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PREFACE

The summer school on VLSI CAD Tools and Applications was held from
July 21 through August 1, 1986 at Beatenberg in the beautiful Bernese
Oberland in Switzerland. The meeting was given under the auspices of IFIP
WG 10.6 VLSI, and it was sponsored by the Swiss Federal Institute of
Technology Zurich, Switzerland. Eighty-one professionals were invited to
participate in the summer school, including 18 lecturers. The 81
participants came from the following countries: Australia (1), Denmark (1),
Federal Republic of Germany (12), France (3), Italy (4), Norway (1), South
Korea (1), Sweden (5), United Kingdom (1), United States of America (13),
and Switzerland (39).

Our goal in the planning for the summer school was to introduce the
audience into the realities of CAD tools and their applications to VLSI
design. This book contains articles by all 18 invited speakers that lectured
at the summer school. The reader should realize that it was not intended to
publish a textbook. However, the chapters in this book are more or less
self-contained treatments of the particular subjects. Chapters 1 and 2 give
a broad introduction to VLSI Design. Simulation tools and their
algorithmic foundations are treated in Chapters 3 to 5 and 17. Chapters 6
to 9 provide an excellent treatment of modern layout tools. The use of CAD
tools and trends in the design of 32-bit microprocessors are the topics of
Chapters 10 through 16. Important aspects in VLSI testing and testing
strategies are given in Chapters 18 and 19.

We would like to thank all of the invited speakers for the time and effort
they had to invest into the preparation of their talks and papers. It would
have been impossible to organize the summer school and to edit this book
without the help of the members of the Institute of Integrated Systems at
the Swiss Federal Institute of Technology Zurich. In particular, we would
like to thank L. Heusler, Dr. H. Kaeslin, P. Lamb, R. Meyer, and M. Raths
for their assistance. Dr. A. Aemmer was especially helpful in the planning
and organization. He deserves special credit for the success of the meeting
and the existence of this book. Mrs. Bourquin was a perfect summer school
secretary. It was a special pleasure to work with Carl Harris from Kluwer
Publishing in the preparation of this book.

W. Fichtner M. Morf
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VLSI DESIGN STRATEGIES

Carlo H. Séquin

Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

ABSTRACT

The growing complexity of VLSI chips creates a need for better CAD
tools and data management techniques. The rapidly changing nature of
the field requires a modular toolbox approach — rather than a fixed monol-
ithic design system — and the involvement of the designer in the tool-
building process. A short overview over the Berkeley design environment
and our recent Synthesis Project is also given.

1. INTRODUCTION

Very large scale integration (VLSI) has made it economically viable to place
several hundred thousand devices on a single chip, and the technological evolution
will continue to increase this number by more than an order of magnitude within
a decade. While the limits on chip growth imposed by technology and materials
are still another three orders of magnitude away,! the design of the present-day
chips already causes tremendous problems. G. Moore coined the term ‘‘complex-
ity barrier”.2 This is the major hurdle faced today in the construction of ever
larger integrated systems. In Section 2 the nature of the VLSI complexity prob-
lem will be discussed.

In order to deal with this complexity and to exploit fully the technological
potential of VLSI, some structure has to be introduced into the design process; the
resulting design styles are reviewed in Section 3, and the general nature of the
VLSI design process is discussed. The size of the task is such that it cannot be
done without tools; new tools and new ways of managing the information associ-
ated with the design of a VLSI chip must be developed (Section 4). This changes
the role of the designer (Section 5).

Section 6 illustrates with the example of the Berkeley Synthesis Project how
we think the art of VLSI design is going to evolve.

2. VLSI COMPLEXITY

In the early 1980’s. VLSI complexity became a hot topic for concern and dis-
cussion.® This may appear surprising if one compares the complexity of the chips
of that period with other technological structures that mankind has built in the
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past. Certainly the number of components on a VLSI chip does not exceed the
number of parts in a telephone switching station or in the space shuttle, and
mainframe computers with an even larger number of transistors have been built
for at least a decade before they were integrated onto a chip. System complexity
should not differ markedly whether a circuit is contained within a cabinet, on a
printed circuit board, or on a single silicon chip.

It is the “large”, potentially unstructured space of the VLSI chip that causes
the concern. Nobody would dare to insert a million discrete devices into a large
chassis using discrete point-to-point wiring. Large systems built from discrete
devices are broken down into sub-chassis, mother-boards, and module-boards car-
rying the actual components. This physical partitioning encourages careful con-
sideration of the logical partitioning and of the interfaces between the modules at
all levels of the hierarchy. Since such systems are typically designed by large
teams, early top-down decisions concerning the partitioning and the interfaces
must be made and enforced rather rigidly — for better or for worse. This keeps
the total complexity in the scope of each individual designer limited in magnitude,
and thus manageable.

VLSI permits the whole system to be concentrated in a basically unstructured
domain of a single silicon chip which does not a priori force any partitioning or
compartmentalization. On the positive side, this freedom may be exploited for
significant performance advantages. On the negative side, it may result in a
dangerous situation where the complexity within a large, unstructured domain
simply overwhelms the designer.

A similar crisis was faced by software engineers when unstructured programs
started to grow to lengths in excess of 10,000 lines of code. The crisis was allevi-
ated by the development of suitable design methodologies, structuring techniques,
and documentation styles. Many of the lessons learned in the software domain
are also applicable to the design of VLSI systems.3

Furthermore, the field of VLSI is rather interdisciplinary in nature. To
achieve optimal results, we need a tight interaction of algorithms, architecture,
circuit design, IC technology, etc. However, designers who are experts in all these
fields are rarely found. How can ordinary mortals attempt to do a reasonable
VLSI design? Here again, suitable abstractions have to be found, so that the
details of processing are hidden from the layout designer, and the details of the
circuit implementation are hidden from the microarchitect. Models that are accu-
rate enough to permit sound decisions based on them need to be created, and
clean interfaces between the various domains of responsibility need to be defined.
For instance, the semantic meaning of the geometry specified in a layout has to be
defined carefully: Is this the geometry of the fabrication masks? Is this the
desired pattern on the silicon chip? Or is this a symbolic representation of some
of the desired device parameters? These questions still lead to much discussion
and often to bad chips. The emergence of silicon brokerage services such as
MOSIS* has forced clarification of many of these issues.
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3. THE DESIGN SPECTRUM

To make the task of filling the void on a VLSI chip manageable, some widely
accepted abstractions have emerged that lead to a hierarchy (or rather a multidi-
mensional space) of views of a particular design. The different representations
generally address different concerns. A typical list of design levels and of the con-
cerns they address is shown in Table 1.

Design Level Concerns Addressed
Behavior Functionality
Functional blocks, Resource allocation
5

Linked module abstraction sequencing, causality

Register-transfer level Testability

. - 5
Clocked register and logic timing, synchronization

Gate Level, Implementation with

. .o, . . 5
Clocked primitive switches proper digital behavior

Circuit Level Performance, noise margins
Sticks Level Layout topology
Mask Geometry Implementation, yield

Table 1. Levels of abstraction in chip design.

The other saving notion is that of prefabricated parts. The same functions at
various levels of the design space are needed again and again. Successful designs
of frequently used parts can thus be saved in libraries for the reuse by many cus-
tomers. The nature of these parts and the level to which they are predefined or
even prefabricated leads to a variety of different design styles.

3.1. VLSI Design Styles

A large spectrum of possibilities for the design of a VLSI chip has evolved,
offering wide ranges of expected turn-around time, resulting performance, and
required design effort. Table 2 gives a strongly simplified view of the spectrum of
possibilities.

On one end of the spectrum are the Gate Array and Standard Cell technolo-
gies. Predesigned logic cclls at the SSI and MSI level permit the engineers to use
functional blocks that they are already familiar with from TTL breadboard
designs. The abstraction and prefabrication of these cells lead to minimal design
effort and faster turn-around time but at the price of less functionality per chip
and less performance for a given technology.
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Method Complexity Effort Main Strength  Automation
Gate Array 20,000 4-8 weeks  Fast changes Yes
Standard Cell 40,000 4-8 weeks  Resuse of logic Yes

Macro Cell 100,000 1-2 years  Good area use Almost
Flexible Modules 200,000 1-2 years  High density Almost
Standard Functions 200,000 2-8 years  Testability Not yet
Optimized Layout 400,000 >8 years  High performance Not so soon

Table 2. Styles of IC chip design.

At the other end of the spectrum is the full custom chip in which all modules
have been hand-designed with the utmost care for performance and density and
have been integrated and packed onto the chip in a tailor-made fashion. This
design style can lead to spectacular results in terms of functionality and perfor-
mance of an individual chip, but it comes at the price of an exorbitant design
effort.

Somewhere in the middle between these two extremes are mixed approaches
in which the crucial cells have been hand-designed with great care — particularly
the cells that are in the critical path determining performance and the cells that
are used in large arrays, as they will make the dominant contribution to the size
of the chip. Unecritical “‘glue’’ logic that is used only once may be generated by a
program either in the form of a PLA or as a string of standard cells. These macro
cells of varying sizes and shapes are then placed and wired by hand or by emerg-
ing CAD programs.® This approach leads to higher densities than standard cells,
since the degree of integration in the macro cells is typically higher and since a
smaller amount of area is wasted in partly filled wiring channels. If the macro
cells are procedurally generated and suitably parameterized so that they can be
adjusted to the available space, even higher densities can be achieved. When
properly used, these intermediate approaches can compete with a full custom
design in terms of performance but typically result in a somewhat larger chip size.

Concerns of modularity and testability may outweigh aims for density and
performance; functional modules designed for testability with clean interfaces are
then used. This is in analogy to the use of properly abstracted and encapsulated
software modules. This approach has started to gain acceptance also in VLSI. A
good VLSI design environment will permit the designer to mix these various
design styles in appropriate ways.

3.2. The Design Process

Even with an agreed-upon set of hierarchical levels, an extensive library of
predefined parts, and a chosen design style, the design process can still be rather
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involved. It is rarely a single forward pass through all the transformation steps
that takes a high-level behavioral description through register-transfer and logic
level descriptions into a symbolic representation capturing the topology and
finally into a dense layout suitable for implementation with a particular technol-
ogy (Table 1). The overall problem may be structured in a top down manner into
simpler subtasks with clearly defined functions. But in parallel, designers inti-
mately familiar with the implementation technology will explore good solutions
for generic functions in the given technology in a bottom-up fashion. This effort
will result in an understanding of what functions can best be implemented in this
environment and produce a set of efficient building blocks.

Hopefully, the top-down decomposition and the bottom-up provision of solu-
tions will meet in the middle and permit completion of the design. However, for a
new technology, it is unlikely that this will happen on the first try. The natural
building blocks must first be discovered; only then can the architectures be
modified and partitioned appropriately. Thus there is an iteration of top-down
and bottom-up moves in a Yo-Yo like fashion until the optimal path linking archi-
tecture to technology has been found.

It should also be pointed out that the design process is often a mixture of
solid established procedures and of free associations and ‘trial-and-error’. The
guessing part plays a role in finding good partitioning schemes as well as in the
definition of generic functions that might constitute worthwhile building block in
the given technology. Proven checking methods are then used to evaluate objec-
tively whether the guesses made are indeed usable: Is the decomposition function-
ally correct? Is it appropriate — or does it cut through some inner loop, causing
unnecessary communications penalties? Are the building blocks of general use?
How many algorithms, tasks, or architectures can actually make use of them? Is
their performance reasonable?

In the next section we explore to what extent this design process can be sup-
ported by the computer, and for which part the human intelligence might be hard
to replace.

4. THE ROLE OF CAD TOOLS

Good tools help man to achieve more, to obtain better results, or to reach
given goals more effortlessly. VLSI design is no exception. I like to split the CAD
tools useful in the design of ICs into five classes:

1) Checking and Verification Tools typically answer questions such as: Are
there any errors? Are the connections between blocks consistent? Does this
function behave as specified?

2) Analysis Tools tell the designer: How well does a particular approach work?
How much power does this circuit consume? What is the worst case settling
time?
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3) Optimization Tools can help the designer to vary component values to
achieve a specific performance goal, or they can find ‘“‘optimal’’ module place-
ments within given constraints.

4) Synthesis Tools combine construction procedures and optimization algo-
rithms. They may decompose a logic function into a minimum number of
gates, or they may find a good floor plan from a connectivity diagram.

5) High-level Decision Tools support the designer in the ‘‘guessing phase” of
the design process. These tools try to suggest particular solutions, i.e., parti-
tioning schemes, micro architectures, or network topologies.

4.1. The CAD Wave

Building tools in the above classes 1) through 5) gets progressively more
difficult. Typically, checking and verification tools are the first to become viable,
helping to eliminate well-defined mistakes. Next, analysis tools permit the
designer to find out how good a solution he has chosen and whether the design
meets specifications. Based on the analysis algorithms, optimization tools emerge,
assisting the designer in fine-tuning a design and in optimizing particular aspects
of it. Gradually, these tools evolve into self-reliant synthesis tools; these may use
heuristic methods or simulated annealing techniques to find solutions that are
becoming competitive in quality with the work of human designers. Finally the
tools will invade the areas where it is most difficult to replace the human mind —
the high-level decision making process. Here tools from all the previously men-
tioned classes need to be employed in an iterative way; often techniques from the
field of Artificial Intelligence are used.

Sweeping through the various levels of the design hierarchy in a bottom-up
manner, tools will start to take over the function of the human designer. This
general trend has started many years ago. Historically, the first tools to be
developed for IC designers were circuit analysis tools such as SPICE.” There was a
real need for such tools, since calculating the performance even of small
integrated circuits would have been too tedious, and including actual fabrication
of the chip in every design iteration would have been too slow and costly. At that
time, the circuits were small enough so that most checking tasks could be per-
formed without computer assistance. Optimization was done by hand with the
help of the available analysis tools. Design decisions were largely based on the
intuition or experience of the designer.

In the meantime, tools have matured at the layout level. Circuit extractors
and design rule checkers are relied upon by every designer of large ICs. Without
timing verification and circuit simulation, it would be impossible to obtain chips
that meet performance specifications. Circuit optimization, however, is still
largely done by the designer, using analysis tools in the ‘‘feedback loop, and syn-
thesis tools are being investigated in the research laboratories.
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At the higher levels of the design hierarchy tools have not claimed as much
ground yet. Functional simulators are used to verify the correctness of the func-
tional behavior and to obtain some crude idea of the expected performance.
Optimization and synthesis tools are the subject of active research. High-level
decision tools are being contemplated.

Tools are important at all the levels of the design hierarchy introduced in
Section 3. The development of CAD tools started at the circuit level, because
there the need was most urgent. This was the level of abstraction that could not
easily be breadboarded and evaluated by measurement. As larger and larger sys-
tems get integrated onto a single chip, we will need better tools also at the higher
levels in the design hierarchy.

4.2. Design Representation

Traditionally, many design systems for custom circuitry have used the
geometrical layout information to “‘glue” everything together. From this low-level
description that other representations are derived, and many of the analysis start
from this level, e.g. circuit extraction and design rule checking. This is an unsa-
tisfactory approach. Too much of the designer’s intent has been lost in that low-
level representation and has to be rediscovered by the analysis tools.

If there is to be a ‘“‘core” description from which other representations are
derived, it has to be at a higher level. The trend is to move to a symbolic
description®10 that is still close enough to the actual geometry, so that ambigui-
ties in the layout specification can be avoided. Yet at the same time, this descrip-
tion must have provisions to specify symbolically the electrical connections and
functional models of subcircuits.!!

In the long run, there is no way that a proper, integrated data management
system can be avoided. Such a system can capture the design at various levels of
the design hierarchy and, with the help of various tools, ensure consistency
between the various representations. An integrated tool system will have to sup-
port the mentioned Yo-Yo design process in order to be effective.

4.3. Tool Integration

The art of VLSI design is not yet fully understood, and new methodologies
are still evolving. It is thus too early to specify a rigid design system that per-
forms the complete design task; quite likely, such a system would be obsolete by
the time it becomes available to the user. It is more desirable to create a frame-
work that permits the usage of many common tools in different approaches and
that supports a variety of different design styles and methods. In short, the
environment should provide mechanisms and primitives rather than policies and
solutions.

Intricate interaction between the various tools must be avoided; every tool
should do one task well and with reasonable efficiency.!? The tools are coupled



8 VLSI CAD Tools and Applications

through compatible data formats or a joint data base to which they all interface
in a procedural manner. The former solution causes less overhead in the early
development phase of a new tool and makes it easy for workers in different loca-
tions to share data and test examples since ASCII text files can easily be transmit-
ted over electronic networks.

The data base approach leads to a more tightly coupled system. It has the
advantage (or disadvantage) that all data is in one central location. Interfacing a
tool to this data base is normally more involved and costly than to simply read
and write ASCII files. Unless the data management system is properly con-
structed and supported, the access to the data base can also get painfully slow. A
practical solution is to use a combination of both: a data base that also has
proper ASCII representations for each view of the design.

At Berkeley such a collection of tools!3 has been under development since the
late 1970s. All tools are embedded in the UNIX!4 operating system. UNIX
already provides many of the facilities needed in such an environment: a suitable
hierarchical file structure, a powerful monitor program in the form of the UNIX
shell, 15 and convenient mechanisms for piping the output of one program directly
into the input of a successor program. An example of a newer, object oriented
data base!® will be discussed briefly in Section 6. The corresponding ASCII
representation and interchange format is EDIF.17

Regardless of the exact structure of the data base, the various different
representations of a design should be at the fingertips of the designer, so that he
can readily choose the one representation that best captures the problem formula-
tion with which he is grappling at the moment.

6. THE ROLE OF THE DESIGNER

The wave of emerging CAD tools at all levels of the design hierarchy is
changing the role of the designer.

6.1. The CAD System Virtuoso

Designers of solid-state systems will spend an ever smaller fraction of their
time designing at the solid-state level. More and more technical tasks, particu-
larly at the lower levels of the design hierarchy, can be left to computer-based
tools. Systems designers will rely increasingly on tools and on prototype modules
generated by expert designers. They will thus change from being technical
designers to being players of a sophisticated and rich CAD system.

It will take effort to learn the new skills. The essential experience no longer
consists in knowing how to best lay out a Schottky-clamped bipolar gate, but
rather in choosing the right tool, setting the right parameters and constraints,
using a reasonable number of iterations, or knowing what to look for in a simula-
tion producing a wealth of raw data.
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The results obtainable with any CAD system depend to a large extent on the
skill with which the designer moves through the maze of options. Furthermore,
many of our design tools are still in the state corresponding to the early days of
the automobile, where the driver also had to be a mechanic and be prepared to
take care of frequent breakdowns.

5.2. The Designer as a Tool Builder

Good tools cannot be constructed in an isolated CAD department. They
must be built in close relationship with the user. Who is better qualified than the
actual user to understand the needs for a tool and to test whether a new tool
really meets expectations? Further, a good CAD tool cannot be built in a single
try. Only after the designers have a prototype to play with, they can decide what
they really need and provide more accurate specifications for the new tool. The
emergence of a tool often changes the nature of the job enough to shift the
emphasis to a different bottle neck, thus altering the requirements for the tool.
This in turn may necessitate a revision of the user interface or the performance
targets. This iterative process to arrive at the proper specifieations leads to the
tool development spiral shown in Figure 1.

Specifications

Detailed
Plans

Revision of
Program Structure

Experiments,
User-Feedback

first quick
‘hack’

Prototype
Program

Usable
Application Tool

Marketable
Systems Product

Figure 1. The spiral of tool development.
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Each implementation serves as the basis for clearer specifications for the next
round. The more rounds one can make around this spiral, the better the tool will
get. In going from one round to the next, one should not be afraid to start com-
pletely from scratch, to throw out the old code, and to keep nothing but the
experience and plans for an improved approach. The temptation to just patch up
the old code can be reduced if the implementation language is switched. Many
tool developers have found it productive to create early prototypes in LISP,
SmallTalk, or Prolog, and to code later versions in an efficient procedural
language providing some control over the machine resources.

The first one or two turns on the development spiral are crucial. This is
where the general directions of a new tool are determined. On later turns it is
much harder to make significant conceptual changes. Thus, on the first turn(s) it
is particularly important that the development is done in close contact with the
designers actually using the tool. How much closer can you get than having the
designer himself do the first ‘‘quick hack’? Nowaday, more and more engineers
receive a good education in programming, and it is thus easier to find persons
with the right combination of skills.

Once the framework of the tool is well established and the user interface
defined, a formal CAD group could take over to recode the tool, modularize the
program, look at efficiency issues, and provide decent documentation. In the pro-
duction of a good manual, the designers must again be strongly involved, as they
understand the needs of the users.

The most leverage out of human ingenuity can be obtained if the latter is
used to build new and better tools, which then can help many other designers to
do the job better or faster. Using the designers as tool-builders, the impact of the
work of individual engineers can be compounded.

5.3. The Design Manager

A good manager, will not only focus on getting the job done on time, but will
also concentrate on creating an environment in which the job can get done most
efficiently. The improvement of the environment must not be neglected under the
pressures of immediate deadlines; it is a necessary investment for the future.

This is also true for the individual design engineer, as he too is a manager of
his task, his time, and his environment. This requires a change of attitude on the
part of the typical engineer. He may have to spend a larger amount of time,
learning about available tools, acquiring new tools, or building tools himself, than
working on ‘the job’. But experience has shown that, amortized over two or three
jobs, this investment into the environment pays off.
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6. THE SYNTHESIS PROJECT AT BERKELEY

In Spring 1986, an ambitious project concerning the automatic synthesis of
integrated circuits was undertaken in the Department of EECS at Berkeley. The
“official” goal of the project was to integrate and enhance our various CAD tools
to create a suit of tools that could synthesize a complex microcomputer from a
behavioral-level description to the mask-level output with as little manual inter-
vention as possible. . As a ‘“‘fringe benefit”’ we expected to gain a thorough under-
standing of the major issues in IC synthesis and to find out where our CAD tool
design efforts need to be focussed.

68.1. Project Organization

The Synthesis Project was led by Professors Newton, Sangiovanni-Vincentelli
and Séquin together with seven visiting Industrial Fellows. Following a tradition
in our department, the project was tightly integrated with our graduate instruc-
tion. During the Spring term of 1986, the project was carried by two graduate
courses, a design-oriented class (CS 292H) and a CAD tool-oriented class (EECS
290H), both of which had to be taken by all 35 participating students.

The tool development was tied to the SPUR (Symbolic Processing Using
RISCs) project!® which had been in progress for about a year. The main focus of
the SPUR project was the development of a set of three chips: the central RISC
processor (CPU), a cache controller (CCU), and a floating point coprocessor
(FPU), for use in a multiprocessor workstation. We planned to use the architects
and original implementors of these chips as consultants and hoped to obtain large
parts of chip descriptions in machine-recadable form.

A matrix organization was adopted for the graduate-student design teams.
Each student, as a participant in the design class, was involved in the design of
one of the three chips and was responsible for the generation of at least one
specific module. As a participant in the CAD class, each student was a member
of one of several tool development groups (e.g., logic synthesis, place and route,
module generation) and was working towards developing a tool suite that would
be usable for all three chips.

6.2. Resources and Infrastructure

Resources available to the Synthesis Project included a dozen DEC
VAXstationll workstations and seven color VAXstationll/GPX machines. The
backbone was a VAX8650 CPU with 500 Mbytes of disc storage dedicated to the
course. This machine acted as the central database and as the repository for all
the existing and emerging CAD tools. All these machines, as well as all the other
computing resources in the department, were coupled through an ethernet, creat-
ing a tightly coupled, highly interactive computing and communications environ-
ment.

11
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Important software support was provided by the Digital Equipment Corpora-
tion in the form of the DECSIM mixed-level simulator and its associated
behavioral design language, BDS. This software package was chosen primarily
because of its availability and because DEC personnel were on site to provide sup-
port for its application. DECSIM also offered the possibility of using mixed-level
simulation at the behavior, register-transfer, gate-logic, or switch level — even
though during the course we did not get far enough to use all these options.

For the integration of our tools we chose to use a single object-oriented data
management system, OCT,!6 the development of which had started some time
ago. OCT has as its basic unit the ‘cell’ which can have many ‘views’ — physical,
logical, symbolic, geometrical. A cell is a portion of a chip that a designer wishes
to abstract; it can vary in size from a simple transistor to the entire floorplan of a
CPU. The system is hierarchical, i.e., cells can contain instances of other cells.
Moreover, cells can have different abstract representations depending on the
intended application, and these are represented in OCT by ‘facets’, which are the
accessible units that can be edited. OCT provides powerful constructs for com-
plex data structures but manages this complexity unseen by the user.

A graphical CAD shell, VEM, was developed that permits the user to inspect
and alter the contents of the various cells in the data base in a natural manner.
OCT also provides project management support in the form of change-lists, time
stamps, and search paths. All evolving synthesis tools were provided with inter-
faces to the OCT data manager.

6.3. Module Generation Tools

One major effort during the Synthesis Project concerned the creation of a
module generator that transforms logic equations at the behavioral level into a
final mask layout. The important representation levels and the tools that perform
the transformations between them are shown in Table 3.

Module generation starts from a DEC BDS behavioral description which is
converted with the help of a language translator into BDSYN, a subset of BDS,
developed to represent logic partitioned into combinational blocks and latches.
From there, another translator maps the BDSYN description into BLIF, the
Berkeley Logic Intermediate Format, by expanding high-level constructs into
Boolean equations.

MIS, a multilevel interactive logic synthesis program, then restructures the
equations to minimize area and to attempt to satisfy timing constraints. MIS first
implements global optimization steps that involve the factoring of Boolean equa-
tions and multiple-level minimization. Local optimization is then performed to
transform locally each function into a set of implementable gates. Finally, MIS
includes a timing-optimization phase that includes delay approximation based on
technology data and critical-path analysis.19
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Design Function Representation Level Program Name
Logic / Behavior
. . BDSYN
Logic Synthesis MIS

Logic / Gate

Tonolory Ootimizati TOPOGEN / EDISTIX
Opology Lptimization GENIE / MKARRAY

Symbolic / Graphic

. G i SPARCS
ayout Generation ZORRO

Layout / Geometry

Table 3. Transformations in the module generation process.

Once the logic equations have been optimized the module generators are
responsible for optimal packing of the logic into regular or irregular array-based
structures.0 Some of these tools also consider slack times for critical paths.

TOPOGEN generates a standard-cell-like layout at the symbolic level from a
description of a Boolean function in the form of nested AND, OR, INVERT
expressions. A complex static CMOS gate is produced in which first the transis-
tors and then the gates have been arranged so as to minimize the module area.
The output from TOPOGEN can be inspected and modified with EDISTIX, a
graphic editor using a symbolic description on a virtual grid.1® The symbolic lay-
out can then be sent to one of the compactors mentioned below.

A more sophisticated module generator is the combination of GENIE and
MKARRAY. GENIE is a fairly general software package using simulated anneal-
ing to optimize the topology of a wide range of array design styles, including
PLAs, SLAs, Gate Matrix, and Weinberger arrays. It handles nonuniform transis-
tor dimensions, allows a variety of pin-position constraints, approximates desired
aspect ratios by controlling the degree of column folding, and performs delay
optimization. Its output is sent to the array composition tool, MKARRAY, which
takes specifications of arrays of cells at the topological level. It then places the
cells and aligns and interconnects all the terminals.

