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PREFACE 

The summer school on VLSf GAD Tools and Applications was held from 
July 21 through August 1, 1986 at Beatenberg in the beautiful Bernese 
Oberland in Switzerland. The meeting was given under the auspices of IFIP 
WG 10.6 VLSI, and it was sponsored by the Swiss Federal Institute of 
Technology Zurich, Switzerland. Eighty-one professionals were invited to 
participate in the summer school, including 18 lecturers. The 81 
participants came from the following countries: Australia (1), Denmark (1), 
Federal Republic of Germany (12), France (3), Italy (4), Norway (1), South 
Korea (1), Sweden (5), United Kingdom (1), United States of America (13), 
and Switzerland (39). 

Our goal in the planning for the summer school was to introduce the 
audience into the realities of CAD tools and their applications to VLSI 
design. This book contains articles by all 18 invited speakers that lectured 
at the summer school. The reader should realize that it was not intended to 
publish a textbook. However, the chapters in this book are more or less 
self-contained treatments of the particular subjects. Chapters 1 and 2 give 
a broad introduction to VLSI Design. Simulation tools and their 
algorithmic foundations are treated in Chapters 3 to 5 and 17. Chapters 6 
to 9 provide an excellent treatment of modern layout tools. The use of CAD 
tools and trends in the design of 32-bit microprocessors are the topics of 
Chapters 10 through 16. Important aspects in VLSI testing and testing 
strategies are given in Chapters 18 and 19. 

We would like to thank all of the invited speakers for the time and effort 
they had to invest into the preparation of their talks and papers. It would 
have been impossible to organize the summer school and to edit this book 
without the help of the members of the Institute of Integrated Systems at 
the Swiss Federal Institute of Technology Zurich. In particular, we would 
like to thank L. Heusler, Dr. H. Kaeslin, P. Lamb, R. Meyer, and M. Raths 
for their assistance. Dr. A. Aemmer was especially helpful in the planning 
and organization. He deserves special credit for the success of the meeting 
and the existence of this book. Mrs. Bourquin was a perfect summer school 
secretary. It was a special pleasure to work with Carl Harris from Kluwer 
Publishing in the preparation of this book. 

W. Fichtner M. MorC 
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V LSI DESIGN STRATEGIES 

Carlo H. Sequin 

Computer Science Division 
Electrical Engineering and Computer Sciences 
University of California, Berkeley, CA 94720 

ABSTRACT 

The growing complexity of VLSI chips creates a need for better CAD 
tools and data management techniques. The rapidly changing nature of 
the field requires a modular toolbox approach - rather than a fixed monol
ithic design system - and the involvement of the designer in the tool
building process. A short overview over the Berkeley design environment 
and our recent Synthesis Project is also given. 

1. INTRODUCTION 
Very large scale integration (VLSI) has made it economically viable to place 

several hundred thousand devices on a single chip, and the technological evolution 
will continue to increase this number by more than an order of magnitude within 
a decade. While the limits on chip growth imposed by technology and materials 
are still another three orders of magnitude away, 1 the design of the present-day 
chips already causes tremendous problems. G. Moore coined the term "complex
ity barrier". 2 This is the major hurdle faced today in the construction of ever 
larger integrated systems. In Section 2 the nature of the VLSI complexity prob
lem will be discussed. 

In order to deal with this complexity and to exploit fully the technological 
potential of VLSI, some structure has to be introduced into the design process; the 
resulting design styles are reviewed in Section 3, and the general nature of the 
VLSI design process is discussed. The size of the task is such that it cannot be 
done without tools; new tools and new ways of managing the information associ
ated with the design of a VLSI chip must be developed (Section 4). This changes 
the role of the designer (Section 5). 

Section 6 illustrates with the example of the Berkeley Synthesis Project how 
we think the art of VLSI design is going to evolve. 

2. VLSI COMPLEXITY 
In the early 1980's. VLSI complexity became a hot topic for concern and dis

cussion.3 This may appear surprising if one compares the complexity or the chips 
or that period with other technological structures that mankind has built in the 
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past. Certainly the number of components on a VLSI chip does not exceed the 
number of parts in a telephone switching station or in the space shuttle, and 
mainframe computers with an even larger number of transistors have been built 
for at least a decade before they were integrated onto a chip. System complexity 
should not differ markedly whether a circuit is contained within a cabinet, on a 
printed circuit board, or on a single silicon chip. 

It is the "large", potentially unstructured space of the VLSI chip that causes 
the concern. Nobody would dare to insert a million discrete devices into a large 
chassis using discrete point-to-point wiring. Large systems built from discrete 
devices are broken down into sub-chassis, mother-boards, and module-boards car
rying the actual components. This physical partitioning encourages careful con
sideration of the logical partitioning and of the interfaces between the modules at 
all levels of the hierarchy. Since such systems are typically designed by large 
teams, early top-down decisions concerning the partitioning and the interfaces 
must be made and enforced rather rigidly - for better or for worse. This keeps 
the total complexity in the scope of each individual designer limited in magnitude, 
and thus manageable. 

VLSI permits the whole system to be concentrated in a basically unstructured 
domain of a single silicon chip which does not a priori force any partitioning or 
compartmentalization. On the positive side, this freedom may be exploited for 
significant performance advantages. On the negative side, it may result in a 
dangerous situation where the complexity within a large, unstructured domain 
simply overwhelms the designer. 

A similar crisis was faced by software engineers when unstructured programs 
started to grow to lengths in excess of 10,000 lines of code. The crisis was allevi
ated by the development of suitable design methodologies, structuring techniques, 
and documentation styles. Many of the lessons learned in the software domain 
are also applicable to the design of VLSI systems.3 

Furthermore, the field of VLSI is rather interdisciplinary in nature. To 
achieve optimal results, we need a tight interaction of algorithms, architecture, 
circuit design, IC technology, etc. However, designers who are experts in all these 
fields are rarely found. How can ordinary mortals attempt to do a reasonable 
VLSI design! Here again, suitable abstractions have to be found, so that the 
details of processing are hidden from the layout designer, and the details of the 
circuit implementation are hidden from the microarchitect. Models that are accu
rate enough to permit sound decisions based on them need to be created, and 
clean interfaces between the various domains of responsibility need to be defined. 
For instance, the semantic meaning of the geometry specified in a layout has to be 
defined carefully: Is this the geometry of the fabrication masks? Is this the 
desired pattern on the silicon chip? Or is this a symbolic representation of some 
of the desired device parameters! These questions still lead to much discussion 
and often to bad chips. The emergence of silicon brokerage services such as 
MOSIS· has forced clarification of many of these issues. 
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3. THE DESIGN SPECTRUM 
To make the task oC filling the void on a VLSI chip manageable, some widely 

accepted abstractions have emerged that lead to a hierarchy (or rather a multidi
mensional space) of views of a particular design. The ·dift'erent representations 
generally address different concerns. A typical list of design levels and of the con
cerns they address is shown in Table 1. 

Design Level Concerns Addressed 
Behavior Functionality 

Functional blocks, Resource allocation 

Linked module abstractionli 
sequencing, causality 

Register-transfer level Testability 

Clocked register and logicS timing, synchronization 
Gate Level, Implementation with 

Clocked primitive switchesS 
proper digital behavior 

Circuit Level Performance, noise margins 
Sticks Level Layout topology 

Mask Geometry Implementation, yield 

Table 1. Levels of abstraction in chip design. 

The other saving notion is that oC preCabricated parts. The same Cunctions at 
various levels oC the design space are needed again and again. SuccessCul designs 
of frequently used parts can thus be saved in libraries (or the reuse by many cus
tomers. The nature oC these parts and the level to which they are predefined or 
even preCabricated leads to a variety of different design styles. 

3.1. VLSI Design Styles 

A large spectrum oC possibilities Cor the design of a VLSI chip has evolved, 
offering wide ranges oC expected turn-around time, resulting performance, and 
required design effort. Table 2 gives a strongly simplified view oC the spectrum oC 
possibilities. 

On one end oC the spectrum are the Gate Array and Standard Cell technolo
gies. Predesigned logic c~lls at the SSI and MSI level permit the engineers to use 
Cunctional blocks that they are already Camiliar with from TTL breadboard 
designs. The abstraction and preCabrication oC these cells lead to minimal design 
effort and Caster turn-around time but at the price of less functionality per chip 
and less performance for a given technology. 

3 
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Method Complexity Effort Main Strength Automation 
Gate Array 20,000 4-8 weeks Fast changes Yes 
Standard Cell 40,000 4-8 weeks Resuse of logic Yes 
Macro Cell 100,000 1-2 years Good area use Almost 
Flexible Modules 200,000 1-2 years High density Almost 
Standard Functions 200,000 2-8 years Testability Not yet 
Optimized Layout 400,000 ~8 years High performance Not so soon 

Table 2. Styles 0/ Ie chip design. 

At the other end of the spectrum is the full custom chip in which all modules 
have been hand-designed with the utmost care for performance and density and 
have been integrated and packed onto the chip in a tailor-made fashion. This 
design style can lead to spectaCUlar results in terms of functionality and perfor
mance of an individual chip, but it comes at the price of an exorbitant design 
effort. 

Somewhere in the middle between these two extremes are mixed approaches 
in which the crucial cells have been hand-designed with great care - particularly 
the cells that are in the critical path determining performance and the cells that 
are used in large arrays, as they will make the dominant contribution to the size 
of the chip. Uncritical "glue" logic that is used only once may be generated by a 
program either in the form of a PLA or as a string of standard cells. These macro 
cells of varying sizes and shapes are then placed and wired by hand or by emerg
ing CAD programs.6 This approach leads to higher densities than standard cells, 
since the degree of integration in the macro cells is typically higher and since a 
smaller amount of area is wasted in partly filled wiring channels. If the macro 
cells are procedurally generated and suitably parameterized so that they can be 
adjusted to the available space, even higher densities can be achieved. When 
properly used, these intermediate approaches can compete with a full custom 
design in terms of performance but typically result in a somewhat larger chip size. 

Concerns of modularity and testability may outweigh aims for density and 
performance; functional modules designed for testability with clean interfaces are 
then used. This is in analogy to the use of properly abstracted and encapsulated 
software modules. This approach has started to gain acceptance also in VLSI. A 
good VLSI design environment will permit the designer to mix these various 
design styles in appropriate ways. 

3.2. The Design Process 

Even with an agreed-upon set of hierarchical levels, an extensive library of 
predefined parts, and a chosen design style, the design process can still be rather 



VLSI Design Strategies 

involved. It is rarely a single forward pass through all the transformation steps 
that takes a high-level behavioral description through register-transfer and logic 
level descriptions into a symbolic representation capturing the topology and 
finally into a dense layout suitable for implementation with a particular technol
ogy (Table 1). The overall problem may be structured in a top down manner into 
simpler subtasks with clearly defined functions. But in parallel, designers inti
mately familiar with the implementation technology will explore good solutions 
for generic functions in the given technology in a bottom-up fashion. This effort 
will result in an understanding of what functions can best be implemented in this 
environment and produce a set of efficient building blocks. 

Hopefully, the top-down decomposition and the bottom-up provision of solu
tions will meet in the middle and permit completion of the design. However, for a 
new technology, it is unlikely that this will happen on the first try. The natural 
building blocks must first be discovered; only then can the architectures be 
modified and partitioned appropriately. Thus there is an iteration of top-down 
and bottom-up moves in a Yo-Yo like fashion until the optimal path linking archi
tecture to technology has been found. 

It should also be pointed out that the design process is often a mixture of 
solid established procedures and of free associations and 'trial-and-error'. The 
guessing part plays a role in finding good partitioning schemes as well as in the 
definition of generic functions that might constitute worthwhile building block in 
the given technology. Proven checking methods are then used to evaluate objec
tively whether the guesses made are indeed usable: Is the decomposition function
ally correct? Is it appropriate - or does it cut through some inner loop, causing 
unnecessary communications penalties! Are the building blocks of general use! 
How many algorithms, tasks, or architectures can actually make use of them! Is 
their performance reasonable! 

In the next section we explore to what extent this design process can be sup
ported by the computer, and for which part the human intelligence might be hard 
to replace. 

4. THE ROLE OF CAD TOOLS 
Good tools help man to achieve more, to obtain better results, or to reach 

given goals more effortlessly. VLSI design is no exception. I like to split the CAD 
tools useful in the design of ICs into five classes: 

1) 

2) 

Checking and Verification Tools typically answer questions such as: Are 
there any errors? Are the connections between blocks consistent? Does this 
function behave as specified? 

Analysis Tools tell the designer: How well does a particular approach work? 
How much power does this circuit consume? What is the worst case settling 
time? 

5 
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3) Optimization Tools can help the designer to vary component values to 
achieve a specific performance goal, or they can find "optimal" module place
ments within given constraints. 

4) Synthesis Tools combine construction procedures and optimization algo
rithms. They may decompose a logic function into a minimum number of 
gates, or they may find a good floor plan from a connectivity diagram. 

S) High-level Decision Tools support the designer in the "guessing phase" of 
the design process. These tools try to suggest particular solutions, i.e., parti
tioning schemes, micro architectures, or network topologies. 

4.1. The CAD Wave 

Building tools in the above classes 1) through S) gets progressively more 
difficult. Typically, checking and verification tools are the first to become viable, 
helping to eliminate well-defined mistakes. Next, analysis tools permit the 
designer to find out how good a solution he has chosen and whether the design 
meets specifications. Based on the analysis algorithms, optimization tools emerge, 
assisting the designer in fine-tuning a design and in optimizing particular aspects 
of it. Gradually, these tools evolve into self-reliant synthesis tools; these may use 
heuristic methods or simulated annealing techniques to find solutions that are 
becoming competitive in quality with the work of human designers. Finally the 
tools will invade the areas where it is most difficult to replace the human mind -
the high-level decision making process. Here tools from all the previously men
tioned classes need to be employed in an iterative way; often techniques from the 
field of Artificial Intelligence are used. 

Sweeping through the various levels of the design hierarchy in a bottom-up 
manner, tools will start to take over the function of the human designer. This 
general trend has started many years ago. Historically, the first tools to be 
developed for IC designers were circuit analysis tools such as SPICE.7 There was a 
real need for such tools, since calculating the performance even of small 
integrated circuits would have been too tedious, and including actual fabrication 
of the chip in every design iteration would have been too slow and costly. At that 
time, the circuits were small enough so that most checking tasks could be per
formed without computer assistance. Optimization was done by hand with the 
help of the available analysis tools. Design decisions were largely based on the 
intuition or experience of the designer. 

In the meantime, tools have matured at the layout level. Circuit extractors 
and design rule checkers are relied upon by every designer of large ICs. Without 
timing verification and circuit simulation, it would be impossible to obtain chips 
that meet performance specifications. Circuit optimization, however, is still 
largely done by the designer, using analysis tools in the "feedback loop", and syn
thesis tools are being investigated in the research laboratories. 
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At the higher levels of the design hierarchy tools have not claimed as much 
ground yet. Functional simulators are used to verify the correctness of the func
tional behavior and to obtain some crude idea of the expected performance. 
Optimization and synthesis tools are the subject of active research. High-level 
decision tools are being contemplated. 

Tools are important at all the levels of the design hierarchy introduced in 
Section 3. The development of CAD tools started at the circuit level, because 
there the need was most urgent. This was the level of abstraction that could not 
easily be breadboarded and evaluated by measurement. As larger and larger sys
tems get integrated onto a single chip, we will need better tools also at the higher 
levels in the design hierarchy. 

4.2. Design Representation 

Traditionally, many design systems for custom circuitry have used the 
geometrical layout information to "glue" everything together. From this low-level 
description that other representations are derived, and many of the analysis start 
from this level, e.g. circuit extraction and design rule checking. This is an unsa
tisfactory approach. Too much of the designer's intent has been lost in that low
level representation and has to be rediscovered by the analysis tools. 

If there is to be a "core" description from which other representations are 
derived, it has to be at a higher level. The trend is to move to a symbolic 
description8-l0 that is still close enough to the actual geometry, so that ambigui
ties in the layout specification can be avoided. Yet at the same time, this descrip
tion must have provisions to specify symbolically the electrical connections and 
functional models of subcircuits. l1 

In the long run, there is no way that a proper, integrated data management 
system can be avoided. Such a system can capture the design at various levels of 
the design hierarchy and, with the help of various tools, ensure consistency 
between the various representations. An integrated tool system will have to sup
port the mentioned Yo-Yo design process in order to be effective. 

4.3. Tool Integration 

The art of VLSI design is not yet fully understood, and new methodologies 
are still evolving. It is thus too early to specify a rigid design system that per
forms the complete design task; quite likely, such a system would be obsolete by 
the time it becomes available to the user. It is more desirable to create a frame
work that permits the usage of many common tools in different approaches and 
that supports a variety of different design styles and methods. In short, the 
environment should provide mechanisms and primitives rather than policies and 
solutions. 

Intricate interaction between the various tools must be avoided; every tool 
should do one task well and with reasonable efficiency.12 The tools are coupled 

7 
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through compatible data formats or a joint data base to which they all interface 
in a procedural manner. The former solution causes less overhead in the early 
development phase of a new tool and makes it easy for workers in different loca
tions to share data and test examples since ASCII text files can easily be transmit
ted over electronic networks. 

The data base approach leads to a more tightly coupled system. It has the 
advantage (or disadvantage) that all data is in one central location. Interfacing a 
tool to this data base is normally more involved and costly than to simply read 
and write ASCII files. Unless the data management system is properly con
structed and supported, the access to the data base can also get painfully slow. A 
practical solution is to use a combination of both: a data base that also has 
proper ASCII representations for each view of the design. 

At Berkeley such a collection of toolsl3 has been under development since the 
late 1{)70s. All tools are embedded in the UNIX14 operating system. UNIX 
already provides many of the facilities needed in such an environment: a suitable 
hierarchical file structure, a powerful monitor program in the form of the UNIX 
shell,15 and convenient mechanisms for piping the output of one program directly 
into the input of a successor program. An example of a newer, object oriented 
data base l6 will be discussed briefly in Section 6. The corresponding ASCII 
representation and interchange format is EDIF.17 

Regardless of the exact structure of the data base, the various different 
representations of a design should be at the fingertips of the designer, so that he 
can readily choose the one representation that best captures the problem formula
tion with which he is grappling at the moment. 

6. THE ROLE OF THE DESIGNER 
The wave of emerging CAD tools at all levels of the design hierarchy is 

changing the role of the designer. 

6.1. The CAD System Virtuoso 

Designers of solid-state systems will spend an ever smaller fraction of their 
time designing at the solid-state level. More and more technical tasks, particu
larly at the lower levels of the design hierarchy, can be left to computer-based 
tools. Systems designers will rely increasingly on tools and on prototype modules 
generated by expert designers. They will thus change from being technical 
designers to being players of a sophisticated and rich CAD system. 

It will take effort to learn the new skills. The essential experience no longer 
consists in knowing how to best layout a Schottky-clamped bipolar gate, but 
rather in choosing the right tool, setting the right parameters and constraints, 
using a reasonable number of iterations, or knowing what to look for in a simula
tion producing a wealth of raw data. 
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The results obtainable with any CAD system depend to a large extent on the 
skill with which the designer moves through the maze of options. Furthermore, 
many of our design tools are still in the state corresponding to the early days of 
the automobile, where the driver also had to be a mechanic and be prepared to 
ta.ke care of frequent breakdowns. 

6.2. The Designer &8 a Tool Builder 
Good tools cannot be constructed in an isolated CAD department. They 

must be built in close relationship with the user. Who is better qualified than the 
actual user to understand the needs for a tool and to test whether a new tool 
really meets expectations? Further, a good CAD tool cannot be built in a single 
try. Only after the designers have a prototype to play with, they can decide what 
they really need and provide more accurate specifications for the new tool. The 
emergence of a tool often changes the nature of the job enough to shift the 
emphasis to a different bottle neck, thus altering the requirements for the tool. 
This in turn may necessitate a revision of the user interface or the performance 
targets. This iterative process to arrive at the proper specifiq,ations leads to the 
tool development spiral shown in Figure 1. 

Specifications 

Usable 
ApplicatioD Tool 

Marketable 
Systems Product 

Filure 1. The spiral of tool development. 

9 
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Each implementation serves as the basis for clearer specifications for the next 
round. The more rounds one can make around this spiral, the better the tool will 
get. In going from one round to the next, one should not be afraid to start com
pletely from scratch, to throw out the old code, and to keep nothing but the 
experience and plans for an improved approach. The temptation to just patch up 
the old code can be reduced if the implementation language is switched. Many 
tool developers have found it productive to create early prototypes in LISP, 
SmallTalk, or Prolog, and to code later versions in an efficient procedural 
language providing some control over the machine resources. 

The first one or two turns on the development spiral are crucial. This is 
where the general directions of a new tool are determined. On later turns it is 
much barder to make significant conceptual changes. Thus, on the first turn(s) it 
is particularly important that the development is done in close contact with the 
designers actually using the tool. How much closer can you get than having the 
designer himselC do the first "quick hack"? Nowaday, more and more engineers 
receive a good education in programming, and it is thus easier to find persons 
with the right combination of skills. 

Once the framework of the tool is well established and the user interface 
defined, a formal CAD group could take over to recode the tool, modularize the 
program, look at efficiency issues, and provide decent documentation. In the pro
duction of a good manual, the designers must again be strongly involved, as they 
understand the needs of the users. 

The most leverage out of human ingenuity can be obtained if the latter is 
used to build new and better tools, which then can help many other designers to 
do the job better or faster. Using the designers as tool-builders, the impact of the 
work of individual engineers can be compounded. 

6.3. The Design Manager 
A good manager, will not only focus on getting the job done on time, but will 

also concentrate on creating an environment in which the job can get done most 
efficiently. The improvement of the environment must not be neglected under the 
pressures of immediate deadlines; it is a necessary investment for the future. 

This is also true for the individual design engineer, as he too is a manager of 
his task, his time, and his environment. This requires a change of attitude on the 
part of the typical engineer. He may have to spend a larger amount of time, 
learning about available tools, acquiring new tools, or building tools himselC, than 
working on 'the job'. But experience has shown that, amortized over two or three 
jobs, this investment into the environment pays off. 
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8. THE SYNTHESIS . PROJECT AT BERKELEY 
In Spring lQS6, an ambitious project concerning the automatic synthesis of 

integrated circuits was undertaken in the Department of EECS at Berkeley. The 
"official" goal of the project was to integrate and enhance our various CAD tools 
to create a suit of tools that could synthesize a complex microcomputer from a 
behavioral-level description to the mask-level output with as little manual inter
vention as possible. As a "fringe benefit" we expected to gain a thorough under
standing of the major issues in Ie synthesis and to find out where our CAD tool 
design efJortsneed to be focussed. 

8.1. Project Organization 

The Synthesis Project was led by Professors Newton, Sangiovanni-Vincentelli 
and Sequin together with seven visiting Industrial Fellows. Following a tradition 
in our department, the project was tightly integrated with our graduate instruc
tion. During the Spring term of lQ86, the project was carried by two graduate 
courses, a design-oriented class (CS 2Q2H) and a CAD tool-oriented class (EECS 
2QOH), both of which had to be taken by all 35 participating students. 

The tool development was tied to the SPUR (Symbolic Processing Using 
RISC!!) project18 which had been in progress for about a year. The main focus of 
the SPUR project was the development of a set of three chips: the central RISC 
processor (CPU), a cache controller (CCU), and a floating point coprocessor 
(FPU), for use in a multiprocessor workstation. We planned to use the architects 
and original implementors of these chips as consultants and hoped to obtain large 
parts of chip descriptions in machine-readable form. 

