Ross J. Maloney

ﬁ)w Level
X Window
Programming

An Introduction by Examples

EXTRAS ONLINE &\ Springer

Low Level X Window Programming

Ross J. Maloney

Low Level X Window
Programming

An Introduction by Examples

@ Springer

Dr. Ross J. Maloney
Yenolam Corporation
Booragoon, WA
Australia

ISBN 978-3-319-74249-6 ISBN 978-3-319-74250-2 (eBook)
https://doi.org/10.1007/978-3-319-74250-2

Library of Congress Control Number: 2018931452

© Springer International Publishing AG, part of Springer Nature 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer International Publishing AG

part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This book is the missing part of most X Window programming books, the part
which others either neglect or skip over quickly. Those omissions are the subject
material of this book.

Most books on X Window programming cover Xlib in passing. They pass on to
use of toolkits for it is they which are most commonly used to write X Window
programs. Such toolkits include Athena, Xt, Motif, GTK, Qt, among a number of
others. Toolkits are used for they produce a finished graphics result in less time and
can be used without entirely understanding what is going on behind the scenes.
Low-level programming in X Window is analogous to assembly language pro-
gramming. Whereas in assembler programming a knowledge of the computer
hardware is required, in low-level X Window programming a knowledge of how
the X Window System operated is required. From the perspective taken here, X
toolkits are high-level languages and are not considered here. This contrasts to the
standard X Window programming book.

With respect to these levels, brief consideration is given to the protocol
underlying X Window. This is the equivalent of machine language. This is not a
practical way of coding an X Window program but is covered as foundation
material. An increased level of abstraction and removal from hardware detail is
provided by Xlib which occupies most of this book. An overview of Xcb which has
recently appeared as a replacement of Xlib is also included.

The philosophy in this book is to link the programming which produces out-
comes for the program’s user to the operation of X Window. The Xlib library
functions have a direct connection to the messages passed between the client and
server, the two main elements of an X Window system. This message connection
means being able to write graphics programs which can perform the graphics
operations the fastest possible under X. But to achieve such speed requires more
knowledge. Without that knowledge, the required speed increase above that
obtainable via a toolkit may not be obtained, let alone nothing appearing at all.
More time is required in coding using Xlib than a toolkit. Whether a possible
increase in execution speed balances out the longer coding time is a value
judgement.

vi Preface

Knowledge is acquired here. Writing a program in Xlib is exercising knowledge
of how the X Window system works; how the pieces are connected together to
produce the total outcome. The aim of this book is to assist the reader in acquiring
knowledge of using the Xlib library.

A discuss and show me style is used here. A discussion of the concepts is given,
and then, those discussions are used to write a Xlib program. The output produced
is shown together with the listing of the program. Exercises are then included to
extend the discussion and to encourage the reader to reflect on the concepts just
covered. Each program is written in a standard style and is as short in length as
possible.

The aim is to equip the reader to produce Xlib programs to support many needs.
X Window is present on computers ranging in performance from supercomputers to
personal computers. The programmer engaged in different computing environ-
ments, application realms, and target end-users needs to bring knowledge specific to
that environment, realm, and end-user type, to be successful. A toolbox (nor kit) of
displaying colours, patterns, geometric shapes, text, and input control by mouse and
keyboard each in an efficient and effective manner will help their adaptation. All
these tasks can be done using a toolkit but done the way the toolkit is set up to do it.
The reader will be exposed to handling all those tasks in this book to do them in an
individual way.

Although all the programs contained in this book were developed on a laptop
running Linux, they should carry over to all X Window environments.

Each chapter is designed to stand alone although there are some cross-references
within the sections of a chapter and between chapters. The chapters are arranged in
the order of increasing complexity.

This book does not provide a reference to the functions of the Xlib library, nor
does it use all those functions. It shows how to combine those Xlib functions to
produce functioning programs. References such as XIib Reference Manual edited by
Adrian Nye and published by O’Reilly & Associates, Inc. in 1993 provide detail of
all Xlib functions together with their parameters, description of purpose and error
returns. The reader should have access to such a source while reading and working
through the examples contained here for obtaining a greater depth of knowledge.
The book Xlib Programming Manual by Adrian Nye, published by O’Reilly &
Associates, Inc. in 1995, could be used to advantage to put Xlib into the context
of the overall X Window system’s component parts. This book takes a subset of the
components covered in the X1ib Programming Manual and puts them together
into working programs. As with those references, this book considers release of the
X Window software.

Preface vii

Thank You

The existence of this book is a result of the open source initiative. All text and
programs were written using vim. The programs were converted from source code
to executable code using the gcc compiler and associated libraries. The photo
editor xv was used to obtain the screenshots which show the programs operating.
All programs, text preparation and associated experimentation were done on a
Linux system. The prepared text was typeset using I£TEX through many iterations.
Without the X Window system and its associated libraries and utility programs,
there would have been no subject matter and environment to elaborate upon.

To the countless people who brought those elements into existence, maintain
them, and make them available, may I express my thanks.

Reader Background Assumed

This book is aimed at those readers interested in understanding how to program X
Window at a low level. The majority of that level considered here is Xlib with the
addition of Xcb and the X Window protocol itself.

It is assumed the reader knows the C language and has used X Windows to run
application programs. A programming knowledge of one or more of the X toolkits
available would be a further advantage so as to offer a contrast to using Xlib.
Familiarity with the contents of, and access to a copy of Xlib Programming Manual
for Version 11 by Adrian Nye, published in 1995 by O’Reilly & Associates, Inc.
ISBN 1-56592-002-3, and XIib Reference Manual edited by Adrian Nye, published
by O’Reilly & Associates, Inc. in 1993, ISBN 1-56592-006-6, is assumed. These
volumes provide essential auxiliary information and detail.

The best advantage of this material is obtained by writing programs and
debugging those programs. The examples and the exercises are starting points. The
reader should have access to an X Window system which can be used for this
practice.

Perth, Australia Ross J. Maloney
November 2017

Contents

1

3

Preliminaries. 1

1.1 The Place of the X Protocol 2

1.2 X Window Programming Gotchas 4

1.3 Programming in X Window 5

Getting Something to Show. 7

2.1 Basic Xlib Programming Code Blocks 7

2.2 Creating a Single Window 8

2.2.1 Open Connection to the Server 9

2.2.2 Top-Level Window 10

2.2.3 EXEICISES . . . oottt et 13

2.3 Smallest Xlib Program to Produce a Window 13

231 EXEICISESo v 15

2.4 A Simple but Useful Xlib Program 15

241 EXEICISES . . .o 16

2.5 A Moving Window. 16

251 EXEICISES . . . oottt et e 21

2.6 Parts of Windows Can Disappear from View 21
2.6.1 Testing Overlay Services Available from

an X SeIver 22

2.6.2 Consequences of No Server Overlay Services 24

2.63 Exercises............ .. 29

2.7 Changing a Window’s Properties. 30

2.8 SUMMATYttt 32

Windows and Events Produce Menus. 35

3.1 Colour 36

311 EXercises 39

32 AButtontoClick........ 39

ix

5

Contents

33 Events 44
331 EXerciseso 49
34 Menus 49
34.1 Text Labelled Menu Buttons. 50
342 EXEICISES . . . v et e 57
3.5 Further Consideration of Mouse Events 57
351 EXercises 67
3.6 A Mouse Behaviour Application 68
3.6.1 EXEICISESo 71
3.7 Implementing Hierarchical Menus 71
371 EXercisest 81
3.8 Which Window Gets the Event? 82
381 EXercises 84
3.9 SumMmary 84
Pattern Maps and Labels 85
4.1 The Pixmap Resource 86
4.2 Pattern Patches 86
43 Bitmap Patterns 87
43.1 EXerciseso 92
44 A Bitmap Cursort 92
441 EBXEICISES . . .ot oottt 97
4.5 A Partially Transparent Pixmap 97
4.6 Using Postscript to Create Labels 101
4.7 Changing the Colour of a Pixmap 105
4.8 Reducing Server—Client Interaction by Images 108
4.8.1 EBXerCiSeso 112
49 Creating Menus by Using the Image Format 112
4.9.1 EXEICISESottt 118
4.10 Forming Text Messages from Bitmap Glyphs. 118
4.10.1 Accessing X11 Standard Bitmap Fonts 119
4.10.2 How to Use the Bitmap Fonts. 123
4.10.3 EXEICISES oottt 131
4.11 Using Pixmaps to Colour a Window’s Background 131
4111 EXErCiSes oo v ittt 137
412 Summary 138
Keyboard Entry and Displaying Text 139
5.1 Elementary Keyboard Text X Entry 140
5.1 EXEICISES . . vt 144
5.2 What Fonts Are Available. 144
5.3 Keyboard Echoing on Windows 146

5.3.1 EXErciSes 152

Contents

7

8

xi

5.4 Putting Lines of Textin a Window 152
541 EXErCiSes 156

5.5 Insertion Cursor 156
551 EXercises 162

5.6 Moving Between Text Input Windows Using Keys 163
5.6.1 EXercises 168

57 ASliderBar........ 168
571 EXeICISes 173

5.8 Scrolling Text. 173
5.8.1 Scrolling Horizontally. 175

5.8.2 Scrolling Vertically 179

583 EXEICISes 184

5.9 Summary 185
Classic Drawing 187
6.1 Limit on Multiple Objects in a Request 188
6.2 Drawing Lines, Circles, and a Coloured-In Square 190
6.2.1 EXercises i 194

6.3 A Symbol Composed from Circle Parts 194
6.3.1 EXercises 198

6.4 A Circle Bouncing off Plain Edges 198
6.4.1 EXercises 203

6.5 Displaying the Multi Colours of a Photograph 203
6.5.1 EXercises 207

6.6 SUMMATYottt 208
Extensions. 209
7.1 Multi-colour XPM Pixmaps. 210
711 EXErCiSes 216

7.2 Network Connecting Client to Server. 216
721 EXerCiSes 219

7.3 Scalable Fonts 219
7.3.1 EXErcises 223

T4 SUMMATY 223
The Xcb Alternative 225
8.1 Starting and Finishing with Xcb 226
8.2 Creating and Using a Window. 227
8.3 Communicating with the Window Manager 230
8.4 Events 231
8.5 A Consolidation Program 234
8.5.1 EXercises............. .. 236

8.6 Colour, Fonts, then Text 236

8.60.1 EXErcises 240

xii Contents
8.7 A Classic Program Converted to Xcb 240

8. 7.1 EXEICISESot 244

8.8 Summary 244

9 Closer to the X Protocol 245
9.1 The X Window Environment. 246
9.1.1 EXercises 247

9.2 Client/Server Interaction 248
92.1 EXerciSes 252

9.3 More than a Protocol is Required 252
9.3.1 EXEICISESttt 257

9.4 Summary 258
References 259

Chapter 1 ()
Preliminaries Becit

Armed with the knowledge gained from the examples in this book as a guide, and
a copy of Nye (1995), and particularly Nye (1993), useful programs can be written
using Xlib. The argument against doing so is the use of toolkits makes programming
easier and quicker, and the result is visually appealing. Although the programming
may be quicker to write using a toolkit due to the written application code being
shorter in length than when using by using Xlib, its execution time generally is slower.
Toolkits are the analogue of a compiler while Xlib is the analogue of an assembler,
and to squeeze the most out of hardware, an assembler is the better choice but at the
cost of programming effort. Xlib programs generally use fewer CPU instructions and
make more efficient use of the X Protocol than toolkit programs do. So if a program
is to have large usage, then the use of Xlib instead of a toolkit may be a better design
decision across the lifetime of the program.

Generally, the appearance on the screen of a toolkit implemented program is char-
acteristic of the toolkit, with little opportunity to change it. Much thought goes into
that appearance during the design of the toolkit with the consequence that appearance
becomes desired. In the examples used in the following chapters, the appearance of
buttons, scrollbars, etc., may be thought of as bland. But what is demonstrated in
those examples is the basic scaffolding with complication associated with beautifi-
cation deliberately avoided. In those chapters, brief mention is made of complicating
factors which could be used to overcome such blandness if thought necessary.

This approach of augmenting a program using Xlib to obtain results readily avail-
able from a toolkit has disadvantages and advantages. The clear disadvantage is the
increase in complexity and length of the code which must be prepared. An advantage
is the desired features which might be available in one toolkit but not in another can
be implemented. In general terms, mixing of toolkits is not permitted: the features
in one toolkit are isolated to the environment of that toolkit.

The advantage of Xlib is it implements the mechanism rather than policy facet of
the X Window System design. To take good advantage of the design facet, Xlib needs
to be put into perspective of the larger X Window environment and to borrow from
© Springer International Publishing AG, part of Springer Nature 2017 1

R. J. Maloney, Low Level X Window Programming,
https://doi.org/10.1007/978-3-319-74250-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74250-2_1&domain=pdf

2 1 Preliminaries

it, which reverses the process whereby an environment has built upon Xlib. Much
has been learnt on how to effectively use windows to make good human—computer
communications since the 1987 introduction of X11. During this same time, Xlib
has remained relatively static due to the low-level support it provides. On to this
foundation, such advances can be grafted. To do this requires know-how.

But Xlib may not be the only approach to provide low-level graphics programming
removed from the constraints of a toolkit. Xcb can offer an alternative. Xcb is a recent
and evolving project aimed at replacing Xlib or to be used in combination with it.
It is designed to give the programmer closer access to the X protocol than Xlib. By
attempting to do such, it aims to make fuller access of the X Window communications
and graphics capacity while removing some of the overhead it perceives at present
in Xlib. Included here is a basic introduction to Xcb programming to contrast it to
Xlib programming.

Since its roots in Project Athena as described in Champine (1991), the X Window
system has evolved by being released as a number of versions. Each version has
introduced different features. Version 11 is considered here.

1.1 The Place of the X Protocol

Xlib works directly on the X Protocol. The X Protocol is the information which
is exchanged between the client and the server of the X Window system. It is the
protocol which enables X to work. It is the existence of this protocol for information
interchange which enables the client and the server of X Window to be on the same
computer or separate computers connected by a network. The client program makes
requests by exchanging protocol packets with the server program, using whatever
connection path between the client and server programs involved. The more general
this connection path software, the more general can be the distribution of the client
and server programs. If the connection is through networking software supporting
a local area network (LAN), then the X Window clients and servers involved in a
particular X Window program must be within the computers linked by a LAN. If the
networking software is capable of accessing the Internet, then the X Window clients
and servers can be distributed across the Internet.

The association of the X Protocol and Xlib is analogous to the association between
computer machine language and assembler language, and toolkits and compiler lan-
guages, as indicated by:

Toolkits — compiler language
? ¢
Xlib — assembler language
¢ ¢
X Protocol — machine language

1.1 The Place of the X Protocol 3

This arrangement shows an increasing complexity in progressing from top to
bottom layer along each leg of this stack. Each layer embodies a level of removal
from the detail of the implementation.

Knowing the X Protocol of X Window is analogous to knowing the combination
of Os and 1s which control the operation of the hardware of a particular computer (its
machine language). Although this protocol is complex and difficult to understand, it’s
understanding leads to the most complete appreciation of way in which the required
execution is performed. Xlib provides a means of obtaining a particular combination
of Os and 1s to produce a particular X Window function, just as an assembler language
produces the combination of Os and 1s which implements the instruction set of a
particular computer. Just as a particular instruction given in an assembler language
program generates the bytes corresponding to a particular instruction for a particular
computer hardware, so a particular Xlib function produces the bytes which implement
its correspondence in the X protocol. The toolkits, such as GTK, Athena, Motif, also
use this protocol but use collections of protocol packets to perform their function. This
corresponds to compiled languages such as C, Fortran, Ada in which they provide
a higher-level of abstraction of the computing process. However, in both the toolkit
and compiled language case, the written programs are converted by software to the
lowest level elements of their particular leg of this stack.

This book is about programming to produce graphical interactions between a
human user and the computer using the X Window protocol. It will be shown X
Window produces not only drawings on a computer connected screen but enables
control of keyboard input to a program and also point-and-click services to direct
choice selection of the user. These services are available through the X Window
protocol under the control of the program which uses this protocol. X Window
toolkit distances the program coding from this underlying protocol. The protocol
could be called directly as will be shown in the final chapter although this is of
little practical use. Xlib is a level just above this protocol. The majority of this book
concerns Xlib. Xcb which is an alternative to Xlib but at the same level from the
protocol is addressed in Chap. 8.

Xlib is the C language binding to the X Protocol. Xlib is used in combination
with programs written in the C programming language. When writing C programs,
the functions of Xlib are used in the same manner as is used with inline assembler.
Xlib is a library of functions.

Although it is possible to create an X protocol packet by hand, as is shown in
Chap. 9, for practical programming purposes that is not a good idea. The disadvantage
of using the by hand approach includes:

e non-standard, or unusual, approach making program maintenance more difficult;
e most programmers are not interested in, nor understand, the protocol to the level
required.

This approach must have been used when the initial Xlib library was being developed.
Today it would be more of academic, research, or teaching interest.

4 1 Preliminaries

1.2 X Window Programming Gotchas

When programming with X Window in general and Xlib in particular, the following
is need to be kept in mind:

. All windows are contained within the root window;

. A sub-window must be contained within its parent or be truncated;
A parent window alone has a title bar;

Menus, buttons, and dialogue boxes are all treated as windows;

. All length measurements are in screen pixels;

. Each window contains and carries its own coordinate system

The display screen of the X Window server is the root window. Every window
created under X Window is contained within it. The server does not attempt to change
the dimensions of a window or change its position so as a window is contained within
the root window. The server if requested to show a window will do as requested, but
parts of the window exceeding the expanse of the root window will be cut off.

All sub-windows must be displayed within the confines of the window which is
its parent. An example of such a sub-window is a menu. If a sub-window exceeds
the screen presence of its parent window, then the part or parts of the sub-window in
excess will be removed by the X Window screen manager.

When a window is created with the root window as its parent, then this window will
have a title. The contents of this title can be explicitly assigned in the programming
which sets up the window. However, the window manager in use on the server may
or may not show this title. This behaviour is dependent on the set-up of the window
manager.

In X Window, everything is a window. There are no such special entities as menus,
buttons, dialogue boxes, slider bars, highlights, or 3D effects, or anything else. How-
ever, there are a few exceptions. One is the cursor used to mark the mouse pointer’s
position on the screen. Also, neither a line, a character in a font, nor an icon is a
window. However, in all those exception cases, each must be drawn in a window.

Dimensions of windows and their position on the screen are always in the di-
mension of screen pixels. The physical appearance on the screen of a window is
determined by the pixel distribution on the screen being used. So, it is possible for
the appearance of a window to change when viewed on different screens.

Each window carries its own coordinate system. The origin of that coordinate
system is in the top left-hand corner of the window. The x-coordinate increases from
left to right. The y-coordinate increases from top to bottom of the window. There are
no negative coordinates. All coordinates are in screen pixels.

The approach taken in this book is to discuss and show. In this regard, although
error checking is important it can hide the basics which are more important here than
in creating robust application programs. Error checking is an addition onto the scope
of this book.

1.3 Programming in X Window 5

1.3 Programming in X Window

Programming in the X Window System is centred on a window. In the creation of
a final displayed image, many windows can be involved with the final effect being
influenced by the overlapping, appearance, disappearance, and adjacency of anumber
of such windows, and their contents. Therefore, mastery of X Windows programming
starts by mastering the programming of a single window. All X Window programming
consists of four principal parts:

1. Creation of a window;

2. Making that window visible;

3. Drawing into that window; and
4. Handling input on that window.

Each of these parts will be discussed and demonstrated by examples in the following
chapters. Each of these window parts has a number of sub-parts. The complexity, and
the resulting power and flexibility, of X Window programming results from imparting
interactions between those principal parts, and their sub-parts.

The X Window System is defined by its protocol, and Xlib is the part which
operates close to this protocol. X Window is a client and server system. The protocol
is a series of messages passed between the client and the server. The client is the
program, such as those which will be written in this book, which contains the Xlib
function calls. Those function calls generate the protocol messages which are sent
to the server. The server is a provided piece of X Window code which acts upon the
requests sent to it via the client’s protocol messages. For example, the client program
gives the details of how a window is to appear and requests it to appear on the display.
The server actually drives the hardware to produce the window on the display.

The Xlib function calls are part of a library that provides a programmer access to
the protocol messages. As such, they might be considered as the assembly language
of the X Window System. As in programming in general, higher order languages
exist. In the context of the X Window System, these are known as roolkits. The use
of toolkits distances the programmer from much (but not all) of the detail involved
in programming the X Window System protocol. In a lot of cases, this is done by
providing a policy, which becomes characteristic of the toolkit, for interlinking the
underlying protocol requests. But as stated in Scheifler et al. (1988) (page xxii), an
aim in creating the X Window System was to provide mechanism rather than policy.
As aresult, Xlib provides the most practical means of exploring what can be achieved
by using the X Window System. A cost of that understanding is that more is required
from the programmer. The source programs become longer than those using toolkits
and the chance of oversights increase. A means of assisting the programmer in using
Xlib is provided in the following by the use of complete, working examples.

Chapter 2 ®)
Getting Something to Show ez

This chapter is concerned with the basics of Xlib programming. The purpose of a
Xlib program is to produce one, or more windows. So all Xlib programs produce
at least a single window. Or do they? It is better to say Xlib is windows orientated.
A Xlib program may not produce a window, instead use its input/output system for
other purposes. In this chapter, the sounding of the bell on the X Window server is
used as an example.

Production of a window is not easy under Xlib, but a logical approach yields
the required result. This is true not only for a single window but also for the general
construction of such programs. The basic approach outlined in this chapter which will
be used throughout this book. To demonstrate the approach, a program to construct a
simple single window is produced. A Xlib program will generally contain more than
a single window as will also be demonstrated in this chapter. However, the basic done
on a single window can be done on many. The following chapters will expand on this
basic. Having more than one window being displayed also requires consideration
of the relation of one window with respect to the others. This chapter starts such
considerations.

2.1 Basic Xlib Programming Code Blocks

The approach to Xlib programming proposed here is to follow a series of code blocks.
In some instances, all these steps are not required as will be shown in the examples
in this book. The proposed nine steps to produce a Xlib application program using
Xlib are:

Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-3-319-74250-2_2) contains supplementary material, which is
available to authorized users.

© Springer International Publishing AG, part of Springer Nature 2017 7
R. J. Maloney, Low Level X Window Programming,
https://doi.org/10.1007/978-3-319-74250-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74250-2_2&domain=pdf
https://doi.org/10.1007/978-3-319-74250-2_2

8 2 Getting Something to Show

open connection to the server
create a top-level window

give the Window Manager hints
establish window resources

create all the other windows needed
select events for each windows
map the windows

enter the event loop

clean up before exiting

WSS s D=

2.2 Creating a Single Window

One of the difficulties with X Window programming is a lot has to be done before
anything appears on the display screen. If all those pieces are not in place correctly,
nothing appears, even though it is nearly correct. Here, a simple example is used
to demonstrate the programming steps that are necessary to produce a visible result
from X Window.

The first example is trivial, but it demonstrates the basic processes which need to
be followed in programming using Xlib. The example produces a blank window of
a given size in the default colour on the default display screen. Figure 2.1 shows the
output produced. Although this example is trivial in its result, it shows the blocks
of code involved in producing a functioning Xlib program. It will be seen these
code blocks are not trivial in themselves. Because those blocks are repeated with
all the Xlib programs in this book, first a template for writing Xlib programs will
be introduced before applying it to the specific example. As a result, this chapter is
important as it sets the tone for the approach used throughout this book.

Figure?2.1, as with all the display outputs given in this book, is a screenshot. The
grey-dotted surround is the background produced by the window manager used to

Fig. 2.1 The window
produced by the Xlib code of
Fig.2.2

2.2 Creating a Single Window 9

execute the Xlib program. It is shown to indicate the limit of the window produced
by the Xlib program example. The top-coloured header bar is also produced by the
window manager. Some window manager produces no such header bar, while other
managers produce more elaborate headers to assist the user of the display to iconify
the window, hold the window in place on the screen, to have the window manager
convert the window so if occupies the full screen, plus other controls over the default
screen manager’s behaviour. The border around the window can be controlled via
Xlib together with the size of the window. These controls will be considered further
in examples following.

2.2.1 Open Connection to the Server

As described on page 126 of Mansfield (1993), each X client application contains a
part of Xlib built into it at compile time. This is code of the Xlib function called in the
application. The purpose of this code is to convert the Xlib function calls contained
in the application program into X protocol requests for sending across the connection
path to the server. A management component is also installed. This management part
buffers the X protocol requests so as to make most efficient use of the connection
path between this client and the required server. The Xlib component also provides
data structures to represent locally each remote server with which the client requires
access. The application can then use this local representation to obtain information
about a server without making requests across the connection to the server itself. It
also buffers X events pertaining to the application received from all servers. Each X
application contains an individual copy of the description of each server to which it
is connected.

The structures Display, Screen, and Visual are established in the Xlib portion on
a X11 client’s code when the connection to the server is made. The Visual structure
contains information about how colours are represented for a screen. The Screen
structure contains information both of the physical nature (such as its height, width,
black and white pixel patterns, bits per pixel (depth)) and how that physical screen
falls in the X11 model (i.e. its root window, default colour map, GC for the root).
The Display structure contains information relating to the formation of X protocol
packets that are to be transmitted and received between the client and the server.
Examples of such information includes the maximum number of 32-bit words in
a request, screen byte order, host:display string used, default screen number, and
number of screens on the server. These three structures are defined in the Xlib.h
header file.

The members of the Display, Screen, and Visual structures are not accessed
directly by application codes. In the instances where default values are requested
for these structures by the application codes, X11 makes eleven XDefault* func-
tions available for setting such values. These functions are also available as Default*
macros for explicit calling.

To use X Window, a client program first requests a connection to be made to
a server. This will establish in the client’s Xlib component a representation of the

10 2 Getting Something to Show

server in the form of a Display structure. To do this, the function XOpenDisplay()
is used. It returns a pointer to the application of the Display structure stored in the
Xlib component of the client program. This structure describes detail configuration
information of the server. The XOpenDisplay() is implemented by a CreateGC pro-
tocol request (STRANGE). Information contained in these structures are accessed
by the client application via Default macros.

2.2.2 Top-Level Window

An X Window application is composed only of windows. X Window only provides
one type of window, but it can be fitted out differently for different uses. There are
no specialised buttons, scroll bars, text entry fields, etc. like exist in other windowing
systems. Each of these auxiliary elements must be created from a window or a
combination of more than one window, in X Window. X Window provides freedom
of combination within the restriction of hierarchical relationship among the windows.
By so doing, X Window is said to provide mechanism without imposing policy. It is
this generality which gives X Window both powerful, but also presents difficult for
the programmer in there being a large number of options available for use. These
options are explored throughout this book.

All windows in X Window form a hierarchy. A parent window can contain sub-
windows, and those sub-windows can contain sub-windows, and so on. This hierar-
chical relationship forms with the parent at the root of its hierarchical tree. The screen
surface occupied by such sub-windows must fall inside the surface area defined for
its parent. These parents can result from independently or inter-dependent running
programs, and their screen surface area allocation could be separated or overlapping,
overlapping fully or partially. Consistent with the window hierarchy, those parent
windows are themselves sub-windows of a master window, called the root window.
This root window is controlled by the Window Manager on the server.

When a window is initialised, it needs to specify its parent. In the case of a top-level
window, this parent is the root window. As described in Sect.2.2.1, the first action
a client program performs is to call XOpenDisplay() to create a Display, Screen,
and Visual data structures in the Xlib portion of the client’s executable code. These
structures support the hierarchical window structure which the client program then
builds up, and subsequently uses.

ThecallsXCreateSimpleWindow () and XCreateWindow () are available
in Xlib for creating a window. The XCreateWindow () call has greater generality
and is used here.

Say the code of Fig.2.2 is contained in a file called basic . c. On a Linux system
using gcc version 4.1.1 and X11 version 7.1.0, this code was compiled and linked
with the shell command:

gee —o basic —I /usr/include/X11 —L /usr/X11R6/1ib —1X11 basic.c

where the X11 system header files are stored in directory /usr/include/X11
and the X libraries to be linked with are in directory /usr/X11R6/1ib. In most

2.2 Creating a Single Window 11

* This program creates and displays a basic window. The window
o3 y
* has a default white background.

*
% Coded by: Ross Maloney
% Date: August 2006

#include <X11/Xlib.h>
#include <X11/Xutil.h>

int main(int argc, char xargv[])

{

Display smydisplay ;
XSetWindowAttributes myat;

‘Window mywindow ;

XSizeHints wmsize ;

XWMHints wmhints ;
XTextProperty windowName, iconName;
XEvent myevent ;

char xwindow_name = ” Basic”;

char xicon_name = ”"Ba”;

int screen_num , done;

unsigned long valuemask;
/* 1. open connection to the server x/
mydisplay = XOpenDisplay (77);

/* 2. create a top—level window =x/

screen.num = DefaultScreen (mydisplay);

myat. background_pixel = WhitePixel (mydisplay , screen_num);
myat.border_pixel = BlackPixel (mydisplay , screen_num);
myat.event_mask = ButtonPressMask;

valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
mywindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
200, 200, 350, 250, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
valuemask , &myat);

/* 3. give the Window Manager hints =/
wmsize . flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , mywindow, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;
XSetWMHints (mydisplay , mywindow, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , mywindow, &windowName);

Fig. 2.2 Placing a basic window onto the screen

12 2 Getting Something to Show

XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , mywindow, &iconName);

/* 4. establish window resources */

/* 5. create all the other windows needed x*/
/* 6. select events for each window =x/

/* 7. map the windows x/

XMapWindow (mydisplay , mywindow);

/* 8. enter the event loop %/
done = 0;
while (done = 0) {
XNextEvent (mydisplay , &myevent);
switch (myevent.type) {
case ButtonPress:
break;

}
}

/* 9. clean up before exiting */
XUnmapWindow (mydisplay , mywindow);
XDestroyWindow (mydisplay , mywindow);
XCloseDisplay (mydisplay);

Fig. 2.2 (continued)

instances, the path to these resources has been established by the computer system
administrator, in which case this command could be simplified to:

gce —o basic —IX11 basic.c
The resulting executable basic is then executed via a shell command:

./basic &
With respect to, the X Window example of Fig. 2.2, the following should be noted:

e It is possibly the simplest example possible;

e The example has no way in it of terminating its execution. This on a Unix system
would be done via using ps from the shell to find the process ID of the executing
code, and using that ID in a kill command from the shell to terminate this process.

e The nine steps are shown as comments, but only five are used;

e Because of the manner in which the program has to be terminated, step 9 is not
necessary because it is never going to be executed;

e The use of the maximum number of defaults has been used to reduce the size of
the example to a minimum;

e The event loop of step 8 is necessary, otherwise no window will appear on the
server’s screen. Try removing that loop to verify this statement. The loop is required
to provide event processing which is necessary to make Xlib function.

e Important. The same variable of type XEvent must be used in the
XNextEvent () function call and all subsequent processing of that event. In
this example that only occurs in the swi tch statement.

2.2 Creating a Single Window 13

Figure2.1 shows what appears on the screen when the program of Fig.2.2 is
executed. This example only creates a single window and places it on the screen.
The window is blank. Notice: When creating a window, there is no graphic context
(GC) involved (see later). A graphic context is only involved when drawing done
on the window—the graphic context is associated with drawing operations.

Figure2.1 shows some additions. These includes window decoration and sur-
rounding black and white stipple pattern of the root window used on the computer
from where the screenshot was taken. These will appear in all screenshots on the
following pages. They are a property of the X11 Window Manager, which is a subject
beyond the scope of this current work.

Note: X Window applications can start out as a wire frame attached to the pointer
on a screen, or mapped directly to the screen at the position given in the application
code. Which approach is used in nominated in the application code. In the wire
frame approach when a mouse button is pressed, the Window Manager draws the
window generated in the coded at the current position of the mouse pointer on the
screen. This does not occur with the code of Fig.2.2, or any of the other programs
contained in this work. Instead, the initial window is drawn on the screen at the
position nominated in the XCreateWindow () call. The behaviour required is set
using a XSetWMNormalHints () call. This call supplies the Window Manager
on the computer executing the code, additional information without which the user
is asked to supply via the mouse pointer.

2.2.3 Exercises

—_

Modify the code of Fig.2.2 so error checking is implemented.

2. What simple change can be introduced into the code of Fig.2.2 so clicking the
mouse anywhere in the limits of the white window will cause the program to
terminate?

3. What simple change can be made in the code of Fig.2.2 so clicking the mouse
inside the limits of the white window will give a bell sound every time the mouse
is clicked?

4. Change the code of Fig.2.2 so the white window is coloured yellow.

5. Find several X11 Window Managers where the XSetWMNormalHints () call

does, and does not, have the effect indicated above. For example, the hints have

an effect in twm but not in dwm. Why does this occur and how does it influence
use of code implemented in X Window?

2.3 Smallest Xlib Program to Produce a Window

The code of Fig.2.2 includes all of the parts recommended for inclusion when
writing an Xlib program. This approach will be used in all subsequent examples.
But it also implements policy in providing support for the underlying window

14 2 Getting Something to Show

/* The simplest Xlib program possible which produces a window.

A Window coloured white is placed on the screen.

Coded by: Ross Maloney
* Date: April 2012

*/

#include <X11/Xlib.h>
#include <X11/Xutil . h>

int main(int argc, char xargv)

{
Display +mydisplay ;
XSetWindowAttributes myat;
Window mywindow ;
XEvent myevent ;
int screen_num , done;

unsigned long valuemask;

/* 1. open connection to the server =x/
mydisplay = XOpenDisplay (77);

/* 2. create a top—level window =x/
screen.num = DefaultScreen (mydisplay);
myat.background_pixel = WhitePixel (mydisplay, screen_num);
valuemask = CWBackPixel;
mywindow = XCreateWindow (mydisplay ,

RootWindow (mydisplay , screen_num),

200, 200, 350, 250, 2,

DefaultDepth (mydisplay , screen_num),

InputOutput ,

DefaultVisual (mydisplay , screen_num),

valuemask , &myat);

/* 3. give the Window Manager hints s/

/* 4. establish window resources x*/

/* 5. create all the other windows needed */
/* 6. select events for each window x*/

/% 7. map the windows x/

XMapWindow (mydisplay , mywindow);

/* 8. enter the event loop */
XNextEvent (mydisplay , &myevent);

/* 9. clean up before exiting */

Fig. 2.3 Small Xlib program which yields a window

manager. However, X Window was designed to provide mechanism rather than
policy. So, what is the smallest amount of Xlib code required to produce

a window on the screen? The code in Fig.2.3 is an answer.

2.3 Smallest Xlib Program to Produce a Window 15

When executed, the code of Fig.2.3 produces a window on the screen the same
as shown in Fig.2.1. In this code, a number of parameters were left unspecified, for
example, the colour of the window’s border. Default values are supplied to these
parameters either by the X server or the window manager in use. Because the code
does not provide a title, the window is titled Untitled by the window manager.
No hints are given to the window manager to assist it in displaying the window, but
the window manager does its job. In the program, there are four basic Xlib calls
used with four auxiliary calls. Although no events are linked to the window, the Xlib
call XNextEvent () is required for the window to appear. Because no events are
specified in the myevent variable, the XNextEvent () call generates an indefinite
wait. Without this call nothing appears on the screen.

2.3.1 Exercises

—_

List the X1ib and auxiliary call in the program of Fig.2.3.

2. Change the code of Fig.2.3 so the window is coloured green.

3. What parts of the code in Fig. 2.2 which are not included in Fig. 2.3 implement X
Window policy?

4. Whatis the purpose of the XNextEvent () call in the program of Fig. 2.3? What

happens when this call is removed?

2.4 A Simple but Useful Xlib Program

The program of Fig. 2.4 is offered as a counter to the argument Xlib programs are com-
plex and lengthy. It would be a plus if such a program could actually do something.
The program here sounds the computer’s bell. No window is created nor displayed.
The program needs to open a connection with a display, and in this program, the
default display of the system is used. The bell is associated with the display.

The bell is one of a number of services made available by the server. The client
program sends X protocol requests to the server, which then initiates the requested
function. For the majority of such requests, the server uses the kernel of the under-
lying computer’s operating system to fulfil the request. Aside from the bell, other
examples of such requests are drawing on the display, mouse handling, and keyboard
operations. Each of these request types are considered in the following chapters. The
size of the client program using such requests increases as the complexity of such
requests increase.

16 2 Getting Something to Show

/* An elementary X Window program. A display is linked to this

* program, the keyboard bell is then sounded, then the program
* terminates.
*
* Coded by: Ross Maloney
* Date: January 2012
Y
/

#include <X11/Xlib.h>
#include <X11/Xutil.h>

int main(int argc, char xargv([])

{

Display +*mydisplay ;

/* 1. open connection to the server x*/
mydisplay = XOpenDisplay (””);

/* 2. create a top—level window s/

/* 3. give the Window Manager hints %/

/* 4. establish window resources %/

/* 5. create all the other windows needed */

/* 6. select events for each window x*/

/* 7. map the windows x*/

/* 8. enter the event loop */
XBell (mydisplay, 0);

/% 9. clean up before exiting =/
XCloseDisplay (mydisplay);

}

Fig. 2.4 A program to ring the system’s bell

2.4.1 Exercises

Modify the program of Fig. 2.4 so the loudest bell ring is produced by the program.

. Add to the program of Fig.2.4 so the user gives the level of loudness of the bell
ring.

3. List five instances where the program of Fig. 2.4 could be applied.

N =

2.5 A Moving Window

The following will show, a graphical user interface (GUI) is composed of many parts
and those parts are implemented as separate, but related, windows. This window
base is more apparent when using Xlib than with toolkits such as Xt, Motif, and Gtk
which also use the X Window System, and the application programming interface
(API) of Microsoft Windows. So if a program contains a GUI, then there are multiple
windows in use. But a program can contain multiple windows without those windows
configured to implement a GUIL

2.5 A Moving Window 17

As an example of multiple windows in this section, a second window is added to
the window created by the program of Fig. 2.2. This additional window required addi-
tional programming effort but less than what was needed to form the first/background
window, although the background window was also required. A similar amount of
effort would be required for each subsequent window added to form the collective
of a GUL. In this example, the second window is remapped in different positions on
the first window giving an apparent movement. Figure 2.5 shows two instances from
the result produced.

For this example, a window named rover of 50 pixels horizontal by 70 pixels
vertical and black in colour is created. This window is a child of the background win-
dow named mywindow which is white in colour. The child window is made to walk

Fig. 2.5 A black window
moving across a white
window

(a) Inltly

(b) A number of seconds later

18 2 Getting Something to Show

across the parent window. This is done by changing the position where the child win-
dow is to be displayed. When a window is created using the XCreateWindow ()
(or the XCreateSimpleWindow ()) Xlib call, a position for displaying the win-
dow must be given. This position is relative to a coordinate system (in units of screen
pixels) attached to the parent of the window being created. This coordinate system is
fixed once the window is created. However, a XiindowChanges structure which
is handled by the XConfigureWindow () Xlib call can be used to change this
position. The new position is where the window will appear on the screen the next
time it is displayed. But a window can only appear on the screen once. So, if after a
call to XMapWindow () has been made to display a window at the original position,
a subsequent call to XMapWindow () unmaps (delete) the window from the screen
and display it at the new position. An intervening call to XUnmapWindow () is not
needed. This is different to the way X Window handles bitmap patterns, which. is
discussed in Sect. 4.2

As when creating a window using the Xlib function call XCreateWindow (),
a value mask is used to indicate the parameters in the XWindowChanges structure
which XConfigureWindow () isallowed to change. In this case, both the position
coordinates are to be changed which is indicated by logically ORing the CWX and
CWY bit specifiers. The required values of those coordinates are assigned in the
corresponding records of the variable which is of type XWindowChanges before
using it in the call to XConfigureWindow (). This is seen in the program in
Fig. 2.6 which produced the screen display show in Fig.2.5.

This program is driven by events which the code in the program creates. Events
are central to X Window and are discussed in Sect. 3.3. Most X Window programs
use events. To indicate a change in the configuration (in this case, position) of the
window, a StructureNotifyMask is inserted in the event mask used when
the two windows of the program were created. The event loop of the program
contains a ConfigureNotify clause to perform processing when the call to
XConfigureWindow makes a change to the window’s position. The processing
performed there is to map (display) the window with its new coordinates, and then
wait 3 seconds before selecting the next position of the window. The delay of 3 sec-
onds is to enable individual position changes of the window to be observed on the
screen. The delay is created by the sleep () general system call which requires the
unistd.h header file. The exposure event used in the program of Fig.2.6 is not
really necessary in this particular instance.

X Window tries to optimize sending of messages between the client program and
the server these messages being responsible for handling window activity, events,
etc. A client message request queue is provided by Xlib as part of the client program,
and the server maintains a received request queue. When an event occurs, the server
immediately (except when grabs are involved) sends an event message to an event
queue maintained by Xlib within the client program. A XNextEvent () call in the
event loop of the client program processes the next event on that client event queue.
If the queue is empty, the client flushes its request queue and waits for an event
message from the server. So an XNextEvent () call will only immediately sent a
request to the server if the client event queue is empty. To force an immediate server

2.5 A Moving Window 19

/* First a basic window with a white background is created.
Then another window, a child of the first is created with
a black background. This second window is repeatedly
mapped onto its parent window and then removed after 3
seconds. Each mapping is at different location.

Coded by: Ross Maloney
Date: March 2011

¥ ¥ ¥ ¥ ¥ ¥ ¥

*/

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <unistd.h>

int main(int argc, char xargv|[])

{

Display smydisplay ;
XSetWindowAttributes myat;
Window mywindow, rover;
XWindowChanges alter ;
XSizeHints wmsize ;
XWNMHints wmhints;
XTextProperty windowName, iconName;
XEvent myevent ;
char xwindow_name = ”Walking” ;
char xicon_name = "WK’;
int screen_-num , done;
unsigned long valuemask;
int X, V;

/* 1. open connection to the server =x/

mydisplay = XOpenDisplay (””);

/* 2. create a top—level window =x/

screen.num = DefaultScreen (mydisplay);
myat.background_pixel = WhitePixel (mydisplay, screen_num);
myat.border_pixel = BlackPixel (mydisplay, screen_num);

myat.event_mask = ExposureMask | StructureNotifyMask;
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
mywindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
200, 300, 350, 250, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
valuemask , &myat);

/* 3. give the Window Manager hints x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , mywindow, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;

Fig. 2.6 To walk one window across another

20

2 Getting Something to Show

XSetWMHints (mydisplay , mywindow, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , mywindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , mywindow, &iconName);

/* 4. establish window resources x/
myat.background_pixel = BlackPixel (mydisplay, screen_num);

/* 5. create all the other windows needed x/
rover = XCreateWindow (mydisplay , mywindow,

100, 30, 50, 70, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,

DefaultVisual (mydisplay, screen_num),
valuemask , &myat);

/* 6. select events for each window =x/

valuemask = CWX | CWY;

/* 7. map the windows x/
XMapWindow (mydisplay , mywindow);

/* 8. enter the event loop */
done = 0;
x = 11; y = 12;
while (done = 0) {
alter .x = x;
alter.y = y;
XConfigureWindow (mydisplay , rover, valuemask, &alter);
XFlush (mydisplay);
XNextEvent (mydisplay , &myevent);
switch (myevent.type) {
case Expose:
break;
case ConfigureNotify:
XMapWindow (mydisplay , rover);
sleep (3);
x += 5; y += 6;
}
}

/* 9. clean up before exiting */
XUnmapWindow (mydisplay , mywindow);
XDestroyWindow (mydisplay , mywindow);
XCloseDisplay (mydisplay);

Fig. 2.6 (continued)

2.5 A Moving Window 21

request to be sent, a XFlush () call can be used. This is done in the code of Fig.2.6
to ensure the server acts immediately upon the window position change contained
in the XConfigureWindow () call. Any events the server may sent to the client
program’s event queue as a result of the flushed request are processed after events
already on the client’s event queue.

2.5.1 Exercises

1. Insert additional code into the program of Fig.2.6 to check for errors.

2. What parameters in creating a window can be changed other than the position
where it is to be displayed?

3. When StructureNotifyMask is include in the event mask during the cre-
ation of a window, what events are brought into consideration for the window?

4. Give three instances of exposure events detectable by the X Window server which
would require processing by the client program.

5. Theblack window produced by the program of Fig. 2.6 eventually disappears from
the screen. Why does this happen? Describe the X Window System mechanism
involved.

2.6 Parts of Windows Can Disappear from View

A window is the building block from which all X Window applications are made.
Each window is a rectangular area on a screen. These windows have the property of
forming a hierarchy such that all windows are related to one another by a repeating
parent/child pairing in which one parent can have one or more children. On the
screen, the window of a child is clipped by the X Window server so it is contained
withing the window of its parent. This family grouping makes it highly likely two
or more windows will occupy the same location on a screen. In operation, the X
Window server places all window on the screen one after another. So, if two or more
windows occupy the same screen location, a window, or part of a window, could
be obscured from view by another window on the screen. The art of X Window
programming is to ensure relevant information for the human user is simultaneously
available on the screen given the constraints on the X Window System in regard to
handling of different windows.

What happens when a window obscuring one or more other windows, or parts of
windows, is removed from the screen? To address this question requires knowing the
component parts of X, together with how they interact. This question is a consequence
of having more than one window on a screen. Most graphical user interfaces (GUIs)
are built from multiple windows. As a result, the answer is of practical importance.
The greater the number of windows present on screen, the more likely will be the
need to deal with the consequences of the answer.

22 2 Getting Something to Show

Each window is rectangular in shape, has a border, and a foreground, and back-
ground. All drawing on to a window is down using that window’s foreground. Draw-
ing on a window’s foreground is done using a Graphics Context (GC) which
has a number of parameters itself, including a foreground and a background. The
background of a window can be set to contain a visual pattern without using a GC.
Memory for Xlib structures declared in a client program does not (in most cases)
become part of the client program but is part of the server. Such server memory is
referenced by the protocol requests which result from Xlib calls contained in the
code of the client program.

When a window is created by the client program, the window’s size, the position it
is to occupy on the screen, appearance of its border, and contents of its background are
stored as a structure in the memory of the server. The client program can then request
the server to display (map) this structure onto the screen. The client program can also
request the server to remove (unmap) this structure from the screen. Unmapping a
window does not necessarily destroy the window structure on the server.

Itis natural to expect when a window is unmapped, any windows it partial obscured
will become fully visible. After all, the information about all windows is already in the
server. The natural expectation is the server should look after restoration. However,
what is done depends on what has been asked to happen. A window can request
in the XCreateWindow () (or XCreateSimpleWindow ()) call in the client
program for creation of a window for the server to provide such service. There are
two such services: save under and backing store. A program showing how
such service requests are made will be given shortly. Although requested, the server
may not provide such services. This is particularly true of servers from later releases
of the X Window System. If a client program requires such services and they are not
available, the performance quality of the client program can be adversely affected.

In an introductory chapter on Xlib programming, it might appear inappropriate
to consider server behaviour, particularly associated with recovery from overlaying
of windows. But server and client program interaction are at the heart of X. Simplis-
tically, the client requests the server to perform operations. The server has functions
it can perform, but they may not align completely with what the client program
expects. All Xlib programs need to be performed withing the client—server envi-
ronment which X provides. The following starts consideration of such constraints.
Further constraints will appear later.

2.6.1 Testing Overlay Services Available from an X Server

No X server is guaranteed to provide save under or backing store services. So any
particular X server either will or will not provide such services. The program of
Fig.2.7 checks whether such services are provided. The results of the checking are
sent to standard output.

2.6 Parts of Windows Can Disappear from View 23

/* A program to check whether the X server provides Backing store
% and Save under.

* Writtem by: Ross Maloney
% Date: February 2011
#include <X11/Xlib.h>

#include <stdio.h>

int main(int argc, char xargv)

{
Display xeb6display ;
Screen kscreenptr;
int screen_num ;

e6display = XOpenDisplay (”7);
screen_.num = DefaultScreen (e6display);
screenptr = ScreenOfDisplay (e6display, screen_num);

printf (”Macro.=_%d\n” , DoesSaveUnders(screenptr));

if (DoesSaveUnders(screenptr))
printf(”Does_screen._unders\n”);

else

printf (”Does.NOT_provide._screen.unders\n”);

switch (DoesBackingStore(screenptr)) {

case WhenMapped :
printf(”Backing.store._provided .when_window._is _mapped\n”);
break;

case Always:
printf(”Backing.store_is_always._provided\n”);
break;

case NotUseful:
printf(”Does.NOT_.provide_backing_store\n”);
break;

default:

printf(”Something _wrong_with_DoesBackingStore().call\n”);
}

XCloseDisplay (e6display);
Fig. 2.7 Program to check which overlay services a server provides

The save under and backing store services differ slightly. In save under, the
contents of the screen onto which a window is mapped is save by the server at the
instance before the window is mapped, using the memory of the server. When a
window is unmapped, the server moves its copy of the original contents of the screen

24 2 Getting Something to Show

before the window was mapped back onto the screen. These changes are generally
small areas of screen, say those resulting from a window forming a menu item.
However, the restored content may be from more than one window. With backing
store, the contents of a whole window is saved in the server’s memory. The server
detects a window is going to be totally or partially obscured, and knowing which
window has backing store enabled, the total contents of the window, or windows,
involved are saved. When the window which caused the saving to occur is unmapped,
the total contents of the window having the backing store is redrawn by the server
to the screen. The client program, after defining which windows are to have save
under and backing store attributes is not be involved in the implementation of these
services. The client program can, however, request the server to notify it when such
actions are performed.

2.6.2 Consequences of No Server Overlay Services

To demonstrate overlaying windows and what can follow when one or more are
removed from the screen, a program controlling four windows is used. The program
is in Fig.2.8. Four windows (mywindow, winl, win2 and ontop are created
using the window attributes of the myat structure with the valuemask variable
indicating which window attributes have been requested. Windows winl, win2
and ontop are children of the mywindow window. The program considers the
foreground and background of each window separately.

The background of windows mywindow, winl, and win?2 is set to be white
in colour. The background of the fourth window, ontop is set to be coloured black.

The background of the base window (mywindow) is tiled with a black and white
checker-board pattern which had been created externally, using the utility program
bitmap. This pattern is stored as a bitmap in the array backing_ bit, which
has variables backing width and backing_height associated with it. The
tiling property of a window repeats this 16 x 16 pixel across the 350 x 250 pixel
background of the mywindow window. First, the bitmap is converted into a Pixmap
named back by the Xlib function call XCreatePixmapFromBitmapData ().
This Pixmap is inserted into the background of mywindow by the XSetWindow
BackgroundPixmap () Xlib function call.

The foreground of windows winl, win2, and ontop is to be coloured black.
Such colouring is performed as a specific case of drawing on the foreground. X
Window requires a graphics context (GC) to be used when performing any draw-
ing operations on a window’s foreground. A GC itself has both a foreground,
and a background the colouring of both is required to be specified. This is done
in the program of Fig.2.8 using the Xlib functions XSetForeground () and
XSetBackground (), respectively.

2.6 Parts of Windows Can Disappear from View 25

First a window with a black and white checker—board pattern is
drawn. Two rectangles are then drawn on that window. The
background of each of these two windows is white in colour.

A GC is then created having a foreground colour of black.

This GC is used to paint the foreground of the two windows
black in colour. A third is created with a black background
and is displayed overlaying the two windows. This overlaying
window is then removed. This process is event driven with a 2
second delay in the event loop.

~
*

Coded by: Ross Maloney
Date: March 2011

¥ ¥ X X ¥ ¥ ¥ ¥ ¥ ¥ ¥ %

/

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <unistd.h>

#define backing width 16

#define backing_height 16

static unsigned char backing_bits[] = {
oxff, 0x00, Oxff, 0x00, Oxff, 0x00, Oxff, 0x00, Oxff, 0x00,
0oxff, 0x00, Oxff, 0x00, Oxff, 0Ox00, 0x00, Oxff, 0x00, Oxff,
0x00, Oxff, 0x00, Oxff, 0x00, Oxff, 0x00, Oxff, 0x00, Oxff,
0x00, Oxff};

int main(int argc, char xargv|[])

{

Display smydisplay ;
XSetWindowAttributes myat;

Window mywindow, winl, win2, ontop;
XWindowChanges alter ;

XSizeHints wmsize ;

XWDMHints wmhints;
XTextProperty windowName, iconName;
XEvent myevent ;

GC gc;

char xwindow_name = ”Uncover” ;

char xicon_name = "Uc”;

int screen_num , done;
unsigned long valuemask;

Pixmap back;

int count ;

/* 1. open connection to the server x/
mydisplay = XOpenDisplay (77);

/* 2. create a top—level window x/
screen.num = DefaultScreen (mydisplay);
myat . background_pixel = WhitePixel (mydisplay, screen_num);
myat. border_pixel = BlackPixel (mydisplay, screen_num);

Fig. 2.8 Creating four windows then removing two

26 2 Getting Something to Show

myat.event_-mask = ExposureMask;

myat.save_under = True;

valuemask = CWBackPixel | CWBorderPixel | CWEventMask
| CWSaveUnder;

mywindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
200, 300, 350, 250, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
valuemask , &myat);
back = XCreatePixmapFromBitmapData(mydisplay , mywindow,
backing_bits , backing_width ,
backing_height ,
BlackPixel (mydisplay , screen_num),
WhitePixel (mydisplay , screen_num),
DefaultDepth (mydisplay , screen_num));
XSetWindowBackgroundPixmap (mydisplay , mywindow, back);

/* 3. give the Window Manager hints x*/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , mywindow, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;
XSetWMHints (mydisplay , mywindow, &wmhints);
XStringListToTextProperty (&window_name, 1, &windowName);
XSetWMName (mydisplay , mywindow, &windowName);
XStringListToTextProperty (&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , mywindow, &iconName);

/* 4. establish window resources x/
gc = XCreateGC(mydisplay , mywindow, 0, NULL);
XSetForeground (mydisplay , gc, BlackPixel(mydisplay, screen_num));
XSetBackground (mydisplay , gc, WhitePixel(mydisplay, screen_num));

/* 5. create all the other windows needed x*/

winl = XCreateWindow (mydisplay , mywindow,

100, 30, 50, 70, 2,

DefaultDepth (mydisplay , screen_num),

InputOutput ,

DefaultVisual (mydisplay , screen_num),

valuemask , &myat);
win2 = XCreateWindow (mydisplay , mywindow,

100, 150, 150, 30, 2,

DefaultDepth (mydisplay , screen_num),

InputOutput ,

DefaultVisual (mydisplay , screen_num),

valuemask , &myat);
myat.background_pixel = BlackPixel (mydisplay, screen_num);

Fig. 2.8 (continued)

2.6 Parts of Windows Can Disappear from View

ontop = XCreateWindow (mydisplay , mywindow,
120, 40, 80, 130, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
valuemask , &myat);

/* 6. select events for each window x*/
/* 7. map the windows x/
XMapWindow (mydisplay , mywindow);
XMapWindow (mydisplay , winl);
XMapWindow (mydisplay , win2);

/* 8. enter the event loop */
done = 0;
count = 0;
while (done = 0) {
XFlush (mydisplay);
XNextEvent (mydisplay , &myevent);
sleep (2);
switch (myevent.type) {
case Expose:
count—++;
switch (count) {
case 1:
XFillRectangle (mydisplay, winl, gc, 0, 0, 50, 70);
XFillRectangle (mydisplay , win2, gc, 0, 0, 150, 30);
break;
case 3:
XMapWindow (mydisplay , ontop);
break;
case 6:
XUnmapWindow (mydisplay , ontop);
break;
case 9:
XUnmapWindow (mydisplay , win2);
break;
default:
break;
}

break;

/* 9. clean up before exiting */
XUnmapWindow (mydisplay , mywindow);
XDestroyWindow (mydisplay , mywindow);
XCloseDisplay (mydisplay);

Fig. 2.8 (continued)

28 2 Getting Something to Show

[®] Uncover B [#] Uncover

i
i

(a) Before overlaying window appears (b) Overlaying window in place

[®] Uncover [®] Uncover

i i

i

i

(¢) Overlaying window removed (d) Bottom window removed

Fig. 2.9 Effect of removing an overlaying window

Once the windows have been created, they are shown (mapped) onto the screen
using the XMapWindow () Xlib function. Figure 2.9 shows four snapshots of the
actions of the program of Fig. 2.8. Initially, the parent window mywindow and two of
its children winl and win?2 are on screen as shown in Fig. 2.9a. The checker-board
Pixmap on the background of the parent window is a dominate feature.

When a window becomes visible, the server will issue an exposure event notifica-
tion and the window of the client will be notified if such an event type has been set into
the attribute structure of the window. In the program of Fig. 2.8, this is done with the
myat.event_mask = ExposureMask statement and the inclusion of myat
in all the XCreateWindow () Xlib functions used to set up the four windows. A
property of X Window System is only after the server has issued the first exposure
event for a X program can any drawing occur on the foreground of any window of
that program. In most X programs, this first exposure will result from the program’s
parent window. In the program of Fig.2.8, the parent window is mywindow.

As with all X programs, the event loop controls the operation of the program
after initialisation and creation of windows and other resources such as GCs, etc.
In this loop of the program in Fig.2.8, a 2-second delay has been introduced by the

2.6 Parts of Windows Can Disappear from View 29

sleep () system call to enable the sequence of changes on the screen to be observed.
After the occurrence of the first exposure event, the foreground of windows winl
and win?2 is coloured black using the Xlib function XFillRectangle (). When
these windows first appear on the screen, they are coloured white (that is not shown
in Fig.2.9. When the third exposure event is processed, window ontop is mapped
to the screen as shown in Fig.2.9b. On the sixth exposure event, this most recently
displayed window (ontop) is removed from the screen. The effect is shown in
Fig.2.9c. Finally, the bottom window (win2 is removed from the screen with the
result shown in Fig.2.9d.

Although this program requested the server to use save under on all windows,
it was not provided. Figure 2.9¢, d show this not happening. In these figures, the white
areas are the backgrounds of windows winl and win2. These window portions were
overlayed by window ontop in Fig. 2.9b. Removing this window, destroyed the por-
tion of the foreground of the other windows covered. The background of those win-
dows then become visible. This is shown in Fig. 2.9 where window win?2 is removed
but the checker-board background pattern of the parent window is undisturbed.

If the requested save under service had been available, then Fig.2.9c would
have been the same as (a). The white portion in Fig. 2.9 would be black.

The principle here is window foreground content is lost when the foreground is
overlayed by another window. The background content of a window is not changed.

In the program of Fig. 2.8, exposure events were only counted to perform different
operations of the program. However, exposure event notifications contain a lot of
information about the cause of the event. This information can be used by a program
to manually redraw all, or part, of a window which has become uncovered.

2.6.3 Exercises

. Implement checking for errors in the code of Fig.2.8.

. Extend the program of Fig. 2.8 to check whether the server being used provides

all standard server services.

3. Execute the program of Fig. 2.8 on a server which does have save under support
and note the difference in behaviour to that depicted in Fig.2.9.

4. How can the occurrence of exposure events be monitored (as a debugging aid)
in programs such as in Fig.2.8?

5. If the contents of a window’s foreground can be lost by overlaying, how can
information being shown in a window be protected from occurrence of such
events?

6. Modify the program of Fig.2.8 so the server is at one fixed address on a network
and the client is at another.

7. Use the bitmap utility program to create two additional bitmaps then modify

the program of Fig.2.8 so one bitmap is tiled on the background of window

winl and the other on the background of win2. How does this modification
affect the mapping and unmapping of those respective windows?