The modules at the symbolic level have to be spaced or compacted to a dense
layout obeying a particular set of design rules.2! SPARCS is a new constraint-
based IC compaction tool that provides an efficient graph-based solution to the
spacing problem. It can deal with upper bounds, user constraints, even symmetry
requirements. It detects of over-constrained elements, and permits adjustable
positioning of noncritical path elements

13
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Another compactor under development, ZORRO,22 works in two dimensions
and is derived from the concept of zone refining used in the purification of crystal
ingots. ZORRO passes an open zone across a precompacted layout. Circuit ele-
ments are taken from one side of this zone and are then reassembled at the other
side in a denser layout.!® This compactor gives denser layouts at the cost of
longer run times.

6.4. Chip Assembly tools

All the tools described above are employed in the automatic synthesis of
modules that are to be used in the design of an entire chip. Various tools have
been developed to perform module placement, channel definition and ordering,
global routing, and finally detailed routing.% These tools handle routing on multi-
ple layers as well as over-the-cell wiring. Table 4 shows the sequence of transfor-
mations carried out on the representations in the OCT database from the original
tentative floor plan to the final placement of all the modules and of the wiring in-
between.

Layout Function OCT Symbolic View
Floorplanning & Placement > Placed
Channel Definition and Ordering  --->- Channel Defined
Global Router —-> Routed
Detailed Router -> Unspaced
Spacing-Compaction - Spaced

Table 4. Functions of the chip composition tools.

The TIMBERWOLF-MC23 package performs the placement function using
simulated annealing techniques. This program handles cells of arbitrary rectil-
inear shape; it accommodates fixed or variable shapes with optional bounds on
aspect ratio, and accepts fixed, constrained, or freely variable pin-locations.

CHAMELEON?¢ is a new multi-level channel router that allows the
specification of layer-dependent pitch and wire widths. It has as its primary
objective the minimization of channel area and as its secondary objective the
minimization of the number of vias and the length of each net. On two-layer
problems it performs as well or better than traditional channel routers.

MIGHTY?5 is a ‘rip-up and reroute’ two-layer detailed switch-box router that
can handle any rectagon-shaped routing region with obstructions and pins posi-
tioned on the boundary as well as inside the routing region. It outperforms all the
known switch-box routers and even performs well as a channel router on problems
with a simple rectangular routing region.
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6.6. Results

Fifteen weeks is not enough time to build a complete synthesis system —
thus we could not ‘“‘press the button” on the last day of class and watch the lay-
outs for the three SPUR chips pop out of the computer.

After the fifteen-week course period, all three chip designs had been con-
verted from their original descriptions in ‘N.2’ or SLANG formats to BDS and
inserted into our data management system. In the last few weeks of the course,
these descriptions were then used to exercise the pipeline of tools that had been
created in parallel. Major parts of these designs have run through various tool
groups and produced results of widely varying quality. Improvements were quite
visible as the tools were debugged and improved.

The major benefit of this course is a very good understanding of the
bottlenecks and missing links in our system and concrete plans to overcome these
deficiencies. Over all, the Synthesis Project of Spring 1986 must have been a posi-
tive experience; the students polled at the end of the term voted strongly in favor
of continuing the Synthesis Project in the Fall term.

7. CONCLUSIONS

There is a broad spectrum of design styles that have proven successful for the
construction of VLSI circuits and systems. For all these styles and for all the lev-
els in the design hierarchy, good computer aided tools and data management tech-
niques are indispensable. The emerging wave of CAD tools shows a trend to start
at the lower hierarchical levels and to move upwards and to sweep the verification
and analysis tools before the synthesis and high-level decision making tools.
There is no doubt that eventually the whole design spectrum will be covered.

To make the emerging tools truly useful, the new tools should be developed
in close cooperation with the user, or even by the user himself. Several iterations
are normally needed to produce a good tool. The development of tools should be
planned with this in mind.

Due to the changing nature of VLSI design, a design system will never be
‘“finished”’. In order to keep up with the needs of the chip designers, the environ-
ment and the data representations must be kept flexible and extensible. A modu-
lar set of tools coupled to an object-oriented, integrated data base is a good solu-
tion.

Finally, we believe that the most effective tool development takes place under
the forcing function of actual designs. In a recent push to integrate and complete
our synthesis tools at Berkeley, we have used the chip set of an emerging VLSI-
based multiprocessor workstation. This effort has given us a clear understanding
of the tools that we are still missing. It has charted out enough work to keep us
busy for several more years.

15
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INTRODUCTION TO VLSI DESIGN
by
Jonathan Allen
Research Laboratory of Electronics
and
Department of Electrical Engineering and Computer Science
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Cambridge, Massachusetts 02139

INTRODUCTION

In recent years, modern VLSI technology has made
possible the realization of complex digital systems on a
single silicon chip. The ability to compress much digital
logic complexity onto a single chip has provided the means
to achieve substantial cost reductions, making this
technology very attractive for designers of custom systems.

However, there have been two obstacles in achieving
this goal. One has been the ability to obtain mask and
wafer fabrication services in standard NMOS and CMOS
technologies. The other obstacle has been the understanding
of and access to modern design techniques which can
effectively exploit this highly volatile technology. In
recent years, "foundries" have appeared which have converted
the designer’s geometric mask representation into finished
and packaged chips. Thus, the first obstacle has been
effectively removed. At the same time, in light of this new
availability of foundry services and the need to cope with
increasingly complex designs, new techniques for circuit
realization have evolved. These techniques have vastly
increased the number of VLSI designers who can create
working chips with acceptable performance.
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In this chapter, an introduction to VLSI design is presented
by initially describing the basic devices, and then building
up several circuit forms that can be combined to provide

complete systems. In this way, the designer is provided
with a basic circuit vocabulary which is needed to compose
complex systems. A brief introduction to MOS fabrication

techniques is also provided, leading to an understanding of
lithography and the design 1rule constraints which
characterize acceptable geometric mask representations
("layouts"). These representations will then lead to wafer
processing and the final intended circuits. Subsequent
chapters in this book build on this foundation, and present
design tools and strategies to create state-of-the-art
chips.

THE MOS TRANSISTOR

In this introduction, unipolar transistors (commonly
known as MOS transistors) will be the central topic. These
transistors are four-terminal devices, although one terminal
is the connection to the bulk substrate which is often
implied in many designs. The three remaining terminals are
used to realize a switch which connects two terminals (known
as the source and the drain) controlled by a third terminal
(known as the gate). The cross-section of a typical MOS
transistor, with its analogy to a switch, is illustrated in
Figure 1.

Figure 1. An N-Channel MOS Transistor
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The label "MOS" is utilized because of the three layers
(indicated in Figure 1), and historically corresponds to a
metal gate laying over a thin layer of silicon dioxide
which, in turn, rests on the silicon substrate, or wafer.
In contemporary practice, gate material is usually
fabricated from polycrystalline silicon, and yet, the name
"MOS" is still retained.

There are two basic types of MOS transistors. The
transistor shown in Figure 1 is an n-channel MOS transistor,
sometimes known as a MOSFET (MOS field-effect transistor).
In this transistor, the source and drain connections are
realized by n-type regions with many excess electrons, but
the semiconductor substrate is "doped" in order to provide
for a lack of electrons needed to satisfy the crystalline
bonds, designated as "holes." A p-channel MOSFET can be
obtained in a similar way by providing p-type regions (doped
in order to provide many holes) situated in an n-type
substrate. In order to understand the physical scale, the
source and drain regions are typically several microns deep,
the silicon dioxide is several hundred angstroms thick (1 A
= 10'4p), and the gate material is approximately one micron
thick. The distance from the source to the drain varies
greatly according to the technology utilized. Usually, it
is less than three microns, and in very aggressive practice,
it may approach one micron or less.

There are two physical principles which lead to the
switching action associated with this transistor structure.
The first of these phenomena is the pn junction which is
achieved whenever n-type material is juxtaposed with p-type
material. An understanding of the basic physics of these
junctions is assumed.l For the purpose of this discussion,
it is sufficient to note that the junction provides a diode
circuit action across its boundary, and hence, it may be
either forward-biased or back-biased. In the normal use of
these transistors, the junctions are kept back-biased, so
that the source and drain regions are electrically isolated
from the underlying crystalline substrate. In other words,
for an n-channel transistor, the voltage of the source and
drain regions is maintained equal to or greater than that of
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the substrate. Although there are many variations, it will
be assumed that the substrate for n-channel MOSFETs is
always maintained at ground, and that the source and drain
voltages can range from ground to +5 volts. The gate
voltage will also vary between ground and five volts.

The second physical principle used to provide the
switching action of MOSFETs is the notion of accumulation,
depletion, and inversion. The gate, together with the
silicon dioxide and underlying substrate, form a capacitive
structure which effectively allows the changing of the
doping’s polarity locally underneath the oxide under direct
control of the gate voltage. With the substrate at ground
and the gate negative, the majority carriers of the
substrate (holes) are attracted, or "accumulated," at the
substrate’s surface directly adjacent to the silicon
dioxide. As the gate voltage rises above ground, these
holes are electrostatically pushed away from the surface,
and hence, the substrate majority carrier population is
"depleted" at the surface. This action continues until the
gate voltage reaches a threshold value, where the holes have
not only been pushed away from the surface, but where
sufficient electrons have also been attracted to the surface
by the positive gate potential to form a thin strip of
n-type material below the oxide. At this point, an
electrical connection has formed between the source-drain
regions, since an n-type path exists between the two. It is
important to note that there is still a distributed pn
junction surrounding the source, drain, and the n-type
channel under the gate. This means that the conducting
region is still isolated from the underlying substrate, an
important feature of the MOSFET. Typically, the source and
drain are physically symmetrical, and conventionally in an
n-channel MOSFET, the source is the end of the transistor
with the lowest voltage.

A p-channel MOSFET works in a similar way. P-type
source and drain regions are formed in an n-type substrate,
and the substrate is connected to the highest available
voltage (typically five volts). The source, drain, and gate
voltages range between ground and five volts, as is the case
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with an n-channel MOSFET. For a p-channel device, the
transistor is off (no conducting channel between source and
drain) when the gate voltage is high or at five volts, since
high voltage will attract the substrate majority carriers
(electrons) to the surface, corresponding to accumulation.
As the gate voltage is lowered, the electrons are pushed
back, and holes are once again attracted until a thin
channel region is created under the silicon dioxide between
source and drain which is p-type, corresponding to inversion
in that region. At this point, a conducting strip has
formed between source and drain, and the corresponding
switch is closed.

Both n- and p-channel MOSFETs are easily built, but
their speed is constrained by the mobility of the majority
carrier, which is substantially higher for electrons than
for holes. Thus, when only a single type of MOSFET is used,
n-channel technology is preferred since it is faster. CMOS
(Complementary MOS) utilizes both n- and p-channel devices
in a complementary way to achieve a variety of desirable
circuit properties.

From the above discussion, it should be appreciated how
the pn junction at either end of the device channel is
dynamically altered through gate voltage action to provide
either an open circuit between the source and drain, or a
thin conducting path. Thus, the interplay of pn junction
physics with electrically alterable regions of accumulation
and inversion provide the essential device action. The gate
voltage at which substantial inversion is obtained is called
the device threshold voltage. In modern practice, this
voltage can be set at any value. When the threshold is
positive with respect to the source for n-channel devices
(negative with respect to the source for p-channel devices),
the device is called an enhancement-mode transistor, whereas
in the opposite case, it 1is called a depletion-mode
transistor. All MOS circuit technologies provide devices
with at least one enhancement-mode threshold, typically in
the neighborhood of one volt with respect to the source.
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In most of this discussion, these MOSFETs will be
regarded as either on or off. But, it is important to
understand that there are typically three regions of
recognized "on" behavior. When the channel is inverted, and
the source-drain voltage is small, then the thickness of the
inversion region is approximately uniform, and the current
between the source and the drain varies linearly with the
source-drain voltage using the gate voltage as a parameter.
However, as the source-drain voltage rises, the thickness of
the inversion region at the drain end diminishes with
respect to the source end (due to less available vertical

electric field). Increases in source-drain voltage lead to
correspondingly smaller increases in source-drain current
for a given gate voltage. In turn, this leads to a

transition region which evolves into a saturation region
where the inversion layer is completely pinched off at the
drain end, and increased drain-source voltage does not yield
any additional source-drain current for a given gate
voltage. Keeping these three regions in mind, the overall
current voltage characteristic of an individual MOSFET
appears in Figure 2.
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Figure 2. 14, versus V34 for an N-Channel MOSFET,
with Vgs as a parameter.



Introduction to VLSI Design 25

These characteristics can be rigorously derived, and there
are several books available on semiconductor device physics
that can be referenced for a rigorous derivation.

At this point, a brief introduction to the individual
MOSFET has been provided. 1In today’s technology, these are
extremely small switches which can be interconnected to
provide a variety of circuit forms that will be discussed
below. Certainly, these are not ideal switches. When the
devices are off, the impedance between source and drain is
very high, and is commonly several megohms. On the other
hand, when the device is on, a minimal-sized device (where
the channel’s width equals its length) has an impedance of
approximately 10,000 ohms. Nevertheless, these switches are
used to manage charge distribution on the circuit nodes, and
this substantial resistance is tolerable. It should be
remembered that the gate threshold voltage can easily be set
in the manufacturing process at any desired voltage. It is
not unusual for four different thresholds to be used in
contemporary circuits. In this discussion, it will always
be assumed that the supply voltage for the circuit is five
volts, and that the enhancement threshold is nominally one
volt. Additionally, in NMOS circuits, a negative four-volt
depletion-mode threshold is also assumed which is useful for
load devices. These self-isolating devices, whose active
switching channel area is only several square microns, can
be used in large numbers to provide very complex circuits.
Indeed, circuits containing over a million transistors are
routinely fabricated. As a result, we look for regular and
repeatable circuit structures that can be combined easily in
order to minimize the design effort for these large
circuits.

While there are many definitions of the term "VLSI,"
its most important connotation is the use of vast numbers of
very small devices, together with the corresponding problems
of fabrication and design. Effective custom design is
possible only because general circuit and layout design
techniques that provide dependable circuits with acceptable
performance have evolved. In the sequel, many of these
basic circuits will be shown, and how they can be easily
expanded and generalized to provide all desired 1logical
functions.
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INVERTER CIRCUITS

Now that an understanding has been reached regarding
the switching action of a single MOS transistor, the ways in
which these transistors can be combined to provide desirable
circuit action can be considered. For digital circuits, the
simplest structure is the inverter which simply inverts the
input logic level. Thus, in MOS circuits where voltage can
range between ground and +5 volts, an input high level of
five volts should lead to a low output value of ground, and
vice versa. Furthermore, the circuits should switch rapidly
at an "inverter threshold" between these two configurations.
This inverter threshold should also be ideally halfway
between ground and five volts to provide the best noise
margins.

First, consider NMOS circuits. A simple inverter can
be obtained by using one MOSFET controlled by the -input
voltage, as illustrated in Figure 3.
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Figure 3. Four NMOS inverter circuits.
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A load resistor is connected to the high-voltage Vg4,
commonly five volts. The device threshold for the
enhancement MOSFET is typically one volt, so when V;, is
less than one volt with respect to ground, the MOSFET is off
and the output voltage rises to Vy4, since it is always
assumed that the output drives a pure capacitive load with
with no dc path to ground (unless stated otherwise). On the
other hand, when Vj, rises above the device threshold, the
MOSFET turns on, and the output voltage is pulled down to a
level determined by the ratio of the device on resistance,
and the resistive load. For this reason, such a circuit is
called a ratioed circuit. It is important to note that the
low output voltage never reaches ground, since it is
constrained by this ratio. Furthermore, it is essential
that this low-output voltage be 1less than the device
threshold voltage. Otherwise, the output is incapable of
turning off a succeeding inverter pull-down device. Several
other load structures have been proposed, and three of them
are illustrated in Figure 3. They all replace the resistor
load by a MOSFET pull-up in order to save space in the
circuit, and to provide desirable circuit action. Usually,
the least desirable load device is the so-called saturated
load, where the gate of the pull-up is permanently connected
to its drain. This pull-up device will certainly provide
current to the output as desired, but as the output voltage
rises, the gate-to-source voltage diminishes which provides

less current as the output rises. Finally, the device is
cut-off when the gate-to-source voltage reaches the device
threshold, typically at one volt. This means that the

output cannot rise above 4 volts, and it is very slow in
approaching this value.

The next alternative load structure to be considered is
the so-called linear load, where the load MOSFET has its
gate connected to an additional supply voltage, V.., which
is higher than five volts, with eight volts a typical value.
The linear load performs well, and provides strong drive
(high gate-to-source voltage) when the output is low, and
allows the output to rise up to V33. On the other hand, a
power supply is needed for V__ , and wiring between the
supply and the individual circuits must also be provided.
Usually, these disadvantages are sufficient to rule out the
use of a linear load.
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Finally, the depletion load is observed, where a device
with a deep depletion threshold is provided, and its gate is
connected to its source. Since the deep depletion threshold
is typically between -3 and -4 volts, and the gate-to-source
voltage 1s constrained to be zero, this load device is
always on. It provides constant drive into the output. It
is still a ratioed circuit, but it provides the best rising

output transient of these circuit alternatives. It is
compact in 1its layout, and readily supported by the
available technology. For this reason, the basic NMOS

circuit style is referred as enhancement/depletion ratioed
NMOS, or simply E/D NMOS. It is essential to remember that
the enhancement/depletion inverter just described is still a
ratioed circuit. The size of the pull-down enhancement
MOSFET, as well as the size of the depletion-mode pull-up,
must be appropriately sized so that the low output voltage
is appreciably below the enhancement-mode threshold,
providing a successful cut-off of succeeding inverter-like
circuits. This sizing depends on the actual device
threshold values provided by the technology, and hence, it
will vary. But, a common value of the ratio of the channel
length divided by the channel width of the pull-up, divided
by the corresponding ratio for the pull-down, is four. This
leads to the frequently mentioned "four-to-one" rule. In
many NMOS circuits, however, the input to the E/D inverter
is provided through a series ("pass") transistor. As a
result, the input to the inverter never rises above four
volts. When this occurs, the available gate-to-source drive
voltage on the pull-down is diminished, and the sizing ratio
previously mentioned must be doubled.

In CMOS technology, the presence of both n- and
p-channel devices permits a more desirable inverter
characteristic without the need for concern over device
sizing which is dictated by ratioing considerations. The
two inverter styles are contrasted in Figure 4.
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Figure 4. NMOS and CMOS Inverter Characteristics.

By definition, in CMOS circuits, all input and output
signals vary between five wvolts and ground, or "from
rail-to-rail." Thus, when the input to a CMOS inverter is
high (five volts), the NMOS pull-down device is turned on
hard, and the p-channel pull-up device 1is turned off
completely. This causes the output to fall to ground. On
the other hand, when the input is low (at ground), the
p-channel device is turned on hard, and the n-channel device
is turned off completely. This causes the output to be
driven high to five volts, and leads to a symmetrical
inverter characteristic with very good noise margins. These
two characteristics are responsible for much of CMOS’

popularity. In addition, the two devices are statically
complementary, so that only one or the other is on at a
specific time, except during transitions. This minimizes

power consumption, and contrasts with the NMOS E/D inverter
where there is continuous static conduction from five volts
to ground when the pull-down device is on.
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Both CMOS and NMOS circuits are highly wutilized,
although there is an increasing trend towards CMOS design
styles. Generally, NMOS circuits are denser than CMOS
circuits, and are often faster. CMOS circuits operate at
much lower power 1levels, and provide superior noise
immunity. Like all |generalizations, however, these
observations have exceptions, and continuing circuit
innovation has led to the utilization of the best features
of both approaches.
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GENERALIZED INVERTER CIRCUITS

NMOS and CMOS inverters can be easily generalized to
provide universal logic families. NAND and NOR circuits are
illustrated in Figures 5 and 6.
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Figure 5. Relation of NMOS and CMOS NAND gates.
Figure 6. Relation of NMOS and CMOS NOR gates.

It can easily be verified that in the case of NMOS, two
pull-down devices in series provide the two-input NAND
circuit function, whereas two pull-down devices in parallel
provide the two-input NOR function. It must not be
forgotten that these are still ratioed circuits, and that
all of the devices involved in these gates must be
appropriately sized. This leads to an important modular
property of the NOR gate, because once an NMOS inverter is
properly sized, the addition of further pull-downs in
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parallel cannot upset the ratio constraint. On the other
hand, if a ratioed NMOS inverter is extended to a NAND gate,
then sizing must be varied according to the number of
pull-down devices in series. One might be tempted to argue
for making the ratio sufficiently high that these sizing
conditions would not have to be varied with the number of
pull-down devices. But, this would lead to exceedingly slow
circuits. It is essential to remember that ratioed NMOS
circuits are inherently slower in the pull-up transient than
in the pull-down transient. Hence, care must be taken to
ensure that the pull-up transient 1is kept as short as
possible.

The NMOS NOR and NAND circuits be easily extended to
complementary (or classical) CMOS forms. One merely takes
the NMOS pull-down structure, and composes it with an
appropriate p-channel pull-up structure so that the total
pull-up structure is off when the pull-down is on, and vice
versa. This leads to a circuit form which satisfies the
criteria for CMOS, and is illustrated in Figures 5 and 6.
All input and output signals vary between ground and five
volts, and there is no static power dissipation between the
five-volt supply and ground.

The augmentation of inverter circuits to provide NAND
and NOR capability is easily extended to provide more
general logic capability. One simply builds a network of
pull-down transistors that will realize the desired logic
function, keeping in mind that all devices must be sized in
NMOS to provide the appropriate ratioing. For CMOS, the
NMOS pull-down structure is retained, and the corresponding
conduction complement pull-up (composed of p-channel
devices) 1is provided to achieve the desired complementary
circuit properties, but sizing is not critical, except for
speed.

The generalized inverter circuits described above are
widely utilized, and form the basis for much combinational
logic design. The augmentation of the basic inverter is
responsible for nearly all forms of combinational and
sequential logic designed in MOS technologies. Hence, it is
the fundamental, canonical form for both NMOS and CMOS
circuit design.
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TRANSMISSION GATES

In the previous section, it has been shown that
networks of transistors can be composed in such a way to
realize a broad variety of logic functions in both NMOS and
CMOS. These transistors provide a network of switches
controlled by appropriate gate signals that either discharge
the output node toward ground, or charge it toward the Vgqy
voltage which 1is typically five volts. Hence, each
transistor participates in paths between the output node and
either ground or Vg3 which can be selected by appropriate
gate signals. It is also possible to introduce transistors
as switching elements in series with the output node. Then,
they are considered transmission gates between the output of
one logical gate and the input of other gate structures.
Thus, in NMOS, it is possible to insert an n-channel MOSFET
in series between the output of one inverter and the input
of another. This is commonly done to clock signals from one
stage to another, as in a shift register. More complicated
networks of NMOS transistors can also be used as
transmission gates between output and input nodes of logic
gates, and hence, they can provide additional combinational
logic function to that provided by generalized inverter
structures. Typically, these networks provide selection or
routing capability between logic gates, but the gate signals
are frequently ANDed with clock signals in order to provide
an overall timing discipline.

The CMOS transmission gate is inherently more
complicated than the NMOS single-transistor transmission
gate, since it must retain its rail-to-rail signal swing.
As illustrated in Figure 7, the CMOS transmission gate 1is
realized by connecting an n-channel and p-channel transistor
back-to-back, and making their corresponding gate signals
complementary.



34 VLSI CAD Tools and Applications

RoN P-CHANNEL T

™ N-CHANNEL T

ON-RESISTANCE
OF
P- AND N-CHANNEL TRANSISTORS

Vps = 0 ov

+5V

o L I )

ON ON

CMOS TRANSMISSION GATE

2=
[ 1

—

e T

ON-RESISTANCE = R

QUL

Figure 7. The CMOS Transmission Gate.

One of the two devices is always on when the control signal
is high, and both devices are off when the control signal is
low. In this way, the complete logic swing of the input is

conveyed to the output. This property is indispensable for
many CMOS logic forms.



Introduction to VLSI Design 35

One of the most clever of these circuits 1is the
six-transistor CMOS-exclusive OR gate, shown in Figure 8.
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Figure 8. A CMOS Exclusive OR Circuit.

This circuit realizes the four possibilities indicated in
its truth table through the complementary selection of two
separate subcircuits. When the input A is low, then the
output 1is just the value of the alternate input B, as
illustrated in the truth table, and hence, this value can be
routed to the output of the circuit by means of a
transmission gate. On the other hand, when the input A is
high, then the output is the inverse of B. This must be
realized by an inverter. The circuit is ingenious because
when the transmission gate action is desired, the inverter
structure is effectively decoupled from the output, whereas
when the inverter action is needed, the transmission 1is
simply turned off. The ability to electronically decouple
an inverter in a circuit is peculiar to CMOS, and has no
corresponding NMOS analogy.
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FULL ADDERS

The use of generalized inverter structures, as well as
transmission gates 1is amply illustrated by the design of
full adder circuits. These are complex modules in an
cverall system, and indeed, the basic building blocks of MOS
circuits are rarely more complicated than these examples.

The NMOS full adder circuit is interesting because the
carry output is generated first, and then used as partial
input to the output sum bit circuit, as shown in Figure 9.

REDUCED MAJORITY
FUNCTION
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Figure 9. NMOS Full Adder.

It is easy to understand the carry out circuit, since it
must only test all possible pairs of the three input signals

to determine if any two are simultaneously true. If the
carry out signal is false, then the sum circuit merely
checks to see if any one of the three inputs is true. 1In

addition, it must also check to see if all three inputs are
simultaneously true. It should be noticed that this circuit
is easy to "read," since the way in which the individual
transistors contribute to the logic switching function of
the overall circuit can be readily determined. This circuit
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also has the useful property of generating the carry out
before the sum bit, which helps to speed up parallel adders.

A CMOS full adder could be obtained from the previously
described NMOS full adder by retaining the NMOS pull-down
structures, and generating the needed PMOS conduction
complements as pull-up structures. If this is done, the
result is a rather cumbersome circuit which is both large
and slow. A better circuit is illustrated in Figure 10.
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Figure 10. CMOS Full Adder Circuit.

Here the previously described CMOS exclusive OR gate 1is
utilized as a basic building block for the full adder. It
is combined with a succession of transmission gates to
achieve the output sum and carry signals. Both true and
complement forms of the exclusive OR of inputs A and B are
generated in order to improve the circuit’s speed. It can
be readily appreciated that without previous understanding
of the properties of both CMOS transmission gates and the
CMOS exclusive OR circuits, this circuit would be
exceedingly difficult to understand.
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PROGRAMMED LOGIC ARRAYS

It has been shown that both generalized inverter
structures and networks of transmission gates can be
utilized to provide combinational logic capability. It has
also been mentioned that in many designs, several hundred
transistors may be utilized, and hence, a design strategy
must be available to permit the designer to readily
implement 1large amounts of combinational 1logic in a
straightforward manner. The solution to this problem is
provided, in part, by program logic arrays (PLAs) which are
highly regular in repeatable structures, and can be
generated automatically from a logic specification by
appropriate CAD tools. The basic building block for an NMOS
PLA is the NOR gate, which has already been shown to have an
admirable modular property whereby changing the number of
pull-down devices in parallel does not change the
requirement for overall gate sizing. In a PLA, logic inputs
are provided to a so-called "AND" plane which is realized
through an array of NOR gates. This AND plane generates a
group of product terms which are then combined in an "OR"
plane, which in turn is realized by a regular array of NOR
gates. The overall structure is shown for one example in
Figure 11.