A matrix organization was adopted for the graduate-student design teams. 
Each student, as a participant in the design class, was involved.in the design of 
one of the three chips and was responsible for the generation of at least one 
specific module. As a participant in the CAD class, each student was a member 
of one of several tool development groups (e.g., logic synthesis, place and route, 
module generation) and was working towards developing a tool suite that would 
be usable for all three chips. 

8.2. Resources and Intrastructure 

Resources available to the Synthesis Project included a dozen DEC 
V AXstationII workstations and seven color V AXstationII/GPX machines. The 
backbone was a V AX8650 CPU with 500 Mbytes of disc storage dedicated to the 
course. This machine acted as the central database and as the repository for all 
the existing and emerging CAD tools. All these machines, as well as all the other 
computing resources in the department, were coupled through an ethernet, creat
ing a tightly coupled, highly interactive computing and communications environ
ment. 

11 
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Important software support was provided by the Digital Equipment Corpora
tion in the form of the DECSIM mixed-level simulator and its associated 
behavioral design language, BDS. This software package was chosen primarily 
because of its availability and because DEC personnel were on site to provide sup
port for its application. DECSIM also offered the possibility of using mixed-level 
simulation at the behavior, register-transfer, gate-logic, or switch level - even 
though during the course we did not get far enough to use all these options. 

For the integration of our tools we chose to use a single object-oriented data 
management system, OCT,16 the development of which had started some time 
ago. OCT has as its basic unit the 'cell' which can have many 'views' - physical, 
logical, symbolic, geometrical. A cell is a portion of a chip that a designer wishes 
to abstract; it can vary in size from a simple transistor to the entire floorplan of a 
CPU. The system is hierarchical, i.e., cells can contain instances of other cells. 
Moreover, cells can have different abstract representations depending on the 
intended application, and these are represented in OCT by 'facets', which are the 
accessible units that can be edited. OCT provides powerful constructs for com
plex data structures but manages this complexity unseen by the user. 

A graphical CAD shell, VEM, was developed that permits the user to inspect 
and alter the contents of the various cells in the data base in a natural manner. 
OCT also provides project management support in the form of change-lists, time 
stamps, and search paths. All evolving synthesis tools were provided with inter
faces to the OCT data manager. 

8.3. Module Generation Tools 

One major effort during the Synthesis Project concerned the creation of a 
module generator that transforms logic equations at the behavioral level into a 
final mask layout. The important representation levels and the tools that perform 
the transformations between them are shown in Table 3. 

Module generation starts from a DEC BDS behavioral description which is 
converted with the help of a language translator into BDSYN, a subset of BDS, 
developed to represent logic partitioned into combinational blocks and latches. 
From there, another translator maps the BDSYN description into BLIF, the 
Berkeley Logic Intermediate Format, by expanding high-level constructs into 
Boolean equations. 

MIS, a multilevel interactive logic synthesis program, then restructures the 
equations to minimize area and to attempt to satisfy timing constraints. MIS first 
implements global optimization steps that involve the factoring of Boolean equa
tions and multiple-level minimization. Local optimization is then performed to 
transform locally each function into a set or implementable gates. Finally, MIS 
includes a timing-optimization phase that includes delay approximation based on 
technology data and critical-path analysis. III 
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Design Function Representation Level Program Name 
Logic I Behavior 

Logic Synthesis BDSYN 
MIS 

Logic I Gate 

Topology Optimization TOPOGEN I EDISTIX 
GENIE I MKARRAY 

Symbolic I Graphic 

Layout Generation SPAReS 
ZORRO 

Layout I Geometry 

Table 3. Transformations in the module generation process. 

Once the logic equations have been optimized the module generators are 
responsible for optimal packing of the logic into regular or irregular array-based 
structures.20 Some of these tools also consider slack times for critical paths. 

TOPOGEN generates a standard-cell-like layout at the symbolic level from a 
description of a Boolean function in the form of nested AND, OR, INVERT 
expressions. A complex static CMOS gate is produced in which first the transis
tors and then the gates have been arranged so as to minimize the module area. 
The output from TOPOGEN can be inspected and modified with EDISTIX, a 
graphic editor using a symbolic description on a virtual grid.10 The symbolic lay
out can then be sent to one of the compactors mentioned below. 

A more sophisticated module generator is the combination of GENIE and 
MKARRA y. GENIE is a fairly general software package using simulated anneal
ing to optimize the topology of a wide range of array design styles, including 
PLAs, SLAs, Gate Matrix, and Weinberger arrays. It handles nonuniform transis
tor dimensions, allows a variety of pin-position constraints, approximates desired 
aspect ratios by controlling the degree of column folding, and performs delay 
optimization. Its output is sent to the array composition tool, MKARRAY, which 
takes specifications of arrays of cells at the topological level. It then places the 
cells and aligns and interconnects all the terminals. 

The modules at the symbolic level have to be spaced or compacted to a dense 
layout obeying a particular set of design rules.21 SPARCS is a new constraint
based IC compaction tool that provides an efficient graph-based solution to the 
spacing problem. It can deal with upper bounds, user constraints, even symmetry 
requirements. It detects of over-constrained elements, and permits adjustable 
positioning of noncritical path elements 

13 
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Anoth~r compactor under development, ZORRO,22 works in two dimensions 
and is derived from the concept of zone refining used in the purification of crystal 
ingots. ZORRO passes an open zone across a precompacted layout. Circuit ele
ments are taken from one side of this zone and are then reassembled at the other 
side in a denser layout. 10 This compactor gives denser layouts at the cost of 
longer run times. 

8.4. Chip Assembly tool. 
All the tools described above are employed in the automatic synthesis of 

modules that are to be used in the design of an entire chip. Various tools have 
been developed to perform module placement, channel definition and ordering, 
global routing, and finally detailed routing.6 These tools handle routing on multi
ple layers as well as over-the-cell wiring. Table 4 shows the sequence of transfor
mations carried out on the representations in the OCT database from the original 
tentative floor plan to the final placement of all the modules and of the wiring in
between. 

Layout Function OCT Symbolic View 
Floorplanning & Placement --> Placed 
Channel Definition and Ordering --->, Channel Defined 
Global Router --> Routed 
Detailed Router --> Unspaced 
Spacing-Compaction --> Spaced 

Table 4. Functions of the chip composition tools. 

The TIMBERWOLF-MC23 package performs the placement function using 
simulated annealing techniques. This program handles cells of arbitrary rectil
inear shape; it accommodates fixed or variable shapes with optional bounds on 
aspect ratio, and accepts fixed, constrained, or freely variable pin, locations. 

CHAMELEON24 is a new multi-level channel router that allows the 
specification of layer-dependent pitch and wire widths. It has as its primary 
objective the minimization of channel area and as its secondary objective the 
minimization of the number of vias and the length of each net. On two-layer 
problems it performs as well or better than traditional channel routers. 

MIGHTY2S is a 'rip-up and reroute' two-layer detailed switch-box router that 
can handle any rectagon-shaped routing region with obstructions and pins posi
tioned on the boundary as well as inside the routing region. It outperforms all the 
known switch-box routers and even performs well as a channel router on problems 
with a simple rectangular routing region. 
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6.6. Results 

Fifteen weeks is not enough time to build a complete synthesis system -
thus we could not "press the button" on the last day of class and watch the lay
outs for the three SPUR chips pop out of the computer. 

After the fifteen-week course period, all three chip designs had been con
verted from their original descriptions in 'N.2' or SLANG formats to BDS and 
inserted into our data management system. In the last few weeks of the course, 
these descriptions were then used to exercise the pipeline of tools that had been 
created in parallel. Major parts of these designs have run through various tool 
groups and produced results of widely varying quality. Improvements were quite 
visible as the tools were debugged and improved. 

The major bene·fit of this course is a very good understanding of the 
bottlenecks and missing links in our system and concrete plans to overcome these 
deficiencies. Over all, the Synthesis Project of Spring lQS6 must have been a posi
tive experience; the students polled at the end of the term voted strongly in favor 
of continuing the Synthesis Project in the Fall term. 

7. CONCLUSIONS 

There is a broad spectrum of design styles that have proven successful for the 
construction of VLSI circuits and systems. For all these styles and for all the lev
els in the design hierarchy, good computer aided tools and data management tech
niques are indispensable. The emerging wave of CAD tools shows a trend to start 
at the lower hierarchical levels and to move upwards and to sweep the verification 
and analysis tools before the synthesis and high-level decision making tools. 
There is no doubt that eventually the whole design spectrum will be covered. 

To make the emerging tools truly useful, the new tools should be developed 
in close cooperation with the user, or even by the user himself. Several iterations 
are normally needed to produce a good tool. The development of tools should be 
planned with this in mind. 

Due to the changing nature of VLSI design, a design system will never be 
"finished". In order to keep up with the needs of the chip designers, the environ
ment and the data representations must be kept flexible and extensible. A modu
lar set of tools coupled to an object-oriented, integrated data base is a good solu
tion. 

Finally, we believe that the most effective tool development takes place under 
the forcing function of actual designs. In a recent push to integrate and complete 
our synthesis tools at Berkeley, we have used the chip set of an emerging VLSI
based multiprocessor workstation. This effort has given us a clear understanding 
of the tools that we are still missing. It has charted out enough work to keep us 
busy for several more years. 

15 
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INTRODUCTION 

In recent years, modern VLSI technology has made 
possible the realization of complex digital systems on a 
single silicon chip. The ability to compress much digital 
logic complexity onto a single chip has provided the means 
to achieve substantial cost reductions, making this 
technology very attractive for designers of custom systems. 

However, there have been two obstacles in achieving 
this goal. One has been the ability to obtain mask and 
wafer fabrication services in standard NMOS and CMOS 
technologies. The other obstacle has been the understanding 
of and access to modern design techniques which can 
effectively exploit this highly volatile technology. In 
recent years, "foundries" have appeared which have converted 
the designer's geometric mask representation into finished 
and packaged chips. Thus, the first obstacle has been 
effectively removed. At the same time, in light of this new 
availability of foundry services and the need to cope with 
increasingly complex designs, new techniques for circuit 
realization have evolved. These techniques have vastly 
increased the number of VLSI designers who can create 
working chips with acceptable performance. 
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In this chapter, an introduction to VLSI design is presented 
by initially describing the basic devices, and then building 
up several circuit forms that can be combined to provide 
complete systems. In this way, the designer is provided 
with a basic circuit vocabulary which is needed to compose 
complex systems. A brief introduction to MOS fabrication 
techniques is also provided, leading to an understanding of 
lithography and the design rule constraints which 
characterize acceptable geometric mask representations 
("layouts"). These representations will then lead to wafer 
processing and the final intended circuits. Subsequent 
chapters in this book build on this foundation, and present 
design tools and strategies to create state-of-the-art 
chips. 

THE MOS TRANSISTOR 

In this introduction, unipolar transistors (commonly 
known as MOS transistors) will be the central topic. These 
transistors are four-terminal devices, although one terminal 
is the connection to the bulk substrate which is often 
implied in many designs. The three remaining terminals are 
used to realize a switch which connects two terminals (known 
as the source and the drain) controlled by a third terminal 
(known as the gate). The cross-section of a typical MOS 
transistor, with its analogy to a switch, is illustrated in 
Figure 1. 
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Figure 1. An N-Channe1 MOS Transistor 
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The label "MaS" is utilized because of the three layers 
(indicated in Figure 1), and historically corresponds to a 
metal gate laying over a thin layer of silicon diQxide 
which, in turn, rests on the ail icon substrate, or wafer. 
In contemporary practice, gate material is usually 
fabricated from polycrystalline silicon, and yet, the name 
"MaS" is still retained. 

There are two basic types of MaS transistors. The 
transistor shown in Figure 1 is an n-channel MaS transistor, 
sometimes known as a MOSFET (MaS field-effect transistor). 
In this transistor, the source and drain connections are 
realized by n-type regions with many excess electrons, but 
the semiconductor substrate is "doped" in order to provide 
for a lack of electrons needed to satisfy the crystalline 
bonds, designated as "holes." A p-channel MOSFET can be 
obtained in a similar way by providing p-type regions (doped 
in order to provide many holes) situated in an n-type 
substrate. In order to understand the physical scale, the 
source and drain regions are typically several microns deep, 
the silicon dioxide is several hundred angstroms thick (1 A 
- lO-4~), and the gate material is approximately one micron 
thick. The distance from the source to the drain varies 
greatly according to the technology utilized. Usually, it 
is less than three microns, and in very aggressive practice, 
it may approach one micron or less. 

There are two physical principles which lead to the 
switching action associated with this transistor structure. 
The first of these phenomena is the pn junction which is 
achieved whenever n-type material is juxtaposed with p-type 
material. An understanding of the basic physics of these 
junctions is assumed. l For the purpose of this discussion, 
it is sufficient to note that the junction provides a diode 
circuit action across its boundary, and hence, it may be 
either forward-biased or back-biased. In the normal use of 
these transistors, the junctions are kept back-biased, so 
that the source and drain regions are electrically isolated 
from the underlying crystalline substrate. In other words, 
for an n-channel transistor, the voltage of the source and 
drain regions is maintained equal to or greater than that of 
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the substrate. Although there are many variations, it will 
be assumed that the substrate for n-channe1 MOSFETs is 
always maintained at ground, and that the source and drain 
voltages can range from ground to +5 volts. The gate 
voltage will also vary between ground and five volts. 

The second physical principle used to provide the 
switching action of MOSFETs is the notion of accumulation, 
depletion, and inversion. The gate, together with the 
silicon dioxide and underlying substrate, form a capacitive 
structure which effectively allows the changing of the 
doping's polarity locally underneath the oxide under direct 
control of the gate voltage. With the substrate at ground 
and the gate negative, the majority carriers of the 
substrate (holes) are attracted, or "accumulated," at th~ 

substrate's surface directly adjacent to the silicon 
dioxide. As the gate voltage rises above ground, these 
holes are electrostatically pushed away from the surface, 
and hence, the subs trate maj ori ty carrier population is 
"depleted" at the surface. This action continues until the 
gate voltage reaches a threshold value, where the holes have 
not only been pushed away from the surface, but where 
sufficient electrons have also been attracted to the surface 
by the positive gate potential to form a thin strip of 
n-type material below the oxide. At this point, an 
electrical connection has formed between the source-drain 
regions, since an n-type path exists between the two. It is 
important to note that there is still a distributed pn 
junction surrounding the source, drain, and the n-type 
channel under the gate. This means that the conducting 
region is still isolated from the underlying substrate, an 
important feature of the MOSFET. Typically, the source and 
drain are physically symmetrical, and conventionally in an 
n-channe1 MOSFET, the source is the end of the transistor 
with the lowest voltage. 

A p-channe1 MOSFET works in a similar way. P-type 
source and drain regions are formed in an n-type substrate, 
and the substrate is connected to the highest available 
voltage (typically five volts). The source, drain, and gate 
voltages range between ground and five volts, as is the case 
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with an n-channel MOSFET. For a p-channel device, the 
transistor is off (no conducting channel between source and 
drain) when the gate voltage is high or at five volts, since 
high voltage will attract the substrate majority carriers 
(electrons) to the surface, corresponding to accumulation. 
As the gate voltage is lowered, the electrons are pushed 
back, and holes are once again attracted until a thin 
channel region is created under the silicon dioxide between 
source and drain which is p-type, corresponding to inversion 
in that region. At this point, a conducting strip has 
formed between source and drain, and the corresponding 
switch is closed. 

Both n- and p-channel MOSFETs are easily built, but 
their speed is constrained by the mobility of the majority 
carrier, which is substantially higher for electrons than 
for holes. Thus, when only a single type of MOSFET is used, 
n-channel technology is preferred since it is faster. CMOS 
(Complementary MaS) utilizes both n- and p-channel devices 
in a complementary way to achieve a variety of desirable 
circuit properties. 

From the above discussion, it should be appreciated how 
the pn junction at either end of the device channel is 
dynamically altered through gate voltage action to provide 
either an open circuit between the source and drain, or a 
thin conducting path. Thus, the interplay of pn junction 
physics with electrically alterable regions of accumulation 
and inversion provide the essential device action. The gate 
voltage at which substantial inversion is obtained is called 
the device threshold voltage. In modern practice, this 
voltage can be set at any value. When the threshold is 
positive with respect to the source for n-channel devices 
(negative with respect to the source for p-channel devices), 
the device is called an enhancement-mode transistor, whereas 
in the opposite case, it is called a depletion-mode 
transistor. All MaS circuit technologies provide devices 
with at least one enhancement-mode threshold, typically in 
the neighborhood of one volt with respect to the source. 
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In most of this discussion, these MOSFETs will be 
regarded as either on or off. But, it is important to 
understand that there are typically three regions of 
recognized "on" behavior. When the channel is inverted, and 
the source-drain voltage is small, then the thickness of the 
inversion region is approximately uniform, and the current 
between the source and the drain varies linearly with the 
source-drain voltage using the gate voltage as a parameter. 
However, as the source-drain voltage rises, the thickness of 
the inversion region at the drain end diminishes with 
respect to the source end (due to less available vertical 
electric field). Increases in source-drain voltage lead to 
correspondingly smaller increases in source-drain current 
for a given gate voltage. In turn, this leads to a 
transition region which evolves into a saturation region 
where the inversion layer is completely pinched off at the 
drain end, and increased drain-source voltage does not yield 
any additional source-drain current for a given gate 
voltage. Keeping these three regions in mind, the overall 
current voltage characteristic of an individual MOSFET 
appears in Figure 2. 

~ANSlT10N REGION 

SATlJRAnON REGION 

LINEAR REGION 

Figure 2. Ids versus Vds for an N-Channel MOSFET, 
with Vgs as a parameter. 
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These characteristics can be rigorously derived, and there 
are several books available on semiconductor device physics 
that can be referenced for a rigorous derivation. 

At this point, a brief introduction to the individual 
MOSFET has been provided. In today's technology, these are 
extremely small switches which can be interconnected to 
provide a variety of circuit forms that will be discussed 
below. Certainly, these are not ideal switches. When the 
devices are off, the impedance between source and drain is 
very high, and is commonly several megohms. On the other 
hand, when the device is on, a minimal-sized device (where 
the channel's width equals its length) has an impedance of 
approximately 10,000 ohms. Nevertheless, these switches are 
used to manage charge distribution on the circuit nodes, and 
this substantial resistance is tolerable. It should be 
remembered that the gate threshold voltage can easily be set 
in the manufacturing process at any desired voltage. It is 
not unusual for four different thresholds to be used in 
contemporary circuits. In this discussion, it will always 
be assumed that the supply voltage for the circuit is five 
volts, and that the enhancement threshold is nominally one 
volt. Additionally, in NMOS circuits, a negative four-volt 
depletion-mode threshold is also assumed which is useful for 
load devices. These self-isolating devices, whose active 
switching channel area is only several square microns, can 
be used in large numbers to provide very complex circuits. 
Indeed, circuits containing over a million transistors are 
routinely fabricated. As a result, we look for regular and 
repeatable circuit structures that can be combined easily in 
order to minimize the design effort for these large 
circuits. 

While there are many definitions of the term "VLSI," 
its most important connotation is the use of vast numbers of 
very small devices, together with the corresponding problems 
of fabrication and design. Effective custom design is 
possible only because general circuit and layout design 
techniques that provide dependable circuits with acceptable 
performance have evolved. In the sequel, many of these 
basic circuits will be shown, and how they can be easily 
expanded and generalized to provide all desired logical 
functions. 
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INVERTER CIRCUITS 

Now that an understanding has been reached regarding 
the switching action of a single MOS transistor, the ways in 
which these transistors can be combined to provide desirable 
circuit action can be considered. For digital circuits, the 
simplest structure is the inverter which simply inverts the 
input logic level. Thus, in MOS circuits where voltage can 
range between ground and +5 volts, an input high level of 
five volts should lead to a low output value of ground, and 
vice versa. Furthermore, the circuits should switch rapidly 
at an "inverter threshold" between these two configurations. 
This inverter threshold should also be ideally halfway 
between ground and five volts to provide the best noise 
margins. 

First, consider NMOS circuits. A simple inverter can 
be obtained by using one MOSFET controlled by the input 
voltage, as illustrated in Figure 3. 

RUISl'OR 

I-_-OVQUT 

Figure 3. Four NMOS inverter circuits. 
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A load resistor is connected to the high-voltage Vdd' 
commonly five volts. The device threshold for the 
enhancement MOSFET is typically one volt, so when Vin is 
less than one volt with respect to ground, the MOSFET is off 
and the output voltage rises to Vdd , since it is always 
assumed that the output drives a pure capacitive load with 
with no dc path to ground (unless stated otherwise). On the 
other hand, when Vin rises above the device threshold, the 
MOSFET turns on, and the output voltage is pulled down to a 
level determined by the ratio of the device on resistance, 
and the resistive load. For this reason, such a circuit is 
called a ratioed circuit. It is important to note that the 
low output voltage never reaches ground, since it is 
constrained by this ratio. Furthermore, it is essential 
that this low-output voltage be less than the device 
threshold voltage. Otherwise, the output is incapable of 
turning off a succeeding inverter pull-down device. Several 
other load structures have been proposed, and three of them 
are illustrated in Figure 3. They all replace the resistor 
load by a MOSFET pull-up in order to save space in the 
circuit, and to provide desirable circuit action. Usually, 
the least desirable load device is the so-called saturated 
load, where the gate of the pull-up is permanently connected 
to its drain. This pull-up device will certainly provide 
current to the output as desired, but as the output voltage 
rises, the gate-to-source voltage diminishes which provides 
less current as the output rises. Finally, the device is 
cut-off when the gate-to-source voltage reaches the device 
threshold, typically at one volt. This means that the 
output cannot rise above 4 volts, and it is very slow in 
approaching this value. 

The next alternative load structure to be considered is 
the so-called linear load, where the load MOSFET has its 
gate connected to an additional supply voltage, Vgg , which 
is higher than five volts, with eight volts a typical value. 
The linear load performs well, and provides strong drive 
(high gate-to-source voltage) when the output is low, and 
allows the output to rise up to Vdd . On the other hand, a 
power supply is needed for V gg' and wiring between the 
supply and the individual circu~ts must also be provided. 
Usually, these disadvantages are sufficient to rule out the 
use of a linear load. 
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Finally, the depletion load is observed, where a device 
with a deep depletion threshold is provided, and its gate is 
connected to its source. Since the deep depletion threshold 
is typically between -3 and -4 volts, and the gate-to-source 
voltage is constrained to be zero, this load device is 
always on. It provides constant drive into the output. It 
is still a ratioed circuit, but it provides the best rising 
output transient of these circuit alternatives. It is 
compact in its layout, and readily supported by the 
available technology. For this reason, the basic NMOS 
circuit style is referred as enhancement/depletion ratioed 
NMOS, or simply E/D NMOS. It is essential to remember that 
the enhancement/depletion inverter just described is still a 
ratioed circuit. The size of the pull-down enhancement 
MOSFET, as well as the size of the depletion-mode pull-up, 
must be appropriately sized so that the low output voltage 
is appreciably below the enhancement-mode threshold, 
providing a successful cut-off of succeeding inverter-like 
circuits. This sizing depends on the actual device 
threshold values provided by the technology, and hence, it 
will vary. But, a common value of the ratio of the channel 
length divided by the channel width of the pull-up, divided 
by the corresponding ratio for the pull-down, is four. This 
leads to the frequently mentioned "four-to-one" rule. In 
many NMOS circuits, however, the input to the E/D inverter 
is provided through a series ("pass") transistor. As a 
result, the input to the inverter never rises above four 
volts. When this occurs, the available gate-to-source drive 
voltage on the pull-down is diminished, and the sizing ratio 
previously mentioned must be doubled. 