N =

30 2 Getting Something to Show

8. Rewrite the program of Fig. 2.8 in a X Window toolkit of your choice. All facets
of the program must be implemented. What is the difference in length of the
original and toolkit versions of the program?

9. Modify the program of Fig.2.8 such the windows winl, win2, and ontop
overlay each other. Then remove each of these windows in several different
operations. Does the same foreground/background retention by the server apply
in all such removal operations?

10. Rewrite the code of Fig. 2.8 using XSetWindowBackgroundPixmap () and
XClearWindow () Xlib function calls. What advantages are derived by such
a approach (Hint: Consider the exposure event which are generated)? Where
would this approach be advantageous?

11. Implement the operation of the program of Fig.2.8 using something else than
the event mechanism used in this program.

12. Using Fig.2.8 as a model, write a program which generates 10 windows of
different size and position on screen produced by an algorithm of your choice.
Your program should then map all those windows onto a parent window, and then
remove (unmap) each window in a different order to which they were initially
mapped to the screen.

2.7 Changing a Window’s Properties

When a window is created by the XCreateWindow () or XCreateSimple-
Window () xlib calls, properties are associated with the window brought into
existence. Such properties can be explicitly assigned by parameters passed in the
creation statement or implicitly, mainly due to inheritance from the window’s parent.
As stated above, most practical X Window programs consist of multiple windows.
It is not unreasonable to expect windows created for each of the multiple tasks to
which each can be applied will need to change their properties after they are created.
Changes in a window’s circumstances in the overall execution of the program can
warrant changing the window’s properties.

A selection of functions available to change window properties after the window
has been created is shown in Table 2.1. This table also indicates the type of properties
each window possesses.

Once a window is displayed on the screen, its properties are fixed. Changed
properties will take effect when the window is next mapped to the screen using a
XMapWindow () call. So additional comments on some of those property changing
library calls follow.

The XReparentWindow () statement is useful to reuse a window. For
example, if a window has been set up as a cancel button, it can be used on
different windows to serve the function. First, this button is created with one window
as its parent as required with the XCreateWindow () statement. When use in this

2.7 Changing a Window’s Properties 31

Table 2.1 Xlib functions available to change an existing window’s properties

Xlib function Description
XSetWindowBackground () set background colour of a window
XResizeWindow () set horizontal and vertical size of window
XReparentWindow () re-link a window to a different parent
XMoveWindow () move a window relative to its parent
XSetWindowBorder () change the colour of a window’s border
XSetWindowAttributes () reset a window’s attributes
XWarpPointer () moving the pointer to a different window

window combination is no longer required, the button can be reused with a different
window, which involves linking this button window to the new parent window by
using XReparentWindow (). In re-linking a window, it automatically destroys
the previous parent—child relationship for a window can only have one parent at a
time. An advantage of re-parenting is unmapping the parent also removes any of its
child windows currently mapped to the screen.

The user of a X Window program can only interact with one window at a time.
This window is the one on which the mouse pointer lies. For example, keyboard
entry can only be directed to the window on which the pointer lies. If the program
requires windows to be accessed in a sequence in response to keyboard entry, then
the XWarpPointer () call can be used to position the pointer to the next window
in response to characters typed into the current window.

Situations occur when a window is too small in some situations. It is also
inappropriate to size a window for the largest possible size when it is created. The
XResizeWindow () call can be used to change the size of a window as a program
detects appropriate.

XSetWindowBackground () can be used to change the single colour of a
window’s background. There is no corresponding function to change the foreground
colour. If a Pixmap has previously been applied to the window’s background, it
is overwritten by a single colour as a consequence of this call. There is also a
XSetWindowBackgroundPixmap () call to apply a Pixmap to the background
of a window thus changing what was previously on the window’s background. Such
a Pixmap is tiled onto the background, repeating itself so as to completely cover
the window’s background if the Pixmap is of smaller dimension than the window’s
background. The foreground and background of a Pixmap cannot be changed once
the Pixmap is created.

Sometimes it is convenient to re-position a window on the screen under program
control. This done using the XMoveWindow () call. The position is specified in
coordinates defined relative to the parent of the window being moved. All windows
have a parent. The root window, which covers a whole screen, is the parent for at
least the first window in any X Window program.

32 2 Getting Something to Show

XSetWindowAttributes () canbe used to change the attributes of a window
which are allowed to be changed. When a window is created, the attributes allowed
to be changed are set. This call changes the selection for the window. Those attributes
not mentioned in this call are set to default values. An example where this call could
be used is to cancel generating an exposure event when this window is mapped to the
screen after the first. The window would be created with the exposure event enabled.
When the window exposure event occurs the XSetWindowAttributes () call
would be used to remove this event from occurring again for this window.

Xlib provides other window property changing functions. Xlib also provides func-
tions to change the characteristics of a Graphic Context (GC) after it is created.

2.8 Summary

This chapter lay the foundations for programming with Xlib by putting Xlib into the
X Window framework. It showed the basics of creation and display one, two, and
four windows. All X11 programs have a base window. The chapter also established
a framework for the steps which can be used to build a Xlib program. Both of these
aspects will be continually used through the remainder of this work. The previous
section gave a quick summary of some Xlib functions available to change properties
of a window after it is created.
The examples in this chapter give rise to the important principles:

e Server memory stores Xlib data structures associated with windows, GCs, Pixmaps,
etc.;

e The background of a window is not lost when another window overlays it;

e The foreground of a window is lost when a window is overlayed.

e The name of Xlib functions calls commence with an X and all significant sub-
words in the name commence with a capital.

e A window has both a foreground and a background.

e A Graphics Context has both a foreground and a background.

e A drawing operations on the foreground of a window has to be done using a
Graphics Context.

e Nothing can be drawn into the foreground of any window before the first occurrence

of an exposure event of the containing program.

The server is separate from the client program and the two pass messages to

perform their cooperation and that message passing can be across a network.

These points will be expanded upon in subsequent chapters.

Since Xlib became available there has been a number of additions to its capabilities
and a few revisions to existing approaches. Most of those revisions relate to creation of
the environment in which the X11 program operates. Window manager hint functions
are examples. This chapter used those latest revisions. Those revisions lengthen this
creation process but add flexibility. As with the examples here, most X11 program
contain at least a base window but as shown in this chapter is not always the case.

2.8 Summary 33

As will be show in subsequent chapters, X11 programs generally consist of multiple
windows which build upon the created base. As has been indicated here, the use of
additional windows does not proportional lengthening the source code of the program
containing multiple windows. X Window toolkits generally work in reduced length
of source code but do so by imposing their look and feel which inhibits flexibility of
choice by the programmer of the resulting program.

Chapter 3 ®)
Windows and Events Produce Menus Becit

This chapter shows how to program to produce a menu. A menu is a way of presenting
selection options to a program user. A so-called pull down menu will be used here
whereby such a menu drops down, or appears on the screen below a selection window,
called a button. A button is a particular case of a window. Implementing a pop up
menu whereby a menu appears at the mouse pointer which is positioned anywhere on
the screen, after a mouse button is pressed, follows the same development considered
here.

Menus are driven by events. In the X Window context, an event is produced when
something happens in the program. The programming of the program specifies what
such occurrences are to be and links such consequences to processing options. Such
events are asynchronous in they can occur at anytime and, if there are more can one
event type specified in the program, in any sequence. The X Window System stores
each such event in a list in the order of their occurrence. The program then takes the
events present and processes them one after the other. This mechanism enables the
events to occur at a frequency which greater than what the program can handle. This
arrangement simplifies the programming of event handling. In the context of menus,
the events of interest are those associated with pressing of a mouse button.

Events are central to the operation of a X program. They have already been used
in the program of Fig. 2.2. This chapter will show how to extend their use.

Menu events are inter-related to windows, the windows which form the menu. The
purpose of each window component follows from the decoration on the window. The
decorations considered in this chapter are colour and patterns of colour with lettered
labels being a type of pattern. Those colours and patterns can be used to label menu
components.

Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-3-319-74250-2_3) contains supplementary material, which is
available to authorized users.

© Springer International Publishing AG, part of Springer Nature 2017 35
R. J. Maloney, Low Level X Window Programming,
https://doi.org/10.1007/978-3-319-74250-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74250-2_3&domain=pdf
https://doi.org/10.1007/978-3-319-74250-2_3

36 3 Windows and Events Produce Menus

The ideas presented in this chapter are fundamental to X programming. Here,
only simple instances of buttons and events will be demonstrated in the context of
creating and manipulation of menus. These concepts are also be used in following
chapters.

3.1 Colour

Use of colour in graphics increases the quality of their appearance and hopefully
their utility. X Window supports colour in both a simple and more complex manner.

In its simplest form, an X Window program presents a series of bits which are
passed to the graphics hardware to generate colour. Today, a True Colour model is
commonly used on basic hardware. It consists of using 8 bits, or two hexadecimal
digits, to represent each individual primary colour. Those primary colours are red,
green, and blue. On a screen, they are applied in an additive manner. For example,
the colour white is produced by giving each of red, green, and blue their maximum
value of £f (hex). Black would be produced by assigning each of red, green, and
blue their minimum values of 0. In X Window, the value of the colour is passed as
a single variable composed of the red, green, and blue values concatenated together.
For example, the value £4c016 contains the value £4 for red, c0 for green, and 16
for blue.

In more complex colour system called Color Characterisation Convention or CCS,
the X Color Management System or Xcms is used to represent colour in a colour space.
This representation can be in a device-dependent or a device-independent form. The
device-independent form complies with the international standard on colour and takes
the properties of the human visual system into consideration. Several such models
exist, such as CIEXYZ, CIExyY, and CIELab, but the TekHVC model developed by
Tektronix is popular. In the Tektronix model, colour is described in terms of hue (or
colour), value (or intensity), and chroma (or saturation) and is denoted as such in
the TekHVC model. No matter which of the device-independent models are used to
denote a colour, the description has to be converted to red, green, and blue values for
representation on a screen.

The XcmsLookupColor () function is part of the Xcms services provided
by Xlib. This function enables a colour definition in one colour space to be con-
verted to another. The program in Fig.3.1 shows conversion of a RGB colour defi-
nition (the device-dependent definition) to a TekHVC definition, and then perform-
ing the conversion the other way. In the TekHVC model, hue (H) has the range
0-360°, while value (V) and chroma (C) have the range 0—100 percent. Each of hue,
value, and chroma are stored as double length floating point quantities while red,
green, and blue are stored as short integers by the XcmsColor structure used by
XcmsLookupColor (). This structure is defined in the X11 /Xcms . h header file.
In the program of Fig.3.1, the results of the conversions are printed on the terminal
with no window appearing on the screen.

3.1 Colour 37

/* This program converts colours between different Xcms colour
* spaces. First a RGB colour is converted to its

* representation in the TekHVC colour space. Then a colour
% defined in the TekHVC colour space is converted to RGB.

* The results of each conversion are printed on the terminal.
*

*

Y

Coded by: Ross Maloney
Date: 13 September 2012

*/

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/Xcms.h>
#include <stdio.h>

int main(int argc, char xargv|[])

{
Display smydisplay ;
XcmsColor xexact , xavailable;
Status status;
int screen_num ;
int red, green, blue;
char rgb[10], tekcolour[40];
XcmsFloat h, v, c;

/* 1. open connection to the server x/
mydisplay = XOpenDisplay (””);

/* 2. create a top—level window x/
screen_num = DefaultScreen (mydisplay);
exact = malloc(sizeof(XcmsColor));
available = malloc(sizeof(XcmsColor));
/* 3. give the Window Manager hints x/
/* 4. establish window resources x*/
/* 5. create all the other windows needed */
/* 6. select events for each window x/
/* 7. map the windows */
/* 8. enter the event loop */

printf(”default_white_.=%x\n”, WhitePixel(mydisplay, screen_num));
red = 0Xc4;
green = Oxde;
blue = 0x12;
sprintf (rgb, "#%02x%02x%02x” , red, green, blue);
printf("rgb.="%s\n”, rgb);
status = XcmsLookupColor (mydisplay ,
XDefaultColormap (mydisplay , screen_num),
rgb, exact, available, XcmsTekHVCFormat);
h = exact—>spec.TekHVC.H;
v = exact—>spec.TekHVC.V;
¢ = exact—>spec.TekHVC.C;

Fig. 3.1 A program to convert between Xcms colour spaces

38 3 Windows and Events Produce Menus

switch (status) {
case XcmsSuccess:
printf(” Success: _h.=%1f ..v.=%lf__c.=%1f\n”, h, v, v);
break;
case XcmsSuccessWithCompression:
printf(” Compressed: .ho=%1f_ .v.=%1f_.c.=%1f\n”, h, v, v);
break;
case XcmsFailure:
printf (”Xcms_failure\n”);
break;
default:
printf(” This_should _.never_happen\n”);

= 192.4;
= 82.6;
c = 56.1;
sprintf (tekcolour, "TekHVC:%5.1f/%4.2f/%4.2f”, h, v, c);
printf(” tekcolour.=%s\n”, tekcolour);
status = XcmsLookupColor (mydisplay ,
XDefaultColormap (mydisplay , screen_num),
rgb, exact, available , XcmsTekHVCFormat);
red = exact—>spec .RGB.red;
green = exact—>spec.RGB.green;
blue = exact—>spec.RGB. blue;
switch (status) {
case XcmsSuccess:
printf(”Success:.red.=9%x..green_—=%x.__blue_=Y%x\n" ,
red, green, blue);
break;
case XcmsSuccessWithCompression:
printf(” Compressed:.red =%x..green_=%x__.blue = %x\n" ,
red, green, blue);
break;
case XcmsFailure:
printf(”Xcms._failure\n”);
break;
default:
printf(” This_should.never._happen\n”);

< B

}

/* 9. clean up before exiting x/
XCloseDisplay (mydisplay);

}

Fig. 3.1 (continued)

Xcms allowance RGB values of 16 bits in contrast to the 8 bits used with True
Colour. For use in True Colour, the high-order two hex digits of the 16-bit red, green,
and blue values are used. For backward compatibility, the XcmsLookupColor ()
function can use the #rrggbb manner of specifying an RGB value for conversion. In
most cases, the default colourmap for the computer can be used with access provided
through the DefaultColormap () function.

3.1 Colour 39

AsshowninFig.3.1, callsto XcmsLookuoColor () canhave three outcomes. A
XcmsSuccess is returned if the conversion was successful, while XcmsFailure
is returned if unsuccessful. With XcmsSuccessWithCompression, the con-
verted colour was outside of the colours which the current computer could display
but a colour of closest fit was returned for display.

The printing out of the value returned by the WhitePixel () call gives an
indication of the number of bits being used on the colour graphics hardware of the
computer which executed the call. This follows as white is generated by having
red, green, and blue at their maximum values, and WhitePixel () returns the
maximum value.

The use of RGB values to colour different parts of windows, standard graphics,
and text will be demonstrated in a number of the example program which follow
from here.

3.1.1 Exercises

1. Modify the program of Fig. 3.1 so the given RGB values are converted to their cor-
responding representation in the CIEXYZ, CIExyY, CIEuvY, CIEuv, and CIELab
colour spaces.

2. Modify the program of Fig.3.1 so the RGB values result in a XcmsFailure
status being returned.

3. Change the program of Fig.3.1 so the RGB values specified result in a
XcmsSuccessWithCompression status being returned.

4. Although the program of Fig.3.1 does not generate a window on the screen, the
X11 header files X1ib.h and Xutil.h are required. Why?

3.2 A Button to Click

In this example, the simple window of Fig. 2.2 is extended to contain a button
as shown in Fig.3.2. The button has a background colour of red and contains the
labelling quit in a yellow font. Clicking a mouse button while the pointer is on this
window button will terminate the program.

This example creates a sub-window to the main window and then links it to the
mouse button click for this window alone. This event is then processed in an event
loop to quit the program. Also, the foreground and background of the window are
changed from their default colours of black and white, respectively. Figure 3.2 shows
what appears on the screen.

Because the button window has the main window specified as its parent in the
XCreateWindow() call which generates the button window, the location of this win-
dow specified by the third and fourth parameters of the call is relative to the parent
window.

40 3 Windows and Events Produce Menus

Fig. 3.2 A window with a
quit button

There are two means of controlling the colour used for a window. Foreground and
background pixel values can be used. They are available in the window attribute data
structure XSetWindowAt tributes whichisused withthe XCreateWindow ()
call. The colours can also be given in the XGCValues data structure which is used
with the XCreateGC () call to create a Graphics Context (GC). In both cases,
the foreground and background members are of type 1ong which indicates they are
32-bit values. In both cases, the values set in the data structures have different effects.
In the case of the XSetWindowAttributes data structure, the values set there
remain on the screen for the duration of existence of the window created using them.
Since a GC is used with each drawing operation on a window, and there can be many
drawing operations on a window (as will be shown subsequently here), values set
into a XGCValues data structure tend to be localised in their affect. The rule is,
once the values in either data structure are used, they remain in effect until the values
are changed and the data structure is referenced in a screen operation.

Any number of GCs can be created. However, since they are stored in the
server, care should be exercised to not overload the server’s capacity. Only one
GC can be used at any one time with a window. But the GC associated with any
window at the time of any drawing operation can be changed prior to the draw-
ing operation. Manipulation of GCs will be considered in a following example.
In the present example (Fig.3.3), the foreground and background members of the
XSetWindowAttributes are used.

In the example in Fig. 2.1, the BlackPixel() and WhitePixel() macros are used
to set contrasting values for the foreground and background, respectively. These
macros (being linked to the screen in use) are guaranteed to give contrast between
the foreground and background. But in this example, the background is set to red.
The 32 bits of the background pixel value are divided into 8 bits to represent the
respective red, green, and blue components of the required colour. As opposed to

3.2 A Button to Click 41

using these red, green, and blue values directly, X Window favours the use of indices
to a colourmap for the screen to be used.

X Window favours the use of a colour-name database to obtain the red, green, and
blue values for any colour to be shown on a screen. Those values are accessed by nam-
ing the colour. On UNIX systems, the file which shows all the available colour names
and theirred, green, and blue component coloursis /usr/X11R6/1ib/X11/rgb.
txt. For fast access, this information is compiled into a X Window server. It is a
two-step process to obtain the value for use as the foreground or background of a
window or GC. First, the red, green, and blue values corresponding to the colour
name are extracted, together with the corresponding values of the nearest colour that
the server can provide. This can be done using a XLookupColor () call to obtain
the red, green, and blue component colours, then using a XAllocColor () call
to form the required value to assign to the foreground or background pixel value.
Alternatively, both steps can be done using a XAllocNamedColor () call. This
latter approach is used in the example in Fig.3.3.

This example calls for the button to contain the label guit. The text for this label
will be drawn into the button window. Text is drawn in the currently loaded font in
the foreground of a window. A GC is necessary for all drawing, and text is drawn
on to a window. A default GC could be used. By default contrasting foreground and
background colours (usually black and white, respectively) are provided by a default
GC. But members of a default GC must not be changed. Since the text is to be in a
yellow colour, it is necessary to create a specific GC for drawing this text. In creating
a GC, it is important both the foreground and background remembers of the GC
should always be set.

A GC iscreated from a XGC Values data structure. When a GC is created, members
in the XGCValues data structure which are not assignment explicit values are given
default values. One member of this data structure is the font to be used when text
operations are performed using the corresponding GC. There is a default font which
is implementation dependent. For simplicity, this default font is used in this example.

Operations using a GC, such as drawing lines or displaying text, are event driven.
The event used in this example is the exposure event which occurs when a window
becomes visible. This event, plus one for a mouse click, must be associated with the
button window when it is created as is expressed via the event mask applied. These
assignments enable the event loop of the code in Fig. 3.3 to use the Exposure case
of the switch statement to draw the text into the button when it first appears. The
ButtonPress case clause is executed when a mouse button is clicked. Figure 3.2
shows the result of this program on the screen.

Clicking of any mouse button on the button causes the program to exit. This is
a result of the button event being set for the button window when it was created.
A more specific left-, middle-, or right-hand mouse button event is available under
Xlib, but a general case was used in this instance. The same mouse button click,
outside of the button window but inside the main window, does not to have any
effect. Thus, the button click event is included in the XSetWindowAttributes
data structure (member event_mask) of the button window, but not for the main
window. The main window has no events associated with it so no events are set in its

42

3 Windows and Events Produce Menus

/* This program creates a button, labelled ’quit’ located in a
* window. Clicking the mouse on this button terminates the

* execution of this program. The button has a red background
* and the labelling is in a yellow font. The window itself has
* a default white background.

sk

* Coded by: Ross Maloney

% Date: June 2008

*/

#include <X11/Xlib.h>
#include <X11/Xutil.h>

int main(int argc, char xargv([])

{

Display xmydisplay ;
XSetWindowAttributes myat, buttonat;
Window mywindow, button;
XSizeHints wmsize ;

XWDMHints wmhints ;
XTextProperty windowName, iconName;
XEvent myevent ;

XColor exact, closest;

GC mygc;

XGCValues myvalues;

char xwindow_name = " Quit” ;

char xicon_name = 7Qt”;

int screen_num , done;

unsigned long valuemask;

/% 1. open connection to the server x/
mydisplay = XOpenDisplay (7");

/* 2. create a top—level window x/

screen.num = DefaultScreen (mydisplay);
myat.background_pixel = WhitePixel(mydisplay, screen_num);
myat. border_pixel = BlackPixel(mydisplay, screen_num);

valuemask = CWBackPixel | CWBorderPixel;

mywindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
200, 200, 350, 250, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
valuemask , &myat);

/% 3. give the Window Manager hints %/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , mywindow, &wmsize);
wmhints. initial_state = NormalState;

Fig. 3.3 Code which creates a window with a coloured button for quitting

3.2 A Button to Click

wmhints. flags = StateHint;

XSetWMHints (mydisplay , mywindow, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , mywindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , mywindow, &iconName);

/* 4. establish window resources x/
XAllocNamedColor (mydisplay ,
XDefaultColormap (mydisplay , screen_num),
?yellow”, &exact, &closest);
myvalues. foreground = exact.pixel;
XAllocNamedColor (mydisplay ,
XDefaultColormap (mydisplay , screen_num),
?red”, &exact, &closest);
myvalues . background = exact. pixel;
valuemask = GCForeground | GCBackground;
myge = XCreateGC(mydisplay , mywindow, valuemask, &myvalues);

/* 5. create all the other windows needed */
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;

buttonat.border_pixel = BlackPixel(mydisplay, screen_num);
buttonat . background_pixel = myvalues.background;
buttonat.event_-mask = ButtonPressMask | ExposureMask;

button = XCreateWindow (mydisplay , mywindow,
10, 10, 100, 20, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
valuemask , &buttonat);

/* 6. select events for each windows %/
/* 7. map the windows %/

XMapWindow (mydisplay , mywindow);

XMapWindow (mydisplay , button);

/+* 8. enter the event loop x/
done = 0;
while (done = 0) {
XNextEvent (mydisplay , &myevent);
switch (myevent.type) {
case Expose:
XDrawlmageString (mydisplay , button, mygc, 35, 15, ”quit”,
strlen (" quit”));
break;
case ButtonPress:
XBell (mydisplay , 100);
done = 1;
break;
}

}

Fig. 3.3 (continued)

44 3 Windows and Events Produce Menus

/% 9. clean up before exiting */
XUnmapWindow (mydisplay , mywindow) ;
XDestroyWindow (mydisplay , mywindow);
XCloseDisplay (mydisplay);

}

Fig. 3.3 (continued)

XSetWindowAttributes data structure. As a result, a mouse click on this main
window but outside of the button has no effect. The XMapWindow () calls for the
main and button windows result in both windows appearing when the program starts
with an Exposure event.

3.3 Events

Events occur as a result of X Window activity. The aim of X programming is to
take advantage of events as a means of human interaction with the program. For
example, moving the mouse pointer above a button which appears on a window
and then physically pressing a button on the mouse, an event is sent in to the
X Window System. Determining what the event is and how to process its occur-
rence is performed by the X Window application, i.e. by client computer code.
When an event occurs, a notification message is sent to the client program by the
X Window System. There are six overall things to remember about events. They are:

events are centrally captured by the X Window System;

X then notifies the program which has been associated with the event;

a single event results in a single notification message;

the event notification message indicates what type of event it is;

depending on what type of event, different additional information is passed in the
notification message;

e the window in which the event occurred is identified in the notification message.

Appendix E of Nye (1993) is the reference on all events which can occur and the
information that is contained in each notification message.

An example to demonstrate processing of a mouse click event is given in Fig. 3.4
with the screen output shown in Fig. 3.5. A mouse click is a very common event used
for communication between a human and the windows-based program. This might be
selecting an item from a menu list through a mouse click. In the example in Fig. 3.4,
the program starts by showing a yellow window. When a mouse click occurs, the
coordinates of the position of the mouse pointer are printed on the console display
and a red window containing a green window inside it is displayed on this point.
This happens no matter what mouse button is clicked. However, when the left-hand
mouse button is pressed, the computer also rings the bell. If the right-hand button is
used and the mouse pointer is over the green window contained in the red window,

3.3 Events 45

/* This program consists of a base window coloured yellow. When
* the mouse * pointer is over this window and a mouse button is
% pressed, the coordinates * of the pointer relative to the
* window is printed on the console window and a * red window
* containing a green window is drawn at that point. If the
* mouse button pressed is the left-hand mouse button, then the
* beep of the computer is also sounded.

If the right—hand mouse
* button is clicked over the green window, the text ’ouch!’ is
* also printed on the display console window.
*
% Coded by: Ross Maloney
* Date: June 2008

*/

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <stdio.h>

int main(int argc, char sxargv)

{

Display smydisplay ;
XSetWindowAttributes baseat , redat, greenat;
Window baseW, redW, greenW;
XSizeHints wmsize ;

XWDMHints wmhints ;
XTextProperty windowName, iconName;
XEvent abc, myevent;

XColor exact , closest;

GC baseGC;

XGCValues myGCValues;

char *window_name = ”Events” ;

char xicon_name = "Ev”;

int screen_num , done;

int X, V;

unsigned long valuemask, red, green;

/* 1. open connection to the server x/
mydisplay = XOpenDisplay (7”7);

/* 2. create a top—level window x/

screen-num = DefaultScreen (mydisplay);
XAllocNamedColor (mydisplay ,

XDefaultColormap (mydisplay , screen_num),

Vyellow” , &exact, &closest);
baseat . background_pixel = closest.pixel;
baseat.border_pixel = BlackPixel(mydisplay, screen_num);
baseat .event_mask = ButtonPressMask;
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;

Fig. 3.4 A program processing mouse button click events

46

3 Windows and Events Produce Menus

baseW = XCreateWindow (mydisplay ,

RootWindow (mydisplay ,

300,
DefaultDepth (mydisplay ,

300,

screen_num) ,

350, 400, 3,

screen_num) ,

InputOutput ,

DefaultVisual (mydisplay ,

screen_num) ,

valuemask , &baseat);

/* 3.

wmsize . flags = USPosition |

give the Window Manager hints =/
USSize;

XSetWMNormalHints (mydisplay , baseW, &wmsize);

wmhints. initial_state
wmhints. flags StateHint ;
XSetWMHints (mydisplay , baseW,

XStringListToTextProperty(&window_name ,

NormalState;

&wmhints) ;
1, &windowName) ;

XSetWMName (mydisplay , baseW, &windowName);

XStringListToTextProperty(&icon_name ,

1, &iconName);

XSetWMIconName (mydisplay , baseW, &iconName);

/* 4. establish
XAllocNamedColor (mydisplay ,

window resources */

XDefaultColormap (mydisplay , screen_num),

” red77 s
red closest . pixel;
XAllocNamedColor (mydisplay ,

XDefaultColormap (mydisplay ,

&exact , &closest);

screen_num),

7?green” , &exact, &closest);

green = closest.pixel;
/* 5.
/* 6.
YERNE
XMapWindow (mydisplay , baseW);
/* 8. enter the
done = 0;
while (done = 0)

XNextEvent (mydisplay , &abc);

switch (abc. type)
case ButtonPress:

{

create all the other windows needed x*/
select events for each window x*/
map the windows x/

event loop */

if (abc.xbutton.button = Buttonl) XBell(mydisplay, 100);
if (abc.xbutton.button == Button3
&& abc.xbutton.window == greenW) printf(”ouch!\n”);
x = abc.xbutton.x;
y = abc.xbutton.y;
if (abc.xbutton.window == baseW)
printf(” Yellow._window:.”);
if (abc.xbutton.window = redW) printf(”Red_window:.”);
if (abc.xbutton.window = greenW)
printf(” Green_window:.");
printf ("x=%d._y.=%d\n”, x, y);

Fig. 3.4 (continued)

3.3 Events 47

redW = XCreateSimpleWindow (mydisplay , baseW, x, y,
100, 50, 1,
BlackPixel (mydisplay , screen_num), red);
XMapWindow (mydisplay , redW);
XSelectInput (mydisplay , redW, ButtonPressMask);
greenW = XCreateSimpleWindow (mydisplay , redW, 10, 20,
40, 20, 1,
BlackPixel (mydisplay , screen_num), green);
XMapWindow (mydisplay , greenW);
XSelectInput (mydisplay , greenW, ButtonPressMask);
break;

/* 9. clean up before exiting =/
XUnmapWindow (mydisplay , baseW);
XDestroyWindow (mydisplay , baseW);
XCloseDisplay (mydisplay);

Fig. 3.4 (continued)

the text ouch! is typed on the control console window from which the program as
launched. The program is terminated by means outside of this particular program.

In this program, the XCreateSimpleWindow () function is used to create the
red and green windows. This is a simpler call to setup a window in comparison to the
XCreateWindow () which is used for the yellow window, and most of the other
examples in this book. But associated with such simplification comes restrictions.
A window created using XCreateSimpleWindow () inherits its depth, class,
visual, and its cursor from its parent, and all its properties are undefined including
events. It is wise to know how to use both forms for setting up a window so the
appropriate selection can be made for each situation which may occur. Notice that
the placement of the red and green windows are relative to their respective parents.
Because the red window is dynamically placed on the yellow window, the x and y
coordinates for the pointer at the moment the mouse button is pressed is used for
that positioning. The coordinates of a mouse position are relative to the window over
which the mouse pointer is located. In the case of the green window, its position is
fixed relative to its red window parent.

The program of Fig. 3.4 also prints the window (yellow, red, or green) in which
the mouse pointer was located when its button was pressed. This was implemented
using three if statements as opposed to a single switch statements which would
not work as required. Can you think of the reason why the switch statement is
inappropriate in this situation?

The XAllocNamedColor () function is used to generate the hardware bit pat-
terns which produce the required colours. These are stored in variables of type
XColor. The pixel field of such a structure is then used in the function call
which invoke the colour.

48 3 Windows and Events Produce Menus

Fig. 3.5 Dynamic window

placement following a [®] Events
mouse click

The base window requires certain properties to be set. In the program example, the
colour of the window’s background, the colour of the window’s border, and which
events the window is interested are specified. Only events which are specified in the
properties of the window are notified by the X Window System as occurring in this
window. In the example, events are defined for the base (yellow) window but not the
red and green windows. The XSelectInput () function performs this linkage.

All events are captured and queued by the X Window System for processing by
the application program. The program takes the next event from the queue by using
the XNextEvent () call as shown in the code of Fig.3.4. Since events are added
at the opposite end of the queue from where they are taken for processing by the
application program, events do not get lost if the application does not process them
faster than the arrival time of successive events.

Figure 3.5 shows what appears on the screen when the program of Fig.3.4 is
operating. Notice the red window is contained entirely within the yellow window
and is truncated if it otherwise extends outside the yellow window. This results from
the dynamic placement of the red window. The coordinates printed on a terminal by
this program are relative to the window over which the mouse pointer is located. In
this particular example with three windows, there are three coordinate systems, each
with the same unit, a unit of pixels. The program of Fig. 3.4 takes those coordinates
and then uses them as the position for locating the red/green window combination
on the yellow window. So mouse button clicks on red or green windows, give small
numbers (as the coordinates) in comparison to yellow window which is larger in

3.3 Events 49

size. Remember, the origin of the coordinate system of each window is at the top
left-hand corner of the window. No graphics context (GC) is needed in any of the
three windows.

Printing the name (colour) of the window in which the mouse button was clicked
while operating the program showed windows loose their name. When the mouse
is first clicked on the yellow window, the coordinates printed are given as relating
to the yellow window. A red/green window is then displayed at this point. If the
mouse is moved over the red or green window and clicked, the coordinates printed
are identified (by the printf statements in the program) as belonging to the red or
green window. If the mouse is then moved to the red or green window and the
button pressed, the correct window is identified. However, if the mouse button is
not clicked over the last red/green window which last appeared, then the coordinates
are printed correctly, but the identification of the window does not appear. The X
Window System event mechanism appears only to have a single depth of window
identification tracking. Is this a bug in the X Window System, or a feature? Despite
this apparent lost of identification, the coordinates are still relative to the window
which is visibly under the mouse pointer when the button is pressed.

3.3.1 Exercises

1. Modify the program of Fig. 3.4 so a different mouse pointer Pixmap is used when
the mouse is in the yellow, red, and green windows.

2. Modity the program of Fig. 3.4 to include the label Cancel centrally located in
black characters on the green window (now acting as a button)

3. Remove the XSelectInput () function calls in the program of Fig.3.4 and
explain the resulting behaviour of the program.

4. Using the program of Fig.3.4 as a model, write a program with the same yellow,
red, and green windows which prints on the terminal the x and y coordinates of
the position of the mouse pointer when the left-hand mouse button is clicked.
What do you notice about those coordinates in each window?

3.4 Menus

Menus are a means of enabling a program user to control the operation of the program.
This is done by presenting the user with a list of buttons as a selection, which the user
clicks the mouse button while the pointer is on the required button. Such buttons are
collected together, and selection of one button from a menu can lead to another menu
which provides further selections. By using such nesting of menu selections, a tree
of decisions can be presented to the program’s user, successive selections (menus)
being presented through selections previously made. The programmer is responsible

50 3 Windows and Events Produce Menus

for creation of such decision trees, collecting together appropriate decisions, linking
one decision to the next, and presenting each to the program user.

Because menus are composed of buttons, they present a source of binary input to
the program. A particular selection is made or it is not made.

Menus are handled well in toolkits. By contrast, Xlib has no menus. But Xlib
has the resources to create menus. When toolkits (such as Xt) are used to create a
menu, they impose certain characteristics which the programmer works with, and
which are visible in the final program. For example, the appearance of the menu
buttons, how they are decorated individually and collectively, how they pop-up on
the screen, etc., are determined by the toolkit with limitation on programmer control.
The programmer accepts these constraints as a trade-off against ease of creating a
menu structure for the program. By using Xlib directly to create menus, the freedom
of Xlib can be used to generate the menu which has exactly the characteristics desired
by the programmer.

In the following two examples, the use of Xlib to create simple menus is demon-
strated. Each example uses different techniques. Although each example is complete,
each could be extended to encompass more complex selection situations. Each starts
with a single button and builds upon this button as in the example of Fig.3.3.

3.4.1 Text Labelled Menu Buttons

The program output shown in Fig. 3.7 consists of a main window and a selection but-
ton. The selection button is green in colour with the label selection in pink characters.
By clicking the left-hand mouse button on this selection button, an option menu of
flowers, pets, and quit appears, each option labelled in blue with a pink background.
On moving the mouse pointer to each option, the background changes to red. Click-
ing the right-hand mouse button on the guit option terminates the program. The
implementation code is in Fig. 3.6.

Page 528 of Nye (1995) discusses three manners of creating menus. The approach
adopted here is to form a single pop-up window to contain all the selections which
are to be made available. The individual selections are them inserted into this win-
dow using the XDrawImageString () call. A property of the XDrawImage
String () call is the characters contained in the string are written into a window
using the foreground colour of the specified GC. A bounding box for such a string
is written to the window in the background colour specified in the GC. By appro-
priate placement of those strings, the foreground colour of the containing window
can be used to separate each option. When the mouse pointer is in proximity to a
string (and hence the option), the string can be re-drawn using a GC with contrast-
ing background (and foreground) colour assignments. From the coordinates of the
mouse pointer within the option containment window, the option being selected can
be determined by a simple calculation.

3.4 Menus 51

S~
*

This program consists of a main window on which is placed a
selection button. The selection button is green in colour
with the label ’selection’ in pink characters. By clicking
the left mouse button on this selection button an option menu
of ’flowers’, ’pets’, and ’quit’ appears, each option
labelled in blue with a pink background. On moving the mouse
pointer to each option, the pink background of the option
changes to red. Clicking the right mouse button on the ’quit’
option terminates the program.

Coded by: Ross Maloney
Date: July 2006

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

*
~

#include <X11/Xlib.h>

#include <X11/Xutil.h>

#include <string.h>

static char xlabels [] = {”Selection”, ”flowers”, "pets”, 7" quit” };

static char xcolours[] = {”green”, ”"pink”, ”"blue”, "red” };

int main(int argc, char xargv)

{

Display smydisplay ;
XSetWindowAttributes myat, buttonat, popat;
Window mywindow, button, optAl, panes|[3];
XSizeHints wmsize ;

XWMHints wmhints;

XTextProperty windowName, iconName;

XEvent myevent ;

X Color exact , closest;

GC myGCl, myGC2, myGC3;

XGCValues myGCvalues;

char sxwindow_name = ” Select”;

char xicon_name = " Sel”;

int screen_num , done, 1i;

unsigned long valuemask;

int labelLength [4], currentWindow ;

unsigned long colourBits [6];

/* 1. open connection to the server x/
mydisplay = XOpenDisplay (7”7);

/* 2. create a top—level window */

screen_.num = DefaultScreen (mydisplay);

for (i=0; i<4; i++) labelLength[i] = strlen(labels[i]);
colourBits [0] = WhitePixel (mydisplay, screen_num);
colourBits [1] = BlackPixel (mydisplay, screen_num);

myat. background_pixel = colourBits [0];

myat. border_pixel = colourBits [1];

valuemask = CWBackPixel | CWBorderPixel;

Fig. 3.6 A window with a coloured button with a menu option for quitting

52 3 Windows and Events Produce Menus

mywindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
300, 300, 350, 400, 3,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
valuemask , &myat);

/*x 3.give the Window Manager hints %/
wmsize . flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , mywindow, &wmsize);
wmhints. initial _state = NormalState;
wmhints. flags = StateHint;
XSetWMHints (mydisplay , mywindow, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , mywindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , mywindow, &iconName);

/* 4. establish window resources %/
for (i=0; i<4; i++) {
XAllocNamedColor (mydisplay ,
XDefaultColormap (mydisplay , screen_num),

colours[i], &exact, &closest);
colourBits [i4+2] = exact.pixel;
}
myGCvalues. background = colourBits [2]; /* green */
myGCvalues. foreground = colourBits [3]; /* pink %/

valuemask = GCForeground | GCBackground;
myGCl = XCreateGC (mydisplay , mywindow, valuemask, &myGCvalues);

myGCvalues. background = colourBits [3]; /* pink x/

myGCvalues. foreground = colourBits [4]; /% blue x/

myGC2 = XCreateGC (mydisplay , mywindow, valuemask, &myGCvalues);
myGCvalues. background = colourBits [5]; /*red x/

myGC3 = XCreateGC (mydisplay , mywindow, valuemask, &myGCvalues);

/* 5. create all the other windows needed %/
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
buttonat.background_pixel = colourBits [2]; /+ green x/
buttonat.border_pixel = colourBits [1];

buttonat.event_-mask = ButtonPressMask | ExposureMask
| ButtonlMotionMask;
button = XCreateWindow (mydisplay , mywindow,
20, 50, 70, 30, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
valuemask , &buttonat);
popat.border_pixel = colourBits [1];
popat.background_pixel = colourBits [3]; /x pink x/
popat.event_mask = 0;

Fig. 3.6 (continued)

3.4 Menus 53

optAl = XCreateWindow (mydisplay , mywindow,
50, 60, 100, 150, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
valuemask , &popat);
popat.event_mask = ButtonPressMask | EnterWindowMask
| LeaveWindowMask | ExposureMask;
for (i=0; i<3; i++)
panes [i] = XCreateWindow (mydisplay , optAl,
0, i*50, 100, 50, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
valuemask , &popat);

/* 6. select events for each window x*/
/* 7. map the windows s/
XMapWindow (mydisplay , mywindow);
XMapWindow (mydisplay , button);

/* 8. enter the event loop x*/
done = 0;
while (done = 0) {
XNextEvent (mydisplay , &myevent);
switch (myevent.type) {
case Expose:
XDrawlmageString (mydisplay , button, myGCl, 10, 17, labels[0],
labelLength [0]);
break;
case ButtonPress:
XMapWindow (mydisplay , optAl);
currentWindow = 0;
for (i=0; i<3; i++) {
XMapWindow (mydisplay , panes[i]);
XDrawlmageString (mydisplay , panes[i],
myGC2, 0, 10, labels[i+1], labelLength[i+1]);

if (myevent.xbutton.window = panes[2]) done = 1;
break;
case EnterNotify:
XSetWindowBackground (mydisplay , panes[currentWindow],
colourBits [3]);

XClearWindow (mydisplay , panes[currentWindow|);

XDrawlmageString (mydisplay , panes|[currentWindow],
myGC2, 0, 10, labels[currentWindow+1],
labelLength [currentWindow +1]);

for (i=0; i<3; i++)

if (panes[i] = myevent.xcrossing.window) {
currentWindow = 1i;
break;

Fig. 3.6 (continued)

54 3 Windows and Events Produce Menus

XSetWindowBackground (mydisplay , myevent.xcrossing .window,
colourBits [5]);
XClearWindow (mydisplay , myevent.xcrossing .window);
XDrawlmageString (mydisplay , panes[currentWindow],
myGC3, 0, 10, labels[currentWindow+1],
labelLength [currentWindow +1]);
break;

/* 9. clean up before exiting */
XUnmapWindow (mydisplay , mywindow);
XDestroyWindow (mydisplay , mywindow) ;
XCloseDisplay (mydisplay);

Fig. 3.6 (continued)

The mouse gives the user control of the operation of this program. The mouse
generates events. It is the events which control this program. Some of those events
are generated by the mouse. Another event, an exposure event, is also used. The
design of the program must consider how these events are to be generated to provide
the required level of user control.

Fig. 3.7 A selection menu

3.4 Menus 55

In this example, three GCs are used; one for the selection button, another for
each option, and the third for when the mouse pointer is over a menu option. Three
windows are to be created. One window is the top-level window in which the selection
button is to be positioned. Another is the window which forms the button itself, and
the third is the window to contain the selection options available. Although a separate
XSetWindowAttributes structure could be used for each of the three windows
which compose this example, only one is used here for efficiency in writing the
program and for subsequent memory usage when the program is executing.

This program starts with the top-level window and the selection button on screen.
An Expose event is used to provide a label on this button. By clicking the left-hand
button of the mouse when the mouse pointer is above the button, the selection menu
appears on screen. Using a button click means the button window will need to respond
to a ButtonPress event. The selection window with its three options should then
appear on screen. But this window is not permanent; it should be present while a
selection is being made, and up to the time when a selection is made. This can be
achieved by having the selection window accept a ButtonRelease event. In the
program, upon receiving this button release event, the selection window would be
unmapped (from the screen). This selection menu would appear on screen when the
left mouse button is pressed over the selection window, the mouse would be moved
over the selection menu while holding down this left mouse button, and the mouse
button released when the pointer is over the required selection option.

How should the program be constructed so as to accept the selection option? A
MotionNotify event could be assigned to the selection window. Then, with each
movement of the mouse while the mouse button is depressed, an event is transmitted
from the server to the client. This event is transmitted together with its x and y coor-
dinate of occurrence, relative to a window, which in this case is the selection window.
If the selection options were arranged as lines of text saying flowers, pets, and quit,
the program could calculate which line of text (option) the mouse pointer was over.
The ButtonRelease event is also transmitted with the x and y coordinate of the
mouse pointer when the mouse button is released. From this position information,
the line of text (option) over which the mouse pointer was positioned at the time
of the release is calculated, thus determining the option selected, and the selection
window then be unmapped. But the MotionNotify and the ButtonRelease
both give the same coordinate information. The reason for considering these two
events is the Mot ionNotify event indicates the currently proposed option, and
the problem state this option (text) should be shown on a red-coloured background as
opposed to the unselected background of pink. The But tonRelease is necessary
to indicate a selection has finally been made.

There are two approaches to the selection determination. One approach is to
have different options as lines on a selection window when it appears. The problem
with this approach is the need for the MotionNotify event. This event floods
the connection (network) between the client and the server with MotionNotify
event packets with each movement of the mouse pointer. For each of these events, the
program has to determine over which selection option the mouse pointer is positioned.
If this occurrence is different from the previous MotionNotify event, then the

56 3 Windows and Events Produce Menus

current option needs to have its background coloured red, and the previous option
needs to be coloured pink. Requiring such determinations and network activity make
this option unattractive for this particular visual selection process.

An alternative approach is to create a window for each of the three selection
options together with a window to contain those three component windows. The three
selection option windows are positioned to be contained inside of the containing
window. In place of the MotionNotify event for the single selection window,
each of the three selection windows of this approach is given a EntryNotify and
a LeaveNot1ify event. Only when the mouse pointer moves out-from, or in-to an
option window, will an event be transmitted. This reduces event activity. Further, the
out-from, or the in-to, selection window is identified in the event message making
the program’s task of setting the background colour of the corresponding option
straightforward. However, this approach uses four windows instead of the one used
in the above approach. But X Window excels in using multiple windows.

The identification of the window which is currently under the mouse pointer
in the selection pane, and thus should have its background colour set to red, is
included in the EnterNotify event packet. Similarly, the mouse pointer has
just left the window identified in the LeaveNotify event packet, should have
its background set to pink. The setting of background colours is by using call to
XSetWindowBackground (). However, changing the background of a window
structure does not immediately change the background of the window on the screen.
This is important as it is a general principle: Any change to a window definition
or a GC content only effects subsequent usage. To make the change visible, a
XClearWindow () call can be used. One problem with XClearWindow () is it
removes everything inside of the window. In the case of a window used as a button,
the button label would be removed, and this has to be replaced.

In using different combinations of the same colours and repeated need to access
the labelling of buttons, it is advantageous in a program to store information related to
these objects once. Then these stored values can be used repeatedly. This is done in the
listing of Fig. 3.6 by the use of the array 1abels, the lengths of those label strings in
the array labelLength, and the array colours to store the pixel values for each
of the four colours use in this example. The three windows which form the selection
menu are held in the array panes. Care must be exercised in the programming to
select the appropriate combination of the stored values.

X Window generates a separate event when a mouse pointer enters or leaves a
window. Both these entry and exit events can be used in the event loop of an Xlib
program. However, in the program listed in Fig. 3.6 only the window entry event is
used in relation to selection from the pop-up menu. The program keeps track of the
menu item (window) which was previously under the mouse pointer. When the mouse
pointer enters a window corresponding to a menu item, the statement of the problem
requires this window to change colour to a red background. Correspondingly, the
menu item which the pointer has left needs to be changed back to a pink background.
Not only the background of the windows corresponding to the menu items need to be
changed, but also the background of the labels of those windows need to be changed.

3.4 Menus 57

Figure 3.6 performs those requirements. A button press event is used both to activate
the selection menu and also to obtain that selection.

Notice how this approach, although lengthy, enables a Xlib program to be written
using whatever policy is thought appropriate. Compare the colouring technique for
button selection used in the example as in Fig. 3.6 to what is available using the but-
ton widgets of toolkits such at Athena, Motif (LessTif), Gtk, Qt, etc. This approach
adheres closer to the design philosophy of X Window of providing mechanism with-
out imposing policy.

3.4.2 Exercises

1. Change the single button of Fig.3.6 to a menu bar composed of three buttons,
arranged horizontally across the top of the top-level window. Label those buttons
left, centre, and right. Each of those buttons is to activate the selection menu of
Fig.3.6.

2. Change the font used in labelling the buttons and the selections in Fig.3.6. Use
the same font for the three selection options and a different font for labelling the
first button.

3. Rewrite the program of Fig. 3.6 such the selection under the mouse pointer does
not change colour.

4. Change the background colour of the selection windows to a colour with RGB
values of 50:205:50. Hint: Look at the file rgb. txt which is included in all
UNIX-like systems which run X Window.

5. Rewrite the example of Fig. 3.6 without using storage such as arrays labels,
labelLength, and colours. Compare the length of this program with the
line count of Fig.3.6.

6. Rewrite the example of Fig.3.6 replacing the XDrawImageString () calls
with XDrawString () calls. What effect does this have on the program and its
performance? (The program will be shorter since XDrawString () does not
change that background around the string it draws. One fewer GC is necessary.
This reduces the size and complexity of this program.)

3.5 Further Consideration of Mouse Events

A mouse is an event-generating device which the user can control. It can be moved to
positions on the screen, and its buttons can be clicked. This section extends previous
considerations of events triggered by a pressing a mouse button, releasing of that
mouse button, and when the mouse pointer enters and leaves a window.

Handling of patterns is an important part of X Window and consequently Xlib
programming. They are an alternative to plain colour decoration of a window. Here,
they are used as decorations of targets for event handling.

58 3 Windows and Events Produce Menus

The program of Fig. 3.8 was written to explore mouse-generated events. It consists
of a 200x200 pixel window (called baseW) into which two 100x100 pixel windows
(called £11eWand edi tW)are placed. Bitmaps are useful in this application. Further
information on handling and use of bitmaps is given in Sect. 4.1. Here, they are used as
ameans to display patterns in a window. The £ i 1eW window is filled with a bitmap of
the character F using an image format where the pattern has a black foreground and a
white background. The edi tW window is filled with a bitmap of the character E held
in image format. This is character has a white foreground and a black background.
The same F and E images are displayed in an overlapping configuration on the base
window but now using opposite foreground and background colour assignments of
grey and white. This combination of letters is partially obscured by the contents of the
filewW and editW windows. Each of the three windows is initialised to generate
button press events, exposure events, an event when the mouse pointer enters the
window, and when the mouse pointer leaves the window.

The bitmaps here are handled using the X11 image format. This is different to
standard bitmap format. One advantage of image format is the data are held in the
client program allowing the data to be manipulated by the client program without
the need of communication via the X Protocol between the client and the server. To
display the contents of the image, a XPut Image () call is used. Another advantage
is storage on a server can be more limited than what is available for the client program.
By appropriate design of the client program, the same server Pixmap storage could be
shared by multiple images, using it to display different bitmaps. No matter whether
image or bitmap format is used, the pattern of bits which produce the picture on the
screen has to be transmitted from client to server. In the program in Fig.3.8, these
advantages of image format are used in a limited manner through the pattern
variable of type Pixmap. This variable is used to create each of the Pixmaps used
from the bitmap data by XCreatePixmapFromBitmapData () calls. Image
format is useful for this purpose and in displaying general pictures as shown in
Sect. 6.5.

The F and E character bitmaps used in the program were generated via a Encap-
sulated Postscript program. The program used to create the E character was:

% 'PS—Adobe—2.0 EPSF—1.3
% % BoundingBox: 5 0 105 100

/Times—Bold findfont
130 scalefont

setfont

15 15 moveto

(E) show

showpage

This small Postscript program was then processed by the convert program, which
is part of the ImageMagick open source package. It produced an X-bitmap (xbm)
file which was then included in the program’s source code. Before such inclusion, the
upper-case characters in the X-bitmap were converted to their lower-case equivalents
using the standard utility tr. These X-bitmaps (structures £_bits and e_bits)

3.5 Further Consideration of Mouse Events

~
*

This program examines the use of mouse generated events in
relation to windows. A 100x100 pixel window contains two
50x50 pixel windows side by side. The left of those
windows is labelled File and the right window is labelled
Edit. Each of the three windows is enabled to generate an
event when the mouse pointer enters or leaves the window,
and also if the left—-hand button on the mouse is clicked or
released. Each of the File and Edit windows change their
combination of foreground and background grey colouring
when each of these four events occur in them.

Coded by: Ross Maloney
Date: August 2008

¥ ¥ X X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

*
~

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <stdio.h>

/* The big F bitmap */

#define f_width 100

#define f_height 100

static char f_bits[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, Oxf0, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff,
Ooxff, 0x3f, 0x00, 0x00, 0x00, Oxf0, Oxff, Oxff, Oxff, Oxff,
oxff, oxff, oxff, Oxff, 0x3f, 0x00, 0x00, 0x00, Oxf0O, Oxff,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00, 0x00, O0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

/* The big E bitmap */

#define e_width 100

#define e_height 100

static char e_bits[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

Fig. 3.8 A program for tracing the occurrence of mouse events

59

60

3 Windows and Events Produce Menus
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0xf0, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Ox7f,
0x00, 0x00, 0x00, O0xfOo, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff,
oxff, Ooxff, 0x7f, 0x00, 0x00, 0x00, Oxf0, Oxff, Oxff, Oxff,
oxff, Oxff, Oxff, Oxff, Oxff, Ox7f, 0x00, 0x00, 0x00, O0xf0,
Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, 0Ox7f, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

Window baseW , fileW , editW;

int main(int argc, char xargv)

{

Display xmydisplay ;
XSetWindowAttributes baseat;
XSizeHints wmsize ;

XWNMHints wmhints
XTextProperty windowName, iconName;
XEvent myevent ;

GC GC1, GC2, GC3, GC4;
Pixmap pattern;

XImage *f, *xe;

char xwindow_name = ” Triggering” ;
char xicon_name = "Trig”;

int screen_num , done, count;

unsigned long valuemask;

/* 1. open connection to the server x/
mydisplay = XOpenDisplay (77);

/* 2. create a top—level window x/
screen_num = DefaultScreen (mydisplay);
baseat.background_pixel = WhitePixel (mydisplay, screen_num);
baseat.border_pixel = BlackPixel(mydisplay, screen_num);
baseat.event_mask = ButtonPressMask | EnterWindowMask
| LeaveWindowMask | ExposureMask | ButtonReleaseMask;

valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
baseW = XCreateWindow (mydisplay ,

RootWindow (mydisplay , screen_num),

300, 300, 204, 200, 2,

DefaultDepth (mydisplay, screen_num),

InputOutput ,

DefaultVisual (mydisplay , screen_num),

valuemask , &baseat);

Fig. 3.8 (continued)

3.5 Further Consideration of Mouse Events

/* 3. give the Window Manager hints x*/
wmsize . flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;
XSetWMHints (mydisplay , baseW, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

/* 4. establish window resources %/
GC1 = XCreateGC(mydisplay, baseW, 0, NULL); /% white — blackx/
XSetForeground (mydisplay , GC1,
BlackPixel (mydisplay , screen_num));
XSetBackground (mydisplay , GCI,
WhitePixel (mydisplay , screen_num));
GC2 = XCreateGC(mydisplay , baseW, 0, NULL); /% black — whitex/
XSetForeground (mydisplay , GC2,
WhitePixel (mydisplay, screen_num));
XSetBackground (mydisplay , GC2,
BlackPixel (mydisplay , screen_num));
GC3 = XCreateGC(mydisplay , baseW, 0, NULL); /# white — greyx*/
XSetForeground (mydisplay , GC3, 0x9e9e93);
XSetBackground (mydisplay , GC3,
WhitePixel (mydisplay, screen_num));
GC4 = XCreateGC(mydisplay , baseW, 0, NULL); /* grey — whitex/
XSetForeground (mydisplay , GC4,
WhitePixel (mydisplay , screen_num));
XSetBackground (mydisplay , GC4, 0x9e9e93);
pattern = XCreateBitmapFromData(mydisplay, baseW, f_bits
f_width, f_height);
f = XGetlmage (mydisplay , pattern, 0, 0, f_width, f_height, 1,
XYPixmap) ;
f—>format = XYBitmap;
pattern = XCreateBitmapFromData(mydisplay, baseW, e_bits
e_width, e_height);
e = XGetlmage(mydisplay , pattern, 0, 0, e_width, e_height, 1,
XYPixmap) ;
e—>format = XYBitmap;

/* 5. create all the other windows needed =x/
fileW = XCreateWindow (mydisplay , baseW,
0, 0, 100, 100, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
valuemask , &baseat);

Fig. 3.8 (continued)

62 3 Windows and Events Produce Menus

editW = XCreateWindow (mydisplay , baseW,
100, 0, 100, 100, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
valuemask , &baseat);

/* 6. select events for each window x/
/* 7. map the windows =x/
XMapWindow (mydisplay , baseW);
XMapWindow (mydisplay , fileW);
XMapWindow (mydisplay , editW);

/* 8. enter the event loop %/
done = 0;
count = 0;
while (done =— 0) {
XNextEvent (mydisplay , &myevent);
count4+;
switch (myevent.type) {
case Expose:
printf (”"%2d.”, count);
printf ("+4++Exposure_of _-Window."”);
name_window (myevent.xbutton . window);
printf(”_occurred\n”);

if (myevent.xbutton.window = fileW)
XPutlmage (mydisplay , fileW, GC1, f, 0, 0, 0, 0, f_width,
f_height);
if (myevent.xbutton.window =— editW)
XPutlmage (mydisplay , editW, GC2, e, 0, 0, 0, 0, e_width,
e_height);
if (myevent.xbutton.window = baseW) {
XPutlmage (mydisplay , baseW, GC3, e, 0, 0, 25, 75, e_width,
e_height);
XPutlmage (mydisplay , baseW, GC4, f, 0, 0, 75, 85, f_width,
f_height);
}
break;

case EnterNotify:
printf(”?%2d.”, count);

printf ("++Window.”); name_window (myevent.xbutton.window);
printf(”_entered\n”);
if (myevent.xbutton.window = fileW)
XPutlmage (mydisplay , fileW, GC3, f, 0, 0, 0, 0, f_width,
f_height);
if (myevent.xbutton.window = editW)
XPutlmage (mydisplay , editW, GC3, e, 0, 0, 0, 0, e_width,
e_height);
break;

Fig. 3.8 (continued)

3.5 Further Consideration of Mouse Events 63

case LeaveNotify:
printf (?%2d.”, count);
printf(’——Leaving .-Window."”);
name_window (myevent.xbutton . window);
printf(”\n”);
if (myevent.xbutton.window = fileW)
XPutlmage (mydisplay , fileW, GC1, f, 0, 0, 0, 0, f_width,
f_height);
if (myevent.xbutton.window =— editW)
XPutImage (mydisplay , editW, GC2, e, 0, 0, 0, 0, e_width,
e_height);
break;
case DButtonPress:
printf (7?%2d.”, count);
printf(”Button_pressed._in_Window.”);
name_window (myevent . xbutton . window);
printf(”\n”);

break;
case ButtonRelease:
printf (?%2d.”, count);

printf(”Button_released .in_Window.”);
name_window (myevent . xbutton . window) ;
printf(”\n”);

break;

/* 9. clean up before exiting x*/
XUnmapWindow (mydisplay , baseW);
XDestroyWindow (mydisplay , baseW);
XCloseDisplay (mydisplay);

}

name_window (int window)

{
extern Window baseW, fileW | editW;

if (window == baseW) printf(”baseW”);
if (window = fileW) printf(”fileW”);
if (window = editW) printf(”editW”);
return;

Fig. 3.8 (continued)

in the source code of Fig. 3.8 are reasonably large in the space their definitions take
up in the code and have been reduced. This space consumption is made worse as a
consequence of using an X-bitmap representation for a reasonably large character.
This contrasts to the size of the Postscript program which generated each of these
characters. Despite this, bitmaps are the standard means of drawing pattern in X. The
resulting screen display is shown in Fig.3.9.