Figure 11. An NMOS PLA Circuit.
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Both the true and complement vales of all logic inputs are
routed vertically across the AND plane consisting of a set
of distributed NOR gates, one for each desired product term.
These product terms are then bussed horizontally into the OR
plane, where they control another set of distributed NOR
gates that feed a set of output inverters, providing the
correct polarity for the output logic signals. It cannot be
overemphasized that the regular layout strategy afforded by
NMOS NOR-NOR PLAs is due to the modular sizing property of
NOR gates. Notice, however, that while these NMOS NOR gates
can all be sized by using fixed load devices, a CMOS PLA
which 1is constructed by wusing the normal complement
techniques would not be feasible because the size of the
pull-up structures would be logic-dependent. For many
years, this was a substantial obstacle in using regular PLA
circuit forms. It has only been recently overcome through
the introduction of so-called "precharge-evaluate" circuit
techniques which will be described later in this chapter.

NMOS PLAs are not only highly regular, but they are
also universal since any logic function can be realized as a
sum of products. In addition, recent research has provided
several invaluable CAD tools, including facilities for logic
optimization and array size minimization through techniques
of input encoding,2 and line folding,3 both of which are
beyond the scope of this chapter. It is sufficient to say
that dense and highly efficient PLA structures can be
readily obtained from an input logic specification, leading
to the broad use of PLAs in a wide variety of circuits.
Thus, good performance is achieved with minimum design
effort together with the ability to delay binding many logic
decisions until very late in the design process of the
overall chip.

CLOCKED CIRCUITS

Both NMOS and CMOS clocked circuits are widely used in
order to provide not only sequential circuits, but also
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combinational circuits through the use of complex timing
disciplines and precharging techniques. A simple example of
an NMOS sequential circuit is provided by a series of
inverters connected by clocked pass transistors. A
two-phased nonoverlapping clock discipline, as illustrated
in Figure 12, is frequently used.

SHIFT REGISTER

Figure 12. An NMOS Shift Register Circuit.

This leads to shift register capability as shown in the
figure. This circuit can easily be generalized to provide
shifting in both directions, as well as many other variants
including push-down stack operation. It should be verified
that a complete clock cycle (including both phases) succeeds
in shifting an input bit in Figure 12 through two inverters,
and hence, propagates that bit one bit position in the
overall shift register. This circuit provides memory at
each bit position, and the corresponding values are
maintained by 1isolating charge at the 1input of
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inverter pull-down gates. This 1isolation 1is clearly
achieved by the use of the clocked pass transistors, and
such stored charge values can be safely maintained for
intervals as long as several milliseconds. This ability to
achieve dynamic memory through charged storage on isolated

nodes is a dominant feature of MOS circuit design. of
course, fully static designs are easily realized by using
generalized inverter structures. An example of a simple

set-reset latch 1is 1illustrated in Figure 13, and is
completely static.
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Figure 13. An NMOS Clocked SR Flip-Flop.

Such designs can also be clocked, and are useful when the
clock frequency 1is very 1low, or when the clock is
occasionally turned off.
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Figure 14. CMOS Shift Register Circuits.

CMOS inverters can also be augmented by either transmission
gates or series clock devices in both the pull-up and
pull-down to provide for shift registers, as seen in the
NMOS case. Examples of such circuits are illustrated in
Figure 14, where the transmission gate case is represented
symbolically in the lower part of the circuit, including the
commonly used symbol for a CMOS transmission gate.
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Figure 15. "Domino" CMOS Circuits.

Perhaps the most prevalent use of clocking in CMOS is
provided by the so-called "precharge-evaluate" circuits. Of
the many forms of such logic, the "domino" form is widely
utilized. The idea is to build a CMOS circuit that
approaches the density of an NMOS circuit by avoiding the
use of a complementary PMOS pull-up structure through the
introduction of a precharge-evaluate timing discipline. An
example of such a circuit is illustrated in Figure 15.
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The basic logic network is achieved through the
interconnection of n-channel MOSFETs in the pull-down

structure. Just below this 1logic network, however, an
evaluate transistor is connected between the logic network
and ground. A static p-channel pull-up transistor is

provided, and both this transistor (called the "precharge"
transistor) and the evaluate transistor (connected from the
logic network to ground) are controlled by a clock signal.
Additionally, the output of the precharge-evaluate network
is run through an inverter to provide the final output. The

circuit action is as follows. While the clock signal is
low, the precharge transistor is on and charging up the
input to the output inverter. Hence, it 1is holding the

output signal low. When the clock signal goes high, the
precharge transistor is turned off, and &he pull-down
evaluate transistor is turned on. Depending on the values
of the input logic signals, the logic network together with
the evaluate transistor may discharge the input to the
output inverter. This causes output Z to go high. This
circuit has the advantage of using an entirely n-channel
logic network, which is fast, and minimizing the number of
p-channel devices. Thus, for complicated logic functions,
the total number of transistors is minimized, and the
circuit action 1is very fast. The output inverter is
provided to ensure that all output signals in domino CMOS
are low prior to the evaluate phase. If this was not the
case, race conditions between circuits could easily arise,
thus destroying the utility of this circuit form. CMOS
domino circuits, together with other variants of this form,
are widely used in order to retain the rail-to-rail and
low-power advantages of CMOS, while obtaining the high
density and fast circuit speed of NMOS. Hence, this form
should be viewed as an innovative compromise motivated by
performance considerations. Undoubtedly, many other schemes
of this sort will appear in the future. Since these
circuits employ a simple one-transistor pull-up, and since
sizing considerations are not necessary, both NAND and NOR
precharge-evaluate circuits can be combined to provide
efficient CMOS PLA structures.
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FINITE-STATE MACHINES

In light of both the combinational logic and the memory
capability developed in previous sections, it is a simple
matter to construct finite-state machines. Many different
forms are possible, but PLAs are widely augmented for this
purpose. In a finite-state machine, combinational logic is
needed to generate the primary outputs from the primary
inputs and the present state. The next-state information is
also derived from the primary inputs and the present state.
This set of combinational logic can be readily realized by a
PLA, as illustrated in Figure 16, and the state memory is
easily obtained through the clocking of register cells
realized with inverters and pass transistors.
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Figure 16. Finite State Machine Forms.
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In this way, it is a simple matter to add clocking to a PLA,
together with feedback connections needed to propagate the
next-state information to the updated present state. As is
the case with any finite-state machine, the designer starts
by constructing a transition table which shows all possible
sets of inputs together with present states, and the
consequent next state and output signals that must be
generated in each case. From this information, product
terms are determined that will be generated in the AND plane
of the corresponding PLA, together with the way in which
these are combined in the OR plane to provide the next-state
information and output logic signals.

Like PLA design, a variety of optimizations can be
applied to finite-state machine design. Perhaps the most
significant is the optimization that allows the selection of
codes for the set of states within the machine. It is often
possible to perform state assignment in a way that
eliminates rows of the PLA, thus reducing the circuit’s area
and increasing its speed. Input logic lines can often be
multiplexed if they are used in a state-dependent way, and
often the PLA can be further reduced by providing some
external 1logic, particularly when output signals are
strictly state-dependent. While the design of finite-state
machines based on the PLA structure with appropriate
feedback has been emphasized, it should be realized that
this is unnecessary. In many designs, simple state machines
can be readily constructed by utilizing generalized inverter
structures and simple latches. Indeed, it is common to have
many simple state machines in an overall chip design,
particularly when the algorithm to be implemented admits
considerable parallelism.

At this point, several methods for the design of
combinational logic together with effective techniques for
sequential circuit design, including finite-state machines,
have been introduced. This is by no means an exhaustive
treatment of useful MOS circuit forms, but it does provide
the most basic and useful circuit forms in current practice.
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Using these circuits, a designer can readily build
complete chips of considerable complexity, aided by
comprehensive logic simulation and timing verification CAD
tools which are currently available. A design is conceived
as an overall architecture comprised of several blocks,
which in turn can be successively broken down into a set of
basic building blocks similar to those considered in this
discussion. The designer then estimates the size and
performance of these circuits by using layout techniques not
yet discussed, in order to provide a floor plan for the
overall design. Different circuit styles and aspect ratios
can be explored with a view toward an effective, overall
layout that will fit within the chip size constraints.
Thus, it is important to consider how the circuit designs
previously described can be transformed into mask
specifications for a particular technology which serves as
the fabrication "foundry" to produce final, packaged chips.
In order to appreciate the nature of mask specifications, it
is important to have an understanding of the wafer and chip
fabrication process, including 1lithographic techniques.
These can then be used to motivate a set of geometric design
rules which restrict the <class of all possible mask
specifications to those which can yield correctly working
circuits. Once the design rules are understood, then the
mask layout can be generated, keeping in mind that there are
many degrees of freedom afforded by the design rules which
can lead to many possible mask layouts corresponding to a
given circuit form. With final mask layout as the goal
(considered the designer’s interface to the fabrication
foundry), a discussion of the integrated circuit fabrication
process follows.

INTEGRATED CIRCUIT FABRICATION

The common meeting point between design and fabrication
is the specification of the integrated circuit masks. On
one hand, these masks are interpreted by the integrated
circuit fabrication process which actually forms the
physical circuits themselves in and on a silicon wafer. On
the other hand, the designer must transform the circuit
representation of a design to a set of closed shapes
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on the several masks, which obey the fabrication design
rules, but will also lead to the needed structures in the
final physical circuit. There are several programs that
will transform special circuit forms or logic specifications
into mask specifications. But, in the most general case,
the designer must accomplish this transformation. The
design rules which constrain the mask representation, or
layout, are a set of simultaneous linear inequalities, and
it is certainly possible to approach mask layout without any
concept of the inequalities’ origins. Nevertheless, a
knowledge of lithography and fabrication is highly useful in
terms of being able to relate the mask set to the final
physical circuit, and in terms of providing justification
for the substantial variety of design rules used in
contemporary practice. Modern silicon integrated circuit
fabrication is an example of planar fabrication because all
operations are performed at the surface of a silicon wafer.
The starting silicon wafers are purified monocrystalline
silicon doped with a p-type dopant (e. g., boron) for
n-channel MOSFETs, or an n-type dopant (e. g., phosphorus)
for p-channel MOSFETs. These wafers are usually round and
are several inches in diameter, and several hundred microns
thick. The main thickness requirement is to permit handling
during manufacturing as opposed to any needed electrical
properties. Through a variety of processes such as
diffusion, oxide growth, ion implantation, deposition, and
other techniques, regions of doped silicon, thin and thick
oxides, polysilicon, metal, and interlayer contacts are
readily achieved through the utilization of many processing
steps modulated and controlled by the features of the
individual masks.

The masks are typically realized in glass with some
type of opaque material (e. g., chromium) that serves to
define the shapes on the mask. For each step in which a
pattern on the mask must be utilized in processing on the
wafer, a material known as photoresist is deposited on the
wafer’s surface and then baked. Ultraviolet light is then
shone through the mask onto the resist on top of the wafer,
exposing the polymer bonds of the resist material. In the
case of "positive" resist, the bonds in the polymer break
down where the light strikes the resist, and these regions
can be easily etched away. In "negative" resist,
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the complementary regions are etched away. In this way, the
patterns contained on the masks (which have been generated
by a designer or a CAD program) are transferred to the
surface of the wafer, where additional processing can then
occur.

In the overwhelming majority of cases, processing
proceeds according to the so-called silicon gate

self-aligned process. A detailed description of this
technology is beyond the scope of this chapter,l" but its
essential features can be mentioned. Thin oxide is grown

wherever a channel region is needed, and thick oxide (or
field oxide) 1is wused in all other places except where
diffusion into the substrate will occur. Even before the
thin oxide is grown, ion implantation is used to adjust
thresholds in those channel regions where tailoring 1is
required, such as in depletion 1loads. Following the
threshold adjustments and the growing of oxide, the
polysilicon layer (used for both interconnect and as a gate
material) is laid down before the actual diffusions for the
source-drain regions are made. This sequencing is critical
because after the polysilicon is patterned, and only then,
is the diffusion into the substrate performed. This results
in a doping of the polysilicon material itself, but the
dopant will not penetrate the thin oxide in channel regions

underneath the gate polysilicon. For this reason, the
process 1is called "self-aligned," and earlier problems
involving mask registration between the diffusion layer and
polysilicon layer are avoided. This leads to lowered
capacitances and vastly improved performance. Once the

diffused regions are formed, then contact cuts are formed
through thick oxide between the metal, polysilicon, and
diffusion layers. Finally, metal is deposited over the
entire wafer and patterned using a mask that characterizes
the metal interconnect.

The process sequence described above is for silicon
gate self-aligned NMOS, and is widely used. Obviously, only
the briefest outline of this process has been given since a
typical fabrication sequence will involve several hundred
steps in a carefully controlled’ procedure.
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Furthermore, there are countless variations, and although
one layer of metal interconnect has been suggested, in fact,
two levels of metal interconnect are now commonplace. Some
bipolar technologies currently available use four levels of
metal interconnect. The increased numbers in the levels of
metal provide a highly desirable interconnect material, and
vastly improved ease of placement and routing of logic
signals, clock signals, and supply power. By the end of
this decade, it can be expected that three levels of metal
interconnect will be common.

The CMOS fabrication sequence is complicated by the
need to provide both an n-type substrate for p-channel
devices, as well as a p-type substrate for n-channel
devices. This need has been satisfied in many ways, but a
common technique is to provide a well of diffusion by means
of diffusion or ion implantation within the main wafer
substrate for the alternate polarity of doping as opposed to
the one provided by the main substrate. Thus, CMOS is often
built in an n-type wafer with a p-type well formed by deep
diffusion. On the other hand, an n-well in a p-substrate
can also be utilized, or both kinds of wells can be built in
a lightly doped epitaxial substrate built on top of a common
wafer substrate. These choices are illustrated in Figure
17.

Figure 17. CMOS Inverter Cross-Sections.
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In the case of the p-well approach, the performance of the
n-channel devices is somewhat diminished due to the fact
that p-type dopants are introduced into the n-doped
substrate, leading to diminished mobility in contrast to the
corresponding NMOS case. This corresponds to "dragging
down" the performance of the n-channel devices to that of
the p-channel devices. On the other hand, if an n-well is
used in a p-type substrate, then the p-type devices (already
slow due to the hole mobility) are made even slower. But,
the good performance of the n-channel devices is preserved.
In many designs, particularly those where p-channel devices
are minimized, as seen in "domino" CMOS, this approach is
highly desirable. The last approach uses two wells, each
optimized for one device or another, and is highly desirable
but more expensive to produce. It also avoids the
introduction of parasitic silicon-controlled rectifiers
which are common in the single-well processes, and lead to a
phenomenon known as latch-up once the silicon-controlled
rectifier fires. The characterization and control of
latch-up are beyond the scope of this chapter, but
comprehensive treatments of this phenomenon are available.
It is clear, that in years to come, processing innovations
will continue to lead to fabrication techniques that either
minimize or eliminate latch-up. It is important to note
that the latch-up problem is unique to CMOS, and is not
found in the normal NMOS processes.

Figure 17 also illustrates another need of CMOS design,
namely the use of body ties or plugs to establish the
appropriate substrate potential. It should be noted that
diffusions of like-type dopant are made into each substrate
in order to make a good contact into both the well and base
substrate. Thus, in the case of p-well CMOS, a p-diffusion
is made into the p-well in order to establish its potential
at ground. On the other hand, in the main wafer substrate,
an n-diffusion must be made into the n-type substrate in
order to provide an ohmic contact from the power supply,
V44, into the substrate. Many descriptions of CMOS circuit
design omit these body plugs, but they are indispensable to
proper circuit action, and lead to the introduction of one
additional mask in CMOS that provides for the correct
contact diffusions. The problems introduced by the
placement of body plugs constitute another difficulty
associated with CMOS that is not present in NMOS.
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DESIGN RULES

Once the decision 1is made to adopt a particular
fabrication technology, then the designer must utilize a set
of design rule constraints peculiar to that process. As
mentioned above, these constraints are a set of simultaneous
linear 1inequalities which cover the minimum size of mask
shapes, their separation (both on one mask and between two
masks), and a variety of constraints concerning overlap and
surrounding borders. A set of design rules will not be
presented here, since they can be readily appreciated from
the particular process chosen. When custom design is
undertaken, the designer must specify those forms on the
relevant masks that lead to instantiation of transistors,
interconnect layers, and contact interconnections between
layers in a way that is consistent with the design rules,
and which will lead to desirable electrical properties in
the final circuit. Because there are so many possible mask
layout geometries corresponding to a given circuit design,
designers are often frustrated by the wide variety of
choices available for the layout specification. This
problem is usually solved by adopting some layout discipline
or strategy which introduces conventions to simplify the
layout process without reducing the layout efficiency. This
is a good example of where circuit area and performance is
sometimes compromised in the name of design efficiency, and
is a common result of the 1increasing complexity of
integrated circuits. It is simply impossible to lavish
attention on the individual transistors of a design, and so
there is a great need for repeatable and regular structures
which can serve as the basic building blocks in designs.
Program logic arrays are good examples of such structures,
but register arrays, bit-slice arithmetic logic units, and a
variety of memory structures are other examples which are
frequently utilized. As CAD tools progress, a variety of
programs have been produced which generate highly optimized
versions of the various building blocks described in this
chapter. These can be called macro generators, and can be
effectively utilized by the designer to quickly generate
mask specifications which correspond to the basic circuit
forms  discussed. These are available even for
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complex structures such as array multipliers and
floating-point units, and can provide both 1logic
optimization as well as 1layout efficiency. A natural
extension of this macrogeneration process is to procedural
means for the generation of layout of an entire chip from an
input functional specification. This process is sometimes
called silicon compilation, and while it is in its very
early stages, it can be expected to lead to acceptable
circuit performance with minimal human design time in some
restricted, yet important, cases. Nevertheless, it is
essential that the designer understand the basic aspects of
MOS circuit design, fabrication, and layout at a detailed
level in order to critically evaluate and appreciate the
growing capability of these CAD programs.
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1. Introduction

Simulation plays an important role in the design of integrated circuits. Us-
ing simulation, a designer can determine both the functionality and the
performance of a design before the expensive and time-consuming step of
manufacture. The ability to discover errors early in the design cycle is espe-
cially important for MOS circuits, where recent advances in manufacturing
technology permit the designer to build a single circuit that is considerably
larger than ever before possible. This paper reviews the simulation tech-
niques which are commonly used for the simulation of large digital MOS
circuits.

Simulation is more than a mere convenience—it allows a designer to ex-
plore his circuit in ways which may be otherwise impractical or impossible.
The effects of manufacturing and environmental parameters can be investi-
gated without actually having to create the required conditions; the ability
to detect manufacturing errors can be evaluated beforehand; voltages and
currents can be determined without the difficulties associated with attach-
ing a probe to a wire 500 times smaller than the period at the end of this
sentence; and so on. To paraphrase a popular corporate slogan: without
simulation, VLSI itself would be impossible!

To use a simulator, the designer enters a design into the computer, typically
in the form of a list of circuit components where each component connects
to one or more nodes. A node serves as a wire, transmitting the output of
one circuit component to other components connected to the same node.
The designer then specifies the voltages or logic levels of particular nodes,
and calls upon the simulator to predict the voltages or logic levels of other
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nodes in the circuit. The simulator bases its predictions on models that
describe the operation of the components. To be successful, a simulator
requires the following characteristics of its models:

e The underlying model must not be too computationally expensive
since the empirical nature of the verification provided by simulation
suggests that it must be applied extensively if the results are to be
useful.

e Component-level simulation is necessary to accurately model the
circuit structures found in MOS designs. This allows the designer
to simulate what was designed—an advantage, since requiring sepa-
rate specification of a design for simulation purposes only introduces
another opportunity for error.t

e The results must be correct, or at least conservative; a misleading
simulation that results in unfounded confidence in a design is prob-
ably worse than no simulation at all. Here, we must trade off the
conflicting desires of accuracy and efficiency.

Three of the more popular approaches to modeling are:

e component models based on the actual physics of the component;
for example, a transistor model that relates current flow through
the transistor to the terminal voltages, device topology, and man-
ufacturing parameters of the actual device.

e component models based on a description of the logic operation
performed by the component, e.g., NAND and NOR gates.

e component models based on hybrid approaches which aim to ap-
proximate the predictions made by physical models, at a computa-
tional cost equal to that of gate-level models.

The first type of model is found in circuit analysis programs such as ASTAP
[Weeks73] or SPICE [Nagel75] which try to predict the actual behavior of
each component with a high degree of accuracy. Current circuit analysis
programs do the job well, perhaps too well; at no small cost, they provide

t This is not a strict requirement; simulators which employ higher-level models
often provide a “circuit compilation” phase to translate the component-level circuit
description into (hopefully) equivalent high-level elements—the circuit compiler es-
sentially automates the construction of a separate specification for simulation.
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a wealth of detail, at sub-nanosecond resolution, about the voltage of each
node and the amount of current through each device. (For example, a
properly calibrated circuit analysis program is able to predict, within a few
per cent, the amount of current that flows through an actual transistor.)
This level of detail would swamp the designer if collected for the entire
circuit while simulating, say, a microprocessor. Fortunately, the designer
is spared this fate, since the computational cost of circuit analysis restricts
its applicability to circuits with no more than a few thousand devices.

One solution to the problem of simulator performance is to adopt a simpler
component model, such as the gate-level model introduced above. This
approach works well when dealing with implementation technologies that
adhere to gate-level semantics (e.g., bipolar gate arrays). However, MOS
circuits contain bidirectional switching elements that cannot be modeled
by the simple composition of Boolean gates. Since many of the circuit
techniques that make MOS attractive for LSI and VLSI applications take ad-
vantage of this non-gatelike behavior, it is important to model such circuits
accurately.

Hybrid simulators provide the essential information (functionality and com-
parative timing) for large digital circuits by using models that bridge the
gap between the gate-level and detailed models discussed above. Two hy-
brid models are examined in detail:

e a linear model in which a transistor is modeled by a resistance in
series with a voltage-controlled switch. The state of the switch is
controlled by the voltage of the transistor’s gate node.

e a switch model, similar to the linear model, except that a resistance
value is limited to one of two quantities: 0 for n- and p-channel
devices, and 1 for depletion devices.

There are numerous simulation tools, usually called functional or behavioral
simulators, which support design at higher levels of abstraction. Many of
the tools are based on some type of hardware description language (HDL)
and provide a catalog of high-level building blocks such as registers, mem-
ories, busses, combinational logic elements, etc. Cause and effect relation-
ships are maintained by these simulators usually through some sort of event-
driven scheduling of functional blocks, but detailed timing information is
limited to major clock phases. There exist general purpose languages—
SIMULA or LISP, for example—which can also be very useful in simulating
architectures at this high level. Since these tools are not specific to VLSI, this
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paper will not discuss them further, but most architectures are simulated
at this high level before being committed to silicon, and information from
these simulations is often used to verify subsequent lower-level simulations.

A final word of warning: all simulators are based on models of actual behav-
ior. As with any model, discrepancies are likely to exist between the model
predictions and the actual behavior of a circuit. The tools described here
attempt to be conservative, but this cannot be guaranteed. Thus, it is im-
portant that the designer become acquainted with the inner workings of the
models and their shortcomings. The tools perform a calculation one could
do by hand, only faster and with greater accuracy and consistency—they
should not be treated as black boxes.

The following sections focus on each of the modeling approaches. The
discussion provides an introduction to the various topics, many of which
are major disciplines in themselves. References are provided at the end of
the paper for those who wish to pursue a particular topic in more depth.
In particular, [SV80] and [Newton80] are excellent detailed introductions
to circuit-level simulation; [Vlach83] is a good reference for the potential
implementor.

2. Circuit-level Simulation

The goal of circuit-level simulation is to provide detailed electrical infor-
mation about the operation of a circuit. As mentioned above, this level of
detail is a two-edged sword: such detail is necessary to successfully design
some components, but it is so expensive to generate that only selected pieces
of a circuit can be simulated at this level. Fortunately there is some oppor-
tunity to trade speed for accuracy; some of these techniques are outlined
below.

Circuit-level simulators all use the same basic recipe:

(i) Choose the state variables of the circuit, e.g., capacitor voltages
and inductor currents. The values of these variables will tell us all
we need to know about the past behavior of the circuit in order
to predict future behavior.

(ii) Construct a set of circuit equations which embody constraints on
the values of the state variables and are derived from physical
laws, e.g., Kirchoff’s voltage and current laws, or descriptions of
a component’s operation, e.g., Ohm’s law.
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(iii) Solve the circuit equations given initial conditions. The presence
of nonlinearities and differentials usually dictates the use of nu-
merical solution methods. The discussion below is oriented to-
wards transient analysis where we wish to compute the values of
the state variables over some time interval, say, 0 <t < T.

One can see from the above that circuit-level simulators actually embody
solutions to two separate problems: first, how to model the circuit with
component models and circuit equations, and second, how to solve the cir-
cuit equations arising from application of the models. In principle, one can
address the problems separately—this is the approach taken below—but in
practice one would not choose, say, highly accurate component models and
then adopt a quick and dirty solution technique. Often simulators leave the
final choice to the designer: SPICE, for example, has a repertoire of three
different MOSFET models and allows one of two integration methods to be
used during the solution phase.

Some mixed-mode simulators allow one to mix and match models and solu-
tion techniques within a single simulation run, using simpler, more efficient
approaches for some pieces of the circuit, saving the more accurate (and
expensive) analysis for “critical” subcircuits. A subcircuit may be “criti-
cal” because it lies along some path of particular interest to the designer, or
because it is not modeled correctly by simpler techniques. It is this latter
possibility which gives rise to an important caveat when using mixed-mode
simulators: in the interests of efficiency, one may erroneously assume a
subcircuit can be modeled as a noncritical component, leading to incorrect
predictions without any indication that the simulation has gone awry.

Circuit simulators are prized for their “accuracy,” in particular, SPICE is
often used as the metric against which other simulation techniques are
judged. However, it is important to keep in mind that circuit simulators
are not infallible oracles concerning circuit performance; what they offer
is accurate solutions for systems of equations. Unfortunately, the equa-
tions themselves are often not nearly as accurate as their carefully derived
solutions. Over-simplified component models, missing parasitics, poorly
chosen input waveforms, etc., all contribute to erroneous predictions. Sub-
tler effects such as the inability to deal with unknown voltages (e.g., from
a storage element which has just been powered up) are often overlooked
when a printout displays voltages to five decimal places. These points are
worth keeping in mind as we explore how circuit simulators do their job.
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2.1 Circuit equations and component models

The first step in circuit simulation is the building of a set of circuit equations
from a designer-supplied description of the circuit. The description is usu-
ally in terms of nodes and branches, where a branch is formed whenever a
component connects two nodes. If a circuit contains n nodes and b branches,
the straightforward formulation results in 2b + n equations [Hachtel71]:

e Kirchoff’s current law provides n equations involving branch cur-
rents,

e Kirchoff’s voltage law provides b equations relating branch voltages
to node voltages, and

e models for individual components provide b equations describing
the relationship between branch parameters and other parameters
of the circuit,

involving a total of 2b+n unknowns, i.e., n node voltages, b branch voltages
and b branch currents.

