwise is simply ignored by the receiver. Ignores also serve as chaff
to stymie traffic analysis by snoops, and to maintain port forwarding state for a
station that is operating behind a NAT. At least one Ignore must be transmitted
to each WOT peer, in random order, every IgnorePeriod milliseconds. Ignores
may also be sent under other, unspecified circumstances.

5.4.11.1 Timestamp is common to all Pest Messages. (See § 4.2.1.1.)

5.4.11.2 Speaker is ignored.

43

6 Operator Console

TODO

44

7 Rekeying

TODO

45

8 NAT Penetration

TODO

46

A Appendix.

A.1 Fundamental Data Types.

The following data types are used in Pest, and must be encoded and decoded
as described here:

A.1.1 Zero

A Zero[N] consists of precisely N bytes, each of which is mandatorily equal to
zero. (If, upon Message processing, any byte in a field defined as Zero is found
to be non-zero, the Message is malformed , and must be silently discarded.)

A.1.2 Integer

An Integer[N] is an unsigned fixed-point integer, occupying precisely N bytes,
mandatorily in little-endian order when applicable. N may be equal to 1, 2, 4,
or 8.

A.1.3 Noise

A Noise[N] consists of precisely N bytes of uniformly-distributed entropic noise,
obtained from an auditable hardware TRNG where feasible.

A.1.4 Time

A Time consists of an Integer[8], obtained from a Pest station’s 64-bit mono-
tonic epoch clock at the time of Message encoding; traditionally defined as: "a
64-bit unsigned fixed-point number, in seconds relative to 00:00:00 January 1,
1970, UTC".

A.1.5 AString

An AString[N] occupies precisely N bytes, and contains a seven-bit-clean (pure
ASCII, i.e. no byte exceeds 0x7F) string, at most N characters long. If, after
encoding the string, there is unused space at the end of the field, the first unused
byte is set to zero, and any remaining bytes – to Noise31. For example, here is
one possible encoding of Hello World! into an AString[16]:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

48 65 6c 6c 6f 20 57 6f 72 6c 64 21 00 34 7a 42
︸ ︷︷ ︸

Retained

︸ ︷︷ ︸

Removable

31This is done to maximize the entropy of a Pest Message – to frustrate known-plaintext

attacks against the cipher and signature schemes.

47

Upon Message processing, for all purposes other than hashing, storage, and
rebroadcasting, an AString[N] field is treated as an AString[N-i] where i is
the number of removable trailing bytes, if any (starting with the zero) found in
the original. (If a leading zero was found, N-i will equal zero, i.e. the string
is considered empty.) After removing trailing bytes, the string is verified to
be seven-bit-clean; if this is found to be false, the Message containing it is
malformed and must be silently discarded.

A.1.6 UString

A UString[N] occupies precisely N bytes, and contains a validly UTF8-encoded
string, at most N characters long. If, after encoding the string, there is unused
space at the end of the field, the first unused byte is set to zero, and any
remaining bytes – to Noise. For example, here is one possible encoding of
Kat�xa into a UString[16]:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d0 9a d0 b0 d1 82 d1 8e d1 88 d0 b0 00 13 ef 33
︸ ︷︷ ︸

Retained

︸ ︷︷ ︸

Removable

Upon Message processing, for all purposes other than hashing, storage, and
rebroadcasting, a UString[N] field is treated as a UString[N-i] where i is the
number of removable trailing bytes, if any (starting with the zero) found in the
original. (If a leading zero was found, N-i will equal zero, i.e. the string is
considered empty.) After removing trailing bytes, the string is validated per
UTF8. A Message found to contain an invalid UString is malformed and must
be silently discarded.

A.1.7 Address

An Address occupies precisely 6 bytes, and consists of an Integer[2] port fol-
lowed by four Integer[1] which represent a publicly-routable IPv4 IP address.
The latter are laid out in order of descending significance. For example, the IP
address 1.2.3.4 and port 1337 will be encoded as:

0 1 2 3 4 5

39 05 01 02 03 04
︸ ︷︷ ︸

Port

︸ ︷︷ ︸

IP Address

A Message containing an Address which is determined not to be publicly-
routable is malformed , and must be silently discarded.