64 3 Windows and Events Produce Menus

Fig. 3.9 Initial window
colouring of event
experimentation program

Notification of entry and leaving a window, as well as the window where the
mouse button is pressed or released, is done by printing a message to a terminal. The
printing of a counter (count) is used to track events which are collected by the Xlib
function XNextEvent (). Asexpected from the arrangement of the three windows,
leaving and entry of windows occur in pairs. Also, when the mouse pointer enters
either the £i1leW or editW windows, the letter shown in the window is changed so
as the foreground is grey and the background is white.

Figure 3.9 shows the initial displayed image before the mouse pointer enters the
displayed windows. This program was run five times. In each run, the mouse was
moved in a circuit which was composed of the following. After the program was
started, the mouse pointer enters the editW window from the right edge. It then
moved into the £11eW window on the left, then moved to the baseW window which
extended across the total width of the image, then up through the bottom edge of the
editW window. What differed in the three situations was the occurrence of button
press and release.

In the first trial, the mouse pointer moved about the circuit without a button press.
The follow trace of those events was generated by the program:

+++Exposure of Window baseW occurred
+++Exposure of Window editW occurred
+++Exposure of Window fileW occurred
+++Window baseW entered

+++Window editW entered

---Leaving Window editW

+++Window fileW entered

---Leaving Window fileW
+++WindowbaseW entered

---Leaving Window baseW

P O W 0w J o Ul i W N

e

+++Window editW entered

3.5 Further Consideration of Mouse Events 65

When the mouse pointer entered the editW window, the editW window’s fore-
ground changes to grey and the background changes to white. When the mouse
pointer moves to the £i11eW window, the editW window changes back to its orig-
inal colouring, but the foreground of the £ileW window changes to grey. When
the mouse pointer enters the baseW window, the original colouring of the £ilew
window is restored, with no change in the colouring of the baseW window. When
the mouse pointer finally enters the editW window, its foreground changes to grey
and the background goes to white.

In the second run, the mouse followed the same circuit. In this case, the
left-hand mouse button was pressed and then released in the edi tW window before
the mouse pointer moves into the £i1ew window. The trace of events produced by
the program is:

+++Exposure of Window baseW occurred
+++Exposure of Window editW occurred
+++Exposure of Window fileW occurred
+++Window baseW entered

+++Window editW entered

Button pressed in Window editW
Button released in Window editW

0w o Ul W N

---Leaving Window editW

o

+++Window fileW entered

=
o

---Leaving Window fileWw

=
=

+++Window baseW entered

=
N

---Leaving Window baseW

[y
w

+++Window editW entered

When the mouse pointer entered the edi tW window, its foreground changed to grey
and its background changed to white. Pressing and releasing the left-hand mouse
button did not change any window colours. When the mouse pointer moved to the
filewW window, its foreground changed to grey and its background remained white.
Together with these changes, the foreground of the editW window reverted to the
initial white and the background to black. Moving the mouse pointer to the baseW
window did not change the colouring of the ba seW window. However, the foreground
of the £i1eW window changed back to black and the background to white. When
the mouse pointer moved from the baseW window into the editW window, the
colouring of the baseW window remained unchanged while the foreground of the
editW window changed to grey while its background remained white.

In the third run, the left-hand mouse button is pressed while the mouse pointer
is in the editW window, but is not released until the pointer had moved into the
baseW window. The trace of events produced by the program is:

1 +++Exposure of Window baseW occurred
2 +++Exposure of Window editW occurred
3 +++Exposure of Window fileW occurred
4 +++Window baseW entered

66 3 Windows and Events Produce Menus

5 +++Window editW entered

6 Button pressed in Window editW
7 ---Leaving Window editwW

8 Button released in Window editW
9 ---Leaving Window editW

10 +++Window baseW entered
11 ---Leaving Window baseW
12 +++Window editW entered

Upon the mouse pointer entering into the editw window, the foreground of that
window changed to grey, and the background changes to white. Pressing of the left-
hand mouse button did not change any window colouring. Moving the mouse pointer
into the £ileW window, and then the baseW window did not change the original
colouring of those windows—all three windows (editW, fileW,andbaseW)had
their original colours. Releasing the button while over the baseW window produced
no colour change. When the mouse pointer is moved into the editW window, the
foreground of editW changed colour to grey, and the background changed to white.

In the fourth run, the left-hand mouse button is pressed while the mouse pointer
was in the editW window, but was not released until its pointer returned to the
editw window after completing the circuit. The trace of events produced by the
program is:

+++Exposure of Window baseW occurred
+++Exposure of Window editW occurred
+++Exposure of Window fileW occurred
+++Window baseW entered

+++Window editW entered

Button pressed in Window editW
---Leaving Window editW

+++Window editW entered

O 0 J o U B W N P

Button released in Window editW

Then, the mouse pointer entered the edi tW window, its foreground changed to grey.
Upon moving to the £i1eW window, the £i1eW window did not change colour, but
the editw window reverts to its initial colour. Movement of the mouse pointer into
the baseW window resulted in no colour change to either the £i1eW or baseW win-
dows. When the mouse pointer entered the editW window, its foreground changed
to grey, but the colouring of the baseW window remained unchanged.

In the final trial, the left-hand mouse button was pressed in the editW window
and released in the £i1lew window while the mouse pointer performed the circuit
of movements. The trace of events produced by the program is:

1 +++Exposure of Window baseW occurred
2 +++Exposure of Window editW occurred
3 +++Exposure of Window fileW occurred

3.5 Further Consideration of Mouse Events 67

+++Window baseW entered
+++Window editW entered

4
5
6 Button pressed in Window editW
7 ---Leaving Window editW

8

Button released in Window editW

9 ---Leaving Window editW
10 +++Window fileW entered
11 ---Leaving Window fileW

12 +++Window baseW entered
13 ---Leaving Window baseW
14 +++Window editW entered

When the mouse pointer entered the edi tW window, its foreground changed to grey
while its background remains white. Pressing the left-hand mouse button had no
effect on the colouring of any window. As the mouse pointer moved into the £ilew
window, there was no change in colour of this window; however, the foreground
and background colours of the editW window reverted to its initial colours. When
the left-hand mouse button is released in the £ileW window, the foreground of
this window changed to grey (the background remained white). When the mouse
button moved into the basew window, the colours of the baseW window remained
unchanged, while the foreground and background of the edi tWw window reverted to
its initial colours. Movement of the mouse pointer into the editW window changed
its foreground colour to grey (background remained white).

The description above of running this program shows pressing the mouse button
in a window makes the window the subject of all future events, until the button is
released. When the mouse button is pressed in a window, only mouse pointer entry
and leaving of this window generate events (and movement events—but this was not
part of this program). The enter and leaving events of windows other than of the
window in which the mouse button is pressed (and thus selected) are only restored
upon release of the mouse button. This release itself also generates an event.

3.5.1 Exercises

1. Add pointer motion events to each window of the program in Fig. 3.8. When this
program is run how does the trace produced differ from the above description of
the behaviour of the original program?

2. Alter the program of Fig. 3.8 so it traces the mouse button behaviour but does not
use bitmaps to decorate the windows involved. Do bitmap decorations of windows
assist understanding the program’s execution?

68 3 Windows and Events Produce Menus

3.6 A Mouse Behaviour Application

A new mouse can present a problem in knowing what buttons are available. X Window
can use 32 mouse buttons which are number 1-32. The correspondence between the
mouse button number and the physical mouse button can be determined by the
program in Fig. 3.10. This program uses mouse-generated events produced by the X
Window System server in response to pressing buttons on the mouse, and moving
the mouse while those buttons are depressed. The same program can be used to work
through the mouse button assignments which have been made using such utilities
as xmodmap in the current X11 session, or those stored in the SHome / . Xmodmap
file which was possibly loaded when the current session begun.

The program draws a 200x200 pixel window having a white background on the
screen. The mouse pointer is positioned over this window which acts as the target
for the mouse-generated events. Three mouse events are recognised: a mouse button
press, amouse button release, and a movement of the mouse while the mouse button is
repressed. The other available mouse event which occurs when the pointer is moved
without a button depressed is not used. An event-relating message is printed on the
terminal which launched the program. The button press and release events indicate
the number of the button involved, together with the state of all the buttons and
modifier keys immediately before the occurrence of the event. By contrast, motion
events indicate the state of all the buttons and modifier keys before the occurrence of
the motion reported. To assist in using the information produced in program using
these mouse buttons and their states, the value printed is in octal notation.

An application of this program was to monitor the behaviour of a LogiTech
Trackman Marble trackball being used as a mouse. This device had a left and right
large button, and a smaller left and right button, with a trackball used to position the
pointer. A sample of the output obtained is:

Button pressed: button =1 state = 0
Button released: button =1 state = 400
Button pressed: Dbutton = 3 state = 0
Button released: button = 3 state = 2000
Button pressed: button = 8 state = 0
Button released: button = 8 state = 0
Button pressed: Dbutton = 9 state = 0
Button released: button = 9 state = 0
Button pressed: Dbutton =1 state = 0
Motion event: state = 400

Motion event: state = 400

Motion event: state = 400

Motion event: state = 400

Button released: button =1 state = 400
Button pressed: Dbutton = 3 state = 0
Motion event: state = 2000

3.6 A Mouse Behaviour Application

/

where this * program was started. However, the motion

System.

Coded by: Ross Maloney
Date: March 2009

¥ ¥ X X X ¥ ¥ ¥ ¥ ¥ ¥

*
~

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <stdio.h>

int main(int argc, char xargv)

{

Display smydisplay ;

‘Window baseW ;
XSetWindowAttributes baseat;
XSizeHints wmsize ;

XWMHints wmhints ;
XTextProperty windowName, iconName;
XEvent myevents;

char x*window_name = ” Xclick”;

char xicon_name = 7"Xc”;

int screen_num , done;

unsigned long valuemask;

/* 1. open connection to the server x/
mydisplay = XOpenDisplay (7”7);

/* 2. create a top—level window =x/
screen_-num = DefaultScreen (mydisplay);

baseat.background_pixel = WhitePixel (mydisplay, screen_num);

baseat.border_pixel = BlackPixel (mydisplay, screen_num);
baseat.event_mask = ExposureMask | ButtonPressMask

| ButtonReleaseMask | ButtonMotionMask;

valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
baseW = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
100, 100, 200, 200, 2,

DefaultDepth (mydisplay , screen_num),

InputOutput ,

DefaultVisual (mydisplay , screen_num),

valuemask , &baseat);

Fig. 3.10 A program to print all mouse events

This utility program responds to all mouse generated events
under the X Window System. A message indicating the nature
of each mouse event received is sent to the console from

event without a button depressed is not used. This can be
used to determine the suitability and usefulness of the mouse
under X which is plugged into the box running the X Window

69

70 3 Windows and Events Produce Menus

/* 3. give the Window Manager hints x*/
wmsize . flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);
wmhints. initial_state = NormalState;wmhints. flags = StateHint;
XSetWMHints (mydisplay , baseW, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);
XMapWindow (mydisplay , baseW);

/* 4. establish window resources x/

/* 5. «create all the other windows needed */
/* 6. select events for each window */

/* 7. map the windows x/

/* 8. enter the event loop */

done = 0;
while (done =— 0) {
XNextEvent (mydisplay , &myevents);
switch (myevents.type) {
case Expose:
break;
case ButtonPress:
printf(” Button pressed: button = %d state = %o\n”,
myevents.xbutton.button, myevents.xbutton.state);
break;
case ButtonRelease:
printf(” Button released: button = %d state = %o\n”,
myevents.xbutton.button, myevents.xbutton.state);

break;
case MotionNotify:
printf(” Motion event: state = %o\n”,
myevents.xmotion.state);
break;
default:

printf(” This should not happen\n”);

}
}

/* 9. clean up before exiting %/
XUnmapWindow (mydisplay , baseW);
XDestroyWindow (mydisplay , baseW);

XCloseDisplay (mydisplay);

Fig. 3.10 (continued)

3.6 A Mouse Behaviour Application 71

Motion event: state = 2000
Motion event: state = 2000
Motion event: state = 2000

Button released: button = 3 state = 2000

From this output together with observing the button used when the output was pro-
duced: the large left button was labelled 1, the large right button was 3, the small left
button was 8, and the small right button was 9. The bottom part of this output was
produced when button 1 and then button 2 was held down while the trackball was
moved. Notice how the state values during this motions are the same as reported when
the button was released. Additional output produced while holding down the small
left button and moving the trackball indicated this button implemented a scrolling
action.

3.6.1 Exercises

1. Each button and modifier key has a bit assigned to it in the value of the state
variable which is printed by the program of Fig.3.10. Experiment with the code
of Fig.3.10 so as to determine those bit assignments.

2. Use the program of Fig. 3.10 to map your particular mouse device. Is the behaviour
of your mouse as you expect?

3.7 Implementing Hierarchical Menus

In Sect. 3.4 menus were shown to be combinations of windows which interact with
both the mouse pointer and its buttons. Also, one menu can be setup to lead into
another. The manner in which one menu leads into another and under what conditions
of the mouse which enables this to occur, together with which menus items remain
on the screen, gives rise to the feel of the graphics application. A graphics application
has both a look and a feel. But as stated on page xxii of Scheifler et al. (1988), one of
the principles of the X Window System is to provide mechanism rather than policy.
The mechanism provided by Xlib is shown in this section which enables variation of
policy in relation to behaviour of menus.

The policy adopted presents itself as the look and feel of the resulting application.
Toolkits for creating graphics applications impose their own look and feel in exchange
for simplification in the programming effort required in creating the application. The
look is the decoration associated with an item such as a menu button. The feel is
the manner in which, say, a menu item is selected, how one menu is positioned on
the screen relative to the button which led to its appearance, and how successive
menu entries remain on the screen once selected. Xlib allows, in fact requires, the
programmer to create all look and feel. This section demonstrates creating look and

72 3 Windows and Events Produce Menus

feel of how one menu relates and appears in relation to the menu item which selected
it, that is handling of menus hierarchies. Sections 4.3 and 7.1 deal with techniques
which can further assist in generating the look of a menu.

Hierarchical menus impose relationships between individual menu items. A single
menu consists of one or more menu items which can be selected. Each of those menu
items can select a different menu which itself contains one or more selection items.
This process can continue to any require level, but a practical limit is generally
introduced due to human factor issues coming into play. The relationship of menu
items in one menu to the next menu can be shown pictorially as a menu tree. How
such relationships are managed is an important issue.

A menu tree is useful for both displaying and removing menus. Proceeding from
the root of the menu tree to the leaves results in corresponding menus being displayed
on the screen. Each menu is composed of selection items, and each of those menu
items is implemented as a window in the context of Xlib. So, the displaying of a menu
containing five menu items is achieved by displaying, or more correctly mapping,
five windows to the screen. When the menu is no longer required, those five windows
are removed from the screen, or unmapped. To assist this to occur, all the windows
representing the menu items need to be created, and then mapped and unmapped to
the screen according to menu activity. Not only those windows need to be created, but
also their link into a menu and the windows (menu items) which follow on from it.

The program example in Fig.3.12 shows implementing a simplified menu hier-
archy. Each menu contains one or more items. Those menu items can be either
connected, or not connected, to other menu items further in the menu tree. A sim-
plification in this program is of not connecting many of those possible connections
resulting in reduction in the size of the resulting code. The code following from
this menu configuration is still a practical program. Here, its purpose is to show the
management of displaying and removing menus on the screen.

The feel of the program of Fig. 3.12 results from the manner of handling the menu,
which is the following. When the mouse pointer enters a menu item, it is highlighted
and if a menu leads from it, the linked menu of items is displayed. When the mouse
button leaves a menu item, the menu item is no longer highlighted. If there was a
menu linked to this vacated menu item, then that collection of menu items is removed
from the screen. A menu item is selected when the left mouse button is pressed while
the mouse pointer is over the menu item (and thus highlighted).

The program of Fig.3.12, which is shown operating in Fig.3.13, consists of two
buttons located on a 400x400 pixel base window which has a navajo white colour.
These two buttons form a menu bar. They are not shown adjacent to one another on
the screen to demonstrate it is not required in the programming perspective; having
them adjacent is a visual convention. Figure3.11 shows the menu tree of all the
menu items and the connections between them. This shows only one, the left hand,
menu bar button is connected to a menu, which in turn contains three menu items.
In the menu tree of Fig.3.11, each menu item is shown as a small circle, menus are
shown as rectangles enclosing their contained menu items, and the link between a
menu item and a menu is depicted by a solid line. All menus are shown rooted on
the base window, with the dashed vertical lines indicating the depth of each menu.

3.7 Implementing Hierarchical Menus 73

base window

menudepth 2

menu depth 3

Fig. 3.11 Menu tree of the example program

In the program of Fig.3.12, if a menu item is not connected to another menu, it is
set to sound the keyboard bell if the item is clicked in an attempt to select it. No
lettering, which is a form of decoration, is used on any menu items in the program
in an attempt to shorten the program code. This was done to attempt to introduce
look without affecting the feel of the program’s operation. The resulting program is
composed of 13 windows (12 menu items and the base window).

Each of the 13 windows are created individually. This allows adjusting the position
parameters of each XCreateWindow () call to take into account the size of the
other windows with which a window is linked. Correct positioning can be tested by
mapping all the created windows to the display. The identification number of each
window together with its relationship information is stored in the array W[] where
each element, corresponding to one menu item, is of the data structure:

struct {
Window id;

int homemenu ;
int menudepth
int shown;

int action;

74 3 Windows and Events Produce Menus

This program implements hierarchical menus. The base 400x400
pixel window contains two menu-bar buttons. The button on
the left hand side is connected to a menu of three menu items.
The bottom item of that menu is connected to a menu of two
items, and the top one of those menu items is connected to
another three item menu. Each menu item is a blank window
which changes colour when the mouse pointer moves over it.

As the mouse pointer enters a menu item window, it is
highlighted and if a menu leads from it, that is displayed.
‘When the mouse pointer leaves a menu item, it ceases to be
highlighted and any menu of menu items leading from it are
removed from the display. The left—-hand mouse button is used
to select a menu item.

Coded by:
Date:

Ross Maloney
June 2009

¥ ¥ X X ¥ ¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

/

#include <X11/Xlib.h>
#include <X11/Xutil.h>

int main(int argc, char xargv)

{

Display +mydisplay ;
Window baseW ;
struct {
Window id;
int homemenu ;
int menudepth ;
int shown ;
int action ;
W3] = {
{0, 1, 1, 0, 2},
{1, 1, 1, 0, 1100},
{2, 2, 2, 0, 1000},
{3, 2, 2, 0, 3},
{4, 2, 2, 0, 4},
{5, 3, 3, 0, 1000},
{6, 3, 3, 0, 1000},
{7, 4, 3, 0, 5},
{8, 4, 3, 0, 1100},
{9, 5, 4, 0, 1000},
{10, 5, 4, 0, 1000},
{11, 5, 4, 0, 1000},
{12, o0, 0, 0, 0}
¥
XSetWindowAttributes myat;
XSizeHints wmsize ;
XWDMHints wmhints ;
XTextProperty windowName, iconName;

Fig. 3.12 A program demonstrating hierarchical menus

3.7 Implementing Hierarchical Menus

XEvent baseEvent ;

GC mygc;

char *window_name = ” Hierarchy”;

char xicon_name = 7 Hie”;

int screen_num , done, status, i, window;

unsigned long mymask;

/* 1. open connection to the server x/
mydisplay = XOpenDisplay (7”7);

/x 2. create a top—level window x/
screen.num = DefaultScreen (mydisplay);
myat. border_pixel = 0xFF0000; /% red x/

myat.background_pixel = OxFFDEAD; /x navajo white %/
myat.event_mask = ExposureMask | EnterWindowMask ;
mymask = CWBackPixel | CWBorderPixel | CWEventMask
baseW = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
350, 400, 400, 400, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput,
DefaultVisual (mydisplay , screen_num),
mymask, &myat);

/* 3. give the Window Manager hints x*/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;
XSetWMHints (mydisplay , baseW, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

/* 4. establish window resources %/
/* 5. create all the other windows needed x/
myat.background_pixel = OxFFFFFF; /x white %/
myat.event_-mask = ButtonPressMask | ButtonReleaseMask
| ExposureMask | EnterWindowMask | LeaveWindowMask;
mymask = CWBackPixel | CWBorderPixel CWEventMask ;
W[0].id = XCreateWindow (mydisplay, baseW,
50, 50, 90, 20, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
mymask, &myat);
W[1].id = XCreateWindow (mydisplay , baseW, 250, 100, 70, 30, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

Fig. 3.12 (continued)

76 3 Windows and Events Produce Menus

W[2].id = XCreateWindow (mydisplay , baseW, 70, 60, 90, 20, 2,
DefaultDepth (mydisplay, screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

W[3].id = XCreateWindow (mydisplay , baseW, 70, 80, 90, 20, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

W[4].id = XCreateWindow (mydisplay , baseW, 70, 100, 90, 20, 2,
DefaultDepth (mydisplay, screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

W[5].id = XCreateWindow (mydisplay , baseW, 140, 90, 60, 10, 2,
DefaultDepth (mydisplay, screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

W[6].1id = XCreateWindow (mydisplay , baseW, 140, 100, 60, 10, 2,
DefaultDepth (mydisplay, screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

W[7].1id = XCreateWindow (mydisplay , baseW, 140, 110, 60, 10, 2,
DefaultDepth (mydisplay, screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

W[8].id = XCreateWindow (mydisplay , baseW, 140, 120, 60, 10, 2,
DefaultDepth (mydisplay, screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

W[9].id = XCreateWindow (mydisplay , baseW, 200, 110, 100, 30, 2,
DefaultDepth (mydisplay, screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

W[10].id = XCreateWindow (mydisplay , baseW, 200, 140, 100, 30, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

W[11].id = XCreateWindow (mydisplay , baseW, 200, 170, 100, 30, 2,
DefaultDepth (mydisplay, screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

W[12].id = baseW;

Fig. 3.12 (continued)

3.7 Implementing Hierarchical Menus

/* 6. select events for each window x/
/* 7. map the windows %/
XMapWindow (mydisplay , baseW);
for (i=0; i<2; i++) {
XMapWindow (mydisplay , W[i].id);
W[i].shown = 1;

}

/* 8. enter the event loop x/
done = 0;
while (done = 0) {
XNextEvent (mydisplay , &baseEvent);

window = —1;
for (i=0; i<13; i++)
if (W[i].id = baseEvent.xany.window) {
window = 1i;
break;

}
switch (baseEvent.type) {
case Expose:
XMapWindow (mydisplay , baseW);
for (i=0; i<12; i++)
if (W[i].shown = 1) XMapWindow(mydisplay, W[i].id);
break;
case ButtonPress:
XUngrabPointer (mydisplay , CurrentTime);
switch (W[window]. action) {
case 1000:
XBell (mydisplay, 50);
break;
case 1100:
done = 1;
break;
}
break;
case ButtonRelease:
break;
case EnterNotify:
if (1= 12)
for (i=2; i<12; i++) W[i].shown = 0;
else {
XSetWindowBackground (mydisplay , W[window |.id , 0xFF0000);
XClearWindow (mydisplay , W] window |. id);
for (i=0; i<12; i++4) {
if (W[i].menudepth > W[window]. menudepth)
W[i].shown = 0;
if (W[i].homemenu = W[window]. action)
W[i].shown = 1;

Fig. 3.12 (continued)

77

78 3 Windows and Events Produce Menus

}

for (i=0; i<12; i++)
if (W[i].shown = 1) XMapWindow(mydisplay, W[i].id);
else XUnmapWindow(mydisplay , W[i].id);

XFlush (mydisplay);

break;

case LeaveNotify:
XSetWindowBackground (mydisplay , W[window |.id , OxFFFFFF);
XClearWindow (mydisplay , W[window |. id);
break;
}
}

/* 9. clean up before exitingx*/
XUnmapWindow (mydisplay , baseW);
XDestroyWindow (mydisplay , baseW);
XCloseDisplay (mydisplay);

Fig. 3.12 (continued)

” Hierahy

Fig. 3.13 Selection by using a hierarchy of menus

3.7 Implementing Hierarchical Menus 79

The identification number of each menu item window is computed during the pro-
gram’s execution. The other relationship information is constant. There are five
menus which are number 1 through 5, rooted at the menu bar. These menus are
assigned a depth, as shown in Fig.3.11. The menu item is assigned membership of
one of those menus together with the depth of the menu. The window identification
number is inserted when the window representing the menu item is created by the
corresponding XCreateWindow () call. Initially, each menu item is indicated as
not being displayed by assigning a value of 0 to the shown member of the menu
item structure. The action member is a label which shows what happens when
the menu item is selected. In this program, there are three possible actions can be
performed. If there is a following menu, then it can be displayed, in which case the
action value is the number of the menu. Another action is to ring the bell, which is
indicated by a 1000 value. The remaining action is to quit execution of the program
which is indicated by a 1100 action value.

Displaying and removing menus are algorithmic in nature. This algorithm uses the
pre-defined relationships between menu items, the menu in which each menu item
exists, and the action to be performed when the menu item is selected, all of which
is stored in the menu item relationship data structure. The number of both menu
items and menus in this example was selected as a compromise between simplicity
and being sufficient to show general functioning of the algorithm for handling menu
display and removal. The algorithm has two parts: when the mouse pointer enters a
menu item, and when the pointer leaves a menu item. The algorithm is:

pointer enters a menu item (window) :
colour the menu item as selected;
find the menu in which this menu item resides;
unmap all menu items in menus of higher depth;
if a menu is linked to this menu item:

display all menu items in that menu;

pointer leaves a menu item (window) :
colour the menu item as unselected;

The implementation of the menu display algorithm in the program of Fig.3.12
proceeds as follows. The index in the W[] array corresponds to the window in which
the mouse pointer enters or leaves as determined by matching the . xany .window
member of the event received (in the baseEvent variable). The background colour
of each button window is changed to red using a XSetWindowBackground ()
call when the pointer enters the window, and back to white when the pointer leaves
the window. For the change to take effect immediately, a call to XClearWindow ()
is made followed by XF1ush () which forces the server to send the window changes
immediately to the client program.

The program operates by using events. Entering and leaving events together with
the button press event. Only one button press event is generated by pressing any
mouse button, but in the event message generated by X Window the actual button is

80 3 Windows and Events Produce Menus

identified. All three mouse events are enabled for each of the menu item windows.
When the mouse pointer enters one of these windows, an entering window event is
generated identifying the window. Similarly when the mouse pointer leaves one of
these windows, a leaving window event is generated, also identifying the window.

A problem can arise due to positioning of menu item windows, giving rise a race
condition. A race condition exists when one menu item window overlays a menu item
window which has links to a menu item being displayed. If the mouse pointer entering
the top menu item window is used to indicate the window should be unmapped, then
the mouse pointer immediately falls on the menu item immediately below it. But
the mouse pointer entering the menu item window is linked to the top menu item
window being mapped to the display. The exposure/deletion cycle then occurs in
rapid succession—a race condition.

This overlapping arrangement of menu item windows occurs in the code of
Fig.3.12. To void the occurrence of the race condition in the code of Fig.3.12, use is
made of EntryNotify events in collaboration with the known menu configuration
on screen at any instance of time by use of the shown member of the W[] array
which holds the menu item information. The generated LeaveNotify events are
only used to change the menu item window’s background colour indicating the item
is no longer selected.

The program starts with two menu items shown. As the mouse pointer enters the
left menu item, another menu appears. Moving the mouse pointer into each menu
item colours the item red to indicate it to be selected. If another menu leads on from
this menu item (as stored in the W[] array), then this menu of menu items is bought
onto the screen. Moving the mouse pointer to menu items in a menu previously
bought to screen removes the current lead-on menus from the screen.

Another positioning of the mouse pointer also must be considered. How should
the chain of displayed menus behave if the pointer is moved out of the menu item
windows currently being displayed? The easiest strategy to implement this is to leave
the menu items unchanged. The mouse pointer can then be returned to the menu list
where it was left.

An alternative strategy if the pointer moves out of the stack of menu items being
displayed is to collapse the menu stack back to the situation where the menu bar
buttons at the base (or root) of the menu structure alone appear. In that case, none of
the menu bar buttons are selected by default. This is the strategy implemented in the
code of Fig.3.12.

As with most X Window programs, the operation of the code in Fig. 3.12 is centred
upon the handling of events. To simplify such handling, the base window is first to
generate events when the window is exposed, and when the mouse pointer enters
this window. This window is then added to the menu item window list (W[]), and
subsequently handled as a special case within this list. The moving in, or moving out
from, a menu item by the mouse pointer results in changing the shown member of
the array associated with menu window. The manner of changing is determined by the
relationships between the homemenu, menudepth, and action of each menu
item window and the window which raised the most recent entry or leaving event.
Whether to display, or remove from the display, a menu item window is controlled

3.7 Implementing Hierarchical Menus 81

by the value present in the shown member of each menu items structure in the menu
item list. Entry and leaving a menu item window also change the background colour
of that window using a XSetWindowBackground () and XClearWindow ()
pair of calls. It is necessary to ensure the base window is mapped to the display
before any of the menu item windows so they are not obscured by this base window.

The handling of the Expose event in the code of Fig. 3.12 takes care of preserving
the state of the operating program if it were to be obscured by another program on
the screen.

One limitation of the code in Fig.3.12 is the number of windows must be less
than the action code which indicates a mouse button event, in this code 1000. This
is easily changed but a 1000 menu windows is large.

As an aside, X Window handling of mouse events can impose a challenging
problem if the mouse pointer is moved into or out of a window while any mouse
button is held down. In this situation, entering and leaving events are only produced
for the window in which the mouse pointer was located when the mouse button was
pressed. This results from the default automatic grab of the pointer by the X Window
server. This grabbed state is removed by releasing the mouse button, but between
the pressing and releasing of the button, window entry and leaving events are not
generated. One way to overcome this is by issuing a XUngrapPointer () call.
Although releasing the button will remove the grabbed state, the client program will
only receive a release button event if a ButtonReleaseMask is included in the
event structure of the window involved. Notice, with the mouse movement specified
for the program of Fig. 3.12, these conditions do not apply. However, this movement
philosophy appears to have been used on the original Apple Macintosh.

3.7.1 Exercises

1. By using the technique of Sect. 7.1, create labels for the menu items used in
the program of Fig.3.12. Modify the program so the program can use those
labels without diminishing the overall behaviour of the original program. Hint:
A different Pixmap will be required to indicate when the mouse pointer is over,
and not over, for each menu item window.

2. Modity the code in Fig. 3.12 so the original Macintosh manner of menu traversing
is obtained. In this, menu traversing is performed with the mouse button pressed.
As the mouse button enters a menu item, the item’s colour changes and the menu
leading from it is displayed. Moving to a different menu item deletes the visible
menu chain linked to the previous highlighted menu item. Use the left-hand mouse
button in this traversal process. Notice this produces a different feel than in the
original program.

3. Write a program, using the code of Fig. 3.12 as a guide, which shows and identifies
the menu item window in which the mouse button is depressed.

82 3 Windows and Events Produce Menus

4. Modify the code of Fig. 3.12 so the mouse philosophy of the old Apple Macintosh
is implemented, i.e. menus are only displayed when they are traversed while the
mouse button is depressed, and the menu item is selected when the mouse button
is released over the menu item. Use the left-hand mouse button as the subject
mouse button.

5. A window which forms a menu item has a pattern in its foreground chich partially
covers the entire window. What happens to that foreground pattern when the
background colour of the window is changed? Prove your answer by appropriate
modification to the code of Fig.3.12. The answer to this question is linked to
implementing labelled menu items.

6. Design, implement, and test a menu display algorithm which does not use the
shown member of the menu item relationship structure of Fig. 3.12. Is this algo-
rithm more efficient than that used in the code of Fig.3.12?

7. Modify the code of Fig.3.12 so it follows the leave unchanged menu selection
strategy when the mouse pointer is moved outside of the menu items which are
currently being displayed.

3.8 Which Window Gets the Event?

The members of the Xlib XSetWindowAttributes structure are used to define
a number of the properties of a window. In previous example codes, members
background_pixel, border_pixel, and event_mask of this structure
have been used. Windows also have a hierarchical relationship which is also estab-
lished in the XCreateWindow () library function used to create each window.
Handling of events in a window follows the same hierarchical window relation-
ship, i.e. an event occurring in a child window is passed to its parent window.
This behaviour can be changed by using the do_not_propagate_mask in the
XSetWindowAttribute structure when the window is created. A consequence
of this propagation behaviour is the action which has been bound to a window for the
occurrence an event may not occur when the event appears to occur in the window.
The members event_mask and do_not_propagate_mask together with
the hierarchical relationship of the windows in which these members are defined
come into play when an event occurs in a window involved in such a relationship.
For demonstration purposes, consider the window relationship shown in Fig.3.14.
Window A is the parent of windows B and C. Window C is the parent of windows D
and E. The focus here is on the behaviour of a mouse button pressing. Such a button
press is designated as a ButtonPress event. A window links to such an event
by including But tonPressMask in the event_mask member of the variable of
type XSetWindowAttributes which was used when creating the window.
Assume ButtonPressMask | ExposureMask | KeyPressMask is
assigned as the value of the event_mask member of the XSetWindow
Attributes variable used in creating windows A, B, C, D, and E of Fig.3.14.

3.8 Which Window Gets the Event? 83

Fig. 3.14 Windows with

different relationships A

Then, when the mouse is over any of those windows and a mouse button is pressed,
this window is indicated as having received the event.

An event is only associated with a window when the mask associated with the
event is set in the event_mask member. So far, there are three event types for
each of the five windows will respond to. Remove the But tonPressMask from
the event_mask of window D. Now when the user presses a mouse button over
window D, window C receives the event. Since window D is no longer associated
with a ButtonPress event, the event is passed to those window’s parent, in this
case only window C. Now remove the ButtonPressMask from window C’s
event_mask. When amouse button is pressed above window D, window A receives
the event. As before, when the event occurs on window D, the X Window event system
passes the event down the chain until a window liked to it appears. But window C
is not associated with this type of event. So it is passed to its parent, window A. If
the mouse pointer is pressed above window E, B, or A, then those windows receive
the event. The rule here is if an event is received by a window, but if the window is
not linked to the event, the event will be passed to the parent of the window. This
passing is recursive.

Passing of events in a hierarchy of windows can have undesirable consequences.
The member do_not_propagate_mask in the XSetWindowAttributes
variables can be used to prevent propagation of specific events from a window. Say
all the windows in the arrangement of Fig.3.14, except windows D and C, have the
ButtonPushMask set. A mouse button pressed while over windows C or D will
hand the event down to window A. However, if the do_not_propagate_mask
member of the XSetWindowAttributes variables used in creating those win-
dows have the variable set to contain But tonPressMask, then the event will not
propagate; it will just disappear. The contents of the do_not_propagate_mask
member for a window will only be noticed if the CWDontPropagate flag is
included in the valuemask parameter of the library call used to create the window.

84 3 Windows and Events Produce Menus

3.8.1 Exercises

1. Describe a graphical programming situation where the window layout of Fig. 3.14
occurs. For this situation, what purpose would each of the five windows serve?

2. Using the coding model of the previous exercise, write an Xlib program which
produces the window structure of Fig. 3.14. Use this program to establish the truth
of the above discussion about event propagation.

3. Give a number of situations where passing of events in a hierarchy of windows
is undesirable.

4. For the window arrangement of Fig.3.14, what provisions need to be made so
a mouse button press over window B does not propagate into window E or C?
Explain your answer.

3.9 Summary

The prerequisites for this chapter were a window created using Xlib. This chapter
grouped multiple windows to form menus. Events were then introduced in this
chapter. This combinations enabled the construction of menus, together with studying
of X11 events.

Menus are shown in this chapter to be formed from windows, and events which
are linked to those windows. Each of the items in a menu, whether it be a button on
the root window or a member of a menu list appear as a transients on the screen.
Different menu behaviour and looks follow from modification of the properties of
those windows. The selection of events, linking of them to a window, and processing
their occurrence underlies most X11 programs. Each of these aspects of events is
developed by example, using calls from Xlib to implement the required interface
to services provided by the X Window System. All X11 programs contain an event
processing loop with events either assigned explicitly or implicitly. Most stand-alone
graphics programs contain buttons and menus. These observations make this chapter
fundamental. As more familiarity with the services provided by X11 is obtained,
these fundamentals can be built upon.

Events are central to creating dynamic behaviour in a graphics-based program.
Buttons and menus implement some such behaviour. There are other techniques, also
based on events, which will be covered in following chapters.

Chapter 4 ®)
Pattern Maps and Labels e

Most, if not all, computer-based windowing systems have a means of displaying a
fixed pattern on a window in such a way as to involve minimal processing. This is
the generic pattern format of the windowing system. For the X Window System this
format is a Pixmap. There are two sub-categories of Pixmap: the single bit (or black
and white) bi tmap and the more general PixMap which is capable of representing
colour. A complication is X Window System refers to the analogue of a window as
a Pixmap. But all what can be done on, or with, a window is not true for a map-type
Pixmap.

A Pixmap is analogous to a window, but is not associated with a screen. As a
consequence, it is off-line and invisible. What can be done in a window can also be
done in such a Pixmap, but it is not visible with a Pixmap. Just as in the case of a
window to which Xlib gives the storage type as Window, a Pixmap has the storage
type Pixmap.

A further complication is the X Window System also has an image type which
has the Xlib storage type XImage as discussed in Sect.3.5. An image is similar to a
Pixmap. It differs in how it is stored in the client program as opposed to being stored
in the server as in the case of a Pixmap. As a consequence, an image does not take
up server memory and their manipulation does not require the generation X Protocol
requests to manipulate them as is the case with a Pixmap.

The pattern handling offered by a Pixmap can assist the production of buttons and
menus, thus increasing their visual appeal. Two techniques for creating patterns for
incorporating in a program for Pixmap use will be shown.

Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-3-319-74250-2_4) contains supplementary material, which is
available to authorized users.

© Springer International Publishing AG, part of Springer Nature 2017 85
R. J. Maloney, Low Level X Window Programming,
https://doi.org/10.1007/978-3-319-74250-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74250-2_4&domain=pdf
https://doi.org/10.1007/978-3-319-74250-2_4

86 4 Pattern Maps and Labels

4.1 The Pixmap Resource

Pixmaps are a significant resource of the X Window System. They are used as both
as a cursor marker and as a tile pattern on a window. The tile pattern is repeated
over the window. But if the tile is the same size as the as the window, then the tile is
repeated once, increasing the scale of a Pixmap. Modern X Window distributions are
more flexible in handling Pixmaps than earlier versions of X11. However, Pixmaps
do have more limitations than do windows.

When a Pixmap is used as a tile on a window, then it takes on the following
properties:

e A Pixmap has both a foreground and background colour;

e In reality, the Pixmap is a map of screen pixels;

e Once a Pixmap is created by a XCreatePixmapFromBitmapData (), the
foreground and background colours cannot be changed;

e A Pixmap only becomes visible on the screen when it is linked to a window which
is then displayed;

e A Pixmap can only be placed on the background of a window;

e A Pixmap is linked to a window by a XSetWindowBackgroundPixmap ()
Xlib call;

e Once linked to a window, any drawing operations performed on a Pixmap before
or after the linking will be visible in the window;

e A Pixmap background does not have to be redrawn after a window is exposed;

e A Pixmap linked to a window is stored in the server, not the client;

e A XSetWindowBackground () call sets the background colour of a window,
and if a Pixmap had been linked to the window, it is overwritten by this plane
colour—the Pixmap link to the window is lost;

e XCopyArea () and XFillRectangle () calls can be used to draw into a
Pixmap;

e A Pixmap can be drawn into at any time in contrast to a window which can only
be drawn on when it is visible on the screen,;

e If a Pixmap is created using a XCreatePixmap () call, then the initial contents
of the Pixmap are undefined;

e A window can only have a single Pixmap linked to it at any one time;

e The one Pixmap can be linked to more than one window at any one time.

Some of these properties also apply when a Pixmap is used as cursor marker.

4.2 Pattern Patches

Patterns can be used for many things. One of those uses is as a decoration of a button,
whether the button occurs on its own, or in combination with others in the form of
menus. Section 3.4 considered creating such menus using buttons of a uniform colour

4.2 Pattern Patches 87

and maybe including text. By using patterns, visually more complex buttons can be
created. Another application is for display of alogo. A further use might be to indicate
the position of the mouse pointer (or cursor) on a window. Patterns, whether they be
small in on-screen appearance or large, warrant consideration.

Patterns in the X Window System are described as Pixmaps, and they come in
two varieties. One variety is the bitrmap, or XBM format, which is composed of
two colours. The two colours are the foreground and background colours which are
active in the graphics context (GC) at the moment the Pixmap is displayed. In the
commonly use of Pixmaps as cursors, this is the manner of their colouring. The other
variety is called a PixMap, or XPM format, which is composed of multiple colours
which are encoded in the format of the Pixmap. These are explored in Sect.4.7.

4.3 Bitmap Patterns

During the development of the X Window System, a need was seen for bitmaps.
A result of this was library functions to handle such maps were included in the
X Window System distribution. Such bitmaps labelled and decorated buttons,
together with forming cursors to indicate the position of the pointer on a window.

Although a bitmap can be created by hand using an editor, the program bi tmap
which is part of the X Window System distribution is generally used. Running this
program with the command line:

bitmap -size 50x25 shapes.bmp &

a grid of 50 pixel cells horizontally by 25 pixel cells vertically is presented for
creating the drawing which is to be saved in a file called shapes . bmp upon exiting
the bitmap program. A drawing consisting of one circle outline, three filled circles
and a filled triangle was drawn, and the contents of the resulting shapes . bmp file
was:

#define shapes_width 50

#define shapes_height 25

static unsigned char shapes_bits[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox1lf, 0x00, 0x00,
0x00, 0x00, 0x00, OxcO, 0x7f, 0x00, 0x00, 0x00, 0x00, 0x00,
Oxe0, Oxff, 0x00, OxOe, 0x00, 0x00, Ox1lf, Oxe0O, Oxff, 0xcO,
0x7f, 0x00, Oxc0O, 0x60, 0xf0, Oxff, Oxel, Oxff, 0x00, 0x30,
0x80, Oxfl, Oxff, Oxfl, Oxff, 0x01, 0x08, 0x00, O0xf2, Oxff,
0xf9, Oxff, 0x03, 0x08, 0x00, Oxf2, Oxff, Oxfd, Oxff, 0x03,
0x04, 0x00, Oxf4, Oxff, Oxfd, Oxff, 0x03, 0x04, 0x00, Oxe4,
Oxff, Oxfc, Oxff, 0x03, Oxfa, 0x03, O0xe8, Oxff, Oxfe, Oxff,
0x03, Oxfe, 0x07, 0xc8, 0x7f, Oxfe, Oxff, 0x03, Oxfe, 0x0f,

88 4 Pattern Maps and Labels

0x08, Oxl1lf, Oxfe, Oxff, 0x03, Oxfe, O0x0f, 0x08, 0x00, Oxfc,
0xff, 0x03, Oxfe, O0x0f, 0x08, 0x18, Oxfc, Oxff, 0x03, Oxfe,
0x0f, 0x04, 0x3c, Oxfc, Oxff, 0x03, Oxfe, Ox0f, 0x04, O0x3e,
0xf8, Oxff, 0x03, Oxfe, 0x0f, 0x02, O0x7f, O0xf0, Oxff, 0x01,
Oxfe, 0x0f, 0x02, Oxff, Oxe0, Oxff, 0x00, Oxfc, 0x87, 0x81,
Oxff, Oxc0O0, 0x7f, 0x00, 0xf8, 0x63, OxcO0, Oxff, 0x01l, 0xOe,
0x00, 0x00, O0x1f, Oxe0, Oxff, 0x01, 0x00, 0x00, 0x00, 0x00,
0x00, 0xf0, 0x03, 0x00, 0x00};

This bitmap is the screen pattern used in the following program example. It is
an array of 0 or 1 values which represent each pixel in the 50 by 25 block of cells
(pixels) given as its limits.

This array of data is converted into the internal X Window System form of a
Pixmap by the Xlib function XCreatePixmapFromBitmapData (). The inter-
nal Pixmap form is an analogue of a Window, with the same attributes as a Window,
but having an invisible existence in the X Window server’s memory. The Pixmap
can be made visible by inserting it into a window by use of the Xlib function
XCopyPlane ().

Important: The Pixmap created by the XCreatePixmapFromData () call is
composed only of a foreground and a background. The distribution of 1 and 0 bits in
the bit pattern gives the required appearance of the foreground and background over
the extent of the bit pattern. Internally in the server, the foreground is interpreted
as being black and the background as white. Whether black or white is specified
as the foreground (argument 6) in the XCreatePixmapFromData () call
defines whether the 1’s in the Pixmap represents the foreground or background,
respectively. The complement is then applied to the background (argument 7)
of the XCreatePixmapFromData () call. The colours for the appearance of
the foreground and the background of the pattern are set by the foreground and
background colours assigned in the GC in use when the Pixmap is copied to a window.
Specifying whether a 1 in a Pixmap represents the foreground or background is done
once, when the Pixmap is created. So one set of Pixmap data could be used to
create more than one Pixmaps with opposite foreground/background combinations.
The visual colour of the foreground and background can be changed by the colours
specified in the GC used to move the Pixmap to the screen.

The program in Fig.4.1 shows application of the bitmap processing capacity of
the X Window System. A window coloured red is first created. A previously prepared
bitmap is stored in the program, and the graphics context is used to display it using
the foreground of black and the background as white. This pattern is drawn on the
red window when the left-hand button of the mouse is pressed, with the pattern
positioned at the position of the mouse pointer when the button is pressed. The
program execution must be terminated separate from the program.

In coding this example, default values of the GC mygc were set using the
XCreateGC () call. White and black colours were then assigned to the fore-
ground and background of the GC using the XSetForeground () and XSetBack
ground () calls, respectively. The function XCopyPlane () copies the Pixmap

4.3 Bitmap Patterns 89

/* The program displays a window coloured red. When the

* left —hand mouse button is pressed while the pointer is in

* that window, a pattern patch is displayed at the location

* of the pointer. The pattern is recorded as a bitmap in the
* program and is displayed with a black foreground and a white
* background.

E 3

* Coded by: Ross Maloney

* Date: May 2008

*/

#include <X11/Xlib.h>
#include <X11/Xutil.h>

#define shapes_width 50

#define shapes_height 25

static unsigned char shapes_bits[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox1f, 0x00, 0x00,
0x00, 0x00, 0x00, OxcO, 0x7f, 0x00, 0x00, 0x00, 0x00, 0x00,
0xe0, Oxff, 0x00, Ox0Oe, 0x00, 0x00, Ox1f, Oxe0, Oxff, OxcO,
0x7f, 0x00, OxcO, 0x60, OxfO, Oxff, Oxel, Oxff, 0x00, 0x30,
0x80, Oxfl, Oxff, Oxfl, Oxff, 0x01, 0x08, 0x00, Oxf2, Oxff,
0xf9, Oxff, 0x03, 0x08, 0x00, O0xf2, Oxff, Oxfd, Oxff, 0x03,
0x04, 0x00, O0xf4, Oxff, Oxfd, Oxff, 0x03, 0x04, 0x00, Oxe4,
0xff, Oxfc, Oxff, 0x03, Oxfa, 0x03, Oxe8, Oxff, Oxfe, Oxff,
0x03, Oxfe, 0x07, Oxc8, 0x7f, Oxfe, Oxff, 0x03, Oxfe, 0xO0f,
0x08, 0x1f, Oxfe, Oxff, 0x03, Oxfe, 0x0f, 0x08, 0x00, Oxfc,
0xff, 0x03, Oxfe, 0x0f, 0x08, 0x18, Oxfc, Oxff, 0x03, Oxfe,
0x0f, 0x04, 0x3c, Oxfc, Oxff, 0x03, Oxfe, 0xO0f, 0x04, Ox3e,
0xf8, Oxff, 0x03, Oxfe, 0x0f, 0x02, 0x7f, 0xfO0, Oxff, OxO01,
Oxfe, 0x0f, 0x02, Oxff, Oxe0, Oxff, 0x00, Oxfc, 0Ox87, 0x81,
0xff, OxcO, 0x7f, 0x00, 0xf8, 0x63, OxcO, Oxff, 0x01, OxOe,
0x00, 0x00, Ox1f, Oxe0, Oxff, 0x01, 0x00, 0x00, 0x00, 0x00,
0x00, 0xf0, 0x03, 0x00, 0x00};

int main(int argc, char xargv)

{
Display +mydisplay ;
Window baseWindow ;
XSetWindowAttributes myat;
XSizeHints wmsize ;
XWDMHints wmhints ;
XTextProperty windowName, iconName;
XEvent baseEvent ;
Xcolor exact,closest;
GC mygc;
Pixmap pattern;
char xwindow_name = ”BWclick” ;
char xicon_name = "BW”;
int screen_num , done;

unsigned long mymask;

Fig. 4.1 A red-coloured window showing image pattern placements

90 4 Pattern Maps and Labels

int X, ¥;

/* 1. open connection to the server x/
mydisplay = XOpenDisplay (””);

/* 2. create a top—level window =x/
screen_.num = DefaultScreen (mydisplay);
myat. border_pixel = BlackPixel(mydisplay, screen_num);

XAllocNamedColor (mydisplay ,
XDefaultColormap (mydisplay , screen_num),
?red” , &exact, &closest);
myat. background_pixel = closest . pixel;
myat.event_mask = ButtonPressMask | ExposureMask;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
baseWindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
300, 300, 350, 400, 3,
DefaultDepth (mydisplay, screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

/* 3. give the Window Manager hints =x/
wmsize . flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmhints);
XStringListToTextProperty (&window_name, 1, &windowName);
XSetWMName (mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow, &iconName);

/* 4. establish window resources */
pattern = XCreatePixmapFromBitmapData(mydisplay , baseWindow ,
shapes_bits , shapes_width ,
shapes_height ,
BlackPixel (mydisplay , screen_num),
WhitePixel (mydisplay, screen_num),
DefaultDepth (mydisplay , screen_num));
mygc = XCreateGC(mydisplay , baseWindow, 0, NULL);
XSetForeground (mydisplay , mygc,
WhitePixel (mydisplay, screen_num));
XSetBackground (mydisplay , mygc,
BlackPixel (mydisplay , screen_num));

/* 5. create all the other windows needed %/
/* 6. select events for each window x/

/* 7. map the windows =/
XMapWindow (mydisplay , baseWindow);

Fig. 4.1 (continued)

4.3 Bitmap Patterns 91

/* 8. enter the event loop */
done = 0;

while (done == 0)
XNextEvent (mydisplay , &baseEvent);
switch(baseEvent.type) {
case Expose:

break;
case ButtonPress:
if (baseEvent.xbutton.button = Buttonl) {
x = baseEvent.xbutton.x;

y = baseEvent.xbutton.y;
XCopyPlane (mydisplay , pattern, baseWindow, mygc, 0, 0,
shapes_width , shapes_height, x, y, 1);
)

break;

}
}

/* 9. clean up before exiting */
XUnmapWindow (mydisplay , baseWindow);
XDestroyWindow (mydisplay , baseWindow);
XCloseDisplay (mydisplay);

Fig. 4.1 (continued)

Fig. 4.2 A distribution of
black and white patches at
mouse points

92 4 Pattern Maps and Labels

created by the XCreatePixmapFromBitmapData () call to the screen in the
window at the point required for as many times as required. In Sect. 7.1, this code is
used as the basis for producing multicolour patterns using the XPM library.

Figure 4.2 shows the screen display produced when executing the program of
Fig.4.1. Notice:

1. The red background colour of the base window was applied when the window
was first created as opposed to later through its graphics context (GC).

2. An event awareness (by setting the CWEventMask) is set into the top-level win-
dow when it was created.

3. The program is driven by such events, notably the ButtonPress event which occurs
when a button on the mouse is pressed.

4. The colours set as the foreground and background in the graphics context (GC)
of the top-level window when an image is put to the screen determine the colours
in which the pattern is displayed.

4.3.1 Exercises

1. Modify the program so it uses the right-hand mouse button to perform the function
originally performed by the left-hand mouse button.

2. Extend the program so the colours green, yellow, and black are used in the pattern
produced replacing the black and white used originally. Group the colours in all
possible combinations of two colours. At each click of the mouse button, rotate
the group of colours used to display the pattern.

3. Modify the program of Fig.4.1 so it uses a XCopyArea () function in place of
the XCopyPlane () call. What advantages and disadvantages result from this
modification?

4.4 A Bitmap Cursor

A Pixmap in general, or a bitmap to be more specific, can be used to indicate the
position of the mouse pointer. Unlike other bitmaps, cursor bixmaps are transient
as the pointer passes over a window; as the pointer moves, so does the associated
bitmap, with automatic reinstatement of what the cursor obscured. Such bitmaps are
generally 16x16 pixels in size. They are created using two bitmaps each containing
a similar pattern, but with one pattern slightly larger than the other. This is described
in Nye (1995) (p. 182). An additional attribute of these bitmaps is they contain a
hot point which is the single pixel which is to precisely represent the pointer on the
screen. This is nominated when the bitmap is created and its position within the map
is stored as part of the bitmap data structure.

4.4 A Bitmap Cursor 93
/* This program creates a window coloured red a then two other
* windows contained inside it. One of those additional windows
% is coloured white and the other is coloured black. A cursor
% shaped, defined by two bitmaps created externally to this
% program are then linked to the mouse pointer which it is over
* the white window.
E3
% Coded by: Ross Maloney
* Date: May 2008
*/
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#define arrow_width 16
#define arrow_height 16
static unsigned char arrow_bits[] = {
0x00, 0x00, 0x06, 0x00, 0Ox0Oe, 0x00, O0x3c, 0x00, 0xf8, 0x00,
0xf8, 0x01, 0xf0, 0x07, 0xf0, O0xOf, OxfO0, Ox1f, Oxe0, Ox7f,
Oxe0, Ox7f, OxcO, Ox7f, 0x80, 0x7f, 0x80, O0x7f, 0x00, Ox7f,
0x00, 0x00};
#define arrowmask_width 16
#define arrowmask_height 16
#define arrowmask_x_hot 0
#define arrowmask_y_hot 0
static unsigned char arrowmask_bits[] = {
0x1f, 0x00, 0x3f, 0x00, Oxff, 0x00, Oxff, 0x03, Oxff, 0x07,
Oxfe, 0x0f, Oxfc, Ox1lf, Oxfc, 0x3f, 0xf8, 0x7f, Oxf8, Oxff,
0xfo, Oxff, O0xfOo, Oxff, Oxe0, Oxff, OxcO, Oxff, 0x80, Oxff,
0x80, Oxff};

int main

{

(int argc, char xargv)

Display *mydisplay ;
baseWindow , wWindow, bWindow ;

Window

XSetWindowAttributes myat, wat, bat;
XSizeHints wmsize ;

XWDMHints wmhints ;

XTextProperty windowName, iconName;
XEvent baseEvent ;

XColor exact , closest, front,
Pixmap backArrow, foreArrow;
Cursor cursor ;

char s*window_name = ” CursorPlay”;
char xicon_name = "Play”;

int screen_-num , done;

unsigned long mymask;

Fig. 4.3 Three windows demonstrating cursor visibility

backing;

/* 1. open connection to the server */
mydisplay = XOpenDisplay (””);

94 4 Pattern Maps and Labels

/* 2. create a top—level window x*/
screen-num = DefaultScreen (mydisplay);
myat. border_pixel = BlackPixel (mydisplay, screen_num);

XAllocNamedColor (mydisplay ,
XDefaultColormap (mydisplay , screen_num),
?red” , &exact, &closest);
myat.background_pixel = closest . pixel;
myat.event_-mask = ButtonPressMask | ExposureMask;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
baseWindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
400, 500, 600, 340, 3,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

/* 3. give the Window Manager hints x/
wmsize . flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseWindow , &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow, &iconName);

/* 4. establish window resources =x/
backArrow = XCreatePixmapFromBitmapData(mydisplay , baseWindow ,
arrowmask_bits , arrowmask_width ,
arrowmask_height, 1, 0, 1);
foreArrow = XCreatePixmapFromBitmapData(mydisplay , baseWindow ,
arrow_bits , arrow_width, arrow_height ,
1, 0, 1);
XAllocNamedColor (mydisplay ,
XDefaultColormap (mydisplay , screen_num),
?black” , &exact, &front);
XAllocNamedColor (mydisplay ,
XDefaultColormap (mydisplay, screen_num),
?white” , &exact, &backing);
cursor = XCreatePixmapCursor (mydisplay , foreArrow , backArrow,
&front , &backing ,
arrowmask_x_hot , arrowmask_y_hot);
XDefineCursor (mydisplay , baseWindow, cursor);

/* 5. create all the other windows needed */
wat.event_mask = ButtonPressMask | ExposureMask;
wat . background_pixel = WhitePixel (mydisplay , screen_num);
bat.event_mask = ButtonPressMask | ExposureMask;
bat.background_pixel = BlackPixel (mydisplay, screen_num);

Fig. 4.3 (continued)

4.4 A Bitmap Cursor 95

wWindow = XCreateWindow (mydisplay , baseWindow ,
100, 50, 200, 200, 1,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &wat);

bWindow = XCreateWindow (mydisplay , baseWindow ,
400, 50, 100, 100, 1,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &bat);

/* 6. select events for each window x*/

/* 7. map the windows x/
XMapWindow (mydisplay , baseWindow);
XMapWindow (mydisplay , wWindow) ;
XMapWindow (mydisplay , bWindow) ;

/* 8. enter the event loop */
done = 0;
while (done =— 0) {
XNextEvent (mydisplay , &baseEvent);
switch(baseEvent.type) {
case Expose:
break;
case ButtonPress:
break;
}

}

/* 9. clean up before exiting */
XUnmapWindow (mydisplay , baseWindow);
XDestroyWindow (mydisplay , baseWindow);
XCloseDisplay (mydisplay);

Fig. 4.3 (continued)

The code in Fig. 4.3 shows this process. First, the bitmaps were created using the
bitmap program and the resulting bitmap data structures loaded into the file which
contained the rest of the program’s code. A window coloured red is used to contain
a black window and a white window. A cursor, in the form of a double-arrowhead, is
created externally to the program and inserted in this code. The data associated with
this arrowhead were stored in the arrow_bits array, with the associated outline
bitmap with a foreground arrowhead shape slightly larger than shape contained in
the arrow_bits array, stored in the arrowmask_bits array. The default fore-
ground colour of the arrowhead is set to black and its outline set to white, when these
Pixmaps are created by the XCreatePixmapFromBitmapData () calls.

96 4 Pattern Maps and Labels

The program in Fig.4.3 shows why a cursor is created with a shape and with
an outline of that shape. The black and white colours used in creating the cursor
correspond to the background colours of two of the windows. Without the outline,
the cursor would be lost when the mouse pointer enters the black window. Moving
the cursor over each of the three windows in this example demonstrates the visibility
of the cursor being used. This particular design of a cursor is not good: Can you
think of reasons for this observation? The program is terminated externally to this
program.

Notice:

1. The size of the border pixels for the black and white windows has been decreased
to 1 pixel as opposed to the 3 pixel size for the containing red window. This is
only for aesthetics.

2. The actual colour of the cursor is assigned when the cursor is made using the
XCreatePixmapCursor () function, not when the associated bitmaps are
created. As a result, dummy values can be used when such bitmaps are created
using the XCreatePixmapFromData () function.

3. The depth of the cursor bitmaps (Pixmaps) is unity (1).

Figure 4.4 shows the displayed output of the program of Fig.4.3 at an instant
of time. As the mouse pointer is moved over the red, white, and black windows,
the pointer indicator (which looks like two arrowheads facing in diagonal opposite
directions) shows its position. A closer look at the cursor indicates a white border
around the black centre. The border is created by the appropriate colouring and sizing
of the two bitmaps which make up the cursor’s shape. Without the white border, the
black cursor would disappear when over a black window.