The behavior of a component, which gives rise to the last set of b equations
mentioned above, can in general be expressed in terms of an interconnection
of ideal elements. Only a small repertoire of ideal elements needs to be
supported by the simulator:

resistive elements, characterized by algebraic equations relating the
branch currents to the branch voltages. This category includes two-
terminal elements (e.g., resistors and independent voltage and current
sources) where the behavior of a branch is described in terms of the
branch current or voltage, and four-terminal controlled sources where
the behavior of a branch is described in terms of the voltage or current
across a second pair of control terminals.

energy storage elements, characterized by algebraic equations relating
the state of the storage elements (charge for a capacitor, flux for an in-
ductor) to one of the branch variables (voltage for a capacitor, current
for an inductor). These equations in turn lead to differential equa-
tions relating the branch currents to the change in branch voltages
(capacitors), or vice versa (inductors).

If the algebraic equation that describes the operation of an ideal element
can be graphed as a straight line passing through the origin, the element is
said to be linear, otherwise the element is deemed to be nonlinear.
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There are well known techniques for solving the sets of linear equations
arising from circuits containing only linear resistive elements; however, most
VLSI circuits also contain nonlinear components (e.g., MOSFETs) and storage
elements (e.g., node capacitances). The next section describes techniques
for solving the resulting system of mixed nonlinear algebraic and differential
circuit equations. Before embarking on that discussion, we briefly turn our
attention to the component models themselves.
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Figure 2.1. Equivalent network for an n-channel MOSFET

Figure 2.1 shows how one might model an n-channel MOSFET as an in-
terconnection of ideal elements [pg. 315, Vlach83]. A wide variation in
accuracy and computational overhead is possible, depending on how the
various parameters of the model are determined.

Simplified models treat many of the parameters as constants computed from
user-supplied information about the device, e.g., its geometry. Often, the
relatively inexpensive Shichman-Hodges model is used to approximate the
current conducted by the device:

0 Vg — vy, <0 “off”
g = 5 (vgs — va)? 0 < vy — vy <vg “saturated”
Kk(vgs — vy — %“)v.u Vgs — Vg > Uy, “linear”

where vy, is the threshold voltage of the MOSFET and
(25
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is a constant that depends on the width w and length ! of the particular
MOSFET under consideration. The Level 1 model of SPICE implements a
simplified model.
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Analytic models—e.g., the Level 2 model of SPICE—strive to be very accu-
rate and so require detailed information about device geometries, electrical
properties of the materials, temperature, etc. These models include devi-
ations from the first order theory used in simpler models, e.g., threshold
adjustments, variations in charge distribution along the channel, mobility
variations, channel length modulation, short channel effects, subthreshold
conduction, charge storage and capacitive effects, etc. Computation of the
model parameters is usually quite involved—the Fortran code for the SPICE
Level 2 model is seven times as long as that for the Level 1 model. [SV80]
reports that for circuits up to 500 nodes, the majority of the simulation
time can be spent evaluating the device models. Analytic models are useful
for performing simulation at different process corners, since the physical
parameters which need to be varied are used directly in the modeling equa-
tions.

Empirical models also strive for accuracy, but are based on a curve-fitting
approach for deriving the underlying parameters; the model parameters
may have no direct physical interpretation. The models are somewhat
cheaper computationally, and are very useful when trying to match predic-
tions with actual measured values (since one can simply work backwards
from the measured values). The Level 3 model of SPICE is a semi-empirical
model.

Table-driven models can be used to avoid the expense of evaluating compli-
cated formulas at simulation time; with some care the computer time spent
during model evaluation can be reduced by an order of magnitude. The
MOTIS simulator [Chawla75] used two tables in calculating the source/drain
current of a MOSFET:

igy = Tq(vgs — Tp(ves), Vas)

Other parameters needed for the MOSFET model were also approximated us-
ing these tables. To use the tables, voltages must first be quantized; [Fan77)
reports that reasonably accurate results are possible if one provides about
100 different entries for each dimension. No interpolation is required unless
the solution technique attempts to iterate to convergence (see below), in
which case a quadratic interpolation scheme should be used. The contents
of the tables can be derived from analytic formulas or taken directly from
device measurements.

Finally, macromodels can be used to characterize the terminal behavior of
larger functional blocks such as op amps, logic gates, modulators, etc. with
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considerable savings in the number of modeling elements that have to be
managed by the simulator. This, of course, translates into reduced simu-
lation time. Macromodels are particularly useful for those portions of the
circuit which are not of direct interest to the designer.

2.2 Circuit-level simulation techniques

Numerical solution techniques for systems of mixed nonlinear algebraic and
differential circuit equations have received a lot of attention. This section
provides a quick tour of the standard approaches; more detail and good
bibliographies can be found in [SV80] and [Vlach83].

We can write our system of circuit equations as
F(x,x,t) =0

where x is the vector of state variables with 2b + n elements. In general,
no closed form solution exists, so instead we develop the solution incremen-
tally for a series of time steps to,11,...,tn using a linear multistep method
which computes xn+1 from values of x and x at earlier steps, subject to the
initial conditions specified by the designer. Many simulators use single step
methods which involve only the information from the previous time step.

Explicit methods use equations incorporating only information from earlier
steps
Xn+l = f(x"sxﬂ-ls )

and so are quite efficient since one already knows all the parameters needed
to compute new values for the state variables. The Forward Euler method
is particularly inexpensive:

Xn+1 = Xn + (At)Xn.

where At is the step size. Unfortunately, explicit methods suffer from
numerical stability problems and are not suitable for high accuracy simu-
lators. Nevertheless, explicit methods have been used successfully as the
basis for EMU, an inexpensive timing analysis program [Ackland81] tailored
for digital MOS circuits. The authors of EMU argue that the errors intro-
duced during simulation do not get out of hand due to the high-gain and
voltage-clamping properties of digital LSI circuitry. Use of these techniques
is rewarded by a speed improvement of several orders of magnitude.

Implicit methods build a set of equations

Xn+1 = f(Xn+1,Xn,Xn-1,...)
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which improve the stability of the solution technique, but at the cost of
having to solve sets of simultaneous equations in order to determine values
of the state variables for the next time step. The accuracy of the solution
is affected by the size of the time step; in general, if the method is chosen
with care, the error can be driven to zero as the size of the time step
is decreased. Circuit simulators choose the time step so as to bound the
accumulated error while maximizing the progress through time.t

Returning to the problem of solving the circuit equations, using an implicit
multistep method we can reduce the original problem to one of solving sets
of equations of the form

F(*n+1,xn+1,tn+1) =0.

Since we don’t know Xx,+1, we use an integration rule to eliminate the

differentials from the set of equations. For example, using the Trapezoidal

rule:

Xn+l —Xn
At

Substituting, we are left with a set of algebraic nonlinear equations

*n+1 = 2 Xn

F(xpn+1,tn+1) = 0.

These equations can linearized by applying a multidimensional version of
Newton’s method called Newton-Raphson (NR), and then solved using
Gaussian elimination or LU decomposition. Several NR iterations may
be required to achieve a sufficiently accurate solution.

To summarize, the steps used by traditional circuit analysis programs for
computing values of the state variables at a new time step are

a) update values of independent sources at tn41
b) apply integration formulae to capacitors and inductors
c) linearize nonlinear elements using using NR

d) assemble and solve linear circuit equations

t+ The successful analysis of “stiff” circuits—those which contain both quickly
responding and slowly responding components—requires the use variable sized time
steps; also, the choice of which linear multistep method to use has a large effect on
the amount of computation required.
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e) check for convergence in NR method; if not achieved, return to
step (c)

f) check error estimates, and modify time step if necessary.

The search for new circuit analysis algorithms is still underway. This is
hardly surprising, given the important role played by circuit analysis in
the design of integrated circuits. For example, [Newton83] describes two
promising new approaches: iterated timing analysis which applies relax-
ation techniques at the nonlinear equation level, and waveform relaxation
which applies the same techniques at the differential equation level. Both
approaches offer the potential for dramatic improvement in simulator per-
formance and seem particularly suitable for implementation on multipro-
cessors.

3. A linear model for MOS networks

This section discusses RSIM, a logic-level simulator built with the goal of
being able to simulate entire VLSI circuits with acceptable accuracy. Rather
than perform a detailed simulation of each transistor’s operation, RSIM uses
the linear model to directly predict the logic state of each node and to
estimate transition times if the nodes change state. The net effect is to
trade some accuracy in the predictions for an increase in simulation speed.
When the linear model is conservatively calibrated, its predictions can be
used to identify potential problem circuits in need of more accurate analysis.
A large portion of most circuits pass the scrutiny of RSIM and so the expense
associated with detailed simulation of the whole circuit is avoided.

The transistor model in RSIM can be quite simple since it is only used to
predict the final logic state of a node and the length of time each state
transition takes. As an example of how the model works, consider a simple
inverter: one can think of the effective resistance of its component devices
at any moment as
Reg pullup = Ydsipullup Reg pulldown = Yds:pulldoun,

tds:pullup tds:pulldoun

Although the effective resistances of the transistors change as their terminal
voltages vary, it might be possible to use “average channel resistances”
to characterize the transistors’ behavior. The other salient feature of a
transistor’s operation is its switch-like behavior: with certain voltages on
a transistor’s terminal nodes it makes no connection at all between its
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source and drain terminals—the transistor is “off”. As the relative terminal
voltages change, the transistor turns “on”, conducting current between its
source and drain terminals. Of course, the transistor is more “on” at some
times than others, but distinctions between different “on” states might be
ignored for simplicity.

drain drain

? open when vy, =0
gate o= -~
gate o—-l

closed when vy =1
unknown when vy, = X

R.g
source source
(a) n-channel transistor (b) RSIM model

Figure 38.1. RSIM model for an n-channel MOSFET

One can build on the observations made above to construct a linear n-
channel transistor model for the simulator, shown in figure 3.1. It is easy
to tabulate the sort of connection that exists between the source and drain
terminals as a function of the gate voltage:

R.g switch closed (vgate = 1)
Ry = { ®© switch open (vgate = 0)

[Reg,00] switch unknown (vgate = X)

Note that uncertainty about the state of the switch leads naturally to an
interval describing the resistance of the source-drain connection. In fact,
all the network calculations use interval arithmetic, and the bounds of the
resulting intervals are used when converting voltages to logic states, etc.;
no other mechanisms are needed to deal successfully with X states in the
network. Models for other types of transistors differ in the way the position
of the switch is determined from vgqze.

The effective resistance, R.g, is determined separately for each transistor
and depends on type of simulation one wishes to perform. In the linear
model, R.y depends on

width, length; dimensions of the active transistor area. Non-linear ef-
fects make R,y a more complicated function of the transistor geometry
than simply length divided by width.
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type. Most MOS circuits contain more than one type of transistor.
The different types are distinguished by, among other things, different
values for their threshold voltage. Since the current conducted by a
transistor is a function of its threshold voltage, the modeling resistance
naturally depends on the transistor type.

contezt. Accuracy in choosing the effective resistance can be improved
by distinguishing several contexts in which a transistor may appear:
for example, an enhancement transistor can be used as a pulldown or
source-follower in addition to the more general pass gate configuration.
Surprisingly few contexts need to be recognized to encompass a large
portion of digital MOS designs.

The determination of R.; is made once for each transistor and does not
depend on any dynamic properties of the circuit to be simulated. During
simulation using the linear model the only device information used about
a transistor is its effective resistance.

Voltages in this model are quantized into one of three values; this corre-
sponds to our intuition for digital logic and greatly simplifies the simulation
calculations. If all node voltages are normalized to fall in the range [0,1],
then the possible quantized values are

0 logic low—voltages in the range [0, vjy];
1  logic high—voltages in the range [vhig, 1];
X intermediate or unknown voltages.

where v, and v, are the predetermined logic thresholds.

How is the value of a node determined? RSIM characterizes the effect of
the network on a particular node by the Thevenin circuit equivalent for all
pieces of the network that directly influence the value of the given node
(see figure 3.2).

Virev a voltage interval [Viaeo—,Vireo+) in the range [0, 1] specifying
the possible voltages the output node may have.

Rgrive a resistance interval in the range [0, co].
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Figure 3.2. Equivalent circuit for a network node

Vinee and Rgnye are, in general, intervals since the equivalent transistor re-
sistances from which they are derived might themselves lie in an interval.
A node’s final value is determined by comparing V., With the low and high
logic thresholds and choosing the appropriate logic state. If the calculation
of a node’s final value yields a result different from the node’s current value,
a transition has been discovered and the simulator must predict how long
it will take for the node to cross some predefined switching threshold vg,s-
Given the model shown in figure 3.2, an obvious choice for the transition
time i8 RgppeCload- With suitable definitions of Rgnye and Cjoaq, this is the
approach adopted by RSIM.

Viaode 4 _s—starting point

—s—switching threshold

‘I final voltage

— :
transition time time

Figure 8.3. R.y used to predict (1) transition time and (2) final voltage

Actually RSIM uses not one, but three effective resistances for each transis-
tor. To see why, recall that RSIM is trying to predict the transition time
and final voltage, as shown in figure 3.3. One would like to calibrate the
model to give accurate predictions for both parameters, but that is impos-
sible with a single set of resistances. To solve this problem RSIM uses three
resistances for each transistor:

R yatic used when calculating V., the node’s final voltage.

Riyniow used when calculating Rjoy— drive for high-to-low transitions.
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Raynhigh used when calculating Rpigh— drive for low-to-high transitions.

Two “dynamic” resistances are used so that the asymmetric behavior of
“pass” devices can be accurately predicted. All three values (Vi., and
two versions of Rgy.) are calculated simultaneously, so the extra overhead
introduced by multiple modeling resistances is not very large.

8.1 The RSIM simulation algorithm

Basic to the operation of RSIM is the notion of an event. An event specifies
(i) a node in the network, (ii) a new logic state, and (iii) a time at which
the node’s value is to be changed to the new logic state. RSIM maintains
a list of events, sorted by time, that tells what processing remains to be
done. Whenever the user changes an input, an event is added to the list;
when the list is empty, the network has “settled” and RSIM waits for further
input.

When started on an initial event list, RSIM sequentially processes events
from the list, stopping (1) when the list is empty, (2) when a node the user
is tracing changes value, or (3) when the specified amount of simulated time
has elapsed. Processing an event entails

(a) removing the event from the event list.

(b) changing the node’s state to reflect its new value, generating the
appropriate reports.

(c) calculating any consequences, i.e., new events, resulting from the
node’s new value. First all nodes that might be affected by the
change are found and marked—this requires a tree-walk of the
network starting at the source and drain nodes of transistors for
which the changing node is the gate. The tree-walk follows source
and drain connections, stopping at input nodes or non-conducting
transistors. For each marked node two calculations are made: (1)
a charge-sharing calculation that models changes of state due to
charging/discharging of the node capacitances and (2) a final-
value calculation that determines the node’s ultimate state.

As seen in step (c) the network is naturally partitioned into stages, each
stage consisting of nodes “shorted” together by source-drain connections.
The values for all nodes in a stage are recalculated whenever nodes are
added or removed from the stage because of a transistor turning on or
off. Since nodes are only added to the event list when their values change,
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portions of the circuit unaffected by the current set of changes are not
re-evaluated—the algorithm is event driven.

A node can have two events pending:

(1) a charge-sharing event describing an immediate change in the
node’s state due to the redistribution of charge among the capaci-
tors for nodes in the current stage. This type of event is generated

only when a node is added to a stage (i.e., when a transistor turns
on).

(2) a final-value event describing what the final, driven state of the
node will be. This type of event is generated when Ry, < co.

The charge-sharing calculation models what happens when two or more
charged nodes in different logic states are connected. In this case, all the
connected nodes will reach the same logic state; this state is determined
by the relative capacitances and initial logic states of the nodes in the
stage. For example, if a large (high capacitance) node such as a data bus
were connected by a pass transistor to a small node such as the input to
a register cell, then the small node would “share” the charge of the large
node as its final value regardless of the charge it had initially. In such cases,
the charge-sharing value is determined from two capacitance intervals

Chs'gh = [Chigh—,chs'gh+] and Ciy = [Clow—,clow-f—]

computed during the tree walk of the surrounding network. Chrig (Clow)
reflects the total amount of capacitance in the stage which is currently
charged high (low); this value might be an interval due to neighboring
nodes with an X value or connections through transistors with a gate node
at X. For example, during the tree walk, the capacitance of an X node is
added to both Chign+ and Cloyy (but not Chig— and Ci,y-); capacitance of a
0 node is added to both Cj,,_ and Cjyy+; and so on. Similarly, capacitance
information about subcircuits on the other side of transistors with a gate
node at X affects only Chign+ and Ciop4. The capacitance intervals are used
to determine the charge-sharing value of the node:

Chigh—
Clow+ + Chigh—

Cha‘gh+

_ hght @ Viharer =
Clow—— + Chigh+ sharet

Vihare—- =
Since nodes at logic state X contribute an undetermined amount of charge
to the result, V., is an interval whose bounds represent conservative as-
sumptions about the actual values of X nodes, t.e., we want to make Vg,
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as large as possible and V,p4+ as small as possible. This interval is com-
pared with the logic thresholds when calculating the charge-sharing value:

) 0 Vararet+ < Viow
Charge-sharing value =< 1 Vg p— > Vhigh
X otherwise

If R4y < 00, and the node is not an input, the final state of a driven node
is calculated from the Vi, interval [Viaeo—, Vineo+]:

. 0 Vireo+ < Viow
Final value = ¢ 1 Viyep > vpip
X otherwise
If this value differs from the charge-sharing value then the appropriate event
is scheduled Rg.y.Cload + Ainpu seconds in the future where

Rpigh—drive final value = 1
Ririye = Rl?w-—dn’n final value =0
min (Rpigh—drive, Riow—drive) final value = X
Clow+ final value =1
Cioad = { Chigh+ final value =0
Clow— + Chigh— final value =X

The lumped capacitance represented by Cjo.q is overly conservative; for-
tunately, more accurate models are available [Penfield81,Horowitz83] for
future incorporation.

The analysis in [Terman85] of the propagation delay of logic gates indicated
that an RC time constant is a very good estimate for the delay of a gate
when the input waveform is a voltage step. However, the analysis concludes
that a simple RC time constant underestimates the actual propagation delay
if the input waveform is other than a step, e.g., a voltage ramp with a rise/
fall time of 6. It was shown there that a correction factor, Ay, can be
added to produce a conservative estimate of the propagation delay:

%(vthruh — vt) final value =1
Ajpput = %(1 — Uppesy)  final value =0
0 final value = X

where the correction factor depends only on parameters of the input wave-
form. Since RSIM does not calculate § directly, we’ll need the following
expression:

Ythresh
T

JUN |/ N
1-Y4presh

—Tin_ rising input
6= )
{ falling input



74 VLSI CAD Tools and Applications

where 7y, is the transition time calculated by RSIM for the input waveform.
Combining these equations with estimates of the parameters for a typical
5u nMOS process yields

< Ririve:highClow+ + (0.34)7sn  rising input
plh = { Ririve:highClow+ + (0.27)7;, falling input

. Ririve:1owChigh+ + (0.64) 7,  rising input
PR = 1 Ryrive:towChight + (0.50)7,  falling input

tpz > min(Ririve:tows Rarive:high) (Clow— + Chigh—)

as our final equations for estimating a node’s transition time. Note that to
be conservative, RSIM strives to overestimate transition times to 0 and 1,
and underestimate transition times to X.

3.2 Experience with RSIM

RSIM has been in use at both university and industrial environments for
several years. During that time it has simulated several hundred designs,
ranging in size from very small to approximately 50,000 transistors. Because
RSIM was fast enough to simulate whole circuits, it often uncovered circuit
flaws that had fallen between the cracks during simulation of the individual
components. The trend has been to think of RSIM as a companion to
circuit analysis, using it for all logic-level verification and preliminary timing
analysis, and then resorting to circuit analysis for those paths identified as
critical by RSIM.

The simulation algorithm is embedded in a Lisp-like command language
that has been used to write quite elaborate programs to drive the simulation
and process the results. Since programs to prepare simulation input are
much less tedious to construct than the input itself, designers have been
able to conduct more exhaustive tests than they were able to do using
earlier simulators. For example, it is a simple matter to take a set of test
vectors used to drive an RTL simulation, use those vectors as input for an
RSIM run, and compare the predicted outcomes, all under program control.

With careful calibration, RSIM’s predictions for combinational logic are
within 30% of those of SPICE. For circuits relying on analog behavior (sense
amps, bootstrapped nodes, etc.) or chains of “pass” devices, the predictions
are less accurate. To compensate, several “escape” mechanisms exist: it is
possible to specify the logic thresholds and transition times for individual
nodes so that one can incorporate the results of more detailed simulation
into RSIM. Usually this mechanism need be invoked for only a few critical
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Figure 3.4. Sample circuit showing path through PLA
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Figure 8.5. Equivalent RC network for PLA example

node transition T S>> | SPICE
A l 0.2 0.2 0.8
B 1 3.8 4.0 3.5
Casel C l 2.9 6.9 6.8
D t 10.4 17.3 15.5
E 1 7.4 24.7 20.7
A t 1.6 1.6 0.6
B l 1.7 3.3 1.9
Case2 C t 14 4.7 3.3
D l 2.1 6.8 6.4
E t 6.6 13.4 12.1

Table 8.1. Simulation results for PLA
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nodes (e.g., clock driver outputs). Another approach is to identify problem
subcircuits and replace them with logically equivalent circuits that can be
simulated easily; a network preprocessor that performs subcircuit matching
and replacement is available and has been used to good effect.

To illustrate RSIM’s use, the transition times for signals in the sample circuit
of figure 3.4 are analyzed below (see also [Terman85]). Transistor sizes
are given in microns as width/length. When the clock signal goes high,
the input signal (buffered by the inverter on the left) propagates through
the input buffer and the two PLA planes. Figure 3.5 shows the equivalent
resistor/capacitor network; resistances are given in K1 and capacitances in
pF. Note that the pullup for node C is recognized as a depletion source-
follower without considering the actual voltage on its gate. Since depletion
devices are always on, the inverter which leads from node B to the gate of
the pullup is ignored by the simulator, and the timing for node C is always
controlled by node B. Also note that the resistance chosen for the pulldown
for node B reflects the threshold drop of node A.

When calculating the transition time using the linear model, one must
identify which resistors are actually participating in the network at the
moment, and then use series-parallel reduction to compute the effective
resistance for the network. For example, a rising transition for node A
takes (74.4 + 4.4)(0.02) = 1.6ns; a falling transition takes ((74.4/|8.7) +
4.4)(0.02) = 0.2ns. Using this approach, table 3.1 shows the results of
propagating two different data values through the PLA. The time of each
node’s transition is shown in nanoseconds, as predicted by the linear model
and SPICE. As one can see, the linear model overestimates the transition
times with reasonable consistency. (One expects overestimates because of
the inequalities in the equations above.) The estimate for Case 1 is 19%
greater than the SPICE prediction; for Case 2, 11% greater.

4. A switch model for MOS networks

If a designer is only interested in the logical properties of a circuit, i.e., those
properties independent of performance issues, it is possible to simplify the
linear model of the previous section even further by modeling each transistor
as an on/off switch whose state is determined by the type of transistor and
the state of its gate node. While it would be possible to use the formulas
presented in the previous section (suitably modified), it is more profitable
to rethink our approach and develop a simpler, more efficient computation
that takes advantage of the simpler model. Before presenting the switch
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model in more detail, a small digression on the representation of node values
is in order.

4.1 Representing node values

The success or failure of a logic-level simulator often hinges on the choice
of the set of possible node values. If the set is too small, the actual node
value may not be precisely described by any one of the available values
and the simulator must choose an approximation. Usually the approxi-
mation involves some variant of the X (unknown) value which may carry
logical implications beyond what the network itself imposes—such a choice
is termed either “conservative” or “pessimistic” depending on one’s point
of view. If the set is large, it becomes difficult to establish whether the
simulator’s calculations are correct in all cases. Relying on the accumu-
lated evidence of many simulation runs when arguing correctness lacks the
rigor that leads to total confidence in the algorithm. This section develops
criteria for evaluating a set of node values.

There are three major influences on the choice of the node-value set:
(1) the need to report node values to the user;

(2) the need to determine the state of each network component from
the values of its terminal nodes; and

(3) the need to represent intermediate values during an incremental
simulation calculation.

If only the first two influences are considered, a three-value set—0, 1, and
X—will suffice for logic-level simulation.t Users and component models
cannot reasonably expect more information than provided by this set, since
most logic-level algorithms cannot support more detailed deductions from
arbitrary MOS networks with any degree of accuracy. It is the third influence
that leads to all the complication.

Almost all logic simulators analyze a network piece by piece, modifying
their estimates for node values as the effect of each piece of the network is

t It might be useful to distinguish X’, an unknown, but legitimate logic value
(e.g., the output of a pair of cross-coupled inverters) from other types of X values.
X’ values are well behaved in logic operations, for example, B +—B = 1 if the value
of B is X’, but equals X if the value of B is X. Such distinctions can be important
during initialization.



78 VLSI CAD Tools and Applications

determined. Until the new-value computation is completed, the interme-
diate node values serve as accumulators that store all the information the
simulator has about the effects of network pieces already examined. Thus,
distinct values are needed for all qualitatively different intermediate states;
e.g., a node currently at logic high might have that value because exami-
nation of the network to date revealed that it was (i) storing charge, (ii)
connected to a depletion pullup, or (iii) being precharged by an enhance-
ment device. The simulator must distinguish among these possibilities,
since the final value of node may be different in each case if, for example,
further network processing discovers a pulldown for the node. The exact
number of values needed depends on the details of the simulation compu-
tation; most simulators fall into one of the two categories discussed below.

As will be seen, the two categories are distinguished by their approach to
X values.

Cross-product value sets

One intuitively appealing approach to choosing a set of node values is to
think of each value as having several distinct attributes chosen from inde-
pendent categories. Thus, for example, one might characterize a node’s logic
state and the “strength” of the value separately. The logic state is usually
one of 0, 1, or X; sometimes a high-impedance state, Z, is included to rep-
resent the output of tri-state logic gates. [Flake80, Holt81]. The strength
indicates what sort of network connection exists between the source of the
value and the current node:

input. Node is a designated input (e.g., VDD or GND). The value of
an input node can only be changed by explicit simulator commands—
the assumption is that inputs supply enough current to be unaffected
by connections (possibly shorts to other inputs) made by transistor
switches.

driven. Node is connected by closed switches to inputs or other driven
nodes. Driven nodes can affect the value of weak or charged nodes
without being affected themselves, but may be forced to an X state if
shorted to an input or driven node that has a different logic level.

weak. Node is connected to an input node by a depletion-mode tran-
sistor. Weak nodes can affect charged nodes without being affected
themselves, but are forced to a driven state when connected to an-
other driven or input node. A weak node returns to the appropriate
weak state when completely disconnected from driven or input nodes
(i.e., a weak node can never enter the charged state).
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charged. Node is connected, if at all, only to other charged nodes.
Until reconnected to some other part of the network, charged nodes
maintain their current logic state indefinitely (charge storage with no
decay). This is the default state of all non-weak nodes.