In CMOS technology, the presence of both n- and 
p-channel devices permits a more desirable inverter 
characteristic without the need for concern over device 
sizing which is dictated by ratioing considerations. The 
two inverter styles are contrasted in Figure 4. 
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Figure 4. NMOS and CMOS Inverter Characteristics. 

By definition, in CMOS circuits, all input and output 
signals vary between five volts and ground, or "from 
rail-to-rail." Thus, when the input to a CMOS inverter is 
high (five volts), the NMOS pull-down device is turned on 
hard, and the p-channel pull-up device is turned off 
completely. This causes the output to fall to ground. On 
the other hand, when the input is low (at ground), the 
p-channel device is turned on hard, and the n-channel device 
is turned off completely. This causes the output to be 
driven high to five volts, and leads to a symmetrical 
inverter characteristic with very good noise margins. These 
two characteristics are responsible for much of CMOS' 
popularity. In addition, the two devices are statically 
complementary, so that only one or the other is on at a 
specific time, except during transitions. This minimizes 
power consumption, and contrasts with the NMOS E/D inverter 
where there is continuous static conduction from five volts 
to ground when the pull-down device is on. 
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Both CMOS and NMOS circuits are highly utilized, 
although there is an increasing trend towards CMOS design 
styles. Generally, NMOS circuits are denser than CMOS 
circuits, and are often faster. CMOS circuits operate at 
much lower power levels, and provide superior noise 
immunity. Like all generalizations, however, these 
observations have exceptions, and continuing circuit 
innovation has led to the utilization of the best features 
of both approaches. 
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GENERALIZED INVERTER CIRCUITS 

NMOS and CMOS inverters can be easily generalized to 
provide universal logic families. NAND and NOR circuits are 
illustrated in Figures 5 and 6. 
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Relation of NMOS and CMOS NAND gates. 
Relation of NMOS and CMOS NOR gates. 

It can easily be verified that in the case of NMOS, two 
pull-down devices in series provide the two-input NAND 
circuit function, whereas two pull-down devices in parallel 
provide the two-input NOR function. It must not be 
forgotten that these are still ratioed circuits, and that 
all of the devices involved in these gates must be 
appropriately sized. This leads to an important modular 
property of the NOR gate, because once an NMOS inverter is 
properly sized, the addition of further pull-downs in 
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parallel cannot upset the ratio constraint. On the other 
hand, if a ratioed NMOS inverter is extended to a NAND gate, 
then sizing must be varied according to the number of 
pull-down devices in series. One might be tempted to argue 
for making the ratio sufficiently high that these sizing 
conditions would not have to be varied with the number of 
pull-down devices. But, this would lead to exceedingly slow 
circuits. It is essential to remember that ratioed NMOS 
circuits are inherently slower in the pull-up transient than 
in the pull-down transient. Hence, care must be taken to 
ensure that the pull-up transient is kept as short as 
possible. 

The NMOS NOR and NAND circuits be easily extended to 
complementary (or classical) CMOS forms. One merely takes 
the NMOS pull-down structure, and composes it with an 
appropriate p-channel pull-up structure so that the total 
pull-up structure is off when the pull-down is on, and vice 
versa. This leads to a circuit form which satisfies the 
criteria for CMOS, and is illustrated in Figures 5 and 6. 
All input and output signals vary between ground and five 
volts, and there is no static power dissipation between the 
five-volt supply and ground. 

The augmentation of inverter circuits to provide NAND 
and NOR capability is easily extended to provide more 
general logic capability. One simply builds a network of 
pull-down transistors that will realize the desired logic 
function, keeping in mind that all devices must be sized in 
NMOS to provide the appropriate ratioing. For CMOS, the 
NMOS pull-down structure is retained, and the corresponding 
conduction complement pull-up (composed of p-channel 
devices) is provided to achieve the desired complementary 
circuit properties, but sizing is not critical, except for 
speed. 

The generalized inverter circuits described above are 
widely utilized, and form the basis for much combinational 
logic design. The augmentation of the basic inverter is 
responsible for nearly all forms of combinational and 
sequential logic designed in MOS technologies. Hence, it is 
the fundamental, canonical form for both NMOS and CMOS 
circuit design. 
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TRANSMISSION GATES 

In the previous section, it has been shown that 
networks of transistors can be composed in such a way to 
realize a broad variety of logic functions in both NMOS and 
CMOS. These transistors provide a network of switches 
controlled by appropriate gate signals that either discharge 
the output node toward ground, or charge it toward the Vdd 
voltage which is typically five volts. Hence, each 
transistor participates in paths between the output node and 
either ground or Vdd which can be selected by appropriate 
gate signals. It is also possible to introduce transistors 
as switching elements in series with the output node. Then, 
they are considered transmission gates between the output of 
one logical gate and the input of other gate structures. 
Thus, in NMOS, it is possible to insert an n-channel MOSFET 
in series between the output of one inverter and the input 
of another. This is commonly done to clock signals from one 
stage to another, as in a shift register. More complicated 
networks of NMOS transistors can also be used as 
transmission gates between output and input nodes of logic 
gates, and hence, they can provide additional combinational 
logic function to that provided by generalized inverter 
structures. Typically, these networks provide selection or 
routing capability between logic gates, but the gate signals 
are frequently ANDed with clock signals in order to provide 
an overall timing discipline. 

The CMOS transmission gate is inherently more 
complicated than the NMOS single-transistor transmission 
gate, since it must retain its rail-to-rail signal swing. 
As illustrated in Figure 7, the CMOS transmission gate is 
realized by connecting an n-channel and p-channel transistor 
back-to-back, and making their corresponding gate signals 
complementary. 
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Figure 7. The CMOS Transmission Gate. 

One of the two devices is always on when the control signal 
is high, and both devices are off when the control signal is 
low. In this way, the complete logic swing of the input is 
conveyed to the output. This property is indispensable for 
many CMOS logic forms. 
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One of the most clever of these circuits is the 
six-transistor CMOS-exclusive OR gate, shown in Figure 8. 
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Figure 8. A CMOS Exclusive OR Circuit. 

This circuit realizes the four possibilities indicated in 
its truth table through the complementary selection of two 
separate subcircuits. When the input A is low, then the 
output is just the value of the alternate input B, as 
illustrated in the truth table, and hence, this value can be 
routed to the output of the circuit by means of a 
transmission gate. On the other hand, when the input A is 
high, then the output is the inverse of B. This must be 
realized by an inverter. The circuit is ingenious because 
when the transmission gate action is desired, the inverter 
structure is effectively decoupled from the output, whereas 
when the inverter action is needed, the transmission is 
simply turned off. The ability to electronically decouple 
an inverter in a circuit is peculiar to CMOS, and has no 
corresponding NMOS analogy. 
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FULL ADDERS 

The use of generalized inverter structures, as well as 
transmission gates is amply illustrated by the design of 
full adder circuits. These are complex modules in an 
overall system, and indeed, the basic building blocks of MOS 
circuits are rarely more complicated than these examples. 

The NMOS full adder circuit is interesting because the 
carry output is generated first, and then used as partial 
input to the output sum bit circuit, as shown in Figure 9. 

REDUCED MAJORITY 
FUNCTlON 

Figure 9. NMOS Full Adder. 

It is easy to understand the carry out circuit, since it 
must only test all possible pairs of the three input signals 
to determine if any two are simultaneously true. If the 
carry out signal is false, then the sum circuit merely 
checks to see if anyone of the three inputs is true. In 
addition, it must also check to see if all three inputs are 
simultaneously true. It should be noticed that this circuit 
is easy to "read," since the way in which the individual 
transistors contribute to the logic switching function of 
the overall circuit can be readily determined. This circuit 
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also has the useful property of generating the carry out 
before the sum bit, which helps to speed up parallel adders. 

A CMOS full adder could be obtained from the previously 
described NMOS full adder by retaining the NMOS pull-down 
structures, and generating the needed PMOS conduction 
complements as pull-up structures. If this is done, the 
result is a rather cumbersome circuit which is both large 
and slow. A better circuit is illustrated in Figure 10. 
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Figure 10. CMOS Full Adder Circuit. 

Here the previously described CMOS exclusive OR gate is 
utilized as a basic building block for the full adder. It 
is combined with a succession of transmission gates to 
achieve the output sum and carry signals. Both true and 
complement forms of the exclusive OR of inputs A and Bare 
generated in order to improve the circuit's speed. It can 
be readily appreciated that without previous understanding 
of the properties of both CMOS transmission gates and the 
CMOS exclusive OR circuits, this circuit would be 
exceedingly difficult to understand. 
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PROGRAMMED LOGIC ARRAYS 

It has been shown that both generalized inverter 
structures and networks of transmission gates can be 
utilized to provide combinational logic capability. It has 
also been mentioned that in many designs, several hundred 
transistors may be utilized, and hence, a design strategy 
must be available to permit the designer to readily 
implement large amounts of combinational logic in a 
straightforward manner. The solution to this problem is 
provided, in part, by program logic arrays (PLAs) which are 
highly regular in repeatable structures, and can be 
generated automatically from a logic specification by 
appropriate CAD tools. The basic building block for an NMOS 
PLA is the NOR gate, which has already been shown to have an 
admirable modular property whereby changing the number of 
pull-down devices in parallel does not change the 
requirement for overall gate sizing. In a PLA, logic inputs 
are provided to a so-called "AND" plane which is realized 
through an array of NOR gates. This AND plane generates a 
group of product terms which are then combined in an "OR n 

plane, which in turn is realized by a regular array of NOR 
gates. The overall structure is shown for one example in 
Figure 11. 
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Figure 11. An NMOS PLA Circuit. 
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Both the true and complement vales of all logic inputs are 
routed vertically across the AND plane consisting of a set 
of distributed NOR gates, one for each desired product term. 
These product terms are then bussed horizontally into the OR 
plane, where they control another set of distributed NOR 
gates that feed a set of output inverters, providing the 
correct polarity for the output logic signals. It cannot be 
overemphasized that the regular layout strategy afforded by 
NMOS NOR-NOR PLAs is due to the modular sizing property of 
NOR gates. Notice, however, that while these NMOS NOR gates 
can all be sized by using fixed load devices, a CMOS PLA 
which is constructed by using the normal complement 
techniques would not be feasible because the size of the 
pull-up structures would be logic-dependent. For many 
years, this was a substantial obstacle in using regular PLA 
circuit forms. It has only been recently overcome through 
the introduction of so-called "precharge-evaluate" circuit 
techniques which will be described later in this chapter. 

NMOS PLAs are not only highly regular, but they are 
also universal since any logic function can be realized as a 
sum of products. In addition, recent research has provided 
several invaluable CAD tools, including facilities for logic 
optimization and array size minimization through techniques 
of input encoding,2 and line folding,3 both of which are 
beyond the scope of this chapter. It is sufficient to say 
that dense and highly efficient PLA structures can be 
readily obtained from an input logic specification, leading 
to the broad use of PLAs in a wide variety of circuits. 
Thus, good performance is achieved with minimum design 
effort together with the ability to delay binding many logic 
decisions until very late in the design process of the 
overall chip. 

CLOCKED CIRCUITS 

Both NMOS and CMOS clocked circuits are widely used in 
order to provide not only sequential circuits, but also 
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combinational circuits through the use of complex timing 
disciplines and precharging techniques. A simple example of 
an NMOS sequential circuit is provided by a series of 
inverters connected by clocked pass transistors. A 
two-phased nonoverlapping clock discipline, as illustrated 
in Figure 12, is frequently used. 
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Figure 12. An NMOS Shift Register Circuit. 

This leads to shift register capability as shown in the 
figure. This circuit can easily be generalized to provide 
shifting in both directions, as well as many other variants 
including push-down stack operation. It should be verified 
that a complete clock cycle (including both phases) succeeds 
in shifting an input bit in Figure 12 through two inverters, 
and hence, propagates that bit one bit position in the 
overall shift register. This circuit provides memory at 
each bit position, and the corresponding values are 
maintained by isolating charge at the input of 
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inverter pull-down gates. This isolation is clearly 
achieved by the use of the clocked pass transistors, and 
such stored charge values can be safely maintained for 
intervals as long as several milliseconds. This ability to 
achieve dynamic memory through charged storage on isolated 
nodes is a dominant feature of MOS circuit design. Of 
course, fully static designs are easily realized by using 
generalized inverter structures. An example of a simple 
set-reset latch is illustrated in Figure 13, and is 
completely static. 
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Figure 13. An NMOS Clocked SR Flip-Flop. 

Such designs can also be clocked, 
clock frequency is very low, 
occasionally turned off. 

and are useful when the 
or when the clock is 
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Figure 14. CMOS Shift Register Circuits. 

CMOS inverters can also be augmented by either transmission 
gates or series clock devices in both the pull-up and 
pull-down to provide for shift registers, as seen in the 
NMOS case. Examples of such circuits are illustrated in 
Figure 14, where the transmission gate case is represented 
symbolically in the lower part of the circuit, including the 
commonly used symbol for a CMOS transmission gate. 
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EXAMPLE: 

GENERAL FORM 

Figure 15. "Domino" CMOS Circuits. 

Perhaps the most prevalent use of clocking in CMOS is 
provided by the so-called "precharge~eva1uate" circuits. Of 
the many forms of such logic. the "domino" form is widely 
utilized. The idea is to build a CMOS circuit that 
approaches the density of an NMOS circuit by avoiding the 
use of a complementary PMOS pull-up structure through the 
introduction of a precharge-eva1uate timing discipline. An 
example of such a circuit is illustrated in Figure 15. 
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The basic logic network is achieved through the 
interconnection of n-channel MOSFETs in the pull-down 
structure. Just below this logic network, however, an 
evaluate transistor is connected between the logic network 
and ground. A static p-channel pull-up transistor is 
provided, and both this transistor (called the "precharge" 
transistor) and the evaluate transistor (connected from the 
logic network to ground) are controlled by a clock signal. 
Additionally, the output of the precharge-evaluate network 
is run through an inverter to provide the final output. The 
circuit action is as follows. While the clock signal is 
low, the precharge transistor is on and charging up the 
input to the output inverter. Hence, it is holding the 
output signal low. When the clock signal goes high, the 
precharge transistor is turned off, and ,~he pull-down 
evaluate transistor is turned on. Depending on the values 
of the input logic signals, the logic network together with 
the evaluate transistor may discharge the input to the 
output inverter. This causes output Z to go high. This 
circuit has the advantage of using an entirely n-channel 
logic network, which is fast, and minimizing the number of 
p-channel devices. Thus, for complicated logic functions, 
the total number of transistors is minimized, and the 
circuit action is very fast. The output inverter is 
provided to ensure that all output signals in domino CMOS 
are low prior to the evaluate phase. If this was not the 
case, race conditions between circuits could easily arise, 
thus destroying the utility of this circuit form. CMOS 
domino circuits, together with other variants of this form, 
are widely used in order to retain the rail-to-rail and 
low-power advantages of CMOS, while obtaining the high 
density and fast circuit speed of NMOS. Hence, this form 
should be viewed as an innovative compromise motivated by 
performance considerations. Undoubtedly, many other schemes 
of this sort will appear in the future. Since these 
circuits employ a simple one-transistor pull-up, and since 
sizing considerations are not necessary, both NAND and NOR 
precharge-evaluate circuits can be combined to provide 
efficient CMOS PLA structures. 
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FINITE-STATE MACHINES 

In light of both the combinational logic and the memory 
capability developed in previous sections, it is a simple 
matter to construct finite-state machines. Many different 
forms are possible, but PLAs are widely augmented for this 
purpose. In a finite-state machine, combinational logic is 
needed to generate the primary outputs from the primary 
inputs and the present state. The next-state information is 
also derived from the primary inputs and the present state. 
This set of combinational logic can be readily realized by a 
PLA, as illustrated in Figure 16, and the state memory is 
easily obtained through the clocking of register cells 
realized with inverters and pass transistors. 

Figure 16. Finite State Machine Forms. 



46 VLSI CAD Tools and Applications 

In this way, it is a simple matter to add clocking to a PLA, 
together with feedback connections needed to propagate the 
next-state information to the updated present state. As is 
the case with any finite-state machine, the designer starts 
by constructing a transition table which shows all possible 
sets of inputs together with present states, and the 
consequent next state and output signals that must be 
generated in each case. From this information, product 
terms are determined that will be generated in the AND plane 
of the corresponding PLA, together with the way in which 
these are combined in the OR plane to provide the next-state 
information and output logic signals. 

Like PLA design, a variety of optimizations can be 
applied to finite-state machine design. Perhaps the most 
significant is the optimization that allows the selection of 
codes for the set of states within the machine. It is often 
possible to perform state assignment in a way that 
eliminates rows of the PLA, thus reducing the circuit's area 
and increasing its speed. Input logic lines can often be 
multiplexed if they are used in a state-dependent way, and 
often the PLA can be further reduced by providing some 
external logic, particularly when output signals are 
strictly state-dependent. While the design of finite-state 
machines based on the PLA structure with appropriate 
feedback has been emphasized, it should be realized that 
this is unnecessary. In many designs, simple state machines 
can be readily constructed by utilizing generalized inverter 
structures and simple latches. Indeed, it is common to have 
many simple state machines in an overall chip design, 
particularly when the algorithm to be implemented admits 
considerable parallelism. 

At this point, several methods for the design of 
combinational logic together with effective techniques for 
sequential circuit design, including finite-state machines, 
have been introduced. This is by no means an exhaustive 
treatment of useful MOS circuit forms, but it does provide 
the most basic and useful circuit forms in current practice. 
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Using these circuits, a designer can readily build 
complete chips of considerable complexity, aided by 
comprehensive logic simulation and timing verification CAD 
tools which are currently available. A design is conceived 
as an overall architecture comprised of several blocks, 
which in turn can be successively broken down into a set of 
basic building blocks similar to those considered in this 
discussion. The designer then estimates the size and 
performance of these circuits by using layout techniques not 
yet discussed, in order to provide a floor plan for the 
overall design. Different circuit styles and aspect ratios 
can be explored with a view toward an effective, overall 
layout that will fit within the chip size constraints. 
Thus, it is important to consider how the circuit designs 
previously described can be transformed into mask 
specifications for a particular technology which serves as 
the fabrication "foundry" to produce final, packaged chips. 
In order to appreciate the nature of mask specifications, it 
is important to have an understanding of the wafer and chip 
fabrication process, including lithographic techniques. 
These can then be used to motivate a set of geometric design 
rules which restrict the class of all possible mask 
specifications to those which can yield correctly working 
circuits. Once the design rules are understood, then the 
mask layout can be generated, keeping in mind that there are 
many degrees of freedom afforded by the design rules which 
can lead to many possible mask layouts corresponding to a 
given circuit form. With final mask layout as the goal 
(considered the designer's interface to the fabrication 
foundry), a discussion of the integrated circuit fabrication 
process follows. 

INTEGRATED CIRCUIT FABRICATION 

The common meeting point between design and fabrication 
is the specification of the integrated circuit masks. On 
one hand, these masks are interpreted by the integrated 
circuit fabrication process which actually forms the 
physical circuits themselves in and on a silicon wafer. On 
the other hand, the designer must transform the circuit 
representation of a design to a set of closed shapes 
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on the several masks, which obey the fabrication design 
rules, but will also lead to the needed structures in the 
final physical circuit. There are several programs that 
will transform special circuit forms or logic specifications 
into mask specifications. But, in the most general case, 
the designer must accomplish this transformation. The 
design rules which constrain the mask representation, or 
layout, are a set of simultaneous linear inequalities, and 
it is certainly possible to approach mask layout without any 
concept of the inequalities' origins. Nevertheless, a 
knowledge of lithography and fabrication is highly useful in 
terms of being able to relate the mask set to the final 
physical circuit, and in terms of providing justification 
for the substantial variety of design rules used in 
contemporary practice. Modern silicon integrated circuit 
fabrication is an example of planar fabrication because all 
operations are performed at the surface of a silicon wafer. 
The starting silicon wafers are purified monocrystalline 
silicon doped with a p-type dopant (e. g., boron) for 
n-channel MOSFETs, or an n-type dopant (e. g., phosphorus) 
for p-channel MOSFETs. These wafers are usually round and 
are several inches in diameter, and several hundred microns 
thick. The main thickness requirement is to permit handling 
during manufacturing as opposed to any needed electrical 
properties. Through a variety of processes such as 
diffusion, oxide growth, ion implantation, deposition, and 
other techniques, regions of doped silicon, thin and thick 
oxides, polysilicon, metal, and interlayer contacts are 
readily achieved through the utilization of many processing 
steps modulated and controlled by the features of the 
individual masks. 

The masks are typically realized in glass with some 
type of opaque material (e. g., chromium) that serves to 
define the shapes on the mask. For each step in which a 
pattern on the mask must be utilized in processing on the 
wafer, a material known as photoresist is deposited on the 
wafer's surface and then baked. Ultraviolet light is then 
shone through the mask onto the resist on top of the wafer, 
exposing the polymer bonds of the resist material. In the 
case of "positive" resist, the bonds in the polymer break 
down where the light strikes the resist, and these regions 
can be easily etched away. In "negative" resist, 
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the complementary regions are etched away. In this way, the 
patterns contained on the masks (which have been generated 
by a designer or a CAD program) are transferred to the 
surface of the wafer, where additional processing can then 
occur. 

In the overwhelming majority of cases, processing 
proceeds according to the so-called silicon gate 
self-aligned process. A detailed description of this 
technology is beyond the scope of this chapter, 4 but its 
essential features can be mentioned. Thin oxide is grown 
wherever a channel region is needed, and thick oxide (or 
field oxide) is used in all other places except where 
diffusion into the substrate will occur. Even before the 
thin oxide is grown, ion implantation is used to adjust 
thresholds in those channel regions where tailoring is 
required, such as in depletion loads. Following the 
threshold adjustments and the growing of oxide, the 
polysilicon layer (used for both interconnect and as a gate 
material) is laid down before the actual diffusions for the 
source-drain regions are made. This sequencing is critical 
because after the polysilicon is patterned, and only then, 
is the diffusion into the substrate performed. This results 
in a doping of the polysilicon material itself, but the 
dopant will not penetrate the thin oxide in channel regions 
underneath the gate polysilicon. For this reason, the 
process is called "self-aligned," and earlier problems 
involving mask registration between the diffusion layer and 
polysilicon layer are avoided. This leads to lowered 
capacitances and vastly improved performance. Once the 
diffused regions are formed, then contact cuts are formed 
through thick oxide between the metal, polysilicon, and 
diffusion layers. Finally, metal is deposited over the 
entire wafer and patterned using a mask that characterizes 
the metal interconnect. 

The process sequence described above is for silicon 
gate self-aligned NMOS, and is widely used. Obviously, only 
the briefest outline of this process has been given since a 
typical fabrication sequence will involve several hundred 
steps in a carefully controlled' procedure. 
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Furthermore, there are countless variations, and although 
one layer of metal interconnect has been suggested, in fact, 
two levels of metal interconnect are now commonplace. Some 
bipolar technologies currently available use four levels of 
metal interconnect. The increased numbers in the levels of 
metal provide a highly desirable interconnect material, and 
vastly improved ease of placement and routing of logic 
signals, clock signals, and supply power. By the end of 
this decade, it can be expected that three levels of metal 
interconnect will be common. 