[®] CursorPlay

Fig. 4.4 A user designed cursor pointer on a window

4.4 A Bitmap Cursor 97

4.4.1 Exercises

1. Modify the background and foreground colours so they are different from red,
black, or white.

2. Extend the program of Fig.4.3 so there is a second cursor which is associated
only with the black-coloured window.

3. Modify the shape of the cursor so it is significantly different from that shown in
the program of Fig.4.3.

4.5 A Partially Transparent Pixmap

The Pixmaps previously considered when displayed on the screen had a rectangular
footprint. There are situations where such a footprint is not desirable. A cursor is
such a situation. The cursor pattern is a Pixmap, but the footprint on the screen is not
rectangular. This is achieved by having transparent parts in the rectangular Pixmap
pattern which allows the portion of the screen they cover to remain visible. Cursors
are considered a particular situation in X and are handled in a unique manner. But the
idea of transparency in a portion of a Pixmap has application beyond cursors. One
example of this is drawing the arrow of a cursor on a window as an indicator of a
previous pointer position for taking a screenshot. For example, a partially transparent
window in the shape of a magnifying glass might be moved across the window to
locate a portion of the screen to be magnified. Having such a magnifier obscuring the
magnification target would not be reasonable but also the pattern of the magnified is
required to be larger than a cursor.

Figure 4.6 is an example screen output of a program which places a partially
transparent Pixmap on the screen where the pointer is positioned when the right-
handle mouse button is pressed. The Pixmap is of a black arrow with a narrow white
boarder around it. A hole is located in the centre of the arrow. The red colour of the
screen is seen to surround the outer white border of the arrow and fill the hole inside
the arrow centre. Figure 4.5 contains the code used to produce this result.

With respect to the code of Fig.4.5, note the following. The arrow is drawn
from a Pixmap with a black foreground and a white background. If this Pixmap was
displayed on the screen, the black figure of the arrow would appear in a white square.
A mask is loaded into the GC used for drawing this Pixmap. This mask is a Pixmap
with 1’s positioned above pixels of the arrow Pixmap which are to be shown on the
screen. This means the shape contained in the mask Pixmap is slightly larger than
the arrow so some of the arrow Pixmap’s background is covered by the mask bits.
The hole appears in the arrow on the screen is also set in this Pixmap and not in
the Pixmap of the original arrow. The mask is positioned relative to the destination
drawable, not with respect to the bitmap which is to be filtered. This requires the use
of the XSetClipOrigin () callin the eventloop to adjust the position of the mask

98

~
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

*

~

4 Pattern Maps and Labels

This program displays a window coloured red. When the
right —hand mouse button is pressed while the pointer is
in that window, a pattern patch is displayed at the
location of the pointer. The pattern is of an arrow
pointing to the top—left which is coloured black,
surrounded by a thin white border. This pattern is
recorded as a bitmap in the program and is displayed
using a clipping mask which also is stored as a Pixmap.
A transparent Pixmap pattern results.

Coded by: Ross Maloney
Date: March 2009

#include <X11/Xlib.h>
#include <X11/Xutil.h>

#define arrow_width 16
#define arrow_height 16

st

atic unsigned char arrow_bits[] = {
0x00, 0x00, 0x06, 0x00, Oxle, 0x00, Ox7c, 0x00, Oxfc, 0x01,
0xf8, 0x07, 0xf8, Ox1f, 0xf8, 0x7f, Oxf0, O0x7f, O0xfO0, 0x03,
Oxe0, 0x07, Oxe0, 0x06, OxcO, Ox0Oc, OxcO, 0x18, 0x80, 0x30,
0x00, 0x00};

#define mask_width 16
#define mask_height 16

st

atic unsigned char mask_bits[] = {
0x07, 0x00, Ox1f, 0x00, Ox7f, 0x00, Oxf6, 0x01, Oxc6, 0x07,
0x8e, Ox1f, Ox0c, Ox3e, Oxlc, Oxfc, 0x38, Oxfc, 0x38, Oxfc,
0x78, 0x0f, O0xfO0, Ox1f, Oxf0, Ox3f, Oxe0, O0x7d, Oxe0, 0x79,
0xc0, 0xT71};

int main(int argc, char xargv)

{

Display smydisplay ;

Window baseWindow ;
XSetWindowAttributes myat;
XSizeHints wmsize ;

XWMHints wmhints ;
XTextProperty windowName, iconName;
XEvent baseEvent ;

XColor exact , closest;

GC myge;

XGCValues myGCValues;

Pixmap pattern , mask;

char xwindow_name = ”Transparent”;
char xicon_name = "Tr”;

int screen_-num , done;

unsigned long mymask;

Fig. 4.5 A program while draws transparent arrow at each pointer click

4.5 A Partially Transparent Pixmap 99

int X, V;

/* 1. open connection to the server %/
mydisplay = XOpenDisplay (””);

/* 2. create a top—level window x/
screen-num = DefaultScreen (mydisplay);
myat.border_pixel = BlackPixel (mydisplay, screen_num);

XAllocNamedColor (mydisplay ,
XDefaultColormap (mydisplay , screen_num),
"red”, &exact, &closest);
myat.background_pixel = closest.pixel;
myat.event_mask = ButtonPressMask | ExposureMask;
mymask = CWBackPixel | CWBorderPixel CWEventMask ;
baseWindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
300, 300, 350, 400, 3,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
mymask, &myat);

/* 3. give the Window Manager hints x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseWindow , &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow, &iconName);

/* 4. establish window reqources */
pattern = XCreatePixmapFromBitmapData(mydisplay , baseWindow,
arrow_bits , arrow_width, arrow_height ,
WhitePixel (mydisplay , screen_num),
BlackPixel (mydisplay, screen_num),
DefaultDepth (mydisplay , screen_num));
mask = XCreatePixmapFromBitmapData(mydisplay , baseWindow,
mask_bits, mask_width, mask_height ,
1, 0, 1);
mymask = GCForeground | GCBackground | GCClipMask;
myGCValues. background = WhitePixel (mydisplay, screen_num);
myGCValues. foreground = BlackPixel (mydisplay, screen_num);
myGCValues. clip-mask = mask;
mygc = XCreateGC (mydisplay , baseWindow, mymask, &myGCValues);

/* 5. create all the other windows needed %/

Fig. 4.5 (continued)

100 4 Pattern Maps and Labels

/* 6. select events for each window */

/* 7. map the windows x*/
XMapWindow (mydisplay , baseWindow);

/* 8. enter the event loop %/
done = 0;
while (done = 0) {
XNextEvent (mydisplay , &baseEvent);
switch(baseEvent.type) {
case Expose:

break;
case ButtonPress:
if (baseEvent.xbutton.button = Button3) {
x = baseEvent.xbutton.x;

y = baseEvent.xbutton.y;
XSetClipOrigin (mydisplay , myge, x, y);
XCopyPlane (mydisplay , pattern, baseWindow, mygc, 0, O,
arrow_width , arrow_height, x, y, 1);
}

break;

}
}

/* 9. clean up before exiting */
XUnmapWindow (mydisplay , baseWindow);
XDestroyWindow (mydisplay , baseWindow);

X CloseDisplay (mydisplay);

Fig. 4.5 (continued)

to align to where the arrow Pixmap is copied to the screen. For this, the coordinates
of the pointer are used with both the XSetClipOrigin () and XCopyPlane ()
calls to correctly position the arrow shape.

This code indicates when the GC is created, the value mask does not have to
indicate the clipping mask is going to change. However, if it is included by adding
GCClipMask to the bit mask used when creating the GC (where the mask contains as
aminimum GCForeground | GCBackground),then a mask must be assigned
to the c1ip_mask member of the XGCValues passed to the XCreateGC () call.

4.6 Using Postscript to Create Labels 101

Fig. 4.6 A red screen
covered by transparent
arrows

4.6 Using Postscript to Create Labels

The example in Fig. 3.6 is one way of creating a menu of labelled entries. This was
done by creating a menu item as a window and then drawing a string into the window
using the XDrawImageString () call. An alternate approach is considered here
in which Pixmaps which were considered in Fig.4.1 are used. This approach has the
advantages over the string drawing of the:

e transmission cost for displaying the label letters is reduced and
e characters available to form the label is increased.

Forming labels with this technique enables a combination of letters with symbols.
The problem is obtaining the letter and symbol combination which looks correct
when the label appears on the display. Such combinations could be created by hand
by using an editor. That technique is reasonably time-consuming, and the results can
be uncertain. An alternative is the use the bitmap program as was done in Sect.4.3.
However, the program bitmap provides no assistance in creating characters. The
technique used here is to create the label using a small Encapsulated Postscript
(EPS) program. Then, this program is transformed into a bitmap using the convert
program, which is part of the ImageMagick open software package.

102 4 Pattern Maps and Labels

As an example of this label generation progress, the EPS program:

%'!PS—Adobe—2.0 EPSF—1.2
% % BoundingBox: 0 5 50 25

/Times—Bold findfont
18 scalefont

setfont

10 10 moveto

(View) show

showpage

which produced the label View was created using an editor. Assume this program
is stored in the file string. eps. Since this program is an EPS program, it can be
executed on a Postscript printer or programs such as ghostscript or display
(which is part of the open source ImageMagick package). They provide a means
of inspecting what the label will look like. Then, the required bitmap form of the
label would be obtained in the file view.xbm by the command:

convert string.eps view.xbm

using the convert program which is also part of the ImageMagick package.

An advantage of this technique comes from the flexibility of Postscript. The
BoundingBox statement specifies the coordinates of the lower left-hand corner (x
and y values, respectively) and the upper right-hand coordinates in which the label is
to be drawn; anything outside of this box will disappear. The /Times-Bold state-
ment selects the font in which the label is to be drawn, while the 18 scalefont
statement indicates the font is to be 18 points in height. The characters in the required
label are specified in the (View) show statement, which produce View as output.
By changing these four statements, different labels, composed from different sized
fonts, can be generated.

Postscript is designed to use fine divisions in coordinates. This results in smooth
representation of geometric shapes, in particular curves. Postscript generates all char-
acter shapes by drawing them as a series of (Bézier) curves. Such curves are designed
to perform well on the printed page. By contrast, X uses a bitmap display in which the
coordinates are fixed by the screen hardware’s pixel density and are today generally
packed in a higher density than Printer’s points on which Postscript is designed.
Despite this density difference, a graphic or string of characters which Postscript
generates on a printed page will be viable on a screen. This is particularly the case if
Postscript is converted to a bitmap representation as proposed in the above procedure.
From the bitmap (in the form of Pixmaps), X produces menu labels.

Postscript is supplied with 35 standard fonts. Two of those fonts are of symbols
and standard small patterns, leaving 33 for creating text. Those standard fonts, or
typefaces, for creating text are listed in Table 4.1. The name of the font is used with
the f£indfont Postscript language construct, as in the example EPS program above.

A bitmap is transformed into a Pixmap, and it is the Pixmap which X uses.
There is no loss in precision or accuracy in going from a bitmap to a Pixmap. A
Pixmap is a generalized version of a bitmap (from version 11 of X, bitmaps are

4.6 Using Postscript to Create Labels 103

Table 4.1 Names of the 33 standard postscript text fonts

No. Font name No. Font name

1 AvantGrade-Book 2 AvantGrade-BookOblique

3 AvantGrade-Demi 4 AvantGrade-DemiOblique

5 Bookman-Demi 6 Bookman-Demiltalic

7 Bookman-Light 8 Bookman-Lightltalic

9 Courier 10 Courier-Bold

11 Courier-BoldOblique 12 Courier-Oblique

13 Helvetica 14 Helvetica-Bold

15 Helvetica-BoldOblique 16 Helvetica-Narrow

17 Helvetica-Narrow-Bold 18 Helvetica-Narrow-BoldOblique
19 Helvetica-Narrow-Oblique 20 Helvetica-Oblique

21 NewCenturySchlbk-Bold 22 NewCenturySchlbk-Boldltalic
23 NewCenturySchlbk-Italic 24 NewCenturySchlbk-Roman

25 Palatino-Bold 26 Palatino-BoldlItalic

27 Palatino-Italic 28 Palatino-Roman

29 Times-Bold 30 Times-BoldItalic

31 Times-Italic 32 Times-Roman

33 ZaptChancery-MediumlItalic

no longer directly handled by X but are considered as Pixmaps). Once a Pixmap
is created, it is a one-to-one mapping between a bit of the Pixmap and a pixel
on the screen. This is the reason for their use as menu labels. Xlib provides the
XCreatePixmapFromBitmapData () function to convert a bitmap created
externally into a Pixmap for use by X. However, the conversion of Postscript output to
a bitmap can result in precision loss; what appears clear and precise from Postscript
be less so in the corresponding bitmap representation. But Postscript provides a easier
creation approach.

To assist selection of Postscript fonts for use in creating bitmap labels, a program
was written to display all 33 standard Postscript text fonts. The output of this program
is in Fig.4.7. Each of the 33 fonts is shown displaying the same sentence at 12, 14,
and 18 point sizes in consecutive columns of Fig. 4.7. The numbers in the left column
of Fig.4.7 correspond to the number against each of the fonts shown in Table 4.1.
The most common font size for menu labels is 12 point.

Postscript programs each similar to the above, were written for each of the 33 fonts,
and their 3 font sizes separately. A bitmap equivalent was obtained by applying the
convert program to each Postscript program. The resulting bitmap wasbrought into
the X window program using a #include for each bitmap. The Xlib function used
to create a Pixmap from the bitmap was XCreatePixmapFromBitmapData ().
A XCopyArea () Xlib call was used to place the Pixmap on the display.

104

The quick brown fox Jumped.
Ths guick brown fox Junped.
The guick boown fax Jumpad.

The quick brown fox Fusped.

The gquick brown fax jumped.
The quick brosn fox jumped.
The quick brosm fox juspad.
The gquick brown fox jumped.

4 Pattern Maps and Labels

1 The guick brown fox jumped. The quick brown fox jumped. The quick brown fox jumped.

2 The guick brown fox jumped. The quick brown fox jumped. The quick brown fox jumped.

3 Thaquick brown fox umpad. The quick brown fax jumped. The quick brown fox jumped.

4 The quick brown fox jumped. The quick brown fox jumnped. The quick brown fox jumped.

5 The quick brown fox fumped, The quick brown fox jumped, The guick brown fox jumped.
5 The quick brown fox fumped, The guick brown _fax jumped. The quick brown fox jumped,
7 The quick brown fox jumped, The quick brown fox jumped, The quick brown fox jumped,

g The quick broum fox fumped. The guick browmn fox furmped. The quick brown fox jumped.

3

The quick brown fox jumped.
The guick brown fox jumped.
The guick brown fox jumped.
The quick brown fox jumped.

13 The quick brown fax jumped. The quick brown fox jumped. The quick brown fox jumped.

14 The quick brown fex jumped. The quick brown fox |umped. The quick brown fox jumped.
15 The quick brown fox jumped. Tha quick brown fox jumped. The quick brown fox jumped.
16 The quick trown fox jumped. The quitk brown fox jumped. The quick brown fox jumped.

17 The quick brawn box jumped. The quick brown fox jumped. The quick brown fox Jumped.

18 The quick brown fax jumped. The quick brown fax jumped. The guick brown fox jumped.

19 The quisk brown jor jumped The quick brown fax jumpsd. The quick brown fox jumped.

20 The quick brown fax jumped. The quick brown fox jumped. The quick brown fox jumped.
71 The quick hrown fox jumped, The quick brown fox jumped, The quick brown fox jumped.
77 Thegwich brown fos jumped. The quick brown fox fumped, The quick brown fox jumped.
23 The quich brown fox jumped. The quick brown fox jumped. The quick brown fox jumped.
24 Tha quick brown fax jumped, The quick brown fox jumped. The quick brown fox jumped.
25 The quick brown fox jumped, The quick brown fox jumped. The quick brown fox jumped,
2% The quick brown fox jumped, The quick brown fox jumped. The quick brown fox jumped.
27 Thequick brown fox fuemped. The quick browm fox jumped. The quick brown fox jumped.

2 Thequick brown foe jumped. The quick brown fox jumped. The quick brown fox jumped.
23 Thequick brown fox jumped. The quids brown fox Jumped, The quick brown fox jumped.

30 The quick brown fox fumped. The quick Brown fox fumped. The quick brown fox fumped.

3 The quick brown fox fimped The quick brown fox umped. The quick brown fox jumped.

32 Thequick brown fx furmped. The quick brown fox jumped, The quick brown fox jumped.

3 e ek feren foimped The gk Frows o fompud. Tie gulck broam for fumped.

Fig. 4.7 Bitmap rendering in 12, 14, and 18 point of 33 standard Postscript text fonts

Inspection of Fig.4.7 indicates properties of the standard Postscript text fonts
relevant to their selection for use in creating menu labels. Font 33 (ZapfChancery-
Mediumltalic) appears the most inappropriate due to its compactness. The Courier
fonts (number 9—-12) are too spaced out. Fonts 1 (AvantGrade-Book), 16 (Helvetica-
Narrow), 28 (Palatino-Roman), and 32 (Times-Roman) appear to retain their clarity
across the three point sizes of the tabulation, particularly at 12 point. These fonts
might be used as first choices in obtaining the font thought most appropriate for menu
items. Such selection is inexact and is subject to the opinion of whom is making the
selection. For example, should bold or normal weight fonts be used?

4.7 Changing the Colour of a Pixmap 105

4.7 Changing the Colour of a Pixmap

One means of indicating to the program user what selection is about to be made is
to change the colour of a button on which the mouse button currently rests. This
gives a more positive indication of the mouse pointer’s position than finding the
mouse cursor. This can be implemented using the Pixmap handling idea contained
in the example of Fig.4.1. The Pixmap used for the label is created by the Postscript
conversion technique given in Sect.4.6.

Fig. 4.8 Inverted Pixmaps
on a window

The program in Fig.4.9 shows the basis of this process. It uses bitmap data of a
36-point E character. This is converted to a Pixmap in the program and then placed in
two fixed positions on a window coloured white. The black and green colours of the
respective foreground and background are swapped over between the two positions.
As with all X11 programs, it is event driven, and in this case, the exposure event is
used. Notice in Fig.4.9 this exposure event is linked to the base window when it is
created.

Figure 4.8 shows the screen display produced when executing the program of
Fig.4.9.

Notice in the program of Fig.4.9 the XCopyPlane () function call is used to
move the Pixmap to the window so as to make it visible. The function XCopyArea ()
cannot be used for this purpose as it does not make reference to the foreground and
background members of the GC included in the call. The XCopyArea () uses the
GC, but not its foreground and background members. It is those members which are
used to colour the Pixmap on the window.

106 4 Pattern Maps and Labels

/* This program draws a 100 by 200 pixel base window. An image
* is created from a bitmap pattern of the character E that had
* been created externally to this program. That bitmap
* pattern is stored in this program. The program converts that
* pattern to the X Window System Pixmap format and that Pixmap
* format is written onto the base window using two different
* sets of foreground and background colours.

*

* Coded by: Ross Maloney
* Date: July 2008
«/

#include <X11/Xlib.h>
#include <X11/Xutil.h>

#define e_width 45

#define e_height 35

static char e_bits[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxfc, Oxff, Oxff,
0x00, 0x00, 0x00, Oxf8, Oxff, Oxff, 0x00, 0x00, 0x00, OxeO,
0x0f, Oxf8, 0x00, 0x00, 0x00, OxcO, 0xOf, Oxe0, 0x00, 0x00,
0x00, OxcO, 0x0f, Oxe0, 0x00, 0x00, 0x00, OxcO, 0xOf, Oxc6,
0x00, 0x00, 0x00, O0xcO, 0x0f, Oxc6, 0x00, 0x00, 0x00, 0xcO,
0x0f, 0x06, 0x00, 0x00, 0x00, OxcO, O0xOf, 0x07, 0x00, 0x00,
0x00, OxcO, 0x0f, 0x07, 0x00, 0x00, 0x00, OxcO, Oxcf, OxO07,
0x00, 0x00, 0x00, OxcO, Oxff, 0x07, 0x00, 0x00, 0x00, OxcO,
0xff, 0x07, 0x00, 0x00, 0x00, OxcO, 0x8f, 0x07, 0x00, 0x00,
0x00, OxcO, 0x0f, 0x07, 0x00, 0x00, 0x00, OxcO, 0xO0f, 0x06,
0x00, 0x00, 0x00, O0xcO, 0x0f, 0x06, 0x01, 0x00, 0x00, 0xcO,
0x0f, 0x86, 0x01, 0x00, 0x00, 0xcO, 0xOf, OxcO, 0x01, 0x00,
0x00, OxcO, 0x0f, OxcO, 0x01, 0x00, 0x00, OxcO, 0xOf, OxeO,
0x01, 0x00, 0x00, Oxe0, O0xO0f, O0xf8, 0x01, 0x00, 0x00, Oxf8,
oxff, Oxff, 0x00, 0x00, 0x00, Oxfc, Oxff, Oxff, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

int main(int argc, char xargv)

{
Display smydisplay ;
XSetWindowAttributes myat;
Window mywindow ;
XSizeHints wmsize ;
XWDMHints wmhints ;
XTextProperty windowName, iconName;
char *window_name = ”Image” ;

Fig. 4.9 Inverting the foreground and background of a Pixmap

4.7 Changing the Colour of a Pixmap 107

char *xicon_name = "Im”;

XEvent myevent ;

XGCValues myGCvalues;

GC imageGC;

Pixmap pattern;

XImage xlocal;

int screen_num , done, x, y;

unsigned long valuemask;

/* 1. open connection to the server =/
mydisplay = XOpenDisplay (””);

/* 2. create a top—level window x*/
screen-num = DefaultScreen (mydisplay);
myat . background_pixel = WhitePixel (mydisplay , screen_num);
myat. border_pixel = BlackPixel(mydisplay, screen_num);
myat.event_mask = ButtonPressMask | ExposureMask;
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
mywindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
300, 50, 100, 200, 3,
DefaultDepth (mydisplay, screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
valuemask , &myat);

/* 3. give the Window Manager hints x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , mywindow, &wmsize);
wmhints. initial_state = NormalState;
wmhints . flags = StateHint;

XSetWMHints (mydisplay , mywindow, &wmhints);
XStringListToTextProperty (&window_name, 1, &windowName);
XSetWMName (mydisplay , mywindow, &windowName) ;
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , mywindow, &iconName);

/* 4. establish window reqources %/
pattern = XCreatePixmapFromBitmapData(mydisplay , mywindow,
e_bits , e_width, e_height ,
WhitePixel (mydisplay , screen_num),
BlackPixel (mydisplay , screen_num),
DefaultDepth (mydisplay , screen_num));
imageGC = XCreateGC(mydisplay , mywindow, 0, NULL);

/% 5. create all the other windows needed x*/
/* 6. select events for each window x/

/% 7. map the windows x*/

Fig. 4.9 (continued)

108 4 Pattern Maps and Labels

XMapWindow (mydisplay , mywindow);

/* 8. enter the event loop */
done = 0;
while (done = 0) {
XNextEvent (mydisplay , &myevent);
switch (myevent.type) {
case Expose:
XSetBackground (mydisplay , imageGC, 0xff00);
XSetForeground (mydisplay , imageGC,
BlackPixel (mydisplay , screen_num));
XCopyPlane(mydisplay , pattern, mywindow, imageGC, 0, 0,
e-width, e_height, 10, 10, 1);
XSetForeground (mydisplay , imageGC, 0xff00);
XSetBackground (mydisplay , imageGC,
BlackPixel (mydisplay, screen_num));
XCopyPlane (mydisplay , pattern, mywindow, imageGC, 0, O,
e_-width , e_height, 10, 100, 1);
break;
case ButtonPress:
break;

}
}

/* 9. clean up before exiting %/
XUnmapWindow (mydisplay , mywindow);
XDestroyWindow (mydisplay , mywindow) ;

X CloseDisplay (mydisplay);

Fig. 4.9 (continued)

4.8 Reducing Server-Client Interaction by Images

An image is a modification of the Pixmap provided by the X Window System.
Whereas a Pixmap is stored on the server, an image is stored in the client program.
This (at least) reduces the possibility of resource limitations on a X program due
to the server. Another consequence of this is any manipulation of an image by a
program does not require the exchange of protocol messages between the client
and the server to access the image, and as a result, the program should run faster.
Interaction by the program user with menus formed from Pixmaps is an example of
such a manipulation. Advantage can be gained by using image format for formulating
menus.

To indicate the basic technique, the example of Fig.4.9 for screen displaying
two versions of the one Pixmap is redone in Fig.4.11. In this instance, the Pixmap is
changed to image format which is then sent to the screen. The use of red (0x££0000)
and yellow (0x££££00) in the foreground and background of those image dumps
to screen is applicable to both the Pixmap and image format techniques.

4.8 Reducing Server—Client Interaction by Images 109

Fig. 4.10 Two Pixmaps
handled in image format
dumped on a window

There are some important differences in how a Pixmap is used directly, as in the
program of Fig. 4.9, and indirectly using the image format. The starting point in both
cases is the pattern of bits indicating the foreground and background which is then
converted to a Pixmap structure by the XCreatePixmapFromBitmapData ()
call. The Pixmap can then be made visible on a window using a XCopyPlane ()
call. For the image approach, an image in the form of a XImage structure is cre-
ated from a Pixmap using the XGet Image () call. This image is made visible on
a window by using the XPutImage () function. The XPutImage () function
will only use the colours in the GC which are included in the call, if the image is
of XYBitmap format. But the XYBitmap format is not one of the two formats
the XGetImage () function recognizes. This is overcome by explicitly setting the
format member of the image created by the XGetImage () to be XYBitmap
after setting the depth parameter of the XCreatePixmapFromBitmapData ()
to unity (1) to indicate the Pixmap is in fact to be a bitmap. Alternately, the call
XCreatePixmapFromBitmapData () could be used as a replacement for the
XCreateBitmapFromData () call. That approach would require fewer param-
eters in the call, but the call could not be used if the direct use of the Pixmap was
being used.

The screen output of the program in Fig.4.11 is shown in Fig.4.10. This output is
very similar to that in Fig. 4.8 (aside from colour differences) which was produced
by the program in Fig.4.1.

110 4 Pattern Maps and Labels

/* This program draws a 100 by 200 pixel base window. An image
* is created from a bitmap pattern of the character E that had
* been created externally to this program. That bitmap pattern
% is stored in this program. The program converts that pattern
* to the X Window System image format and that image format is
* written onto the base window using two different sets of
* foreground and background colours.

Y

% Coded by: Ross Maloney
* Date: July 2008

*/

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <stdio.h>

#define e_width 45

#define e_height 35

static char e_bits[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, O0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Oxfc, Oxff, Oxff,
0x00, 0x00, 0x00, Oxf8, Oxff, Oxff, 0x00, O0x00, 0x00, OxeO,
0x0f, 0xf8, 0x00, 0x00, 0x00, OxcO, 0xO0f, Oxe0, 0x00, 0x00,
0x00, OxcO, 0x0f, Oxe0, 0x00, 0x00, 0x00, OxcO, O0xOf, 0Oxc6,
0x00, 0x00, 0x00, OxcO, 0x0f, Oxc6, 0x00, 0x00, 0x00, OxcO,
0x0f, 0x06, 0x00, 0x00, 0x00, OxcO, OxO0f, 0x07, 0x00, 0x00,
0x00, OxcO, 0x0f, 0x07, 0x00, 0x00, 0x00, OxcO, Oxcf, 0x07,
0x00, 0x00, 0x00, OxcO, Oxff, 0x07, 0x00, 0x00, 0x00, OxcO,
0xff, 0x07, 0x00, 0x00, 0x00, OxcO, 0x8f, 0x07, 0x00, 0x00,
0x00, OxcO, 0x0f, 0x07, 0x00, 0x00, 0x00, OxcO, O0xOf, 0x06,
0x00, 0x00, 0x00, OxcO, 0x0f, 0x06, 0x01, 0x00, 0x00, OxcO,
0x0f, 0x86, 0x01, 0x00, 0x00, OxcO, 0x0f, OxcO, 0x01, 0x00,
0x00, OxcO, 0xO0f, OxcO, 0x01, 0x00, 0x00, OxcO, 0xOf, OxeO,
0x01, 0x00, 0x00, Oxe0, OxO0f, O0xf8, 0x01, 0x00, 0x00, Oxf8,
oxff, Ooxff, 0x00, 0x00, 0x00, Oxfc, Oxff, Oxff, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

int main(int argc, char xargv)

{
Display smydisplay ;
XSetWindowAttributes myat;
Window mywindow ;
XSizeHints wmsize ;
XWDMHints wmhints ;

XTextProperty windowName, iconName;

char s*window_name = ”Image” ;

Fig. 4.11 Two versions of a Pixmap handled in image format

4.8 Reducing Server—Client Interaction by Images

char xicon_name = ”Im”;

XEvent myevent ;
XGCValues myGCvalues;

GC imageGC;

Pixmap pattern;

XImage *local;

int screen_num , done;

unsigned long valuemask;

/* 1. open connection to the server x/
mydisplay = XOpenDisplay (7”7);

/* 2. create a top—level window x/

screen-num = DefaultScreen (mydisplay);
myat. background_pixel = WhitePixel (mydisplay, screen_num);
myat. border_pixel = BlackPixel (mydisplay, screen_num);
myat.event_mask = ExposureMask;
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
mywindow = XCreateWindow (mydisplay ,

RootWindow (mydisplay , screen_num),

300, 50, 100, 200, 3,

DefaultDepth (mydisplay , screen_num),

InputOutput ,

DefaultVisual (mydisplay , screen_num),

valuemask , &myat);

/* 3. give the Window Manager hints x*/
wmsize . flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , mywindow, &wmsize);
wmhints. initial_state = NormalState;
wmhints . flags = StateHint;
XSetWMHints (mydisplay , mywindow, &wmhints);
XStringListToTextProperty (&window_name, 1, &windowName);
XSetWMName (mydisplay , mywindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , mywindow, &iconName);

/* 4. establish window reqources %/
pattern = XCreatePixmapFromBitmapData(mydisplay , mywindow,
e_bits, e_width, e_height ,
WhitePixel (mydisplay , screen_num),
BlackPixel (mydisplay , screen_num),

local = XGetlmage (mydisplay , pattern, 0, 0, e_width, e_height,

1, XYPixmap);
local —>format = XYBitmap;
imageGC = XCreateGC(mydisplay , mywindow, 0, NULL);

/* 5. create all the other windows needed x/
/* 6. select events for each window x*/
/* 7. map the windows x/

XMapWindow (mydisplay , mywindow);

Fig. 4.11 (continued)

111

112 4 Pattern Maps and Labels

/* 8. enter the event loop */
done = 0;
while (done = 0) {
XNextEvent (mydisplay , &myevent);
switch (myevent.type) {
case Expose:
XSetBackground (mydisplay , imageGC,
BlackPixel (mydisplay , screen_num));
XSetForeground (mydisplay , imageGC, 0xf{f0000);
XPutlmage (mydisplay , mywindow, imageGC, local, 0, 0, 10, 10,
e_width, e_height);
XSetBackground (mydisplay , imageGC, 0xffff00);
XSetForeground (mydisplay , imageGC,
BlackPixel (mydisplay , screen_num));
XPutlmage (mydisplay , mywindow, imageGC, local, 0, 0, 10, 100,
e_width, e_height);
break;

/* 9. clean up before exiting */
XUnmapWindow (mydisplay , mywindow) ;
XDestroyWindow (mydisplay , mywindow);

X CloseDisplay (mydisplay);

Fig. 4.11 (continued)

4.8.1 Exercises

1. Why would the use of the XCreateBitmapFromData () call be inappropriate
for the direct use of the bitmap data as in the program of Fig.4.9?

2. Design and perform an experiment to determine whether using Pixmap format
or image format as the implementation media for labels leads to a performance
advantage. Such performance measurement should include both execution/re-
sponse time and memory usage.

4.9 Creating Menus by Using the Image Format

Menu bars, pull-down menus, and pop-up menu are collections of labels. In most
instances, actions are associated with selections from those labels, and this selection
process is dynamic. This rapid appearance and disappearance, and providing visual
indication of an individual label, is of interest here. A blend of group and individual
behaviours is required from the labels to form such menus. Labels formed from
Pixmaps are ideal for this application. This is particularly the case if the image
format is used. It adds potential performance advantages over Pixmaps following on

4.9 Creating Menus by Using the Image Format 113

Fig. 4.12 Menus
implemented by labels in
image format in use

from the labels being stored complete within the client program. How this can be
done is the purpose of this section.

The program in Fig.4.13 uses menus formed from labels which are built in the
X11 image format. Figure 4.12 shows the resulting screen output. This menu has the
same operation as the program of Fig. 3.6. A single selection button coloured green is
located on a background window. On the selection button is the word Selection
in pink characters. By clicking the left-hand mouse button on this selection button, an
option menu appears containing the options flowers, pets, and quit. Each
option is labelled in blue with a pink background. On moving the mouse pointer
to each option, the pick background of the options changes to red. Clicking the
right-hand mouse button above, the quit option terminates the program. All menu
labels in this program were implemented using image format created from Pixmaps
which were created externally to this program by the Encapsulated Postscript process
outlined in previous sections. All labels were made up of 18 point characters of the
Times Roman bold font type. So in their creation, only the BoundingBox and show
statements in the previous Encapsulated Postscript program needed to be changed
between each run to generated the required labels. The colours are applied through
the graphics context (GC) used to map the labels to the screen.

Since the XCreateSimpleWindow () call is used to create the menu window,
the events this window is to be sensitive to are established via the XChangeWindow
Attributes () call. With the XCreateSimpleWindow () call, the attributes

114 4 Pattern Maps and Labels

This program creates a main window on which is a selection
button. That button is green in colour with the label
’Selection’ in pink characters. By clicking the left mouse
button on this button an option menu of ’flowers’, ’pets’,
and ’quit’ appears. Each option is labelled in blue with a
pink background. On moving the mouse pointer over each
option, the pink background changes to red. Clicking the
right —hand mouse button over the ’quit’ option terminates
the program.

Coded by: Ross Maloney
Date: July 2008

/

#include <X11/Xlib.h>

#include <X11/Xutil.h>

#include <stdio.h>

#include ”labels.h” /* bitmap representing all labels x/

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

int main(int argc, char xarcv)

{

Display *mydisplay ;

XSetWindowAttributes myat, buttonat, popat;

Window baseW, buttonW, optionW, panelsW [3];

XSizeHints wmsize ;

XWMHints wmhints ;

XTextProperty windowName, iconName;

XEvent myevent ;

XColor exact, closest;

GC myGC1l, myGC2, myGC3;

Pixmap pattern;

XImage xbuttonL , ximage2panels [3];

unsigned long valuemask;

char swindow_name = ” Select”;

char xicon_name = " Sel”;

int screen_num , done, i;

char *colours[] = {”white”, ”black”, ”green”, ”pink”,
”blue”, "red” };

unsigned long colourBits [6];

/* 1. open connection to the server x/
mydisplay = XOpenDisplay (””);

/* 2. create a top—level window =x/
screen-num = DefaultScreen (mydisplay);
for (i=0; i<6; i++) {
XAllocNamedColor (mydisplay ,
XDefaultColormap (mydisplay , screen_num),
colours[i], &exact, &closest);
colourBits[i] = exact.pixel;

}

Fig. 4.13 Menu selection implemented using image format

4.9 Creating Menus by Using the Image Format 115

myat.background_pixel = colourBits [0];

myat. border_pixel = colourBits [1];

valuemask = CWBackPixel | CWBorderPixel;

baseW = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
300, 300, 350, 400, 3,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
valuemask , &myat);

/* 3. give the Window Manager hints x/
wmsize . flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);
wmhints. initial_state = NormalState;
wmhints . flags = StateHint;
XSetWMHints (mydisplay , baseW, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

/* 4. establish window resources x/
myGCl = XCreateGC (mydisplay , baseW, 0, NULL);
XSetBackground (mydisplay , myGCl, colourBits [2]);
XSetForeground (mydisplay , myGCl, colourBits [3]);
myGC2 = XCreateGC (mydisplay , baseW, 0, NULL);
XSetBackground (mydisplay , myGC2, colourBits [3])
XSetForeground (mydisplay , myGC2, colourBits [4])
myGC3 = XCreateGC(mydisplay , baseW, 0, NULL);
XSetBackground (mydisplay , myGC3, colourBits [5]);
XSetForeground (mydisplay , myGC3, colourBits [4]);

)

i

)

/* 5. create all the other windows needed */
buttonW = XCreateSimpleWindow (mydisplay , baseW, 20, 50,
selection_width , selection_height , 3,
colourBits [1], colourBits[0]);
pattern = XCreateBitmapFromData(mydisplay , buttonW,
selection_bits , selection_width ,
selection_height);
buttonL. = XGetlmage(mydisplay , pattern, 0, 0,
selection_width , selection_height ,
1, XYPixmap);
buttonL—>format = XYBitmap;
optionW = XCreateSimpleWindow (mydisplay , baseW, 70, 80,
quit_width , 3xquit_height , 1,
colourBits [1], colourBits[1]);
for (i=0; i<3; i++)
panelsW[i] = XCreateSimpleWindow (mydisplay , optionW, 0,
ixquit_height , quit_-width, quit_height ,
1, colourBits[1], colourBits [0]);

Fig. 4.13 (continued)

116 4 Pattern Maps and Labels

pattern = XCreateBitmapFromData(mydisplay , buttonW, flowers_bits ,
flowers_width , flowers_height);
image2panels [0] = XGetlmage(mydisplay , pattern, 0, 0,
flowers_width , flowers_height ,
1, XYPixmap);
image2panels[0]—>format = XYBitmap;
pattern = XCreateBitmapFromData(mydisplay, buttonW, pets_bits ,
pets_width , pets_height);

image2panels [1] = XGetlmage(mydisplay , pattern, 0, 0,
pets_width , pets_height, 1,
XYPixmap) ;

image2panels[l]—>format = XYBitmap;
pattern = XCreateBitmapFromData(mydisplay , buttonW, quit_bits ,
quit_-width , quit_-height);

image2panels [2] = XGetlmage(mydisplay, pattern, 0, 0,
quit_-width , quit_height, 1,
XYPixmap) ;
image2panels[2]—>format = XYBitmap;
/* 6. select events for each window x*/
myat.event_mask = ButtonPressMask | ExposureMask;

valuemask = CWEventMask;
XChangeWindowAttributes (mydisplay , buttonW, valuemask, &myat);
myat.event_mask = ButtonPressMask | EnterWindowMask
| LeaveWindowMask ;
for (i=0; i<3; i++)
XChangeWindowAttributes (mydisplay , panelsW[i],
valuemask , &myat);

/* 7. map the windows x/
XMapWindow (mydisplay , baseW);
XMapWindow (mydisplay , buttonW);

/+* 8. enter the event loop */
done = 0;
while (done = 0) {
XNextEvent (mydisplay , &myevent);
switch (myevent.type) {
case Expose:
XPutImage (mydisplay , buttonW, myGCl, buttonL, 0, 0, 0, O,
selection_width , selection_height);

break;
case ButtonPress:
if (myevent.xbutton.button = Buttonl
&& myevent.xbutton.window = buttonW) {

printf(”that.is_the_button\n”);
XMapWindow (mydisplay , optionW);
for (i=0; i<3; i++) {
XMapWindow (mydisplay , panelsW[i]);
XPutlmage (mydisplay , panelsW[i], myGC2, image2panels[i],
0, 0, 0, 0, quit-width, quit-height);

Fig. 4.13 (continued)

4.9 Creating Menus by Using the Image Format 117

}
}
if (myevent.xbutton.button = Button3
&& myevent.xbutton.window == panelsW [2])
done = 1; /* exit x/
break;

case EnterNotify:

printf(”window._entered\n”);

for (i=0; i<3; i++) {
if (myevent.xcrossing.window = panelsW([i]) {

XPutImage (mydisplay , panelsW([i], myGC3, image2panels[i],
0, 0, 0, 0, quit-width, quit_height);

break;
}

}
break;

case LeaveNotify:
printf(”window._just._left\n”);
for (i=0; i<3; i++) {
if (myevent.xcrossing.window = panelsW[i]) {
XPutImage (mydisplay , panelsW[i], myGC2, image2panels[i],
0, 0, 0, 0, quit_-width, quit_height);
break;

}

}
break;

}
}

/* 9. clean up before exiting */
XUnmapWindow (mydisplay , baseW);
XDestroyWindow (mydisplay , baseW);

XCloseDisplay (mydisplay);

Fig. 4.13 (continued)

of the parent window are inherited by the window being created. In this program,
the parent is the base window which does not have any event sensitivity set. But the
menu window needs such sensitivity. In the case of the option window which has
the menu window as a parent, a change in attributes is not necessary as the option
window needs the same attributes.

Other points worthy of note in the code of Fig.4.13 are:

1. The three labels (flowers, pets, quit) are put into their own window so the mouse
pointer entering and leaving them can be detected and the colouring of the label
can be changed.

2. Each of the three labels in the menu is assembled into a container window
(optionsW) so they can all be removed together by unmapping this parent
window.

118 4 Pattern Maps and Labels

3. Each of the three labels has the same width and height; therefore, the container
window is three times the height of each label and the same width as each label
since together the labels are to cover the container window completely on the
screen.

4. Both the identifiers of the label containing windows and the identifiers of the
images formed from those labels are stored in an array so there is a one-to-one
correspondence across the array indices.

5. As much of the set-up associated with the production of the different windows is
done before the event loop is entered so as to maximize the response time to the
program user’s actions.

6. The background colour specified for a window in its attribute structure overrides
that given in the XCreateSimpleWindow () call.

7. The Pixmap patterns from which the four labels used in the program are not
reproduced here as they take the same form as used in Figs. 4.8 and 4.10.

8. Although the Pixmap is created for a particular window, it, and the image derived
from it, can be applied to other windows as well.

4.9.1 Exercises

1. Modify the program of Fig.4.13 so it uses the Pixmap format only in place of the
image format.

2. Compare and contrast the programs in Figs. 4.13 and 3.6 which essentially do the
same thing. Provide experimental evidence to support the points you use.

4.10 Forming Text Messages from Bitmap Glyphs

Bitmaps are considered in Sect. 4.2 as specific examples of Pixmap patterns. In such
patterns, each pixel on the screen is either coloured or left blank. In the case of
a default bitmap foreground colouring is black with a white background. Standard
bitmap editors such as bitmap, which is contained in a standard X Window distri-
bution, are available for manually creating such patterns. However, using a bitmap
editor to combine characters for creating text messages is difficult warranting a dif-
ferent approach. This difficulty is magnified by the variations which occur across
the fonts available today. Each font is built up from glyphs, and there is one glyph
for each character in a font. A glyph is a graphical representation of a character in a
font. To assemble a combination of characters which look pictorially correct requires
knowing the properties of glyphs and how those properties determine how one glyph
can be packed adjacent to another.

In Sect.4.6, creating of bitmap representation of text for use in labels was
approached using Postscript. This has the advantage of simplicity. It uses Type 1
fonts initially created by Adobe Systems. A larger variety of font styles are now

4.10 Forming Text Messages from Bitmap Glyphs 119

available as TrueType Fonts, a font specification initially created by Apple Inc. True-
Type Fonts are widely used, with http://www.dafont.com being one of many Web-
sites containing freely downloadable archives of such fonts. Such TrueType Fonts
can be converted to Type 1 fonts by programs such as tt £2pt1 which is available
as open source from the http://ttf2ptl.sourceforge.net Website. By
downloading TrueType fonts and then converting them to Type 1 fonts, the range of
fonts which can be used with the approach of Sect. 4.6 increases significantly above
using the standard Type 1 fonts.

There is a problem with both Type 1 and TrueType fonts. Each is a mathematical
font defined with points and connecting mathematical equations. The pattern which
represents an individual character in a font is called its glyph. The shape of each
glyph in each of these fonts is defined by Bézier (cubic) and B-spline (quadratic)
equations, respectively. These curves have to be rendered into pixels on the screen.
Algorithmic mapping of a continuous curve onto a fixed, discrete grid can led to
complications resulting in an unattractive or indistinct character. To overcome this
problem, fonts which are created/defined only on such a fixed grid are also available.
Because of this grid definition, these fonts are size specific. In most cases, the sizes
are multiples of 8pt (8, 16, 24, etc.), other sizes being less common. Such fonts are
know as pixel or bitmap fonts. They are also available from such archive sites as
http://www.dafont.com.

X Window comes with a large set of bitmap fonts. Each glyph of these bitmap
fonts in the point sizes available can be viewed using the xfontsel program which
is also a standard part of the X distribution. It is logical to use such available fonts
directly. To do this, glyphs are selected from such a font and arrange adjacent to one
another to form words. This is known as glyph packing. The assembled glyphs are
then formed into a bitmap which can then be used for such things as menu items or
labelling of items such as a text entry window.

4.10.1 Accessing X11 Standard Bitmap Fonts

The font files of X Window are stored in sub-directories 100dpi, 75dpi,
misc, encoding and Typel of the /usr/share/fonts/X11 directory. Sub-
directories 100dpi, 75dpi and misc contain bitmap font files in Portable
Compiled Format (PCF) which is then compressed using gzip. Each sub-directory
contains a file fonts.dir which tabulates the correspondence between the name
of the file and the name of the font as specified using the X Logical Font Description
(XLFD). Sub-directories 100dpi and 75dpi contain the same number and font
types, but at different pixel densities. A summary of the types of fonts contained in
those two sub-directories is contained in Table 4.2.

Each file in sub-directories 100dpi and 75dp1i contains a single size font. Font
compliance with International Standards ISO8859-1 and ISO10646-1 is varied (the
-1 part of each standard font name denotes the part associated with the Latin 1
character set). If a file contains a font complying to ISO10646-1, the file is larger

http://www.dafont.com
http://www.dafont.com

120 4 Pattern Maps and Labels

Table 4.2 Styles of selected bitmap font files in X11 dpi sub-directories

Name 08 |10 |12 |14 |18 |19 |24 is08859-1 | is010646- | Extra
1

CharB %k * %k * % % 3

ChaIBI k& * £ * £ * *

charI ES & ES % ES ES £

charR % & % * % % £

CourB %k % %k * %k %k 3 *

COurBO £ * £ * £ * * *

COurO 3k & ES * ES ES & *

helvB % * % * % % £ *

helVBO 3k * £ * ES * * *

hClVO * & ES % * ES £ %

helvR * * * * * * * *

luBIS * * * * * * * * *

luBS * * * * * * * * *

IulS * * * * * * * * *

IuRS * * * * * * * * *

lubB £ * ES * k * * * *

lubBI * * * * ES * ES * *

lubl * * * * * * * * *

lubR * * * * * * * ® *

IutBS * ® * * * * * * ¥

IutRS * * * * * * * * *

ncenB * * * # * * * %

nCenBI ES * * * * * * *

ncenl * ® * * * * * *

ncenR * * * * * * * s

symb * * * * * * * fontspecific

tech * dectech

techB * dectech

term * *

termB * *

tlmR %k * % * % % % *

than the corresponding ISO8859-1 compliant font file due to containing approxi-
mately 4 times as many glyphs/characters. This means all the glyphs/characters in
the ISO8859-1 file are contained in the ISO10646-1 file, plus more. ISO10644-1, or
the Universal Character Set, is a later standard than ISO8859-1. When a font is present

4.10 Forming Text Messages from Bitmap Glyphs 121
Table 4.3 Styles of selected bitmap font files in X11 misc sub-directories

Name 1121|3457 8|9 |10[11|13]|14|15|16| KOI8 | is010646-1 | is0646
IOXZO k * k * k * k * * * *k * * * k k

12x13ja *

12x24 *

12x24rk *

18x18ja *

18x18ko *

4x6 k| [k |k [k |k |k RN I *

5X7 k * k * k * k * k * * *k * k k

5X8 * * k * * * * * k * * * * k *

6X1 0 * * * * *k * *k * * * * * * * *

6Xl 2 * & * & k & * 3k k k 3k k 3k * *

6X 1 3 k * k * k * k * k k * k * k k

6x13B N ||k |k *

6x130 | | x | |® | x | =% I |k |k |k *

6X9 k * k * *k * k * *k *k * * * k k

7x 1 3 * * k * k * * * * * k * * * * *

7x13B R I I I O I I I I T *

Tx130 | % [# [| | % [w [[| % % (% [x | % [«

7x 14 k * k * k * k * k k * k * k k

7x14B E E N #

le 3 *k & *k & * * * * * * * & * * *

le 3B k * k * k * * *k *k * * * 3k

8x130 | * |® | [® |k |k %k |k PRI *

8x16 *

8x16rk *

9X 1 5 k * k * k * k * *k * k * k * k k

9X1 5B k * k * * * * * * * * * * * *

9Xl 8 * * * * * * *k * * * * * * * * *

9X1 8B k * k * *k * *k * *k *k * *k * k

arabic24 *

cIB6x10 *
cIB8x12 *
cIB8x10 *
cIB8x12 #*
cIB8x13 *
cIB8x14 *

(continued)

122 4 Pattern Maps and Labels

Table 4.3 (continued)

Name 112 1(3 (4|57 8|9 |10/11|13|14|15|16| KOI8 | is010646-1 | is0646
cIB8x16 *
cIB8x8 *
clB9x15 *
cll6x12 *
cIB8x8 *
clR4x6 *
cIR5x10 *
cIR5x6 *
cIR5x8 *
clR6x10 *
clR6x12 *
clR6x10 *
clR6x10 *
cu-paul2 *

in files complying to both ISO standard, then ISO8859-1 is appended to the name
of the file complying to ISO8859-1. As an example of this, the file containing font
courB (courier bold) at 14 point size is called courB14-1508859-1.pcf.gz,
while the ISO10646-1 compliant font is stored in file courB14 .pcf . gz. Provid-
ing ISO8859-1 compliant version of a font when ISO10646-1 is also provided is for
backward compatibility of the X11 distributions.

As indicated in Table 4.2, most fonts available from sub-directories 100dpi and
75dpi are in sizes from 8 to 24 point. With the exception of the courier and some of
the lucidatypewriter fonts (respectively indicated as cour and lut in Table 4.2) which
are mono-spaced fonts, all others are proportionally spaced fonts.

Sub-directory misc contains fonts designed specifically for use on computer
displays. Several of these fonts are proportional spaced fonts, but most are character
cell fonts, which is a form of mono-spacing. The numbers heading the columns
of Table 4.3 indicate a font complying to different parts of ISO8859, with those
parts pertaining to character of the different print languages of the world. Part 1
of ISO8859 relates to characters of Western European languages. Some fonts are
provided to comply with the later [SO10646-1 standard, while others to the earlier
ISO646 standard.

In each of these fonts, each glyph is contained within a cell size which is generally
contained within its name; for example, the glyphs of a 10x20 font are contained
within a 10x20 pixel cell. These fonts tend to be smaller when displayed on the screen
than those in sub-directories 100dpi and 75dpi.

4.10 Forming Text Messages from Bitmap Glyphs 123

4.10.2 How to Use the Bitmap Fonts

To use an X11 bitmap font, it first needs to be decompressed, the resulting binary
bitmap file is converted into another format, and then, the glyphys contained in the
resulting file need to be composed into the required label using a program such as
that in Fig.4.14. Decompressing the font file is done using the gzip program.

The file resulting is a binary file in Portable Compiled Format (PCF) which repre-
sents a font’s glyphs in a manner efficiently handled by the X Window server together
with needing less disc storage than the Bitmap Distribution Format (BDF) file from
which it was generated. Such BDF files are defined in the specification available
from http://partners.adobe.com/public/developer/en/font/5005.BDF_Spec.pdf and
are themselves text files. The program pcf2bdf, available from http://www.tsg.ne.
jp/GANA/S/pcf2bdf, is a decompiler for PCF files, producing BDF files. Conversely,
the program bdftopcf is the corresponding compiler, available from http://xorg.
freedesktop.org/releases/individual/app.

The BDF file contains not only the detail of each defined glyph in the font, but
also how those glyphs can be put together to construct a composition. Keywords
are contained in the file to identify, or tag, such information. The BDF specification
defines the keywords shown in Table 4.4. In Table 4.4, a Level is assigned to each
of those keywords. A Level 1 indicates the data associated with each keyword go
directly into forming the glyph. A Level 2 indicates a delimiting keyword which
introduces some structure into the resulting file enabling checking for completeness.
A Level 3 indicates an information additives, while a Level of * indicates keywords
associated with glyph assembly in other than left-to-right ordering on a page (which
are not considered here). The pcf2bdf program when acting on a bitmap file in
a standard X Window distribution/server produces a BDF containing keywords of
levels 1, 2, and 3. Additional non-standard keywords are also generated between
STARTPROPERTIES and ENDPROPERTIES keywords. These are surplus to the
need for generating the glyphs. Each BDF file defines a font, and each STARTCHAR
keyword in the file specifies a character in that font. Consecutive lines in the file
following that STARTCHAR keyword, up to the closing ENDCHAR keyword, define
all the details of the glyph representing the character.

Joining glyphs into a composition is done via atfachment points. Each glyph has
a left attachment point defined on its left side where its pattern is to be connected to
the glyph on its left (i.e. the glyph it follows). The position of this point is defined
by the parameters on the BBX keyword. Defined in the parameters of a DWIDTH
keyword is a right attachment point where the next glyph is to be attached to it (on
the right). This is specified relative to the left-hand attachment point of the glyph.
Each of these two points is specified relative to the individual glyph.

Within each Bitmap Distribution Format font file, a bounding box is defined for
all the glyphs there contained. This is the FONTBOOUNDINGBOX keyword. The
FBBy parameter gives the total height in pixels needed to contain all glyphs of the
font individually. The starting point in bounding box where the first glyph is to be

http://partners.adobe.com/public/developer/en/font/5005.BDF_Spec.pdf
http://www.tsg.ne.jp/GANA/S/pcf2bdf
http://www.tsg.ne.jp/GANA/S/pcf2bdf
http://xorg.freedesktop.org/releases/individual/app
http://xorg.freedesktop.org/releases/individual/app

124 4 Pattern Maps and Labels

/* This program composes a message given on the command line

* using a font described in a Bitmap Distribution Format
% (BDF) and outputs the resultant bitmap.

E 3

* Coded by: Ross Msloney

* Initial code: August 2011

*/

#include <stdio.h>
#include <stdlib.h> /* for exit() =/
#include <string.h> /* for strcat() =/

FILE #fileIn , *fileOut, *fopen ();

int count , checkChars, ready, ii, k, attachx, attachy;
int number, value;
int FBBx, FBBy, Xoff, Yoff; /% glyphs Boundingbox info. x*/

struct glyph {
int BBx, BBy, BBxoff, BByoff, dwx, dwy, number, lines;
char name[40], encoding[10], pattern[40][6];

} pallet [200]; /* Information storage for glyph in font x/

char lineoftype [40][400]; /* Storage for composed message */

int main(int argc, char xargv([])

{

char ¢, line[300], filename[30];
int i;

void extract (char x);

void compose (char x);

void xbmout (char *, int, int);

/* check the command line, then setup processing %/
if ((fileIn = fopen(argv|argc—1], "r”)) = NULL) {
printf(”Name_of .BDF_file _needs.to_be.supplied\n”);

exit (1);

}

count = 0;

while (fscanf(fileIn, ”"%["\n]”, line) != EOF)
fscanf(fileIn , "%c”, &c); { /% Store glyphs %/
if (line[0] != ’\0’) extract(line); /%« O length skip =/
line [0] = "\0’;

compose (argv [1]); /* compose the command line message */

strcat (filename , argv[2]);

strcat (filename , 7 .xbm”);

if ((fileOut = fopen(filename, "w”)) = NULL) {
printf(” Could_not_open._file._for._output\n”);
exit (1);

xbmout (argv [2], FBBy, attachx); /* file composed message */

Fig. 4.14 Creating bitmap messages by packing glyphs

4.10 Forming Text Messages from Bitmap Glyphs 125

/* Function to examine a BDF file and recovers required
* information associated with it’s keywords.

*/
void extract (char xfileLine)
{

char command[40];

int i, j;

void printglyph (char);

sscanf(fileLine , "%s”, command);
if (!strcmp(command, "FONTBOUNDINGBOX”)) {
sscanf (fileLine , "%s %d %d %d %d”,
command, &FBBx, &FBBy, &Xoff, &Yoff);

return;

if (!strcmp(command, "CHARS”)) {
sscanf(fileLine , "%s %d”, command, &checkChars);
ii = 0;
return;

if (!stremp(command, "STARTCHAR”)) {
sscanf(fileLine , "%s %s”, command, &pallet[ii].name);
count—++;
return;

if (!stremp(command, "ENDCHAR”)) {
pallet [ii]. lines = k;
i+
ready = 0;
return;

if (!stremp(command, "ENCODING”)) {
sscanf(fileLine , "%s %s”, command, &pallet[ii].encoding);
ready = 1;
checkChars ——;
return;

if (!stremp(command, "DWIDTH”)) {
sscanf(fileLine , "%s %d %d”,
command, &pallet[ii].dwx, &pallet[ii].dwy);
if (ready =1) {
printf ("ENCODING statement required before”);
printf ("DWIDTH statement: %s\n”, fileLine);

exit (1);
}
ready = 2;
return;

}

if (!stremp(command, "BBX”)) {
sscanf(fileLine , "%s %d %d %d %d”, command,
&pallet [ii].BBx, &pallet[ii].BBy, &pallet[ii].BBxoff,

Fig. 4.14 (continued)

126 4 Pattern Maps and Labels

&pallet [ii]. BByoff);

if (ready != 2) {

printf ("DWIDTH statement required before”);

printf (”"BBX statement: %s\n”, fileLine);

exit (1);
}
ready = 3;

/+ Calculates number of data hex per line x/

pallet [ii].number = pallet [ii].BBx/4;

if (pallet[ii].numberx4 != pallet[ii].BBx)
pallet [ii].number+4+;
return;

if (!strcmp(command, "BITMAP”)) {
if (ready != 3) {
printf(”No BBX statement for encoding %d\n”,
pallet [ii].encoding);

exit (1);
ready = 4;
k =0;
return;

if (ready = 4) {

sscanf(fileLine , "%s”, command);
for (j=0; j<pallet[ii].number; j++)
pallet [ii]. pattern[k][j] = command[]];
kt+;
}
return;

}

/* Function to typeset the glyph pattern.

*/

void compose(char xmessage)

{
int i, j, k, n, topx, topy, currentx, currenty;
void putglyph(char, int, int);

for (i=0; i<FBBy; i++)
for (j=0; j<400; j++) lineoftypel[i][]j] = ’.7;

attachx = —Xoff; /* Calculate location of initial point =/
attachy = FBBy + Yoff;
k = 0;
lineoftype[attachy][attachx] = 'M’; /% Show attachment point x/
while (message[k] != ’\0>) { /* Get each character =/
for (j=0; j<ii; j++)
if (pallet[j].name[0] == message[k]) break;

topy = attachy — (pallet[j].BBy + pallet[j].BByoff);
topx = attachx — pallet [j]. BBxoff;
currentx = topx;

Fig. 4.14 (continued)

4.10 Forming Text Messages from Bitmap Glyphs

currenty = topy;
if (topx < 0) currentx = 0;
/* Show top—left glyph pattern position %/
lineoftype [topy][topx] = "T7;
for (n=0; n<pallet[j].lines; n++) {

currentx = topx;

for (i=0; i<pallet [j].number; i++) {

127

putglyph(pallet[j].pattern[n][i], currenty, currentx);
currentx = currentx + 4;
}
currenty++;
}
k++;
attachx = attachx + pallet[j].dwx;
attachy = attachy + pallet[j].dwy;
lineoftype[attachy][attachx] = 'M’;
/* Show next attachment x/
}
}
/* Function to insert the black/white bits contained in single

* glyph into the bitmap of the overall composition */

void

{

int

putglyph (char hex,

value ;

switch (hex) {

case

case

case

case

case

case

case

case

0

110,

5.