Other strengths can be included to model the effects of differently sized
transistors, node capacitors, etc.

The plethora of 9-, 12-, and 16-state logic simulators (see [Newton80]) use
values chosen from the set formed by the cross product of the various value
attributes. For example, a 9-state simulator might use the values shown
in table 4.1. Note that in this formulation, X is treated as sort of a third
logic value on a par with 0 and 1; presumably X’s are generated by the
simulator to model invalid combinations of 0’s and 1’s. The implication is
that one can determine if a value should be X without any consideration
of strengths. (Remember that the main motivation of forming the cross
product is that the various attributes are independent.) This can lead to
pessimistic predictions, as is shown in an example below.

logic state
0 1 X

driven DL DH DX
strength  weak WL WH wX
charged CL CH cX
Table 4.1. Typical cross-product value set

It is useful to order the possible signal values according to their relative
strengths. Intuitively, value A is stronger than value B, written A > B, if
value A predominates when both signals are shorted together. Of course
there are situations where neither value emerges unscathed—for exam-
ple, when two signals of the same strength but opposite logic states are
shorted—in which case neither signal is said to be stronger than the other.
The notion of strength can be formalized using a lattice of node values, as
shown in figure 4.1. The node value A is used to represent the null signal,
i.e., no signal at all.

Referring to the lattice, given two values A and B, A > B if A is not equal
to B and there is an upward path through the lattice that starts at B and
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Figure 4.1. Lattice of node values for a 9-state simulator

reaches A. For example

DX is greater than all other signals,
DH is greater than WL, but
WL is not greater than WH.

The least upper bound (l.u.b.) of two values A and B, written A N B, is
defined to be the value C such that

(Cc>A
(i) C > B
(iii) for every value D, if D > A and D > B, then D > C.

Examining the lattice above, it is easy to see that the l.u.b. always exists for
any two node values. Note that if A > B, ANB = A; the l.u.b. captures our
intuition about what should happen when two signals of different strengths
are shorted together. With the appropriate placement of X values in the
lattice, the l.u.b. can be used to predict the outcome when any two signals
are shorted.

The interpretation of X values captured by the lattice above is quite ap-
propriate for describing the logic state of nodes involved in a short circuit
(see figure 4.2). Assuming the two transistors are the same size, the mid-
dle node’s value is the result of merging two equal strength signal values.
According to our lattice, this merger yields an X value. Short circuits
are the mechanism by which X’s are introduced into a network previously
containing only 0’s and 1’s.

However, the situation is not as straightforward when one considers con-
nections formed by transistors with a gate signal of X. The resulting values
cannot be computed directly using the N operation on the source and drain
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e
e

Figure 4.2. A short circuit leading to an X value

CL L CL L x—l| oL = x- 14 -
I I DH I EH 5}1
(a) (b) (c)

Figure 4.3. Incremental analysis of a simple network

DX =DHnNDL

signals, and once that hurdle has been surmounted, there is some difficulty
in choosing which value to use from the cross-product value set. Consider
the following analysis of a node with stored charge and connection to two
transistors. Before any connections to the node have been discovered (fig-
ure 4.3(a)), the node maintains the charge of its last driven value, say, logic
low; the simulator would assign the node a value of CL. After the first
transistor is discovered (figure 4.3(b)), the facts change:

(i) Because of the X on the gate of the transistor, one cannot be cer-
tain what type of connection exists between the node in question
and the DH on the other side of the transistor. Thus, the new
logic state of the node should be X.

(ii) The strength of the new value is uncertain, but clearly “weak”
or “charged” would be inappropriate since they understate the
strength in the case where the unknown gate value was actually
al.

Since a weak or charged value could be overridden by an enhancement
pulldown discovered later on, mistakenly leading to DL value, the simulator
has no choice but to select a driven value. The conclusion: DX is the
only state available that handles all eventualities in a conservative fashion.
Of course, with knowledge of what the rest of the network contains, the
simulator could make a more intelligent choice, but this is beyond the ken
of an incremental algorithm.

By the time a connection to a depletion pullup is discovered (figure 4.3(c)),
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the die has been cast: the previously chosen DX value overrides any con-
tribution by the pullup (DX N anything yields DX). While this answer is
not wrong, it is more conservative than required; at this point the logic
state of the node should be 1. The pullup guarantees a logic 1 with the
unknown connection to DH, only leaving doubts about the strength of the
value (somewhere between weak and driven).

Proponents of cross-product value sets might point out that the analysis
would have generated a different answer if the transistors had been discov-
ered in a different order. The somewhat embarrassing ability to produce
two different answers for the same network, both correct, is caused by the
fact that the merge operation is not associative when connections are made
through transistors with X gates. In fact, most incremental simulators that
use cross-product value sets perform the incremental analysis in an order
that yields a reasonable answer on the example above. Unfortunately, it is
usually possible to confound them with more complex circuits containing
X’s; while such circuits are not commonplace, they often crop up during
network initialization when all nodes start off at X.t

In conclusion, it is possible to build effective simulators using cross-product
value sets; however, they can make conservative predictions on circuits that
contain X’s. In practice, this leads to difficulty in initializing some circuits
and to occasional over-propagation of X values.

Interval value sets

The difficulties with the cross-product value set arise because of its separa-
tion of the notion of strength and logic state. Once a node value is set to
an X value at some strength, it cannot return to a normal logic state unless
overpowered by a stronger signal; if a node is set to the strongest X value,
it stays at that value for the rest of the computation. As in the example
above, this leads to conservative predictions when the strongest X value is
chosen because of the lack of suitable alternatives. Specifically the difficulty
came about because the simulator had to pick the highest strength to be
on the safe side; there was no value available that would indicate that the
logic low signal which contributed to the intermediate X value was of very
low strength and hence might be overridden by later network components.

t [Bryant81] suggests using an incremental calculation only for subnetworks of
nodes connected by non-X transistors. Once these values have been computed, a
separate computation merges subnets connected by X transistors. Since this com-
putation has global knowledge of the network, it can avoid the problems mentioned
here.
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This suggests a different approach to constructing the set of possible nodes
values, one based on intervals. First one starts with a set of node values
with a range of strengths and 0/1 logic states, for example, the six non-X
states used above: {DH, DL, WH, WL, CH, CL}. Then additional values
are introduced by forming intervals from two of the basic values; if there
are six basic values, then there are (5) = 15 such intervals, leading to a
total of 21 node values altogether.

DH ° I
logic high WH ° I I
2]
8L
logic low WL ° I I
DL °

Figure 4.4. The 21 node values of the interval value set

Intervals represent a range of possible values for a node. The size of the
range is related to the strength of its end points. If we arrange the six basic
values in a spectrum ranging from the strongest 1 (DH) to the strongest 0
(DL), the possible node values can be shown graphically, as illustrated in
figure 4.4. Intervals that do not cross the center line correspond to a valid
logic state: intervals above the line represent logic high values, and those
below the line, logic low. Intervals that cross the center line represent X
values. (The X values of the previous section correspond to intervals with
equal strength end points: DX = [DL,DH], WX = [WL,WH], and CX =
[CL,CH].) Thus, X values result from ambiguity about which of the base
values best represents the true node value. As will be seen below, this is
more satisfactory than thinking of X as a third, independent logic state.

When the simulator merges two node values, it chooses the smallest interval
that covers all the possible node states. However, unlike the cross-product
value set, the interval set can represent X values without loosing track of the
strengths of the signals that lead to the X values. Consider the problems
raised by figure 4.3(b). Using an interval value set, the resulting node value
is naturally represented by [CL,DH], an interval that corresponds to an X
logic state. When the pullup is discovered (figure 4.3(c)), the simulator can
narrow this interval to [WH,DH] since the pullup overpowers the weaker
CL value. This corresponds to a logic high signal—a sensible answer.

An algebra for calculating the result of merging two interval node values is
developed in [Flake83]. With an interval value set, the merge operation is
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commutative and associative, and the network can be processed in any order
without affecting the final node values. The extra 12 values introduced
by the interval value set are needed to carry sufficient information about
how the current value was determined, to ensure that the final answer is
independent of the processing order.

The examples above suggest the following conjecture about the correct size
of a node value set. Assuming that one has s different signal strengths and
two logic levels (0 and 1), then 25+ (%) values are needed to ensure that the
signal algebra is well-formed. In simulators with too few states, some states
take on multiple meanings; for example, the DX value in the cross-product
value set is used to describe nodes that fall into 5 separate values in the
interval value set:

[DL,DH] [WL,DH] [CL,DH] [WH,DL] [CH,DL]

This lack of expressive power on the part of cross-product value sets is what
leads to pessimistic predictions for node values in certain networks.

4.2 Developing the switch model

Switch models of MOS circuits are of interest since a switch is the sim-
plest component that meets the criteria outlined in Section 1: switches are
inherently bidirectional and the logic operations they implement can be
computed with acceptable efficiency in large networks.

Randy Bryant [Bryant79], one of the first to apply switch-level simulation
to MOS transistor networks, viewed the network as divided into equivalence
classes. Two nodes are equivalent if they are connected by a path of closed
switches. Nodes in the same equivalence class as VDD are assigned a logic
high state; those equivalent to GND, a logic low state. A pullup (a depletion-
mode transistor which is always on in the switch model) gives the node to
which it is attached a special property: if an equivalence class of nodes does
not contain either VDD or GND, but does contain a pulled-up node, all the
nodes in the class are assigned a logic high state. Finally, if an equivalence
class contains neither an input nor a pulled-up node, it is “storing charge”
and maintains whatever logic state it had last.

The simulator based on this switch model iteratively calculates the equiv-
alence classes for all the nodes in the network until two successive calcula-
tions return the same result (i.e., no nodes change state). Unfortunately
this pure switch model has some deficiencies:
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(i) Switches in indeterminate states (those with gate nodes of X)
make the equivalence calculation somewhat more difficult. The
desired computation is inefficient since it involves a combinatorial
search; all combinations of on/off assignments to switches in the
X state need to be investigated to determine whether a switch’s
state makes a difference. If the network is unaffected by a switch’s
state, the switch can be ignored; otherwise all affected nodes are
assigned the X state.

(ii) The equivalence calculation is much more time consuming than
necessary since it deals with the whole circuit rather than focusing
only on the parts which are changing.

(iii) In certain circuits transistor size is important, and the notion of
size cannot be expressed in the pure switch model. A pullup is
a trivial example: viewed as a switch it was always on, but more
“weakly” than the “strong” switches in the pulldown. The size
of transistors also determines the “strength” of various driver cir-
cuits; for example, it is common for the write amplifier of a static
memory to force a value into a memory cell by simply overpower-
ing the weaker gate in the cell itself.

The remainder of this section investigates an approach to solving the first
two problems outlined above. The third problem is addressed with some
success by the linear model which uses size information not only to calculate
node values but to provide timing information as well.} The simulator
adopts a model where each node value is computed via a global examination
of the network. The result is a calculation very similar to that implemented
by the linear model, except that abstract “logical” resistances (R, = 0, 1,
and oo) are substituted for the “real” resistances used in the linear model.

4.3 The global switch model

The global simulator calculates a node’s value by computing the effect of
each input on the node of interest. The simulation is global in that each
node value is based directly on the values of the inputs to which it is con-
nected. Thus, the values of non-input nodes do not enter into the com-
putation. This means that 0, 1, and X will suffice as final node values; a

t Bryant [Bryant81] proposes extending the switch model to include a hierarchy of
switch sizes, a generalization of the ad hoc solution for pullups. His thesis develops
an algebra, in the spirit of Boolean algebra, for dealing formally with such networks.
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node state need only capture the logic state of the node and no strength
information is necessary.

Node values in the global switch model

Each transistor switch in the network is assigned a state determined from
the transistor’s type and the current value of its gate node. This state mod-
els the switch-like qualities of the source-drain connection without trying
to capture any more detailed information about the connection—a simpli-
fication of the linear model.

The state of a transistor switch summarizes the type of connection that
exists between its source and drain nodes. For MOS circuits, the possible
switch states are:

open no connection, the state of a non-conducting n-channel
(gate = 0) or p-channel (gate = 1) transistor.

closed source and drain shorted, the state of a conducting n-
channel (gate = 1) or p-channel (gate = 0) transistor.

unknown uncertain connection between source and drain, the state
of an n- or p-channel transistor whose gate is X.

weak the state of a depletion transistor. Depletion devices are
always assigned this state, regardless of the state of their
gate nodes.

The relationship between a switch’s state, its types, and its gate value is
summarized in the figure 4.5.

drain logic(gate) n-channel p-channel depletion
1 closed open weak
gate o- - — 0 open closed weak
X unknown unknown weak
source

Figure 4.5. Switch state as a function of transistor type and gate voltage

In the global simulator, the value of a node is determined by the inputs to
which it is connected and the states of the intervening switches. During
the calculation of a node’s value, the simulator uses the interval node-value
set presented in figure 4.4. When the calculation is complete, the resulting
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interval is used to determine the final logic state of the node, using the
following formula.

0 CL [CL,WL] [CL,DL] WL [WL,DL] DL

final logic state = { 1 DH [DH,WH] [DH,CH] WH [WH,CH] CH

X all other values
The calculation of a node’s value begins by discovering all the inputs which
can be reached from the node by paths of closed, weak, and unknown
switches. If no inputs can be reached, the final logic state of the node is
determined by a charge sharing calculation described in the next section.
If one or more inputs can be reached, their contribution to the node’s value
is determined by an incremental calculation which starts at the inputs and
works its way back toward the node.

The value of a logic low input is DL; the value of a logic high input is
DH. As the calculation works back toward the node of interest, it computes
an effective value that indicates the effects of intervening switches on the
original input value. The effect of a switch on a value it transmits is specified
by the switch function, shown in figure 4.6. The effect of a switch on a value
is a function of the value and the switch’s state; the relationship is tabulated
in table 4.2. A new value, ), is introduced to describe the value transmitted
by an open (non-conducting) switch, i.e., no value at all. The value X is
weaker than CH or CL, and corresponds to a logic state of X.

input
L
—To L—s
value = switch(o;, input value)

Figure 4.8. Effective value of an input after passing through a switch

When two paths merge, their effective value is determined using the N
operation introduced earlier, as shown in figure 4.7. The N operation is
defined using the lattice shown in the figure 4.8. Following the procedure
outlined in figure 4.7, the contributions of all inputs connected to the node
of interest can be reduced to a single interval. This interval is merged (using
N) with the contribution from the node’s current logic state

CL if current logic state = 0

contribution of current state = { CH if current logic state = 1
[CH,CL] if current logic state = X

to give the final interval characterizing the node’s new logic state.
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switch state

value open closed weak unknown
DH A DH WH [DH, )]
[DH,WH] A [DH,WH] WH [DH,A]
[DH,CH] A [DH,CH] [WH,CH] [DH,)]|
[DH,CL] A [DH,CL] [WH,CL] [DH,CL]
[DH,WL] A [DH,WL] [WH,WL)] [DH,WL)]
[DH,DL] A [DH,DL] [WH,WL] [DH,DL]
WH A WH WH [WH, ]
[WH,CH] A [WH,CH] [WH,CH] [WH,A]
[WH,CL| A [WH,CL] [WH,CL] [WH,CL]
[WH,WL] A [WH,WL] [WH,WL] [WH,WL]
[WH,DL] A [WH,DL] [WH,WL)] [WH,DL)|
CH A CH CH [CH,)]
[CH,CL)] A [CH,CL)] [CH,CL] [CH,CL]
[CH,WL] A [CH,WL)] [CH,WL] [CH,WL]
[CH,DL] A [CH,DL] [CH,WL] [CH,DL]
CL A CL CL [A,CL]
[CL,WL] A [CL,WL] [CL,WL] [A,WL]
[CL,DL] A [CL,DL] [CL,WL] [A,DL]
WL A WL WL (A, WL]
[WL,DL] A [WL,DL] WL [A,DL]
DL A DL WL [A,DL]

Table 4.2. switch(o,value) as a function of o and value

L
value4 —Ia—l-\—

I +—
valuep g L —

o2

(a) two values to merge
switch(oy,value,) }
switch(og,valueg)

(b) values including effect of switches
switch(o,values) N
switch(oz,valueg)
(c) merged value

Figure 4.7. Merging the values for two paths which join
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[DH,DL
DH DL

[DH,WL] [WH,DL)]

=

[DH,WH] [WH,WL] [WL,DL]

S/ \./ /
[DHCL] wH Wi  [CH,DL]
[DH,CH] [WH,CL] [CH,WL] [CL,DL]
7\ N/ N\

[DH,X] [WHCH [OHCL] [CL,WL] [\,DL]

/ N/ \/
WH)  CH . (AWL

[CH,A]  [ACL]

AN S /

Figure 4.8. Lattice for interval-node value set

nE
1-@

Figure 4.9. Example circuit

L
DH— — L WH] L L

_I_l_l I uninown CL unKknown CL DL uninown CL
DL —josed DL

(a) (b) (c)
Figure 4.10. New-value calculation for circuit in figure 4.9
As an example of how the new-value calculation works, consider the circuit

shown in figure 4.9. Assume that the current logic state of the output is 0.
The new-value calculation for this circuit is shown in figure 4.10. The final
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interval for the output node is CL N [A,DL] = [CL,DL] which corresponds
to a logic low state. This makes sense; the previous state of the output
node was logic low, so the uncertain connection to the inverter does not
affect its logic state, just the strength with which its driven. Note that it

is important to merge the values of paths that join before continuing with
the calculation since

switch(o, a N B) # switch(o, ) N switch(o, B)

when using this particular value set and switch function. For example, if
the WH and DL values had been merged after transmission by the switch in
the unknown state, the final interval for the output node would have been
[DH,WL], which corresponds to an X logic state. The calculation described
here performs all possible merges before transmitting the result through
the appropriate switch.

The global simulation algorithm

This section outlines the basic steps for propagating new information about
the inputs to the rest of the network, recalculating node values (where
necessary) using the global value calculation in the previous section.

When a node changes value, it can affect the network in one of two ways:

(i) directly, through source/drain connections of conducting transis-
tors.

(ii) indirectly, by affecting the state of transistor switches controlled
by the changing node. This is turn can cause the source and drain
nodes of those switches to change value.

The global simulator accounts for these two effects using to different mech-
anisms. Directly affected nodes are handled implicitly by the new-value
computation which recomputes new values for all directly affected nodes
whenever a node changes value. This is a reasonable organization: if A di-
rectly affects B, then B directly affects A; it makes sense to compute both
values at the same time since they are closely related. Direct effects are not
handled implicitly, however, when the user changes the value of an input
node. In this case, the simulator invokes the new-value computation on the
input, not to recompute the input’s value (which is set by the user), but to
recompute the values of all directly affected nodes.

The indirect effects of a value change are managed by an event list that
identifies all transistor switches that have changed state. Actually, the event
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list keeps track of the nodes that have changed, but this is equivalent since
the network data base maintains a list of transistors controlled by each node.
The simulator operates by removing the first node from the event list, and
then performing a new-value computation for the sources and drains of all
transistors controlled by that node. The new-value computation accounts
for all the direct effects of the new transistor state and adds events to
the event list if indirect effects are present. This process continues until
the event list is empty, at which point the network has “settled” and the
simulator waits for further input.

while event list not empty {

n := node associated with first event on event list

remove first event from event list

update logic state of n to new value

for each transistor with n as gate node
set COMPUTE flag for source and drain

for each transistor with n as gate node {
if COMPUTE still set for source, compute new value for source [fig. 4.14]
if COMPUTE still set for drain, compute new value for drain

}
}

Figure 4.11. Main loop of global simulation algorithm

Finding nodes affected by an event is straightforward; recomputation of val-
ues is needed for the sources and drains of all transistors with the changing
node as gate. For example, if the node marked (*) in figure 4.12 changes,
nodes B and C need recomputation. Of course, node D also needs to be
recomputed, as will be discovered during the processing of B and C (see
below).

(*) X
L L
[ B e I

i ] lﬁlgl—l

Figure 4.12. Event for node (*) involves nodes B and C

To recompute the value of a given node, the simulator first makes a con-
nection list containing all nodes connected to the first node by a path of
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conducting transistors. The idea is to start with a node known to be af-
fected by an event, and then find that node’s electrical neighbors, and so
on, halting whenever an input is reached. In the example above, if the (*)
node’s value is 1, the connection list for node B contains nodes B, C, and
D. If the (*) node’s value is 0, the connection list for node B contains only
node B. Node A is not included in the list in either case because it is not
connected to node B by a path of conducting transistors. In the code in
figure 4.13, which computes the connection list for a given node, the terms
“source” and “drain” are used to distinguish one terminal node of a transis-
tor from the other, and do not imply anything about the terminals’ relative
potential. The connection list drives the new-value computation, shown in
figure 4.14.

initialize list to have starting node as only element
set pointer to beginning of list
while pointer not at end of list {

n := node currently pointed at

for each “on” transistor with source connected to n

if drain is not an input and is not on list
add drain to end of list
advance pointer to next list element

}

Figure 4.13. Non-recursive routine to build connection list

make connection list starting with given node [fig. 4.13]
for each node on connection list {
compute interval value for node [fig 4.15]
determine new logic state
if different from old logic state
enqueue new event
}

reset COMPUTE flag for each node on connection list

Figure 4.14. Subroutine to compute new value for node

The value of each node is determined in accordance with the procedure
described above. New events are added to the end of the event list whenever
a node changes value. If a changing node is already on the event list, nothing
happens (the node is not moved to the end of the list).

For efficiency, each affected node’s value is only computed once while pro-
cessing a given event. The connection list ensures that all affected nodes
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are recomputed; the COMPUTE flag ensures that once a node has appeared
on some connection list, it will not be resubmitted for processing during
the current event.

The computation of a node’s value is easily described by a recursive proce-
dure which analyzes the surrounding network (see figure 4.15). The variable
LOCAL-IV is a stack-allocated local variable of the subroutine. Returning to
the example in figure 4.12, assuming that the (*) node’s value is 1, and that
the old values for B, C, and D are B =1, C = 0, and D = 0, figure 4.16
shows the calls which are made when computing the new value for node C:

if node is an input
return DL, DH, or DX, as appropriate
else {
LOCAL-IV := contribution of current logic state
set VISITED flag for current node
for each “on” transistor, t, with source connected to current node
if drain does not have VISITED flag set {
recursively determine interval value for drain node
LOCAL-1V := LOCAL-IV N switch(o¢, drain’s interval value)
}
reset VISITED flag for current node
return LOCAL-IV

}

Figure 4.15. Subroutine to compute interval value for node

4 S e
T o

(a) original circuit (b) circuit as seen by tree walk

Figure 4.17. The tree walk traces out all possible paths

Marking each visited node (by setting its VISITED flag) avoids cycles; this
keeps the tree walk expanding outward from the starting node. The VISITED
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compute-params(C)
LOCAL-IV = CL
compute-params(D)
LOCAL-1IV = CL
compute-params(VDD)
return DH
LOCAL-IV = CL N WH = WH
compute-params(GND)
return DL
LOCAL-IV=WHNDL = DL
return DL
LOCAL-IV = CL N [A,DL] = [CL,DL]
compute-params(B)
LOCAL-IV = CH
return CH
LOCAL-IV = [CL,DL] N CH = [CH,DL]
return [CH,DL]

Figure 4.16. Trace of interval value computation for example in figure 4.12

flags are reset as the routine backs out of the tree walk, so all possible paths
through the network are eventually analyzed. If the network contains cycles
(see, e.g., figure 4.17), the tree walk might lead to more computation than
a series/parallel analysis; this is a problem for circuits containing many
potential cycles (such as barrel shifters), especially during initialization
when many of the paths are conducting because control nodes are X. To
speed up the calculation, a node’s VISITED flag can be left set, restricting the
search to a single path through a cyclic network. This technique produces
correct results only if paths leading away from a node are explored in order
of increasing resistance, ¢.e., one must ensure that the first time a node is
reached, it is by the path of least resistance. Of course, the flags must be
reset once the entire computation is complete; fortunately, the connection
list provides a handy way of finding all the nodes that are visited without
resorting to yet another tree walk.

Interesting properties of the global algorithm

The event list serves to focus the attention of the global simulator; new
values are computed only for nodes which appear on the event list or which
are electrically connected to event-list nodes. Portions of the network that
are quiescent are not examined by the simulator. Algorithms that have
this property are said to be selective-trace or event-driven algorithms and
generally run much faster than algorithms which are not event driven [Szy-
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genda75].t

An interesting implication of selective trace is that special care must be
taken to ensure that “constant” nodes, such as the output of an inverter
with its input tied to GND, are processed at least once (otherwise they will
have the wrong values). One technique is to treat VDD and GND as ordinary
inputs when first starting a simulation run—sort of a power-up sequence
as VDD and GND change from X to 1 and O respectively. Computing both
the direct and indirect consequences of changes in VDD and GND might
involve a tremendous amount of computation since the whole circuit is
affected; often only computing the indirect consequences is a sufficient and
less costly alternative.

Although there is no explicit mention of time in the global simulator, the
first-in, first-out (FIFO) processing of events imposes some ordering on the
changes of node values. This ordering is similar to, but not the same as, the
unit-delay ordering used by many gate-level simulators. In an event-driven
unit-delay algorithm, the output of each gate that had an input change is
recomputed using the current values of the input nodes. The new output
values are saved and imposed on the network only after processing all gates.
The net effect is that each computation cycle (representing a unit of time)
propagates information through one level of gate, i.e., each gate has unit
delay. Because changes in node values are imposed all at once, values change
simultaneously, which can lead to problems in circuits containing feedback
paths.

The global simulator implements a pseudo unit-delay algorithm. New
events are added to the end of the event list, so the oldest changes are
processed before any consequences of those changes are processed. Thus,
FIFO event management leads to the same sequence of gate evaluations as
a unit-delay algorithm. However, because the global algorithm changes
values in the network incrementally rather than all at once, it is possible
to find circuits that behave differently under the two simulators, e.g., the
circuit shown in figure 4.18. A 0-1 transition on the input causes a unit-
delay algorithm to loop forever. The global algorithm predicts only one

t Exceptions to this rule are some hardware-based simulation algorithms, such
as programs run on the Yorktown Simulation Engine [Pfister82]. The builders of
the YSE point out that simulations might well run slower because the extra com-
munication and branching needed to implement selective trace would compromise
the parallelism and pipelining used to great advantage in the YSE. However, if suf-
ficiently large portions of the circuits could be ignored, the overhead of selective
trace is probably worth the investment.
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transition—the output of whichever gate it processes first. Neither answer is
completely correct; the actual circuit enters a meta-stable state on a 0-1 in-
put transition, eventually settling to a particular configuration determined
by subtle differences in the gains of the two gates. It will not remain in
the meta-stable state forever, so an infinite oscillation is a poor prediction.
On the other hand, the final configuration chosen by the global simulator
depends on the order of some list in the network data base. The predicted
outcome is the same each time, not necessarily the best prediction.f The
global simulator does not offer a general solution to the oscillation problem;
both simulators will oscillate on circuit shown in figure 4.19.