The CMOS fabrication sequence is complicated by the 
need to provide both an n-type substrate for p-channel 
devices, as well as a p-type substrate for n~channel 

devices. This need has been satisfied in many ways, but a 
common technique is to provide a well of diffusion by means 
of diffusion or ion implantation within the main wafer 
substrate for the alternate polarity of doping as opposed to 
the one provided by the main substrate. Thus, CMOS is often 
built in an n-type wafer with a p-type well formed by deep 
diffusion. On the other hand, an n-well in a p-substrate 
can also be utilized, or both kinds of wells can be built in 
a lightly doped epitaxial substrate built on top of a common 
wafer substrate. These choices are illustrated in Figure 
17. 
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Figure 17. CMOS Inverter Cross-Sections. 
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In the case of the p-well approach, the performance of the 
n-channel devices is somewhat diminished due to the fact 
that p-type dopants are introduced into the n-doped 
substrate, leading to diminished mobility in contrast to the 
corresponding NMOS case. This corresponds to "dragging 
down" the performance of the n-channel devices to that of 
the p-channel devices. On the other hand, if an n-well is 
used in a p-type substrate, then the p-type devices (already 
slow due to the hole mobility) are made even slower. But, 
the good performance of the n-channel devices is preserved. 
In many designs, particularly those where p-channel devices 
are minimized, as seen in "domino" CMOS, this approach is 
highly desirable. The last approach uses two wells, each 
optimized for one device or another, and is highly desirable 
but more expensive to produce. It also avoids the 
introduction of parasitic silicon-controlled rectifiers 
which are common in the single-well processes, and lead to a 
phenomenon known as latch-up once the silicon-controlled 
rectifier fires. The characterization and control of 
latch-up are beyond the scope of this chapter, but 
comprehensive treatments of this phenomenon are available. S 
It is clear, that in years to come, processing innovations 
will continue to lead to fabrication techniques that either 
minimize or eliminate latch-up. It is important to note 
that the latch-up problem is unique to CMOS, and is not 
found in the normal NMOS processes. 

Figure 17 also illustrates another need of CMOS design, 
namely the use of body ties or plugs to establish the 
appropriate substrate potential. It should be noted that 
diffusions of like-type dopant are made into each substrate 
in order to make a good contact into both the well and base 
substrate. Thus, in the case of p-well CMOS, a p-diffusion 
is made into the p-well in order to establish its potential 
at ground. On the other hand, in the main wafer substrate, 
an n-diffusion must be made into the n-type substrate in 
order to provide an ohmic contact from the power supply, 
Vdd , into the substrate. Many descriptions of CMOS circuit 
design omit these body plugs, but they are indispensable to 
proper circuit action, and lead to the introduction of one 
additional mask in CMOS that provides for the correct 
contact diffusions. The problems introduced by the 
placement of body plugs constitute another difficulty 
associated with CMOS that is not present in NMOS. 
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DESIGN RULES 

Once the decision is made to adopt a particular 
fabrication technology, then the designer must utilize a set 
of design rule constraints peculiar to that process. As 
mentioned above, these constraints are a set of simultaneous 
linear inequalities which cover the minimum size of mask 
shapes, their separation (both on one mask and between two 
masks), and a variety of constraints concerning overlap and 
surrounding borders. A set of design rules will not be 
presented here, since they can be readily appreciated from 
the particular process chosen. When custom design is 
undertaken, the designer must specify those forms on the 
relevant masks that lead to instantiation of transistors, 
interconnect layers, and contact interconnections between 
layers in a way that is consistent with the design rules, 
and which will lead to desirable electrical properties in 
the final circuit. Because there are so many possible mask 
layout geometries corresponding to a given circuit design, 
designers are often frustrated by the wide variety of 
choices available for the layout specification. This 
problem is usually solved by adopting some layout discipline 
or strategy which introduces conventions to simplify the 
layout process without reducing the layout efficiency. This 
is a good example of where circuit area and performance is 
sometimes compromised in the name of design efficienc.y, and 
is a common result of the increasing complexity of 
integrated circuits. It is simply impossible to lavish 
attention on the individual transistors of a design, and so 
there is a great need for repeatable and regular structures 
which can serve as the basic building blocks in designs. 
Program logic arrays are good examples of such structures, 
but register arrays, bit-slice arithmetic logic units, and a 
variety of memory structures are other examples which are 
frequently utilized. As CAD .tools progress, a variety of 
programs have been produced which generate highly optimized 
versions of the various building blocks described in this 
chapter. These can be called macro generators, and can be 
effectively utilized by the designer to quickly generate 
mask specifications which correspond to the basic circuit 
forms discussed. These are available even for 
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complex structures such as array multipliers and 
floating-point units, and can provide both logic 
optimization as well as layout efficiency. A natural 
extension of this macrogeneration process is to procedural 
means for the generation of layout of an entire chip from an 
input functional specification. This process is sometimes 
called silicon compilation, and while it is in its very 
early stages, it can be expected to lead to acceptable 
circuit performance with minimal human design time in some 
restricted, yet important, cases. Nevertheless, it is 
essential that the designer understand the basic aspects of 
MOS circuit design, fabrication, and layout at a detailed 
level in order to critically evaluate and appreciate the 
growing capability of these CAD programs. 
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1. Introduction 

Simulation plays an important role in the design of integrated circuits. Us
ing simulation, a designer can determine both the functionality and the 
performance of a design before the expensive and time-consuming step of 
manufacture. The ability to discover errors early in the design cycle is espe
cially important for MOS circuits, where recent advances in manufacturing 
technology permit the designer to build a single circuit that is considerably 
larger than ever before possible. This paper reviews the simulation tech
niques which are commonly used for the simulation of large digital MOS 
circuits. 

Simulation is more than a mere convenience-it allows a designer to ex
plore his circuit in ways which may be otherwise impractical or impossible. 
The effects of manufacturing and environmental parameters can be investi
gated without actually having to create the required conditions; the ability 
to detect manufacturing errors can be evaluated beforehand; voltages and 
currents can be determined without the difficulties associated with attach
ing a probe to a wire 500 times smaller than the period at the end of this 
sentence; and so on. To paraphrase a popular corporate slogan: without 
simulation, VLSI itself would be impossible! 

To use a simulator, the designer enters a design into the computer, typically 
in the form of a list of circuit components where each component connects 
to one or more nodes. A node serves as a wire, transmitting the output of 
one circuit component to other components connected to the same node. 
The designer then specifies the voltages or logic levels of particular nodes, 
and calls upon the simulator to predict the voltages or logic levels of other 
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nodes in the circuit. The simulator bases its predictions on models that 
describe the operation of the components. To be successful, a simulator 
requires the following characteristics of its models: 

• The underlying model must not be too computationally expensive 
since the empirical nature of the verification provided by simulation 
suggests that it must be applied extensively if the results are to be 
useful. 

• Component-level simulation is necessary to accurately model the 
circuit structures found in MOS designs. This allows the designer 
to simulate what was designed-an advantage, since requiring sepa
rate specification of a design for simulation purposes only introduces 
another opportunity for error.t 

• The results must be correct, or at least conservative; a misleading 
simulation that results in unfounded confidence in a design is prob
ably worse than no simulation at all. Here, we must trade off the 
conflicting desires of accuracy and efficiency. 

Three of the more popular approaches to modeling are: 

• component models based on the actual physics of the component; 
for example, a transistor model that relates current flow through 
the transistor to the terminal voltages, device topology, and man
ufacturing parameters of the actual device. 

• component models based on a description of the logic operation 
performed by the component, e.g., NAND and NOR gates. 

• component models based on hybrid approaches which aim to ap
proximate the predictions made by physical models, at a computa
tional cost equal to that of gate-level models. 

The first type of model is found in circuit analysis programs such as ASTAP 

[Weeks73] or SPICE [NageI75] which try to predict the actual behavior of 
each component with a high degree of accuracy. Current circuit analysis 
programs do the job well, perhaps too well; at no small cost, they provide 

t This is not a strict requirement; simulators which employ higher-level models 
often provide a "circuit compilation" phase to translate the component-level circuit 
description into (hopefully) equivalent high-level elements-the circuit compiler es
sentially automates the construction of a separate specification for simulation. 
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a wealth of detail, at sub-nanosecond resolution, about the voltage of each 
node and the amount of current through each device. (For example, a 
properly calibrated circuit analysis program is able to predict, within a few 
per cent, the amount of current that flows through an actual transistor.) 
This level of detail would swamp the designer if collected for the entire 
circuit while simulating, say, a microprocessor. Fortunately, the designer 
is spared this fate, since the computational cost of circuit analysis restricts 
its applicability to circuits with no more than a few thousand devices. 

One solution to the problem of simulator performance is to adopt a simpler 
component model, such as the gate-level model introduced above. This 
approach works well when dealing with implementation technologies that 
adhere to gate-level semantics (e.g., bipolar gate arrays). However, MOS 
circuits contain bidirectional switching elements that cannot be modeled 
by the simple composition of Boolean gates. Since many of the circuit 
techniques that make MOS attractive for LSI and VLSI applications take ad
vantage of this non-gatelike behavior, it is important to model such circuits 
accurately. 

Hybrid simulators provide the essential information (functionality and com
parative timing) for large digital circuits by using models that bridge the 
gap between the gate-level and detailed models discussed above. Two hy
brid models are examined in detail: 

• a linear model in which a transistor is modeled by a resistance in 
series with a voltage-controlled switch. The state of the switch is 
controlled by the voltage of the transistor's gate node. 

• a switch model, similar to the linear model, except that a resistance 
value is limited to one of two quantities: 0 for n- and p-channel 
devices, and 1 for depletion devices. 

There are numerous simulation tools, usually called functional or behavioral 
simulators, which support design at higher levels of abstraction. Many of 
the tools are based on some type of hardware description language (HDL) 
and provide a catalog of high-level building blocks such as registers, mem
ories, busses, combinational logic elements, etc. Cause and effect relation
ships are maintained by these simulators usually through some sort of event
driven scheduling of functional blocks, but detailed timing information is 
limited to major clock phases. There exist general purpose languages
SIMULA or LISP, for example-which can also be very useful in simulating 
architectures at this high level. Since these tools are not specific to VLSI, this 
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paper will not discuss them further, but most architectures are simulated 
at this high level before being committed to silicon, and information from 
these simulations is often used to verify subsequent lower-level simulations. 

A final word of warning: all simulators are based on models of actual behav
ior. As with any model, discrepancies are likely to exist between the model 
predictions and the actual behavior of a circuit. The tools described here 
attempt to be conservative, but this cannot be guaranteed. Thus, it is im
portant that the designer become acquainted with the inner workings of the 
models and their shortcomings. The tools perform a calculation one could 
do by hand, only faster and with greater accuracy and consistency-they 
should not be treated as black boxes. 

The following sections focus on each of the modeling approaches. The 
discussion provides an introduction to the various topics, many of which 
are major disciplines in themselves. References are provided at the end of 
the paper for those who wish to pursue a particular topic in more depth. 
In particular, [SV80] and [Newton80] are excellent detailed introductions 
to circuit-level simulation; [Vlach83] is a good reference for the potential 
implementor. 

2. Circuit-level Simulation 

The goal of circuit-level simulation is to provide detailed electrical infor
mation about the operation of a circuit. As mentioned above, this level of 
detail is a two-edged sword: such detail is necessary to successfully design 
some components, but it is so expensive to generate that only selected pieces 
of a circuit can be simulated at this level. Fortunately there is some oppor
tunity to trade speed for accuracy; some of these techniques are outlined 
below. 

Circuit-level simulators all use the same basic recipe: 

(i) Choose the state variables of the circuit, e.g., capacitor voltages 
and inductor currents. The values of these variables will tell us all 
we need to know about the past behavior of the circuit in order 
to predict future behavior. 

(ii) Construct a set of circuit equations which embody constraints on 
the values of the state variables and are derived from physical 
laws, e.g., Kirchoff's voltage and current laws, or descriptions of 
a component's operation, e.g., Ohm's law. 
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(iii) Solve the circuit equations given initial conditions. The presence 
of nonlinearities and differentials usually dictates the use of nu
merical solution methods. The discussion below is oriented to
wards transient analysis where we wish to compute the values of 
the state variables over some time interval, say, 0 ~ t ~ T. 

One can see from the above that circuit-level simulators actually embody 
solutions to two separate problems: first, how to model the circuit with 
component models and circuit equations, and second, how to solve the cir
cuit equations arising from application of the models. In principle, one can 
address the problems separately-this is the approach taken below-but in 
practice one would not choose, say, highly accurate component models and 
then adopt a quick and dirty solution technique. Often simulators leave the 
final choice to the designer: SPICE, for example, has a repertoire of three 
different MOSFET models and allows one of two integration methods to be 
used during the solution phase. 

Some mixed-mode simulators allow one to mix and match models and solu
tion techniques within a single simulation run, using simpler, more efficient 
approaches for some pieces of the circuit, saving the more accurate (and 
expensive) analysis for "critical" subcircuits. A sub circuit may be "criti
cal" because it lies along some path of particular interest to the designer, or 
because it is not modeled correctly by simpler techniques. It is this latter 
possibility which gives rise to an important caveat when using mixed-mode 
simulators: in the interests of efficiency, one may erroneously assume a 
subcircuit can be modeled as a noncritical component, leading to incorrect 
predictions without any indication that the simulation has gone awry. 

Circuit simulators are prized for their "accuracy," in particular, SPICE is 
often used as the metric against which other simulation techniques are 
judged. However, it is important to keep in mind that circuit simulators 
are not infallible oracles concerning circuit performance; what they offer 
is accurate solutions for systems of equations. Unfortunately, the equa
tions themselves are often not nearly as accurate as their carefully derived 
solutions. Over-simplified component models, missing parasitics, poorly 
chosen input waveforms, etc., all contribute to erroneous predictions. Sub
tler effects such as the inability to deal with unknown voltages (e.g., from 
a storage element which has just been powered up) are often overlooked 
when a printout displays voltages to five decimal places. These points are 
worth keeping in mind as we explore how circuit simulators do their job. 
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2.1 Circuit equations and component models 

The first step in circuit simulation is the building of a set of circuit equations 
from a designer-supplied description of the circuit. The description is usu
ally in terms of nodes and branches, where a branch is formed whenever a 
component connects two nodes. If a circuit contains n nodes and b branches, 
the straightforward formulation results in 2b + n equations [Hachtel71]: 

• Kirchoff's current law provides n equations involving branch cur
rents, 

• Kirchoff's voltage law provides b equations relating branch voltages 
to node voltages, and 

• models for individual components provide b equations describing 
the relationship between branch parameters and other parameters 
of the circuit, 

involving a total of 2b+n unknowns, i.e., n node voltages, b branch voltages 
and b branch currents. 

The behavior of a component, which gives rise to the last set of b equations 
mentioned above, can in general be expressed in terms of an interconnection 
of ideal elements. Only a small repertoire of ideal elements needs to be 
supported by the simulator: 

resistive elements, characterized by algebraic equations relating the 
branch currents to the branch voltages. This category includes two
terminal elements (e.g., resistors and independent voltage and current 
sources) where the behavior of a branch is described in terms of the 
branch current or voltage, and four-terminal controlled sources where 
the behavior of a branch is described in terms of the voltage or current 
across a second pair of control terminals. 

energy storage elements, characterized by algebraic equations relating 
the state of the storage elements (charge for a capacitor, flux for an in
ductor) to one of the branch variables (voltage for a capacitor, current 
for an inductor). These equations in turn lead to differential equa
tions relating the branch currents to the change in branch voltages 
(capacitors), or vice versa (inductors). 

If the algebraic equation that describes the operation of an ideal element 
can be graphed as a straight line passing through the origin, the element is 
said to be linear, otherwise the element is deemed to be nonlinear. 
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There are well known techniques for solving the sets of linear equations 
arising from circuits containing only linear resistive elements; however, most 
VLSI circuits also contain nonlinear components (e.g., MOSFETS) and storage 
elements (e.g., node capacitances). The next section describes techniques 
for solving the resulting system of mixed nonlinear algebraic and differential 
circuit equations. Before embarking on that discussion, we briefly turn our 
attention to the component models themselves. 

source drain 

bulk 

Figure 2.1. Equivalent network for an n-channel MOSFET 

Figure 2.1 shows how one might model an n-channel MOSFET as an in
terconnection of ideal elements [pg. 315, Vlach83]. A wide variation in 
accuracy and computational overhead is possible, depending on how the 
various parameters of the model are determined. 

Simplified models treat many of the parameters as constants computed from 
user-supplied information about the device, e.g., its geometry. Often, the 
relatively inexpensive Shichman-Hodges model is used to approximate the 
current conducted by the device: 

id. = {;(Vg. - Vth)2 
,,( Vg• - Vth - !f )Vd. vg• - Vth > Vd. 

where Vth is the threshold voltage of the MOSFET and 

_ we""" w (2 microamps) 
"-IJL 02:""" I 5 2 volt 

"off" 

"saturated" 

"linear" 

is a constant that depends on the width w and length I of the particular 
MOSFET under consideration. The Level 1 model of SPICE implements a 
simplified model. 
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Analytic model~e.g., the Level 2 model of SPICE-strive to be very accu
rate and so require detailed information about device geometries, electrical 
properties of the materials, temperature, etc. These models include devi
ations from the first order theory used in simpler models, e.g., threshold 
adjustments, variations in charge distribution along the channel, mobility 
variations, channel length modulation, short channel effects, subthreshold 
conduction, charge storage and capacitive effects, etc. Computation of the 
model parameters is usually quite involved-the Fortra.n code for the SPICE 
Level 2 model is seven times as long as that for the Levell model. [SV80] 
reports that for circuits up to 500 nodes, the majority of the simulation 
time can be spent evaluating the device models. Analytic models are useful 
for performing simulation at different process corners, since the physical 
parameters which need to be varied are used directly in the modeling equa
tions. 

Empirical models also strive for accuracy, but are based on a curve-fitting 
approach for deriving the underlying parameters; the model parameters 
may have no direct physical interpretation. The models are somewhat 
cheaper computationally, and are very useful when trying to match predic
tions with actual measured values (since one can simply work backwards 
from the measured values). The Level 3 model of SPICE is a semi-empirical 
model. 

Table-driven models can be used to avoid the expense of evaluating compli
cated formulas at simulation time; with some care the computer time spent 
during model evaluation can be reduced by an order of magnitude. The 
MOTIS simulator [Chawla75j used two tables in calculating the source/drain 
current of a MOSFET: 

Other parameters needed for the MOSFET model were also approximated us
ing these tables. To use the tables, voltages must first be quantized; [Fan77] 
reports that reasonably accurate results are possible if one provides about 
100 different entries for each dimension. No interpolation is required unless 
the solution technique attempts to iterate to convergence (see below), in 
which case a quadratic interpolation scheme should be used. The contents 
of the tables can be derived from analytic formulas or taken directly from 
device measurements. 

Finally, macromodels can be used to characterize the terminal behavior of 
larger functional blocks such as op amps, logic gates, modulators, etc. with 
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considerable savings in the number of modeling elements that have to be 
managed by the simulator. This, of course, translates into reduced simu
lation time. Macromodels are particularly useful for those portions of the 
circuit which are not of direct interest to the designer. 

2.2 Circuit-level simulation techniques 

Numerical solution techniques for systems of mixed nonlinear algebraic and 
differential circuit equations have received a lot of attention. This section 
provides a quick tour of the standard approaches; more detail and good 
bibliographies can be found in [SV80] and [Vlach83]. 

We can write our system of circuit equations as 

F(x,x,t) = 0 

where x is the vector of state variables with 2b + n elements. In general, 
no closed form solution exists, so instead we develop the solution incremen
tally for a series of time steps to, tl, ... , tn using a linear multistep method 
which computes Xn+l from values of x and x at earlier steps, subject to the 
initial conditions specified by the designer. Many simulators use single step 
methods which involve only the information from the previous time step. 

Explicit methods use equations incorporating only information from earlier 
steps 

Xn+l = /(Xn,Xn-l, ... ) 

and so are quite efficient since one already knows all the parameters needed 
to compute new values for the state variables. The Forward Euler method 
is particularly inexpensive: 

Xn+1 = Xn + (~t)Xn. 
where ~t is the step size. Unfortunately, explicit methods suffer from 
numerical stability problems and are not suitable for high accuracy simu
lators. Nevertheless, explicit methods have been used successfully as the 
basis for EMU, an inexpensive timing analysis program [Ackland81] tailored 
for digital MOS circuits. The authors of EMU argue that the errors intro
duced during simulation do not get out of hand due to the high-gain and 
voltage-clamping properties of digital LSI circuitry. Use of these techniques 
is rewarded by a speed improvement of several orders of magnitude. 

Implicit methods build a set of equations 

Xn+l = /(Xn+l, Xn,Xn-l, .•. ) 
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which improve the stability of the solution technique, but at the cost of 
having to solve sets of simultaneous equations in order to determine values 
of the state variables for the next time step. The accuracy of the solution 
is affected by the size of the time step; in general, if the method is chosen 
with care, the error can be driven to zero as the size of the time step 
is decreased. Circuit simulators choose the time step so as to bound the 
accumulated error while maximizing the progress through time.t 

Returning to the problem of solving the circuit equations, using an implicit 
multistep method we can reduce the original problem to one of solving sets 
of equations of the form 

Since we don't know Xn +1, we use an integration rule to eliminate the 
differentials from the set of equations. For example, using the Trapezoidal 
rule: 

• 2Xn+1 - Xn 
X n +l = l:l.t - xn 

Substituting, we are left with a set of algebraic nonlinear equations 

These equations can linearized by applying a multidimensional version of 
Newton's method called Newton-Raphson (NR), and then solved using 
Gaussian elimination or LU decomposition. Several NR iterations may 
be required to achieve a sufficiently accurate solution. 

To summarize, the steps used by traditional circuit analysis programs for 
computing values of the state variables at a new time step are 

a) update values of independent sources at tn+1 

b) apply integration formulae to capacitors and inductors 

c) linearize nonlinear elements using using NR 

d) assemble and solve linear circuit equations 

t The successful analysis of "stiff" circuits-those which contain both quickly 
responding and slowly responding components-requires the use variable sized time 
steps; also, the choice of which linear multistep method to use has a large effect on 
the amount of computation required. 
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e) check for convergence in NR method; if not achieved, return to 
step (c) 

f) check error estimates, and modify time step if necessary. 

The search for new circuit analysis algorithms is still underway. This is 
hardly surprising, given the important role played by circuit analysis in 
the design of integrated circuits. For example, [Newton83] describes two 
promising new approaches: iterated timing analysis which applies relax
ation techniques at the nonlinear equation level, and waveform relaxation 
which applies the same techniques at the differential equation level. Both 
approaches offer the potential for dramatic improvement in simulator per
formance and seem particularly suitable for implementation on multipro
cessors. 