TR

int y, int x)
lineoftype [y][x] = "+
lineoftype [y][x+2] = "+ 7;
break;
lineoftype [y][x] = "+7;
lineoftype[y][x+2] = "+ 7;
break;
lineoftype [y][x] = "+7;
lineoftype [y][x+2] = 'm’;
break;
lineoftype[y][x] = "+
lineoftype [y][x+2] = 'm’;
break ;
lineoftype [y][x] = "+
lineoftype [y][x+2] = "+ 7;
break;
lineoftype [y][x] = "+
lineoftype [y][x+2] = "+ 7;
break;
lineoftype [y][x] = "+7;
lineoftype [y][x+2] = 'm’;
break;
lineoftype [y][x] = "+
lineoftype [y][x+2] = 'm’;

break;

Fig. 4.14 (continued)

lineoftype [y][x+1]
lineoftype [y][x+3]

lineoftype [y][x+1]
lineoftype [y][x+3]

lineoftype [y][x+1]
lineoftype [y][x+3]

lineoftype [y][x+1]
lineoftype [y][x+3]

lineoftype [y][x+1]
lineoftype [y][x+3]

lineoftype [y][x+1]
lineoftype [y][x+3]

lineoftype [y][x+1]
lineoftype [y][x+3]

lineoftype [y][x+1]
lineoftype [y][x+3]

128 4 Pattern Maps and Labels

case ’8’: lineoftype[y][x] = 'm’; lineoftype [y][x+1] = "+
lineoftype[y][x+2] = '+’; lineoftype[y][x+3] = "+7;
break;

case ’9’: lineoftype[y][x] = 'm’; lineoftype [y][x+1] = "+
lineoftype[y][x+2] = '+7’; lineoftype[y][x+3] = 'm’;
break ;

case ’A’: lineoftype[y][x] = 'm’; lineoftype [y][x+1] = "+;
lineoftype[y][x+2] = 'm’; lineoftype[y][x+3] = "+7;
break;

case 'B’: lineoftype[y][x] = 'm’; lineoftype [y][x+1] = "+7;
lineoftype[y][x+2] = 'm’; lineoftype[y][x+3] = 'm’;
break;

case ’'C’: lineoftype[y][x] = 'm’; lineoftype [y][x+1] = 'm’;
lineoftype[y][x+2] = '+’; lineoftype[y][x+3] = "+7;
break ;

case ’D’: lineoftype[y][x] = 'm’; lineoftype [y][x+1] = 'm’;
lineoftype[y][x+2] = '+7; lineoftype[y][x+3] = 'm’;
break;

case 'E’: lineoftype[y][x] = 'm’; lineoftype [y][x+1] = 'm’;
lineoftype [y][x+2] = 'm’; lineoftype[y][x+3] = "+;
break;

case 'F’: lineoftype[y][x] = 'm’; lineoftype [y][x+1] = 'm’;
lineoftype [y][x+2] = 'm’; lineoftype[y][x+3] = 'm’;
break;

default : printf(” Error in printing a hex value\n”);

}

~
*

Function to write the glyph composition as an X Window bitmap
(XBM) file using the naming information supplied on the
command line which invoked this program.

Note with respect to xbm files:
the least significant bit is on the left
the most significant hex digit is on the right of a hex—pair
each row of bits are completely contained in bytes
representing that row

* X X X X ¥ ¥ ¥

*
~

void xbmout(char *message, int height, int width)

{
int i
int copy, swing;

, j, result, value, k, bit;

fprintf (fileOut , "#define %s_width %d\n”, message, width);
fprintf(fileOut , "#define %s_height %d\n”, message, height);
fprintf (fileOut, ”static char %s_bits [] = {\n”, message);

/* main test part x/
for (i=0; i<height; i++) {

k = 0;
bit = 1;
value = 0;

Fig. 4.14 (continued)

4.10 Forming Text Messages from Bitmap Glyphs

copy = 0;
swing = 1;
for (j=0; j<width; j++) {
if (lineoftype[i][j] = 'm’) value = value | bit;
bit = bit%2;
k++;
if (k=—14) {
if (swing > 0) copy = value;

else fprintf(fileOut, ” 0x¥%x%x,”, value, copy);
swing = —swing;
value = 0;
bit = 1;
k = 0;
}
}
if (k=0) /% selecting end of row output */
if (swing > 0) fprintf(fileOut, ”\n”);
else fprintf(fileOut, 7 0x0%x,\n”, copy);
else
if (swing > 0) fprintf(fileOut, ” 0x0%x,\n”, value);
else fprintf(fileOut, ” 0x¥%x%x,\n”, value, copy);
}
fprintf(fileOut, ”};\n”);

}

Fig. 4.14 (continued)

Table 4.4 Keywords defined in the BDF specification

129

Level Keyword Level Keyword

1 STARTFONT * VVECTOR

3 COMMENT 3 METRICSSET
3 CONTENTVERSION 2 STARTCHAR
3 FONT 1 ENCODING
3 SIZE 2 SWIDTH

1 FONTBOUNDINGBOX 1 DWIDTH

2 STARTPROPERTIES 1 BBX

2 ENDPROPERTIES 1 BITMAP

2 CHARS 2 ENDCHAR

* SWIDTHI 2 ENDFONT

* DWIDTHI1

130 4 Pattern Maps and Labels

located is also specified, relative to the bottom left-hand pixel of the bounding box.
This is the first attachment point.

The composing algorithm for representing a given sequence of characters using
a specified BDF font file is:

zeroarray to contain composition
select start position of glyph attachment point in composition array
for each character to be composed
calculate location of left attachment point in this glyph’s pattern
calculate of location of top-left glyph pattern in composition array
map glyph onto composition array
recalculate glyph attachment point in composition array

The program of Fig.4.14 implements this algorithm.

The program of Fig.4.14 needs a little assistance. First, BDF file with which it is
used is edited. The program matches a character in the string being composed with a
character in the BDF file. But in a lot of instances, the STARTCHAR keyword has a
word, containing multiple characters, following it, for example STARTCHAR one.
Those multiple words need to be replaced with their single character equivalent, in
the example, one by 1. Most BDF files also contain more characters that are going to
be used in composing, and typically, these contain multiple character words in their
corresponding STARTCHAR keyword. These surpluses should also be eliminated.
Of special interestis the STARTCHAR space keyword. Replacing the space word
with a space keyboard entry would result in the STARTCHAR keyword not denoting
any character. Another keyboard character, which is not going to be used in any
composing in this BDF file, is needed. One possible replacement is to use the \
character. If this is done, then a space character in a string presented to the program
of Fig.4.14 to be composed would have the \ replacement used in a string.

The procedure for processing a X11 bitmap font is as follows. A PCF file is
selected from either the 100dpi, 75dpi or misc sub-directories of the directory
/usr/share/fonts/X11/75dpi for use in creating a label. This file is copied
into the directory where the work is to be done. The file is then processed by the
following steps:

e decompress using gzip

e convert the pcf file to a bdf file by using the pcf2bdf program

e replace the single parameter, a string which names the character, on each
STARTCHAR line by the keyboard character it represents, e.g. parentleft
is replace by).

e the character/glyph name space is replaced with a non-white character such as \
for messages containing space characters but where replacement character is not
present in the composition.

e characters/glyphs whose names cannot be replaced by a single keyboard character
are deleted from the file since all messages are assumed to be composed from
collections of single characters.

4.10 Forming Text Messages from Bitmap Glyphs 131

As an example, consider the BDF font file resulting from applying pcf2bdf to
the font file selection.bdf. This BDF file is edited in that the STARTCHAR
space keyword is replaced by STARTCHAR) . The label to be composed is Mary
had a little lamb, and the resulting bitmap is to be named example. If the
program of Fig.4.14 has been compiled under the name pack, then it is run as:

pack "Mary\ had\ a\ little\ lamb" example selection.bdf

The bitmap representation of the message then appears as the file example . xbm.
This file can be viewed using any graphics viewing program, for example xv. The
three variables defined in the file are example_width, example_height, and
example_bits.

4.10.3 Exercises

1. Modify the program of Fig.4.14 so to remove two pixels from the top of the
composed glyphs so to make the text more central to the overall height of the
block of text.

2. Write a program which displays a single 200x200 window containing a 50x50
button which has the label OK centred in it. When the mouse pointer is over this
button and the left button is pressed down, the program terminates. Construct the
label for this button using the program of Fig.4.14.

4.11 Using Pixmaps to Colour a Window’s Background

One of the powerful properties of the X Window System is attributes which can be
associated with individual windows. A window can be linked to the occurrence of
particular events and set to ignore others. When an event occurs, the colour of a
window could be changed in response to the event alerting the user of the program
to a particular situation. Pixmaps are another window attribute which can be applied
if needed. A Pixmap might be used to label a window. A Pixmap has a foreground
and a background, each of which can have a colour associated with it. There is also
a special form of Pixmap called a bitmap. The advantage of bitmaps over Pixmaps
is that the former takes up less storage due to its set colouring.

Window labelling and linking to events are considered in Sect. 3.5 where bitmaps
are converted to images. Images are held on the client machine, processed there,
and displayed after the whole image is retransmitted to the server. So using images
introduces less network traffic. By contrast, bitmap and Pixmaps are held on the
server. They are transferred from the client machine to the server once. However,
each bitmap and Pixmap consumes memory and other resources on the server and
thus should be used sparingly. So reuse of any Pixmap should be considered where
possible. Also the server can change the colour of the background of a Pixmap upon

132 4 Pattern Maps and Labels

receiving only an instruction from the client program. Another instruction can place
such recoloured Pixmap onto a window without retransmitting the window nor the
bitmap. This can reduce client/server communications.

The program of Fig.4.15 uses colour change in response to the mouse pointer
entering and leaving two windows. A base window with an initial background colour
of red contains a second window. This second window has a background covered
by a checkerboard Pixmap. Initially, the checkerboard is coloured with a blue back-
ground and a black foreground. When the mouse pointer enters the first window, its
background changes to a yellow colour. When the pointer enters the second window,
the background colour of the second window changes to green and the foreground
changes to blue. When the pointer leaves the second window, the checkerboard back-
ground changes back to its original blue—black colouring. This mouse movement also
means the mouse pointer has entered the surrounding base window. This results in
the background of the base window changing back to yellow. Figure 4.16 gives two
screenshots of the windows produced by the program with different mouse positions.

This example demonstrates important properties of windows and Pixmaps under
the X Window System.

A window and a Pixmap are a related pair. A window has a foreground and a
background. Drawing is done on the foreground of a window or onto a Pixmap.
A window foreground and a Pixmap are collectively called drawables. All Xlib
graphics calls require a drawable to be specified, and these can be either a window
foreground or a Pixmap. However, a drawing can only be done onto the foreground
of a window when the window is exposed to view on a screen; i.e. it is unobscured.
By contrast, a Pixmap can always be drawn. But a Pixmap can only be seen on the
screen when it is mapped onto the foreground or the background of a window. If
a Pixmap is mapped onto the foreground of a window and that window becomes
obscured and then unobscured, it is necessary to move the Pixmap to the window
again. By contrast, if the Pixmap is mapped to the background of the window, this
renewal is not required (the server takes care of it).

A Pixmap also has a foreground and a background (ignoring multicoloured
Pixmaps considered in Sect.7.1 for the moment). A Pixmap is a pattern which is
held in the server’s memory for rapidly mapping onto a window. A common way of
introducing the Pixmap pattern is to include it in the source code as a static array, for
example b_bits[]. Itis made up from hexadecimal digits. In the binary represen-
tation of each hexadecimal value, each bit indicates the corresponding pixel in the
Pixmap’s foreground, while a zero indicates the corresponding Pixmap background.
Each value in the array (e.g. 0x£2) represents 8 pixels in the bitmap. The pixels
are laid out on the screen with width indicated by the value assigned to b_width
measured in pixels and of height indicated by the corresponding b_height, again
measured in pixels. These width and height values are applied to the given hexadec-
imal values to produce the bitmap. If there are more hexadecimal values given than
the number of pixels contained in the array formed from the width and height given,
then they are discarded.

A bitmap is a particular type of Pixmap. It has a predefined (default) fore-
ground colour of black and a background colour of white. The Xlib function calls

4.11 Using Pixmaps to Colour a Window’s Background 133

~
¥ XK ¥ ¥ X ¥ ¥ X ¥ ¥ ¥ ¥ ¥

*
~

This program consists of a main window on which is placed a
second window. Initially the main window is coloured red.
‘When the mouse pointer enters this window, that background
changes to yellow and then back to red when the mouse
pointer exits this window. Onto this first window a second
window is placed. This second window carries a
checker—board bitmap which only covers the background of the
whole window. When the mouse pointer is inside this window
the background of that checker—board is coloured green and
blue, and when outside it is coloured black and blue.

Coded by: Ross Maloney
Date: March 2012

#include <X11/Xlib.h>
#include <X11/Xutil.h>

#define b_width 32

#define b_height 32

static char b_bits[] = {
Oxff, Oxff, 0x00, 0x00,
oxff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
oxff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
oxff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
oxff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
oxff, Oxff, 0x00, 0x00,
oxff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
Oxff, Oxff, 0x00, 0x00,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff,

Fig. 4.15 Changing window colour as mouse enters and leaves

134 4 Pattern Maps and Labels

0x00, 0x00, Oxff, Oxff,
0x00, 0x00, Oxff, Oxff

}7

int main(int argc, char *xargv)

{

Display smydisplay ;
XSetWindowAttributes baseat, secondat;
Window baseW, secondW ;
XSizeHints wmsize ;

XWDMHints wmhints ;
XTextProperty windowName, iconName;
XEvent myevent ;

XColor exact , closest;

GC baseGC

XGCValues myGCValues;;

Pixmap ck_boardl, ck_board2;
char xwindow_name = ” Background”;
char xicon_name = "Bk”;

int screen_-num , done;

unsigned long valuemask, red, green, yellow, blue;

/* 1. open connection to the server %/
mydisplay = XOpenDisplay (77);

/* 2. create a top-level window x/
screen_.num = DefaultScreen (mydisplay);
baseat .background_pixel = WhitePixel (mydisplay , screen_num);
baseat.border_pixel = BlackPixel (mydisplay, screen_num);
baseat.event_.mask = EnterWindowMask | LeaveWindowMask
| ExposureMask;

valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
baseW = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
300, 300, 350, 200, 3,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
valuemask , &baseat);

/* 3. give the Window Manager hints x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint ;
XSetWMHints (mydisplay , baseW, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

Fig. 4.15 (continued)

4.11 Using Pixmaps to Colour a Window’s Background 135

/* 4. establish window resources */
XAllocNamedColor (mydisplay ,
XDefaultColormap (mydisplay , screen_num),
?red”, &exact, &closest);
red = closest.pixel;
XAllocNamedColor (mydisplay ,
XDefaultColormap (mydisplay , screen_num),
7?green” , &exact, &closest);
green = closest.pixel;
XAllocNamedColor (mydisplay ,
XDefaultColormap (mydisplay , screen_num),
Vyellow”, &exact, &closest);
yellow = closest .pixel;
XAllocNamedColor (mydisplay ,
XDefaultColormap (mydisplay , screen_num),
?blue”, &exact, &closest);

blue = closest . pixel;

/* 5. create all the other windows needed x/
XSetWindowBackground (mydisplay , baseW, red);
secondat . background_pixel = green;
secondat . border_pixel = BlackPixel(mydisplay, screen_num);
secondat . event_mask = EnterWindowMask | LeaveWindowMask

| ExposureMask;
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
secondW = XCreateWindow (mydisplay , baseW,
100, 50, 96, 80, 1,
DefaultDepth (mydisplay , screen_num),
InputOutput,
DefaultVisual (mydisplay, screen_num),
valuemask , &secondat);
ck_boardl = XCreatePixmapFromBitmapData(mydisplay, secondW,
b_bits , b_width, b_height,
BlackPixel (mydisplay , screen_num),
blue, DefaultDepth(mydisplay, screen_num));
XSetWindowBackgroundPixmap (mydisplay , secondW, ck_boardl);
ck_board2 = XCreatePixmapFromBitmapData(mydisplay, secondW,
b_bits , b_width, b_height, blue,
green , DefaultDepth (mydisplay, screen_num));

/* 6. select events for each window x/

/% 7. map the windows x/
XMapWindow (mydisplay , baseW);
XMapWindow (mydisplay , secondW);

/* 8. enter the event loop */
done = 0;
while (done = 0) {
XNextEvent (mydisplay , &myevent);
switch (myevent.type) {

Fig. 4.15 (continued)

136 4 Pattern Maps and Labels

case EnterNotify:
if (myevent.xcrossing.window = baseW) {
XSetWindowBackground (mydisplay , baseW, yellow);
XClearWindow (mydisplay , baseW);

}

if (myevent.xcrossing.window = secondW) {
XSetWindowBackgroundPixmap (mydisplay , secondW, ck_board2);
XClearWindow (mydisplay , secondW);

}
break;

case LeaveNotify:

if (myevent.xcrossing.window = baseW) {
XSetWindowBackground (mydisplay , baseW, red);
XClearWindow (mydisplay , baseW);

}

if (myevent.xcrossing.window = secondW) {
XSetWindowBackgroundPixmap (mydisplay , secondW, ck_boardl);
XClearWindow (mydisplay , secondW);

}

break;
}

/* 9. clean up before exiting x/
XUnmapWindow (mydisplay , baseW);
XDestroyWindow (mydisplay , baseW);

XCloseDisplay (mydisplay);

Fig. 4.15 (continued)

XCreatePixmapFromBitmapData () and XCreateBitmapFromData ()
are used to generate a general Pixmap and a bitmap, respectively, which show this
difference; foreground and background colours are required to be specified in the
former call. The data included in both calls are the same and represent the required
pattern. A bitmap is also limited to a depth of 2.

The foreground and background colours of a Pixmap are set when the Pixmap is
created. In the particular case of a bitmap, they are set to black and white, respectively,
by default. They cannot be changed. So, if a pattern which is appropriately displayed
on a window as a Pixmap is required in more than one colour combination, then
a Pixmap for each colour combination is required. Each of these Pixmaps can be
created from the same data, but using different foreground and background colour
assignments. The program of Fig.4.15 is an example of the contrast in behaviour of
Pixmaps and window colouring.

A window cannot be created with the background_ Pixmap attribute set defin-
ing a background Pixmap. If this is done, a BadPixmap error is produced when the
window creation executes. The reason for this is the attribute requires the Pixmap to
exist, but creation of the Pixmap needs the window on which it is to be mapped to
exist; i.e. it has already been created. Instead, the process used should:

4.11 Using Pixmaps to Colour a Window’s Background 137

Fig. 4.16 Simple and

bitmap window colouring : @ Background
following mouse events :

(g) Initially

Background _

(h) Mouse entered second window

e create the window

e create the Pixmap which references this window and then

e use Xlib function XSetWindowBackgroundPixmap () to place the Pixmap
on the window’s background.

4.11.1 Exercises

1. Verify that covering the second window of the program in Fig. 4.15 with another,
and then removing the overlayed window does not destroy the background pattern
on the second window even if the X Window server does not have backing store
activated.

2. Modify the code of Fig.4.15 to demonstrate a window cannot be created with a
Pixmap in its background (Hint: it is simple).

138 4 Pattern Maps and Labels

3. The mouse pointer can be inside or outside of a window. So for two windows,
there are four such states. Why is one of those states missing in the visual produced
by the code of Fig.4.15 and what is the consequence?

4. Modify the program of Fig.4.15 so the Pixmap pattern is not repeated across the
background of the second window but instead occupies the top left-hand corner
of that background.

4.12 Summary

Given the window creation process, this chapter showed decorating the body of such
awindow. Such a pattern could be a (generally simple) picture or a text label prepared
outside of the X11 program and then linked to a window. One application of these
techniques is when a window is used as a button or menu item.

A bitmap is a special case of a Pixmap. Both have their pattern content defined
by a distribution of binary numbers, each number giving whether the foreground or
background colour is to show at the pixel’s location. In the case of a bitmap, the
foreground colour is always black, while the background is always white. In the case
of a Pixmap, the foreground and background colours can be specified in a program,
either when the Pixmap is created or during its use. A Pixmap and a bitmap have
only two colours. This binary colouring is analogous to the colouring of a window.

The bitmap approach for creating and using such patterns was used here. This
approach has been standard in X11 since its release. An alternate, and added later, is
the Pixmap technique which builds upon bitmaps. These will be used in later chapters.
Generally, bitmaps are black and white patches which are applied to a window.
However, as shown by example in this chapter, a transparency can be achieved by
using a mask to enable the underlying window to show through the patch, producing a
transparency. Creating of such bitmaps and masks for a simple diagram-type picture is
relatively easy compared with a lettered label. In particular, correctly forming letters
at the pixel level is difficult. The use of Postscript programs to generate a pattern,
and then converting the program’s output into appropriate maps, is demonstrated.

Chapter 5 ®)
Keyboard Entry and Displaying Text e

Entering information to a program from a keyboard is a common task. The data
entered is one form of text. In X Window, each key on a keyboard is considered to
be like a mouse button in that they raise events. Like a mouse button each keyboard
key can raise two different types of events; a key press event, and a key release event
(although on some PC keyboards, the key release event may not be implemented).
Since each key is identified uniquely, different patterns for presentation of the mean-
ing of a key and displayed on a screen can be changed by selection of a mapping
between the key identifier and a pattern. Because a keyboard is a complex mouse
consisting of many buttons, it justifies a chapter of its own. Like a mouse, keyboards
are serviced by the events they generate. Such events can be linked to achieve a
variety of effects.

Each keystroke event is stored in a Xlib XKeyEvent structure on the server. This
structure contains a keycode member which is a number in the range 8 to 255.
This number is the representation of the key pressed (or released—they use the
same keycode). Although the engravings on keys from different keyboard manu-
facturers may be similar, they can result in different keycodes being produced, for
there is no fixed standard. Each keycode is given a symbolic name in the header file
keysym.h. The function XLookupSstring () provides the mapping between
the keycode and the character it maps to via the mapping table contained in the
keysym.h header file. The corresponding character can then be displayed using
the function XDrawText () if the character is one byte long. If the character is
two bytes in length, as when using an international character set, then the function
XDrawText16 () is used. Notice characters are being received from the keyboard,
not strings. So a line of text involves a keycode transmission, translation, and printing
for each character in the text.

Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-3-319-74250-2_5) contains supplementary material, which is
available to authorized users.

© Springer International Publishing AG, part of Springer Nature 2017 139
R. J. Maloney, Low Level X Window Programming,
https://doi.org/10.1007/978-3-319-74250-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74250-2_5&domain=pdf
https://doi.org/10.1007/978-3-319-74250-2_5

140 5 Keyboard Entry and Displaying Text

All keys on the keyboard have a keycode. Keyboard keys considered as modifier
keys, such as the shift key, the Alt key, Ctrl key, also generate a keycode when each is
pressed. If after the shift key is depressed and held while an alphabetic character key
is pressed, the keycode produced is different to the alphabetic key pressed without the
shift key being depressed. This is as expected for a different keycode to be generated
for lower-case and upper-case versions of a alphabetic key.

The technique commonly used to determine which keyboard key has been
pressed is by using the XLookupString () function. An alternative is to use
the XKeycodeToKeysym () function followed by the XKeysymToString ()
function. Only the first techniques will receive further consideration here.

Another form of text is where it is already stored in the computer and it is to be
displayed in a window on the screen. This is similar to the keyboard entry situation,
which is the reason it is presented here together with the keyboard entry situation.
This output presents additional problems, such as only showing a portion of the text
and enabling the program user to scroll through the text.

5.1 Elementary Keyboard Text X Entry

This example demonstrates the basic use of the X Window System keyboard model.
In particular, it shows keyboard entry is not automatically echoed, that a sequence
of characters can be assigned in a program to a keyboard key, and the process of
recognising which key has been pressed and a means of associating meaning to it.

The program displays a plain white 300 x 300 window which contains two sub-
windows each of the same height and width, one below the other. Each of the three
windows is activated to receive an event produced by a button press from a mouse and
a keyboard key press. Each of those events leads to text being printed on the console
terminal (which is not part of this program, but from which the program is assumed
to have been run). No matter in which of the three windows the mouse pointer is
positioned, a mouse button click gives rise to the text I got a button press.
If the mouse is positioned in the larger (background) window when a keyboard key is
pressed, thetext I got a key press is printed. If the mouse pointer is located
in the top window, a keyboard key press results in the text In top window being
printed. However, if the mouse is inside the bottom window when the keyboard key
is pressed, then the text In bottom window is printed, followed by the value of
the keycode, keysym, and character associated with the key pressed.

The program is written to print the keysym value as a hexadecimal number. This
value can be searched for in the keysymdef . h header file which is usually stored
in the /usr/include/X11 directory on Unix/Linux systems. This file is called
into source code when the keysym.h header file is used, but in the example for
Fig.5.1 they are not needed. From either of these two header files, the keysym XK_
corresponding to the keysym value can be found. It is this keysym which is used with
the XRebindKeysym () function to link a program defined string to a keyboard
key. In the program of Fig. 5.1, the Windows key, which has the Keysym value of

5.1 Elementary Keyboard Text X Entry

141

/* This program consists of a main window on which is placed two
* text input windows. All three windows have white backgrounds
% with the boundary of each text window shown by its border.

% FEach window responses to keyboard key presses and mouse
* button presses. The nature of each press is printed on the
* console x screen.
%
% Coded by: Ross Maloney
* Date: October 2008
s
/

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <stdio.h>

#define BUFFERLENGTH 10

int main(int argc, char xargv)

{

Display smydisplay ;

Window baseWindow , textWindowl, textWindow2;
XSetWindowAttributes myat;
XSizeHints wmsize ;

XWDMHints wmhints ;

XTextProperty windowName, iconName;
XEvent baseEvent ;

GC mygc;

KeySym sym ;

char s*window_name = ”Inout”;

char xicon_name = 7107,

int screen_num , done;
unsigned long mymask;

int X, 1;

char buffer [BUFFERLENGTH] ;

/* 1. open connection to the server x/
mydisplay = XOpenDisplay (””);

/* 2. create a top—level window x/
screen-num = DefaultScreen (mydisplay);
myat. border_pixel = BlackPixel (mydisplay, screen_num);
myat . background_pixel = WhitePixel (mydisplay, screen_num);

myat.event_mask = KeyPressMask | ButtonPressMask | ExposureMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;
baseWindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
300, 300, 350, 400, 2,

DefaultDepth (mydisplay , screen_num),

InputOutput ,

DefaultVisual (mydisplay , screen_num),

mymask, &myat);

Fig. 5.1 A simple program to explore the keyboard

142 5 Keyboard Entry and Displaying Text

/* 3. give the Window Manager hints x/
wmsize . flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmhints . flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmhints);
XStringListToTextProperty(&window_-name, 1, &windowName);
XSetWMName (mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow, &iconName);

/* 4. establish window resources */
XRebindKeysym (mydisplay , XK_Meta_L, NULL, 0, ”MetalL”, 5);
/* 5. create all the other windows needed x/

textWindowl = XCreateWindow (mydisplay , baseWindow ,
30, 80, 200, 20, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

textWindow2 = XCreateWindow (mydisplay , baseWindow,
30, 200, 200, 20, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

/* 6. select events for each window x/
/* 7. map the windows %/
XMapWindow (mydisplay , baseWindow);
XMapWindow (mydisplay , textWindowl);
XMapWindow (mydisplay , textWindow2);

/* 8. enter the event loop */
done = 0;
while (done = 0)
XNextEvent (mydisplay , &baseEvent);
switch(baseEvent.type) {
case Expose:
break;
case ButtonPress:
printf(”I got a button press\n”);
break;
case KeyPress:
printf(”I got a key press\n”);

if (baseEvent.xkey.window = textWindowl)
printf(”In top window\n”);
if (baseEvent.xkey.window =— textWindow2) {

printf(”In bottom window\n”);
x = XLookupString(&baseEvent.xkey, buffer , BUFFERLENGTH,
&sym, NULL);

Fig. 5.1 (continued)

5.1 Elementary Keyboard Text X Entry 143

printf(” Keycode = %d\n”, baseEvent.xkey.keycode);
sym = XKeycodeToKeysym (mydisplay ,
baseEvent . xkey.keycode, 1);

printf("x = %d\n”, x);
printf (”Keysym = %x character = %c”, sym, buffer [0]);
for (i=1; i<x; i++) printf("%c”, buffer[i]);
printf(”\n”);

}

break;

}
}

/* 9. clean up before exiting x/
XUnmapWindow (mydisplay , baseWindow);
XUnmapWindow (mydisplay , textWindowl);
XUnmapWindow (mydisplay , textWindow2);

Fig. 5.1 (continued)

Fig. 5.2 The windows of the
keyboard explorer

ffe7 corresponding to Keysym XK_Meta_L (Left meta), was assigned the character
sequence MetaL. The fundamental purpose of this program is to print on the terminal
the result of the keyboard entry directed through the simple window combination
shown in Fig.5.2.

Notice each of the three windows in this example uses the same event structure,
for each is to receive the same inputs. The window which is to receive a keyboard
entry or a mouse button click is the one on which the mouse pointer is positioned.

144 5 Keyboard Entry and Displaying Text

But the window is only able to receive such events if it is encoded into the event
structure active for the window. This is usually established (as in this example) when
the window is created. However it can be changed after the window is created by
using the XChangeWindowAttributes () Xlib call using parameters similar to
the valuemask and attributes variables used with a XCreateWindow ()
call. Alternately, a XSelectInput () Xlib call could be used.

This program offers a means for exploring the codes generated by each of the
keys on a keyboard connected to X. For example, by using this program the keycode
generated by the Enter keyboard key was found to be the value 36 on a Linux system
running on Intel x686 hardware.

5.1.1 Exercises

Modify the program so that:

1. The text entered in each window is displayed yellow in colour.
2. When a backspace character is entered, the last character on the line is removed
from the screen.

5.2 What Fonts Are Available

A font is the pattern placed on the screen to represent a character. Thus to display a
character (which is stored in the computer as a particular number) a font needs to be
selected. In the case of the X Window System this pattern is a bitmap and a font is a
collection of such patterns which share a common szyle across all members contained
in that font. The alphabet of the font is the individual patterns which can be accessed
from this collection. When a font is defined it sets up a correspondence between the
members of its alphabet and a pattern for each member. Thus a character from an
alphabet of a font defines a pattern which will appear on the screen. A graphics context
(GC) is then used in association with this pattern to represent the character on the
screen. Whereas the font contributes the pattern, the graphics context contributes (in
relation to drawing of characters) such things as colour, clipping, and how overlaying
is to appear on screen.

Available fonts may reside on a font server. This is a separate server to the X11
server which interacts with the X Window System screen. The font server xfs is
included with the X Window System distribution and is often used in this serving
roll, but not always. When x £ s is used, the fonts appear to be contained in directories
within the unpacked files of the X distribution and directly accessed from there. This
is not the case. It is x £ s that is accessing those file and making them available using
a protocol. A defined protocol, separate to that for interacting with the X11 server, is
used for interacting with any font server, including x £ s. Functions in Xlib which are
responsible for interacting with the font server use this protocol as their mechanism.

5.2 What Fonts Are Available 145

A font must be loaded, from the font server if it is used, onto the X11 server of
the client/server pair executing a program before the font can be used. A font to be
used in a program is then linked to the GC by setting the appropriate member in the
XGCValues structure. If the font has not been loaded, an attempt to use the GC to
draw text will occur without an error return, but nothing will appear on the screen.
It is important all fonts to be used by a client program be available. If a font server
is used, or in the server itself, only one copy of a font is kept on the server, that font
being shared by many client programs. A font is only unloaded from the font server
once all client programs using the font no longer need it. There is at least one font
loaded on any server, and this is the default font. If a font is not specified when a GC
is created, the default font is used. The default font is implementation dependent.

Generally, the XLoadQueryFont () function is used to load a font for Xlib
into the server and establish links between this font and the client program. This
function is composed of a XQueryFont () and a XLoadFont () function call
with XLoadQueryFont () having the combined effect of both component calls.

Each font is identified by a name. It is this name which is used to load the font onto
the X11 server and, through it, to connect it to the client program. The program of
Fig. 5.3 lists the name of each font available on a font server, which is different from
those which have been loaded onto an X11 server. Note the difference and similarities
of this program with the other X Window programs included in this book. To assist
this comparison, the template structure used in writing those X Window programs
has also been used in Fig. 5.3. Notice that only the display needs to be opened by the
program since fonts are related to the display, not to windows on the display. When
this program was run, 2900 fonts were listed by name since those names matched the
general wildcard search string " * " used inthe X1istFonts () function. A similar
list is produced using the x1sfonts command which is provided as a standard part
of the X Window System distribution.

Full font names are composed of 12 fields separated by a hyphen (-). Those fields
are:

e foundry [misc, mutt, schumacher, sony, adobe, b&h, bitstream];
font family [palatino, courier, helvetica, avantgrade, times, symbol];
font weight [medium, bold, book, demi, light];

slant [roman, italic, oblique];

set width [normal];

size in pixels [8, 10, 12, 14, 18, 24];

point size (in tenths of a point) [80, 100, 120, 140, 120, 150, 170, 230];
horizontal resolution in dots per inch (dpi [75, 100]);

vertical resolution in dots per inch (dpi) [75, 100];

spacing [p, cl;

average width (in tenths of a pixel);

character set name [is08859-1];

with examples of each field given in [square brackets]. If the search field in the
program of Fig. 4.14 is changed to "*-palatino-*iso8859-1", then 4 font
names are listed.

146 5 Keyboard Entry and Displaying Text

/* This program prints the name of all fonts available on the
* current X server.

* Coded by: Ross Maloney
*x Date: December 2008

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <stdio.h>

int main(int argc, char xcarv)

{
Display *mydisplay ;
char x+xfontNames;
int i, present;

/* 1. open connection to the server x*/
mydisplay = XOpenDisplay (””);
fontNames = XListFonts(mydisplay, 7”7, 4000, &present);
for (i=0; i<present; i++) printf(”%s\n”, fontNames[i]);
printf(”Number_of_those_fonts_present._=_%d\n”, present)

)

/* 2. create a top—level window x/

/* 3. give the Window Manager hints x/

/* 4. establish window resources */

/* 5. create all the other windows needed #*/
/* 6. select events for each window x/

/* 7. map the windows x/

/* 8. enter the event loop x*/

/* 9. clean up before exiting */

Fig. 5.3 A program to print the names of all available fonts

The list created by a program such as in Fig. 4.14 provides a first step in using a
font by identifying the fonts available. A program such as xfont sel available in the
standard X Window System distribution can be used to view the appearance of a font
corresponding to a name. This name can be used as a parameter in a XLoadFont ()
or XLoadQueryFont () function.

5.3 Keyboard Echoing on Windows

Generally, visual feedback of keyboard entry is required as it is entered. There are
occasions when this is not the case, for example when a password is requested for
entry. The separation by Xlib of keyboard entry from showing what has just been
entered caters for both these situations. The technique used in the program of Fig. 5.1

5.3 Keyboard Echoing on Windows 147

input A: INowfunny things76

input B: [We cando with?!

NowWe candofiriny things with?! 76

Fig. 5.4 Keyboard echoing and accumulated display

of printing the keyboard entry on the console assumes the console is available. If the
window is not available, an alternate window could be used, or something completely
different could be used to provide the keystroke feedback. In the case of the program
in Fig. 5.1 a character font is used to show a representation of the character produced
by each keystroke.

Both static processing and dynamic processing of text are used in the program of
Fig.5.5. The program starts with three text sub-windows arranged on a plain white
window 300 x 400 pixels in size. These three sub-windows are used for displaying
text. Figure5.4 shows this window combination. The two top windows receive a
sequence of characters from the keyboard, the user selecting which window is to
be used via the mouse. As the characters are typed, they are displayed both in the
selected window and in the third window. Different character fonts are defined in the
program for each of the three of those character streams. Each of the three windows
is labelled with a text string with these strings presented in a fourth font. The display
of the text strings entered through the keyboard is dynamic, while static text is used
to display the label of each window. Both the containing (background) window and
the windows which show the accumulated entered text are insensitive to keyboard
entry.

148 5 Keyboard Entry and Displaying Text

To implement control of this program, receiving of a down arrow key entry from
the keyboard in either of the keyboard entry windows, terminates the program’s
execution.

The four windows used in this program fall into two classes; those which accept
the mouse pointer click and keyboard entry, and those which will receive neither. A
result of this is a different event mask that is required for each of these two classes:
the first with keyboard, mouse button, and exposure events enabled, while the other
has only the exposure event enabled.

Both the Xlib function XDrawText () and XDrawImageString () are used
here to put text on the windows. For the labelling of the windows, the function
XDrawImageString () is more appropriate since the X11 server only uses a
limited part of the graphics context (GC) specified for drawing the text to achieve the
required result. By contrast, the XDrawText () function allows more flexibility by
the program (client) in the way the text is drawn, but at the cost of greater activity
by the server.

Prior to the XDrawImageString () calls in the program of Fig.5.5, no font
had been referenced. When these calls make reference to the mygc graphics context
(GC), the font used is the default. This default will vary with implementation of
the X Window System being used in running the program, for the default used is
assigned by the X11 server used. The alignment of those labels was done by trial-
and-error to get the labels to be right-justified one under the other. But the length of
each label text display is font dependent and so this alignment will be incomplete if
a different default font was used.

All other text is written using fonts which are explicitly loaded. This is better
means of drawing text. The steps involved are:

1. create a GC;

2. load the font;

3. link the loaded font to the GC;

4. draw the text referencing the GC.

The font is loaded from the font server of whatever form it takes into the X11 server
of the client program. In the client program, a pointer is returned to the block of
memory in the X11 server where the details of the loaded font are stored. The £id
member of this block of information contains the identifier of the font, and it is the
value of this member which is set as the font member in the GC structure.

Two graphics contexts (mygc and myGC1) are used, but it is myGC1 which is
used for handling the text. Two fonts are loaded with their pointers stored as font1
and font2. Both fonts are proportional fonts which means each character in the
font can take a different character width. The font identification member (£id) of
the font structure is set as the default font in the myGC1 structure before it is used
in the XDrawText () function call which echos the character received from the
keyboard.

Characters are entered one after the other using the keyboard. Each character
entered needs to be displayed immediately. So the call to XDrawText () is made
using a string of one character in length. All characters are displayed in the position

5.3 Keyboard Echoing on Windows 149

/

This program consists of a main window on which is placed
three text windows: two windows for text input and the
other for display of all the text entered through the other
two windows. The text entered is also echoed in that
window. All four text streams have a different font. All
four windows have white backgrounds with the boundary of
each text window shown by its border. A text label is
displayed against each text window. The program is
terminated by typing the ’down arrow’ key.

Coded by: Ross Maloney
Date: November 2008

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ %

/

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <string.h>

#define BUFFERLENGTH 10

int main(int argc, char xargv)

{

Display *mydisplay;
Window baseWindow , textWindowl, textWindow?2,
textWindow3;
XSetWindowAttributes myat;
XSizeHints wmsize ;
XWDMHints wmhints ;
XTextProperty windowName, iconName;
XEvent baseEvent ;
GC mygc, myGC1, myGC2, myGC3;
XGCValues myGCvalues;
KeySym sym ;
XFontStruct «fontl , xfont2;
XTextltem myText;
char swindow_name = ”Echoing”;
char xicon_name = "Ec”;
char xlabell = input.A:";
char xlabel2 = "input.B:”;
char xlabel3 = 7 All_here:”;
int screen_num , done;
unsigned long mymask;
int X, 1;
int yWindowl, yWindow2, yWindow3, width;
char buffer [BUFFER LENGTH] ;
/* 1. open connection to the server x/

mydisplay = XOpenDisplay (””);

/* 2. create a top—level window =x/
screen_num = DefaultScreen (mydisplay);
myat.border_pixel = BlackPixel(mydisplay, screen_num);

Fig. 5.5 Creating two text entry and a accumulate windows

150 5 Keyboard Entry and Displaying Text

myat. background_pixel = WhitePixel (mydisplay, screen_num);
myat.event_mask = ExposureMask;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
baseWindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
300, 400, 550, 400, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);

/* 3. give the Window Manager hints =/
wmsize . flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmhints . flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_-name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow , &iconName);

/* 4. establish window resources x/
XRebindKeysym (mydisplay , XK_Meta L, NULL, 0, "Metal”, 5);
myGCvalues. background = WhitePixel (mydisplay , screen_num);
myGCvalues. foreground = BlackPixel (mydisplay, screen_num);
mymask = GCForeground | GCBackground;
mygc = XCreateGC (mydisplay , baseWindow, mymask, &myGCvalues);
fontl = XLoadQueryFont(mydisplay ,

?—adobe—palatino —medium—i—normal ——0—0—0—0—p—0—is08859 —1”);
font2 = XLoadQueryFont(mydisplay ,

?—adobe—times—bold—r—normal ——0—0—0—0—p—0—iso8859 —1”);
myGCl = XCreateGC (mydisplay , baseWindow, mymask, &myGCvalues);

/* 5. «create all the other windows needed x*/
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
textWindow3 = XCreateWindow (mydisplay , baseWindow ,
140, 170, 300, 180, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);
myat.event_mask = KeyPressMask | ButtonPressMask | ExposureMask;
textWindowl = XCreateWindow (mydisplay , baseWindow ,
140, 50, 200, 20, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
mymask, &myat);

140, 110, 200, 20, 2,
DefaultDepth (mydisplay , screen_num),

Fig. 5.5 (continued)

5.3 Keyboard Echoing on Windows 151

InputOutput ,
DefaultVisual (mydisplay , screen_num),
mymask, &myat);

/* 6. select events for each window x*/
/* 7. map the windows */

XMapWindow (mydisplay , baseWindow);

XMapWindow (mydisplay , textWindowl);

XMapWindow (mydisplay , textWindow?2);

XMapWindow (mydisplay , textWindow3);

/* 8. enter the event loop %/
done = 0;
yWindowl = yWindow2 = yWindow3 = 0;
myText.chars = buffer;
myText.nchars = 1;
while (done =— 0)
XNextEvent (mydisplay , &baseEvent);
switch(baseEvent.type) {
case Expose:
XDrawlmageString (mydisplay , baseWindow, mygc,
85, 65, labell, strlen(labell));
XDrawlmageString (mydisplay , baseWindow, mygc,
85, 125, label2, strlen(label2));
XDrawlmageString (mydisplay , baseWindow, mygc,
78, 185, label3, strlen(label3));
break;
case ButtonPress:
break;
case KeyPress:
if (baseEvent.xkey.keycode =— 88) {
done = 1;
break;
}
x = XLookupString(&baseEvent.xkey, buffer , BUFFER LENGTH,
&sym, NULL);
sym = XKeycodeToKeysym(mydisplay, baseEvent.xkey.keycode,
1);
if (baseEvent.xkey.window = textWindowl) {
myText. font = fontl —> fid;
XDrawText (mydisplay , textWindowl, myGCl, yWindowl, 15,
&myText, 1);
width = XTextWidth(fontl, buffer, 1);
yWindowl += width;

if (baseEvent.xkey.window =— textWindow2) {
myText. font = font2 —> fid;
XDrawText (mydisplay , textWindow2, myGCl, yWindow2, 15,
&myText, 1);
width = XTextWidth(fontl, buffer, 1);
yWindow2 += width;

Fig. 5.5 (continued)

152 5 Keyboard Entry and Displaying Text

}

XDrawText (mydisplay , textWindow3, myGCl, yWindow3, 15,
&myText, 1);

yWindow3 += width;

break;

/* 9. clean up before exiting */
XUnmapWindow (mydisplay , baseWindow);
XUnmapWindow (mydisplay , textWindowl);
XUnmapWindow (mydisplay , textWindow?2);

Fig. 5.5 (continued)

passed as parameters to the XDrawText () function. To do this correctly a counter
of the position in the window where the next character is to be shown is kept and is
incremented by the width of that character after each character is shown. This width
is determined by the function XTextWidth () based on the character and the font
used to show that character on the screen.

5.3.1 Exercises

Modify the program of Fig.5.5 so that:

1. The characters are echoed in the top window and inserted in the bottom window
both of which are coloured red.

2. The bottom window holds the accumulated line of text so all characters remain
visible when long character sequences are typed in the top two windows.

5.4 Putting Lines of Text in a Window

Displaying text comprising collections of characters available entirely before starting
the display process is considered here. The process is similar to, but also enables
refinements to be made to the techniques used in Sect.5.3 for printing characters
entered from a keyboard. Having all the text available presents different challenges
to be resolved about the appearance of this text on a window.

There is a fundamental process which underlies placing of all text in a window.
It consists of a number of steps. The characters, or collection of characters, which
are to be displayed are assumed to be available. The window to be used is created
or identified for use. Then the font to be used is selected and loaded into the server.

5.4 Putting Lines of Text in a Window 153

Fig. 5.6 Text being
displayed in a text window

[@] Text

I5ix white boomers,

Finally the characters are drawn on the window using the selected font. The code
which performs this process is shown in Fig.5.7. It prints the terminal output:

ascent = 16
decent = 4

which are characteristics of the font used. These two values contain all the glyphs
in the font; i.e., any character drawn with this font will be contained in a 20 pixel
height. Figure 5.6 shows the resulting text on the window of the program.

The displayed text has a foreground colour which appears as the characters of the
text are drawn while the background colour underlies the box which contains, and
thus encloses, each glyph it can display in representing characters, i.e. the glyph of
each character. If text does not fill the window, then the colour of the window will
fill areas of the window not covered by the text. Text that falls beyond the window
in which it is drawn is cut (or clipped) off. So positioning of text in window can be
significant.

The horizontal position of the text in the textWindow window is set by a
parameter passed in the XDrawImageString () call. If this parameter is greater
than zero, the start point where the first character of the string is displayed in the
window is shifted in the window. Vacant space appears in the window. Also, if
the length of the assembled glyphs representing the characters is shorter than the
horizontal dimension of the window, vacant space appears on the right of the window.
Such vacant space is filled by the window’s background colour. This positioning is
of the text string inside the text window is different from having the text window
passing over the text and clipping text characters which is beyond the extent of the
window. Thus, the technique used here for displaying text differs from that shown
in Sect. 5.8 for scrolling text.

The code in Fig.5.7 also positions the glyphs of the text vertically. The height
of the text window (textWindow) is created as being 26 pixels high. The base-
line of the assembled glyphs characters of the string (textline) is positioned

154

¥ ¥ ¥ ¥ ¥ ¥

*

5 Keyboard Entry and Displaying Text

This program demonstrates placement of a single line of text
in a window which is setup for that purpose. The line of
text is too long to be displayed in the window.

Coded by: Ross Maloney
Date: February 2009

/

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <string.h>
#include <stdio.h>

int main(int argc, char xargv)

{

Display smydisplay ;

‘Window baseWindow , textWindow;
XSetWindowAttributes myat;
XSizeHints wmsize ;

XWDMHints wmhints ;

XTextProperty windowName, iconName;
XEvent baseEvent ;

GC mygc;

XGCValues myGCvalues;

XFontStruct xfontl;

char s*window_name = ” Text” ;

char xicon_name = "Te”;

char xtextline = ”Six_white_boomers, _Snow_white_boomers, _Racing”;
int screen_num , done;

unsigned long mymask;

/+* 1. open connection to the server x*/
mydisplay = XOpenDisplay (””);

/* 2. create a top—level window x/

screen_num = DefaultScreen (mydisplay);

myat. border_pixel = BlackPixel(mydisplay , screen_num);
myat. background_pixel = WhitePixel (mydisplay, screen_num);
myat.event_mask = ExposureMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

baseWindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
100, 100, 300, 200, 2,
DefaultDepth (mydisplay, screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
mymask, &myat);

/+* 3. give the Window Manager hints s/
wmsize . flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;

Fig. 5.7 A program to draw a string of text

5.4 Putting Lines of Text in a Window 155

wmhints. flags = StateHint;

XSetWMHints (mydisplay , baseWindow, &wmhints);
XStringListToTextProperty (&window_name, 1, &windowName);
XSetWMName (mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow, &iconName);
wmsize . flags = USPosition | USSize;

XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;

wmhints. flags = StateHint;

XSetWMHints (mydisplay , baseWindow, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);

/* 4. establish window resources x*/
myGCvalues. background = WhitePixel (mydisplay , screen_num);
myGCvalues. foreground = BlackPixel(mydisplay , screen_num);
mymask = GCForeground | GCBackground;
myge = XCreateGC(mydisplay , baseWindow, mymask, &myGCvalues);
fontl = XLoadQueryFont(mydisplay ,
?—adobe—times—bold —r—normal ——0—0—0—0—p—0—is08859 —1") ;
printf(”ascent._=_%d\ndescent _=_%d\n” ,
fontl—>ascent , fontl-—>descent);
XSetFont (mydisplay , myge, fontl—>fid);

/* 5. create all the other windows needed */
myat. background_pixel = BlackPixel (mydisplay, screen_num);
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
textWindow = XCreateWindow (mydisplay , baseWindow ,

30, 40, 140, 26, 2,

DefaultDepth (mydisplay, screen_num),
InputOutput ,

DefaultVisual (mydisplay , screen_num),
mymask, &myat);

/* 6. select events for each window x/
/* 7. map the windows */
XMapWindow (mydisplay , baseWindow);
XMapWindow (mydisplay , textWindow);

/* 8. enter the event loop x*/
done = 0;
while (done = 0) {
XNextEvent (mydisplay , &baseEvent);
switch (baseEvent.type) {
case Expose:
XDrawlImageString (mydisplay , textWindow, mygc,
30, 20, textline, strlen(textline));
break;

Fig. 5.7 (continued)

156 5 Keyboard Entry and Displaying Text

/* 9. clean up before exiting */
XUnmapWindow (mydisplay , baseWindow);

}

Fig. 5.7 (continued)

using the XDrawImageString () call to be 20 pixels down from the top of the
textWindow. The height of the font used (fontl) is the sum of the
fontl->ascent and fontl->descent, which in this example are 16 and 4,
respectively. The result of these measures and settings is the text is not centred ver-
tically in the text window, for there is uneven amounts of the window’s background
above and below the line of text.

Note the mymask variable is assigned a value before it is used in the creation
of textWindow. This is due to the mask bits for creating a GC being different to
those used when creating a window. The background of the window is then assigned
to be black in colour.

5.4.1 Exercises

1. The text window in Fig. 5.6 is small in comparison with the base window. Is there
any advantage in making the text window larger while continuing to use the same
font?

2. What is the smallest height the text window can be made in the code of Fig.5.7
to display all characters of the selected font without truncation?

3. Write a program to display multiple lines of text contained in the program inside
a text window. Colour the background of the text window red and that of the text
blue. What is the optimal spacing of those lines of text using the font you use
here? Why is it optimal?

5.5 Insertion Cursor

An insertion cursor is a marker placed on a line of text to indicate where the next
character from the keyboard will be placed. Xlib does not provide an insertion cursor.
The cursor provided in Xlib is a marker for the position of the mouse pointer on
screen. This is different from an insertion cursor. However, most toolkits provide an
insertion cursor for text input. So if an insertion pointer is required when using Xlib,
then it has to be constructed and its behaviour determined by program control.

5.5 Insertion Cursor 157

The program listed in Fig. 5.8 is an example of code which implements keyboard
text input while using an insertion cursor. Since no insertion cursor is provided, the
cursor shape is created as a Pixmap using the utility program bi tmap.

The shape of this insertion cursor is to be compatible with the text font with which
it is used. Since the cursor is implemented by a constant dimension Pixmap, a text
font in which all characters are of constant width, i.e. a typewriter font, is appropriate.
The font used in the program of Fig. 5.8 isab&h-1lucidatypewrite at 18 pixel.
This text was displayed/entered in a window 26 pixels in height. From the width
element of the XCharStruct structure pointed by the per_ char member of the
structure of the font1 variable linked to the b&h-lucidatypewrite font in
the program of Fig.5.8, the constant character width is 11 pixels. The width of the
cursor was selected to be smaller than the character width, a value of 6 being used.
So the dimensions of the insertion cursor Pixmap was set at 11 x 24. As a result,
bitmap was executed by the command line:

bitmap -size 6x24

The text input window was set to show 20 characters. So its dimensions were 220
pixels long by 24 high. The Pixmap created was copied into the programs source
code with the associated variables (width, height, and bits having the prefix
cursoricon_.

Because the cursor is constant in appearance, i.e. not blinking, another means
needs to be found so it stands out from the text which it marks. In this example, this
is done by colouring the foreground of the Pixmap red in colour, in contrast to the
black of the text input.

The program of Fig.5.8 has some, but limited, text-editing capacity. A
backspace character from the keyboard deletes the character to the left of the
insertion cursor, with all characters to the right of this deletion shifting to the left
to fill the space created. A corresponding behaviour is implemented in the array
data[] in which the keyboard entered characters are stored. The mouse pointer
can be used to set the placement of the insertion cursor in the sequence of characters
which have already been entered. If the pointer is beyond the length of the inserted
text, then the cursor is set to the end of the text. The cursor can be placed in a posi-
tion by moving the mouse pointer, then pressing any mouse button. The cursor then
moves to this position. Actually, it is releasing the button which generates the event
which results in the position being set.

Points to note with respect to the code of Fig. 5.8 are:

e In the program, the base window (baseWindow) was created with a stan-
dard white background. This was reset to the lightcyan colour by using the
XChangeWindowAttribute () Xlib library call before the window was
brought to the screen. This enables the base window to be created and be used
before creating more application-specific colours.

158 5 Keyboard Entry and Displaying Text

~
*

This program consists of a main window and a single text entry
window. An insertion cursor is created using a Pixmap. With
a foreground colour of red, this Pixmap is used to show where
the next character entered from the keyboard will be placed.
A 18 pixel typewriter text font is used to show the keyboard
characters entered. The mouse pointer, triggered by the
release of any mouse button can be used to position this
insertion cursor.

Coded by: Ross Maloney
Date: June 2011

¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥

*
~

#include <X11/Xlib.h>
#include <X11/Xutil.h>

#define cursoricon_width 6

#define cursoricon_height 24

static unsigned char cursoricon_bits [] = {
0x21, Oxle, 0x0Oc, 0x0Oc, 0xOc, 0xOc, 0xOc, 0x0Oc, 0x0Oc, 0xOc,
0x0c, 0x0c, 0x0Oc, 0xOc, 0xOc, 0xOc, 0xOc, 0x0Oc, 0x0Oc, OxOc,
0x0c, 0x0Oc, Oxle, 0x21};

int main(int argc, char xargv)

{

Display +mydisplay ;
Window baseWindow , textWindow ;
XSetWindowAttributes myat;
XSizeHints wmsize ;
XWMHints wmhints ;
XTextProperty windowName, iconName;
XEvent baseEvent ;
GC myGC;
XGCValues myGCvalues;
XFontStruct *fontl;
XColor exact , closest;
char xwindow_name = ”Insertion.Cursor”;
char xicon_name = "1C”;
int screen_num , done, lightcyan, red, count;
int charinc, position, end, current, i;
unsigned long mymask;
char data[20], bytes[3];
KeySym character;
XComposeStatus cs;
Pixmap cursor ;
/* 1. open connection to the server x/

mydisplay = XOpenDisplay (7”7);

/* 2. create a top—level window x/
screen_num = DefaultScreen (mydisplay);
myat. border_pixel = BlackPixel (mydisplay, screen_num);

myat. background_pixel = WhitePixel (mydisplay , screen_num);

Fig. 5.8 Text input assisted by an insertion cursor

5.5 Insertion Cursor 159

myat.event_mask = ExposureMask;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
baseWindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
100, 100, 300, 200, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);
/* 3. give the Window Manager hints x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmhints);
XStringListToTextProperty (&window_name, 1, &windowName);
XSetWMName (mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_-name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow, &iconName);

/* 4. establish window resources %/
myGCvalues. background = WhitePixel (mydisplay , screen_num);
myGCvalues. foreground = BlackPixel (mydisplay, screen_num);

mymask = GCForeground | GCBackground;
myGC = XCreateGC (mydisplay , baseWindow, mymask, &myGCvalues);
fontl = XLoadQueryFont(mydisplay ,
?—b&h—lucidatypewriter —s«—sk—sk—sk—18—sk—sk—sk—sk—k—x");
XSetFont (mydisplay , myGC, fontl—>fid);
charinc = fontl—>per_char—>width;
XAllocNamedColor (mydisplay ,
XDefaultColormap (mydisplay , screen_num),
?LightCyan2”, &exact, &closest);
lightcyan = closest . pixel;
myat . background_pixel = lightcyan;
XChangeWindowAttributes (mydisplay , baseWindow, CWBackPixel,
&myat) ;
XAllocNamedColor (mydisplay ,
XDefaultColormap (mydisplay , screen_num),
"red”, &exact, &closest);
red = closest . pixel;
cursor = XCreatePixmapFromBitmapData(mydisplay, baseWindow,
cursoricon_bits , cursoricon_width ,
cursoricon_height ,
red, WhitePixel (mydisplay, screen_num),
DefaultDepth (mydisplay , screen_num));

/* 5. create all the other windows needed x*/
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
myat.event_mask = ButtonReleaseMask | KeyPressMask

| ExposureMask ;
myat . background_pixel = WhitePixel (mydisplay , screen_num);
textWindow = XCreateWindow (mydisplay , baseWindow ,

Fig. 5.8 (continued)

160 5 Keyboard Entry and Displaying Text

60, 40, 220, 26, 2,

DefaultDepth (mydisplay , screen_num),
InputOutput ,

DefaultVisual (mydisplay , screen_num),
mymask, &myat);

/* 6. select events for each window x/
/* 7. map the windows x/

XMapWindow (mydisplay , baseWindow);

XMapWindow (mydisplay , textWindow);

/* 8. enter the event loop x*/
current = end = 0;
done = 0;
while (done = 0)
XNextEvent (mydisplay , &baseEvent);
switch (baseEvent.type) {
case Expose:
break;
case ButtonRelease:
position = baseEvent.xbutton.x/charinc;
current = position;
if (position > end) {
position = end;
current = end;

XClearWindow (mydisplay , textWindow);
XCopyArea(mydisplay , cursor, textWindow, myGC, 0, 0, 6, 24
position * charinc, 2);
XDrawString (mydisplay , textWindow, myGC, 0, 17,
&data[0], end);

)

break
case KeyPress:
count = XLookupString(&baseEvent.xkey, bytes, 3,

&character , &cs);
switch (count) {

case 0: /# Control character x/
break;
case 1: /¥ Printable character x/
switch (bytes[0]) {
case 8: /*+ Backspace x/
current ——;

XClearWindow (mydisplay , textWindow);

XCopyArea(mydisplay, cursor, textWindow, myGC,

0, 0, 6, 24,
current * charinc, 2);
for (i=current; i<end; i++) data[i] = data[i+1];

end ——;

XDrawString (mydisplay , textWindow, myGC, 0, 17,
&data [0], end);

if (current < 1) XBell(mydisplay, 50);

break;

Fig. 5.8 (continued)

5.5 Insertion Cursor 161

case 13: /* Enter =/
XBell (mydisplay, 50);
break;
default:
end++;
for (i=end; i>current; i——) data[i] = data[i—1];
data[current] = bytes [0];
current—+4-+;
XClearWindow (mydisplay , textWindow);
XCopyArea(mydisplay , cursor, textWindow, myGC,
0, 0, 6, 24,
current * charinc, 2);
XDrawString (mydisplay , textWindow, myGC, 0, 17,
&data[0], end);
}

break;

}
break;

}
}

/* 9. «clean up before exiting x/
XUnmapWindow (mydisplay , baseWindow);
XDestroyWindow (mydisplay , baseWindow);
XCloseDisplay (mydisplay);

Fig. 5.8 (continued)

e The keyboard key which generates each keypress event is translated by the
XLookupString () library function call. The count of the number of bytes
returned is used to determine if the key corresponded to a standard character, or a
special(control) type character. Different processing followed from such determi-
nation.

e The same event structure linked to the variable baseEvent is processed as a
button press using the xbutton member, and as a key press using the xkey
member.

e The variables current and end are, respectively, the current position for insert-
ing a character and the position of the last character. Both are indices of the storage
array data. From these variables, the position of a character in the input window
in pixels can be calculated by multiplying by the fixed size of each character (the
variable charinc).

e The call to XCopyArea () to show the insertion cursor (cursor) uses myGC
which has its foreground and background set to black and white, respectively. How-
ever when put on the window, the insertion cursor has a red foreground and a white
background. These colours are set up in the XCreatePixmapFromBitmap
Data () call which creates the cursoxr Pixmap. In effect, the myGC is a dummy
(in the instance of copying a Pixmap).