1-0—1—.. 1—-0
0— 10—t 0— 10—
1-0—1—.. 1
(a) unit delay (b) pseudo unit-delay

Figure 4.18. Circuit that distinguishes unit-delay from pseudo unit-delay

0— 10—

Figure 4.19. Circuit which causes both simulators to oscillate

Along the same lines, the global simulator predicts that the output of the
circuit in figure 4.20 will oscillate when the input changes from 1 to 0. The
actual output quickly rises to the balance point of the pullup/pulldown
combination. In a logic-level simulation, this corresponds to finding a so-
lution to the equation o = ~a which has the solution & = X (a reasonable
logic-level representation for the balance point). This example is drawn
from a larger class of circuits where a node is both an input and output of
the circuit. Since the new-value computation uses current transistor states

t [Bryant81] suggests that the oscillation can be detected and the offending node
values replaced by X, but the technique for determining the number of oscillations
to allow yields answers so large for circuits of any substantial size that this is not a
very practical alternative.
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(determined by current node values) to predict the new values, it is impos-
sible to predict the value of a node that depends on its own value. This
limitation has not proven to be a problem in practical circuits.

I-l 'J ©0—1—0—..
1= O—ig E \node which is both an input and output

Figure 4.20. Circuit with a node that is both an input and output

In conclusion, use of the switch model as a basis for simulation provides a
good compromise between the need for accuracy and the need for speed.
Switch-level simulators are emerging as the ideal companion for circuit-
level simulators—together the simulators provide for most of the simulation
needs of current-generation VLSI design.

5. Gate-level Simulation

Gate level simulation is similar in many ways to the switch level techniques
presented in the previous section. The major difference is that the basic
modeling element is a unidirectional gate rather than a bidirectional switch.
Each gate has one or more inputs and a single output; if several gate outputs
are shorted together in the actual circuit—e.g., on a tristate bus—it is
customary for the circuit preprocessor to add additional gates to accomplish
the wired logic function explicitly. The net result is that the value of each
node is determined by exactly one gate. The fanin of a gate is a list of
nodes which are the inputs of the gate; the fanout of a gate is a list of other
gates which have the first gate’s output node as an input. Whenever a node
in the fanin list of a gate changes value, the gate should be resimulated;
whenever a gate’s output changes value, all the gates on the fanout list
should be resimulated. These lists provide a natural database for event-
driven simulation.

Inside the simulator, each type of gate is modeled by a subroutine (or
simple table) which computes the new value of the output from the current
values of the inputs. Gate types may range from simple Boolean functions
(NOT, AND, NOR, etc.) to complex modules (arithmetic logic units, UARTS,
etc.). More complex modules may have internal state in addition to that
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provided by the fanin and fanout nodes; this state is maintained in a per
gate database constructed when the network was read into the simulator.
The digital logic implemented by gates is well matched to the operations
implemented by a computer, so it is not surprising that gate-level simulators
offer the best performance of all the simulators discussed in this paper.

The technology behind most gate-level simulators is similar to that for
switch-level simulation presented in the previous section. Node values are
typically drawn from a cross-product value set with the number of strengths
determined by the circuit technology: a single strength suffices for bipolar
gate arrays (often with a fourth high impedance logic state added); three
or four strengths are commonly used for MOS logic. The HILO gate-level
simulator uses the interval value set presented in section 4.1. Recently there
has been some escalation in the size of the value sets as various vendors
strive for product differentiation; however, even these simulators follow the
basic strategy outlined in section 4.1.

Event-driven simulators are the rule, although some gate-level simulators
specialized for synchronous logic do away with events altogether and eval-
uate each gate once per clock cycle in an order determined by the gate’s
distance from the circuit’s inputs. Events are scheduled with either unit de-
lay or a variable delay which depends on the particular gate and direction of
the transition. Some simulators provide for a min and max delay and aug-
ment the possible node values to include R (rising) and F (falling) states.
Many simulators implement an inertial delay model where the output of
a gate is constrained not to change more rapidly than its intrinsic delay.
Output transitions disallowed under this model are reported as spikes to
the user, and, in some simulators, the output node is set to an error state.

5.1 Fault simulation

Gate-level simulators are most useful when a node-by-node modeling of a
circuit is desired, but a one-to-one mapping between circuit components
and model components is not required. One application in which gate-level
simulation excels is fault simulaticn where the designer wishes to determine
which potential circuit faults are detected by a set of test vectors. The most
common fault models, called stuck-at faults, fix the values of certain nodes
in the circuit, 4.e., individual nodes are stuck at 1 or stuck at 0. The
designer specifies which nodes are to be faulted, and then has the simulator
determine what percentage of the faults are detected by the test vectors.
Since the faults are on a per node basis, gate-level simulation is well suited
to this sort of application—the more detailed component models provided
by switch-level and circuit-level simulation are not needed.
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Since the number of potential circuit faults is proportional to the number
of nodes, a large number of test vectors is required to diagnose a circuit of
any reasonable size. This implies that large amounts of simulation time will
be required to develop the test vectors and verify their coverage. One al-
ternative available to the designer is concurrent fault simulation [Ulrich73].
A concurrent simulator is a gate-level simulator which has been modified
to run many simulations of the same circuit simultaneously. The simulator
maintains a single copy of the circuit database and as many copies as re-
quired of node values and pending events. In concurrent fault simulation,
all the simulations use the same test data, but differ in which nodes have
been faulted. In the worst case, for n simultaneous simulations, the node
value and event storage might be n times as large as for a single simula-
tion, and no improvement in runtime will be seen over that for n sequential
single-machine simulations. However, it is usually the case that the states
of many of the faulty machines converge after only a small amount of sim-
ulation and the databases for those machines can be collapsed into a single
database. If the fault is detected early on, the database for the correspond-
ing machine can be merged with that of the “good” machine simulation.
In either case, the total amount of work required to complete n simulations
is usually far less than that required for n separate simulations. A care-
fully implemented concurrent fault simulator can achieve a performance
improvement of several orders of magnitude.

5.2 Hardware accelerators

A second approach to speeding up gate-level simulation is to provide special
purpose hardware tailored for that purpose. Some vendors have simply
provided special microcode for their processor as a way of tailoring the
machine’s operations to the requirements of simulation. In such cases,
speed improvements are usually limited to at most a factor of ten—similar
to what one can achieve by moving to a faster computer.

Others have turned to multiprocessing architectures in order to achieve
more impressive gains. The IBM Yorktown Simulation Engine (YSE) [Pfis-
ter82] uses up to 256 processing elements interconnected by a high band-
width 256x256 crossbar. Each processing element is a pipelined table-
lookup unit which can evaluate a five-input logic equation using a four-
valued logic once every 80ns. The inputs to the equation are read from
a local node memory; the output can be stored in the local memory or
transmitted over the crossbar to other processing elements. In any given
cycle, the processing element either evaluates an equation or reads and
stores a value from the crossbar. The total capacity of the machine is four
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million equations, one million nodes, and an ability to process over three
billion events per second! The machine is not event-driven; each processing
element evaluates its equations in order. Often the equations can be or-
dered and distributed among the processing elements so that only a single
pass is needed to simulate the actions of a large digital circuit. Using a
straightforward compilation strategy, feedback in the circuit may necessi-
tate several passes through the equations before the simulation is complete.
More sophisticated compilers can eliminate this extra overhead for most
circuits.

A different strategy is pursued by Zycad [Zycad83] and, more recently, Sili-
con Solutions: they have chosen to build a slower, event-driven engine. The
basic operation of these machines is an equation evaluation by table-lookup
similar to that of the YSE; however, changes in node value are remem-
bered on an event list which is used to determine which equations need re-
evaluation. The machines have multiple processor elements interconnected
by a medium speed message bus used to transmit event information. Each
processing element can process approximately 500,000 events per second,
about twenty times slower than the YSE. Both companies have recently
announced a concurrent fault simulation capability.

The jury is still out as to which architecture provides the best performance.
In many digital designs, most of the circuit is active every clock cycle, sug-
gesting that event-driven techniques provide only a small advantage over the
strategy of complete re-evaluation. Thus, for single-machine simulations,
the YSE architecture may be the better performer. However, the event list
is an important part of concurrent simulation—it provides the part of the
database needed to detect when two machines can be merged for the re-
mained of the simulation. Thus, for concurrent simulation, event-driven
architectures may be the best choice. Stay tuned for further developments.

To summarize: gate-level simulators have much in common with switch-
level simulators, differing mainly in the basic modeling element. Gate-level
simulation really shines in applications, such as fault simulation, where the
lack of detail at the component level doesn’t really matter to the designer.
The ease with which hardware accelerators can be built for gate-level oper-
ations probably means that gate-level simulation will remain an important
tool in the design of VLSI circuits for the foreseeable future.
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Abstract

A hierarchical formulation of the differential-algebraic systems describing
circuit behavior is presented. A number of algorithms that have proven ef-
fective are reviewed. These include multidimensional splines that preserve
monotonicity, sparse direct and iterative methods for the linear equations,
damped-Newton and Newton-iterative techniques for the nonlinear equations,
continuation methods, and low-order time-integration formulae. Some aspects
of time macromodeling are described.

1 Introduction

Circuit simulation has been of interest to the engineering community for a number
of years. Although a variety of timing and logic simulators are now available, analog
simulation of crucial subcircuits or even significant portions of an entire integrated
circuit is often done. Simulation continues to be more cost effective than repeated
fabrication of integrated circuits.

The emphasis here is on general purpose numerical algorithms that are appli-
cable in circuit analysis rather than on the details of a particular implementation.
It is our belief that modern numerical analysis can play an important role in the
construction of an effective simulator.

This paper is organized as follows. The formulation of the circuit equations
is described in the next section (§ 2), with emphasis on voltage-controlled circuit
elements. The remaining sections discuss table representations for device constitu-
tive functions (§ 3), linear-algebra techniques for linear DC operating-point anal-
ysis (§ 4), Newton-like methods for nonlinear DC operating-point computations
(§ 6), continuation algorithms for transfer analysis (§ 5), low-order time-integration

*Murray Hill, New Jersey 07974, USA.

tThis work was partially supported by AT&T Bell Laboratories, the Microelectronics Center
of North Carolina, and the Office of Naval Research under Contract N00014-85-K-0487.

tDepartment of Computer Science, Durham, North Carolina 27706, USA.



106 VLSI CAD Tools and Applications

schemes (§ 7), and circuit macromodeling (§ 8). Note that much of the material in
§ 3-7 can be found in [9,2,1,10].

2 Formulation of the circuit equations
The overall behavior of a circuit is governed by the individual devices. (We will

concentrate on voltage-controlled devices to simplify our discussions.) For example,
a nonlinear resistor could be represented mathematically as

i2 = fluz —w) (1)
where u; and us are the node voltages at the terminals and i, is the current asso-
clated with the second terminal. Conservation of current implies that i; = —i3. As

a further example, a nonlinear capacitor obeys the following relation

iz = % (uz —u1), (2)

where g(v) represents the charge.

Nonlinear resistors and capacitors are simple devices whose currents are governed
by differences of node voltages at the terminals. More complicated elements are
easily constructed. Consider, for example, a nonlinear resistor and capacitor in
series (see Fig. 1). The current is given by

b2 = flw — ) = Eq(us — w) 3

where u; and ug are the terminal voltages and w is the internal node voltage between
the resistor and capacitor. Once again conservation of current guarantees i; = —is.
Clearly, the internal voltage state w must be solved for given u® = u(to).

uy u2
A !

\-

1€
LAY
w

Figure 1: Series RC.

The most important device for MOS integrated circuits is the transistor. A
transistor is four-terminal device whose terminal currents obey the following relation

g d
ig = f(vdsy Vgs, vbs) + aQ(vdSa Vgs, vbs) (4)
iq

where vog = uq — ug and s, g, d, and b correspond to the source, gate, drain, and
bulk terminals, respectively. Kirchhoff’s current law implies i, = —(is + i + iq).
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Note that this form assumes the so-called quasi-static approximation. In nMOS
technology, ig = —i; becomes appreciable when vgq; # 0 and vy, exceeds the thresh-
old voltage vr, which is positive for enhancement transistors; depletion (vr < 0)
transistors are often used as nonlinear resistors (loads). Unless otherwise stated,
assume nMOS technology is being discussed below.

The idea of a macroelement was informally introduced above with the description
of a series RC circuit, where the internal voltage state w was not of particular
interest. Another simple 2-terminal macroelement is the inverter (see Fig. 2), which
obeys Kirchhoff equations of the form

tout = i;nh"f‘igep (5)
bin = ™ (6)

The inverter has no internal voltage states. On the other hand, the two-input
NAND (see Fig. 2) has an internal voltage state w, and w is usually of little interest
to the circuit designer.

VDD

| dep Uout
——® ot

Yin2

Uin Q—Qenh w
7

Yin1

GND

GND

Figure 2: Inverter and two-input NAND.

We will say a node is a boundary node if its voltage with respect to ground is
known (connected to a grounded voltage source). A node voltage associated with
a nonboundary node is an unknown and must be computed. (Similar descriptions
can be used with currents.) A recursive definition of a circuit is then given by:

Definition 1 A circuit is a set of k-terminal (k variable) subcircuits and nodes
N = {n; } such that:

1. Each terminal T of a subcircuit has an associated node n., a node voltage u,,
and a current i,. Moreover, i, is determined by the terminal voltages { uq }
and state voltages w, at (state) nodes {ns }, where {ns } NN = 0.
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2. Kirchhoff’s current law holds, that is, the sum of currents at each nonboundary
node n; € N is zero.

For each k-terminal subcircuit, indexed by [/, with terminal nodes U; C N and
state nodes W, we have the |W;| “internal” Kirchhoff equations

d
Ff (u,w) + 3Q{(u,,w,) =0 (7)

and the |Uj| output equations

. d
it = FP (w,w) + EQlE(ul»wl)' (8)

At each nonboundary node n;
> ity =0. 9)
Lr:n, €U, n =n;

Note that we suppress the explicit dependence of these (and later) equations on ¢,
which arises from boundary nodes.

Sy Sz S3
Wy W2 W3 (STATE
NODES)
—e
{va} o |
~NODES
[ ]

Figure 3: A circuit.
The global circuit equations can then be summarized as a coupled differential-
algebraic system for the internal (w) and external (u) voltages
Rl (u,w) = fl(u,w)+ %q’(u,w) =0 (10)
he(u,w) = fE(u,w)+% E(u, w) = 0; (11)

the first equation follows from Eq. (7) and the second from Egs. (8)—(9). Tra-
ditional circuit simulation makes no distinction between the u’s and the w’s (see
[21,37,22,26,9]). We will concentrate on this traditional view until we take up macro-
modeling in a later section so the equation of interest becomes

h(u) = f(u) + %q(u) =0. (12)
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This form is a generalization of the usual (two-terminal) equations based on
Kirchhoff’s current and voltage laws

Ai = 0eR" (13)
v = ATueR™ (14)

where A € R™™, u, v, and i are the reduced-incidence matrix, node voltages
(which includes unknowns and boundary values), branch voltages, and branch cur-
rents (which includes unknowns and boundary values), respectively, and global con-
stitutive relations

K@Gi,v)=1— (%q(v) + f(v)) =0€eR™. (15)

Egs. (1), (2), and (4) are typical components of the latter.
If Eq. (15) is linearized about a point, the resulting equation is

Ai+ K,Av=r (16)

where K, represents the partial derivatives of K with respect to v. The linearized
circuit equations can then be written in terms of the reduced-tableau matrix [21,9]

38 m

Let us consider the special case of assembling that part of the linearized circuit
equations associated with a transistor T}. Suppose the terminals of T are attached
to four nodes ny,...,n4, not necessarily distinct. Assume n; is connected to the
source terminal so it is the reference node. The piece of the reduced-incidence
matrix associated with Tj is

1 0 o0
0 0 1 a8)
-1 -1 -1
We can write
K=l ] (19)

where K,; € R**® corresponds to the constitutive relation for Ty (Eq. (4)) while
K, r represents the remainder of the circuit. Let us partition A, 7, and u similarly
as A = [A; Ag], T = (iT,i%), and uT = (uf,u}), where i; € R? and u; € R*. We
can then write the reduced-tableau matrix as

1 0 KnAf I 0 0 I 0 K,,]AT
0 I K,,RAE = 0 I 0 0 I K,,RAE . (20)
Ay Apg 0 A 0 I 0 Ap —A]K'vlz‘lgw
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Eq. (20) indicates how T} “assembles” into the lower right block of nodal equa-
tions; this can also be done using Egs. (7)-(8). This process can be iterated to
obtain the nodal equations for voltage-controlled elements and can be extended to
non-voltage-controlled elements [9]. Thus, the assembly of circuit equations resem-
bles finite-element assembly [35]; moreover, the global incidence matrix is never
formed since the assembly is done device by device.

3 Table representations of devices

The functions f and ¢ in Eq. (4) have classically been approximated in circuit
simulation by polynomials and exponentials. These are chosen to follow physi-
cal properties such as “current increases with voltage.” Different expressions are
needed for various operating regions of the transistor. Ensuring continuity of these
expressions at the interfaces, fitting various unknown parameters, and extending
the models for new device behavior is labor intensive.

3.1 Variation-diminishing splines

First consider the univariate problem. We wish to approximate a smooth monotone
function f, given data at uniformly spaced sample points t; = (j — 1)h on the
interval [0,1] where h = 1/(n — 1) and 1 < j < n. Since in our application
only a C! approximation is needed, we elect to use quadratic splines. Take knots
tj = (j —2.5)h midway between the sample points ¢;_, and t_;. (These are chosen
so that t§ = (tj41 +t;_1)/2, as is required for variation-diminishing splines.) Using
the data as B-spline coefficients gives the variation-diminishing spline [33]

S(z) =Y f(£})B;(a). (21)

(See [5] for the definition of {B;}, which are written as {B; 3} in that reference.)
Because of the local support of the B-splines, if t; < z < tj41, then S(z) depends
only on f at t_,, t5_;, and t}. In the trivial case n = 1, take S(x) = f(t).

Note that we do not use the customary multiple knots at the endpoints. We

thereby obtain B-splines that are all identical up to translation
Bj(z) = Bo(z — jh) (22)

and avoid introducing an irregular sample point near the boundary. But the defini-
tion of S(z) for x < h/2 refers to f(t%), an imaginary sample outside [0, 1] indicated
by the dotted circle in Fig. 4. We implicitly estimate this by linear extrapola-
tion from f(¢;) and f(¢t3). This implies that for £ < h/2 the spline reduces to
a linear function. Here and in the following, we only discuss the left boundary
and implicitly treat the right boundary symmetrically. This technique is used in
computer graphics under the name of “phantom vertices” [4]. This nonstandard
definition retains the properties of variation-diminishing quadratic splines defined
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with the usual multiple knots [10]. In particular, if f” is Lipschitz continuous, then
S has the following properties: S € C; if f is linear, then S = f; S(0) = f(0),
S(1) = f(1); f f is monotone or convez, then so is S; if f is quadratic, then S’ = f’;
If = SllLeion) = OR?); I1f' = S'llLojonf = O(h?); and |f' = S'| = O(h) at 0 and 1.

08
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Figure 4: B; with knots indicated by pluses. Function values are sampled at the
points indicated by o’s.

The restriction to a uniform mesh saves a factor of eight in execution time over
efficient general spline codes [5] with k = 3 and leads to improved convergence of the
derivative. Note that higher order splines would not give higher order convergence
to f, though they of course would give more continuous derivatives. A more com-
plicated code could handle multiple endpoint knots without much loss of efficiency.
A minor advantage of variation-diminishing splines is that no preprocessing of the
data is required.

3.2 Tensor products

Any linear univariate approximation process can be extended to several variables
through the use of tensor products [20]. For the variation-diminishing spline, a
two-dimensional tensor variant with the same knots in each variable is given by

S(z,y) = Y £(t},t:)B;(z)Bi(y)- (23)
ik

(In practice we use different numbers of knots in different variables; we have sim-.
plified here to avoid the otherwise bewildering indices.) If the second derivatives of
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f are continuous, then ||f — S||._j0,1] = O(h?), where h is the larger of the sample
spacings in z and y [10].

Define a bivariate function f to be monotone increasing if x < z* and y < y*
implies f(z,y) < f(z*,y*). If f is monotone, then so is S [10].

The extension to three variables is immediate:

S(z,y,2) = Y f(], 6%, )B;(x) Bi(y) Bi(2)- (24)
jkl

The computational costs of a tensor spline in p dimensions is O(]] ;) space
given n; sample points for the jth variable and O(3?) time per evaluation [20].

Our FORTRAN implementation takes 25 microseconds on a Cray XMP using
the CFT 1.15 compiler, including subroutine call overhead, for a single evaluation
of S and its partial derivatives with p = 3. In the transient circuit-simulation
application, for each set of applied transistor voltages, we need the steady-state
current and three charges, assuming no bulk leakage currents. By running these
four evaluations together, the cost per evaluation drops to 13 microseconds, which
is comparable to the cost of compact analytical models. (A version of the code has
also been used in a timing simulator [36].)

Since S is linear near the endpoints, there is a natural C! linear extension to
R. This is often an excellent approximation in transistor modeling and allows the
Newton iteration in the circuit simulator to temporarily step outside the physically
realizable region (§ 5).

If data can be sampled on general grids, coordinate transformations such as
square root in the vy, variable would reduce somewhat the number of coefficients
needed. (We would still use uniform knots, but in the transformed variable.)

We have assumed implicitly a transistor of specific length and width; for a typical
circuit simulation perhaps a dozen tables would be required. Sometimes the width
can be treated as simply a scale parameter so that fewer tables are needed.

More recently, we have experimented with linear B-splines. On coarse grids these
lead to significant errors in the Jacobians, but the Newton method (§ 5) usually
seems to be robust enough to converge anyway. It is not yet clear whether the
cheaper evaluations save enough to overcome the increase in iterations.

4 Linear-algebra techniques

After device constitutive relations have been represented (§ 3), the next problem of
interest is solving for z in

Az=beR" (25)

where A € R"™" is large and sparse (few nonzero entries per row). This problem
arises during the Newton iterations that are employed in the DC operating-point
and transient analyses (§ 5).
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Only the nonzeros of A and appropriate pointers need to be stored. We use either
the standard IA,JA A format or a variant that assumes the matrix is structurally
symmetric, that is, a;; # 0 implies a;; # 0. In our implementation, the matrices
are effectively structurally symmetric.

Sparse direct methods compute a factorization

PAPT = LDU (26)

where P is a permutation matrix, chosen by the minimum degree algorithm (once)
in an attempt to minimize fill-in [12,19], D is diagonal, and L and U are unit lower
and upper triangular, respectively. (Such a factorization is well defined when A+ AT
is positive definite.) Eq. (25) is then solved by a forward and backward substitution.
If n > 1, the cost of computing the factorization is usually much larger than the
forward and backward substitutions, which can be exploited in nonlinear equation
algorithms (§ 5).

The matrix formats and codes are documented in the literature [14,13,12,1] and,
due to space constraints here, we will defer to these earlier papers.

Iterative methods, such as conjugate gradients, seem attractive because the cost
per iteration is much lower than the cost of computing an LDU factorization. Unfor-
tunately, the nonsymmetry of A make the convergence of iterative methods problem-
atical. It is possible, however, to enhance the performance of a Newton-Richardson
algorithm (§ 5) by using Orthomin as discussed in [1].

5 Newton-like methods

The underlying circuit equations for the DC operating point or a transient time
step are of the form
h(z) =0 R" (27)

where z € R" is the vector of unknown node voltages (and possibly currents).
There are a number of approaches to solving such nonlinear systems but we will
concentrate on Newton-like methods here.

Newton’s method produces a series of iterates z; and is motivated by the fol-
lowing Taylor expansion (requiring a sufficiently smooth h)

1
hjv1 = hj + Rj(zj+1 — z;) +/O {1 (zj + s(zj+1 — 2;)) — hj}(zj41 — 2j) ds  (28)

where h; = h(z;) and h; = (Oh/0z)(z;). If we assume h;,; = 0 and neglect the
integral remainder term above, we obtain the usual Newton correction equation

h;'xj = —h;, (29)

which is well defined if A} is nonsingular. Note that Eq. (28) implies —(h})~'h; is a
descent direction, that is, z; — €(h})~'h; results in a smaller value of ||h|| for small
enough e.

The basic Newton procedure is as follows:
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Algorithm 1 Let z be an initial guess to a solution z* for which h(z*) = 0.

1. Set j =0;
2. Do
a. Solve hiz; = —h; for x;;
b. Set zj41 = z; + x;;
c. Replace j — j+1;
d. If j > m, then report failure to converge;

until ||lz;_1|| < €|zl and ||A; || < e

Step 2 is one possible stopping criterion for this iterative procedure; the two e
parameters can be adjusted to make both the change z; and the function value
small. The m parameter limits the total number of iterations allowed. (Note that
the 2-norm, ||z;||* = z] z;, is used in the remainder of this paper.)

It is well known that Newton’s method exhibits quadratic convergence, that is,
llzj+1 — 2*|| = O(]|z; — z*||?), in a neighborhood of z* [27]. There is no guarantee,
however, that lim;_,, 2; — 2* for an arbitrary 2.

The basic Newton procedure can be made more robust in a variety of ways. One
possibility is to use damping in an attempt to force ||h;|| — 0 in a monotone way,
which is motivated by the fact that —(h;)‘lhj is a descent direction. A damped-
Newton algorithm is given by:

Algorithm 2

1.Set =0,1=0, s_; =1, and s¢ = 1;
2. Do
a. Solve h)z; = —h; for z;;
b. Set zj4+1 = z; + s;T;;
c. If 1 — ||hj41ll/llhj]l < €msj, then
i. Replacel — 1+ 1;
ii. If I > L, report failure to reduce the norm,;
iii. Replace s; — s;_1(en|l2; /Il ]) /)
iv. go to step 2b to redefine z;4;
d. Set sj+1 = 85/(s; +0.2(1 = s5)[IRs1ll/l1R; ]));
e. Reset | + 0;

)

f. Replace j «— 5+ 1;
g. If 7 > m, then report failure to converge;
until ||z ]| < €1|z;]| and ||| < e2.
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Here €)s is the machine epsilon and L is usually set to 9. Step 2c enforces the so-
called sufficient-decrease condition described in [2]. Substep iii decreases s; more
and more rapidly on consecutive failures to reduce ||h;+1|| while step 2d geometri-
cally increases s; ;1 — 1 after a successful step.

With appropriate hypotheses, this damped-Newton method is globally conver-
gent and is quadratically convergent in a neighborhood of the solution [2]. One of
the necessary hypotheses is not always satisfied for circuit simulation problems. In
particular, the theory requires that ||(h})~!|| < C for all j but h’ may be (nearly)
singular when a subcircuit is (nearly) decoupled from the rest of the circuit. The
simplest example of this difficulty arises in the DC operating-point problem for the
NAND (see Fig. 2) with two zero inputs. The “don’t care” node between the two
enhancement transistors does not have a well-determined value, which is reflected
in the condition number of A’'.