3. A linear model for MOS networks 

This section discusses RSIM, a logic-level simulator built with the goal of 
being able to simulate entire VLSI circuits with acceptable accuracy. Rather 
than perform a detailed simulation of each transistor's operation, RSIM uses 
the linear model to directly predict the logic state of each node and to 
estimate transition times if the nodes change state. The net effect is to 
trade some accuracy in the predictions for an increase in simulation speed. 
When the linear model is conservatively calibrated, its predictions can be 
used to identify potential problem circuits in need of more accurate analysis. 
A large portion of most circuits pass the scrutiny of RSIM and so the expense 
associated with detailed simulation of the whole circuit is avoided. 

The transistor model in RSIM can be quite simple since it is only used to 
predict the final logic state of a node and the length of time each state 
transition takes. As an example of how the model works, consider a simple 
inverter: one can think of the effective resistance of its component devices 
at any moment as 

tJdI:ptdlup 
ReJT:ptdlup = _.=..:!c:=.::<:. 

2d1:ptdlup 

Although the effective resistances of the transistors change as their terminal 
voltages vary, it might be possible to use "average channel resistances" 
to characterize the transistors' behavior. The other salient feature of a 
transistor's operation is its switch-like behavior: with certain voltages on 
a transistor's terminal nodes it makes no connection at all between its 
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source and drain terminals-the transistor is "off". AB the relative terminal 
voltages change, the transistor turns "on", conducting current between its 
source and drain terminals. Of course, the transistor is more "on" at some 
times than others, but distinctions between different "on" states might be 
ignored for simplicity. 

drain 

g.t.~~ 
source 

drain 
f { open when Vgate = 0 

gate <>- - -) closed when Vgate = 1 
unknown when Vgate = X 

ReJ1 

source 

( a) n-channel transistor (b) RSIM model 

Figure 3.1. RSIM model for an n-channel MOSFET 

One can build on the observations made above to construct a linear n
channel transistor model for the simulator, shown in figure 3.1. It is easy 
to tabulate the sort of connection that exists between the source and drain 
terminals as a function of the gate voltage: 

{ 
Re/! switch closed 

Rib = (Xl switch open 

[Re/!, (Xl] switch unknown 

(Vgate = 1) 
(Vgate = 0) 

(Vgate = X) 

Note that uncertainty about the state of the switch leads naturally to an 
interval describing the resistance of the source-drain connection. In fact, 
all the network calculations use interval arithmetic, and the bounds of the 
resulting intervals are used when converting voltages to logic states, etc.; 
no other mechanisms are needed to deal successfully with X states in the 
network. Models for other types of transistors differ in the way the position 
of the switch is determined from Vgate. 

The effective resistance, R e/!, is determined separately for each transistor 
and depends on type of simulation one wishes to perform. In the linear 
model, Re/! depends on 

width, length; dimensions of the active transistor area. Non-linear ef
fects make Re/! a more complicated function of the transistor geometry 
than simply length divided by width. 
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type. Most MOS circuits contain more than one type of transistor. 
The different types are distinguished by, among other things, different 
values for their threshold voltage. Since the current conducted by a 
transistor is a function of its threshold voltage, the modeling resistance 
naturally depends on the transistor type. 

context. Accuracy in choosing the effective resistance can be improved 
by distinguishing several contexts in which a transistor may appear: 
for example, an enhancement transistor can be used as a pulldown or 
source-follower in addition to the more general pass gate configuration. 
Surprisingly few contexts need to be recognized to encompass a large 
portion of digital MOS designs. 

The determination of Rei! is made once for each transistor and does not 
depend on any dynamic properties of the circuit to be simulated. During 
simulation using the linear model the only device information used about 
a transistor is its effective resistance. 

Voltages in this model are quantized into one of three valuesj this corre
sponds to our intuition for digital logic and greatly simplifies the simulation 
calculations. H all node voltages are normalized to fall in the range [0,1]' 
then the possible quantized values are 

° logic low-voltages in the range [0, tJlow]j 

1 logic high-voltages in the range [tJhigh,1]j 

X intermediate or unknown voltages. 

where tJlow and tJhigh are the predetermined logic thresholds. 

How is the value of a node determined? RSIM characterizes the effect of 
the network on a particular node by the Thevenin circuit equivalent for all 
pieces of the network that directly influence the value of the given node 
(see figure 3.2). 

V thetl a voltage interval [V thetl-' V thev+] in the range [0, 1] specifying 
the possible voltages the output node may have. 

Ranve a resistance interval in the range [0,00]. 
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Figure 3.2. Equivalent circuit for a network node 

Vthev and Rdrive are, in general, intervals since the equivalent transistor re
sistances from which they are derived might themselves lie in an interval. 
A node's final value is determined by comparing Vthev with the low and high 
logic thresholds and choosing the appropriate logic state. IT the calculation 
of a node's final value yields a result different from the node's current value, 
a transition has been discovered and the simulator must predict how long 
it will take for the node to cross some predefined switching threshold Vthre,h' 

Given the model shown in figure 3.2, an obvious choice for the transition 
time is RdriveCloa,d. With suitable definitions of RdrilJe and Czoa,d, this is the 
approach adopted by RSIM. 

V .. ode .....r- starting point 

final voltage 
~--~.~=.=.==~~~--------~~+r 

transItion tune 

Figure 3.3. Re/l used to predict (1) transition time and (2) final voltage 

Actually RSIM uses not one, but three effective resistances for each transis
tor. To see why, recall that RSIM is trying to predict the transition time 
and final voltage, as shown in figure 3.3. One would like to calibrate the 
model to give accurate predictions for both parameters, but that is impos
sible with a single set of resistances. To solve this problem RSIM uses three 
resistances for each transistor: 

used when calculating V thev , the node's final voltage. 

used when calculating Rlow-drive for high-to-Iow transitions. 
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used when calculating Rhigh-d,;ve for low-to-high transitions. 

Two "dynamic" resistances are used so that the asymmetric behavior of 
"pass" devices can be accurately predicted. All three values (V t/u:v and 
two versions of Rd,;ve) are calculated simultaneously, so the extra overhead 
introduced by multiple modeling resistances is not very large. 

S.l The RSIM simulation algorithm 

Basic to the operation of RSIM is the notion of an event. An event specifies 
(i) a node in the network, (ii) a new logic state, and (iii) a time at which 
the node's value is to be changed to the new logic state. RSIM maintains 
a list of events, sorted by time, that tells what processing remains to be 
done. Whenever the user changes an input, an event is added to the list; 
when the list is empty, the network has "settled" and RSIM waits for further 
input. 

When started on an initial event list, RSIM sequentially processes events 
from the list, stopping (1) when the list is empty, (2) when a node the user 
is tracing changes value, or (3) when the specified amount of simulated time 
has elapsed. Processing an event entails 

(a) removing the event from the event list. 

(b) changing the node's state to reflect its new value, generating the 
appropriate reports. 

(c) calculating any consequences, i.e., new events, resulting from the 
node's new value. First all nodes that might be affected by the 
change are found and marked-this requires a tree-walk of the 
network starting at the source and drain nodes of transistors for 
which the changing node is the gate. The tree-walk follows source 
and drain connections, stopping at input nodes or non-conducting 
transistors. For each marked node two calculations are made: (1) 
a charge-sharing calculation that models changes of state due to 
charging/discharging of the node capacitances and (2) a final
value calculation that determines the node's ultimate state. 

As seen in step (c) the network is naturally partitioned into stages, each 
stage consisting of nodes "shorted" together by source-drain connections. 
The values for all nodes in a stage are recalculated whenever nodes are 
added or removed from the stage because of a transistor turning on or 
off. Since nodes are only added to the event list when their values change, 



72 VLSI CAD Tools and Applications 

portions of the circuit unaffected by the current set of changes are not 
re-evaluated-the algorithm is event driven. 

A node can have two events pending: 

(1) a charge-sharing event describing an immediate change in the 
node's state due to the redistribution of charge among the capaci
tors for nodes in the current stage. This type of event is generated 
only when a node is added to a stage (i.e., when a transistor turns 
on). 

(2) a final-value event describing what the final, driven state of the 
node will be. This type of event is generated when Rdnve < 00. 

The charge-sharing calculation models what happens when two or more 
charged nodes in different logic states are connected. In this case, all the 
connected nodes will reach the same logic state; this state is determined 
by the relative capacitances and initial logic states of the nodes in the 
stage. For example, if a large (high capacitance) node such as a data bus 
were connected by a pass transistor to a small node such as the input to 
a register cell, then the small node would "share" the charge of the large 
node as its final value regardless of the charge it had initially. In such cases, 
the charge-sharing value is determined from two capacitance intervals 

Chigh. = [Chigh.-, Chigh.+ 1 and C/ow = [C,ow-, C/ow+ 1 

computed during the tree walk of the surrounding network. Chigh (C,ow) 

reflects the total amount of capacitance in the stage which is currently 
charged high (low); this value might be an interval due to neighboring 
nodes with an X value or connections through transistors with a gate node 
at X. For example, during the tree walk, the capacitance of an X node is 
added to both Chi(Jh+ and C/ow+ (but not Chi(Jh- and C'ow-); capacitance of a 
o node is added to both C'ow- and c,ow+; and so on. Similarly, capacitance 
information about subcircuits on the other side of transistors with a gate 
node at X affects only Chigh+ and C/ow+' The capacitance intervals are used 
to determine the charge-sharing value of the node: 

v: - Chi(Jh-
.hare+ - C C 

low+ + hi(Jh-

Since nodes at logic state X contribute an undetermined amount of charge 
to the result, V.hare is an interval whose bounds represent conservative as
sumptions about the actual values of X nodes, i.e., we want to make V.hare-
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as large as possible and V IhAre+ as small as possible. This interval is com
pared with the logic thresholds when calculating the charge-sharing value: 

{ 
0 V,hare+::::; VIOtlJ 

Charge-sharing value = I V IhAre- 2:: Vlaigh 

X otherwise 

If Rdrifle < 00, and the node is not an input, the final state of a driven node 
is calculated from the V thefI interval [V thefl-' V thefl+]: 

{ 
0 Vthefl+::::; VIOtlJ 

Final value = I Vthllfl - 2:: Vlaigh 

X otherwise 

If this value differs from the charge-sharing value then the appropriate event 
is scheduled RdrifleC,oad + A input seconds in the future where 

final value = I 
final value = 0 
final value = X 

final value = I 
final value = 0 
final value = X 

The lumped capacitance represented by C 'oad is overly conservative; for
tunately, more accurate models are available [Penfield8I ,Horowitz83] for 
future incorporation. 

The analysis in [Terman85] of the propagation delay of logic gates indicated 
that an RC time constant is a very good estimate· for the delay of a gate 
when the input waveform is a voltage step. However, the analysis concludes 
that a simple RC time constant underestimates the actual propagation delay 
if the input waveform is other than a step, e.g., a voltage ramp with a rise/ 
fall time of D. It was shown there that a correction factor, A input , can be 
added to produce a conservative estimate of the propagation delay: 

{ 
i(Vthrem - Vte) final value = I 

A input = oi(l - Vthrelh) final value = 0 

final value = X 

where the correction factor depends only on parameters of the input wave
form. Since RSIM does not calculate D directly, we'll need the following 
expression: 

{ 
~ rising input 

D = Vth,;~h 
... falling input I-vthre,h 
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where Tin is the transition time calculated by RSIM for the input waveform. 
Combining these equations with estimates of the parameters for a typical 
5p. nMOS process yields 

{ 
Rdrifle:highC/ow+ + (0.34)Tin 

tplh ~ Rdrifle:highC/ow+ + (0.27)Tin 

{ 
Rdrifle:/owChigH + (0.64)Tin 

tphl ~ Rdrifle:/owChigH + (0.50)Tin 

rising input 

falling input 

rising input 

falling input 

tpz ~ min(Rdrifle:/ow,Rdrifle:high)(C/ow- +Chigh-) 

as our final equations for estimating a node's transition time. Note that to 
be conservative, RSIM strives to overestimate transition times to 0 and 1, 
and underestimate transition times to X. 

3.2 Experience with RSIM 

RSIM has been in use at both university and industrial environments for 
several years. During that time it has simulated several hundred designs, 
ranging in size from very small to approximately 50,000 transistors. Because 
RSIM was fast enough to simulate whole circuits, it often uncovered circuit 
flaws that had fallen between the cracks during simulation of the individual 
components. The trend has been to think of RSIM as a companion to 
circuit analysis, using it for all logic-level verification and preliminary timing 
analysis, and then resorting to circuit analysis for those paths identified as 
critical by RSIM. 

The simulation algorithm is embedded in a Lisp-like command language 
that has been used to write quite elaborate programs to drive the simulation 
and process the results. Since programs to prepare simulation input are 
much less tedious to construct than the input itself, designers have been 
able to conduct more exhaustive tests than they were able to do using 
earlier simulators. For example, it is a simple matter to take a set of test 
vectors used to drive an RTL simulation, use those vectors as input for an 
RSIM run, and compare the predicted outcomes, all under program control. 

With careful calibration, RSIM's predictions for combinational logic are 
within 30% of those of SPICE. For circuits relying on analog behavior (sense 
amps, bootstrapped nodes, etc.) or chains of "pass" devices, the predictions 
are less accurate. To compensate, several "escape" mechanisms exist: it is 
possible to specify the logic thresholds and transition times for individual 
nodes so that one can incorporate the results of more detailed simulation 
into RSIM. Usually this mechanism need be invoked for only a few critical 
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input buffer 
£ 

case 1: 1} 
case 2: 0 

--z- poly line 

~----£~--~T---J 

OR plane AND plane 

Figure 3.4. Sample circuit showing path through PLA 

Figure 3.5. Equivalent RO network for PLA example 

node transition T 2> SPICE 

A ! 0.2 0.2 0.8 
B r 3.8 4.0 3.5 

Case 1 C ! 2.9 6.9 6.8 
D r 10.4 17.3 15.5 
E ! 7.4 24.7 20.7 

A r 1.6 1.6 0.6 
B ! 1.7 3.3 1.9 

Case 2 C r 1.4 4.7 3.3 
D ! 2.1 6.8 6.4 
E r 6.6 13.4 12.1 

Table 3.1. Simulation results for PLA 
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nodes (e.g., clock driver outputs). Another approach is to identify problem 
sub circuits and replace them with logically equivalent circuits that can be 
simulated easily; a network preprocessor that performs sub circuit matching 
and replacement is available and has been used to good effect. 

To illustrate RSIM's use, the transition times for signals in the sample circuit 
of figure 3.4 are analyzed below (see also [Terman85]). Transistor sizes 
are given in microns as width/length. When the clock signal goes high, 
the input signal (buffered by the inverter on the left) propagates through 
the input buffer and the two PLA planes. Figure 3.5 shows the equivalent 
resistor/capacitor network; resistances are given in KO and capacitances in 
pF. Note that the pullup for node C is recognized as a depletion source
follower without considering the actual voltage on its gate. Since depletion 
devices are always on, the inverter which leads from node B to the gate of 
the pullup is ignored by the simulator, and the timing for node C is always 
controlled by node B. Also note that the resistance chosen for the pulldown 
for node B reflects the threshold drop of node A. 

When calculating the transition time using the linear model, one must 
identify which resistors are actually participating in the network at the 
moment, and then use series-parallel reduction to compute the effective 
resistance for the network. For example, a rising transition for node A 
takes (74.4 + 4.4)(0.02) = 1.6ns; a falling transition takes «74.4118.7) + 
4.4)(0.02) = 0.2 ns. Using this approach, table 3.1 shows the results of 
propagating two different data values through the PLA. The time of each 
node's transition is shown in nanoseconds, as predicted by the linear model 
and SPICE. As one can see, the linear model overestimates the transition 
times with reasonable consistency. (One expects overestimates because of 
the inequalities in the equations above.) The estimate for Case 1 is 19% 
greater than the SPICE prediction; for Case 2, 11% greater. 

4. A switch model for MOS networks 

If a designer is only interested in the logical properties of a circuit, i.e., those 
properties independent of performance issues, it is possible to simplify the 
linear model of the previous section even further by modeling each transistor 
as an on/off switch whose state is determined by the type of transistor and 
the state of its gate node. While it would be possible to use the formulas 
presented in the previous section (suitably modified), it is more profitable 
to rethink our approach and develop a simpler, more efficient computation 
that takes advantage of the simpler model. Before presenting the switch 
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model in more detail, a small digression on the representation of node values 
is in order. 

4.1 Representing node values 

The success or failure of a logic-level simulator often hinges on the choice 
of the set of possible node values. If the set is too small, the actual node 
value may not be precisely described by anyone of the available values 
and the simulator must choose an approximation. Usually the approxi
mation involves some variant of the X (unknown) value which may carry 
logical implications beyond what the network itself imposes-such a choice 
is termed either "conservative" or "pessimistic" depending on one's point 
of view. If the set is large, it becomes difficult to establish whether the 
simulator's calculations are correct in all cases. Relying on the accumu
lated evidence of many simulation runs when arguing correctness lacks the 
rigor that leads to total confidence in the algorithm. This section develops 
criteria for evaluating a set of node values. 

There are three major influences on the choice of the node-value set: 

(1) the need to report node values to the user; 

(2) the need to determine the state of each network component from 
the values of its terminal nodes; and 

(3) the need to represent intermediate values during an incremental 
simulation calculation. 

If only the first two influences are considered, a three-value set-O, 1, and 
X-will suffice for logic-level simulation.t Users and component models 
cann()t reasonably expect more information than provided by this set, since 
most logic-level algorithms cannot support more detailed deductions from 
arbitrary MOS networks with any degree of accuracy. It is the third influence 
that leads to all the complication. 

Almost all logic simulators analyze a network piece by piece, modifying 
their estimates for node values as the effect of each piece of the network is 

t It might be useful to distinguish X', an unknown, but legitimate logic value 
(e.g., the output of a pair of cross-coupled inverters) from other types of X values. 
X' values are well behaved in logic operations, for example, B + --,B = 1 if the value 
of B is X', but equals X if the value of B is X. Such distinctions can be important 
during initialization. 
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determined. Until the new-value computation is completed, the interme
diate node values serve as accumulators that store all the information the 
simulator has about the effects of network pieces already examined. Thus, 
distinct values are needed for all qualitatively different intermediate states; 
e.g., a node currently at logic high might have that value because exami
nation of the network to date revealed that it was (i) storing charge, (ii) 
connected to a depletion pullup, or (iii) being precharged by an enhance
ment device. The simulator must distinguish among these possibilities, 
since the final value of node may be different in each case if, for example, 
further network processing discovers a pulldown for the node. The exact 
number of values needed depends on the details of the simulation compu
tation; most simulators fall into one of the two categories discussed below. 
As will be seen, the two categories are distinguished by their approach to 
X values. 

Cross-product value sets 

One intuitively appealing approach to choosing a set of node values is to 
think of each value as having several distinct attributes chosen from inde
pendent categories. Thus, for example, one might characterize a node's logic 
state and the "strength" of the value separately. The logic state is usually 
one of 0, 1, or Xj sometimes a high-impedance state, Z, is included to rep
resent the output of tri-state logic gates. [Flake80, Holt81j. The strength 
indicates what sort of network connection exists between the source of the 
value and the current node: 

input. Node is a designated input (e.g., VDD or GND). The value of 
an input node can only be changed by explicit simulator commands
the assumption is that inputs supply enough current to be unaffected 
by connections (possibly shorts to other inputs) made by transistor 
switches. 

driven. Node is connected by closed switches to inputs or other driven 
nodes. Driven nodes can affect the value of weak or charged nodes 
without being affected themselves, but may be forced to an X state if 
shorted to an input or driven node that has a different logic level. 

weak. Node is connected to an input node by a depletion-mode tran
sistor. Weak nodes can affect charged nodes without being affected 
themselves, but are forced to a driven state when connected to an
other driven or input node. A weak node returns to the appropriate 
weak state when completely disconnected from driven or input nodes 
(i.e., a weak node can never enter the charged state). 
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charged. Node is connected, if at all, only to other charged nodes. 
Until reconnected to some other part of the network, charged nodes 
maintain their current logic state indefinitely (charge storage with no 
decay). This is the default state of all non-weak nodes. 

Other strengths can be included to model the effects of differently sized 
transistors, node capacitors, etc. 

The plethora of 9-, 12-, and 16-state logic simulators (see [Newton80j) use 
values chosen from the set formed by the cross product of the various value 
attributes. For example, a 9-state simulator might use the values shown 
in table 4.1. Note that in this formulation, X is treated as sort of a third 
logic value on a par with 0 and 1; presumably X's are generated by the 
simulator to model invalid combinations of D's and 1 'so The implication is 
that one can determine if a value should be X without any consideration 
of strengths. (Remember that the main motivation of forming the cross 
product is that the various attributes are independent.) This can lead to 
pessimistic predictions, as is shown in an example below. 

logic state 
0 1 X 

driven DL DH DX 
strength weak WL WH WX 

charged CL CH CX 

Table 4.1. Typical cross-product value set 

It is useful to order the possible signal values according to their relative 
strengths. Intuitively, value A is stronger than value B, written A > B, if 
value A predominates when both signals are shorted together. Of course 
there are situations where neither value emerges unscathed-for exam
ple, when two signals of the same strength but opposite logic states are 
shorted-in which case neither signal is said to be stronger than the other. 
The notion of strength can be formalized using a lattice of node values, as 
shown in figure 4.1. The node value A is used to represent the null signal, 
i.e., no signal at all. 

Referring to the lattice, given two values A and B, A > B if A is not equal 
to B and there is an upward path through the lattice that starts at Band 
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Figure 4.1. Lattice of node values for a 9-state simulator 

reaches A. For example 

DX is greater than all other signals, 

DH is greater than WL, but 

WL is not greater than WHo 

The least upper bound (l.u.b.) of two values A and B, written An B, is 
defined to be the value C such that 

(i) C ;::: A 

(ii) C ;::: B 

(iii) for every value D, if D ;::: A and D ;::: B, then D ;::: C. 

Examining the lattice above, it is easy to see that the l.u.b. always exists for 
any two node values. Note that if A> B, AnB = Aj the l.u.b. captures our 
intuition about what should happen when two signals of different strengths 
are shorted together. With the appropriate placement of X values in the 
lattice, the l.u.b. can be used to predict the outcome when any two signals 
are shorted. 

The interpretation of X values captured by the lattice above is quite ap
propriate for describing the logic state of nodes involved in a short circuit 
(see figure 4.2). Assuming the two transistors are the same size, the mid
dle node's value is the result of merging two equal strength signal values. 
According to our lattice, this merger yields an X value. Short circuits 
are the mechanism by which X's are introduced into a network previously 
containing only O's and l's. 

However, the situation is not as straightforward when one considers con
nections formed by transistors with a gate signal of X. The resulting values 
cannot be computed directly using the n operation on the source and drain 
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1-1r DX= DHnDL 1-1 
Figure 4.2. A short circuit leading to an X value 

CL r 
J 
(a) 

CLf X1~ · 
DH 

(b) 

CLf X1~ 11~' 
DH WH 
(c) 

Figure 4.S. Incremental analysis of a simple network 
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signals, and once that hurdle has been surmounted, there is some difficulty 
in choosing which value to use from the cross-product value set. Consider 
the following analysis of a node with stored charge and connection to two 
transistors. Before any connections to the node have been discovered (fig
ure 4.3(a)), the node maintains the charge of its last driven value, say, logic 
low; the simulator would assign the node a value of CL. After the first 
transistor is discovered (figure 4.3 (b)), the facts change: 

(i) Because of the X on the gate of the transistor, one cannot be cer
tain what type of connection exists between the node in question 
and the DH on the other side of the transistor. Thus, the new 
logic state of the node should be X. 