162 5 Keyboard Entry and Displaying Text

Fig. 5.9 Inputting text with
an insertion cursor

[#] Insertion Cursor P

This 'iﬁ why jumping

e When the cursor Pixmap is copied to, or cleared from, the window, the action
partially obliterates the image of the character at that spot on the window. It is
necessary to redraw the character in this position.

e The O case in the switch statement of the count variable is meant to process
non-printable keyboard characters, for example, the arrow keys.

e The string passed over as the sixth parameter in the XDrawString () Xlib
function call is not null terminated—the seventh (final) parameter is the number
of characters being passed.

Figure 5.9 shows a screenshot of the program of Fig. 5.8 in operation. Shown are
the base window and the single text window. Into the text window a single line of
text with up to 20 characters can be entered from the keyboard. The mouse pointer
has just been used to position the insertion cursor to be before the 7th character in
the input character stream.

5.5.1 Exercises

Modify the program of Fig.5.8 so the insertion cursor blinks.
. Change the code of Fig. 5.8 so as to label the text input window Text input:.
Use two different techniques to achieve this ends.
3. Increase the editing functionality of the program of Fig.5.8. Such functionality
could be by the use of the keyboard arrow keys to position the insertion cursor.

4. The program of Fig. 5.8 uses a technique of clear window, edits stored characters,
and then redraws of all characters and cursor for showing the character input.
Implement a different technique which achieves the same goal. Is this technique
more efficient than the one used in Fig.5.8? More efficient in what way?

N =

5.6 Moving Between Text Input Windows Using Keys 163

5.6 Moving Between Text Input Windows Using Keys

Text entered from the keyboard is identified by the X server as belonging to the
window on which the pointer currently sits when the text was received. This enables
the client program to link the input received with where in the program it wishes
the input to be processed. Since most X Window (client) programs are composed of
multiple windows, this linkage is to be expected. However, when keyboard entering
into a succession of windows, one after the other, physically moving the mouse
pointer over the next keyboard entry window can be irritating. Setting up a program
so the user can use the keyboard, in addition or as a substitute to moving the mouse
pointer, is addressed in this section.

The fundamental is the mouse pointer must be over the window for it to receive
the keyboard entry. Physically moving the pointer by hand is the standard technique
use to achieve this ends. But this method is slow. A faster method is to do it under
program control by using the XWarpPointer () Xlib call. This function relocates
the pointer and its indicator (cursor) to the location specified by the parameters
passed in the call. The XWarpPointer () library function has a number of modes
by which it can relocate the pointer, and these are governed by the parameters passed
when the function is called.

As a demonstration of how to create such a situation, consider a background win-
dow on which there is four text entry windows. Each entry window can store/display
a single line of 20 characters. Successive windows contain the date, time, subject, and
message. These windows are arranged in a ring so the top window is followed by the
second from the top, the second by the third, and so on. The bottom window then is
succeeded by the top window. Each text input window has no editing capability, not
even a backspace will delete an input error. This is done to simplify the program.
Further, pressing any mouse button has no effect on the behaviour of the program.
However, positioning the mouse pointer on one of the four text entry windows will
result in the next characters appearing at the end of the character sequence previously
entered into that window. Pressing an up arrow key will move subsequent keyboard
characters to go to the next input window above the current. A down arrow key will
shift the keyboard input to be directed to the window below the current window.
The up and down arrow keys in the primary and supplementary keyboard areas are
treated the same within this program.

Figure 5.10 is a screenshot of the program listed in Fig.5.11 in use. The pointer
can be moved manually using the mouse and by the up and down arrow keyboard
keys. If the mouse pointer is not located in one of the four text boxes, the program
ignores the characters typed on the keyboard.

Note the following in the code of Fig.5.11:

e The array ring via its structural components contains all information related to
the four text input windows. This information is the ID number of the window in
which the text is input and displayed, the array which stores the character input
through the window, and the index of the first free storage location in that array.

e The same font, and GC in particular, is used with each text input window.

164 5 Keyboard Entry and Displaying Text

e The pointer is moved to indicate the last character in the window as indicated by
the value of the variable index used in conjunction with the ring array.

e Aside from the XWarpPointer () call, there is no explicit reference to the
pointer.

e To assist with clarity, only KeyPress events are used, and no error checking
following Xlib calls is performed.

e The variable mymask is reused and assigned different values for both creating the
windows and the GC.

e The identification number of the window in which the pointer is located when a
character receives event occurs is found in the window member of the key press
event type xkey of the XEvent structure to which the variable baseEvent is
assigned (i.e. baseEvent . xkey .window).

e The characters typed in are accumulated, but nothing is done with them, so when
the program is terminated the input is lost.

e Theheaderfile X11/keysymdef . hdefinesthe constants XK_Up, XK_KP_Up,
XK_Down, XK_KP_Down, etc., associated with the representation of the arrow
keys.

Fig. 5.10 Four text windows
arranged in an input ring

[@] Text window switc...

ITuesday 28 June

IBooragoon WA

IFr'i ends

|Now is a goodkti

5.6 Moving Between Text Input Windows Using Keys 165

/

This program consists of a main window on which is placed four
text input windows. These windows are to hold the date, name
of the receiver, subject, and the message. Each window
contains a single line of text 20 characters in length.

There is no editing facilities nor insertion cursor on any of
these * windows. However, the up arrow and down arrow
keyboard keys move the keyboard focus the next window above or
below, respectively, for receiving the next character from the
keyboard. These four windows are connected to form a ring.

Coded by: Ross Maloney
Date: June 2011

¥ ¥ ¥ X ¥ ¥ ¥ X ¥ ¥ ¥ ¥ ¥

/

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/keysymdef.h>

int main(int argc, char xargv)

{

Display +*mydisplay ;
Window baseWindow ;
XSetWindowAttributes myat;
XSizeHints wmsize ;
XWDMHints wmhints ;
XTextProperty windowName, iconName;
XEvent baseEvent ;
GC mygc;
XGCValues myGCvalues;
XFontStruct *fontl;
char xwindow_name = ”Text_window._.switching”;
char xicon_name = ”Swt”;
int screen_num , done, y, i, index, charinc, count;
unsigned long mymask;
char bytes [3];
KeySym character;
XComposeStatus cs;
struct { /* Input window ring structure =/
Window id;
int last ;
char array [20];
} ring[4];

/* 1. open connection to the server x/
mydisplay = XOpenDisplay (77);

/* 2. create a top—level window x/

screen_.num = DefaultScreen (mydisplay);

myat. border_pixel = BlackPixel (mydisplay, screen_num);
myat.background_pixel = WhitePixel (mydisplay, screen_num);
myat.event_mask = ExposureMask;

Fig. 5.11 Window switching using up and down arrow keys

166 5 Keyboard Entry and Displaying Text

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

baseWindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
100, 100, 250, 270, 2,
DefaultDepth (mydisplay, screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
mymask, &myat);

/* 3. give the Window Manager hints x/
wmsize . flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow, &iconName);

/* 4. establish window resources x/
myGCvalues. background = WhitePixel (mydisplay, screen_num);
myGCvalues. foreground = BlackPixel (mydisplay, screen_num);

mymask = GCForeground | GCBackground;
mygc = XCreateGC (mydisplay , baseWindow, mymask, &myGCvalues);
fontl = XLoadQueryFont(mydisplay ,

?— b&h—lucidatypewriter —k—sx—x—k—14—x—x—x—x—x—x");
XSetFont (mydisplay , mygc, fontl—>fid);
charinc = fontl-—>per_char—>width;

/* 5. «create all the other windows needed #/
y = 30;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
myat.event_mask = KeyPressMask;

for (i=0; i<4; i++) {
ring[i].id = XCreateWindow (mydisplay , baseWindow, 70,
y, 20xcharinc, 20, 2,
DefaultDepth (mydisplay, screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);
ring [i].last = 0;
y += 60;
}

/* 6. select events for each window x*/
/* 7. map the windows x/

XMapWindow (mydisplay , baseWindow);

for (i=0; i<4; i++) XMapWindow(mydisplay , ring[i].id);
/* 8. enter the event loop x/

index = 0;

Fig. 5.11 (continued)

5.6 Moving Between Text Input Windows Using Keys 167

done = 0;
while (done = 0) {
XNextEvent (mydisplay , &baseEvent);
switch (baseEvent.type) {
case Expose:
break;
case KeyPress:
count = XLookupString(&baseEvent.xkey, bytes, 3,
&character , &cs);

index = 0;
for (i=0; i<4; i++)

if (ring[i].id = baseEvent.xkey.window) index = i;
switch (count) {
case 0: /* Control character =/

switch (character) {

case XK_Up: /* Up arrow key =/

case XK_KP Up:

index ——;

if (index < 0) index = 3;
XWarpPointer (mydisplay , None, ring[index].id,
0, 0, 0, 0, ring[index].last*charinc, 10);
break;
case XK_Down: /* Down arrow key x/
case XK_KP_Down:
index++;
if (index > 3) index = 0;
XWarpPointer (mydisplay , None, ring[index].id,
0, 0, 0, 0, ring[index].last*charinc, 10);

break;
}
break;
case 1: /*+ Printable character x/
ring [index]. array [ring [index |.last] = bytes[0];

XDrawString (mydisplay , ring[index].id, mygc,
ring [index]. lastxcharinc, 15, bytes, 1);

ring [index]. last++;
break;

}

break;

}
}

/* 9. clean up before exiting %/
XUnmapWindow (mydisplay , baseWindow);

}

Fig. 5.11 (continued)

168 5 Keyboard Entry and Displaying Text

5.6.1 Exercises

1. Modify the program of Fig.5.11 so the Enter key on the keyboard is used to
advance to the next text window.

2. When the window of Fig. 5.10 undergoes an exposure, the display of the contents
of each text window is lost. Modify the code of Fig.5.11 so the contents of each
window are restored to the way it was before the window was covered over.

5.7 A Slider Bar

A slider bar is a means of interacting with a graphics program. It consists of a slide
whose position on the slider guide can be changed using the mouse. The position of
the slide on the guide is read by the program, and the interpretation of the meaning
of the position is up to the program. This mechanism is also known as a scroll bar. A
slider bar operates through the use of events. Slider bars are often used in association
with text as is the subject of Sect.5.8, but they are a general element applicable to
wider usage.
The slider bar is composed of:

e a slider bed, which is usually a narrow window, in which the long dimension is
taken as corresponding to the range of values which can be produced by the slider
bar; and

e a slider which is an indicator, adjustable in location by the mouse, which marks
the value obtained for the slider bar.

Calibrations marks could be added along the length of the slider bed if warranted to
assist the user of the slider bar.

Potentially a slider can be implemented as either a cursor or a window. A pattern,
possibly in the form of a bitmap (discussed in Sect. 4.3), can be used on each as
decoration. For implementation of the slider bar, the following are needed:

efficient drawing the slider in its transient positions;

efficient redrawing of the screen the slider vacates;

generation of coordinates for the position of the slide on the slider bed; and
the slider remains attached to the slider bed.

A cursor and window are possible implementation components for a slider bar.
A cursor is implemented as a lightweight process by the X Window System, and
this suggests use as a slider. A cursor follows the position of the mouse across the
screen. By using a MotionNotify event, the position of the cursor is available.
The handling of drawing and redrawing of screen positions touched by the transient
placement of the cursor on the screen is done automatically by the X11 server. This
satisfies the first three of the above implementation needs. However, it is difficult to

5.7 A Slider Bar 169

constrain a mouse pointer to follow the slider bed, thus satisfying the fourth need.
Such a constraint would introduce loss of utility of the mouse.

By contrast, a window can be constructed to move only within another window. In
this case, the window implementing the slider is constrained under program control to
remain inside the window which implements the slider bed. The XMoveWindow ()
call provides a positioning mechanism for moving the slider window to the position
in the slider window indicated by the mouse pointer.

On the slider bar and slider windows, three actions of the mouse are used. The
slider is picked up by clicking a button on the mouse and released by ceasing to
depress the button. These two actions are on the window which implements the
slider. Thus, this window in its implementation is linked to ButtonPress and
ButtonRelease events. The third action is the movement of the mouse, relative
to the slider bed. The coordinates of the mouse pointer on this window are where
the slider window is to be located. The movement of the mouse on the slider bed
is obtained by linking it to a MotionNotify event. The coordinates provided
when a MotionNotify event is sent by the X11 server contain the coordinate
of the mouse pointer when the event was sent, relative to the window linked to the
event. This window is the of the slider bed. Those coordinates then can be used
in a XMoveWindow () call to re-position the window which represents the slider.
But this is only to occur as long as the mouse button is depressed. Thus, pressing
and releasing of the mouse button needs to be stored and this store checked by the
program before re-positioning of the slider window.

The code of Fig.5.12 is built around three windows; the background window
baseWindow, the slider bed window s1iderbedWindow, and the slider window
sliderWindow. Each of these windows has a different colour. The backgrounds
of the baseWindow are constructed to be white that of the s1iderbedwWindow
window is pale grey, and that of the s1iderWindow window is black. The way the
mouse interacts with these windows, and thus how the slider bar works, is determined
by linking the mouse events to those three windows. This again supports the claim on
page xxii of Scheifler et al. (1988) that the X Window System provides mechanism
rather than policy.

Figure 5.13 shows the slider generated by the code of Fig.5.12 as consisting of a
vertical slider bar contained in a window. Background colour of the three windows
is chosen to give contrast. White is used for the base window, pale grey for the slider
window, and black for the window representing the slider. No other decoration is
used on any window so as not to obscure the major elements of the code.

To operate the slider, the left-hand mouse button is pressed when the mouse
pointer is over the slider. This mouse button is held depressed while moving the
mouse which drags the slider to the required position on the slider bed. The mouse
button is released when the required slider position is obtained. While the mouse
drags the slider, the coordinates of the slider relative to the slider bed, are printed on
the terminal such as:

170 5 Keyboard Entry and Displaying Text

/* A program which produces a window containing a vertical slider
* bar. The slider is picked up by clicking the left —hand mouse
* button over the slider. While that button is depressed the

% slider can be moved along the slider bed with the end of the
* motion indicated by releasing that mouse button. The

% coordinates of the slider are printed on the terminal screen
% as the slider is moved.

*

* Coded by: Ross Maloney

* Date: February 2009

*

/

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <string.h>
#include <stdio.h>

int main(int argc, char xargv)

{
Display +mydisplay ;
‘Window baseWindow , sliderWindow , sliderbedWindow ;
XSetWindowAttributes myat;
XSizeHints wmsize ;
XWDMHints wmhints ;
XTextProperty windowName, iconName;
XEvent baseEvent ;
GC mygc;
XGCValues myGCvalues;
XFontStruct *fontl;
char xwindow_name = ” Slider”;
char xicon_name = "Sb”;
int screen_num , done;

unsigned long mymask;

/* 1. open connection to the server x/
mydisplay = XOpenDisplay (””);

/* 2. create a top—level window =x/

screen-num = DefaultScreen (mydisplay);

myat. border_pixel = BlackPixel(mydisplay, screen_num);
myat. background_pixel = WhitePixel (mydisplay, screen_num);
myat.event_mask = ExposureMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

baseWindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
100, 100, 200, 200, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
mymask, &myat);

Fig. 5.12 A program that produces and uses a slider bar

5.7 A Slider Bar 171

/* 3. give the Window Manager hints x/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow, &iconName);

/* 4. establish window resources x/
/* 5. create all the other windows needed =x/
myat.background_pixel = 0xd3d3d3;
myat.event_mask = ExposureMask | ButtonlMotionMask;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
sliderbedWindow = XCreateWindow (mydisplay , baseWindow ,
90, 30, 11, 140, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
mymask, &myat);
myat. background_pixel = BlackPixel (mydisplay, screen_num);
myat.event_mask = ExposureMask;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
sliderWindow = XCreateWindow (mydisplay , sliderbedWindow ,
1, 0, 7, 14, 1,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
mymask, &myat);

/* 6. select events for each window x/

/* 7. map the windows x/
XMapWindow (mydisplay , baseWindow);
XMapWindow (mydisplay , sliderbedWindow);
XMapWindow (mydisplay , sliderWindow);

/* 8. enter the event loop x/
done = 0;
while (done = 0) {
XNextEvent (mydisplay , &baseEvent);
switch (baseEvent.type) {
case Expose:
break
case ButtonPress:
break;

case ButtonRelease:
break;
case MotionNotify:
printf(”Moving to: x =% y = %d \n”,

Fig. 5.12 (continued)

172 5 Keyboard Entry and Displaying Text

baseEvent.xmotion.x, baseEvent.xmotion.y);
XMoveWindow (mydisplay , sliderWindow, 1,
baseEvent .xmotion.y — 7);
break;
}
}

/* 9. «clean up before exiting =x/
XUnmapWindow (mydisplay , baseWindow);
XUnmapWindow (mydisplay , sliderbedWindow);
XUnmapWindow (mydisplay , sliderWindow);

Fig. 5.12 (continued)

Fig. 5.13 A window
containing a slider bar

Moving to: x = 4 y = 12
Moving to: x = 4 vy = 13
Moving to: x = 4 vy = 14
Moving to: x = 4 vy = 15
Moving to: x = 4 y = 16
Moving to: x = 4 y = 17
Moving to: x = 4 y = 18
Moving to: x =5 vy = 19
Moving to: x = 6 vy = 20

When the program starts, the slider is positioned at the top extremity of the slider
bed.

5.7 A Slider Bar 173

The ButtonPress and ButtonRelease event types are not used to imple-
ment the chosen operating policy for the slider bar. The Mot ionNotify event type
alone is used in the form of a But ton1Mot ionMask event member which is linked
to the s1liderbedWindow window which implements the slider bed in the code
of Fig. 5.12. This event occurs when the mouse pointer is moved, while the left-hand
mouse button is depressed. This event is not linked to the s1ider window. So, if
the mouse is clicked and move while above the slider, the ButtonlMotionMask
event propagates to the sliderbedWindow. Thus, although the mouse is posi-
tioned over the slider, the event is received by the slider bed window, not the slider,
and is thus ignored. The coordinates which accompany such event messages are
relative to the sliderbedWindow. A XMoveWindow () call is then used to
move the s1ider window to those coordinates, using the vertical coordinate alone.

The mode of operation of the slider bar is a property of how it is coded. For
example, the centre of the slider window is used as the alignment point and this
results in half of it disappearing at the extremity of the slide bar. This behaviour is
different to what is obtained using, at least some, slider bars available in X11 toolkits.
Another mode might be if the mouse pointer were depressed while over the slider
bar not covered by the slider, the slider bar could be aligned to this location. Again
a different mode then implemented in the code of Fig.5.12.

5.7.1 Exercises

1. Modify the program of Fig.5.12 so the slider operates vertically but the top-left-
hand corner of the slider bed is at pixel coordinate (10, 20) of the base window.

2. Change the alignment point of the slider bar from its centre to other points. What
is the result of this change?

3. The slider in Fig.5.13 could be made to be wider than the slider bed. Would this
cause complication in the code of Fig.5.12? Prove your answer with working
code.

4. Modify the program of Fig.5.12 so the slider operates horizontally.

5. Change the mode of operation of the slider bar in Fig.5.12 code so clicking the
mouse on the slider bed above or below the slider moves the slider to the mouse
pointer by a set movement increment.

6. When the slider in Fig.5.13 is moved, its new position no longer appears on the
display. What causes this to occur?

5.8 Scrolling Text

The term scrolling is used to describe the process of moving a window over an object
larger than the window so the full capacity of the window is used to view a portion

174 5 Keyboard Entry and Displaying Text

of the object. Since only a portion of the object is visible through the window at any
one time, natural questions about what such a window needs include:

e what proportion of the object is visible in the window;
e how far from the start of the object is the window positioned; and
e how far from the end of the object is the window positioned.

A visual answer to these questions is provided by a scroll bar. Such a scroll bar is
located adjacent to the window which shows the visible part of the object. The scroll
bar itself is a slider bar as described in Sect. 5.7 but with its coordinate output applied
to adjustment of the positioning of a window for viewing an object which is too large
to fit into the window. In this section, object of interest is text.

The problem is how to align the viewing window with the object. This situation
occurs in standard text output programs. Say a text window 10 characters wide is to
be used to move across a single line of text such that only the characters under the
window are visible. The line of text is held in a single-dimensional array. Showing the
text which appears in the window is by printing 10 characters from the array holding
the text starting from an offset. Positioning of the window on the text corresponds
to changing the value of the offset. Everything in this situation is centred around the
character, which is the unit of alignment.

In pixel-map graphics as used by X11, the pixel is the alignment unit. From
Sect.5.7, the output from a slider bar is coordinates, in units of pixels. To use the
slider bar, the positioning of the window should be done in units of pixels. However,
when X11 draws a string of text displayed using a font the result is a pixel map that
represents the drawing. This pattern is created on a drawable, which can be either
a screen window or an off-screen Pixmap. This off-screen Pixmap is measured and
accessed in units of pixels and can be moved to a screen, in whole or part, as required.
So a XDrawString () call can be used to create the Pixmap of the text of interest
in an off-screen Pixmap, and a XCopyArea () call used to move to the screen the
part corresponding to under the viewing window. In this arrangement, the creation
of the off-screen Pixmap occurs once for all scrolled viewings. The positioning of
the viewing window uses the coordinates coming from the slider bar.

Most, but not all, Xlib drawing calls can write into either a window or a Pixmap.
These items are called drawables. A drawing operation on a window only appears on
the screen after using a XMapWindow () call to send it to the screen. Further drawing
on this window requires further sending of the window to the screen. Drawing into a
Pixmap is not visible. It can be made visible by copying the contents of the Pixmap,
or part of it, to a window. A nominated rectangle of the Pixmap can be copied to the
desired position in a window.

The Pixmap, which is of type Pixmap, is created using a XCreatePixmap ()
call. This Pixmap is created in the X11 server’s memory. Before it is used, it is recom-
mended to clear this memory of residual content by using a XFillRectangle ()
call (a XClearArea () call only clears areas of a window, not a Pixmap). This
Pixmap can then be used for drawing operations, for example to draw text using a
XDrawImageString (). A portion of the Pixmap can then be copied to a window
using a XCopyArea () call. In the context of scrolling, the size of the area copied

5.8 Scrolling Text 175

from the Pixmap corresponds to the size of the viewing window. The starting location
is adjusted by using the coordinates from the slider (scroll) bar.

The XCopyArea () call is applied as a result of an exposure event. When the
slider is moved, the exposure of part of the slider bed window changes, and this
generates an exposure event. The XCopyArea () requires the coordinate of the
Pixmap to move to the viewing window. The raw coordinate values from which this
is obtained is part of the ButtonlMotionMask event component. This value (or
the appropriate value computed from it) is used in the XCopyArea () call.

5.8.1 Scrolling Horizontally

If a line of text is too long to be displayed in a window, the text can be moved, or
scrolled, through the viewing window under the control of the program’s user. This
is not directly supported by Xlib although all X11 toolkits do provide this support.
However, it can be achieved using what Xlib does provide and those components
can be used to implement scrolling of more general graphic objects. Scrolling of text
can be more difficult than such general objects since knowledge of fonts used in the
text is required. Horizontal scrolling of text is simpler than vertical scrolling of text.

A program which implements horizontal scrolling of text is given in Fig.5.14.
This program builds upon the code of Fig.5.7. Differences introduced into this code
include the following:

e A more general means of handling colour via the XColor structure is used;

e A slide bar, similar to that of Fig.5.13, is positioned horizontally below the text
window;

e In the Fig.5.7 code, the font-encoded text string is written into the textWindow
drawable, which is of type Window. In the code of Fig. 5.14, the string is written
into the buf fer variable, which is a drawable of type Pixmap. The contents of
buffer do not appear on the screen. In addition:

e The Pixmap buf fer is created in the same part of the program to the text window,
slider, and slider bed windows occurs;

e The contents of the Pixmap buffer are set to an initial condition using a
XFillRectangle () call;

e Scrolling of the text results from processing exposure events;

e The starting position of the text string in the textWindow is done by assigning
a value to the positioning variable x.

Coupling of the scroll bar and the scrolling occurs through the processing of events;
the Exposure part handles the scrolling, while the MotionNotify handles
changes to the position of the scroll bar. No attempt is made in the code of Fig.5.14
to ensure the scroll bar is able to address all characters of the text so that all can pass
through the viewing window.

176 5 Keyboard Entry and Displaying Text

/* A program to scroll a line of text horizontally. This is

* done to view portions of the line which is too long to fit
% into the viewing window. A slider is used to move the

* viewing window along the line of text to bring the required
* continuous section of text into view.
*
%
E3

Coded by: Ross Maloney
Date: February 2009

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <string.h>

int main(int argc, char xargv)

{
Display smydisplay ;
Window baseWindow , textWindow, sliderWindow ,

sliderbedWindow ;

XSetWindowAttributes myat;
XSizeHints wmsize ;
XWNMHints wmhints ;
XTextProperty windowName, iconName;
XEvent baseEvent ;
GC mygc;
XGCValues myGCvalues;
XFontStruct «fontl;
XColor white , black, grey;
Pixmap buffer;
char xwindow_name = ” Hscroll”;
char xicon_name = "Hs”;

char xtextline =

?” ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijklmnopqrstuvwxyz” ;
int screen_num , done, X;
unsigned long mymask;

/* 1. open connection to the server =x/
mydisplay = XOpenDisplay(””);

/* 2. create a top—level window x/
screen.num = DefaultScreen (mydisplay);
black.pixel = BlackPixel (mydisplay, screen_num);
white. pixel = WhitePixel (mydisplay, screen_num);
grey . pixel = 0xd3d3d3;
myat. border_pixel = black. pixel;
myat. background_pixel = white. pixel;
myat.event_mask = ExposureMask;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
baseWindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
100, 100, 200, 200, 2,

Fig. 5.14 A program to scroll a line of text horizontally

5.8 Scrolling Text 177

DefaultDepth (mydisplay , screen_num),
InputOutput ,

DefaultVisual (mydisplay , screen_num),
mymask, &myat);

/* 3. give the Window Manager hints %/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseWindow, &windowName);
XStringListToTextProperty(&icon_.name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow, &iconName);

/* 4. establish window resources %/
myGCvalues. background = white. pixel;
myGCvalues. foreground = black. pixel;
mymask = GCForeground | GCBackground;
mygec = XCreateGC (mydisplay , baseWindow, mymask, &myGCvalues);
fontl = XLoadQueryFont(mydisplay ,
?—adobe—times—bold—r—normal ——0—0—0—0—p—0—is08859 —17);

/* 5. create all the other windows needed x/
mymask = CWBackPixel | CWBorderPixel CWEventMask ;
myat.background_pixel = black. pixel;
textWindow = XCreateWindow (mydisplay , baseWindow ,

30, 40, 140, 26, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
mymask, &myat);
myat. background_pixel = grey.pixel;
myat.event_mask = ExposureMask | ButtonlMotionMask;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
sliderbedWindow = XCreateWindow (mydisplay , baseWindow,
30, 80, 140, 11, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
mymask, &myat);
myat.background_pixel = black.pixel;
myat.event_mask = ExposureMask;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
sliderWindow = XCreateWindow (mydisplay , sliderbedWindow ,
0, 1, 14, 7, 1,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
mymask, &myat);
buffer = XCreatePixmap(mydisplay, baseWindow, 1000, 26,

Fig. 5.14 (continued)

178

5 Keyboard Entry and Displaying Text

DefaultDepth (mydisplay , screen_num));

XFillRectangle (mydisplay, buffer, mygc,
0, 0, 1000, 26);
XDrawlmageString (mydisplay , buffer , mygc,
0, 20, textline, strlen(textline));
/* 6. select events for each window x*/
/* 7. map the windows x/

XMapWindow (mydisplay ,
XMapWindow (mydisplay ,

baseWindow) ;
textWindow) ;
sliderbedWindow);

(

(
XMapWindow (mydisplay ,
XMapWindow (mydisplay , sliderWindow);
/* 8. enter the event loop =*/
done = 0;
while (done 0) {

XNextEvent (mydisplay , &baseEvent);
switch (baseEvent.type) {
case Expose:
XCopyArea(mydisplay ,
140, 20, O,

buffer
0);

, textWindow , mygc, x, 0,
break;

case ButtonPress:
break;

case ButtonRelease:
break;

case MotionNotify:
XMoveWindow (mydisplay ,

baseEvent .xmotion.x—7,

x = baseEvent.xmotion.x;
break;

}

sliderWindow ,
1);

}

/* 9. «clean up before exiting x/
XUnmapWindow (mydisplay , baseWindow);

}

Fig. 5.14 (continued)

Figure 5.15 shows a screenshot of the code of Fig.5.14 in use. Notice the two
characters shown in the text window can be cut vertically through the character, this
depending on the position of the scroll bar. Also all characters contained in the text
cannot be scrolled through the viewing window.

5.8 Scrolling Text 179

Fig. 5.15 Horizontal
scrolling a line of text with a
scroll bar

5.8.2 Scrolling Vertically

Two forms of vertical scrolling of text can be used: one in which the pixels forming
the text’s characters are moved vertically through the viewing window, and the other
where the lines of text are moved vertically through the window. The first of these
forms is similar to that shown above for scrolling a horizontal line of text. This
is characterised by the chance of a partially complete line of text appearing in the
viewing window. In the second form, a full line of text is added and removed from
opposite ends of the viewing window. This technique is characterised by the scrolling
by full lines of text. It is the technique used here.

Code to implement vertical text scrolling is shown in Fig.5.16. It uses a vertical
slider bar similar to that in the code of Fig.5.12, laid on the right of the text view-
ing window textWindow. The font used to draw the text was known when the
dimensions of the viewing window were selected. The height of the window was
selected to accommodate five lines of text, but a 140 pixel width selected was too
small to view the whole of each line of text which is held in the program in the array
lines. Figure5.17 shows the truncation of those longer lines and the appearance
in the window of lines shorter than the window’s width. The text viewing window
background is in black, and the background of each text line is drawn with a white
background. If there be unequal amount of black background at the top and bottom
of the viewing window this indicates an error in the selection of the window’s height
for containing five lines of text.

180 5 Keyboard Entry and Displaying Text

/* This program scrolls vertically through a passage of text. A
* vertical scroll bar is used to control the position of the
* viewing window, bringing in and removing a line of text as
* the viewing window is scrolled past each line of text.
*
* Coded by: Ross Maloney
% Date: February 2009
*
/

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <string.h>

int main(int argc, char xargv)

{

Display smydisplay;

Window baseWindow , textWindow , sliderWindow ,
sliderbedWindow ;

XSetWindowAttributes myat;

XSizeHints wmsize ;

XWDMHints wmhints ;

XTextProperty windowName, iconName;

XEvent baseEvent ;

GC mygc;

XGCValues myGCvalues;

XFontStruct «fontl ;

XColor white , black, grey;

Pixmap buffer;

char s*window_name = ” Vscroll”;

char xicon_name = "Vs”;

static char xlines[9] = {"Mary_had_a_little _lamb”

”Her._father._shot.it._dead” ,
”Now._Mary._takes._.the_.lamb._to.school”
”Between _two_hunks_of_bread” ,
”Now_Mary._is._a_very._.wise_.girl”
”And_keeps_her_own_counsel _well” |
”She_never_tells” |
”That_at _home._there._is _lamb._stew” ,
?And._fleece._on_the_floor_as_well” };
int screen_.num , done, i, y, newEnd, oldEnd;

unsigned long mymask;

/* 1. open connection to the server x*/
mydisplay = XOpenDisplay (7”7);

/* 2. create a top—level window %/
screen-num = DefaultScreen (mydisplay);
black.pixel = BlackPixel (mydisplay, screen_num);
white. pixel = WhitePixel (mydisplay, screen_num);
grey . pixel = 0xd3d3d3;
myat. border_pixel = black. pixel;

Fig. 5.16 A program to vertically scroll a piece of text

5.8 Scrolling Text 181

myat. background_pixel = white. pixel;

myat.event_mask = ExposureMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

baseWindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
100, 100, 200, 200, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
mymask, &myat);

/* 3. give the Window Manager hints %/
wmsize . flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseWindow , &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;
XSetWMHints (mydisplay , baseWindow, &wmhints);
XStringListToTextProperty (&window_name, 1, &windowName);
XSetWMName (mydisplay , baseWindow , &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseWindow, &iconName);

/* 4. establish window resources %/
myGCvalues. background = white. pixel;
myGCvalues. foreground = black. pixel;
mymask = GCForeground | GCBackground;
mygc = XCreateGC (mydisplay , baseWindow, mymask, &myGCvalues);
fontl = XLoadQueryFont(mydisplay ,
?—adobe—times—bold —r—normal ——0—0—0—0—p—0—is0o8859 —17);

/* 5. create all the other windows needed x/
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
myat. background_pixel = black. pixel;
textWindow = XCreateWindow (mydisplay , baseWindow,
10, 20, 140, 100, 2,
DefaultDepth (mydisplay, screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);
myat. background_pixel = grey.pixel;
myat.event_mask = ExposureMask | ButtonlMotionMask;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
sliderbedWindow = XCreateWindow (mydisplay , baseWindow ,
160, 20, 11, 130, 2,
DefaultDepth (mydisplay, screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
mymask, &myat);
myat. background_pixel = black. pixel;
myat.event_mask = ExposureMask;
mymask = CWBackPixel | CWBorderPixel | CWEventMask;
sliderWindow = XCreateWindow (mydisplay , sliderbedWindow ,

Fig. 5.16 (continued)

182 5 Keyboard Entry and Displaying Text

1, 0, 7, 14, 1,
DefaultDepth (mydisplay, screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
mymask, &myat);
buffer = XCreatePixmap (mydisplay, baseWindow, 2000, 100,
DefaultDepth (mydisplay, screen_num));
XFillRectangle (mydisplay , buffer , mygc, 0, 0, 2000, 100);
XDrawlmageString (mydisplay , buffer, mygc, 0, 14, lines[0],
strlen (lines [0]));
for (i=1; i<5; i++) {
XDrawlmageString (mydisplay , buffer , mygc,
0, 14 + 20%i, lines[i], strlen(lines[i]));

oldEnd = 4;
newkEnd = 4;

/* 6. select events for each window */
/* 7. map the windows x/
XMapWindow (mydisplay , baseWindow);
XMapWindow (mydisplay , textWindow);
XMapWindow (mydisplay , sliderbedWindow);
XMapWindow (mydisplay , sliderWindow);

/* 8. enter the event loop x*/

done = 0;
while (done = 0)

XNextEvent (mydisplay , &baseEvent);

switch (baseEvent.type) {

case Expose:

if (newEnd =— oldEnd) {
XCopyArea(mydisplay , buffer, textWindow, mygc, 0, 0,
2000, 110, 0, 0);

if (newEnd > oldEnd) {
for (i=0; i<5; i++) {
XCopyArea(mydisplay , buffer, buffer, mygc, 0, 20*(i+1),
2000, 20, 0, 20%i);

}
XFillRectangle (mydisplay , buffer, myge, 0, 80, 2000, 20);
XDrawlImageString (mydisplay , buffer , mygc,
0, 94, lines[newEnd], strlen(lines [newEnd]));
XCopyArea(mydisplay , buffer, textWindow, mygc, 0, 80,
2000, 20, 0, 80);
oldEnd = newEnd;

if (newEnd < oldEnd) {
for (i=4; i>0; i—) {
XCopyArea(mydisplay , buffer, buffer, mygc, 0, 20%(i—1),
2000, 20, 0, 20%i);

}
XFillRectangle (mydisplay , buffer , mygc, 0, 0, 2000, 20);

Fig. 5.16 (continued)

5.8 Scrolling Text 183

XDrawlmageString (mydisplay , buffer , mygc,
0, 14, lines[newEnd—4], strlen (lines [newEnd—4]));
XCopyArea(mydisplay , buffer, textWindow, mygc, 0, O,
2000, 20, 0, 0);
oldEnd = newEnd;
}
break;
case DButtonPress:
break;
case DButtonRelease:
break;
case MotionNotify:
XMoveWindow (mydisplay , sliderWindow , 1
baseEvent.xmotion.y—7);

)

y = baseEvent.xmotion.y;
newEnd = 4 + (y + 7)/40;
break;

/* 9. clean up before exiting %/
XUnmapWindow (mydisplay , baseWindow);

}
Fig. 5.16 (continued)

Fig. 5.17 Vertical scrolling
lines of text

ow Mary takes the lamb
Between two hunks of brs

She never tells
hat at home there is 14

184 5 Keyboard Entry and Displaying Text

Figure5.17 shows a result of executing the code of Fig.5.16. As in the code of
Fig.5.14, the font used has an ascent of 14, and a descent 6, giving a line height
of 20 pixels. The height of the text viewing window textWindow was assigned a
value of 100 pixels so as to accommodate five lines of such text. The height of the
slider bed window s1iderbedWindow was set at 130 pixels. The nine lines of text
processed by the program are set in the array 1ines, one line per array entry. Each
of those lines of text is displayed in the text viewing window through the Pixmap
buffer.

The code of Fig.5.16 fills the viewing window with the first five lines of text
available for viewing. After that, all scroll processing is triggered by the Exposure
event generated by moving the scroll bar.

Scrolling is implemented by positioning of the slider in the scroll bar. In contrast
to the code of Fig.5.14 where the position of the slider could be used directly, here
the position value needs to be transformed. When the program starts, the viewing
window shows the text stored in elements 0 to 4 of array 1ines [] and the scroll bar
is at the top of the scroll bar. When the slider is moved, its position (y) is converted to
atext line index and that index is used to move one line of text from the top and bottom
of the buf fer Pixmap. When the slider is moved to a position that the next line
should be displayed, text lines 1 to 5 of array 1ines [] are mapped into buffer.
Here, the scroll bar bed of 130 pixels length is meant to enable movement of 4 lines
of text. When the slider moves 30 pixels, a new line of text is moved into, and out
from the Pixmap buf fer and then onto the text viewing window textWindow.
This scroll bar movement increments the index newEnd recording the last line of
text contained in 1ines [] now shown on the viewing window. Handling of lines
of text in the Pixmap buffer is done by comparing the newEnd to its previous
value held in o1dEnd. Only if the values in the variables newEnd and o1dEnd are
different is processing of the Pixmap performed.

5.8.3 Exercises

1. Modify the program of Fig.5.16 so the scroll bar prints on the terminal the per-
centage position of the slider along the slide bed. Remove the link with the text
string used in the program.

2. Describe three techniques for implementing vertical scrolling of text from the
standpoint of the Pixmap (or Pixmaps) which would be involved in each.

3. Implement horizontal scrolling in the program of Fig. 5.16 so the end of the longer
lines of text becomes visible.

4. In the code of Fig.5.16, explain the choice of values which are used in transform-
ing the coordinate values obtained from the slider.

5. The manner of moving lines of text in and out of the Pixmap in the code of
Fig.5.16 is limited. What is this limitation? Modify the code so multiple lines of
text move in and out of the Pixmap.

6. Modify the program of Fig.5.16 to use a different font.

5.9 Summary 185

5.9 Summary

Text remains an important source of input and output in modern computer programs.
A graphical system such as X11 supports such operations. Text characters entered
from a keyboard or taken from a disc file are drawn on the display by the X server. By
choosing different font styles and sizes, the same characters can be made to appear
differently in windows on a screen. How to achieve this using the services provided
by Xlib has been the underlying theme of this chapter.

This chapter assumes creating windows, and the handling of events linked to
such windows, is known. These are topic covered in previous chapters. Handling of
keyboard input is here shown to be two separate processes. One of those processes
is to get and interpret the meaning of a key pressed. The other is to provide a visual
feedback of the keystroke on to the screen. It has been demonstrated here how to
control this visual feedback by choosing a font to use, and finding which font styles
and in what sizes they are available on a particular X11 server by using a user
program. Finally, scroll bars were introduced and built up from windows and events
as component parts. They are shown as both a general means of interacting with a
program and also as a means for controlling the scrolling of text.

Chapter 6 ®)
Classic Drawing Gzt

Drawing pictures is arguably one of the most important application of computer
graphics. A graph shows data in a pictorial manner. Computers can be used both
to produce data and generate a pictorial representation — a visualisation — of this
data, and a graph is a relatively simple pictorial representation. A graph is a simple
graphic. But Xlib does not even support the drawing of graphs. However it does have
facility to put on the screen lines of different types, and fill areas with colour, together
with means supporting interaction between the computer user and those lines and
areas. Although such components are simple they can lead to complex results. An
outcome can be they provide flexibility for creating pictures but at the cost of more
programming effort and required knowledge. In this chapter illustrations of those
aspects of Xlib will be given by simple examples.

The drawing done here uses the concepts and handling methods of a window,
Pixmap, graphics context (GC), and colour which have been used in other chapters
of this book. Display of text is also drawing and it uses those same elements.

Because data is central to drawing, a different means of approach is warranted.
Drawings should be done on a Pixmap and the Pixmap mapped to a window. Drawing
done in a Pixmap remains while that on a window can be transient. If a window
becomes hidden and then is exposed, the window needs to be redrawn by the program.
This may not be possible when a drawing is built up incremental on a window and
the data discarded. In this case re-running of the program would be required, if it
was possible to obtain the data again. The difficulty is a Pixmap is not visible until
it is mapped with it’s drawing to a window. By contrast, when drawing directly on a
window the drawing becomes visible immediately.

Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-3-319-74250-2_6) contains supplementary material, which is
available to authorized users.

© Springer International Publishing AG, part of Springer Nature 2017 187
R. J. Maloney, Low Level X Window Programming,
https://doi.org/10.1007/978-3-319-74250-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74250-2_6&domain=pdf
https://doi.org/10.1007/978-3-319-74250-2_6

188 6 Classic Drawing

If possible drawing should be done in colours with different elements done in
different colour for emphasis. Both a window and a Pixmap have a foreground and
background colour. Particularly in the case of Pixmaps they produce decorations in
their foreground and background colours. As is shown in this chapter, more than
those two colours can be used in drawing on a Pixmap. This is also the case for a
window.

Drawing on a window by going through a Pixmap is less intuitive than by direct
use of a window. This is the reason for positioning the contents of this chapter at this
position in the book. Drawing is not simple.

6.1 Limit on Multiple Objects in a Request

A single graphic drawing call requests the creation of single or multiple visual objects
on the screen. In X, those objects can be a point, a line, a polygon, and an arc. For
example, a XDrawRectangle () call requests the drawing of a single object, in
this case a rectangle defined by the height and width supplied with the call. But a
XDrawRectangles () call requests drawing of multiple rectangles whose heights
and widths are defined in an array which is passed to the call. The server used to
perform those drawings limits the number of objects which can be drawn using one
call.

If the client server knows the limitation of the drawing server, it can divide a
user’s program request for drawing multiple visual objects into multiple X protocol
requests which together have the same result as the user program’s request. How-
ever, in the case of the XDrawArcs () and XDrawLines () calls, breaking of
the request would influence how the line segments are joined together, and with
aXFillPolygon () call the inside of the polygon would become ill-defined. If
the user program knows the limitation of the drawing server being used then steps
can be taken to avoid the use of multiple protocol requests. The program of Fig. 6.1
illustrates obtaining the server protocol request limitation.

The maximum size of a server request is obtained by the XMapRequestSize ()
call and the value obtained is in units of four bytes. The X protocol guarantees this
value will be greater than 4096 units. From this request maximum, the maximum
number of points, lines, arcs, and polygons which can be include in a single request
can be calculated. Running of the program code in Fig. 6.1 gave the results:

Single protocol size limit = 65535
Upper drawing limits:

points < 65532

lines < 32766

arcs < 21844

polygons < 65533

6.1 Limit on Multiple Objects in a Request 189

/* This program prints the display request limitation of the
%* current X server.

*

* Coded by: Ross Maloney
* Date: March 2009
*/

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <stdio.h>

int main(int argc, char xcarv)

{
Display smydisplay ;
long size;
/* 1. open connection to the server x*/
mydisplay = XOpenDisplay (77);
/* 2. create a top—level window x*/
/* 3. give the Window Manager hints =/
/* 4. establish window resources x/
/* 5. create all the other windows needed x*/
/* 6. select events for each window x/
/* 7. map the windows */
/* 8. enter the event loop */
size = XMaxRequestSize (mydisplay);
printf(” Single_protocol_size._limit .=%d\n”, size);
size —= 3;
printf(”?Upper_limits:\n”);
printf(”.opoints...<.%d\n”, size);
printf(”__lines__...<%d\n”, size /2);
printf(”..arcs oo < %d\n”, size /3);
printf(”__.polygons <. %d\n”, size-+1);
/* 9. clean up before exiting */
XCloseDisplay (mydisplay);
}

Fig. 6.1 A program to print drawing limits of display server

None of these values appear to be a high limitation. Similar limits also apply to
text strings which can be drawn using the one call, with this limit determined by the
length of the string.

190 6 Classic Drawing

6.2 Drawing Lines, Circles, and a Coloured-In Square

Xlib includes calls to draw points, straight lines, rectangles, polygons, and arcs. There
are also calls which draw rectangles, closed polygons and arcs as outlines in colour
and those figures a colour filled objects. There are no calls to draw spline lines as
in Postscript. With the available calls, complex pictures can be built on a window
with enhancements of those component parts by setting properties in the graphics
context (GC) used with each component. Circles and ellipse are drawn as specific
cases of arcs. A square is a particular case of a rectangle, but the rectangle itself is
a particular case of a polygon. However, rectangles occur so frequently in drawing
and their definition is simpler than that of a polygon to warrant separate rectangle
specific calls.

Figure 6.2 is an example of creating a compound picture from parts. It is composed
of two squares, two lines, and a circle. The resulting picture represents a target plate
for drawing attention towards it’s centre as opposed to the centre of the background
window. One square is drawn in blue with the other in pink. Two different styles
of lines are used; solid for the circle and the vertical line, and a dashed line for the
horizontal. Those lines are drawn in black and red. The assemblage is drawn on a
background window having a white background. Figure 6.3 contains the code used
to produce the picture of Fig.6.2.

Aspects of the code in Fig. 6.3 are worth noting. It is necessary to draw the pink
square as a polygon for the XFillRectangle () call only draws a rectangle
horizontally and there is no means of rotating the resulting object. Only one GC
(baseGC) is used and the colour of the foreground, the line thickness, and line style
are changed before it is used to draw each object. The XSetForeground () and
XSetLineAttributes () calls are used to achieve those respective changes. A
line thickness of 0 is used in the final XSetLineAttributes () call so to use the
fastest line drawing algorithm available in the server which is to draw a line one pixel
in thickness. The absolute technique of specifying coordinates of the square drawn
withthe XFillPolygon () isused as opposed to the relative addressing technique.
Also the automatic polygon closure feature of that call is used. All drawing is done
in the exposure clause of the event loop.

Note the order in which the components are drawn because overlapping com-
ponents overwrite and thus hide what they overlay. Since the drawing is done on a
background window, the window is created first. The blue square needs to be drawn
first, after the background window has been created. Then the pink square is drawn
before the straight lines and the circle.

Figure 6.2b also shows the original picture in Fig. 6.2a after it had being covered
by another window on the screen and then re-exposed. The picture is both constructed
and reconstructed in the expose clause of the event loop. However changes which are
introduced into the GC during the construction are retained across exposure events.
Thus the initial condition of the GC which produced the original picture is different
in the subsequent exposure clause. A way around this problem is to set the GC to
a know configuration within the expose clause before any drawing is performed. In

6.2 Drawing Lines, Circles, and a Coloured-In Square 191

Fig. 6.2 A target plate in a
window

(a) original

(b) re-exposed

192 6 Classic Drawing

~
*

This program draws a target plate consisting of a square
containing a square which is standing on its corners,
extended diagonal lines of the inner square, and a circle
centred at the intersection of those diagonal lines. The
squares are filled in pink and pale blue colour, one
diagonal line is solid while the other is dotted, and the
circle is a solid red coloured line. This picture is
drawn directly on its containing white coloured window.

Coded by: Ross Maloney
Date: March 2009

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

*
~

#include <X11/Xlib.h>
#include <X11/Xutil.h>

int main(int argc, char xargv)

{

Display smydisplay ;

XSetWindowAttributes baseat;

Window baseW ;

XSizeHints wmsize ;

XWMHints wmhints ;

XTextProperty windowName, iconName;

XEvent myevent ;

GC baseGC;

XGCValues myGCValues;

XColor pink, blue, red, black, white;

XPoint corners [] = {{140,60},{230,150},{140,240},
{50,150} };

char *xwindow_name = ” Tarplate”;

char *xicon_name = "Tp”;

int screen_num , done;

unsigned long valuemask;

/* 1. open connection to the server =x/
mydisplay = XOpenDisplay (””);

/* 2. create a top—level window =x/
screen.num = DefaultScreen (mydisplay);
black.pixel = BlackPixel(mydisplay, screen_num);
white . pixel = WhitePixel (mydisplay, screen_num);
red. pixel = 0xff0000;
pink. pixel = 0xffb6cl;
blue . pixel = Oxacc8¢e6;
baseat.background_pixel = white. pixel;
baseat.border_pixel = black. pixel;
baseat .event_mask = ExposureMask;
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;

Fig. 6.3 A program to draw a target plate

6.2 Drawing Lines, Circles, and a Coloured-In Square 193

baseW = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
100, 100, 300, 300, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
valuemask , &baseat);

/* 3. give the Window Manager hints*/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;
XSetWMHints (mydisplay , baseW, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

/*x 4. establish window resourcesx/
valuemask = GCForeground | GCBackground;
myGCValues. background = white. pixel;
myGCValues. foreground = blue. pixel;
baseGC = XCreateGC(mydisplay , baseW, valuemask, &myGCValues);

/* 5. create all the other windows neededx/
/x 6. select events for each windowx/
/* 7. map the windowsx/

XMapWindow (mydisplay , baseW);

/* 8. enter the event loop */
done = 0;
while (done =— 0) {
XNextEvent (mydisplay , &myevent);
switch (myevent.type) {
case Expose:
XFillRectangle (mydisplay , baseW, baseGC,
50, 60, 180, 180);
XSetForeground (mydisplay , baseGC, pink.pixel);
XFillPolygon (mydisplay , baseW, baseGC,
corners, 4, Convex, CoordModeOrigin);
XSetForeground (mydisplay , baseGC, black.pixel);
XDrawLine (mydisplay , baseW, baseGC, 140, 30, 140, 270);
XSetLineAttributes (mydisplay , baseGC,
2, LineOnOffDash, CapButt, JoinMiter);
XDrawLine (mydisplay , baseW, baseGC, 20, 150, 260, 150);
XSetForeground (mydisplay , baseGC, red.pixel);

Fig. 6.3 (continued)

194 6 Classic Drawing

XSetLineAttributes (mydisplay , baseGC,
0, LineSolid, CapButt, JoinMiter);

XDrawArc(mydisplay , baseW, baseGC,
95, 105, 90, 90, 0, 360x64);
break;

}
}

/* 9. clean up before exitingsx*/
XUnmapWindow (mydisplay , baseW);
XDestroyWindow (mydisplay , baseW);
X CloseDisplay (mydisplay);

Fig. 6.3 (continued)

the situation of this code this is possible but in other situations it may be impossible
or inappropriate for this to be done. This shows the wisdom in using a Pixmap for
creating a drawing and then placing the Pixmap onto a window as the result of an
exposure event.

6.2.1 Exercises

1. Change the code of Fig. 6.3 so it uses a triangle in place of the square.

2. Modify the code of Fig.6.3 so the exposure event problem depicted in Fig.6.2
does not occur. There are at least two approaches to arriving at a solution.

3. As noted above, the manner of specifying colour in the code of Fig.6.3 is not
robust. Modify the code to improve the robustness of colour assignment.

6.3 A Symbol Composed from Circle Parts

On page 5-6 of Smith (1990) it is claimed the drawing of the Tao (or Tai-Chi) symbol
provides a good example to demonstrate the versatility of Postscript. Experience
has shown drawing this symbol also provides a good test for a X Window System
implementation and the screen being used.

The Tao symbol show in Fig. 6.4 is produced from the code contained in Fig. 6.5.
It is built up from five colour filled semi-circles and one full circle outline. Here the
symbol is drawn in black on a white base window.

The setup for drawing used here is the most appropriate to use in general. The
program of Fig. 6.5 consists of a base window baseW and a Pixmap pad. All drawing
is done in the Pixmap and its contents are made visible by moving those contents to

6.3 A Symbol Composed from Circle Parts 195

Fig. 6.4 A window
containing the tao symbol

the base window by using a XCopyArea () call when an Expose event occurs.
The Pixmap is created using a XCreatePixmap () call specifying the window to
which it is to be linked. The window to which it links has to have been created and
have the InputOutput property configured into it. In this program this Pixmap
is pad and the linked window is the base window baseW. This setup of using a
Pixmap and window combination results in complete recovery of the screen image
if either partial or whole covering of the baseW window occurs by another window
on the screen being used.

When the Pixmap is created its contents are unpredictable and need to be put
into a know state. The XFillRectangle () call is used for this purpose. This
technique was also used in creating the buffer used in scrolling text both horizontally
and vertically in Sects.5.8.1 and 5.8.2.

For convenience the program uses two GCs, one (gc1) in which the foreground
and background colours are respectively black and white, and in the other (gc2) those
colours have the reverse rolls. The shapes (circles) from which the total drawing is
formed use the foreground colour. Circles coloured in black and white are thus used.

The XCopyArea () call which transfers the drawing in the Pixmap to the window
does not use the foreground and background members of the GC supplied in
the call. It does, however, use other members of the GC specified. The colouring of the
displayed drawing is determined by the colours contained in the GCs when drawing
on the Pixmap. In the program of Fig. 6.5, use of gc1 inthe XFillRectangle ()
call results in a black background in the window no matter what gc1 or gc2 used
in the XCopyArea () call executed in the Expose clause. Correspondingly, using
gc2inthe XFillRectangle () call changes that window’s background to white.

196 6 Classic Drawing

/#* This program draws the Tao (or Tai—Chi) symbol in black on a

* 300 by 300 white window. The symbol is composed of 3
* semicircles, and 3 full circles.

E 3

* Coded by: Ross Maloney

* Date: March 2009

*/

#include <X11/Xlib.h>
#include <X11/Xutil.h>

int main(int argc, char xargv)

{

Display smydisplay ;
XSetWindowAttributes baseat;
‘Window baseW ;

XSizeHints wmsize ;

XWDMHints wmhints ;
XTextProperty windowName, iconName;
XEvent myevent ;

GC gcl, gc2;
XGCValues myGCValues;
XColor black , white;
Pixmap pad;

char xwindow_name = ”Tao”;

char xicon_name = "Ta”;

int screen_num , done;

unsigned long valuemask;

/* 1. open connection to the server x/
mydisplay = XOpenDisplay (77);

/* 2. create a top—level window */
screen_num = DefaultScreen (mydisplay);
black.pixel = BlackPixel (mydisplay, screen_num);
white. pixel = WhitePixel (mydisplay, screen_num);

baseat .background_pixel = white. pixel;
baseat.border_pixel = black. pixel;
baseat .event_mask = ExposureMask;

valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
baseW = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
100, 100, 300, 300, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
valuemask , &baseat);

/* 3. give the Window Manager hints x/
wmsize . flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);

Fig. 6.5 A program which draws the tao symbol

6.3 A Symbol Composed from Circle Parts

wmhints. initial_state = NormalState;
wmhints . flags = StateHint;

XSetWMHints (mydisplay , baseW, &wmhints);
XStringListToTextProperty (&window_name, 1, &windowName);
XSetWMName (mydisplay , baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

/* 4. establish window resourcesx/

valuemask = GCForeground | GCBackground;

myGCValues. background = white. pixel;

myGCValues. foreground = black. pixel;

gcl = XCreateGC(mydisplay , baseW, valuemask, &myGCValues);
myGCValues. background = black. pixel;

myGCValues. foreground = white. pixel;

gc2 = XCreateGC(mydisplay , baseW, valuemask, &myGCValues);

/* 5. «create all the other windows neededx/
pad = XCreatePixmap (mydisplay , baseW, 300, 300,
DefaultDepth (mydisplay, screen_num));
XFillRectangle (mydisplay, pad, gc2, 0, 0, 300, 300),
XFillArc (mydisplay , pad, gcl, 30, 30, 240, 240, 90x64, 180%64);

197

XFillArc (mydisplay, pad, gcl, 90, 150, 120, 120, 270%x64, 180x64);

XFillArc (mydisplay , pad, gc2, 90, 30, 120, 120, 90x64, 180x64);
XFillArc (mydisplay , pad, gc2, 140, 200, 20, 20, 0, 360%64);
XFillArc (mydisplay , pad, gcl, 140, 80, 20, 20, 0, 360%64);
XDrawArc(mydisplay , pad, gcl, 30, 30, 240, 240, 0, 360x64);

/* 6. select events for each window %/
/* 7. map the windowsx/
XMapWindow (mydisplay , baseW);

/* 8. enter the event loop x/
done = 0;
while (done = 0) {
XNextEvent (mydisplay , &myevent);
switch (myevent.type) {
case Expose:

XCopyArea(mydisplay , pad, baseW, gcl, 0, 0, 300, 300, 0, 0);

break ;
}

/* 9. clean up before exitingsx/
XUnmapWindow (mydisplay , baseW);
XDestroyWindow (mydisplay , baseW);
XCloseDisplay (mydisplay);

Fig. 6.5 (continued)

198 6 Classic Drawing

All drawing in the code of Fig. 6.5 is done outside of the event loop by positioning
arc segments within the Pixmap pad. Only the transfer of the Pixmap to the screen
is inside the event loop.

6.3.1 Exercises

1. Modify the program in Fig.6.5 so the white portions within the tao symbol are
coloured yellow.

2. Modify the program in Fig. 6.5 so all black and white colouring’s are exchanged.
3. What other means apart from the event mechanism in the X Window System are
available to transfer the contents of the Pixmap used for drawing to a screen?

4. With respect to data transfer, and thus network traffic between the client and the
server, what are the advantages of using a Pixmap for drawing? Justify your an-
swer. Contrast this situation to when using an image structure for storing graphics
information. Hint: This question is concerned with where data is stored and when
data is transferred between the client and server.

5. Compare and contrast the program in Fig. 6.5 with code having the same function-
ality and the drawing using the Win32 API (Applications Programming Interface)
of Microsoft Windows.