There are various schemes for dealing with the singularity of h’. One possibility
is to use so-called two-parameter damping where Eq. (29) is replaced by

(W + Xjllh;ll)z; = —hy; (30)

the diagonal shift often produces a nonsingular equation but A\; > 0 cannot be
too large if the results of [2] are to apply. Another possibility is to recognize dis-
connected subcircuits and solve each of them independently by arbitrarily setting
one node voltage (deflation). Other approaches manipulate A\; without damping
(sj = 1) [3] or treat the problem via nonlinear least squares [11]. Finally, homotopy
methods may be applicable [15]. Our present implementation uses damped New-
ton (Alg. 2) with two-parameter damping, trivial deflation [9], or a variant of the
method described in [3] as options.
A number of codes employ the more general update equation

zj+1 = zj + Djz; (31)

where D; is a diagonal matrix. This scheme allows component-wise chopping of
values so an individual component of z;,; can be constrained to a physically rea-
sonable value. There is no guarantee that D;z; is a descent direction since x; and
Djx; are not co-linear in general (unless, for example, D; = s;I). Moreover, it is
possible to evaluate h(z) for arbitrary values of z using our tensor-product splines
(§ 3) so we have no need for component-wise chopping.

Step 2a of Alg. 2 is often costly, particularly if sparse direct methods are used
to compute an LDU factorization of h; followed by a forward and backward substi-
tution to compute z; (§ 4). One scheme to reduce the overall expense, the so-called
Newton-Richardson iteration, is to reuse the sparse LDU factorization of an old
Jacobian in an inner iteration. The Newton-Richardson concept starts with a uni-
formly convergent splitting of h; given by

h; = M; - N; (32)
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where ||M].'1Nj|| = |I- Mj_]h;-" < p < 1 for all j. Typically, M; represents
the sparse LDU factors of an old Jacobian h} . The actual Newton-Richardson
algorithm is the same as Alg. 2 except step 2a is replaced by the following iterative
procedure:

Algorithm 3
1. Set k = 0 and y;o = 0;
2. Do

a. Solve M;(y;jk+1 — Yjk) = —(hyjk + hi) for yj k1 — yjk;
b. Replace k — k + 1;
until [R5y, + hjll < allh;|?/llholl;
3. Set Tj = Yjk-
Here 0 < a < 1 is an experimentally determined parameter. The Newton-Richard-
son algorithm with the stopping criterion given by step 2 above results in quadratic

convergence [2]. This is intuitively appealing since the stopping criterion requires
more inner iterations as ||h;|| becomes smaller.

6 Continuation methods

Computing transfer curves is an obvious application for predictor-corrector contin-
uation methods [23,15] since most of these problems amount to solving for z()) in
h(z,\) = 0 with the voltage X ranging over [\, A]. The predictor-corrector approach
is motivated by parameterizing the equation by arc-length, s,

h(z(s), A(s)) = 0 (33)

and then differentiating with respect to s (denoted by dots) to obtain
Withah = 0 (34)
202+ 1A% = 1, (35)

where h) represents the partial derivatives of h with respect to A.
If the solution (z;,\;) and its unit tangent (Z;, A;) are known for some s;, then
we can advance to s;4; by predicting a new set of values with forward Euler

(22)=(2)+em-(2) -

and then applying a Newton-like method to the corrector equations

h(zj+1,Aj41) = 0 (37)
N(zj+1,Aj+1) = 0€R (38)
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The augmenting equation, N = 0, is often taken to be the forward-Euler pseudo-
arc-length equation

N(zj+1, Aj+1) = 27 (241 — 2) + Ai(Njs1 — X)) = (sj41 —8;) =0 (39)

which, under appropriate hypotheses, ensures the nonsingularity of the Jacobian
of Egs. (37)—(38) [23], even at simple limit points where b’ € R™™™ has rank
n — 1 and hy ¢ Range(h’). Other forms for N have been proposed but Eq. (39)
suffices for curve tracing. Note that once (2j4+1,Aj+1) has been determined then
Eq. (34) implies 241 = —Aj41(R} ;) "ha,,, and Eq. (35) normalizes (%41, j+1)
80 (2541, /'\j+1) can be determined up to a choice of sign; moreover, the solution of
the appropriate linear system is needed for block Gaussian elimination (see below)
so little additional work is required to compute the tangent.

If there are no limit points, then it suffices to predict a value using Eq. (36), fix
Aj+1, and solve Eq. (37) for z;41. This approach reacts to the local curvature of
the solution and provides a natural step size in A unlike methods that take a fixed
step in A. Of course, this leaves the problem of regulating s; ;1 — s;.

Selecting the step size sj;1 — s; can be a complicated matter. Since we are
interested in following the curve fairly closely, we could monitor the truncation error
of the forward-Euler predictor (Eq. (36)) using divided differences. Our current
implementation uses a modification of Algorithm III in [31], which regulates the
angle between the tangent (2;, A;) and the secant (z; —2j—1,Aj —Aj—1)/(s; — $j-1)-
It is sometimes necessary to repeat a step if ||zj+1 — 2;|| (or |Aj4+1 — Aj|) turns out
to be too large. This step-size selection procedure could be improved.

The augmented linear system for the Newton correction equation associated
with Egs. (37)—(38) is of the form

Al ape T b
= 40
[ all  ase T2 by )’ (40)
where A;; € R™™", a12,a21,21,b1 € R”, and as2,%2,b2 € R. In our application,
A1 =k, a12 = hy, a21 = 2, and a2 = A

Block elimination is often used to solve Eq. (40). This approach is motivated
by the block factorization

A a2 | _ I 0 An a2 (41)
agl a2 ag‘] A]_]] I 0 a2 — ag‘] A]_ll a2 )

Then the basic block-elimination algorithm is given by the following:

Algorithm 4

1. Solve Aj;w = a2 and Aj;y = by for w and y, respectively;
2. Set 2 = (b2 — agly)/(azz - u,g]lU);

3. Set z1 = y — zow.
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However, it is known that the Jacobian, represented here by A;;, becomes singu-
lar at limit points so that block elimination can be ill-conditioned. One possibility
is to use the deflated-block-elimination algorithm due to Chan [7]:

Algorithm 5 Let vy (say (1,1,...,1)T) be a guess for the left-singular vector
(associated with the smallest singular value) of A;;.

1. For j=1,...,m (say m = 2), do
a. Solve Aj1¢; = 1;_; for b;;
b. Set ¢; = ¢;/|165;
c. Solve AT, 9; = ¢, for 4;;

. Set o = 1/||;]l;

. Set ¢; = 0]'1/;_7'-

. Set a =¢Ta;z and B = 7 by;

o

o

2

3. Solve Aj1w = a12 — oy, and Aj1y = by — Biby, for w and y, respectively;
4. Set v = by — al,y, v2 = az2 — afjw, and v3 = al, Ppm;

5. Set 61 = ay1 — B2, 62 = B3 — omm, and 83 = 1/(By3 — omY2);

6. Set x5 = 6263 and z1 = y + 83(61Pm — Sow).

Step 1 of the algorithm is just inverse iteration to obtain approximations to the
smallest singular value and the corresponding left- and right-singular vectors [34,7];
it often suffices to do two or even one-and-a-half iterations (1/||¢;|| also approxi-
mates the smallest singular value).

This algorithm is effective when A;; has at least rank n — 1 (also see [8]).
Obviously, there is the cost of doing a few extra forward and backward substitutions
to approximate the singular value and vectors but this only need be done near
limit points and can often be reused for several continuation steps. There can be
difficulties near a limit point if the circuit has (nearly) disconnected subcircuits and,
hence, more complicated singularities, as mentioned earlier.

7 Time-integration schemes

Circuit equations (Eq. (12)) are not ODEs but are differential-algebraic systems
(DASs), that is, ¢' may be singular. Nevertheless, there is a history of applying
backward-differentiation formulae to such problems [17,6]. (It has recently been
made clear that DASs can be degenerate [29,18,32], but some appropriate mathe-
matical software exists [28].) Here we will emphasize a simple second-order scheme
that is well suited for use with a Newton-Richardson algorithm (§ 5); second-order
methods appear to be reasonably efficient for the circuit simulations we have per-
formed, which agrees with the previous experience [37,26].
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We make use of a trapezoidal-rule/backward-differentiation-formula (TR-BDF2)
composite method. Consider integrating Eq. (12) from t = t, to t,41 = tn + Aty,.
We apply TR to go from t = ¢, to t, + YAt,

2Gn4y + YAt frniy = 2¢n — YAt fr. (42)

This implicit scheme has a Jacobian of the form 2g;, .., +vAt,. f,, .. We then apply
the second-order backward-differentiation formula (BDF2) to go from ¢t = t,, +vyAt,
to tn+1

(2 = 7)gnt1 + (1 = VAt frt1 = 7  gnty =711 = 7)?gn. (43)

This implicit scheme has a Jacobian of the form (2 —v)q,; + (1 — 7)Atnfr41-

The TR and BDF2 Jacobians have the same form if

2 2-4

R (44)
which implies v = 2 — v/2 ~ 0.59. Assume 7 takes this value for the remainder of
this paper. With a Newton-Richardson algorithm (§ 5), it is often possible to reuse
Jacobian factorizations and still retain rapid convergence to the solution of Eq. (42)
or Eq. (43) [1].

Consider applying a one-step method y,+1 = A(AAt)y, to the usual scalar test
problem y = Ay with ® A < 0, where ® A denotes the real part of A\. Recall
that the one-step method is said to be A-stable if |[A(AAt)| < 1 for all AAt with
R AAt < 0; the method is said to be L-stable if it is A-stable and |A(AAt)| — 0 as
|[AAt| — oo [24]. However, A-stability alone may not be strong enough for extremely
stiff problems. For example, if the A-stable TR method is used when ® A < 0, then
Yn+1 = —Yn unless [AAt| = O(1) so, without proper error control, “ringing” may
occur, which can be exacerbated by a nonlinear problem. But restrictions on At
are anathema for stiff problems. On the other hand, BDF2 is known to be L-stable
so there are no restrictions on At. BDF2 has a higher truncation error than TR
and is trickier to implement since it is not a one-step method, however.

The principal truncation term for a step of TR-BDF2 (Eqs. (42)-(43)) is

C(Atn)3q®(€) (45)
where g2
Tt -2
C= 122 =) ~ —0.04. (46)

Note that |C(7)| is minimized when 0 <y =2 -2 < 1.

The composite TR-BDF2 procedure is an easily restarted, second-order, one-
step, composite-multistep algorithm, which is nearly as simple to implement as TR.
It is compatible with the Newton-Richardson algorithm. Finally, the scheme is
suitable for stiff problems requiring moderate accuracy since the TR-BDF2 method
with v = 2 — /2 is L-stable [1].
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In order to regulate the step size At,,, we need to estimate the local truncation
error (LTE). (Note that error estimation for DASs can be much more difficult than
for simple ODEs [29,28,18].) We have found that the divided-difference estimator

Tnt1 = 2CAL, [’Y_lfn - 7_1(1 - '7)-1fn+'y +(1- 7)_lfn+l] ~ C(Atn)aq(a) (47)

approximates the LTE in terms of ¢ reasonably well and is inexpensive to compute.
(There are a variety of alternatives for estimating the LTE [17,29,28,1].)

Given a per component LTE estimate, we can predict a new candidate step size
At*, expected to satisfy a specified error tolerance, by

At* = At, /T (48)
where
ITn+all
= 49
lensal (*9)
ent1i = €1lgny1,i| + €2 (50)

Here the second subscript on ¢ represents the component and €; and €3 are absolute-
and relative-error parameters, respectively, and the cube root reflects the second-
order nature of the scheme. The error measure represented by r can be insensitive
to large relative changes in small values so more conservative schemes may be ap-
propriate at times [1].

If r < 2, the step is accepted; otherwise the step is repeated with At,, — 0.9At*,
where the 0.9 is a “paranoia” factor. If for some reason the nonlinear equations
cannot be solved in a small fixed number of iterations, the step is repeated with
At, — At,/2. If the step is accepted, the next step size is taken as At,,; =
min(0.9At*,2At,) subject to minor adjustments as mentioned below. This last
rule restricts the rate of increase in order to avoid step-size oscillations.

Since input wave forms often have natural breakpoints that should be sampled
exactly at the corners for graphical reasons, we have employed the device described
in [16], which further limits the step size. In particular, if the integration is to stop
at t,, we take

ts —t
[(ts —t)/Atny1 — €]
where € is a small multiple of the machine epsilon.

Some circuit-analysis packages try to get away with much simpler step-size con-
trol schemes. One choice is to cut back the step size when the previous time step
took more than a certain number of Newton iterations and to increase the step size
when the previous step took less than another certain number of Newtons. This
approach tries to maintain a “reasonable” number of Newtons per time step. If
this scheme is applied to a linear RC network, the Newton procedure will always
converge in one iteration resulting in continual step-size increases and, thereby,
arbitrarily bad truncation errors.

Atn+l —

(51)



Aspects of Computational Circuit Analysis 121

8 Macromodeling of circuits

Recall that Definition 1 implies a hierarchy of circuit variables in the sense that we
write the global circuit equations in terms of internal w and external u voltages

Rl(u,w) = fl(u,w)+ %q’(u,w) =0 (52)
RE(u,w) = fE(u,w)+ ad; E(u,w) = 0. (53)

The goal of macromodeling is to decouple the computation of the u’s, which are
of interest, from the w’s, which are of lesser concern. Ideally, we would like to
“eliminate” the w variables and assemble equations that model the macroelements.
This is not completely possible in the transient simulation context since initial
conditions on the w variables play a role. However, momentarily suppressing the
dependence on initial conditions, we will see that macromodeling in a general sense
can be viewed as nonlinear elimination.

8.1 Macromodeling as nonlinear elimination

Assume that given u, h!(u,w) = 0 determines w(u); that is, the internal equation is
used to solve for, and hence eliminate, w given u. Note that h! is a block-diagonal
function of w for fixed u since the internal voltages of one macroelement do not
interact directly with the internal voltages of another macroelement. Suppose we
then solve the remaining equation in u, hf(u,w(u)) = 0, by a damped-Newton
scheme

E dw

[h,E + h5 EE] Au = —hF(u) (54)

v — u+ sAu, (55)

where h¥ represents the partial derivatives of h¥ with respect to its first variable.
We need the quantity dw/du. From h!(u,w(u)) = 0, we obtain

dw
hi + héa =0. (56)
This can be rewritten as p
w _
2 = —(h2) k. (57)

The Newton correction equation (54) then becomes
(¥ — hE(hL)~"hl] Au = —h(u), (58)

Eqgs. (54)—-(58) can be interpreted in the context of block Gaussian elimination.
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The Jacobian of the coupled system for the internal and external voltages
(Egs. (52)—(53)) is
we| oM (59)
A

Block Gaussian elimination gives the Schur complement in the lower right (2,2)
position

hi' — b3 (h3) 7 hi, (60)
which is what we had before. Eqgs. (54)-(58) can be seen as solving
hi K Aw \ _ 0
[ ¥ hP Au )~ "\ hE(u) (61)

by block elimination as indicated by Egs. (59)-(60). Note that the first block
equation of Egs. (61) and (56) imply the notationally obvious

dw
Aw = %Au. (62)

Indeed Eq. (62) and the zero in the right-hand side of Eq. (61) are consequences
of h!(u,w) = 0; a usual Newton-type iteration on the complete system would, of
course, replace the zero in Eq. (61) by h! (which would, in general, be nonzero)
and the relation given by Eq. (62) would not be valid. Even so, the interpretation
represented by Eq. (61) indicates that a macromodel iteration (Egs. (54)—(58)) re-
quires the same information as a complete Newton iteration. The consequence of
this interpretation is the observation that macromodeling will pay off if getting w
from h!(u,w) = 0 is inexpensive and enforcing h! = 0 requires fewer overall Newton
iterations than would be necessary to solve the complete system (also see [30]). In
table-oriented macromodeling for the DC case, we will see that we also get a bonus
of obtaining the Schur complement essentially free.

8.2 Macromodeling using tables

The static (or DC) macromodeling problem is simpler since the charges q are identi-
cally zero. Thus, the equations are nonlinear algebraic instead of nonlinear operator
equations.

For the DC operating-point problem, let us consider a particular macroelement
and suppose its terminal voltages u; are given. Then the internal state voltages
wi(u;) come from solving

F (w,w) = 0. (63)
We approximate (fit) the related terminal current function
it = FP (w,wi(w)) = Gi(w). (64)

With our tensor-product variation-diminishing spline approach, most of the Schur
complement is returned as Gj(u;) along with 4; [9]. In practice, we see quadratic
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convergence of hE(u,w(u)) = 0 to a u* correct to within the tolerance provided by
the tables.

In combinatorial logic circuits, the circuit equations can become acyclic leading
to the possibility of “numerical logic simulation.”

In [9] we summarized the behavior of a damped-Newton method used to compute
a DC operating point for a one-bit full adder made up of nine two-input NANDs
with the NANDs represented by DC macromodels (Eq. (64)). (The NAND macro-
model (Eq. (64)) was constructed by simulating a NAND (see Fig. 2) for various
prescribed values of u;n1, Uin2, and usy:.) The advantages of such DC macromodel-
ing include reducing the size of the nonlinear system (since the internal voltage w is
not needed) and alleviating some of the inherent singular behavior of DC operating-
point problems. With our current Newton schemes and models, the same one-bit
adder simulation with DC macromodels and zero inputs as described in [9] saves
at least a factor of three in execution time (due to reduced Newton iterations and
smaller nonlinear systems) for moderate accuracy requests. Additional savings are
seen if the Newton stopping criteria are tightened. Moreover, the NAND’s inter-
nal node can be ill-determined (§ 5) and this is reflected by an increased need for
damping and linear Newton convergence, unless the DC macromodel is employed.

This static table approach can be extended to the transient case. The internal
equation, h!(u,w) = 0, discretized by a one-step method, say backward Euler, with
fixed time step At is

1 1
% + flu,w) = q(%wi) =r,. (65)
Given u,, w,, and u, we can obtain w(u;u,,w,). As noted before, the above
equation can be viewed as that of an individual macroelement since the global h!
is block diagonal. The external equation, hf(u, w(u)) = 0, can then be discretized
similarly and u can be be computed by a Newton-like method using the w(u;u,, w,)
from above.
The 74(uo,wo; At) above is a linear combination of ¢’s (and, in general, f’s),
which arises naturally during the assembly of the global equations. Splines can be
used to fit the internal equation solutions

w = g(u,r,; At), (66)

which gives w(u) and dw/du. Derivatives in the r, variable are not needed.

This approach is the natural extension of the static macromodeling case. How-
ever, r, and At are new parameters. It may be possible to create a few tables for
several At values and interpolate to vary the time step.

The scheme works for the two-input NAND where

W = g(Uin, , Uin,, Yout, To; At) (67)

but the four-dimensional tables are near the practical limit.
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8.3 Operator-based macromodeling

The table approach is limited to macroelements with few internal states and external
connections. We will now study operator-based methods that have the potential of
being used on arbitrary macroelements.

Consider solving the block-diagonal system h! = 0 with some scheme suitable
for differential-algebraic systems (DASs) and then iterating on h¥ with a Newton-
like method. This requires taking Fréchet derivatives. The outer Newton correction
equation is

d

pn [q2 Y Au+ quAu} + f Au + fEAu = —hE (u, w(u)). (68)

dw/du is still needed but is no longer easily obtained. The action of dw/du on a
waveform Au can be derived by taking

[a%hl(u,w)] Au =0. (69)

Let 4
w

From Egs. (52), (69), and (70), we obtain
d
s [¢3Aw + ¢ Au] + f3 Aw + f{Au = 0. (71)

Now we can solve the coupled DAS represented by Egs. (68) and (71). Obviously,

a general waveform method could be cumbersome. (Variants of nonlinear operator
Jacobi and Gauss-Seidel [27] have proven effective for circuits with limited feedback
[25,38].)

This operator method can be substantially simplified if we restrict u(t) wave-
forms to be, say, piecewise linear, that is, u(t) = uo+a(t —to) on an interval [to, t1].
The algorithm to advance from ¢ = ty given ug and wg then becomes:

Algorithm 6 Let ag be the initial guess for the slope.
1. Set j =0
2. Do

a. Solve the block-diagonal DAS h! = 0 for w(t);

b. Compute [(dw/da)(a;)](t) by solving small decoupled linear ODE sys-
tems;

c. Using the previous step, solve [(dhF /da)(a;)]Aa = —hZ(a;) for Aa;
d. Set aj11 = a; + sAq;
e. Replace j «— j+ 1;
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until converged.

We are currently investigating a couple of variants of these operator-based
schemes. Aspects of error and time-step control and how to exploit the hierar-
chical circuit structure require additional study.
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ABSTRACT

In this paper, we give an overview of the state-of-the-art in Circuit
Analysis, Timing Verification, and Optimization. Emphasis is given to circuit
analysis, timing verification and optimization since simulation is covered by C.
Terman in this book. Also, the optimization of large circuits is receiving new
attention due to the need for timing performance improvement in silicon
compilation.
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1. INTRODUCTION

In this paper we give an overview of the state-of-the-art in VLSI circuit
analysis, timing verification and optimization. Simulation is covered in detail in
this book by C. Terman [24]. Hence, we will only cover aspects of the topic
which are relevant for the other section in this paper. Circuit analysis is a
subset of circuit simulation. Mainly, in circuit analysis, we employ numerical
analysis type algorithms, and aim at accurate solutions.

Time simulation is faster and requires less storage than circuit analysis with
a commensurate decrease in waveform accuracy. The difference in the
waveform representation for time simulation and circuit analysis was discussed
in a recent paper [25]. Only very few data points are used to represent the
waveforms for simulation. As a consequence, a speedup results for simulation
techniques and time waveforms can be computed for a large number of logical
gates. However, the waveform accuracy may not be sufficient for high
performance VLSI circuits.

In contrast, circuit analysis aims at waveforms with an accuracy in the
order of 1 percent. However, the actual accuracy of the actual waveforms may
be limited by the transistor models employed. Mathematically consistent
numerical analysis algorithms are employed. This obviously comes at the cost
of an increase in compute time as compared to simulation. To counteract this,
new algorithms and techniques have been invented. One of these new
approaches is the waveform relaxation (WR) technique [25] - [28]. This
technique has resulted in an increasing number of logic circuits which can be
analyzed simultaneously. The WR approach has been shown to have the
potential for the analysis of circuits with 10,000 to 20,000 transistors if the
parasitic and interconnect circuits do not contribute excessively to the number
of nodes.

Another area which promises to have an impact on the future of circuit
analysis is parallel processing. The WR approach is well suited for parallel
processing [31-33], [35] and we expect that the gain will be even larger for
VLSI circuits with 20000 or more transistors. Parallelism of the order of 10, if
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obtained, could have a considerable impact on circuit analysis on both
mainframes and workstations. @ The most profound effect may be for
workstations where a factor of 10 may make the analysis of reasonably sized
circuits possible.

Logic circuits delay time optimization has been attempted for more than
two decades and the literature is surprisingly rich [4] - [23]. Both bipolar e.g.
[18] and MOSFET [4]-[17], [19-23] circuits have been considered with an ever
increasing complexity. Earlier, several authors attempted to increase the
performance of single logic gate circuits for both bipolar [1] and MOSFET [3]
circuits. The design variables for bipolar circuits are usually a set of resistors
and less frequently bipolar device parameters. The main design parameters for
MOSFET devices is the size of the FET gates.

2. CIRCUIT ANALYSIS

A problem of some circuit simulators and even some analyzers is the lack
of flexibility. In fact, this problem has limited the utility of several interesting
approaches like macromodeling. An approach which is based on specialized
modeling of circuit configurations will always have limitations. Each new
circuit configuration has to be modeled before it can be used. Methods which
can solve a subclass of circuits like arbitrary configurations of MOSFET
circuits have a far greater utility. It is obvious today that the generality of
circuit analysis like ASTAP [29] or SPICE [30] is one of the reasons for their
success.

General purpose analysis programs like SPICE and ASTAP will always find
numerous other applications in time domain analysis besides transistor circuit
analysis. Further, they represent a standard against which all new analyzers
and simulators are measured not only in terms of compute time requirements
but also accuracy. In fact, accuracy is one of the most important aspects of
these programs since many simulators have problems with complicated pass
transistor circuits. We cannot expect that the speed of general purpose
analyzers will increase drastically in the future since they are based on widely
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known techniques which have been improved for more than a decade. Thus,
we should expect to see the development of special purpose analyzers to
address classes of important problems.

Special purpose programs can be divided into two classes. In the 1970’s
macromodel analyzers were devised in parallel with approximate simulators.
However, they could only compute waveforms for circuits for which
macromodels were constructed. This usually involved a time consuming
process. Most of these programs failed to find wide use.

A newer generation of programs is finding wider use since they can treat a
larger class of circuits. However, they are special purpose tools since they are
restricted to dc and transient analysis only. Also, many of them are limited to
one technology such as MOSFET transistors. At present, the waveform
relaxation analyzers Relax [27] and Toggle [28 ] are two examples. These
programs have the potential of finding a large user community if they are able
to handle arbitrary topologies.

The Waveform Relaxation (WR) approach has been applied to a variety of
circuits [26] - [28]. However, most practical implementations of WR are
limited in generality. Mainly, the partitioning problem has to be solved for the
general class of MOSFET circuits. The majority of the work has been done
with MOSFET circuits. The special purpose WR programs like Relax [27] and
Toggle [28] have to compete effectively with general purpose circuits analyzers
like ASTAP and SPICE. Hence, they provide stiff competition to any special
purpose program at least for small to medium size circuits. Also, they can
handle a mixture of MOSFET and Bipolar circuits. Combined analog and
digital circuits can easily be mixed in both approaches. Mainly, WR programs
use a small SPICE like program as the analysis "engine''. Hence, analog
circuits are accommodated by using this engine and properly partitioning the
analog part into a single partition.

The largest circuit analyzed to date with Toggle is an ALU circuit with
9000 transistors which took 75 minutes of IBM 3090 computer time which is
about a factor 100 faster than a SPICE type program.
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The improvements in compute time for the WR are due to many factors. A
few are listed below:

1. The circuit matrix (Jacobian) is subdivided into smaller matrices of size N.
The matrix solution time for a subsystem is NY where 1.2 < p < 2 for
sparse matrix code. Hence, the sum of all subsystem matrices can be
solved faster than the sparse solution of the full system Jacobian which
takes time proportional to NI?A where N is the size of the Jacobian of the
entire system.

2. The decoupled subsystems are integrated at their own rate. Hence, this
multirate decoupling of the subsystems prevents unnecessary
computations. Specifically, the most time consuming task is the evaluation
of the transistor models and many unnecessary time steps are taken in the
subsystems in a SPICE like program. Unfortunately, computations of this
type cannot be avoided in a conventional incremental program.

3. A small change in a circuit can easily be updated in a WR program by
utilizing previously computed waveforms. In a conventional program like
SPICE, the entire solution must be recomputed.

Circuit timing simulation uses up a large portion of the CPU compute time
of the entire VLSI design budget. Hence, special purpose hardware can often
be justified. Both specially designed hardware and more general parallel
processing configurations provide viable approaches to decreasing the
computation time. The two approaches can, in fact, be used simultaneously to
effectively use two levels of parallelism [32, 33].