(ii) The strength of the new value is uncertain, but clearly "weak" 
or "charged" would be inappropriate since they understate the 
strength in the case where the unknown gate value was actually 
al. 

Since a weak or charged value could be overridden by an enhancement 
pUlldown discovered later on, mistakenly leading to DL value, the simulator 
has no choice but to select a driven value. The conclusion: DX is the 
only state available that handles all eventualities in a conservative fashion. 
Of course, with knowledge of what the rest of the network contains, the 
simulator could make a more intelligent choice, but this is beyond the ken 
of an incremental algorithm. 

By the time a connection to a depletion pullup is discovered (figure 4.3(c», 
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the die has been cast: the previously chosen DX value overrides any con
tribution by the pullup (DX n anything yields DX). While this answer is 
not wrong, it is more conservative than required; at this point the logic 
state of the node should be 1. The pullup guarantees a logic 1 with the 
unknown connection to DH, only leaving doubts about the strength of the 
value (somewhere between weak and driven). 

Proponents of cross-product value sets might point out that the analysis 
would have generated a different answer if the transistors had been discov
ered in a different order. The somewhat embarrassing ability to produce 
two different answers for the same network, both correct, is caused by the 
fact that the merge operation is not associative when connections are made 
through transistors with X gates. In fact, most incremental simulators that 
use cross-product value sets perform the incremental analysis in an order 
that yields a reasonable answer on the example above. Unfortunately, it is 
usually possible to confound them with more complex circuits containing 
X's; while such circuits are not commonplace, they often crop up during 
network initialization when all nodes start off at X.t 

In conclusion, it is possible to build effective simulators using cross-product 
value sets; however, they can make conservative predictions on circuits that 
contain X's. In practice, this leads to difficulty in initializing some circuits 
and to occasional over-propagation of X values. 

Interval value sets 

The difficulties with the cross-product value set arise because of its separa
tion of the notion of strength and logic state. Once a node value is set to 
an X value at some strength, it cannot return to a normal logic state unless 
overpowered by a stronger signal; if a node is set to the strongest X value, 
it stays at that value for the rest of the computation. As in the example 
above, this leads to conservative predictions when the strongest X value is 
chosen because of the lack of suitable alternatives. Specifically the difficulty 
came about because the simulator had to pick the highest strength to be 
on the safe side; there was no value available that would indicate that the 
logic low signal which contributed to the intermediate X value was of very 
low strength and hence might be overridden by later network components. 

t [Bryant81] suggests using an incremental calculation only for subnetworks of 
nodes connected by non-X transistors. Once these values have been computed, a 
separate computation merges subnets connected by X transistors. Since this com
putation has global knowledge of the network, it can avoid the problems mentioned 
here. 
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This suggests a different approach to constructing the set of possible nodes 
values, one based on intervals. First one starts with a set of node values 
with a range of strengths and 0/1 logic states, for example, the six non-X 
states used above: {DH, DL, WH, WL, CH, CL}. Then additional values 
are introduced by forming intervals from two of the basic values; if there 
are six basic values, then there are (~) = 15 such intervals, leading to a 
total of 21 node values altogether. 

DH 0 

logic high WH 
CH - --CL 

logic low WL 
DL 

Figure 4.4. The 21 node values of the interval value set 

Intervals represent a range of possible values for a node. The size of the 
range is related to the strength of its end points. If we arrange the six basic 
values in a spectrum ranging from the strongest 1 (DH) to the strongest 0 
(DL), the possible node values can be shown graphically, as illustrated in 
figure 4.4. Intervals that do not cross the center line correspond to a valid 
logic state: intervals above the line represent logic high values, and those 
below the line, logic low. Intervals that cross the center line represent X 
values. (The X values of the previous section correspond to intervals with 
equal strength end points: DX = [DL,DH], WX = [WL,WH], and CX = 
[CL,CH).) Thus, X values result from ambiguity about which of the base 
values best represents the true node value. As will be seen below, this is 
more satisfactory than thinking of X as a third, independent logic state. 

When the simulator merges two node values, it chooses the smallest interval 
that covers all the possible node states. However, unlike the cross-product 
value set, the interval set can represent X values without loosing track of the 
strengths of the signals that lead to the X values. Consider the problems 
raised by figure 4.3{b). Using an interval value set, the resulting node value 
is naturally represented by [CL,DH], an interval that corresponds to an X 
logic state. When the pullup is discovered (figure 4.3{c)), the simulator can 
narrow this interval to [WH,DH] since the pullup overpowers the weaker 
CL value. This corresponds to a logic high signal-a sensible answer. 

An algebra for calculating the result of merging two interval node values is 
developed in [Flake83]. With an interval value set, the merge operation is 



84 VLSI CAD Tools and Applications 

commutative and associative, and the network can be processed in any order 
without affecting the final node values. The extra 12 values introduced 
by the interval value set are needed to carry sufficient information about 
how the current value was determined, to ensure that the final answer is 
independent of the processing order. 

The examples above suggest the following conjecture about the correct size 
of a node value set. Assuming that one has 8 different signal strengths and 
two logic levels (0 and 1), then 28 + e;) values are needed to ensure that the 
signal algebra is well-formed. In simulators with too few states, some states 
take on multiple meanings; for example, the DX value in the cross-product 
value set is used to describe nodes that fall into 5 separate values in the 
interval value set: 

[DL,DH] [WL,DH] [CL,DH] [WH,DL] [CH,DL] 

This lack of expressive power on the part of cross-product value sets is what 
leads to pessimistic predictions for node values in certain networks. 

4.2 Developing the switch model 

Switch models of MOS circuits are of interest since a switch is the sim
plest component that meets the criteria outlined in Section 1: switches are 
inherently bidirectional and the logic operations they implement can be 
computed with acceptable efficiency in large networks. 

Randy Bryant [Bryant79], one of the first to apply switch-level simulation 
to MOS transistor networks, viewed the network as divided into equivalence 
classes. Two nodes are equivalent if they are connected by a path of closed 
switches. Nodes in the same equivalence class as VDD are assigned a logic 
high state; those equivalent to GND, a logic low state. A pullup (a depletion
mode transistor which is always on in the switch model) gives the node to 
which it is attached a special property: if an equivalence class of nodes does 
not contain either VDD or GND, but does contain a pulled-up node, all the 
nodes in the class are assigned a logic high state. Finally, if an equivalence 
class contains neither an input nor a pulled-up node, it is "storing charge" 
and maintains whatever logic state it had last. 

The simulator based on this switch model iteratively calculates the equiv
alence classes for all the nodes in the network until two successive calcula
tions return the same result (i.e., no nodes change state). Unfortunately 
this pure switch model has some deficiencies: 
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(i) Switches in indeterminate states (those with gate nodes of X) 
make the equivalence calculation somewhat more difficult. The 
desired computation is inefficient since it involves a combinatorial 
search; all combinations of on/off assignments to switches in the 
X state need to be investigated to determine whether a switch's 
state makes a difference. IT the network is unaffected by a switch's 
state, the switch can be ignored; otherwise all affected nodes are 
assigned the X state. 

(ii) The equivalence calculation is much more time consuming than 
necessary since it deals with the whole circuit rather than focusing 
only on the parts which are changing. 

(iii) In certain circuits transistor size is important, and the notion of 
size cannot be expressed in the pure switch model. A pullup is 
a trivial example: viewed as a switch it was always on, but more 
"weakly" than the "strong" switches in the pulldown. The size 
of transistors also determines the "strength" of various driver cir
cuits; for example, it is common for the write amplifier of a static 
memory to force a value into a memory cell by simply overpower
ing the weaker gate in the cell itself. 

The remainder of this section investigates an approach to solving the first 
two problems outlined above. The third problem is addressed with some 
success by the linear model which uses size information not only to calculate 
node values but to provide timing information as well.t The simulator 
adopts a model where each node value is computed via a global examination 
of the network. The result is a calculation very similar to that implemented 
by the linear model, except that abstract "logical" resistances (Rejf = 0, 1, 
and 00) are substituted for the "real" resistances used in the linear model. 

4.3 The global switch model 

The global simulator calculates a node's value by computing the effect of 
each input on the node of interest. The simulation is global in that each 
node value is based directly on the values of the inputs to which it is con
nected. Thus, the values of non-input nodes do not enter into the com
putation. This means that 0, 1, and X will suffice as final node values; a 

t Bryant [BryantS1] proposes extending the switch model to include a hierarchy of 
switch sizes, a generalization of the ad hoc solution for pullups. His thesis develops 
an algebra, in the spirit of Boolean algebra, for dealing formally with such networks. 
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node state need only capture the logic state of the node and no strength 
information is necessary. 

Node values in the global switch model 

Each transistor switch in the network is assigned a state determined from 
the transistor's type and the current value of its gate node. This state mod
els the switch-like qualities of the source-drain connection without trying 
to capture any more detailed information about the connection-a simpli .. 
fication of the linear model. 

The state of a transistor switch summarizes the type of connection that 
exists between its source and drain nodes. For MOS circuits, the possible 
switch states are: 

open no connection, the state of a non-conducting n-channel 
(gate = 0) or p-channel (gate = 1) transistor. 

closed source and drain shorted, the state of a conducting n
channel (gate = 1) or p-channel (gate = 0) transistor. 

unknown uncertain connection between source and drain, the state 
of an n- or p-channel transistor whose gate is X. 

weak the state of a depletion transistor. Depletion devices are 
always assigned this state, regardless of the state of their 
gate nodes. 

The relationship between a switch's state, its types, and its gate value is 
summarized in the figure 4.5. 

drain 

t 
gate~--'i 

logic{gate) 

{ i 
n-channel p-channel depletion 
closed open weak 
open closed weak 
unknown unknown weak 

source 

Figure 4.5. Switch state as a function of transistor type and gate voltage 

In the global simulator, the value of a node is determined by the inputs to 
which it is connected and the states of the intervening switches. During 
the calculation of a node's value, the simulator uses the interval node-value 
set presented in figure 4.4. When the calculation is complete, the resulting 
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interval is used to determine the final logic state of the node, using the 
following formula. 

final logic state = { °Xl 

CL [CL, WL] [CL,DLj WL [WL,DLj DL 

DH [DH,WHj [DH,CHj WH [WH,CHj CH 

all other values 
The calculation of a node's value begins by discovering all the inputs which 
can be reached from the node by paths of closed, weak, and unknown 
switches. If no inputs can be reached, the final logic state of the node is 
determined by a charge sharing calculation described in the next section. 
If one or more inputs can be reached, their contribution to the node's value 
is determined by an incremental calculation which starts at the inputs and 
works its way back toward the node. 

The value of a logic low input is DLj the value of a logic high input is 
DH. As the calculation works back toward the node of interest, it computes 
an effective value that indicates the effects of intervening switches on the 
original input value. The effect of a switch on a value it transmits is specified 
by the switch function, shown in figure 4.6. The effect of a switch on a value 
is a function of the value and the switch's statej the relationship is tabulated 
in table 4.2. A new value, >., is introduced to describe the value transmitted 
by an open (non-conducting) switch, i.e., no value at all. The value>. is 
weaker than CH or CL, and corresponds to a logic state of X. 

input 
, -L 
~ , 

value = switch{O"l, input value} 

Figure 4.6. Effective value of an input after passing through a switch 

When two paths merge, their effective value is determined using the n 
operation introduced earlier, as shown in figure 4.7. The n operation is 
defined using the lattice shown in the figure 4.8. Following the procedure 
outlined in figure 4.7, the contributions of all inputs connected to the node 
of interest can be reduced to a single interval. This interval is merged (using 
n) with the contribution from the node's current logic state 

{ 
CL if current logic state = 0 

contribution of current state = CH if current logic state = 1 

[CH,CLj if current logic state = X 

to give the final interval characterizing the node's new logic state. 
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swi ch state 
value open closed weak unknown 

DH >. DH WH [DH,>.] 
[DH,WH] >. [DH,WH] WH [DH,>.] 
[DH,CH] >. [DH,CH] [WH,CH] [DH,>.] 
[DH,CL] >. [DH,CL] [WH,CL] [DH,CL] 
[DH,WL] >. [DH,WL] [WH,WL] [DH,WL] 
[DH,DL] >. [DH,DL] [WH,WL] [DH,DL] 
WH >. WH WH [WH,>.] 
[WH,CH] >. [WH,CH] [WH,CH] [WH,>.] 
[WH,CL] >. [WH,CL] [WH,CL] [WH,CL] 
[WH,WL] >. [WH,WL] [WH,WL] [WH,WL] 
[WH,DL] >. [WH,DL] [WH,WL] [WH,DL] 
CH >. CH CH [CH,>.] 
[CH,CL] >. [CH,CL] [CH,CL] [CH,CL] 
[CH,WL] >. [CH,WL] [CH,WL] [CH,WL] 
[CH,DL] >. [CH,DL] [CH,WL] [CH,DL] 
CL >. CL CL [>.,CL] 
[CL,WL] >. [CL,WL] [CL,WL] [>.,WL] 
[CL,DL] >. [CL,DL] [CL,WL] [>.,DL] 
WL >. WL WL [>.,WL] 
[WL,DL] >. [WL,DL] WL [>.,DL] 
DL >. DL WL [>.,DL] 

Table 4.2. switch(CT,value} as a function of CT and value 

-L VMUOAD 
valueB ! 
(a) two values to merge 

switch(CTl,valueA) L--
switch(CT2,valueB) ~ 

(b) values including effect of switches 

switch(CTl,valueA) n __ 
switch(CT2,valueB) 

(c) merged value 

Figure 4.'1. Merging the values for two paths which join 
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[DH,DL] 

/ "-
DH DL 
I I 

[DH,WL] [WH,DL] /" /" [DH,WH] [WH,WL] [WL,DL] 

/ "'-./ "'-./ " [DH,CL] WH WL [CH,DL] 

I~I I~I 
[DH,CH] [WH,CL] [CH,WL] [CL,DL] 

/" /" /" /" [DH,A] [WH,CH] [CH,CL] [CL,WL] [A,DL] 

'\./ "'-./ "-/ ,,/ 
[WH,).] CH CL [).,WL] 

~I I~ 
[CH,).] [).,CL] 

" / ). 

Figure 4.S. Lattice for interval-node value set 

Figure 4.9. Example circuit 

--L 
DH~ ;:!:; 
~no~CL 

DL closed 

WH}-ui.k 
un nown CL 

DL 

--L 
DL~CL 

(a) (b) (c) 

Figure 4.10. New-value calculation for circuit in figure 4.9 

As an example of how the new-value calculation works, consider the circuit 
shown in figure 4.9. Assume that the current logic state of the output is o. 
The new-value calculation for this circuit is shown in figure 4.10. The final 
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interval for the output node is CL n [>.,DL] = [CL,DL] which corresponds 
to a logic low state. This makes sensej the previous state of the output 
node was logic low, so the uncertain connection to the inverter does not 
affect its logic state, just the strength with which its driven. Note that it 
is important to merge the values of paths that join before continuing with 
the calculation since 

switch( 0', a n fJ) -:j; switch( 0', a) n switch( 0', fJ) 

when using this particular value set and switch function. For example, if 
the WH and DL values had been merged after transmission by the switch in 
the unknown state, the final interval for the output node would have been 
[DH,WL], which corresponds to an X logic state. The calculation described 
here performs all possible merges before transmitting the result through 
the appropriate switch. 

The global simulation algorithm 

This section outlines the basic steps for propagating new information about 
the inputs to the rest of the network, recalculating node values (where 
necessary) using the global value calculation in the previous section. 

When a node changes value, it can affect the network in one of two ways: 

(i) directly, through source/drain connections of conducting transis
tors. 

(ii) indirectly, by affecting the state of transistor switches controlled 
by the changing node. This is turn can cause the source and drain 
nodes of those switches to change value. 

The global simulator accounts for these two effects using to different mech
anisms. Directly affected nodes are handled implicitly by the new-value 
computation which recomputes new values for all directly affected nodes 
whenever a node changes value. This is a reasonable organization: if A di
rectly affects B, then B directly affects Aj it makes sense to compute both 
values at the same time since they are closely related. Direct effects are not 
handled implicitly, however, when the user changes the, value of an input 
node. In this case, the simulator invokes the new-value computation on the 
input, not to recompute the input's value (which is set by the user), but to 
recompute the values of all directly affected nodes. 

The indirect effects of a value change are managed by an event list that 
identifies all transistor switches that have changed state. Actually, the event 
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list keeps track of the nodes that have changed, but this is equivalent since 
the network data base maintains a list of transistors controlled by each node. 
The simulator operates by removing the first node from the event list, and 
then performing a new-value computation for the sources and drains of all 
transistors controlled by that node. The new-value computation accounts 
for all the direct effects of the new transistor state and adds events to 
the event list if indirect effects are present. This process continues until 
the event list is empty, at which point the network has "settled" and the 
simulator waits for further input. 

while event list not empty { 

} 

n := node associated with first event on event list 
remove first event from event list 
update logic state of n to new value 
for each transistor with n as gate node 

set COMPUTE flag for source and drain 
for each transistor with n as gate node { 

} 

if COMPUTE still set for source, compute new value for source [fig. 4.14] 
if COMPUTE still set for drain, compute new value for drain 

Figure 4.11. Main loop of global simulation algorithm 

Finding nodes affected by an event is straightforward; recomputation of val
ues is needed for the sources and drains of all transistors with the changing 
node as gate. For example, if the node marked (*) in figure 4.12 changes, 
nodes Band C need recomputation. Of course, node D also needs to be 
recomputed, as will be discovered during the processing of Band C (see 
below). 

Figure 4.12. Event for node (*) involves nodes B and C 

To recompute the value of a given node, the simulator first makes a con
nection list containing all nodes connected to the first node by a path of 
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conducting transistors. The idea is to start with a node known to be af
fected by an event, and then find that node's electrical neighbors, and so 
on, halting whenever an input is reached. In the example above, if the (*) 
node's value is 1, the connection list for node B contains nodes B, C, and 
D. IT the (*) node's value is 0, the connection list for node B contains only 
node B. Node A is not included in the list in either case because it is not 
connected to node B by a path of conducting transistors. In the code in 
figure 4.13, which computes the connection list for a given node, the terms 
"source" and "drain" are used to distinguish one terminal node of a transis
tor from the other, and do not imply anything about the terminals' relative 
potential. The connection list drives the new-value computation, shown in 
figure 4.14. 

initialize list to have starting node as only element 
set pointer to beginning of list 
while pointer not at end of list { 

} 

n := node currently pointed at 
for each "on" transistor with source connected to n 

if drain is not an input and is not on list 
add drain to end of list 

advance pointer to next list element 

Figure 4.13. Non-recursive routine to build connection list 

make connection list starting with given node [fig. 4.13] 
for each node on connection list { 

} 

compute interval value for node [fig 4.15] 
determine new logic state 
if different from old logic state 

enqueue new event 

reset COMPUTE flag for each node on connection list 

Figure 4.14. Subroutine to compute new value for node 

The value of each node is determined in accordance with the procedure 
described above. New events are added to the end of the event list whenever 
a node changes value. If a changing node is already on the event list, nothing 
happens (the node is not moved to the end of the list). 

For efficiency, each affected node's value is only computed once while pro
cessing a given event. The connection list ensures that all affected nodes 
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are recomputed; the COMPUTE flag ensures that once a node has appeared 
on some connection list, it will not be resubmitted for processing during 
the current event. 

The computation of a node's value is easily described by a recursive proce
dure which analyzes the surrounding network (see figure 4.15). The variable 
LOCAL-IV is a stack-allocated local variable of the subroutine. Returning to 
the example in figure 4.12, assuming that the (*) node's value is 1, and that 
the old values for B, C, and Dare B = 1, C = 0, and D = 0, figure 4.16 
shows the calls which are made when computing the new value for node C: 

if node is an input 
return DL, DH, or DX, as appropriate 

else { 

} 

LOCAL-IV := contribution of current logic state 
set VISITED flag for current node 
for each "on" transistor, t, with source connected to current node 

if drain does not have VISITED flag set { 
recursively determine interval value for drain node 
LOCAL-IV := LOCAL-IV n switch(Ut, drain's interval value) 

} 
reset VISITED flag for current node 
return LOCAL-IV 

Figure 4.15. Subroutine to compute interval value for node 

-1 -1 
-1 -1 

(a) original circuit (b) circuit as seen by tree walk 

Figure 4.1'1. The tree walk traces out all possible paths 

Marking each visited node (by setting its VISITED flag) avoids cycles; this 
keeps the tree walk expanding outward from the starting node. The VISITED 
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compute-params( C) 
LOCAL-IV = CL 
compute-params (D) 

LOCAL-IV = CL 
compute-params(VDD) 

return DH 
LOCAL-IV = CL n WH = WH 
compute-params( GND) 

return DL 
LOCAL-IV = WH n DL = DL 

return DL 
LOCAL-IV = CL n [A,DLj = [CL,DLj 
compute-params(B) 

LOCAL-IV = CH 
return CH 

LOCAL-IV = [CL,DLj n CH = [CH,DLj 
return [CH,DL] 

Figure 4.16. 1i-ace of interval value computation for example in figure 4.12 

flags are reset as the routine backs out of the tree walk, so all possible paths 
through the network are eventually analyzed. IT the network contains cycles 
(see, e.g., figure 4.17), the tree walk might lead to more computation than 
a series/parallel analysis; this is a problem for circuits containing many 
potential cycles (such as barrel shifters), especially during initialization 
when many of the paths are conducting because control nodes are X. To 
speed up the calculation, a node's VISITED flag can be left set, restricting the 
search to a single path through a cyclic network. This technique produces 
correct results only if paths leading away from a node are explored in order 
of increasing resistance, i.e., one must ensure that the first time a node is 
reached, it is by the path of least resistance. Of course, the flags must be 
reset once the entire computation is complete; fortunately, the connection 
list provides a handy way of finding all the nodes that are visited without 
resorting to yet another tree walk. 

Interesting properties of the global algorithm 

The event list serves to focus the attention of the global simulator; new 
values are computed only for nodes which appear on the event list or which 
are electrically connected to event-list nodes. Portions of the network that 
are quiescent are not examined by the simulator. Algorithms that have 
this property are said to be selective-trace or event-driven algorithms and 
generally run much faster than algorithms which are not event driven [Szy-
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genda75].t 

An interesting implication of selective trace is that special care must be 
taken to ensure that "constant" nodes, such as the output of an inverter 
with its input tied to GND, are processed at least once (otherwise they will 
have the wrong values). One technique is to treat VDD and GND as ordinary 
inputs when first starting a simulation run-sort of a power-up sequence 
as VDD and GND change from X to 1 and 0 respectively. Computing both 
the direct and indirect consequences of changes in VDD and GND might 
involve a tremendous amount of computation since the whole circuit is 
affected; often only computing the indirect consequences is a sufficient and 
less costly alternative. 

Although there is no explicit mention of time in the global simulator, the 
first-in, first-out (FIFO) processing of events imposes some ordering on the 
changes of node values. This ordering is similar to, but not the same as, the 
unit-delay ordering used by many gate-level simulators. In an event-driven 
unit-delay algorithm, the output of each gate that had an input change is 
recomputed using the current values of the input nodes. The new output 
values are saved and imposed on the network only after processing all gates. 
The net effect is that each computation cycle (representing a unit of time) 
propagates information through one level of gate, i.e., each gate has unit 
delay. Because changes in node values are imposed all at once, values change 
simultaneously, which can lead to problems in circuits containing feedback 
paths. 