48

A.1.8 Key

A Key occupies precisely 64 bytes, which consist of a Noise[32] Sealer (an
HMAC-384 signing key, used to create and verify Seals) followed by a Noise[32]

Ciphrator (a Serpent cipher key, used to encipher and decipher Ciphertexts.)
The two components are generated independently of one another, and may not
be identical.32

A Key is the secret shared by a pair of Pest peers, and under no circumstances
revealed – in whole or in part – to any third party (including any of their other
peers.) It enables the peer relationship from both directions: the question of
which peer had sent a given packet is answered strictly by attempting verification
of its Seal against every Sealer known to the receiver. After a successful
verification, the Ciphrator corresponding to the Sealer which verified the
packet’s Seal is used to decipher its Ciphertext.

On every occasion when a Key must be handled by a human, it is represented
in Base-64 format. For example, the following Key:

Sealer:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d8 d7 b0 96 29 7b 08 40 1c ac b9 4b 26 12 5a 5f

56 ce 85 83 33 85 bc d7 e6 cf d4 3d 81 97 33 7c

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ciphrator:

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

53 4e bc bb b2 ab f0 63 2a 7a 7d f8 a7 a5 09 a0

55 52 99 6a 18 e0 20 62 0b ac f7 00 1f 6a 08 e8

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

... will be encoded in Base-64 format as:

2Newlil7CEAcrLlLJhJaX1bOhYMzhbzX5s/UPYGXM3xTTry7sqvwYyp6ffinpQmgVVKZahjgIGILrPcAH2oI6A==

A.1.9 Ciphertext

A Ciphertext[N] occupies precisely N bytes, and is an output of the Serpent

symmetric cipher, operated in Cipher Block Chaining (CBC) mode, with the
cipher key being the Ciphrator component of a peer’s Key. N must be a multiple
of 16 (the block size of Serpent). The Plaintext corresponding to a given
Ciphertext[N] also occupies precisely N bytes.

32A conforming implementation of Pest will not accept a Key containing identical Sealer
and Ciphrator components, and immediately warn the operator.

49

A.1.10 Nonce

A Nonce consists of a Noise[16] and is mandatorily present at the start of a
Plaintext. It is not used in any way following decryption; its purpose is to
prevent the emission of identical Ciphertext and Seal in the event of a given
Plaintext being ciphered and sealed more than once with a particular Key, and,
more generally, to increase the resistance of the cipher and signature schemes
used in Pest to known-plaintext attacks.

A.1.11 Seal

A Seal is a signature produced via the traditional HMAC-384 function. It
occupies precisely 48 bytes. Seals are produced and verified using the Sealer

component of a peer’s Key, exclusively over a Ciphertext.

A.1.12 Plaintext

A Plaintext[N] occupies precisely N bytes, and consists of a Nonce followed by
a Payload which occupies N-16 bytes. N must be a multiple of 16 (the block size
of Serpent) and greater than or equal to 32. A Plaintext is the result of the
decipherment of, or suitable for the creation of, a Ciphertext.

A.1.13 Payload

A Payload[N] occupies precisely N bytes, and is the useful cargo of a Plaintext.
N must be a multiple of 16 (the block size of Serpent), and greater than or equal
to 16.

A.1.14 Hash256

A Hash256 is an output of the traditional SHA-256 function, and occupies
precisely 32 bytes.

A.1.15 Hash512

A Hash512 is an output of the traditional SHA-512 function, and occupies
precisely 64 bytes.

50

A.2 Knobs

The Pest protocol refers to certain numeric constants, which may be adjusted to
better fit the needs of particular use cases. This section contains a complete list
of such constants, along with a recommended default value for each. Generally
speaking, Knobs should not be turned away from their default values without a
good reason. Altering Knobs may affect your station’s interoperability with its
peers.

A.2.1 MaxBounce

If an incoming broadcast red packet ’s Bounce ≥ MaxBounce, the packet is pro-
cessed by the receiver but not automatically relayed to peers (a peer may,
however, explicitly request the Message via GetData.) MaxBounce allows partici-
pants in large Pest nets to limit their interaction to a group bounded by Dunbar’s
Number. MaxBounce is an Integer[1], i.e. 0 ≤ N ≤ 255. Recommended
default value: 7.

A.2.2 GetDataWait

If a GetData request is not satisfied (i.e. a Message with the requested Hash256

arrives from any of the peers to whom the particular GetData was issued) within
GetDataWait milliseconds after a particular attempt, an additional GetData

request will be issued. The attempt will be made at most GetDataTries times.
Ordinary station operation continues during a GetDataWait interval – nothing
is blocked by it. GetDataWait is an Integer[2]. Recommended default value:
2500.

A.2.3 GetDataTries

A GetData request triggered by a particular incoming Message will be attempted
at most GetDataTries times. GetDataTries is an Integer[2]. Recommended
default value: 7.