6. What are the aspects of a screen and the X Window system which are highlighted
by drawing the Tao symbol as in the code of Fig.6.5?

6.4 A Circle Bouncing off Plain Edges

If a series of pictures of an object are displayed on the screen they can give the
impression the object in the picture is moving. One application to which this technique
could be applied is in simulation.

A simple demonstration of a moving object in continuous motion is considered
here and is shown in Fig. 6.6. The motion is in the plane of the viewing surface and
resembles a billiard ball bouncing off the cushions which run along the bound-
aries of the viewing surface. The code in Fig.6.7 draws such a ball as a circle
filled in white on a black Pixmap. The Pixmap pad is used for creating the draw-
ings. Its colour black results from the black foreground colour of gcl GC used
in the XFillRectangle () call which initialises the viewing plane. The circle
is drawn in white by using the white foreground colour of gc2 GC supplied in
the XFillArc () call used in drawing it. The simplicity in the demonstration is
apparent from Fig. 6.6 while Fig.6.6a attempts to show free movement of the ball
(circle) while striking of the bounding cushions. Figure 6.6b also shows the problem
in the code of Fig.6.7 in that the circle appears to penetrate the cushion — before
rebounding.

6.4 A Circle Bouncing off Plain Edges 199

Fig. 6.6 A moving circle

(a) free motion

(b) rebounding

200 6 Classic Drawing

/* This program draws a continuously bouncing ball that canons

* off the cushions that surround the viewing screen. All

* drawing is done in a Pixmap that is moved to the screen at
% intervals of time to give the ball movement.

*

* Coded by: Ross Maloney

* Date: March 2009

*/

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <unistd.h>

int main(int argc, char xargv)

{
Display smydisplay ;
XSetWindowAttributes baseat;
Window baseW ;
XSizeHints wmsize ;
XWNMHints wmhints ;
XTextProperty windowName, iconName;
XEvent myevent ;
GC gcl, gc2;
XGCValues myGCValues;
XColor black , white;
Pixmap pad;
char xwindow_name = ”Moving” ;
char xicon_name = "Mo” ;
int screen_num , done;
unsigned long valuemask;
int x, y, dx, dy;
float ratio;

/* 1. open connection to the server x/
mydisplay = XOpenDisplay (””);

/* 2. create a top—level window */
screen_.num = DefaultScreen (mydisplay);
black.pixel = BlackPixel(mydisplay, screen_num);
white. pixel = WhitePixel (mydisplay, screen_num);

baseat . background_pixel = white. pixel;
baseat . border_pixel = black. pixel;
baseat .event_mask = ExposureMask;

valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
baseW = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
100, 100, 300, 300, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
valuemask , &baseat);

Fig. 6.7 A program which bounces a circle off plain edges

6.4 A Circle Bouncing off Plain Edges 201

/* 3. give the Window Manager hints %/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;
XSetWMHints (mydisplay , baseW, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

/% 4. establish window resources %/

valuemask = GCForeground | GCBackground;

myGCValues. background = white. pixel;

myGCValues. foreground = black. pixel;

gcl = XCreateGC (mydisplay , baseW, valuemask, &myGCValues);
myGCValues. background = black. pixel;

myGCValues. foreground = white. pixel;

gc2 = XCreateGC (mydisplay , baseW, valuemask, &myGCValues);

/% 5. create all the other windows neededx/
pad = XCreatePixmap (mydisplay, baseW, 300, 300,
DefaultDepth (mydisplay , screen_num));
XFillRectangle (mydisplay , pad, gcl, 0, 0, 300, 300);
x = 100;
y = 100;
dx = 10;
ratio = 2.0;
XFillArc(mydisplay , pad, gcl, x, y, 40, 40, 0, 360%64);

/% 6. select events for each window %/
/* 7. map the windows %/
XMapWindow (mydisplay , baseW);

/* 8. enter the event loop*/
done = 0;
while (done = 0) {
XNextEvent (mydisplay , &myevent);
switch(myevent.type) {
case Expose:
XCopyArea(mydisplay , pad, baseW, gcl,
0, 0, 300, 300, 0, 0);
XFillArc(mydisplay, pad, gcl, x, y, 40, 40, 0, 360%64);
x += dx;
if (x<0) {x=0; d«x = 10; ratio = —ratio;}
if (x> 300) { x = 300; dx = —10; ratio = —ratio;}

Fig. 6.7 (continued)

202 6 Classic Drawing

if (y>300) {y = 300; ratio = —ratio;}

if (y<0) {y=0; ratio = —ratio;}

y += dxx*ratio;

XFillArc (mydisplay , pad, gc2, x, y, 40, 40, 0, 360x64);

sleep (1);
XSendEvent (mydisplay , baseW, 0, ExposureMask, &myevent);
break;
}
}
/¥ 9. clean up before exitingx/

XUnmapWindow (mydisplay , baseW);
XDestroyWindow (mydisplay , baseW);
X CloseDisplay (mydisplay);

Fig. 6.7 (continued)

The object is shown on the screen by sending the contents of the Pixmap to the
screen. This occurs by executing a XCopyArea () call when an Expose event is
received in the event loop. Once that call has been executed, the next position of
the ball in the Pixmap is computed and re-positioned in the Pixmap. This display-
compute process can be repeated by sending an Expose event after the new position
of the call is calculated. This event is created by a XSendEvent () call. The initial
conditions of the placement of the ball in the Pixmap and the parameters which are
to be used to compute the motion are set before the event loop of the program in
Fig.6.7 is entered.

The XSendEvent () is a general method of performing inter-process commu-
nication between X11 client processes offered by Xlib. In this particular instance the
communication is withing the one process, the process which contains this program.
This simplifies the XSendEvent () call used since the ID of the window being
sent to receive the message is know within the code (baseW in this case). This also
enables the third parameter of the XSendEvent () call (the propagation) to be set
as FALSE (or 0).

The motion simulated is by drawing a white circle on a Pixmap. A new position
of the circle is calculated taking into consideration any collision with the boundary
cushions which may occur. In the code of Fig. 6.7 those collisions are handled by four
if statements. Before the circle can be drawn in a new position on the Pixmap, the
circle is erased from its current position by redrawing it in the colour of the Pixmap
(using GC gcl). Then the process is paused using a sleep () call before the next
Expose event is given by the XSendEvent () call. There needs to be a time delay
between the drawing of the circle and erasing it. In this program the standard system
sleep () call was used but this has the problem that the time delay specified in the
parameter to the call is measured in seconds. Even one second is too long for the
motion being simulated here.

6.4 A Circle Bouncing off Plain Edges 203

An alternate approach is to draw the object as a window. The window would
be created once. The XCreateWindow () (or XCreateSimpleWindow ())
which forms the window sets the position on the screen where the window is to
be displayed. Those coordinates are used when the XMapWindow () call is used to
show the window on the screen. The window is removed from the screen using a
XUnmapWindow () call. The position can be changed using a XMoveWindow ()
call between the map and unmap calls.

6.4.1 Exercises

1. Does the initial position of the ball appear in the screen output generated by the
program code in Fig. 6.7? Give reasoning for your answer.

2. Modify the code in Fig.6.7 so the circle bounces off the correct face of the
boundary cushions without penetrating them.

3. Inthe code in Fig. 6.7, the current position of the circle is erased by overwriting it
with the (black) colour of the Pixmap on which it is drawn. What other technique,
based around a single Xlib call, could be used? In what situations would the pro-
posed technique be advantageous when compared with the overwrite technique?

4. What happens if the sleep () call is removed from the code in Fig. 6.7?7 What
other methods could be used to introduce a delay in the displaying process used
there?

5. Rewrite the program of Fig.6.7 using a window which shows the movemen-
t instead of a Pixmap. For this use a sequence of XMoveWindow () and
XUnmapWindow () calls. Using this technique, how is the circle of the moving
object created?

6.5 Displaying the Multi Colours of a Photograph

A common application of computer graphics is to show on the screen photographic
quality pictures generated externally from the program. The aim here is to map
the photographic data to visible pixels on the screen without loss of information
contained in the original photographic data. The graphics data is generally a collection
of many colour values over the range of all the individual pixels which make up the
total picture, together with the position each of those pixels occupies in the two-
dimensional matrix of pixels which form the total picture. Placing those colours
in the correct order is the mapping process considered here. This process is more
complex than using bitmaps and Pixmaps considered in Sects.4.3 and 4.7. In those
respective cases, two and several colours were involved which contrast to the many
colours involved here. However, the X11 image format used in those Sections, and
also in Sect.4.5, is also able to handle the multi-colour data required here.

A two step process is generally used in displaying a photographic picture. The
pictures of interest are generally stored in a format such as JPEG, PNG, TIFF, etc.

204 6 Classic Drawing

Fig. 6.8 A view of a
simulated photograph

which minimises the amount of storage required. The first step in displaying the
required picture is to recover the matrix of pixel colour values which form the picture.
Each picture format is supported by a library of manipulation functions and their use
is a specialised topic which will not be considered further here. Here those functions
will be assumed to have been applied and their output of a two-dimensional array of
pixel values will be assumed to be available. The following step, which is considered
here, is to transfer this matrix of colour values to the display window. In the code of
Fig. 6.9 this matrix of photographic data is generated by a simple numerical algorithm.
The resulting output is shown in Fig. 6.8.

A simulated picture is used in the code of Fig. 6.9 it having been derived from the
753 colours defined in the standard /etc/X11/rgb. txt file available on Unix
and Unix-like computer systems. This file lists the names of colours defined by their
8-bit red, green, and blue components. Each of those colours is a 24-bit TrueColor.
However, only 503 of those colour values are unique. The names of the colours where
filtered out and the unique hexadecimal 24-bit value of each unique colour was used.
The sequential order of the first occurrence of each colour value found in the file was
retained in making this colour data. In the code of Fig. 6.9, these values are set in the
array colours, with an additional values of 0x0 added to enable this array to be
2-dimensional complete with dimensions of 24x21.

Since the colour values of the image data used are 24 bit values, it is natural to set
the containing array imagedata to be of type integer. However, this necessitates a
type conversion to be made before it is used with the XCreateImage () call which
allocates the memory used by Xlib as the image structure in the client program.
In using the X11 image technique to display a photograph, the colours and their
arrangement which make up the photograph, are stored in this array. This is linked
into the XImage structure which is then used in the XPut Image () call. Notice
this picture array is a one-dimensional vector. The height and width interpretation

6.5 Displaying the Multi Colours of a Photograph 205

/* The X11 image format is used to create and then display

% multi—coloured picture derived from the rgb.txt file
* included with X11. All 503 unique colours in that file
* are displayed in a 15x15 colour swatch each.

*

* Coded by: Ross Maloney

% Date: March 2009

*/

#include <X11/Xlib.h>
#include <X11/Xutil.h>

static unsigned int colours[] = {
Oxfffafa , Oxf8f8ff, Oxf5f5f5, Oxdcdcdc, Oxfffafl ,
O0xfdf5e6, Oxfaf0e6, Oxfaebd7, Oxffefd5, Oxffebed,
Oxffedcd , Oxffdab9, Oxffdead, Oxffedb5, O0xfff8dc,
0xfffffo , Oxfffacd, Oxfffbee, OxfOfff0, Oxf5fffa ,

Oxc4cdcd, O0xcT7c7c7, 0xc9c9c9, Oxcccccc, Oxcfcfef,
0xd1ld1d1l, 0xd4d4d4, 0xd6d6d6, 0xd9d9d9, Oxdbdbdb,
Oxdedede, O0xe0e0e0, Oxe3e3e3, Oxebebeb, 0xe8e8e8,
Oxebebeb, Oxededed, O0xfO0f0f0, Oxf2f2f2, Oxf7{7{7,
Oxfafafa , Oxfcfcfc, O0Oxa9a9a, 0x0};

int main(int argc, char xargv)

{
Display +mydisplay ;
Window baseW ;
XSetWindowAttributes baseat;
XSizeHints wmsize ;
XWDMHints wmhints ;
XTextProperty windowName, iconName;
XEvent myevent ;
GC GC1;
XImage «photo;
int imagedata [225];
char xwindow_name = ”Photo”;
char xicon_name = "Ph”;
int screen_num , done, i, j, k, kk;

unsigned long valuemask;

/* 1. open connection to the server =x/
mydisplay = XOpenDisplay (7”7);

/* 2. create a top—level window */
screen.num = DefaultScreen (mydisplay);

Fig. 6.9 A program to display a simulated photograph

206 6 Classic Drawing

baseat.background_pixel = WhitePixel (mydisplay, screen_num);
baseat.border_pixel = BlackPixel(mydisplay, screen_num);
baseat .event_-mask = ExposureMask;
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
baseW = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
300, 300, 360, 315, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay, screen_num),
valuemask , &baseat);

/* 3. give the Window Manager hints*/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;
XSetWMHints (mydisplay , baseW, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseW, &windowName) ;
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

/* 4. establish window resources x/
GCl1 = XCreateGC (mydisplay , baseW, 0, NULL);
XSetForeground (mydisplay , GC1,
BlackPixel (mydisplay , screen_num));
XSetBackground (mydisplay , GC1,
WhitePixel (mydisplay , screen_num));
photo = XCreatelmage (mydisplay ,
DefaultVisual (mydisplay, screen_num),
DefaultDepth (mydisplay , screen_num),
ZPixmap, 0, (char *)imagedata,
15, 15, 32, 0);

/* 5. create all the other windows needed x/
/x 6. select events for each window x/
/* 7. map the windows %/

XMapWindow (mydisplay , baseW);

/* 8. enter the event loop*/

done = 0;
while (done = 0) {

XNextEvent (mydisplay , &myevent);

switch (myevent.type) {

case Expose:

for (j=0; j<504; j++) {
for (i=0; i<225; i++) imagedata[i] = colours[]];

Fig. 6.9 (continued)

6.5 Displaying the Multi Colours of a Photograph 207

k = (j%24)x15;

kk = (j/24)*15;

XPutImage (mydisplay , baseW, GC1, photo,
0, 0, k, kk, 15, 15);

break;

/* 9. «clean up before exitingx*/
XUnmapWindow (mydisplay , baseW);
XDestroyWindow (mydisplay , baseW);
X CloseDisplay (mydisplay);

Fig. 6.9 (continued)

necessary to convert it into the photograph displayed on the screen is stored in the
XImage structure when that structure is created by the XCreateImage () call.

The graphics context GC1 which is part of the XPut Image () call used to move
the image to the server, and thus onto the display (through the window baseW),
does not play an active part in process in this instance. However, there are special
instances where the GC does play a role.

In the code of Fig. 6.9, the array colours was initially linked to the data of the
photo structure, assigning it the dimensions of 24x21 in the XCreateImage ()
call. The whole picture was output to the baseW using a XPutImage () call.
Figure 6.8 shows the resulting screen picture.

In the initial screen picture produced it was difficult to see individual pixel colours.
This was resolved by magnifying the screen view of the colour data in the colours
array. This is show in the code of Fig. 6.9. Each of the colour values in the colours
array is displayed on the screen in a 15x15 colour patch, with each patch having the
same neighbours on the screen as in the original 24x21 presentation of the visual
data. The array imagedata is linked to the photo structure to have dimensions
of 15x15. The formation of each colour patch in imagedata is done on the server
and does not involve protocol exchanges between the client and the server which
makes this technique attractive. Although this is done in the event loop of the code
in Fig.6.9, only the XPutImage () call involves protocol exchange between the
client and the server. Figure 6.8 shows the screen output obtained.

6.5.1 Exercises

1. Modify the code in Fig. 6.9 so the pixel values of the array colours are shown
on part of the screen, verifying the above statement that the colour content is
difficult to fully appreciate.

208 6 Classic Drawing

2. Verify by the appropriate print statements inserted in the code shown in Fig. 6.9
that 4 bytes are there used to represent each pixel in the photograph, and
the horizontal width of the photograph is 4 times the value specified in the
XCreateImage () call. Why does this value 4 occur in each of these situa-
tions?

3. In the program of Fig.6.9, indicate whether imagedata, colours, and
photo are stored on the client or the server, and which of the Xlib calls used
involve X11 protocol use.

4. Why are client-based techniques such as used with image structures attractive?

5. Describe advantages and disadvantages of using image structure based techniques
such as used in the code of Fig. 6.9 for presentation of menus.

6.6 Summary

This chapter showed how to use Xlib to draw graphics with the X Window graphics
system. The chapter assumes creation of a window which is to be drawn upon, and
how to keep such a window visible on the screen, is known. Examples were given
od a selection of the drawing primitives available through Xlib.

Such graphics are composed from straight lines, polygons and ellipses of differ-
ent styles, both of themselves, and in closed figures formed from combining those
elements. Colour can be specified for both the lines and the areas they enclose. By
displaying, removing, re-positioning, and then re-displaying, the illusion of motion
of objects so drawn can be produced. The examples given show how this is achieved.

Chapter 7 ®)
Extensions R

Three extensions are considered in this chapter. Two are additions made to the original
X Window system. One of those additions extents the Pixmap concept to enable use
of more than two colours in a pattern which can be mapped onto a window. The
other is the introduction of fonts which are scalable, i.e. can be changed to any size
required. Both are now a part of standard X Window system. The remainder is an
extension to the manner of executing a X Window program.

In all the examples given in this book, and in books generally relating to X Window
programming, little mention is made of network connection. The programs given are
client programs while the server is somewhere else. The client program sends mes-
sages via the X Window protocol to the server which performs the required graphic
function such a drawing a window, accepting a mouse button click, or whatever. The
client and server in those programs is assumed to be executing on the same comput-
er. The protocol messages are passed internally on the computer between the client
program and the X Window server process running on it. Alternately those messages
can be passed across a network connecting the computer executing the client pro-
gram and the server. This is stated in the literature as a big advantage of X Window.
Although this advantage is mentioned, examples do not show it in operation.

In contrast to multiple colour Pixmaps and scalable fonts which are additions to
X Window, including a network in an X Window program is nothing new; it has
been there since X Window was first released. The extension is showing how to
incorporate this in a X Window program and deploying of the program. Both these
extensions are shown using Xlib programs.

Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-3-319-74250-2_7) contains supplementary material, which is
available to authorized users.

© Springer International Publishing AG, part of Springer Nature 2017 209
R. J. Maloney, Low Level X Window Programming,
https://doi.org/10.1007/978-3-319-74250-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74250-2_7&domain=pdf
https://doi.org/10.1007/978-3-319-74250-2_7

210 7 Extensions

7.1 Multi-colour XPM Pixmaps

Xlib provides bitmaps in support of its Pixmap facility, but this facility is capable of
expanded use as proposed by Hors and Nahaboo (1991). This expansion enables the
programmer to describe the placement of fixed colours in a fixed image. A bitmap
provides a means of performing this operation only with two colours as is shown
in Sect. 4.3. Those colours are the foreground and background colours. Changing
the foreground and background colour assignment changes the colour in the bitmap,
although their position in the bitmap remain fixed. Also, needing only to represent
two colours enables a compact hexadecimal representation of these bitmaps. Such a
representation makes manual creation of these images difficult.

By contrast, the layout of a XPM Pixmap makes manual creation of Pixmaps
straight forward. This format is described in Hors and Nahaboo (1991) and now is
part of the standard X Window System distribution. It offers fixed, multi-colour laying
out of a fixed image in a manner which is visually straight forward to understand.
To assists integration of these new Xlib function with more traditional bitmaps, they
use similar names and parameters to those library functions for handling the more
traditional Pixmaps. As a result, the XPM library is regarded as being at the same
level as that of Xlib. Handling of XPM Pixmaps, however, contracts to the handling
of multiple colours used in Sect. 6.5.

The overall parameters of the Pixmap need to be assigned. The height and width
of the Pixmap needs to be specified. The other parameter is the number of characters
in the Pixmap design which are used to specify all the colours present in the XPM
Pixmap. In most cases, one character is used to indicate one colour. As each colour is
introduced into the image portion of the Pixmap layout, the count of colour specifying
characters contained in the colour index portion of the Pixmap must be incremented.
Placement of the character in the image portion of the Pixmap directly corresponds
to its position in the displayed Pixmap. The Pixmap data can be created using a text
editor. Each pixel is described by a character. If the width of the Pixmap is greater
than the line length of the editor a distortion of the Pixmap pattern will be seen on
the editor screen.

As an illustration of this creation process a smiley face is used. It is to be a multi-
coloured object, having six colours. Those colours are encoded into the Pixmap. The
distribution of each colour is fixed by placed the character representing each colour
in the image portion of the Pixmap. The image portion is an array of characters with
its width and height corresponding to the width and height of the image on screen.

This smiley face Pixmap was formed using an editor starting from a binary
coloured bitmap. The bitmap was used to overcome the difficulty of manually draw-
ing circles. Using the bi tmap program, a 51x51 bitmap was opened with the com-
mand:

bitmap —size 51x51
Into this array a filled circle was drawn using the circle drawing option of bitmap

so it touched all sides of the grid. Then circles were drawn for the outlines of the
two eyes. The mouth was drawn as a circle, and the part of the circle beyond the

7.1 Multi-colour XPM Pixmaps 211

extent of the mouth was deleted. Once saved, this file was transformed into Pixmap
format using the convert program which is part of the source distribution of the
ImageMagick program.

An editor was used to colour this bitmap by positioning in the Pixmap a character
which denoted a colour. The background colour was defined as None to indicate that
it was to be transparent when the Pixmap was on the screen. The characters for the
eyes, face, and mouth were assigned a colour and then inserted into the appropriate
places in the bitmap template. The resulting Pixmap was used in the code contained in
Fig. 7.1. This illustrated process is capable of generalisation, for example to generate
Pixmaps with coloured, or multi-coloured lettering, for use in menus.

The program of Fig. 7.1 starts by displaying a 300x300 pixel window coloured
purple. When the user clicks the left mouse button on this window, a smiley face
Pixmap which is stored in the program is deposited on the purple window at the
position of the pointer. It is similar in overall design to the program of Fig. 4.1 but
the use of the Pixmap instead of a bitmap makes a difference. Those significant
differences are:

e Include a <X11/xpm.h> header file ;

e The function XpmCreatePixmapFromData () replaces the standard Xlib
function XCreatePixmapFromBitmapData () ;

e The XpmCreatePixmapFromData () function returns the success or failure
status of the call;

e Storage for the Pixmap to be created is passed as a parameter in the
XpmCreatePixmapFromData () function;

e The XPM library needs to be included in the compile and link command by the
addition of the —1Xmp switch;

e The XCopyArea () function is used to display the Pixmap in contrast to a
XCopyPlane () function;

e The foreground and background colours of the GC included in copying the XPM
Pixmap to the screen are not used.

It is necessary to use the XCopyArea () function call for all eight colour planes of
the Pixmap created from the XPM data need to be moved together to the window. In
the case of a XCopyPlane () function call, only one plane is moved.

In the XPM data, the background colour of the smiley-face is set as None indicating
a transparent colour. This tells the XpmCreatePixmapFromData () function
call that a clipping-mask is to be generated together with the Pixmap. In the program
of Fig. 7.1 this is stored in the variable clipper. This mask is then linked to the
graphics context (mygc) thatis used in the XCopyArea () function call that displays
the Pixmap by the XSetClipMask () function. For this mask to work correctly, the
origin for applying this clipping mask needs to be included in that graphics context
as well. This is done using the XSetClipOrigin () function. If this mask was
not used, then the portion of the smiley-face indicated to have a transparent colour
would appear as black. If the colour None is not used in the XPM data, then no
clipping-mask is generated by the XpmCreatePixmapFromData () function,
then NULL can be used in the function parameters in place of storage for the clipping

212

/%

This program first
purple.
was pressed .

Coded by:
Date:

¥ ¥ X X ¥ ¥ ¥

*/

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/xpm.h>

/% XPM */

static char xsmile[] =
/% columns rows colors
751.51.6.1",

” ._c.None” ,

7. _coyellow” |
"boc.blue”
”x._c.black” |
?wocowhite” |
Procored”,

/* pixels =/
”

When the left-hand mouse button is
window, a 6 coloured smiley face appears on
indicate when the mouse pointer was located
The smiley face

displays a 300x300 pixel

Ross Maloney
April 2009

{

chars—per—pixel x*/

P W e WWWWW . . ool
7Ll COWWWWWWW L e WWWWWWW . . ool
Y WWWWWWWWW . . o ve e e e WWWWWWWWW . . o eve e e e ?
[WWWWWWWWWWW . . oo WWWWWWWWWWW . . e e e e Gl ?
Pl WWWWWWWWWWW WWWWWWWWWWWWW . . 2o e s o ?
[WWWWWWWWWWWo WWWWWWWWWWWWW . .. e e G ?
Y wwwbbbbbwwwww wwwwbbbbwwwww 7
[wbbbbbbbwww wwwbbbbbbwwww 7
Y bbbxxxbbwww wwbbxxxxbbwww 7
[P bbbxxxbbwww wbbbxxxbbww ?
P bbbbbbbbww bbbbxbbbw ?
Y bbbbbbww bbbbbbbb ?
Y bbb bbbbb ?

Fig. 7.1 A XPM multi-colour pattern at a mouse click

7 Extensions

window coloured
clicked
the screen to
when the button
is created using a XPM Pixmap.

in this

7.1 Multi-colour XPM Pixmaps 213

” ”
... ,
” ”
... ,
” ”
... ,
” ”
... ,
”»” ”»
... ,
” ”
... ,
”»” ”»
... ,
” ”
... ,
” ”
... ,
” ”
... ,
” ”
... ,
” ”
... ,
” ”
... ,
” ”
... ,
7o . O r...... 7
T P T 7
T D Y TT ... 7
Yo 8 ITr ... 7
Yo ITTT .o veen . TTTT oo e 7
”» ”»
.............. J A 5 D 5 S o b o S ,
” ”
................................... ,
” ”
............................... ,
” ”
............................. ,
”» ”
......................... ,
” ”
....................... ,
” ”»
................. ,
” ”»

int main(int argc, char xargv)

{

Display smydisplay ;

Window baseW ;
XSetWindowAttributes myat;
XSizeHints wmsize ;

XWMHints wmhints ;
XTextProperty windowName, iconName;
XEvent baseEvent ;

GC mygc;

Pixmap pattern, clipper;
char *window_name = ” ColourClick”;
char *xicon_name = "CCl”;

int screen_num , done, status;

unsigned long mymask;
int X, ¥
XpmAttributes faceAt;

/* 1. open connection to the server x/
mydisplay = XOpenDisplay (7”);

Fig. 7.1 (continued)

214 7 Extensions

/* 2. create a top—level window %/
screen.num = DefaultScreen (mydisplay);
myat. border_pixel = 0x0; /* black =/
myat. background_pixel = 0xA020F0; /+ purple x/
myat.event_mask = ButtonPressMask | ExposureMask;

mymask = CWBackPixel | CWBorderPixel | CWEventMask;

baseW = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
350, 400, 300, 300, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
mymask, &myat);

/* 3. give the Window Manager hintsx*/
wmsize. flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , baseW, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;
XSetWMHints (mydisplay , baseW, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , baseW, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , baseW, &iconName);

/* 4. establish window resources %/
faceAt.color_key = XPM.COLOR;
faceAt.valuemask = XpmColorKey | XpmColorTable;
status = XpmCreatePixmapFromData(mydisplay , baseW,
smile , &pattern, &clipper , &faceAt);

myge = XCreateGC(mydisplay , baseW, 0, NULL);
XSetForeground (mydisplay , mygc,

WhitePixel (mydisplay , screen_num));
XSetBackground (mydisplay , mygc,

BlackPixel (mydisplay, screen_num));
XSetClipMask (mydisplay , mygc, clipper);
XSetClipOrigin (mydisplay , mygc, 0, 0);

/* 5. create all the other windows neededx/
/* 6. select events for each window x/
/* 7. map the windows %/

XMapWindow (mydisplay , baseW);

/* 8. enter the event loop */
done = 0;
while (done = 0) {
XNextEvent (mydisplay , &baseEvent);
switch(baseEvent.type) {
case Expose:
break;

Fig. 7.1 (continued)

7.1 Multi-colour XPM Pixmaps 215

case ButtonPress:
if (baseEvent.xbutton.button = Buttonl) {
x = baseEvent.xbutton.x;
y = baseEvent.xbutton.y;
XSetClipOrigin (mydisplay , myge, x, y);
XCopyArea(mydisplay , pattern, baseW, mygc, 0, O,
51, 51, x, ;
) ¥)

break;

}
}

/* 9. clean up before exitings/
XUnmapWindow (mydisplay , baseW);
XDestroyWindow (mydisplay , baseW);
XCloseDisplay (mydisplay);

Fig. 7.1 (continued)

Fig. 7.2 Multi-coloured

smiley faces deposited on a
window ColourClick

mask. The constant XPMk_COLOR is defined in the xpm.h header file indicating
that the Pixmap is coloured, in contrast to being monochrome or grey scale.

Figure 7.2 shows the visual results of using the program of Fig. 7.1. Notice the
overlaying of the Pixmaps achieved, and a Pixmap of circular shape is evident by
the window’s purple colour surrounding each of the circular faces.

216 7 Extensions

7.1.1 Exercises

1. Change the background colour to the Pixmap in the program of Fig. 7.1 to be the
purple colour of the background window. What effect does this change have on
the visual affect of the Pixmap?

2. Make the colour of the left hand eye in the Pixmap different to that of the right
hand eye in the smiley face.

3. Change the Pixmap used in the program of Fig. 7.1 so it uses the word “Click”
to replace the smiley face. Use the technique of Sect. 4.6 to create the bitmap
containing the letters. Then make each letter a different colour. The background
of the Pixmap should be transparent.

4. Use the code of Fig. 7.1 to verify that the transparent colour if no mask is used
with the XCopyArea () call is black, and this is independent of the foreground
and background colours set in the graphics context used with that function call.

5. Rework the code of Fig. 7.1 so the smiley-face has a five star boundary as opposed
to a circular boundary. Following from this exercise, what other advantage have
XPM Pixmaps over traditional Pixmaps?

7.2 Network Connecting Client to Server

X Window enables the separation of the client program and the server onto two
separate computers which are network connected. The client program specifies the
network connection with the server, creates this connection, and maintains it.

A network connection is created by the familiar XOpenDisplay () library
function. This function takes one parameter which is a NULL terminated character
string. If the parameter is NULL then no network is involved and the server is located
on the computer in which the client program will execute. More correctly, it uses the
contents of the DISPLAY environment variable of the computer executing the client
program and this variable, by default references, indicates no network connection.
The XOpenDisplay () functionreturns the display structure if the call is successful
in linking with the server, or a NULL if unsuccessful. With a request for a network
connection it is appropriate to check the connection has been made by testing the
return from the XOpenDisplay () function call.

For a network connection, the parameter string consists of two parts. There is
the network address of the server and the display number to be used on the server.
The two parts are separated by a colon (:) character. The server address part can be
of two forms: server or server.display. In most instances the server and
display values are O (zero). The network address, reflecting the history of X Window,
can use DECnet or TCP/IP network protocol but IP addressing is the most common
today. The format of the network connection parameter to the XOpenDisplay
most commonly used is:

address:server.display

7.2 Network Connecting Client to Server

/* This program creates and displays a basic window. The window

* has a default white background.

x
* Coded by: Ross Maloney
* Date: October 2017
*/

#include <X11/Xlib.h>

#include <X11/Xutil.h>

#include <stdio.h>

#include <stdlib.h> /* for exit() =/

int main(int argc, char xargv([])

{

Display smydisplay ;
XSetWindowAttributes myat;

‘Window mywindow ;

XSizeHints wmsize ;

XWMHints wmhints ;
XTextProperty windowName, iconName;
XEvent myevent ;

char xwindow_name = ” Netprog”;

char xicon_name = ”"Net”;

int screen_num , done;

unsigned long valuemask;

/% 1. open connection to the server x/
mydisplay = XOpenDisplay (”192.168.14.9:0.07);
if (mydisplay = NULL) {
printf(”Error:_cannot._open._display\n”);
exit (1);

}

/* 2. create a top—level window x/

screen_num = DefaultScreen (mydisplay);
myat.background_pixel = WhitePixel (mydisplay, screen_num);
myat.border_pixel = BlackPixel (mydisplay , screen_num);
myat.event_mask = ButtonPressMask;

valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
mywindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
200, 200, 350, 250, 2,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
valuemask , &myat);

/* 3. give the Window Manager hints x/
wmsize . flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , mywindow, &wmsize);

Fig. 7.3 A basic window displayed on a networked screen

217

218 7 Extensions

wmhints. initial_state = NormalState;

wmhints. flags = StateHint;

XSetWMHints (mydisplay , mywindow, &wmhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName(mydisplay , mywindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , mywindow, &iconName);

/* 4. establish window resources =x/

/* 5. create all the other windows needed x*/
/* 6. select events for each window x/

/% 7. map the windows x/

XMapWindow (mydisplay , mywindow) ;

/* 8. enter the event loop */

done = 0;
while (done = 0) {

XNextEvent (mydisplay , &myevent);

switch (myevent.type) {

case ButtonPress:

break;
}

}

/* 9. clean up before exiting */
XUnmapWindow (mydisplay , mywindow);
XDestroyWindow (mydisplay , mywindow);
XCloseDisplay (mydisplay);

Fig. 7.3 (continued)

To use the server on the computer executing the client program, the network connec-
tion parameter : 0 or : 0.0 could be used. In both, server 0 is being called to use,
using screen 0. A large number of computers acting as servers have one server and
one screen: the counting of both starts at 0.

The program in Fig. 7.3 is a network connected version of the program in Fig. 2.2.
It creates a window like that in Fig. 2.1 on the screen of the computer with network
address 191.168.14.9. The only change between these programs is the parameter used
in the XOpenDisplay () call and the associated error detecting clause in Fig. 7.3.
If the connection cannot be made, a NULL is returned by the XOpenDisplay ()
call: if successful the structure of the variable mydisplay is filled in for use by
following Xlib calls.

7.2 Network Connecting Client to Server 219

7.2.1 Exercises

1. Modify the program of Fig. 7.3 so the network connection to be used in entered
from the command line which starts execution of the program.

2. What network configuration is required to enable such programs as in Fig. 7.3 to
operate? What network configuration would prevent it from operating?

3. Does X Window need to be running on the computer used to execute correctly
the program in Fig. 7.3? Explain your answer.

7.3 Scalable Fonts

Initially in X Window, fonts were bitmap patterns as discussed in Sect. 5.2. Such fonts
were of fixed sizes. A number of sizes, say 10, 12, or 14 point high representations of
Courier, Helvetica, Bookman, and others, all in different styles, were available. Each
character of each font was formed in a box of screen pixels which were mapped to the
screen to show text. They could be resized, however increasing their size results in
jagged edges of the font due to their bitmap formulation. The bitmap font is defined
on a grid with a grid cell inside, or not inside, a character. This is completely different
to the way Postscript handles fonts as described in Smith (1990). X Window now
has scalable fonts analogous to those of Postscript where the outline of a character is
defined mathematically and the inside of the character is the space enclosed by the
mathematically defined boundary. Postscript stores the basic font styles as outlines
and then the Postscript program scales the font outlines to the size required.

Scalable fonts of X Window are formulated in the same manner. With increase
in font size jagged edges do not appear because the mathematical formula defining
the boundary remains smooth as it is transformed to the required size. However, in
contrast to Postscript, the X Window program does not scale the font. When the
scalable font is loaded using the Xlib function XLoadQueryFont () the font is
scaled as required in the loading process. Fonts can be scaled to any size required,
both standard sizes and non-standard.

Scalable fonts now make up a large portion of the fonts in a X Window distribution.
Additional scalable fonts are available from both commercial and public sources.

Running the system program x1sfonts lists all fonts available on the computer
system being used. In this listing the scalable fonts are identified by having the fields
—0-0-0-0- in their name, i.e 4 zero hyphen fields after the double hyphen. Most
font families, examples being Courier, Bookman, and Helvetica, are available in
different weights and slope are available in both fixed and scalable varieties. In the
fixed resolution fields they are defined as 75 or 100 bits per inch fonts: a font from
the 100 size field is larger than one from the 75 collection. Fixed size fonts control
the size of objects they are used in, for example as labels or menu items, so the
combination looks correct. Scalable fonts remove this size limitation.

220

7 Extensions

/* A program to show lines of the same alphabetic character on a

white window, Each line of characters is drawn in the same
font which is scaled larger with each successive line.

Coded by: Ross Maloney
Date: October 2017

¥ ¥ ¥ ¥ %

*/

#include <X11/Xlib.h>

#include <X11/Xutil.h>

#include <stdio.h>

#include <string.h>

#include <stdlib .h> /* for exit() */

char message|[] = ”AaBbCcDdEeF{fGgHhIiJjKk” ;

3

char fontNamel [] =

?—adobe—courier —bold—i—normal ——0—-120—75—75—p—0—is08859 —1”

char fontName2[] =

”—adobe—courier —bold—i—normal ——%—240—75—75—p—0—is08859 —1”

char fontName3[] =

?—adobe—courier —bold—i—normal ——%—420—75—75—p—0—iso8859 —1” ;

char fontName4[] =

{

”—adobe—courier —bold—i—normal ——*—720—75—75—p—0—iso8859 —1” ;

main ()
Display *mydisplay ;
XSetWindowAttributes myat;
‘Window mywindow ;
XSizeHints wmsize ;
XWMHints wmhints ;
XTextProperty windowName, iconName;
XEvent myevent ;
GC myGCl, myGC2, myGC3, myGC4;
XGCValues myGCvalues;
XFontStruct «fontDetail;
char *window_name = ” Scaling”;
char xicon_name = "Sc¢”;
int screen_num , done, 1i;

unsigned long valuemask;

/* 1. open connection to the server x*/
mydisplay = XOpenDisplay (77);

/* 2. create a top—level window x/
screen-num = DefaultScreen (mydisplay);
myat . background_pixel = WhitePixel (mydisplay, screen_num);
myat. border_pixel = BlackPixel(mydisplay, screen_num);
myat.event_mask = ExposureMask;
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;

Fig. 7.4 Producing a window with text of different sizes

7.3 Scalable Fonts 221

mywindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
60, 70, 500, 300, 3,
DefaultDepth (mydisplay , screen_num),
InputOutput ,
DefaultVisual (mydisplay , screen_num),
valuemask , &myat);

/* 3. give the Window Manager hints %/
wmsize . flags = USPosition | USSize;
XSetWMNormalHints (mydisplay , mywindow, &wmsize);
wmhints. initial_state = NormalState;
wmhints. flags = StateHint;

XSetWMHints (mydisplay , mywindow, &wmbhints);
XStringListToTextProperty(&window_name, 1, &windowName);
XSetWMName (mydisplay , mywindow, &windowName);
XStringListToTextProperty(&icon_name, 1, &iconName);
XSetWMIconName (mydisplay , mywindow, &iconName);

/* 4. establish window resources %/
myGCvalues. foreground = BlackPixel (mydisplay, screen_num);
valuemask = GCForeground | GCFont;
if ((fontDetail = XLoadQueryFont(mydisplay , fontNamel))

=— NULL) {
printf(” Could not load font %s\n”, fontNamel);
exit (1);

myGCvalues. font = fontDetail —>fid;
myGCl = XCreateGC(mydisplay , mywindow, valuemask, &myGCvalues);
if ((fontDetail = XLoadQueryFont(mydisplay , fontName2))
=— NULL) {
printf(” Could not load font %s\n”, fontName2);
exit (1);

myGCvalues. font = fontDetail —>fid ;
myGC2 = XCreateGC(mydisplay , mywindow, valuemask, &myGCvalues);
if ((fontDetail = XLoadQueryFont(mydisplay , fontName3))
— NULL) {
printf(” Could not load font %s\n”, fontName3);
exit (1);

myGCvalues. font = fontDetail —>fid;
myGC3 = XCreateGC (mydisplay , mywindow, valuemask, &myGCvalues);
if ((fontDetail = XLoadQueryFont(mydisplay , fontName4))
— NULL) {
printf(” Could not load font %s\n”, fontName2);
exit (1);

myGCvalues. font = fontDetail —>fid ;
myGC4 = XCreateGC(mydisplay , mywindow, valuemask, &myGCvalues);

Fig. 7.4 (continued)

222 7 Extensions

/* 5. «create all the other windows neededx*/
/% 6. select events for each window x/
/% 7. map the windowsx/

XMapWindow (mydisplay , mywindow);

/* 8. enter the event loop *x/
done = 0;
while (done = 0) {
XNextEvent (mydisplay , &myevent);
switch (myevent.type) {
case Expose:
XDrawString (mydisplay , mywindow, myGC1l, 10, 20, message,
strlen (message));
XDrawString (mydisplay , mywindow, myGC2, 10, 90, message,
strlen (message));
XDrawString (mydisplay , mywindow, myGC3, 10, 180, message,
strlen (message));
XDrawString (mydisplay , mywindow, myGC4, 10, 280, message,
strlen (message));
break;

}
}

/* 9. clean up before exiting*/
XUnmapWindow (mydisplay , mywindow);
XDestroyWindow (mydisplay , mywindow);
XCloseDisplay (mydisplay);

Fig. 7.4 (continued)

Figure 7.4 is an example Xlib program which uses scalable fonts to draw text
on a window. The text is a alphabet of alternating upper and lower case characters.
This sequence of characters is repeated four times using different size of the Courier
bold font with each repeat. The point fields of 120, 240, 420, and 720 request 12
point, 24 point, 42 point, and 72 point characters. These request fields indicate the
scaling required. Only the 12 point size is a standard character height. The characters
are loaded with a XLoadQueryFont () call, checked for having been correctly
loaded, and then incorporated into a GC which is then used to display the text at a
specified starting position on the window. Figure 7.5 shows the result.

With respect to Fig. 7.5 note the following. The outline of all characters remain
smooth as the font size increases from top to bottom of the window. The shape of
corresponding characters is the same between lines, thus scaling preserves shape.
This particular font, Courier, is proportional spacing. This is evident from the A
character and the i character taking up different amounts of space on the line. This
is corresponds to the —p- field in the name of the font assigned in the program of
Fig. 7.4. If text extends beyond a window, characters are cut smoothly as see it the
case of J and F in the last two lines of text, respectively.

7.3 Scalable Fonts 223

Scaling

AaBbCeDdEeFfEgAhTiTiKk

AaBbCcDdEeFfGgHhIiJjKk

AaBbCcDdEeFfGgHhIi

AaBbCcDdEe

Fig. 7.5 A window with alphabet in different size Courier font

7.3.1 Exercises

1. Rework the program in Fig. 7.4 five times, using a different scalable font each
time.

2. By changing the horizontal and vertical resolution of the font from 75 to 100 in
the Fig. 7.4 program, what effect is observed in the screen image produced? Is
this to be expected?

3. If the background of the GC containing the font was set to the colour green, what
would be the result? What information would this give?

4. Write a Xlib program which displays a white coloured window on the screen.
When the left-handle mouse button is clicked on this window a menu containing
the items drink, fries, and burger appears on the screen written in a 15 point
Helvetica font.

7.4 Summary

This chapter introduced three additions to the coverage of Xlib. Making a network
connection between the client computer in which the Xlib program is executing and
the server computer used to control the program has been part of X Window from it’s
first distribution. It needs to be mentioned. XPM and scalable fonts are additions to
Xlib. XPM enables the creation of Pixmaps with more than the two colours initially
available in X. Scalable fonts enable the display of text at any size thought appropriate
for the program as opposed to the sizes fixed in the X Window system.

All three of these extensions are discussed and demonstrated by an example
program to show their use and setting up.

Chapter 8 ®)
The Xcb Alternative Geda

Xcb (for X-protocol C language Binding) is arecently introduced and ongoing project
which is attempting to provide a more efficient programming interface to the X
Window system than provided by Xlib. It is proposed by its developers to both be
used with Xlib or in place of Xlib. The use of Xcb in client programming is in its
infancy. It is, however, a standard part of modern X Window distributions. Despite
this availability, there is minimal information available about the Xcb library interface
and its use. One source of information and guidance on the use of Xcb can be obtained
from the <xcb/xproto.h> file and the tutorial in the doc / directory of recent X
Window System source distributions.

With respect to the treatment of Xcb given here, note the following. The pro-
grams here are cast into the same nine point division used throughout this book.
The parent variable is a substitute for the RootWindow () macro of Xlib. Xcb
unlocks the request wait for reply model of Xlib by the use of cookies which are
only briefly mentioned.

All X Window programs whether they be written in Xlib, a toolkit, or Xcb use
the same standard X Window system server. All use the same protocol exchange
between the client application program and the standard X server. The writers of
Xcb library functions claim to make more efficient use of this protocol.

Xcb is evolving. A problem with such evolution is a program which works on one
distribution may not work the same on another. Version 1.11.1 of the Xcb distribution
is considered here.

Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-3-319-74250-2_8) contains supplementary material, which is
available to authorized users.

© Springer International Publishing AG, part of Springer Nature 2017 225
R. J. Maloney, Low Level X Window Programming,
https://doi.org/10.1007/978-3-319-74250-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74250-2_8&domain=pdf
https://doi.org/10.1007/978-3-319-74250-2_8

226 8 The Xcb Alternative

8.1 Starting and Finishing with Xcb

An Xcb program is compiled and linked using the command:

gce —o example —1Xcb example.c

where example. c is the file of source code and result is the name to be given
to the resultant file containing the executable code.

Like in a Xlib program, a Xcb client program first establishes a connection with
the server. In Xlib, this is done using XOpenDisplay (). In Xcb, it is done using
xcb_connect (). The form taken by the xcb_connect () function is:

xcb_connect(char sname, int number)

where name is a name to be assigned to the display, say from the system environment
variable DISPLAY, and number contains the screen number to be used for the
connection. Either, or both, of these parameters can be assigned to be NULL if
standard values are to be used for each of these parameters. If successful, this function
returns a structure of type xbc_connection_t which describes the connection.
It cannot be freed while the connection exists.

As of version 1.11.1 of the Xcb library distribution, support is not provided for
network connection between server and client which is considered in Sect. 7.2 with
respect to Xlib.

This returned structure which operates the connection is opaque and not directly
accessible. However, it is used as a parameter to other functions. For instance, the
function xcb_get_setup () is available to access the members of the struc-
ture xbc_connection_t structure. Returned from this function is the structure
setup_t describing the connection. The header file <xcb/xproto.h> contains
members such as protocol_major_version, image_byte_order, and
bitmap_format_bit_order to be part of this structure—all of which are gen-
erally of little interest to a client program. The major use of this setup_t structure
is as the parameter to the xcb_setup_roots_iterator () function which is
used to obtain screen information.

A single server—client connection can have multiple screens. The structure
xcb_setup_iterator_t is defined as:

typedef struct {
xcb_screen_t xdata; /% screen pointer x/
int rem; /x number of screens in this connection x/
int index;

} xcb_screen_iterator_t;

and is returned filled by calling the xcb_setup_roots_iterator () function.
In this structure, the screen data structure pointed to is defined as:

typedef struct {

xcb_window _t root; /% root’s ID number (a long):x/
xcb_colormap_t default_colormap;
long white_pixel;

long black_pixel;

8.1 Starting and Finishing with Xcb 227

long current_input_mask;
int width_in_pixels;

int height_in_pixels;

int width_in_millimeters;
int height_in_millimeters;
int min_installed_maps;
int max_installed_maps;
xcb_visualid_t root_visual;

char backing_store;

char save_unders;

char root_depth;

char allowed_depths_len;

} xcb_screen_t;

Access to each screen is through the xcb_screen_ t structure.

All screens and associated windows are related to the client—server connection.
All are freed when this link is broken by using a xcb_disconnect () call with
the connection structure returned by xcb_connect () as its parameter.

8.2 Creating and Using a Window

To produce visible output on the screen, Xlib requires the creation and use of a
window, graphics context, and maybe a font. Xlib considers each of those to be a
structure. Xcb also requires those same objects but considers each to be a 32-bit
unsigned integer value. Subsequently, those objects are referred to by those integer
value. The required value is obtained using the xcb_generate_id () function
with the connection returned by xcb_connect () as its parameter.

Before it can be used, a window needs to be created. This is done using the call:
xcb_void_cookie_t

xcb_create_window (
xcb_connection_t *;

char ; /% depth of screen x/

long ; /x ID of window x/

long ; /% ID of root window x/

int ; /x x position of window’s top—left point x/
int ; /% y position of window’s top—left point x/
int ; /x width of window x/

int ; /% height of window x/

int ; /% width of border x/

int s /% class x/

xcb_visual_t ; /% visual %/

long ; [+ value_mask x*/

long * ; /% value_list */

Note: The value_list is an array of integers. It is a parameter in a large
number of Xcb function calls to provide further information to the call. There is no
corresponding inclusion in the Xlib functions.

Most protocol request generating Xcb functions have this xcb_void
_cookie_t return. It is available to the client program when the protocol packet

228 8 The Xcb Alternative

is received back from the server. When the reply is received the same value is used
for the duration of the connection. The function xcb_request_check () can
be used to test whether the cookie value requested has been received. This testing
enables the client program to avoid waiting for a reply. In the simplest case, this
value is ignored.

In this xcb_create_window (), call the value_mask is a bit mask. It is
created using one or more of the constants defined in the left-hand column of
Table 8.1. Multiple constants are combined using the bitwise OR operator of the
C language and the result stored in a 32-bit integer which is then included in the
xcb_create_window () call inthe value_mask position. The value list
is an array where each integer element provides a value to be assigned to the con-
stant in the mask, where necessary. Those values in the array must be in ascending
order of the bits given in Table 8.1 for each constant used in the value_mask. The
class is one of:

Window Class Value
XCB_WINDOW_CLASS_COPY_FROM_PARENT| 0
XCB_WINDOW_CLASS_INPUT_OUTPUT 1
XCB_WINDOW_CLASS_INPUT_ONLY 2

After the window is created by xcb_create_window (), itis know by the win-
dow ID value (an integer) which had been returned by the xcb_generate_1id ()
call which was also used as a parameter in the xcb_create_window () call used
in its creation. Having created the window is not on the screen. It is placed on the
screen, and thus made visible, by the xcb_map_window () call.

Drawing on a window is done by using a graphics context. Like a window, a
graphics context is identified by a number and this number, like in the case of a
window, is obtained from the xcb_generate_id () function. With this identifier
available, the graphics context is created by the function:

xcb_void_cookie_t
xcb_create_gc(
xcb_connection_t %

long ; /% ID of GC x/

long ; /% ID of drawable (window to draw upon) x/
long . [+ value_mask x/

long * ; [+ value_list */

)

Construction of the value_mask and value_1list is the same as in the win-
dow creation function but here the value_mask constants are from the right-hand
column of Table 8.1.

With a window and a graphics context available, a drawing can be made on a
window and then this window made visible on the screen. Table 8.2 lists the drawing
functions available in Xcb. Each of those functions have the same parameters with
exception of the last parameter which defines the data being displayed. As an example,
to draw a sequence of connected straight lines, the function call is:

8.2 Creating and Using a Window

229

Table 8.1 Mask values for creating windows and graphics contexts

‘Window mask values

Bit

Graphics context mask values

XCB_CW_BACK_PIXMAP 0 | XCB_GC_FUNCTION
XCB_CW_BACK_PIXEL 1 | XCB_GC_PLANE_MASK
XCB_CW_BORDER_PIXMAP 2 | XCB_GC_FOREGROUND
XCB_CW_BORDER_PIXEL 3 | XCB_GC_BACKGROUND
XCB_CW_BIT_GRAVITY 4 | XCB_GC_LINE_WIDTH
XCB_CW_WIN_GRAVITY 5 | XCB_GC_LINE_STYLE
XCB_CW_BACKING_STORE 6 | XCB_GC_CAP_STYLE
XCB_CW_BACK_PLANES 7 | XCB_GC_JOIN_STYLE
XCB_CW_BACKING_PIXEL 8 | XCB_GC_FILL_STYLE
XCB_CW_OVERRIDE_REDIRECT 9 | XCB_GC_FILL_RULE
XCB_CW_SAVE_UNDER 10 | XCB_GC_TILE
XCB_CW_EVENT_MASK 11 | XCB_GC_STIPPLE
XCB_CW_DONT_PROPOGATE 12 | XCB_GC_TILE_STIPPLE_ORIGIN_X
XCB_CW_COLORMAP 13 | XCB_GC_TILE_STIPPLE_ORIGIN_Y
XCB_CW_CURSOR 14 | XCB_GC_FONT

15 | XCB_CG_SUBWINDOW_MODE

16 | XCB_CG_GRAPHICS_EXPOSURES

17 | XCB_CG_CLIP_ORIGIN_X

18 | XCB_CG_CLIP_ORIGIN_Y

19 | XCB_CG_CLIP_MASK

20 | XCB_CG_DASH_OFFSET

21 | XCB_CG_DASH_LIST

22 | XCB_CG_ARC_MODE
Table 8.2 Xcb drawing functions
Function Purpose

xcb_poly_point ()

One or more points

xcb_poly_line()

One or more connected line segments

xcb_poly_ segment ()

One or more disconnected line segments

xcb_poly_arc()

A full or partial ellipse

xcb_poly rectangle()

A box

xcb_poly_fill poly()

Coloured in polygon

xcb_poly_ fill_arc()

Coloured in full or partial ellipse

xcb_poly_fill_rectangle()

Coloured in rectangle

230 8 The Xcb Alternative

xcb_void_cookie_t
xcb_poly_line(
xcb_connection_t x*;

char ; /x coordinate mode,
usually X(B (OORD MODE ORIGIN /
long ; /% ID of drawable x/
long ; /% ID of GC «/
long ; /* number of line segments x/

xcb_point_t * ; /% drawing data x/

)
with the drawing data given in an array like:

xcb_point_t {
{int, int}, /% x and y coordinates of first point x/
{int, int), /x x and y coordinates of second point x/
{int, int} } /%« x and y coordinates of third point x/

where each pair of adjacent array entries describe a point, i.e. its coordinates. This
function draws a straight line between the first and second point, the second and third
point, etc. This particular array of values would correspond to drawing a set of two
line segments.

An alternate manner of drawing on a window is to copy one or more bitmaps or
Pixmaps to a window. These maps are fixed, prepared patterns which are identified
by a value generated by the xcb_generate_id () function in the same way as
for a window and a graphics context. A bitmap is a Pixmap with only two colours,
black and white. Once the ID is available, the function xcb_create_Pixmap ()
forms the Pixmap itself. As with a window, the drawing functions of Table 8.2 can
be used on bitmaps and Pixmaps which only become visible when copied to a visible
window using the xcb_copy_area () function.

8.3 Communicating with the Window Manager

Xcb, like Xlib, enables a client program to communicate with the window manager
of the X server. Xcb considers these as properties and uses the function:
xcb_void_cookie_t

xcb_change_property (
xcb_connection_t *;

char ; /% 8 bit mode type x/

long ; /% ID of window x/
xcb_atom_t ; /% property x/

xcb_atom_t ; /% property type x/

char ; /% format of the request x/
long ; /% data length x/

long ; /% pointer to the data x/

)

to do this communication. In this call, the format is one of the value of 8, 16, or 32.
The mode is one of:

8.3 Communicating with the Window Manager 231

Mode Value
XCB_PROP_MODE_REPLACE 0
XCB_PROP_MODE_PREPEND 1
XCB_PROP_MODE_APPEND 2

The property and property type are both prefixed by XCB_ATOM__ which denote
values from a list of pre-defined Xcb values. The property parameter is selected from:

Mode Value
XCB_ATOM_WM_OMMAND 34
XCB_ATOM_WM_HINTS 35
XCB_ATOM_WM_CLIENT_MACHINE 36
XCB_ATOM_WM_ICON_NAME 37
XCB_ATOM_WM_ICON_SIZE 38
XCB_ATOM_WM_NAME 39
XCB_ATOM_WM_NORMAL_HINTS 40
XCB_ATOM_WM_SIZE_HINTS 41
XCB_ATOM_WM_ZOOM_HINTS 42
XCB_ATOM_WM_CLASS 67
XCB_ATOM_WM_TRANSIENT_FOR 68

while the property type is from the selection:

Mode Value
XCB_ATOM_INTEGER 19
XCB_ATOM_PIXMAP 20

XCB_ATOM_STRING 31
XCB_ATOM_VISUALID| 32
XCB_ATOM_

In all these cases, the value is obtained from the <xcb/xcb . h> header file.

Of these available selections, the XCB_PROP_MODE_REPLACE, and
XCB_ATOM_STRING are the most commonly used, particularly in giving hints
for the property XCB_ATOM_WM_NAME for the name to be shown on the win-
dow title bar, and XCB_ATOM_WM_ICON_NAME for the title of the iconified
window.

8.4 Events

A window can be created and made visible on the screen without events, but drawing
on the window, or interacting with it through a keyboard or a mouse, uses events.
The server creates events as a result of the behaviour of hardware connected to the

232

8 The Xcb Alternative

Table 8.3 Some of the event masks and tags for their processing

Event mask Switch tag Source
XCB_EVENT_MASK_EXPOSURE XCB_EXPOSE Window
XCB_EVENT_MASK_ENTER_WINDOW XCB_ENTER_NOTIFY Window
XCB_EVENT_MASK_LEAVE_WINDOW XCB_LEAVE_NOTIFY Window
XCB_EVENT_MASK_KEY_PRESS XCB_KEY_PRESS Keyboard
XCB_EVENT_MASK_KEY_RELEASE XCB_KEY_RELEASE Keyboard
XCB_EVENT_MASK_BUTTON_PRESS XCB_BUTTON_PRESS Mouse
XCB_EVENT_MASK_BUTTON_RELEASE | XCB_BUTTON_RELEASE Mouse
XCB_EVENT_MASK_BUTTON_MOTION XCB_MOTION_NOTIFY Mouse
XCB_EVENT_MASK_POINTER_MOTION xCB_MOTION_NOTIFY Mouse
XCB_EVENT_MASK_FOCUS_CHANGE XCB_FOCUS_CHANGE Window
XCB_EVENT_MASK_PROPERTY_CHANGE | XCB_PROPERTY_CHANGE | Window
XCB_EVENT_MASK_BUTTON_I_MOTION | XCB_BUTTON_1_MOTION | Window
XCB_EVENT_MASK_VISIBILITY_CHANGE| XCB_VISIBILITY_CHANGE | Window

server. It then sends notification of such occurrences to the client program which has
asked to be told of those specific occurrences. The client program is written to act
upon each different type of events in the manner it sees as appropriate.

X Window is event driven. So like Xlib, Xcb is also event driven. Like Xlib, the
events of interest to a Xcb program are specified in the attributes of a window to
which the events apply. A XCB_CW_EVENT_MASK constant in the mask used in
creating a window links the window to the event. When one or more of the event
types in the left-hand column of Table 8.3 are included in the value_list array
and also in the mask entry (logical ORed if there is more than one) when the window
is created, the window is notified of the occurrence of the event.

Events are processed within an indefinite loop. In this loop, a function call
to xcb_wait_for_event () is generally made to wait for notification of an
event having occurred on the connection path. An alternative is a xcb_poll_for
_event () call to check for an event but not to wait. Each event produces a different
data structure specific to describing the circumstances of the event. However, each of
those data structures contains a response_ type member available from the data
returned by the xcb_wait_for_event () call. Based on this, specific processing
can occur at labels in the second column of Table 8.3. The final column of Table 8.3
indicates the part of the hardware which gives rise to each of the events.