The lower level of parallelism would typically exploit parallelism within
direct methods of circuit analysis while the higher level of parallelism might use
the parallelism inherent in WR. The parallelism in the direct method comes
from exploiting the parallelism in several of the steps of the direct method
algorithm namely, prediction and integration, forming linear equations, solving
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linear equations, and checking errors and convergence. The parallelism at the
higher level, which has larger granularity, could employ the Gauss-Jacobi or
time-point pipelining version of WR. However, a mixed scheme that orders the
computations so that subcircuits in parallel "'chains' are computed in parallel is
a good compromise [35]. This approach results from the observation that
digital circuits tend to be "wide' in that gates fan out to more than one
subcircuit. It should be possible to find a parallelism of 10 for circuits of
moderate size.

The gain obtained for parallel processing from the WR approach is expected to
be even more significant for VLSI circuits with 20,000 or more transistors. If
the parallel approach selected does not rely on specific hardware accelerators,
then the same parallel approach may be used on both parallel mainframes and
parallel workstations. These parallel structures are being investigated and built
at several universities and industrial firms [36, 37]. The most profound effect
may be for workstations where a factor of 10 may make analysis of reasonably
sized circuits possible. Although improvements in processing time have been
demonstrated, the amount of data storage and movement must also be
carefully managed if the full potential of the available parallelism is to be
realized.

3. TIMING VERIFICATION

A good timing verification model based on relatively simple ideas is given
in this section. It is important for both timing verification as well as
optimization as will be apparent from the next section. Here we will present a
model for timing verification for combinational circuits which finds wide use in
IBM [34].

The key advantage of verification over simulation is in the compute time.
Simulation by path tracing is an exponential process while this algorithm is
linear in the number of gates.
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In this model, all the logic circuits are described as inverting or
non-inverting. Both the rising and falling delays are defined by delay equations
independent of the function of the logical gates as shown in Fig. 1. This total
delay must be considered for completeness for combinational logic. The short
delay check is needed when there is clock overlap. This insures that signals do
not arrive too early so that the latches are not disturbed. The long delay check
is the one which is usually considered so that the timing constraints are met.
We can define the following signal times and delays:

a,, b, = rising waveform arrival times for signals a and b
falling waveform arrival times for signal a and b

as, bf
d,, d; = delay of output rising or falling respectively
¢, ¢f = rising and falling output arrival times

a— a—l
]—c —=C

(a.) (b.)
Fig. 1(a). Noninverting circuit, (b) Inverting Circuit

With these definitions, the long delay equations are for the inverting circuit in
Fig. 1(a).

c, = max (a;, bp) +d,

1
¢ = max (a,b) + d; D
while the short delay equations are
¢, =min (ag by) +d, 2)

¢ = min (a, b,) + d;
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For the non-inverting circuit in Fig. 1(b), the long delay equations are:

¢, =max (a,b,) +d;

3
¢; = max (ag, by) + dg )
while the short delay equations are
¢, =min (a, b)) + d, @)

Cf = min (af, bf) + df

Using this model signal arrival times can be calculated in order to verify that
they arrive neither too early nor too late. This is done by levelizing the circuits
and by adding up the arrival times at each node without considering the
function of the gates. This model has been used also for timing optimization as
will be apparent from Section 4.

4. CIRCUIT OPTIMIZATION

New techniques have been invented for the optimization of large circuits
on VLSI chips. Mainly, only a few design parameters should be used for each
logical circuit since this may severely limit the number of logical circuits which
can be optimized. Ideally, the timing model has only one global parameter per
logic circuit. An example of such a model is a MOSFET circuit where all the
FET gates are adjusted in proportion to a single design parameter W.

VLSI circuit optimization has gained much more importance with the
advent of silicon compilation. In fact, high performance silicon compilers must
take timing into account. For example, it has been shown that minimizing the
total wire length does not guarantee that the delay due to the wires is a
minimum [7]. Hence, new techniques have been deviced to optimize the
electrical performance of VLSI circuits at the large scale levels.
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Probably the most common way to adjust the timing of MOSFET
integrated circuits is the adjustment of the FET gates [4] - [11], [23]. Two
fundamentally different algorithmic techniques are employed. Analytical
nonlinear optimization techniques are used in several of the approaches
[4] - [11], [13].

In [4] - [7] a Newton optimization technique is employed. Circuits with
more than 1000 parameters were optimized and no limitations were found.
Both the compute time and storage requirements are moderate if the Hessian

matrix problem
-1
At=H g (5)

is solved in sparse form. In Eq. (5), H is the Hessian matrix and g the gradient.
Table I gives a comparison of some of the results obtained with different
optimization methods for a 138 gate circuit with 68 design variables. The
circuit was optimized until the same minimum power was obtained for all the

methods tested.

TABLEI: COMPARISON OF OPTIMIZATION METHODS

No. of

Function Compute
Method Calls Time
Davidson
Fletcher 1405 33.98
Powell
Conjugate
Gradient 1709 32.59
Newton 409 10.77

These results show that the Newton method is very economical for this
type of circuit. Further, it was found that methods based on an approximation
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of the Hessian matrix like the popular Davidon Fletcher Powell method could
not be employed with more than 100 variables. The main problem is the
iterative computation of the Hessian. :

The Newton optimization scheme requires that the macromodel have
analytical derivatives. In [4]-[7] a simple model is employed of the form

A

W =
d-B

(6)

where d is the delay and A,B are functions of the device capacitances while W
is the FET gate size. For NMOS circuits the power is proportional to the gate
size, or

P =kW @)
Hence, the total power for a circuit is given by

A
Pr = —_— 8
T 2 iTE ®)
Assuming a long delay constraint given by Eqgs. (1) and (3), the timing
equations can be written in the form

di = tO - max(tl, t2, ...) (9)

where d; is the delay to the output and ty, t,, ... are the arrival times at the
inputs. To obtain a function with analytical derivatives, the max function in
Eq. (9) is replaced by the smooth max function.

~1 - -
smax(t, tp,...) =a In(e “ +e 2 +...) (10)

where « is adjusted during the iterations. Finally, the transition times at the
different nodes are found from

ti=ti—1 —BAt (11)
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where At is given by Eq. (5) and S is found by a scalar minimization of P, with
respect to S.

This approach has successfully been applied to the optimization of several
circuits [7]. However, the most appropriate analytic formulation depends on
several factors. The type of technology has a profound impact on the
approach. It is necessary to distinguish between NMOS, CMOS and dynamic
circuits. Also, the objective function which is minimized can be power, area,
sum ‘of gate size, the placement of the circuits, or combinations of these
functions. Further, different constraints can be imposed. An example in the
above formulation is imposing a timing constraint by fixing the times at the
outputs of the circuits. We could also keep the power constraint while
minimizing the timing.

A number of other techniques have been employed besides the analytical
techniques presented above. A major problem exists in the methods based on
path delays, rather than the timing verification model presented above, since
the path problem is of exponential complexity.

The circuit placement is another design parameter which has been explored
by several authors [5], [7], [12], [17] - 18]. Mainly, the critical circuits can be
sped up by placing them closer together, a step which results in a decrease in
the capacitances. An example is the delay weighted force directed pairwise
relaxation [5], [7] where the position of a circuit connected to other circuits is
weighted by 1/delay.

Finally, a recent addition to the VLSI optimization techniques is the
redesign of the logic at hand [14], [21], [22], [23]. For example, the circuits
which participate in a critical path can be redesigned to decrease the length of
the critical path by reducing the number of logical stages. This is done at the
cost of delay in the non-critical stages. This does not represent a problem since
all paths are equally critical in an optimized circuit.

All the above mentioned optimization techniques can be combined in a
silicon compiler by applying them sequentially. For example, in [7] the
following algorithmic steps were used:
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1. Placement for distance
2. Global routing
3. Gate size optimization
4. Placement to minimize power
5. Return to 2. if not converged.
One can easily include a logic redesign optimization step in this algorithm. We
should perform steps 1. and 2. before the logic optimization step since it is
desirable to have a good estimate of the capacitances for this step.
It is clear that this brief overview does not cover this new area of research

completely. Many new results will be obtained in the near future in spite of the
fact that VLSI timing optimization already has an amazingly rich history.
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ABSTRACT

CAD Tools for Mask Generation is a general title that refers to
Computer-Aided Design software that produces as its output
mask-level descriptions of integrated circuits. The current
state-of-the-art for general mask generation in a custom design
environment is that of symbolic design. So this chapter is about
symbolic design and how it generates a mask. Included are
discussions of design capture, circuit description languages,
compaction and technology encapsulation all in the context of
the symbolic design environment. General overviews are not
given in most cases. Instead, a feel for this technology is given
through specific examples of a system most familiar to the
author.



148 VLSI CAD Tools and Applications

INTRODUCTION

Outline of chapter

Advantages of symbolic design discusses the rationale and philosophy
behind this method of designing integrated circuits. The goal in the
end, of course, is an economic one: decreasing time, increasing pro-
ductivity are ways to decrease cost. But it may also allow certain
designs to be done that were totally infeasible otherwise and it may
allow individuals to do a design that would not have done designs
otherwise.

Mechanisms for symbolic design outlines the steps in the design pro-
cess under this methodology. Many of the steps are the same as when
the design is directly laid out using a “rectangle pusher” but at each
step there are differences that are significant.

ABCD — a symbolic-level hardware description language is
a description that gets into some detail of a particular hardware de-
scription language that is used for symbolic design. It has some very
important features that recommend it as a hardware description lan-
guage and it is no small part of the overall improvement in the design
process afforded by such a symbolic design system.

Design capture in a symbolic design environment is another
important part of the symbolic design process. The symbiosis between
design capture and the hardware description language (and its circuit
database role) are keys to efficient symbolic design. The user interface
is fundamentally different from that used in a “rectangle pusher.” The
description of this tools function gets quite detailed in order to fully
explain the user interface.
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Compaction — the key to symbolic design recognizes that without ef-
fective compaction the rest is quite academic and the entire system
becomes nothing more than a toy. Some comparisons of different com-
paction strategies is made since this is still a very hot area of research
and many schemes have been proposed in the literature.

Technology encapsulation is the separating out from the application
tools the information about the technology and process that will be
used to fabricate the design under consideration. It is important to
make this separation so that software remains immune to changes in
technology. But it is equally important so that one can really take
advantage of the inherent “delayed binding” that takes place in a sym-
bolic design environment. I refer to the fact that a design need not
specify the exact rules and models of the target process until the mo-

1ent the design is generated at the mask level via compaction. And
.he same design can be re-compacted (and re-fabricated) on different
tabrication lines at will.

Software engineering of a production CAD system discusses
interesting insights into software engineering issues that come from
the development of a production CAD system. The purpose of mak-
ing these observations is to benefit others attempting the same thing.

Why is better CAD important?

Its all a matter of economics in the final analysis. Increasing productivity
is important because design time is a critical issue in the production of
all products and can make or break a product and a company. Expert
designers are a rare commodity and they are expensive so if they can get
more design done in less time that is money saved. Symbolic design increases
productivity because, 1) a designer works with an abstraction of a physical
layout and so manipulates one symbol that represents many he would have
manipulated in the strictly mask layout environment, and 2) compaction
generating design-rule error free layouts means no worry about the difficult
and complex details of design rules during the layout phase.

All well and good but why do layout by hand at all, symbolic or mask?
Why not just do standard cell layout or even better, just do gate array
designs? Certainly these are very important design strategies where ap-
propriate but there are times when they aren’t appropriate. Even without
symbolic layout many design groups have favored the performance-area-
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flexibility versus design-time tradeoff in favor of custom layout. As alluded
to, their reasons are usually due to higher performance, higher silicon den-
sity, architectural flexibility or combinations of all three. With symbolic
layout, the down side of this tradeoff, design-time, is lessened so it is easier
to justify going with full custom. Furthermore, even in standard cell en-
vironments, symbolic design is making inroads as people see the enormous
benefits of symbolic standard cell libraries compacted to mask cells at each
technology change. The economic issue with full custom design is simply
that success of a design may require performance out of the range of any
other method; or, area is an all important factor since it gets very expensive
to have more boards in a system; or, the project requires some technology
or architectural feature not possible any other way.

Performance, silicon area, and architectural constraint are also inti-
mately related to changes made in the fundamental technology of imple-
mentation as well. Delayed binding, that is, an independence from complete
specification of technology and process parameters until late in the design
process, allows a design to fully exploit any technology advances. And even
once a design is “completed”, since the actual compaction to mask happens
very late in the design process, it can be re-implemented very easily as tech-
nology of fabrication advances. The economic advantages inherent in this
have already been shown.

Why is it hard?

Why is it hard? is a question about which much could be said but I will
suffice it by only making a few points as way of an answer. First, Computer-
Aided Design software, since it is solving difficult algorithmic problems while
continuously interacting with the designer who must perform a wide variety
of design tasks, is large and complex. It is difficult to design the best possible
user interface for such a wide variety of tasks. The users of such a system
are very demanding — they have used software before and they expect to
get a significant improvement out of a tool they take the time to learn.
They are sophisticated users and expect the software to be easy to use, well
documented, perform perfectly and do so efficiently. But, most of all, they
expect this new tool to be a substational improvement over their last tool.

Second, consistency is important within this system and between this
system and those with which it must integrate. For it is clearly unwise to
consider ones own system to be the only one a design team will use. This is
not just consistency of user interface but also of compatible circuit database
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formats, command inputs, and the like.
Third, the basic VLSI algorithms are difficult and much more work is
needed in placement, routing and compaction among other algorithms.
Finally, in spite of the very strong motivation to provide higher-level
design support, the goal of providing tools to do so remains quite elusive.
This is partly due to the fact that the design process itself is still not well
understood.

Where do we stand?

With respect to symbolic CAD, where do we stand? A great deal of experi-
ence has been gained in the CAD field in general with interactive graphics
for design capture. While the issue of improved user interfaces is certainly
not closed each new interactive CAD tool seems to be very similar to existing
ones which may indicate a maturing in this area.

In the area of compaction, key to symbolic design as already stated, sev-
eral different algorithms have been proposed and implemented. The single
most important requirement for a compactor is that it make area efficient
layouts. It is assumed that once the compactor is debugged it does not
produce design-rule errors. The difficulty the implementors of compactors
have had is in keeping the implementation as clean as the basic algorithms
because these programs have a real tendency to get filled with special cases.
Until compactors regularly get very close to hand design silicon area (cur-
rently the best ones get to within 20% on average if no pathologies exist)
there will be a lot of motivation to improve them. Hierarchical compaction
is also being done but not very satisfactorily.

A stated goal of every CAD system should be to have it smoothly in-
tegrate with existing CAD tools. But this is far from the case and proves
to be very difficult. As is the case in many areas, lack of standardization
is a serious impediment (e.g. home video cassette formats). The lack of
standardization in CAD means lots of translators must be used to get two
systems to communicate.

The design process is not a pure and simple oneway path — it has skips,
gaps and loops all during the process. This is difficult to deal with and
leads one to want effective common representations for circuits and to allow
mixed representations. Unfortunately it is not well-understood how to do
this and this remains a goal of most CAD development efforts.

Finally, it should be pointed out that we are just taking baby steps. We
would like to follow the analogy of software high-level language compilers
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and provide such effective high-level silicon compilers that design at the
mask level would no more be done than programming directly in assembly
or machine language.
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ADVANTAGES

The symbolic virtual-grid design methodology presents significant advan-
tages over other methods for custom VLSI design. This methodology has fa-
cilitated development of a single integrated system which provides designers
several important features: higher productivity; technology independence
for a wide range of MOS processes (CMOS, nMOS, SOI); scale-independent
circuit designs; an open architecture that simplifies integration with exist-
ing tools and creation of new tools; fast simulation to layout loop; and fully
automatic mask-generation and chip assembly.

Higher productivity is offered by this approach due to a designers manip-
ulating abstractions of circuit elements as opposed to the mask component
rectangles. This is referred to as object-oriented editing and it allows the de-
signer to think in terms of the circuit being designed instead of doing mental
synthesis of circuit into rectangles continuously. Not having to worry about
design rules enhances the power of this abstraction and so only relative po-
sitioning of circuit objects concerns the designer. It has been shown in other
domains such as software, that a powerful abstraction such as this allows
designers to rip-up and re-do erroneous circuit fragments as opposed to the
dangerous practice of patching. Thus not only is productivity is enhanced
but quality as well since designers now can take a more global view of their
design.

Technology independence is a most important advantage. It means the
same tool works over a broad range of MOS technologies and, within a spe-
cific MOS technology, a given design tracks changes in the design (or ground)
rules without redesign. Tools are configured at run-time to a technology and
a specific process within that technology so the full capabilities, but no more
than the available capability, are made available to the designer in a natural
way.

Whereas directly laid out mask designs do not scale (wire widths scale
at a different rate than contact cuts, for example) symbolic virtual-grid de-
signs scale perfectly. In an era of “planned obsolescence” this approach
provides delayed obsolescence of designs. It also provides another economic
benefit: second sourcing even on dis-similar process lines. Correctness-by-
construction is promoted by eliminating the mask layout step. The com-
pactor generates the mask layout, therefore, designers do not have to be
aware of the design rules in order to create an error-free layout. Technolo-
gies with many layers get prohibitively complex to design at the mask level
(even CMOS is significantly more complex than nMOS) but they are equiva-
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lent in the symbolic virtual-grid environment. Process lines frequently must
simplify their ground rules at the cost of less than optimal layouts and/or
performance for the sake of the designers working at the mask level — this
is no longer necessary.

The symbolic virtual-grid approach to CAD has facilitated an open ar-
chitecture and very natural interfaces. Clearly defined modules have well-
specified inputs and outputs so integration with other systems is greatly
simplified. Once a base-line system is established, many tools can be added
on, taking advantage of this methodology. For example, structure gener-
ators, special-purpose routers, or silicon compilers have hidden from them
the details of design rules so their developers can concentrate only on the
hard algorithms of the problem. Research and development of modules can
continue and individual modules can easily be replaced without disrupting
the rest of the system.

Quick estimated timing simulation of the symbolic layout provides a
very fast simulation to layout loop. Designers are then afforded the ability
to explore the function and performance of a circuit while remaining at
the symbolic level. This greatly improves a designers productivity. Once
compaction is done the details of the circuit are known to allow detailed
timing simulation such as SPICE.

Mask layouts are generated automatically by a compactor. The layouts
produced are guaranteed to be design-rule error free. Rules for compaction
are extracted from a table which is easily modified as design rules change.
Hierarchical compaction preserves the advantages of hierarchical designs by
only compacting members of arrays of common structures once. Chips are
composed of large blocks of compacted structures routed together and routed
to pads.



CAD Tools for Mask Generation 155

MECHANISMS

Symbolic, virtual-grid layout

Symbolic, virtual-grid layout can be viewed as an evolutionary refinement
of mask layout. In mask layout, the designer specifies the circuit by drawing
a set of polygons that indicate how to create a mask for each layer in the
fabrication process. At the mask level, the basic elements of circuit design
(such as transistors or contact cuts) are composite structures. Each transis-
tor or contact cut is composed of polygons on several layers that are sized
and positioned according to the design rules of the target fabrication pro-
cess. In mask layout, each time one of these composite structures is needed,
it is re-created from the component polygons. Symbolic layout provides a
solution that eliminates this tedious and error-prone task.

With symbolic layout, symbols are provided to represent the most com-
mon structures. The designer organizes the symbols into a layout and the
computer translates them into the proper mask representation. In its sim-
plest form, the translation is done by replacing the symbol with a fixed
collection of polygons that implement the desired structure. (Many mask
layout systems provide translation with a “macro” feature.) A more flexible
approach to symbol translation is to associate parameters with the symbols
and to have a program use the parameters for generating a broad range of
structures. For example, the symbol for a transistor might be accompanied
by two parameters that specify the width and length of the gate region.
The transistor generation program would then use the parameters to size
the transistor when constructing the mask layout.

Like symbolic design, virtual-grid layout is an extension of mask design.
In mask design, the layout is usually created on a grid. The spacing of the
grid represents some “real” spacing (for example, 3u) and the designer uses
the grid as an aid to establish correct spacing between objects. The function
of the virtual grid is the same as for a “real” grid except that the spacing
between grid lines does not represent a fixed physical spacing. A symbol’s
placement captures only the relative geometry of the circuit. (For example,
transistor A is above and to the right of transistor B.) The actual spacing
between two adjacent grid lines is determined by the compactor program.
The compactor examines the objects on adjacent grid lines and, based on
the design rules, determines the correct spacing between the grid lines. This
approach results in an appropriate division of labor — the designer makes
the global decisions about the circuit topology and the computer performs
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the detailed geometric construction.

Layout verification

A symbolic design system must provide tools for verifying symbolic virtual-
grid layouts. Two such tools are: a symbolic level circuit extractor and an
interactive circuit simulator. Design verification directly from the symbolic,
virtual-grid layout rather than from the mask layout offers the advantage of
fast response. This quick response allows the designer to perform extensive
circuit debugging early in the layout process.

The symbolic level circuit extraction is performed by a static semantic
circuit checker. This tool references the technology database to calculate the
electrical parameters associated with each circuit element. The calculated
values are, by necessity, estimates since the mask generation has not been
performed. However, these estimates are relatively accurate for all of the
primitives except wires, which are directly dependent on the final size of the
layout. Reasonable estimates of wire length can be obtained by assuming
that the spacing between the virtual grid lines will average out over the
design. This average grid spacing parameter is coded in the technology
database and can be tuned by the designer according to the technology
being used and the performance of the compactor. The extraction process
is relatively fast since the extractor does not have to go through the costly
process of inferring the circuit structure from the mask geometry.

Circuit simulation is performed by a circuit-level timing simulator de-
signed to work from symbolic circuit descriptions. The simulator has been
designed for MOS simulations and can be used with circuits as large as sev-
eral thousand devices. The speed of this simulator results from its selection
of models and internal structure. Only MOSFET models are used and it
precalculates tables of simulation values before beginning a simulation. Be-
cause of its simpler modeling and use of symbolic, virtual-grid extraction,
such a simulator does not provide the accuracy of a full network analysis
program. However, 1t fills a gap between such programs and logic level
simulators. It is faster than a detailed circuit simulator but still accurate
enough to provide the waveform information necessary for debugging the
analog behavior of a circuit.

Mask generation

The creation of a mask description from a symbolic, virtual-grid layout is
accomplished by a hierarchical compactor. The compactor reads symbolic
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circuit design descriptions and generates a rectangle-based mask descrip-
tion of the circuit. The compactor operates in two distinct steps: leaf cell
compaction and hierarchical compaction.

Leaf cell compaction

Leaf cells contain only circuit primitives: wires, devices, contacts and pins
arrayed on the virtual grid. The compactor translates the symbols into
their mask representation and then spaces them according to the design
rules. Much of the difficulty of compaction arises because these two steps
are not independent. In particular, the placement of wires and contacts on
rigid structures (such as transistors) is dependent on the location of adjacent
circuit elements. The compactor solves this problem by augmenting rigid
structures with flexible wires that the compactor may extend when making
connections. These wires “decouple” the rigid structures from the rest of
the layout and allow the compactor to treat the mask-spacing problem in a
uniform manner.

Mask spacing is determined during two passes (one vertical and one
horizontal) across the cell. During each pass the compactor positions the
grid lines relative to a frontier that represents the previously compacted
portion of the cell. The compactor partitions each grid line into groups
of grid points such that all points in a group are connected by devices or
wires. It then determines the minimum spacing possible between each group
and the frontier. Once the spacing has been established for each group, the
grid line is positioned and offsets from the grid line are assigned for each
group. These offsets in effect “break” grid lines and allow the groups to be
positioned with minimum spacing from the frontier. Without sacrificing the
speed and predictability of virtual-grid compaction, this strategy provides a
significant area improvement over previous virtual-grid compactors.

There are two additional constraints imposed on the compaction process
that enable the hierarchical portion of the compactor to automatically pitch-
match cells and that improve the compactor’s predictability when used for
leaf-cell generation. The first is that a grid line is not allowed to move
past another grid line during compaction. This constraint prevents the
compactor from interlocking adjacent grid lines which would prevent cells
from stretching during pitch-matching. The second is that the beginning
and ending group on a grid line are positioned at the same location. This
constraint allows the designer to lock the position of signal lines together
and insure that a cell will pitch match to itself. Although this constraint is
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not important if the design is entirely symbolic, it is valuable if the system
is being used to generate leaf cells for use with mask-layout tools.

Hierarchical compaction

The hierarchical portion of the compactor compresses the hierarchy into a
set of cells that completely cover the circuit layout. For each distinct leaf cell,
the compactor analyzes all of the environments in which the cell occurs and
generates a “worst-case” version of the cell. The compactor then performs
a leaf-cell compaction and obtains a mask cell that can be placed in any
of the original environments without causing design-rule errors. Once all of
the leaf cells have been compacted, the mask cells are assembled according
to the original layout.

The main problem in the assembly phase is pitch matching the adjacent
cells. Since each leaf cell is compacted separately, there may be wires on
abutting cell boundaries that matched on the virtual grid but are offset now
that the physical spacing has been established. The compactor, however,
retains information about the original virtual-grid layout so it can stretch
the cells by the appropriate amount to insure a match. The cells cannot be
compressed to achieve a match because the leaf-cell compactor has already
produced the smallest layout possible for each cell. The final output of the
compactor is a mask description of the circuit in terms of rectangles and
layers.

Mask Layout

The generation of a mask description by the compactor is the last step in
the symbolic portion of the system and is the first step in the mask portion.
A symbolic design system is intended to function as a front end to a mask-
layout system.

In many cases it is possible to design an entire chip with the system and
remain independent of mask-layout tools; however, the addition of 1/O pads
and final routing must be done at the mask level. A chip assembler (or cell
composition system) is used to combine mask-level blocks and 1/0 pads into
a complete chip.

Technology database overview

Underlying the entire symbolic design system is a technology encapsulation
and database referred to as the Master Technology File (MTF). The sym-
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bolic design system self-configures to a particular process technology and
environment by consulting the MTF. The MTF contains all of the system’s
knowledge of circuit primitives. It controls their representation by defining
the names of device types and process layers. Also, it controls the appear-
ance of the circuit display by defining the symbol shapes, colors, and stipple
patterns. It controls the rendering of circuit primitives in mask-layout form
by providing symbol-to-mask translation rules. Finally, it contains infor-
mation about the primitives’ electrical properties, capacitances, sizing, and
“best,” “worst,” and “average” case transistor models o
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ABCD

This section describes in some detail the ABCD language. ABCD is the
symbolic-level circuit description language used in the VIVID System — the
CAD system developed at the Microelectronics Center of North Carolina.
The VIVID System is the fruits of research into symbolic, virtual-grid CAD
systems and is becoming widely available as a foundation for both design
work and further software work as well.

Introduction
Taxonomy of languages

Hardware description languages range from very high-level functional and
behavioral descriptions like ISPS down to the very low-level physical mask
descriptions like CIF and Calma Stream. ABCD is near the lower end of
this scale being a layout language. Sticks is a similar language but it is lower
still since it is just an abstraction of mask rectangles. ABCD is more than
that since it contains information about circuit primitives like transistors
and wires. Additionally, ABCD has a lot in common with higher languages
that describe circuits at the net-work level since ABCD contains informatio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>