The global simulator implements a pseudo unit-delay algorithm. New 
events are added to the end of the event list, so the oldest changes are 
processed before any consequences of those changes are processed. Thus, 
FIFO event management leads to the same sequence of gate evaluations as 
a unit-delay algorithm. However,' because the global algorithm changes 
values in the network incrementally rather than all at once, it is possible 
to find circuits that behave differently under the two simulators, e.g., the 
circuit shown in figure 4.18. A 0-1 transition on the input causes a unit
delay algorithm to loop forever. The global algorithm predicts only one 

t Exceptions to this rule are some hardware-based simulation algorithms, such 
as programs run on the Yorktown Simulation Engine [Pfister821. The builders of 
the YSE point out that simulations might well run slower because the extra com
munication and branching needed to implement selective trace would compromise 
the parallelism and pipelining used to great advantage in the YSE. However, if suf
ficiently large portions of the circuits could be ignored, the overhead of selective 
trace is probably worth the investment. 
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transition-the output of whichever gate it processes first. Neither answer is 
completely correct; the actual circuit enters a meta-stable state on a 0-1 in
put transition, eventually settling to a particular configuration determined 
by subtle differences in the gains of the two gates. It will not remain in 
the meta-stable state forever, so an infinite oscillation is a poor prediction. 
On the other hand, the final configuration chosen by the global simulator 
depends on the order of some list in the network data base. The predicted 
outcome is the same each time, not necessarily the best prediction.t The 
global simulator does not offer a general solution to the oscillation problem; 
both simulators will oscillate on circuit shown in figure 4.19. 

)0--"'--1- 0 -1- ... »---1-+0 

0-1 0-1 

____ T_~)O-...... - 1 -+ 0 -+ 1 -+ .. , 1 

(a) unit delay (b) pseudo unit-delay 

Figure 4..1S. Circuit that distinguishes unit-delay from pseudo unit-delay 

O~l{JjjS : 
Figure 4..19. Circuit which causes both simulators to oscillate 

Along the same lines, the global simulator predicts that the output of the 
circuit in figure 4.20 will oscillate when the input changes from 1 to O. The 
actual output quickly rises to the balance point of the pullupjpulldown 
combination. In a logic-level simulation, this corresponds to finding a so
lution to the equation 0: = -'0: which has the solution 0: = X (a reasonable 
logic-level representation for the balance point). This example is drawn 
from a larger class of circuits where a node is both an input and output of 
the circuit. Since the new-value computation uses current transistor states 

t [Bryant81] suggests that the oscillation can be detected and the offending node 
values replaced by X, but the technique for determining the number of oscillations 
to allow yields answers so large for circuits of any substantial size that this is not a 
very practical alternative. 
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(determined by current node values) to predict the new values, it is impos
sible to predict the value of a node that depends on its own value. This 
limitation has not proven to be a problem in practical circuits. 

'---+----.-...,.... .... 0 -+ 1 -+ 0 -+ ... 

'" node which is both an input and output 

Figure 4.20. Circuit with a node that is both an input and output 

In conclusion, use of the switch model as a basis for simulation provides a 
good compromise between the need for accuracy and the need for speed. 
Switch-level simulators are emerging as the ideal companion for circuit
level simulators-together the simulators provide for most of the simulation 
needs of current-generation VLSI design. 

5. Gate-level Simulation 

Gate level simulation is similar in many ways to the switch level techniques 
presented in the previous section. The major difference is that the basic 
modeling element is a unidirectional gate rather than a bidirectional switch. 
Each gate has one or more inputs and a single output; if several gate outputs 
are shorted together in the actual circuit-e.g., on a tristate bus-it is 
customary for the circuit preprocessor to add additional gates to accomplish 
the wired logic function explicitly. The net result is that the value of each 
node is determined by exactly one gate. The fanin of a gate is a list of 
nodes which are the inputs of the gate; the fanout of a gate is a list of other 
gates which have the first gate's output node as an input. Whenever a node 
in the fanin list of a gate changes value, the gate should be resimulatedj 
whenever a gate's output changes value, all the gates on the fanout list 
should be resimulated. These lists provide a natural database for event
driven simulation. 

Inside the simulator, each type of gate is modeled by a subroutine (or 
simple table) which computes the new value of the output from the current 
values of the inputs. Gate types may range from simple Boolean functions 
(NOT, AND, NOR, etc.) to complex modules (arithmetic logic units, UARTs, 
etc.). More complex modules may have internal state in addition to that 
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provided by the fanin and fanout nodes; this state is maintained in a per 
gate database constructed when the network was read into the simulator. 
The digital logic implemented by gates is well matched to the operations 
implemented by a computer, so i~ is not surprising that gate-level simulators 
offer the best performance of all the simulators discussed in this paper. 

The technology behind most gate-level simulators is similar to that for 
switch-level simulation presented in the previous section. Node values are 
typically drawn from a cross-product value set with the number of strengths 
determined by the circuit technology: a single strength suffices for bipolar 
gate arrays (often with a fourth high impedance logic state added); three 
or four strengths are commonly used for MOS logic. The HlLO gate-level 
simulator uses the interval value set presented in section 4.1. Recently there 
has been some escalation in the size of the value sets as various vendors 
strive for product differentiation; however, even these simulators follow the 
basic strategy outlined in section 4.1. 

Event-driven simulators are the rule, although some gate-level simulators 
specialized for synchronous logic do away with events altogether and eval
uate each gate once per clock cycle in an order determined by the gate's 
distance from the circuit's inputs. Events are scheduled with either unit de
lay or a variable delay which depends on the particular gate and direction of 
the transition. Some simulators provide for a min and max delay and aug
ment the possible node values to include R (rising) and F (falling) states. 
Many simulators implement an inertial delay model where the output of 
a gate is constrained not to change more rapidly than its intrinsic delay. 
Output transitions disallowed under this model are reported as spikes to 
the user, and, in some simulators, the output node is set to an error state. 

5.1 Fault simulation 

Gate-level simulators are most useful when a node-by-node modeling of a 
circuit is desired, but a one-to-one mapping between circuit components 
and model components is not required. One application in which gate-level 
simulation excels is fault simulation where the designer wishes to determine 
which potential circuit faults are detected by a set of test vectors. The most 
common fault models, called stuck-at faults, fix the values of certain nodes 
in the circuit, i.e., individual nodes are stuck at 1 or stuck at O. The 
designer specifies which nodes are to be faulted, and then has the simulator 
determine what percentage of the faults are detected by the test vectors. 
Since the faults are on a per node basis, gate-level simulation is well suited 
to this sort of application-the more detailed component models provided 
by switch-level and circuit-level simulation are not needed. 



Simulation Tools for VLSI 99 

Since the number of potential circuit faults is proportional to the number 
of nodes, a large number of test vectors is required to diagnose a circuit of 
any reasonable size. This implies that large amounts of simulation time will 
be required to develop the test vectors and verify their coverage. One al
ternative available to the designer is concurrent fault simulation [Ulrich73]. 
A concurrent simulator is a gate-level simulator which has been modified 
to run many simulations of the same circuit simultaneously. The simulator 
maintains a single copy of the circuit database and as many copies as re
quired of node values and pending events. In concurrent fault simulation, 
all the simulations use the same test data, but differ in which nodes have 
been faulted. In the worst case, for n simultaneous simulations, the node 
value and event storage might be n times as large as for a single simula
tion, and no improvement in runtime will be seen over that for n sequential 
single-machine simulations. However, it is usually the case that the states 
of many of the faulty machines converge after only a small amount of sim
ulation and the databases for those machines can be collapsed into a single 
database. If the fault is detected early on, the database for the correspond
ing machine can be merged with that of the "good" machine simulation. 
In either case, the total amount of work required to complete n simulations 
is usually far less than that required for n separate simulations. A care
fully implemented concurrent fault simulator can achieve a performance 
improvement of several orders of magnitude. 

5.2 Hardware accelerators 

A second approach to speeding up gate-level simulation is to provide special 
purpose hardware tailored for that purpose. Some vendors have simply 
provided special microcode for their processor as a way of tailoring the 
machine's operations to the requirements of simulation. In such cases, 
speed improvements are usually limited to at most a factor of ten-similar 
to what one can achieve by moving to a faster computer. 

Others have turned to multiprocessing architectures in order to achieve 
more impressive gains. The IBM Yorktown Simulation Engine (YSE) [Pfis
ter82] uses up to 256 processing elements interconnected by a high band
width 256x256 crossbar. Each processing element is a pipelined table
lookup unit which can evaluate a five-input logic equation using a four
valued logic once every 80ns. The inputs to the equation are read from 
a local node memory j the output can be stored in the local memory or 
transmitted over the crossbar to other processing elements. In any given 
cycle, the processing element either evaluates an equation or reads and 
stores a value from the crossbar. The total capacity of the machine is four 



100 VLSI CAD Tools and Applications 

million equations, one million nodes, and an ability to process over three 
billion events per second! The machine is not event-drivenj each processing 
element evaluates its equations in order. Often the equations can be or
dered and distributed among the processing elements so that only a single 
pass is needed to simulate the actions of a large digital circuit. Using a 
straightforward compilation strategy, feedback in the circuit may necessi
tate several passes through the equations before the simulation is complete. 
More sophisticated compilers can eliminate this extra overhead for most 
circuits. 

A different strategy is pursued by Zycad [Zycad83] and, more recently, Sili
con Solutions: they have chosen to build a slower, event-driven engine. The 
basic operation of these machines is an equation evaluation by table-lookup 
similar to that of the YSEj however, changes in node value are remem
bered on an event list which is used to determine which equations need re
evaluation. The machines have multiple processor elements interconnected 
by a medium speed message bus used to transmit event information. Each 
processing element can process approximately 500,000 events per second, 
about twenty times slower than the YSE. Both companies have recently 
announced a concurrent fault simulation capability. 

The jury is still out as to which architecture provides the best performance. 
In many digital designs, most of the circuit is active every clock cycle, sug
gesting that event-driven techniques provide only a small advantage over the 
strategy of complete re-evaluation. Thus, for single-machine simulations, 
the YSE architecture may be the better performer. However, the event list 
is an important part of concurrent simulation-it provides the part of the 
database needed to detect when two machines can be merged for the re
mained of the simulation. Thus, for concurrent simulation, event-driven 
architectures may be the best choice. Stay tuned for further developments. 

To summarize: gate-level simulators have much in common with switch
level simulators, differing mainly in the basic modeling element. Gate-level 
simulation really shines in applications, such as fault simulation, where the 
lack of detail at the component level doesn't really matter to the designer. 
The ease with which hardware accelerators can be built for gate-level oper
ations probably means that gate-level simulation will remain an important 
tool in the design of VLSI circuits for the foreseeable future. 
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Abstract 

A hierarchical formulation of the differential-algebraic systems describing 
circuit behavior is presented. A number of algorithms that have proven ef
fective are reviewed. These include multidimensional splines that preserve 
monotonicity, sparse direct and iterative methods for the linear equations, 
damped-Newton and Newton-iterative techniques for the nonlinear equations, 
continuation methods, and low-order time-integration formulae. Some aspects 
of time macromodeling are described. 

1 Introduction 

Circuit simulation has been of interest to the engineering community for a number 
of years. Although a variety of timing and logic simulators are now available, analog 
simulation of crucial sub circuits or even significant portions of an entire integrated 
circuit is often done. Simulation continues to be more cost effective than repeated 
fabrication of integrated circuits. 

The emphasis here is on general purpose numerical algorithms that are appli
cable in circuit analysis rather than on the details of a particular implementation. 
It is our belief that modern numerical analysis can play an important role in the 
construction of an effective simulator. 

This paper is organized as follows. The formulation of the circuit equations 
is described in the next section (§ 2), with emphasis on voltage-controlled circuit 
elements. The remaining sections discuss table representations for device constitu
tive functions (§ 3), linear-algebra techniques for linear DC operating-point anal
ysis (§ 4), Newton-like methods for nonlinear DC operating-point computations 
(§ 6), continuation algorithms for transfer analysis (§ 5), low-order time-integration 
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schemes (§ 7), and circuit macromodeling (§ 8). Note that much of the material in 
§ 3-7 can be found in [9,2,1,1Oj. 

2 Formulation of the circuit equations 

The overall behavior of a circuit is governed by the individual devices. (We will 
concentrate on voltage-controlled devices to simplify our discussions.) For example, 
a nonlinear resistor could be represented mathematically as 

(I) 

where Ul and U2 are the node voltages at the terminals and i2 is the current asso
ciated with the second terminal. Conservation of current implies that i 1 = -i2. As 
a further example, a nonlinear capacitor obeys the following relation 

i2 = :tQ(U2 - Uj), 

where Q( v) represents the charge. 

(2) 

Nonlinear resistors and capacitors are simple devices whose currents are governed 
by differences of node voltages at the terminals. More complicated elements are 
easily constructed. Consider, for example, a nonlinear resistor and capacitor in 
series (see Fig. 1). The current is given by 

(3) 

where Ul and U2 are the terminal voltages and w is the internal node voltage between 
the resistor and capacitor. Once again conservation of current guarantees i j = -i2. 
Clearly, the internal voltage state w must be solved for given uO = u(to). 

r-l.U2 

'2 

VV'.,..... --................. ---11 
w 

Figure 1: Series RC. 

The most important device for MOS integrated circuits is the transistor. A 
transistor is four-terminal device whose terminal currents obey the following relation 

(4) 

where va{3 == U a - u{3 and s, g, d, and b correspond to the source, gate, drain, and 
bulk terminals, respectively. Kirchhoff's current law implies ib = -(is + ig + id). 
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Note that this form assumes the so-called quasi-static approximation. In nMOS 
technology, id ~ -is becomes appreciable when Vds =I 0 and Vgs exceeds the thresh
old voltage VT, which is positive for enhancement transistors; depletion (VT < 0) 
transistors are often used as nonlinear resistors (loads). Unless otherwise stated, 
assume nMOS technology is being discussed below. 

The idea of a macroelement was informally introduced above with the description 
of a series Re circuit, where the internal voltage state w was not of particular 
interest. Another simple 2-terminal macroelement is the inverter (see Fig. 2), which 
obeys Kirchhoff equations of the form 

idnh + i~ep 
·enh 
Zg • 

(5) 
(6) 

The inverter has no internal voltage states. On the other hand, the two-input 
NAND (see Fig. 2) has an internal voltage state w, and w is usually of little interest 
to the circuit designer. 

VDD 

VDD 

'----+---Uout 

'----+---Uout uin2-----1 

GND 

GND 

Figure 2: Inverter and two-input NAND. 

We will say a node is a boundary node if its voltage with respect to ground is 
known (connected to a grounded voltage source). A node voltage associated with 
a nonboundary node is an unknown and must be computed. (Similar descriptions 
can be used with currents.) A recursive definition of a circuit is then given by: 

Definition 1 A circuit is a set of k-terminal (k variable) subcircuits and nodes 
N = { nj } such that: 

1. Each terminal T of a subcircuit has an associated node nT' a node voltage UT, 
and a current iT . Moreover, iT is determined by the terminal voltages { U Q } 

and state voltages Ws at (state) nodes {ns}, where {ns } n N = 0. 
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2. Kirchhoff's current law holds, that is, the sum of currents at each nonboundary 
node nj E N is zero. 

For each k-terminal subcircuit, indexed by I, with terminal nodes Ul <:;; Nand 
state nodes WI, we have the IWd "internal" Kirchhoff equations 

I d I 
Fl (UI, wt) + dt Ql (Ul, wt) = 0 (7) 

and the IUd output equations 

il = F1E(W,Wt) + !Qf(Ul,Wt). (8) 

At each nonboundary node nj 

(9) 

Note that we suppress the explicit dependence of these (and later) equations on t, 
which arises from boundary nodes. 

NODES • 

Figure 3: A circuit. 

5, 

W3 (~b~l~) 

The global circuit equations can then be summarized as a coupled differential
algebraic system for the internal (w) and external (u) voltages 

d 
fI (u, w) + dt qI (u, w) = 0 (10) 

E d E f (u,w) + dt q (u,w) = OJ (11) 

the first equation follows from Eq. (7) and the second from Eqs. (8)-(9). Tra
ditional circuit simulation makes no distinction between the u's and the w's (see 
[21,37,22,26,9]). We will concentrate on this traditional view until we take up macro
modeling in a later section so the equation of interest becomes 

d 
h(u) == f(u) + dtq(u) = O. (J 2) 
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This form is a generalization of the usual (two-terminal) equations based on 
Kirchhoff's current and voltage laws 

Ai 

v 

(13) 

(14) 

where A E ~nxm, u, v, and i are the reduced-incidence matrix, node voltages 
(which includes unknowns and boundary values), branch voltages, and branch cur
rents (which includes unknowns and boundary values), respectively, and global con
stitutive relations 

K(i,v) == i - (!q(v) + f(V)) = 0 E ~m. (15) 

Eqs. (1), (2), and (4) are typical components of the latter. 
If Eq. (15) is linearized about a point, the resulting equation is 

!1i + Kv!1v = r (16) 

where Kv represents the partial derivatives of K with respect to v. The linearized 
circuit equations can then be written in terms of the reduced-tableau matrix [21,9] 

[ I KvAT] ( !1i ) = 
A 0 !1u s. (17) 

Let us consider the special case of assembling that part of the linearized circuit 
equations associated with a transistor TI . Suppose the terminals of T] are attached 
to four nodes n 1, ... , n4, not necessarily distinct. Assume n 1 is connected to the 
source terminal so it is the reference node. The piece of the reduced-incidence 
matrix associated with T] is 

[J 
0 

11 1 
1 

(18) 
0 

-1 

We can write 

Kv = [ 
KvI 0 

(19) 
0 KvR 

where KvI E ~3x3 corresponds to the constitutive relation for TI (Eq. (4)) while 
KvR represents the remainder of the circuit. Let us partition A, i, and u similarly 
as A = [AI A R], iT = (ir,i~), and uT = (uf,u~), where i] E ~3 and u] E ~4. We 
can then write the reduced-tableau matrix as 

[1, (20) 
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Eq. (20) indicates how Tl "assemble;;;" into the lower right block of nodal equa
tions; this can also be done using Eqs. (7)-(8). This process can be iterated to 
obtain the nodal equations for voltage-controlled elements and can be extended to 
non-volt age-controlled elements [9]. Thus, the assembly of circuit equations resem
bles finite-element assembly [35]; moreover, the global incidence matrix is never 
formed since the assembly is done device by device. 

3 Table representations of devices 

The functions f and q in Eq. (4) have classically been approximated in circuit 
simulation by polynomials and exponentials. These are chosen to follow physi
cal properties such as "current increases with voltage." Different expressions are 
needed for various operating regions of the transistor. Ensuring continuity of these 
expressions at the interfaces, fitting various unknown parameters, and extending 
the models for new device behavior is labor intensive. 

3.1 Variation-diminishing splines 

First consider the univariate problem. We wish to approximate a smooth monotone 
function f, given data at uniformly spaced sample points tj 0;= (j - l)h on the 
interval [0,1] where h = l/(n - 1) and 1 :::; j :::; n. Since in our application 
only a C 1 approximation is needed, we elect to use quadratic splines. Take knots 
tj = (j - 2.5)h midway between the sample points tj_2 and tj_l' (These are chosen 
so that tj = (tj+1 + tj _1 )/2, as is required for variation-diminishing splines.) Using 
the data as B-spline coefficients gives the variation-diminishing spline [33] 

S(x) = L f(tj)Bj(x). (21) 

(See [5] for the definition of {Bj }, which are written as {Bj ,3,d in that reference.) 
Because of the local support of the B-splines, if tj :::; x :::; tHl, then S(x) depends 
only on f at tj_2' tj_l' and t;' In the trivial case n = 1, take S(x) = f(t1). 

Note that we do not use the customary multiple knots at the endpoints. We 
thereby obtain B-splines that are all identical up to translation 

(22) 

and avoid introducing an irregular sample point near the boundary. But the defini
tion of S(x) for x < h/2 refers to f(to), an imaginary sample outside [0,1] indicated 
by the dotted circle in Fig. 4. We implicitly estimate this by linear extrapola
tion from f(t1) and f(t2). This implies that for x < h/2 the spline reduces to 
a linear function. Here and in the following, we only discuss the left boundary 
and implicitly treat the right boundary symmetrically. This technique is used in 
computer graphics under the name of "phantom vertices" [4]. This nonstandard 
definition retains the properties of variation-diminishing quadratic splines defined 
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with the usual multiple knots [10]. In particular, if f" is Lipschitz continuous, then 
8 has the following properties: 8 E C1; if f is linear, then 8 = f; 8(0) = f(O), 
8(1) = f(1); if f is monotone or convex, then so is S; if f is quadratic, then 8' = f'; 
IIf - 8I1Loo [0,1] = O(h2); 11f' - S'IILoo ]0,1[ = O(h2); and If' - 8'1 = O(h) at 0 and 1. 
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Figure 4: B1 with knots indicated by pluses. Function values are sampled at the 
points indicated by o's. 

The restriction to a uniform mesh saves a factor of eight in execution time over 
efficient general spline codes [5] with k = 3 and leads to improved convergence of the 
derivative. Note that higher order splines would not give higher order convergence 
to f, though they of course would give more continuous derivatives. A more com
plicated code could handle multiple endpoint knots without much loss of efficiency. 
A minor advantage of variation-diminishing splines is that no preprocessing of the 
data is required. 

3.2 Tensor products 

Any linear univariate approximation process can be extended to several variables 
through the use of tensor products [20]. For the variation-diminishing spline, a 
two-dimensional tensor variant with the same knots in each variable is given by 

8(x,y) = "Lf(tj,tZ)Bj(x)Bk(y). 
jk 

(23) 

(In practice we use different numbers of knots in different variables; we have sim-. 
plified here to avoid the otherwise bewildering indices.) If the second derivatives of 
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I are continuous, then III - SIIL~[O,lJ = O(h2), where h is the larger 01 the sample 
spacings in x and y [10]. 

Define a bivariate function I to be monotone increasing if x :'S x* and y :'S y* 
implies I(x,y) :'S I(x*,y*). II I is monotone, then so is S [10]. 

The extension to three variables is immediate: 

S(x,y,Z) = L,1(tj,tZ,fl)Bj(x)Bdy)BI(z). (24) 
jkl 

The computational costs of a tensor spline in p dimensions is O(IT nj) space 
given nj sample points for the jth variable and O(3P ) time per evaluation [20]. 

Our FORTRAN implementation takes 25 microseconds on a Cray XMP using 
the CFT ] .15 compiler, including subroutine call overhead, for a single evaluation 
of S and its partial derivatives with p = 3. In the transient circuit-simulation 
application, for each set of applied transistor voltages, we need the steady-state 
current and three charges, assuming no bulk leakage currents. By running these 
four evaluations together, the cost per evaluation drops to ]3 microseconds, which 
is comparable to the cost of compact analytical models. (A version of the code has 
also been used in a timing simulator [36].) 

Since S is linear near the endpoints, there is a natural C 1 linear extension to 
IR. This is often an excellent approximation in transistor modeling and allows the 
Newton iteration in the circuit simulator to temporarily step outside the physically 
realizable region (§ 5). 

If data can be sampled on general grids, coordinate transformations such as 
square root in the Vgs variable would reduce somewhat the number of coefficients 
needed. (We would still use uniform knots, but in the transformed variable.) 