Each of the events in Table 8.3 has a different structure although each has a
response_type member. This common member enables quick identification of
the event type received. To obtain the remaining information in the different event
types, the correct type must be linked to the event received. This can be done by
using the C language casting operation. Event-specific information might be in the
case of a button press, the window in which the mouse pointer was located when the
button creating the event, or the coordinates of the point where the mouse pointer

8.4 Events 233

Table 8.4 Pattern of QWERTY keyboard key codes

Alphabetic Non-alphabetic

Key Code Key Code State
1 10 Left Ctrl 37 4
2 11 Right Ctrl 109 4
q 24 Left Shift 50 1
w 25 Tab 23

e 26 Left Alt 64 8
r 27 Right Alt 113 8
a 38 PgUp 81

s 39 PgDn 89

z 52 Caps Lock 66 2
X 53 Esc 115

BkSp 22 F1 67

Space 65 Right Shift 62 1

was located (see Fig. 8.6). This information is also contained in a key press event
structure, but in a different position than in the button press event.

The reference_type member may provide insufficient identification of the
event. For example, Table 8.3 shows there is no separate event for the different buttons
present on a mouse. Only button 1 motion event is shown although buttons 1 through
5 is available. However, the detail member of a button press (or button release)
event contains the number of the button which produced the event.

When a key on the keyboard is pressed and/or released, an event is generated if the
program requests this to happen using the event masks shown in Table 8.3. Included
in the event message is the key code and state member, not the ASCII code for
the character corresponding to the key. These two members are integer values. From
these two members, the application program must construct the character. Table 8.4
indicates the pattern of the key codes. The key code of adjacent keys on a line of keys
on the keyboard has adjacent integer values. For example, from Table 8.4, the g, w
and e keyboard keys have integer representations of 24, 25, and 26 respectively.

On the right-hand half of Table 8.4, some of the non-alphabetic character keys
on a Latin 1 keyboard are listed. Also listed with them is the value of the state
member which accompanies the key code in a key press event structure. When a
key is press alone on the keyboard, the state member is 0 (zero). This applies to
all keys, both alphabetic and non-alphabetic. However, some of the non-alphabetic
keys can be depressed while another key is pressed. Those non-alphabetic character
keys which cannot be depressed simultaneously with another are shown with a blank
in the associated State column entry. For the other keys, when they are depressed
while another key is pressed, the key code listed in the State entry indicates the key’s
involvement. For example, typing shift q (to indicate Q), the key code would be 24
denoting the q key and the state member 1 indicating the shift key (left or right) was

234 8 The Xcb Alternative

also depressed. The individual key state members are ORed together. For example,
a control s would be indicated by a key code of 39 and a state of 4 but a control S
would be indicated by a key code of 39 but with a state member of 5 (the result of 1
and 4 being logically ORed).

8.5 A Consolidation Program

Figure 8.2 is a Xcb program which creates a window and a graphics context and then
draws a thick straight line coloured black across this window. The result produced
on the screen is given in Fig. 8.1. Only an exposure event is used in this example.

Notice in the program of Fig. 8.2, the server/client connection is called mypath
while in the Xlib programs mydisplay is used. This is to emphasise there is a
difference in the way Xcb and Xlib handle this connection.

Also note the two xcb_flush (c) calls. These are to force the previously made
requests (Xcb function calls) to be sent to the server. Also of note is the simplification
which Xcb enables in sending hints to the window manager in comparison to Xlib.

Fig. 8.1 A straight line
drawn by Xcb program

8.5 A Consolidation Program 235

/* A Xcb program which draws a thick black line across a window
% previously created using a created GC.

*
* Coded by: Ross Maloney
% Date: March 2016
*/

#include <xcb/xcb.h>
#include <string.h>

int main(int argc, char xargv)

{

xcb_connection_t
xcb_screen_t
xcb_generic_event_t
xcb_screen_iterator_t

*mypath;
*myscreen;
*myevents ;
iter;

int mywindow, mygc;

int mask, values [3];

char winName [] = "Xcboline”;

char winlcon [] = 7Li”;

xcb_point_t data[] = { {20, 20}, {167, 247} };

/* 1. open connection to the server x/
mypath = xcb_connect (NULL, NULL);

/* 2. create a top—level window x*/
iter = xcb_setup_-roots_iterator(xcb_get_setup (mypath));
myscreen = iter .data;
mywindow = xcb_generate_id (mypath);
mask = XCB.CW BACK PIXEL | XCB.CW_EVENTMASK;
values [0] = myscreen—>white_pixel;

values [1] = XCBEVENT MASK EXPOSURE;

xcb_create_window (mypath, XCB.COPY_ FROM_PARENT, mywindow,
myscreen—>root ,
100, 120, 200, 260, 2,
XCB-WINDOW_CLASS INPUT_OUTPUT,
myscreen—>root_visual ,
mask, values);

/* 3. give the Window Manager hints %/
xcb_change_property (mypath, XCBPROPMODE REPLACE, mywindow,
XCBAATOM.WMNAME, XCB_ATOM_STRING, 8,
strlen (winName), winName);
xcb_change_property (mypath, XCBPROPMODEREPLACE, mywindow,
XCBATOM WM ICONNAME, XCBATOM.STRING, 8,
strlen (winlcon), winlcon);

/* 4.
mygc = xcb_generate_id (mypath);
mask = XCB.GCFOREGROUND | XCB_GC_LINE_WIDTH;
values [0] = myscreen—>black_pixel;
values [1] = 6; /+ line thickness x/

establish window resources */

Fig. 8.2 Drawing a thick black line on the screen

236 8 The Xcb Alternative

xcb_create_gc (mypath, mygc, mywindow, mask, values);

/* 5. create all the other windows needed %/
/* 6. select events for each window */
/* 7. map the windows x/

xcb_map_window (mypath, mywindow);
xcb_flush (mypath);

/* 8. enter the event loop */
while (1) {
myevents = xcb_wait_for_event (mypath);

switch (myevents—>response_type) {
case XCB_EXPOSE:
xcb_poly_line (mypath, XCB.COORDMODE_ORIGIN, mywindow,
mygc, 2, data);
xcb_flush (mypath);
break;

}
}

/% 9. clean up before exiting x/

xcb_disconnect (mypath);

Fig. 8.2 (continued)

8.5.1 Exercises

1. How would the program of Fig. 8.2 behave if the mask and value array entries
were not assigned values?

2. Modify the program of Fig. 8.2 so the line is drawn on a transparent background
window.

8.6 Colour, Fonts, then Text

X Window uses the red, green, blue (RGB) true colour definition scheme. Each of
those component primary colours can take on a value in the range 0-255 which
is generally written as two hexadecimal digits. Any colour required is defined by
specifying different amounts of those primary colours as a single hexadecimal RGB
value.

A colour map is a table which converts a colour required by the program to that
which the screen can show. Old screen controllers could only hold a limited number
of RGB-defined colours. To overcome this problem, an application would fill this
table with the colour RGB values it needed. However, the controllers of today’s
screens support all colours (although this is not completely true) so attention to the
colour map is not so important. But colour map creation and filling is supported
by Xcb although such functions are not commonly used on modern hardware. The

8.6 Colour, Fonts, then Text 237

colour map for the screen in use is found as the default_colormap field of the
screen’s xcb_screen_ t structure (see Sect. 8.1).

Colour is applied in two ways: by the foreground or the background. Foreground
and background colours can be defined for both a window and the graphics context
which is used when drawing on the window. In this respect, defining the background
colour of the window and the foreground colour of a graphics context is adequate
for simple window drawing. Whereas previously, the XCB_CW_BACK_PIXEL and
XCB_GC_FOREGROUND mask entries were set to white and black colours default
by white_pixel and black_pixel respectively, colour as an RGB figure is
through a value_1list entry instead.

Using the foreground colour of a graphics context the functions of Table 8.2 could
be used to draw on a window. Drawing text also uses a graphics context but needs
both the foreground and background colours to be defined. In addition to a graphics
context, drawing text also requires defining both the characters and the font with
which to express them on the screen.

A font within Xcb is identified by an ID which, like in the case of a window, graph-
ics context, and colour map is obtained from a xcb_generate_id () function
call. This ID is linked to an available font by the call:
xcb_void_cookie_t

xcb_open_font(
Xcb_connection_t % ;

long ; /% ID of font x/
int ; /% length of the font name x/
char x ; /* name of the font x/

)

The fonts available from a server can be found from the listing produced by running
the x1sfonts utility program. Xcb currently cannot handle scalable fonts which
is a sizeable portion of the fonts listed by x1sfonts. Also, the XCB_GC_FONT
needs to be included in the mask when the graphics context to be used in drawing
the fonts is created with the ID number of the font in the value_1list.

A graphics context can only link with one font at a time. A general manner of
changing the contents of an existing graphics context is by using the xcb_change-
_gc () function with its mask and associated value_list to revise attributes.
Only attributes given in the change call are altered. A font is one attribute.

Text is written to the window using the call:
xcb_void_cookie_t
xcb_image_text_8(

xcb_connection_t x|

int ; /% length of text x/

long ; /% ID of target drawable (window) x/

long ; I ID of GC «/

int ; /% x coordinate to top—left of text on window x/
int ; /% y coordinate to top—left of text on window =/
char « ; /x text */

)

This call is best used to display one line of text with each call.

238 8 The Xcb Alternative

Fig. 8.3 Colour drawing by
a Xcb program

[®] Xcb colours

Figure 8.4 contains an example Xcb program which creates coloured text and
elliptic arcs on a coloured window. Figure 8.3 shows the result produced on the
screen. Notice the same foreground colour is used to draw the arcs and the text.
Since the background of the graphics context used to draw the text is different than
for the window, this is seen under the hello text. One difficulty of the standard
available bitmap fonts is seen in Fig. 8.4. It is difficult to get large text. Although in
Fig. 8.4 one of the larger fonts was used, the resulting text is small.

In programs which use a graphic content (GC) containing font information as
in Fig. 8.4, it is important not to close the font, by calling xcb_close_font (),
before creating the GC.

8.6 Colour, Fonts, then Text

/* This program creates of a main window on which is placed a
* coloured text and a partial ellipse

*

% Coded by: Ross Maloney
* Date: March 2016
*/

#include <xcb/xcb.h>
#include <string.h>

int main(int argc, char xargv)

{
xcb_connection_t *mypath ;
xcb_screen_t *myscreen;
xcb_generic_event_t *myevents;
int mywindow, mygc, myfont;
int mask, values [3];
char winName [] = ”Xcb._colours”;
char winIcon [] = 7 Col”;
xcb_arc_t data[] = { {0, 150, 80, 140, 0, 120 << 6},

{70, 130, 155, 40, 0, 290 << 6} };
char fontname[]=
”—adobe—courier —bold —r—normal ——24—-240—75—-75—m—150—is010646 —1" ;
char message [] = "Hello”;

/* 1. open connection to the server x*/
mypath = xcb_connect (NULL, NULL);

/* 2. create a top—level window x/

239

myscreen = xcb_setup_roots_iterator(xcb_get_setup (mypath)).data;

mywindow = xcb_generate_id (mypath);

mask = XCB.CW_BACK PIXEL | XCB.CW_EVENT MASK;

values [0] = O0xffff00;

values [1] = XCBEVENT MASK EXPOSURE;

xcb_create_window (mypath, XCB.COPYFROMPARENT, mywindow ,
myscreen—>root ,
300, 400, 230, 270, 2,
XCB_-WINDOW_CLASS INPUT_OUTPUT,
myscreen—>root_visual , mask, values);

/* 3. give the Window Manager hints x*/
xcb_change_property (mypath, XCBPROP.MODEREPLACE, mywindow ,
XCBATOM WMNAME, XCBATOMSTRING, 8,
strlen (winName), winName);
xcb_change_property (mypath, XCB.PROPMODEREPLACE, mywindow,
XCBAATOM_WM.ICON.NAME, XCB_ATOM.STRING, 8,

strlen (winlcon), winlcon);

/* 4. establish window resources x/
mygc = xcb_generate_id (mypath);
myfont = xcb_generate_id (mypath);
xcb_open_font (mypath, myfont, strlen (fontname), fontname);

Fig. 8.4 Xcb drawing text and arcs in colour

240

8 The Xcb Alternative

mask = XCB.GCFOREGROUND | XCB.GCBACKGROUND | XCB.GCFONT;
values [0] = 0xff0000;

values [1] = 0x00ffff;

values [2] = myfont;

xcb_create_gc (mypath, mygc, mywindow, mask, values);
xcb_close_font (mypath, myfont);

/* 5. create all the other windows needed x/
/* 6. select events for each window %/
* . map the windows *

7 h ind

xcb_map_window (mypath, mywindow);
xcb_flush (mypath);

/* 8. enter the event loop x/
while (1) {
myevents = xcb_wait_for_event (mypath);
switch (myevents—>response_type) {
case XCB_EXPOSE:
xcb_poly_fill_arc (mypath, mywindow, mygc, 2, data);
xcb_image_text_8 (mypath, strlen (message), mywindow,
mygc, 80, 70, message);
xcb_flush (mypath) ;
break;

/* 9. clean up before exiting %/
xcb_disconnect (mypath);

Fig. 8.4 (continued)

8.6.1 Exercises

. What happens to the execution of the program in Fig. 8.4 if the while loop is
removed from the program? Is there any advantage of having the while loop in
place?

Modify the program of Fig. 8.4 so it produces jagged characters in the text string.
Modify the program of Fig. 8.4 so the string Hello is written is an ascending
staircase with each stair composed on one letter from the string.

Why cannot a modern screen controller reproduce all colours? Is it the screen or
controller hardware which is the problem?

8.7 A Classic Program Converted to Xcb

The Pountain (1998) article describes the X Window System. It includes a Xlib
program which displays a white 350x250 pixel window on a screen. This window is
to be located at 200 pixels to the right and 200 pixels down from the top left-hand

8.7 A Classic Program Converted to Xcb 241

[®] Untitled

Hello, World.

Hil
*

Fig. 8.5 Static text and text put in place

corner of the screen. When the window appears, the words Hello, World are
to be shown on it. Then as the mouse is moved over the window, pressing a mouse
button results in the word Hi ! appearing on the window under the current position
of the mouse pointer. Typing a g character on the keyboard quits the program. The
character typed is not echoed onto the window.

Converting the program into Xcb produces a program which extends the examples
of Figs. 8.2 and 8.4. Neither of those examples gathered information from the mouse
regarding the position of its pointer and then uses this information to display a
string. It also receives keyboard character entry. As with those previous examples, it
needs to create a window and place it at a given position on the screen. Because the
Pountain (1998) example gave no hints to the window manager, the implementation
in Fig. 8.6 also does not. This results in the Untitled name across the window
header generated by the window manager, as shown in Fig. 8.5 as it shows the display
produced by the Fig. 8.6 program.

Currently, hint capability of Xcb is limited. It can indicate the name to be used
for the window and for an iconified version of the window. But it cannot instruct the
window manager as to where on the screen the window is to be shown. So the desired
initial location of (200, 200) on the screen could not be achieved in the Xcb version.

The window is created, so it can generate Xcb events when it is exposed on the
screen, when a keyboard key is pressed while the pointer is over the window, and
when a mouse button is pressed over the window. Each message resulting from
these events, like events in Xlib, is different in content, with the exception of the
response_type member, which is common to all event types. To enable correct
interpretation of the key press event, the event pointed to by the myevent vari-
able is recast into the xcb_key_press_event_t structure for key press events.

242 8 The Xcb Alternative

/+* Program to create a window coloured white and print the
* phrase "Hello, World” on it. Then as the mouse is moved
% around the window, pressing of the mouse button causes the
* phrase "Hi!” to be shown under the current mouse pointer
* position. Typing the character ’q’ on the keyboard quits
* the program. The window is initially to be sited at the
* point (200,200) on the screen.

*

* Coded by: Ross Maloney

% Date: October 2017

*

/

#include <xcb/xcb.h>
#include <string.h>

int main(int argc, char xargv)
{
xcb_connection_t smypath ;
xcb_screen_t *myscreen;
xcb_generic_event_t *myevent ;
int mywindow, mygc, myfont, done;
int mask, values[3];
int X, ¥;
int key, how;

char fontname|[] =
?—adobe—courier —bold —r—normal ——24—-240—75—75—m—150—is010646 —1" ;

char hello [] = "Hello,_.World.”;
char hi[] = "Hil”;
char pountain[] = ”Pountain”;
/* 1. open connection to the server =x/

mypath = xcb_connect (NULL, NULL);

/* 2. create a top—level window x/

myscreen = xcb_setup_roots_iterator(xcb_get_setup (mypath)).data;
mywindow = xcb_generate_id (mypath);

mask = XCB.CW_BACKPIXEL | XCB.CW_EVENT MASK;

values [0] = myscreen—>white_pixel; /+ white window background =/

values [1] = XCBEVENT MASK EXPOSURE | XCB_EVENT MASK KEY PRESS
| XCBEVENTMASK BUTTON_PRESS;

xcb_create_window (mypath, XCB.COPY_FROMPARENT, mywindow,
myscreen—>root ,
200, 200, 350, 250, 2,
XCB_-WINDOW_CLASS INPUT_OUTPUT,
myscreen—>root_visual ,
mask, values);

/* 3. give the Window Manager hints */
/* 4. establish window resources %/
mygc = xcb_generate_id (mypath);
myfont = xcb_generate_id (mypath);

Fig. 8.6 Xcb drawing text and arcs in colour

8.7 A Classic Program Converted to Xcb 243

xcb_open_font (mypath, myfont, strlen (fontname), fontname);

mask = XCB.GCFOREGROUND | XCB.GCBACKGROUND | XCB.GCFONT;

values [0] = myscreen—>black_pixel; /% foreground colour x/
values [1] = myscreen—>white_pixel; /% background colour x/
values [2] = myfont;

xcb_create_gc (mypath, mygc, mywindow, mask, values);
xcb_close_font (mypath, myfont);

/* 5. create all the other windows needed x/
/* 6. select events for each window x/
/* 7. map the windows x/

xcb_map_window (mypath, mywindow) ;

xcb_flush (mypath);

/% 8. enter the even loop %/
done = 1;
while (done) {
myevent = xcb_wait_for_event (mypath);

switch (myevent >response_type) {
case XCB_EXPOSE:
xcb_image_text_8 (mypath, strlen (hello), mywindow,
mygc, 50, 50, hello);
xcb_flush (mypath) ;
break;
case XCB_MAPPINGNOTIFY:
break
case XCB_KEY_PRESS:
key = ((xcb_key_press_event_t x)myevent)—>detail;

how = ((xcb_key_press_event_t *)myevent)—>state;
if (key = 24 && how = 0) done = 0;
break;
case XCBBUTTON_PRESS:
x = ((xcb_button_press_event_t x)myevent)—>event_x;
y = ((xcb_button_press_event_t *)myevent)—>event_y;

xcb_image_text_8 (mypath, strlen (hi), mywindow,

myge, x, y, hi);
xcb_flush (mypath) ;
break;

/* 9. <clean up before exiting %/
xcb_disconnect (mypath);

}
Fig. 8.6 (continued)

Similarly, button press events are recasted using the xcb_button_press_event_t
structure.

The original program received characters typed from the keyboard and tested for
it being a g character. This character was interpreted as a request to terminate the
program. The Xcb program checks for the key stroke corresponding to the keyboard’s
g key which from Table 8.4 is an integer value of 24. Any key combination containing
the g key would satisfy this condition. To ensure only a lower case g character

244 8 The Xcb Alternative

terminates the program the state member of the key press event must be checked
for being 0 (zero). This ensures no other keys on the keyboard were depressed when
the g character was typed.

Notice all buttons on a mouse activate the XCB_BUTTON_PRESS event process-
ing in both the original Xlib and also the Xcb version of the program. Both programs
do not discrimination as to which mouse button was pressed.

There are two other difference between the original and Xcb version of this pro-
gram. In the original, a MappingNotify event was processed using a XRefresh
KeyboardMapping () function. The event XCB_MAPPING_NOTIFY exists in
Xcb, but the corresponding xcb_refresh_keyboard_mapping () functionis
not in the Xcb library. Also, Xcb requires the font to use in displaying text needs to
be defined otherwise no text is displayed.

8.7.1 Exercises

1. Modify the original Xlib version of this program so it compiles and runs. Compare
this program with the Xcb version.

2. What is the underlying reason why the original program did not compile?

3. Modify the program of Fig. 8.6 so as to use a different fonts for the hello string
and the hi string.

4. Modify the program of Fig. 8.6 so instead of printing Hi! on the window, it
draws a small checker-box pattern. The checker-box is to be of alternating red-
and blue-coloured cells 10 pixels on each side with three such cells in height and
width across the pattern.

5. Extend the program of Fig. 8.6 so the character typed on the keyboard is displayed
on the window at the point where the mouse pointer is currently located. Consider
under- and lower-case alphabetic characters only.

8.8 Summary

An overview of implementing X Window programs using Xcb is given. A lot of
work has been done in creating Xcb as a recently introduced alternative to Xlib.
Changes can be expected as Xcb is brought to maturity. One aim of Xcb is to
enable writing programs using fewer instructions than with Xlib while retaining close
correspondence with the underlying X protocol. This chapter suggests this aim is
being achieved.

A coverage of window creation, creation and use of events for a mouse and
keyboard, together with placing text on the window is outlined. Three full example
programs are used to demonstrate the discussion. Application of colour to windows,
window objects, and text is included. This is done using the same nine section
approach used throughout the examples in this book.

Chapter 9 ®)
Closer to the X Protocol Geda

Up to this point in this book, all graphics handling has been done by calls to library
functions provided in the X Window System. This is a practical approach when
writing programs. But X Window is a client—server relationship. Those programs
are client programs. The graphic behaviour which appears is a result of the server.
Graphics are produced by the client program sending particular message types to the
server. If input is received by the server from a keyboard or mouse, the server sends
this data as messages to the client program for its interpretation and use. There is only
a finite number of such messages which the client and server can understand. Data,
which do change, are embedded in such messages. Such messages are the building
blocks of X Window. Every graphical interaction, whether it be drawing a window
in various configurations, taking characters from a keyboard and displaying them in
a window, or whatever, must be expressed in such messages. As an analogue, such
messages are the machine language of X Window.

Xlib is a higher level language than such protocol messages. It is loosely anal-
ogous to assembly language. In some instances, an Xlib function will generate, or
handle, a single protocol message but in most instances, the one Xlib function is
associated with two, or maybe three, protocol messages. Toolkits are even higher
level libraries. Their functions generally map down onto a greater number protocol
messages. The progression of Xlib to toolkits makes writing of graphics program
easier by increasingly embody the glue the designer of such toolkit libraries has
used to link messages to library functions. With Xlib, such glue is at a minimum.

This chapter is concerned with what goes on under the covers of the X Win-
dow system. The approach is an analogue of using assembler language to under-
stand the make-up of computer hardware. Here the machine language is the protocol
which Xlib functions produce and their movement for creation of the operation of

Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-3-319-74250-2_9) contains supplementary material, which is
available to authorized users.

© Springer International Publishing AG, part of Springer Nature 2017 245
R. J. Maloney, Low Level X Window Programming,
https://doi.org/10.1007/978-3-319-74250-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74250-2_9&domain=pdf
https://doi.org/10.1007/978-3-319-74250-2_9

246 9 Closer to the X Protocol

X Window. There is little reason to write practical graphics programs in the manner
shown. However, a deeper understanding of Xlib and the internal operation of X
Window itself should follow.

9.1 The X Window Environment

To get close to the X Protocol, some knowledge of the composition of X Window is
an advantage. The X Protocol is embedded in this system.

Since 2004 the standard distribution of X Window has been from the X.Org Foun-
dation, which has taken over the development and distribution of X from XFree86.
X Window is available for use when the X server is running on the computer. In the
X.Org distributions, this server executable for Unix/Linux computers is Xorg.!

The standard manner of starting X is to use startx which is a front-end for
xinit. startxis a shell script which in turn calls the C program xinit to load
the server and start it executing as a daemon process. The server daemon process
then runs continuously in the background without a control terminal linked to it.

When X is started for the first time on a computer, it needs to be configured for
this computer. Configuration involves finding the screen size, keyboard available,
mouse available, and other details. These parameters can be manually set or left to
the configuration script which generally does a good job.

Following the configuration script approach. First, to generate a configuration file
for the hardware on which it is to run, the command:

Xorg -configure

is issued by the root user. This produces the file xorg.conf .newinthe /root
directory. This configuration file can be edited to further tailor it to the hardware
being used. However, such editing is generally not needed for modern releases of X
Window.

The next step is to run the server using the configuration now available. Since
there can be only one X server on a computer, any currently running X server must
be terminated. Form the resulting shell terminal, the command:

Xorg -config /root/xorg.conf.new

will start the Xorg server. A window with black—grey—white texture pattern should
appear covering the screen with a X marking the position of the mouse pointer.
Moving the mouse about should move this indicator. This pattern indicates x Win-
dow is running but without a window manager. Using a standard keyboard, the key
combination Ctrl+Alt+backspace will terminate the server with the window
disappearing.

"From comments in the source code of xinit the executable of which is a means of starting
X Window, the server Xquartz is used by Mac OS X and Xwin for Cygwin.

9.1 The X Window Environment 247

The command:

Xorg -config /root/xorg.conf.new -terminate &\
sleep 2 ; DISPLAY=:0 xterm

also starts Xorg server but this time the terminal emulator program xterm also
is started and appears on the screen. The screen background now is black. The
command runs the Xorg server in the background and xterm in the foreground.
The -terminate parameter tells Xorg to shutdown when it no longer has client
programs. Before the xt erm client is started, a delay of 2 s is requested to occur. This
is to allow Xorg to commence running. xterm is to use display 0 of the computer.
Any commands can be typed into xterm. Typing the command exit in the xterm
window terminates xterm, and its window disappears from the screen. But from
this starting technique, xterm is the only Xorg client, so this termination stops
Xorg as well.

The Unix command ps -aux typed in the xterm window resulting from the
previous initiation technique will list all processes running on the system including
Xorg, xterm, and ps itself. The numbers in the second from the left column are
the process ID of the process shown on the right-hand column of the corresponding
line. It is these numbers assigned by the operating system to the processes which are
used to communicate with that process.

Using the above Xorg starting technique is for initial configuration and trial of x
Window. Every day loading of the server is done using the command:

startx

where startx is astandard script supplied with each X Window distribution. Notice
itis run in the foreground. This script loads the . xinitrc file from the user’s home
directory. This file can be used to name a window manager which should be run to
control the X Window environment which has been loaded. For example, the contents
of .xinitrc could be:

/usr/local/bin/vtwm

to indicate the vtwm window manager in directory /usr/local/bin is to be
used. Notice also this window manager is to be run in the foreground, displacing the
startx script.

9.1.1 Exercises

1. The description above gives one method of terminating the Xorg server. Give
two other techniques. Compare and contrast each of these three techniques?

2. Change the starting position on the screen and the foreground and background
colours of the xt ermin the above command line. How do they affect the processes
indicated by ps -aux?

248 9 Closer to the X Protocol

3. Verify the Xorg environment started with the above command line including
xtermis an X Window environment by executing one of the previous examples
of xlib programs. Are there any differences in behaviour of those program now
compared with before?

4. Use startx to initiate an X Window environment containing only xterm.
By using xterm or otherwise, determine the differences between this processing
environment and that created via the command in the description above.

9.2 C(Client/Server Interaction

An X Window program does not produce graphical results itself, and it sends requests
for the graphic to be produced. The X Window program is a client of the server, it is
the server which produces the graphics. The server is a program which runs on the
computing hardware attached to a screen, on which the graphic is to appear. Also
attached to this computer hardware would be the keyboard and mouse to interact
with the graphic. This hardware would have one such server program running which
could interact with one or more X Window client programs. The window manager
mentioned in the previous section also runs on this computer hardware. The window
manager and client programs exchange packets of data with the server to obtain the
services of the server which is responsible for producing the requested outcome. In
this regard, the window manager is a special class of client program enabling it to
make super user type requests of the server which are beyond those permitted by
general client programs.

The operating system is required to maintain a reliable byte stream between the
client program and the server. With the client and server being separate program, in
Unix/Linux this implies separate processes to be maintained by the Unix/Linux oper-
ating system together with interprocess communications between those processes.
There are a number of interprocess communication techniques available in such an
environment as detailed in Gray (1998). Of these, X Window uses the socket mech-
anism to provide both communications between client and server processes whether
they be on one computer or between two computers connected by a network. The
client program requests connection to the server by an XOpenDisplay () call.
The local or remote connection required is contained in the parameters passed in this
call. The code implementing the call interacts with the operating system to use its
appropriate socket connection between this client’s process and the server process
before passing X Window specific data across this link to synchronize the client to
the server. Once established, the connection between client and server remains open
until called, mainly by the client, to close.

The file x11protocol . pdf available from the X . Org web site for X11 release
7.7 describes the X Window protocol as consisting of four packet types. Those four
types are Request, Reply, Error, and Event. Table 9.1 provides a summary of those
packet types using the data from Appendix B of that x11protocol.pdf file.
Each Request contains a single byte Op Code. Only 120 of those are implemented,

9.2 Client/Server Interaction 249
Table 9.1 Overview of X Window’s protocol packets

Type Number Size
Request 120 4 bytes +
Reply 41 32 bytes +
Error 17 32 bytes
Event 33 32 bytes

with those between 128 and 255 meant for extensions of this standard code. Such
requests also contain additional data which refines the Op Code, the window or
windows involved in the request, etc. The smallest Request packet is a request to
sound the bell and is 4 bytes in length. Of those 120 Request packets, 41 can result in
a Reply packet being sent back from the server to the client program. The minimum
size of such a Reply packet is 32 bytes. A Request can also result in an Error packet,
and there are 17 different types of them, each 32 bytes in length. The 33 event packets
are generally generated by the client program resulting from actions of the program
user. These Event packets are a constant length of 32 bytes, but all bytes may not be
used by a particular event. The format of each member of the four packet types is
detailed in the x11protocol .pdf file from the X .Org web site.

Table 9.2 shows the Xlib functions used in this book and their X protocol imple-
mentations as given in Appendix A of Gettys and Scheifler (2002). Although this
table is not a complete picture of the Xlib function-to-protocol relationships, it shows
important features. In most case, there is a one-to-one correspondence between the
Xlib function and the protocol. In a number of cases, there is no protocol implemen-
tation. Code to service such calls and the data required are part of the client program
itself. Those with and without protocol relations are listed together.

Of particular note is the functions listed in Table 9.2 which have no associ-
ated protocol request. These play a central roll in writing Xlib programs. The
XCloseDisplay () function enables the client to open the client/server connec-
tion. Colour management via the CMS Color Management System is performed
with the XCmsLookupColor () function. Data such as defining the root window,
the screen white and black pixel values, text properties, and the availability of screen
backing store have no protocol request. The XF1lush () function which enables
the client to force all events which have been queued to be sent immediately to the
server is in this grouping. With no protocol request, there is no way the client can
request the service corresponding to the function call from the server. Implementa-
tion of these non-protocol generating functions are implemented as code which is
part of the client’s code. This positioning is taken advantage of by the Default
attribute calls such as colourmap, depth, screen, and visual which are implemented
as C language macro calls.

The Xlib function XNextEvent () is interesting. It has no associated protocol
but has a central roll in the execution of a X client program. It is a client function
which blocks its own execution until an event message is received from the server.

In operation, the Xlib protocol locks a reply to a request. After a request is sent by
the client to the server, the client program pauses execution while it waits for the reply

250

Table 9.2 Linking Xlib functions used in examples to their protocol request

9 Closer to the X Protocol

Xlib function Protocol request Op Code
XAllocNamedColor () AllocNamedColor 85
XBell () Bell 105
XChangeWindowAttributes () ChangeWindowAttributes 2
XCleanWindow () ClearArea 61
XConfigurewindow () ConfigureWindow 12
XCopyArea () CopyArea 62
XCopyPlane () CopyPlane 63
XCreateBitmapFromData () CreateGC 55
CreatePixmap 53
FreeGC 60
Putlmage 72
XCreateGC () CreateGC 55
XCreatePixmap () CreatePixmap 53
XCreateBitmapFromBitmapData () | CreateGC 55
CreatePixmap 53
FreeGC 60
Putlmage 72
XCreateSimpleWindow () CreateWindow 1
XCreateWindow () CreateWindow 1
XDestroyWindow () DestroyWindow 4
XDrawArc () PolyArc 68
XDrawImageString () ImageText8 76
XDrawLine () PolySegment 66
XDrawString () PolyText8 74
XDrawText () PolyText8 74
XFillArc() PolyFillArc 71
XFillPolygon () FillPoly 69
XFillRectangle () PolyFillRectangle 70
XGetImage () Getlmage 73
XLoadQueryFont () OpenFont 45
QueryFont 47
XMapWindow () MapWindow 8
XMoveWindow () ConfigureWindow 12
XPutImage () Putlmage 72
XSelectInput () ChangeWindowAttributes 2
XSendEvent () SendEvent 25
XSetBackground () ChangeGC 56
XSetClipMask () ChangeGC 56
XSetClipOrigin () ChangeGC 56

(continued)

9.2 Client/Server Interaction 251

Table 9.2 (continued)

Xlib function Protocol request Op Code
XSetFont () ChangeGC 56
XSetForeground () ChangeGC 56
XSetLineAttributes () ChangeGC 56
XSetWindowBackground () ChangeWindowAttributes
XSetWindowBackgroundPixmap () ChangeWindowAttributes 2
XSetWMHints () ChangeProperty 18
XSetWMIconName () ChangeProperty 18
XSetWMName () ChangeProperty 18
XSetWMNormalHints () ChangeProperty 18

XUngrabPointer () UngrabPointer 27

XUnmapWindow (UnmapWindow 10

XWarpPointer (WarpPointer 41

)
)
XOpenDisplay ()
XCloseDisplay ()

XCmsLookupColor ()
XDefaultColormap ()
XFlush ()

XKeycodeToKeysym ()

XLookupString ()

XMaxRequestSize ()
XNextEvent ()

XRebindKeysym ()

XStringListToTextProperty ()
XTextWidth ()

BlackPixel ()

DefaultDepth ()

DefaultScreen()
DefaultVisual ()

DoesBackingStore ()

DoesSaveUnders ()
RootWindow ()
WhitePixel ()

or error message from the server to be received. There is a one-to-one correspondence
between a request and what is returned for a specific request. In execution, when a
Xlib function is encountered, the execution of the client program is paused (locked)
after the protocol is sent to the server, it then waits for the reply to occur. When the
reply is received, the program is unlocked and execution continues beyond the Xlib
function. Although the server can stack a number of requests from any one server, in
Xlib this is not the case. So a delay will occur if a number of requests are required

252 9 Closer to the X Protocol

to be sent by the client. From a protocol perspective, Xlib is more restricted than the
general capacity of the X Window system. This behaviour of Xlib may or may not
be significant to the overall required performance of the client application.

9.2.1 Exercises

1. Use the Xlib functions listed in Table 9.2 as a revision of their operational relation
shown in the programs of this book.

2. Would there be an advantage in implementing some of the functions listed in
Table 9.2 on the server? This would require an extension to the protocol. Which
of those functions could be moved and discuss the advantage and disadvantage
of each move.

3. It is often stated X Window via its protocol presents a low load on a network.
Discuss this statement with respect to an appropriate selection of Xlib functions
listed in Table 9.2 which would produce a functional X client program.

4. Review the example programs of this book for the effect the locking behaviour
of Xlib would have on the performance of each program and the significance of
such locking.

9.3 More than a Protocol is Required

The underlying protocol implementing Xlib functions leads to the communications
efficiency of programs in which they are a part. Without the protocol, a client program
could not request services from the server. The server handles all input and output
related to the graphical interface of the client program. With no server, then interact-
ing using the graphical interface would not be available or the code to do it would
need to be in the client itself. Also, one server can serve more than one client which
reduces the memory footprint of implementing graphics programming in the prac-
tical situation of many concurrent program running. By using the protocol, a client
can communicate with a server either on the same computer using interprocess com-
munications or between computers connected by a network employing enhanced
interprocess communications. So the protocol is central to the character of Xlib and
X Window in general.

Consider a basic program to obtain some appreciation of efficiency and operation
of the protocol involved with a Xlib program. This program operated correctly but
with minimum complexity such as error checking. It is not meant as a practical
program, but one constructed for purpose demonstrating the protocol requests sent
by a X client program and the X server.

Figure 9.1 is this basic Xlib program. It displays a 350x250 pixel window with a
white background on the screen. It then draws a straight line, black in colour, on this
window. A number of simplifications have been made in this program including:

9.3 More than a Protocol is Required 253

1. Hints to the window manager were removed. This includes those which enabled
the program to control how the program first appears on the screen. But there are
defaults for such behaviours which are used here. The structures for such hints to
the window manager are contained in the Xutil .h header file. With no hints,
this file was also not needed.

2. The XNextEvent (mydisplay, &myevent) callinsidetheinfinitewhile
loop was necessary for the window to appear on the screen with the only event
being an exposure.

3. The valuemask variable was required for the call to XCreateWindow () to
be successful by indicating background colour, border colour, and an exposure
mask was required were set for the window being formed.

4. No cleaning up prior to program termination was to be performed.

5. The call to DefaultScreen () to define screen_num was replaced by the
default value 1 which the call generally returns.

6. Themyat .background_pixel variable was assigned the value Oxffffff
instead of calling WhitePixel () to define this value.

7. Themyat .border_pixel variable was assigned the value 0 instead of calling
BlackPixel () to set this value.

8. Screen depth was assigned the value 24 instead of calling DefaultDepth ().

9. The value 28 was used to indicate foreground and background colours which
were defined for the GC together with the width of a line.

The resulting program after such simplifications works but with lost utility and gen-
erality. It also violates a number of the programming model conditions which were
the foundation of previous chapters.

A client initially sends bytes specifying whether little- or big-ended data trans-
mission is to be used and an identification of the protocol version proposed for
use. This agreement must be made for each client and server combination. The
XOpenDisplay () initiates this interaction. The argument of this call determines
whether the server is local or remote from the computer on which the client is running.
In the case of the program in Fig. 9.1, it is local.

The program of Fig. 9.1 contains four Xlib functions which generate protocol
requests which are passed to the server by the client across the established link. The
minimum content of a protocol request is the operations code (Op code) and a request
length. The request length is the total length of the request packet expressed in units
of 32-bit words (4-byte units).

With respect to the program of Fig. 9.1, the contents of the protocol packets would
be the following. In this formulation, decimal numbers are used except when prefixed
by 0x. The XCreateWindow () call uses the CreateWindow protocol packet
which would be formed as:

Note the following with respect to this packet. The value-mask is the value
of valuemask which is computed by OR operation on the values CWBackPixel
(hex constant 2) and CWBorderPixel (hex constant 8). The screen is assumed
to be of depth 24 and the window to be of class InputOutput (represented as 1)
in the CreateWindow packet. It has been assumed the value returned from the

254 9 Closer to the X Protocol

/* Creating of a window using the minimum of xlib calls.

* Coded by: Ross Maloney
* Date: March 2016

*/
#include <X11/Xlib.h>

int main(int argc, char xargv[])

{

Display xmydisplay ;
XSetWindowAttributes myat;
Window mywindow ;

XEvent myevent ;

GC gc;

XGCValues values;

unsigned long valuemask ;

int screen_num , done;

/* 1. open connection to the server x/
mydisplay = XOpenDisplay (””);

/* 2. create a top—level window =x/
screen_.num = 0;
myat. background_pixel = 0xffffff;
myat. border_pixel = 0;
myat.event_mask = ExposureMask;
valuemask = CWBackPixel | CWBorderPixel | CWEventMask;
mywindow = XCreateWindow (mydisplay ,
RootWindow (mydisplay , screen_num),
200, 440, 350, 250, 2,
24, InputOutput ,
DefaultVisual (mydisplay , screen_num),
valuemask , &myat);

/* 3. give the Window Manager hints =/
/* 4. establish window resources x*/
values . foreground = 0;
values.background = Oxffffff;
values.line_width = 6;
gc = XCreateGC(mydisplay , mywindow, 28, &values);

/* 5. create all the other windows needed x*/
/* 6. select events for each window x/
/* 7. map the windows x*/

XMapWindow (mydisplay , mywindow);

/* 8. enter the event loop */

Fig. 9.1 Simple Xlib program to draw a single window

9.3 More than a Protocol is Required 255

while (1) {
XNextEvent (mydisplay , &myevent);
switch (myevent.type) {
case Expose:
XDrawLine (mydisplay , mywindow, gc, 20, 30, 80, 200);
break ;
}
}

/* 9. clean up before exitingx/

Fig. 9.1 (continued)

Field size [bytes] | Field content description|Content for program
1 opcode 1
1 depth 24
2 request length 11
4 window ID
4 parent ID 10003
2 X 200
2 y 440
2 height 350
2 width 250
2 border-width 2
2 class 1
4 visual 1
4 value-mask 0x8a
4 background-pixel Oxfffftf
4 border-pixel 0
4 event-mask 0x8000

RootWindow () call is 10003, and O (representing CopyFromParent from the
DefaultVisual ()) call. The place for the window ID number this is not set.
This value is returned to the client from the server and in this case (say) this value
is 10444. The value-mask indicates only the background-pixel, border-pixel event
mask follow the value-mask field of the protocol packet.

The second Xlib call protocol packet generated would be:

Field size [bytes] | Field content description|Content for program
1 opcode 55
1 unused
2 request length 7
4 cid
4 drawable 10444
4 value-mask Oxlc
4 foreground 0
4 background Oxfftfff
2 line-width 6

256 9 Closer to the X Protocol

This results from the XCreateGC () call which uses the CreateGC packet
encoding. It also uses the ID number returned from the previous XCreateWindow ()
call. This packet requests a graphics context (GC) to be created having foreground
and background colour defined and the line drawing width set to 6 pixels. The packet
is padded by two extra bytes after the line-width field. In the following packet for-
mulations, it is assumed the ID of the gc returned by the server is 34.

The window which has been created is made visible on the screen by the
XMapWindow () call which uses the MapWindow protocol encoding. For this pro-
gram, this encoding is:

Field size [bytes] | Field content description|Content for program
1 opcode 8
1 unused
2 request length 2
4 window 10444

Finally, the required line is drawn on the window by the XDrawLine () Xlib
call using the PolyLine protocol encoding:

Field size [bytes] | Field content description|Content for program
1 opcode 65
1 coordinate-mode 0
2 request length 7
4 drawable 10444
4 gc 34
4 x1 20
4 yl 30
4 x2 80
4 y2 200

Assuming big-ended data transmission is agreed upon, the request hexadecimal
byte stream for the program of Fig. 9.1 becomes:

01 18 00 Ob xx xx xx xx 00 00 27 13 00 c8 01 b8 01 5e 00 fa
00 02 00 01 00 00 00 01 00 00 00 8a ff ff ff ff 00 00 00 00
00 00 80 00

37 xx 00 07 xx xx xx xx 00 00 28 cc 00 00 00 1c 00 00 00 00
ff ff ff ff 00 06 xx xx

08 00 00 02 00 00 28 cc

41 00 00 07 00 00 28 cc 00 00 00 22 00 00 00 14 00 00 00 1le
00 00 00 50 00 00 00 c8

where the horizontal line divides one request from the next. In this sequence, an xx
is used to indicate what the client’s Xlib call inserts are undefined.

9.3 More than a Protocol is Required 257

No matter whether the server is local or remote to the client, the byte stream
exchanged is the same. The X Window system provides the interface to the process
communications available on the computers.

From this example program, the communications overhead using Xlib can be
seen. This example indicates 44 bytes are needed to create a window, 28 bytes to
create a drawing palette, 8 bytes to make the window visible on the screen, and
28 bytes to draw a line. Each is a separate packet. Each would fit into a single
Ethernet type packet for network cartage.

There is more to the X Window system than the underlying protocol. As shown in
Table 9.2, Xlib has a number of functions which do not have protocol counterparts.
Instead, those functions manipulate data structures which the library embodies into
the code of the client when it is compiled and linked. Also there is more to using
the protocol than creating it. The Xlib contains constants (e.g. CWBackPixel used
in creating the window mask) which assist writing client code in a portable fashion.
There is also more involved in creating a link between a client and server than
finding their process identifications and then establishing a (say) socket link between
them. The XOpenDisplay () Xlib function hides those complexities and does the
processing—silently.

This simple example demonstrates the mapping involved in converting Xlib calls
and the data in their parameters into protocol messages for passing from client to
server. Most Xlib programs contain more than four Xlib calls and thus the pack-
ets for passing become more numerous. The availability of macros in Xlib such
as DefaultVisual (), DefaultDepth(), WhitePixel (), and others
make coding simpler. Then there are the packets passed back from the server to
the client which may contain data or error indicators. The unpacking of these, as is
the packing of, protocol packets are most productively handled by the Xlib function
library.

9.3.1 Exercises

1. With the simplifications introduced in arriving at the coding in Fig. 9.1, what are
the consequences to the operation of the program?

2. How does the code of Fig. 9.1 behave if the values assigned to screen_num

and my . border_pixel are incorrect for the computer set-up used for its exe-

cution?

Modify the code of Fig. 9.1 to produce a yellow-coloured window.

4. Modify the code of Fig. 9.1 so the code generates the window on another computer

connected across a TCP/IP network. How does such a change affect the protocol

packets which implement the program’s graphical behaviour?

How does the availability of macros in Xlib assists Xlib programming?

6. Start a X server and then pass the example protocol messages through to it. Is the
required result produced on the screen? If not, what is missing?

[O]

9,1

258 9 Closer to the X Protocol

7. Compare the efficiency of the protocol exchange of this example with a program
to perform the same operation of creating a window on the screen using Windows
Application Programming Interface (API).

9.4 Summary

X Window is a client—server graphics system. In this system, only the server does
the interaction with the computer hardware to generate graphics. The client program
needs to ask the server to perform the graphics operations it wants.

This chapter has looked at X Window from the layers of its formation. If the
server is to operate on the hardware, then it needs to be configured. The techniques of
doing this have been shown. First the server was shown to be an executable process
installed on the computer when then X Window system is loaded. This process
is different from the window manager which the user of the system most often
sees. The functions of Xlib were then related to the protocol encodings available by
using a purpose-written client program. Some detail has been given of the protocol
which is exchanged between the server and the client for this specific example.
Through the encoding of those Xlib functions into their corresponding protocols, the
communications overhead imposed were indicated as being low.

References

Champine GA (1991) MIT Project Athena: a model for distributed campus computing. Digital
Press, Massachusetts, USA

Gettys J, Scheifler RW (2002) Xlib - ¢ language x interface: X consortium standard. Technical
report, The Open Group, ftp://mirror.csclub.uwaterloo.ca/x.org/X11R7.7/doc/libX11/1ibX11/
1ibX11.pdf

Gray JS (1998) Interprocess communications in Unix: The Nooks & Crannies, 2nd edn. Prentice
Hall, Upper Saddle River

Hors AL, Nahaboo C (1991) XPM: the x Pixmap format. http://koala.ilog.fr/ftp/pub/xpm/xpm-2-
paper.ps.gz. Accessed 1 Dec 2007

Mansfield N (1993) The joy of X: an overview of the X window system. Addison-Wesley, Woking-
ham, England

Nye A (ed) (1993) Xlib Reference manual for version 11, vol 2, 3rd edn for x11, release 4 and
release 5 edn. O’Reilly & Associates, Inc., Sebastopol, California

Nye A (1995) Xlib Programming manual for version 11, vol 1, 3rd edn for version 11 of the x
window system edn. O’Reilly & Associates, Inc., Sebastopol, California

Pountain D (1998) The x window system. Byte 14(1):353-4-356-60

Scheifler RW, Gettys J, Newman R (1988) X window system: C library and protocol reference.
Digital Press, Bedford, Massachusetts

Smith R (1990) Learning postscript: a visual approach. Peachpit Press, Berkeley, California

© Springer International Publishing AG, part of Springer Nature 2017 259
R. J. Maloney, Low Level X Window Programming,
https://doi.org/10.1007/978-3-319-74250-2

ftp://mirror.csclub.uwaterloo.ca/x.org/X11R7.7/doc/libX11/libX11/libX11.pdf
ftp://mirror.csclub.uwaterloo.ca/x.org/X11R7.7/doc/libX11/libX11/libX11.pdf
http://koala.ilog.fr/ftp/pub/xpm/xpm-2-paper.ps.gz
http://koala.ilog.fr/ftp/pub/xpm/xpm-2-paper.ps.gz

Index

A D
Aim of book, 3 Drawing colour on Pixmap, 195
Approach options Drawing on a window, 190
taken here, 1 Dynamic text, 147
toolkits, 1

Approaches to options selection, 56 E

Event handling, 21
Event seeking a window, 83
Events
ConfigureNotify, 18
loop handling, 21
Existence of a window, 22

B

Background drawing, 22
Backing store restoration, 24
Beautification, 1

Bell service, 15

Bitmap, 24

Bitmap fonts, 119 F

Bitmap jaggies, 219 Feel of menu selection, 72

Bitmap utility, 157 Fixed or scalable font, 219

Bitmap utility program, 87 Font compliance to ISO standards, 122

Bouncing ball problem, 198 Forcing event creation, 202
Foreground drawing, 22
Formation of a slider bar, 169

C

Changing window colour, 40

Character glyphs, 118

Circular Pixmap, 215

Client and server
connection, 2

Client-server interaction, 252

H

Handling of XPM Pixmaps, 210
Handling photographic data, 204
Hidden content restoration, 22

Colour models, 36 1

Colour production, 36 Image Pixmaps, 108
Colour values, 108 ImageMagick, 63
Composition of a slider bar, 168 Insertion pointer, 156

Configuring the server, 246
Creating a menu structure, 79

Creating Pixmap labels, 101 K
Cursor Pixmap properties, 92 Keyboard events, 139
© Springer International Publishing AG, part of Springer Nature 2017 261

R. J. Maloney, Low Level X Window Programming,
https://doi.org/10.1007/978-3-319-74250-2

262 Index

L Slider modes, 173
Listing available X Window fonts, 145 Static text, 147
Look and feel, 72
T
M TekHVC colour model, 36
Macintosh menu selection, 81 Text a windows have different dimensions,
Menu by Xlib, 50 174
Menu operation algorithm, 79 Text scroll bars, 174
Menu race condition, 80 Toolkit
Menu tree, 50 compiled language analogue, 3
Menu tree structure, 73 Tracking mouse events, 64
Mouse behaviour tracking, 68 TrueType fonts, 119
Mouse button numbering, 68
U
(o) Use of transparent Pixmaps, 97
Obtaining BDF font information, 123
\%
P Viewing a font, 146
Photo data enhancement, 207
Pixmap properties, 86
Postscript, 63, 101 W
Postscript label program, 102 Why low level?
Program against, 1
bitmap, 211 analogue, 1
ImageMagick, 211 when to use, 1
Property Window clipping, 21
attribute change, 32 Window properties, 30
background, 31 ‘Window/Pixmap purpose pair, 195
pointer warping, 31 Windows hierarchy, 10
position, 31 Windows onto screen, 21
re-parenting, 31 Wire frame, 13
size, 31 Working with XPM, 211
Protocol message exchange, 256
Protocol packet content, 253
Protocol packet sizes, 249 X
Putting transparency into XPM, 215 X drawing complexity, 187
X font server, 144
X11
R coordinate dimensions, 4
Result of smaller code, 15 everything is a window, 4
used here, 2
what it is, 2
S X11 handling of bitmap fonts, 123
Save under restoration, 24 Xcb background, 225
Screen shots Xcb creating a window, 227
a simple window, 8 Xcb drawing, 228
general layout, 9 Xcb events, 232
Scrolling text vertically, 179 Xcb generality
Server executable, 246 relative to Xlib, 2
Server, client, window manager, 248 Xcb hints, 230

Simulated picture data, 204 Xcb keyboard events, 233

Index

Xcb opening and closing, 226
Xcb program
colouring, 238
drawing line, 234
Xcb version used, 225
Xlib function
XAllocNamedColor, 47
XChangeWindowAttributes, 117, 144
XClearWindow, 56, 79, 81
XcmsLookupColor, 36, 38
XConfigureWindow, 18
XCopyArea, 86, 103, 174, 195, 202
XCopyPlane, 88, 92, 105
XCreateBitmapFromData, 136
XCreateGC, 92, 100
XCreateImage, 204, 207
XCreatePixmap, 86, 175, 195
XCreatePixmapCursor, 96
XCreatePixmapFromBitmapData, 24,
86, 88, 95, 103, 109, 136
XCreatePixmapFromData, 88, 96
XCreateSimpleWindow, 10, 18, 22, 30,
31,47, 117,118
XCreateWindow, 10, 13, 18, 22, 28, 30,
31,47,73, 82, 144,203
XDrawArcs, 188
XDrawlmageString, 50, 57, 101, 148,
156
XDrawLines, 188
XDrawRectangle, 188
XDrawRectangles, 188
XDrawString, 57, 153, 174
XDrawText, 148
XFillArc, 198
XFillPolygon, 188, 190
XFillRectangle, 29, 86, 175, 190, 195,
198
XFlush, 79
XLoadFont, 145
XLoadQueryFont, 145
XMapRequestSize, 188
XMapWindow, 18, 28, 30, 174, 203
XMoveWindow, 31, 169, 173
XNextEvent, 12, 15, 21, 48, 64
XOpenDisplay, 10
XPutlmage, 58, 207
XRebindKeysym, 140
XReparentWindow, 31
XResizeWindow, 31
XSelectInput, 48, 144
XSendEvent, 202
XSetBackground, 24, 92
XSetClipOrigin, 100

263

XSetForeground, 24, 92, 190

XSetLineAttributes, 190

XSetWindowAttributes, 32, 55

XSetWindowBackground, 31, 56, 79, 81,
86

XSetWindowBackgroundPixmap, 31,
86, 137

XSetWMNormalHints, 13

XUngrabPointer, 81

XUnmapWindow, 18, 200

XWarpPointer, 31, 163, 164

XWindowChanges, 18

XXSetWindowBackgroundPixmap, 24

Xlib generality

client and server, 5
compared to toolkits, 1
level in perspective, 3
protocol connection, 3
what it is, 3, 5
windows and screen, 4

Xlib keyboard mapping techniques, 140
Xlib program

bitmap pattern placing, 92
bouncing ball, 198

button and mouse, 41
checking restoration service, 22
coloured target, 190

drawing tao, 192

first appearance, 13

horizontal text scrolling, 175
menu chain, 73

menu selection, 58

minimal line, 253

mouse button number, 68
mouse event tracking, 58
moving keyboard focus, 163
multi-coloured Pixmap, 211

no title displayed, 4
Positioning text in window, 153
printing keyboard codes, 140
scalable font, 222

server drawing limits, 188
slider bar, 169

static and dynamic text, 148
vertical text scrolling, 179
window content restoration, 29

Xlib program:bitmap cursor, 96
Xlib programming

9 block approach introduced, 7
basic structures, 9

bell service, 15

bitmap image format, 58
colour allocation, 41, 47

264

compiling and executing, 12
default font, 41

Display structure, 10

event handling, 35

exposure event, 28

finding menu selection, 50
GC purpose and content, 41
handling of events, 48
library code included, 9
model colour conversion, 36
mouse window placement, 47
no error checking, 4

root window, 10
simple window creation, 47
sound bell, 47
text Pixmap preparation, 175
window hierarchy, 10
Xlib scalable font handling, 219
Xlib structure
XGCValues, 145
XImage, 207
XSetWindowAttributes, 82, 83
Xlsfonts utility, 237

Index

	Preface
	Thank You
	Reader Background Assumed

	Contents
	1 Preliminaries
	1.1 The Place of the X Protocol
	1.2 X Window Programming Gotchas
	1.3 Programming in X Window

	2 Getting Something to Show
	2.1 Basic Xlib Programming Code Blocks
	2.2 Creating a Single Window
	2.2.1 Open Connection to the Server
	2.2.2 Top-Level Window
	2.2.3 Exercises

	2.3 Smallest Xlib Program to Produce a Window
	2.3.1 Exercises

	2.4 A Simple but Useful Xlib Program
	2.4.1 Exercises

	2.5 A Moving Window
	2.5.1 Exercises

	2.6 Parts of Windows Can Disappear from View
	2.6.1 Testing Overlay Services Available from an X Server
	2.6.2 Consequences of No Server Overlay Services
	2.6.3 Exercises

	2.7 Changing a Window's Properties
	2.8 Summary

	3 Windows and Events Produce Menus
	3.1 Colour
	3.1.1 Exercises

	3.2 A Button to Click
	3.3 Events
	3.3.1 Exercises

	3.4 Menus
	3.4.1 Text Labelled Menu Buttons
	3.4.2 Exercises

	3.5 Further Consideration of Mouse Events
	3.5.1 Exercises

	3.6 A Mouse Behaviour Application
	3.6.1 Exercises

	3.7 Implementing Hierarchical Menus
	3.7.1 Exercises

	3.8 Which Window Gets the Event?
	3.8.1 Exercises

	3.9 Summary

	4 Pattern Maps and Labels
	4.1 The Pixmap Resource
	4.2 Pattern Patches
	4.3 Bitmap Patterns
	4.3.1 Exercises

	4.4 A Bitmap Cursor
	4.4.1 Exercises

	4.5 A Partially Transparent Pixmap
	4.6 Using Postscript to Create Labels
	4.7 Changing the Colour of a Pixmap
	4.8 Reducing Server–Client Interaction by Images
	4.8.1 Exercises

	4.9 Creating Menus by Using the Image Format
	4.9.1 Exercises

	4.10 Forming Text Messages from Bitmap Glyphs
	4.10.1 Accessing X11 Standard Bitmap Fonts
	4.10.2 How to Use the Bitmap Fonts
	4.10.3 Exercises

	4.11 Using Pixmaps to Colour a Window's Background
	4.11.1 Exercises

	4.12 Summary

	5 Keyboard Entry and Displaying Text
	5.1 Elementary Keyboard Text X Entry
	5.1.1 Exercises

	5.2 What Fonts Are Available
	5.3 Keyboard Echoing on Windows
	5.3.1 Exercises

	5.4 Putting Lines of Text in a Window
	5.4.1 Exercises

	5.5 Insertion Cursor
	5.5.1 Exercises

	5.6 Moving Between Text Input Windows Using Keys
	5.6.1 Exercises

	5.7 A Slider Bar
	5.7.1 Exercises

	5.8 Scrolling Text
	5.8.1 Scrolling Horizontally
	5.8.2 Scrolling Vertically
	5.8.3 Exercises

	5.9 Summary

	6 Classic Drawing
	6.1 Limit on Multiple Objects in a Request
	6.2 Drawing Lines, Circles, and a Coloured-In Square
	6.2.1 Exercises

	6.3 A Symbol Composed from Circle Parts
	6.3.1 Exercises

	6.4 A Circle Bouncing off Plain Edges
	6.4.1 Exercises

	6.5 Displaying the Multi Colours of a Photograph
	6.5.1 Exercises

	6.6 Summary

	7 Extensions
	7.1 Multi-colour XPM Pixmaps
	7.1.1 Exercises

	7.2 Network Connecting Client to Server
	7.2.1 Exercises

	7.3 Scalable Fonts
	7.3.1 Exercises

	7.4 Summary

	8 The Xcb Alternative
	8.1 Starting and Finishing with Xcb
	8.2 Creating and Using a Window
	8.3 Communicating with the Window Manager
	8.4 Events
	8.5 A Consolidation Program
	8.5.1 Exercises

	8.6 Colour, Fonts, then Text
	8.6.1 Exercises

	8.7 A Classic Program Converted to Xcb
	8.7.1 Exercises

	8.8 Summary

	9 Closer to the X Protocol
	9.1 The X Window Environment
	9.1.1 Exercises

	9.2 Client/Server Interaction
	9.2.1 Exercises

	9.3 More than a Protocol is Required
	9.3.1 Exercises

	9.4 Summary

	Appendix References
	Index