A.2.4 ColdTime

A peer from whom no valid packets have been received for at least ColdTime

milliseconds is considered cold. AddressCast Messages are to be generated
for cold peers strictly. Attempts to decode an AddressCast Message are to be
undertaken if and only if a station presently has at least one cold peer. ColdTime
is an Integer[4]. Recommended default value: 30000.

51

A.2.5 AddrCastPeriod

An attempt to re-establish communication with a cold peer via the AddressCast
mechanism will be repeated no sooner than AddrCastPeriod milliseconds after
the previous such attempt. AddrCastPeriod must be greater than or equal to
ColdTime. AddrCastPeriod is an Integer[4]. Recommended default value:
60000.

A.2.6 IgnorePeriod

An Ignore is sent to every peer every IgnorePeriod milliseconds, to maintain
“warmth”, and preserve routing table state in case the station or a given peer is
behind a NAT. IgnorePeriod is an Integer[4]. Recommended default value:
8000.

A.2.7 HammerWait

An Address Cast may request a port hammering session, to commence pre-
cisely HammerWait milliseconds after the supplied Timestamp. HammerWait is
an Integer[4]. Recommended default value: 10000.

A.2.8 HammerShots

A port hammering session requested via Address Cast will consist of Prods sent
to the IP in the supplied Address, but with a sequence of randomly-generated
16-bit port numbers. A HammerShots number of such attempts is made in
response to one such request. (See § A.1.7.) HammerShots is an Integer[4].
Recommended default value: 10000.

52

	Why Pest?
	Exodus from IRC, and Resisting ``User Domestication''.
	How Pest Differs from IRC and Other Chat Protocols.
	Pest Nets.
	Identity is Decentralized.
	Station Operator is Answerable Only to Peers.
	Unrestricted Network Topology.
	Connectionless and Medium-Agnostic.

	The Philosophy of Pest: The Three ``Nothings''.
	``Nothing to the Stranger.''
	``Martians''.
	Malformed.
	Stales.
	Duplicates.

	``Nothing to the Snoop.''
	No Plaintext Fields in Pest Packets.
	Chaff.

	``Nothing to the Snitch.''
	Pest Messages are Authenticable, but not Opposable.
	Caveats.

	Pest Station Basics.
	Peers and Keys.
	The WOT.
	The AT.

	The Pest Transport Protocol.
	Packets.
	Black Packet.
	[Ciphertext]Ciphertext
	[Seal]Seal

	``Redding'' and ``Blacking''.
	Red Packet.
	Bounce
	Version
	Reserved
	Command
	Message

	Classes of Message.
	Chained Message.
	Timestamp
	SelfChain
	NetChain
	Speaker
	Text

	Chained Multipart Message.
	Timestamp
	SelfChain
	NetChain
	Speaker
	Chunk
	N
	Of
	TextHash

	Unchained Message.
	Timestamp
	Speaker
	UnchainedData

	Binary Message.
	Timestamp
	BinaryData

	The Pest Message.
	The Three Paths of a Pest Message.
	Direct.
	Broadcast.
	Immediate
	Hearsay

	Broadcast Propagation.
	Message Storage.
	The Filter.
	The Log.

	Defined Message Types.
	BroadcastText
	Timestamp
	SelfChain
	NetChain
	Speaker
	Text

	DirectText
	Timestamp
	SelfChain
	NetChain
	Speaker
	Text

	Prod
	Timestamp
	Speaker
	ACK
	Address
	BroadcastSelfChain
	BroadcastNetChain
	DirectSelfChain
	Banner

	GetData
	Timestamp
	Speaker
	WantHash

	KeyOffer
	Timestamp
	Speaker
	Offer

	KeySlice
	Timestamp
	Speaker
	Slice

	BroadcastTextM
	DirectTextM
	Inv
	Timestamp
	N
	Hashi

	AddressCast
	Timestamp
	Speaker
	Ciphertext
	Seal
	Flag
	Address

	Ignore
	Timestamp
	Speaker

	Operator Console
	Rekeying
	NAT Penetration
	Appendix.
	Fundamental Data Types.
	Zero
	Integer
	Noise
	Time
	AString
	UString
	Address
	Key
	Ciphertext
	Nonce
	Seal
	Plaintext
	Payload
	Hash256
	Hash512

	Knobs
	MaxBounce
	GetDataWait
	GetDataTries
	ColdTime
	AddrCastPeriod
	IgnorePeriod
	HammerWait
	HammerShots