We have assumed implicitly a transistor of specific length and width; for a typical 
circuit simulation perhaps a dozen tables would be required. Sometimes the width 
can be treated as simply a scale parameter so that fewer tables are needed. 

More recently, we have experimented with linear B-splines. On coarse grids these 
lead to significant errors in the Jacobians, but the Newton method (§ 5) usually 
seems to be robust enough to converge anyway. It is not yet clear whether the 
cheaper evaluations save enough to overcome the increase in iterations. 

4 Linear-algebra techniques 

After device constitutive relations have been represented (§ 3), the next problem of 
interest is solving for x in 

Ax = b E IRn (25) 

where A E IRnxn is large and sparse (few nonzero entries per row). This problem 
arises during the Newton iterations that are employed in the DC operating-point 
and transient analyses (§ 5). 
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Only the nonzeros of A and appropriate pointers need to be stored. We use either 
the standard IA,JA,A format or a variant that assumes the matrix is structurally 
symmetric, that is, aij =I- 0 implies aji =I- O. In our implementation, the matrices 
are effectively structurally symmetric. 

Sparse direct methods compute a factorization 

PApT = LDU (26) 

where P is a permutation matrix, chosen by the minimum degree algorithm (once) 
in an attempt to minimize fill-in [12,19]' D is diagonal, and Land U are unit lower 
and upper triangular, respectively. (Such a factorization is well defined when A + AT 
is positive definite.) Eq. (25) is then solved by a forward and backward substitution. 
If n » 1, the cost of computing the factorization is usually much larger than the 
forward and backward substitutions, which can be exploited in nonlinear equation 
algorithms (§ 5). 

The matrix formats and codes are documented in the literature [14,13,12,1] and, 
due to space constraints here, we will defer to these earlier papers. 

Iterative methods, such as conjugate gradients, seem attractive because the cost 
per iteration is much lower than the cost of computing an LDU factorization. Unfor
tunately, the nonsymmetry of A make the convergence of iterative methods problem
atical. It is possible, however, to enhance the performance of a Newton-Richardson 
algorithm (§ 5) by using Orthomin as discussed in [1]. 

5 Newton-like methods 

The underlying circuit equations for the DC operating point or a transient time 
step are of the form 

h(z)=OElRn (27) 

where Z E IRn is the vector of unknown node voltages (and possibly currents). 
There are a number of approaches to solving such nonlinear systems but we will 
concentrate on Newton-like methods here. 

Newton's method produces a series of iterates Zj and is motivated by the fol
lowing Taylor expansion (requiring a sufficiently smooth h) 

hj+1 = hj + hj(Zj+1 - Zj) + 101 
{h'(Zj + S(Zj+1 - Zj)) - hj}(Zj+1 - Zj) ds (28) 

where hj == h(zj) and hi == (8h/8z)(zj). If we assume hj+1 = 0 and neglect the 
integral remainder term above, we obtain the usual Newton correction equation 

hjxj = -hj, (29) 

which is well defined if hi is nonsingular. Note that Eq. (28) implies -(hi)-lhj is a 
descent direction, that is, Zj - f(hi )-1 hj results in a smaller value of IIhll for small 
enough f. 

The basic Newton procedure is as follows: 
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Algorithm 1 Let Zo be an initial guess to a solution z* for which h(z*) = O. 

1. Set j = 0; 

2. Do 

a. Solve hjxj = -hj for Xj; 

b. Set Zj+1 = Zj + Xj; 

c. Replace j +- j + 1; 

d. If j ~ m, then report failure to converge; 

until IIxj.,.IiI ::; f111zj II and IIhj II ::; 102. 

Step 2 is one possible stopping criterion for this iterative procedure; the two 10 
parameters can be adjusted to make both the change Xj and the function value 
small. The m parameter limits the total number of iterations allowed. (Note that 
the 2-norm, IIxjll2 = XfXj, is used in the remainder of this paper.) 

It is well known that Newton's method exhibits quadratic convergence, that is, 
Ilzj+1 - z*11 = O(lIzj - z*11 2), in a neighborhood of z* [27]. There is no guarantee, 
however, that limj ..... oo Zj --> z* for an arbitrary Zoo 

The basic Newton procedure can be made more robust in a variety of ways. One 
possibility is to use damping in an attempt to force IIhj II --> 0 in a monotone way, 
which is motivated by the fact that _(hj)-lhj is a descent direction. A damped
Newton algorithm is given by: 

Algorithm 2 

1. Set j = 0, l = 0, S-l = 1, and So = 1; 

2. Do 

a. Solve hjxj = -hj for Xj; 

b. Set Zj+1 = Zj + SjXj; 

c. If 1 -lIhj +1l1/l1hj ll < fMSj, then 

i. Replace l +- l + 1; 

ii. If l > L, report failure to reduce the norm; 

iii. Replace Sj +- Sj_1(fMllzjll/llxjll){l2/L 2); 

iv. go to step 2b to redefine Zj+1; 

d. Set Sj+1 = sj/(sj + 0.2(1 - sj)llhj+ll1/llhj ll); 

e. Reset l +- 0; 

f. Replace j +- j + 1; 

g. If j ~ m, then report failure to converge; 

untilllxj_lli ::; 101 IIZj II and IIhjll ::; 102. 
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Here fM is the machine epsilon and L is usually set to 9. Step 2c enforces the so
called sufficient-decrease condition described in [2]. Substep iii decreases 8j more 
and more rapidly on consecutive failures to reduce Ilhj+ll1 while step 2d geometri
cally increases 8j+l -+ 1 after a successful step. 

With appropriate hypotheses, this damped-Newton method is globally conver
gent and is quadratically convergent in a neighborhood of the solution [2]. One of 
the necessary hypotheses is not always satisfied for circuit simulation problems. In 
particular, the theory requires that II (hj ) -111 :::; C for all j but h' may be (nearly) 
singular when a subcircuit is (nearly) decoupled from the rest of the circuit. The 
simplest example of this difficulty arises in the DC operating-point problem for the 
NAND (see Fig. 2) with two zero inputs. The "don't care" node between the two 
enhancement transistors does not have a well-determined value, which is reflected 
in the condition number of h'. 

There are various schemes for dealing with the singularity of h'. One possibility 
is to use so-called two-parameter damping where Eq. (29) is replaced by 

(30) 

the diagonal shift often produces a nonsingular equation but )..j > 0 cannot be 
too large if the results of [2] are to apply. Another possibility is to recognize dis
connected sub circuits and solve each of them independently by arbitrarily setting 
one node voltage (deflation). Other approaches manipulate )..j without damping 
(8j = 1) [3] or treat the problem via nonlinear least squares [11]. Finally, homotopy 
methods may be applicable [15]. Our present implementation uses damped New
ton (Alg. 2) with two-parameter damping, trivial deflation [9], or a variant of the 
method described in [3] as options. 

A number of codes employ the more general update equation 

(31) 

where D j is a diagonal matrix. This scheme allows component-wise chopping of 
values so an individual component of Zj+l can be constrained to a physically rea
sonable value. There is no guarantee that Djxj is a descent direction since Xj and 
Djxj are not co-linear in general (unless, for example, D j = 8j/). Moreover, it is 
possible to evaluate h(z) for arbitrary values of z using our tensor-product splines 
(§ 3) so we have no need for component-wise chopping. 

Step 2a of Alg. 2 is often costly, particularly if sparse direct methods are used 
to compute an LDU factorization of hj followed by a forward and backward substi
tution to compute Xj (§ 4). One scheme to reduce the overall expense, the so-called 
Newton-Richardson iteration, is to reuse the sparse LDU factorization of an old 
Jacobian in an inner iteration. The Newton-Richardson concept starts with a uni
formly convergent splitting of hj given by 

(32) 
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where II Mj - 1 N j II = II I - Mj - 1 hj II :S p < 1 for all j. Typically, M j represents 
the sparse LDU factors of an old Jacobian hjo' The actual Newton-Richardson 
algorithm is the same as Alg. 2 except step 2a is replaced by the following iterative 
procedure: 

Algorithm 3 

1. Set k = 0 and YjO = 0; 

2. Do 

a. Solve Mj(Yj,k+l - Yjk) = -(h~Yjk + hk ) for Yj,k+l - Yjk; 

b. Replace k f-- k + 1; 

untilllhjYjk + hjll :S 0:1Ihj 11 2 /11holl; 
3. Set Xj = Yjk. 

Here 0 < 0: < 1 is an experimentally determined parameter. The Newton-Richard
son algorithm with the stopping criterion given by step 2 above results in quadratic 
convergence [2]. This is intuitively appealing since the stopping criterion requires 
more inner iterations as IIhj II becomes smaller. 

6 Continuation methods 

Computing transfer curves is an obvious application for predictor-corrector contin
uation methods [23,15] since most of these problems amount to solving for Z(A) in 
h(z, A) = 0 with the voltage A ranging over [~, Xl. The predictor-corrector approach 
is motivated by parameterizing the equation by arc-length, s, 

h(z(s), A(S» = 0 

and then differentiating with respect to s (denoted by dots) to obtain 

h'i + h>.).. o 
IIill2 + 1)..12 1, 

where h>. represents the partial derivatives of h with respect to A. 

(33) 

(34) 

(35) 

If the solution (Zj, Aj) and its unit tangent (ij,)..j) are known for some Sj, then 
we can advance to Sj+1 by predicting a new set of values with forward Euler 

and then applying a Newton-like method to the corrector equations 

h(Zj+l, Aj+l) 

N(Zj+l, Aj+l) 

o 
OER 

(36) 

(37) 

(38) 



Aspects of Computational Circuit Analysis 117 

The augmenting equation, N = 0, is often taken to be the forward-Euler pseudo
arc-length equation 

which, under appropriate hypotheses, ensures the nonsingularity of the Jacobian 
of Eqs. (37)-(38) [23], even at simple limit points where hi E IRnxn has rank 
n - 1 and hA <f- Range(h'). Other forms for N have been proposed but Eq. (39) 
suffices for curve tracing. Note that once (Zj+l, Aj+l) has been determined then 
Eq. (34) implies iJ+l = -).J+l(h.f+l)-lhAj+l and Eq. (35) normalizes (iJ+I,).J+I) 

so (ij +l , ).j+l) can be determined up to a choice of sign; moreover, the solution of 
the appropriate linear system is needed for block Gaussian elimination (see below) 
so little additional work is required to compute the tangent. 

If there are no limit points, then it suffices to predict a value using Eq. (36), fix 
AJ+I, and solve Eq. (37) for ZJ+l. This approach reacts to the local curvature of 
the solution and provides a natural step size in A unlike methods that take a fixed 
step in A. Of course, this leaves the problem of regulating SJ+l - Sj. 

Selecting the step size Sj+1 - Sf can be a complicated matter. Since we are 
interested in following the curve fairly closely, we could monitor the truncation error 
of the forward-Euler predictor (Eq. (36)) using divided differences. Our current 
implementation uses a modification of Algorithm III in [31]' which regulates the 
angle between the tangent (ij,).j) and the secant (Zj - Zj-l, Aj - Aj-l)/(Sj - Sj-J). 

It is sometimes necessary to repeat a step if IlzJ+I - Zj II (or IAJ+I - Aj I) turns out 
to be too large. This step-size selection procedure could be improved. 

The augmented linear system for the Newton correction equation associated 
with Eqs. (37)-(38) is of the form 

[~f :~~] ( ~~ ) = ( ~~ ) , (40) 

where All E IRnxn , aI2,a21,xI,bl E IRn , and a22,x2,b2 E IR. In our application, 
All = hi, a12 = hA' a21 = i, and a22 = i 

Block elimination is often used to solve Eq. (40). This approach is motivated 
by the block factorization 

(41) 

Then the basic block-elimination algorithm is given by the following: 

Algorithm 4 

1. Solve Auw = a12 and AllY = bl for wand y, respectively; 

2. Set X2 = (b2 - afly)/(a22 - aflw); 

3. Set XI = Y - X2W. 
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However, it is known that the Jacobian, represented here by All, becomes singu
lar at limit points so that block elimination can be ill-conditioned. One possibility 
is to use the deflated-block-elimination algorithm due to Chan [7]: 

Algorithm 5 Let 'l/Jo (say (1,1, ... , l)T) be a guess for the left-singular vector 
(associated with the smallest singular value) of All' 

1. For j = 1, ... , m (say m = 2), do 

a. Solve All¢j = 'l/Jj-1 for ¢j; 

b. Set <Pj = ¢j/!I¢j!l; 
c. Solve AE;(Jj = <Pj for ;(Jj; 

d. Set (Tj = l/ll;(Jj!l; 
e. Set 'l/Jj = (Tj;(Jj. 

2. Set a = 'I/J'{;.a12 and (3 = 'I/J'{;.b1; 

3. Solve Allw = a12 - a'I/Jm and AllY = b1 - (3'I/Jm for wand Y, respectively; 

4. Set 11 = b2 - ar1Y' 12 = a22 - ar1W, and 13 T ar1<Pm; 

5. Set 61 = a,l - (3,2,62 = (3,3 - (TmI1, and 63 = 1/«(3,3 - (TmI2); 

6. Set X2 = 6263 and Xl = Y + 63(61<Pm - 62w). 

Step 1 of the algorithm is just inverse iteration to obtain approximations to the 
smallest singular value and the corresponding left- and right-singular vectors [34,7]; 
it often suffices to do two or even one-and-a-half iterations (l/l14>jll also approxi
mates the smallest singular value). 

This algorithm is effective when All has at least rank n - 1 (also see [8]). 
Obviously, there is the cost of doing a few extra forward and backward substitutions 
to approximate the singular value and vectors but this only need be done near 
limit points and can often be reused for several continuation steps. There can be 
difficulties near a limit point if the circuit has (nearly) disconnected subcircuits and, 
hence, more complicated singularities, as mentioned earlier. 

7 Time-integration schemes 

Circuit equations (Eq. (12)) are not ODEs but are differential-algebraic systems 
(DASs), that is, q' may be singular. Nevertheless, there is a history of applying 
backward-differentiation formulae to such problems [17,6]. (It has recently been 
made clear that DASs can be degenerate [29,18,32]' but some appropriate mathe
matical software exists [28].) Here we will emphasize a simple second-order scheme 
that is well suited for use with a Newton-Richardson algorithm (§ 5); second-order 
methods appear to be reasonably efficient for the circuit simulations we have per
formed, which agrees with the previous experience [37,26]. 
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We make use of a trapezoidal-rulejbackward-differentiation-formula (TR-BDF2) 
composite method. Consider integrating Eq. (12) from t = tn to tn+1 == tn + tltn. 
We apply TR to go from t = tn to tn + 'Ytltn 

(42) 

This implicit scheme has a Jacobian of the form 2q~+"Y + 'Ytltnf~+"Y' We then apply 
the second-order backward-differentiation formula (BDF2) to go from t = tn +'Ytltn 
to tn+l 

This implicit scheme has a Jacobian of the form (2 - 'Y)q~+l + (1 - 'Y)tltnf~+l' 
The TR and BDF2 Jacobians have the same form if 

2 2 - 'Y 

'Y 1-'Y 
(44) 

which implies 'Y = 2 - V2 ~ 0.59. Assume 'Y takes this value for the remainder of 
this paper. With a Newton-Richardson algorithm (§ 5), it is often possible to reuse 
Jacobian factorizations and still retain rapid convergence to the solution of Eq. (42) 
or Eq. (43) [1]. 

Consider applying a one-step method Yn+l = A(>.tlt)Yn to the usual scalar test 
problem y = >'Y with ~ >. < 0, where ~ >. denotes the real part of >.. Recall 
that the one-step method is said to be A-stable if IA(>.tlt) I < 1 for all >.tlt with 
~ >.tlt < 0; the method is said to be L-stable if it is A-stable and IA(>.tlt) I -+ 0 as 
I>.tltl -+ 00 [24]. However, A-stability alone may not be strong enough for extremely 
stiff problems. For example, if the A-stable TR method is used when ~ >. « 0, then 
Yn+l ~. -Yn unless I>.tltl = 0(1) so, without proper error control, "ringing" may 
occur, which can be exacerbated by a nonlinear problem. But restrictions on tlt 
are anathema for stiff problems. On the other hand, BDF2 is known to be L-stable 
so there are no restrictions on tlt. BDF2 has a higher truncation error than TR 
and is trickier to implement since it is not a one-step method, however. 

The principal truncation term for a step of TR-BDF2 (Eqs. (42)-(43)) is 

(45) 

where 

(46) 

Note that IGb)1 is minimized when 0 < 'Y = 2 - V2 ::; 1. 
The composite TR-BDF2 procedure is an easily restarted, second-order, one

step, composite-multistep algorithm, which is nearly as simple to implement as TR. 
It is compatible with the Newton-Richardson algorithm. Finally, the scheme is 
suitable for stiff problems requiring moderate accuracy since the TR-BDF2 method 
with 'Y = 2 - V2 is L-stable [1]. 
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In order to regulate the step size t::.tn, we need to estimate the local truncation 
error (LTE). (Note that error estimation for DASs can be much more difficult than 
for simple ODEs [29,28,18].) We have found that the divided-difference estimator 

Tn+1 = 2Ct::.tn [,-1 fn - ')'-1(1 - ,),)-1 fn+, + (1 - ,),)-1 fn+1J :::::> C(t::.tn)3q(3) (47) 

approximates the LTE in terms of q reasonably well and is inexpensive to compute. 
(There are a variety of alternatives forestimating the LTE [17,29,28,1].) 

Given a per component LTE estimate, we can predict a new candidate step size 
t::.t*, expected to satisfy a specified error tolerance, by 

where 

r IITn+l1l 
lIen +111 
i1lqn+l,il + i2· 

(48) 

(49) 

(50) 

Here the second subscript on q represents the component and i1 and i2 are absolute
and relative-error parameters, respectively, and the cube root reflects the second
order nature of the scheme. The error measure represented by r can be insensitive 
to large relative changes in small values so more conservative schemes may be ap
propriate at times [1]. 

If r :::; 2, the step is accepted; otherwise the step is repeated with t::.tn +- 0.9t::.t*, 
where the 0.9 is a "paranoia" factor. If for some reason the nonlinear equations 
cannot· be solved in a small fixed number of iterations, the step is repeated with 
t::.tn +- t::.tn/2. If the step is accepted, the next step size is taken as t::.tn+1 = 

min(0.9t::.t*,2t::.tn) subject to minor adjustments as mentioned below. This last 
rule restricts the rate of increase in order to avoid step-size oscillations. 

Since input wave forms often have natural breakpoints that should be sampled 
exactly at the corners for graphical reasons, we have employed the device described 
in [16], which further limits the step size. In particular, if the integration is to stop 
at ts, we take 

ts - t 
t::.tn+ 1 +- --=-c---,---,---,----_::_ 

f(t s - t)/t::.tn+1 - i1 (51) 

where i is a small multiple of the machine epsilon. 
Some circuit-analysis packages try to get away with much simpler step-size con

trol schemes. One choice is to cut back the step size when the previous time step 
took more than a certain number of Newton iterations and to increase the step size 
when the previous step took less than another certain number of Newtons. This 
approach tries to maintain a "reasonable" number of Newtons per time step. If 
this scheme is applied to a linear RC network, the Newton procedure will always 
converge in one iteration resulting in continual step-size increases and, thereby, 
arbitrarily bad truncation errors. 
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8 Macromodeling of circuits 

Recall that Definition 1 implies a hierarchy of circuit variables in the sense that we 
write the global circuit equations in terms of internal w and external u voltages 

(52) 

(53) 

The goal of macromodeling is to decouple the computation of the u's, which are 
of interest, from the w's, which are of lesser concern. Ideally, we would like to 
"eliminate" the w variables and assemble equations that model the macroelements. 
This is not completely possible in the transient simulation context since initial 
conditions on the w variables playa role. However, momentarily suppressing the 
dependence on initial conditions, we will see that macromodeling in a general sense 
can be viewed as nonlinear elimination. 

8.1 Macromodeling as nonlinear elimination 

Assume that given u, hI (u, w) = ° determines w( u); that is, the internal equation is 
used to solve for, and hence eliminate, w given u. Note that hI is a block-diagonal 
function of w for fixed u since the internal voltages of one macroelement do not 
interact directly with the internal voltages of another macroelement. Suppose we 
then solve the remaining equation in u, hE(u,w(u)) = 0, by a damped-Newton 
scheme 

u +- u + sll.u, 

(54) 

(55) 

where hf represents the partial derivatives of hE with respect to its first variable. 
We need the quantity dw/du. From hI(u,w(u)) = 0, we obtain 

(56) 

This can be rewritten as 

~: = _(h~)-lhf. (57) 

The Newton correction equation (54) then becomes 

(58) 

Eqs. (54)-(58) can be interpreted in the context of block Gaussian elimination. 



122 VLSI CAD Tools and Applications 

The Jacobian of the coupled system for the internal and external voltages 
(Eqs. (52)-(53)) is 

h' = [h~ hI] hf hf . (59) 

Block Gaussian elimination gives the Schur complement in the lower right (2,2) 
position 

hf - h~(h~)-lh{, (60) 

which is what we had before. Eqs. (54)-(58) can be seen as solving 

[~~ ~~] ( ~: ) = - ( hE~u) ) (61) 

by block elimination as indicated by Eqs. (59)-(60). Note that the first block 
equation of Eqs. (61) and (56) imply the notationally obvious 

dw 
~w= du~u. (62) 

Indeed Eq. (62) and the zero in the right-hand side of Eq. (61) are consequences 
of hI (u, w) = 0; a usual Newton-type iteration on the complete system would, of 
course, replace the zero in Eq. (61) by hI (which would, in general, be nonzero) 
and the relation given by Eq. (62) would not be valid. Even so, the interpretation 
represented by Eq. (61) indicates that a macromodel iteration (Eqs. (54)-(58)) re
quires the same information as a complete Newton iteration. The consequence of 
this interpretation is the observation that macromodeling will payoff if getting w 
from hI (u, w) = 0 is inexpensive and enforcing hI = 0 requires fewer overall Newton 
iterations than would be necessary to solve the complete system (also see [30]). In 
table-oriented macromodeling for the DC case, we will see that we also get a bonus 
of obtaining the Schur complement essentially free. 

8.2 Macromodeling using tables 

The static (or DC) macromodeling problem is simpler since the charges q are identi
cally zero. Thus, the equations are nonlinear algebraic instead of nonlinear operator 
equations. 

For the DC operating-point problem, let us consider a particular macroelement 
and suppose its terminal voltages u/ are given. Then the internal state voltages 
w/ (ut) come from solving 

F/ (u/, wt) = O. (63) 

We approximate (fit) the related terminal current function 

i/ = F/E(u/,w/(ut)) == G/(u/). (64) 

With our tensor-product variation-diminishing spline approach, most of the Schur 
complement is returned as G;(ut} along with i/ [9]. In practice, we see quadratic 



Aspects of Computational Circuit Analysis 123 

convergence of hE(u,w(u)) = ° to a u* correct to within the tolerance provided by 
the tables. 

In combinatorial logic circuits, the circuit equations can become acyclic leading 
to the possibility of "numerical logic simulation." 

In [9J we summarized the behavior of a damped-Newton method used to compute 
a DC operating point for a one-bit full adder made up of nine two-input NANDs 
with the NANDs represented by DC macromodels (Eq. (64)). (The NAND macro
model (Eq. (64)) was constructed by simulating a NAND (see Fig. 2) for various 
prescribed values of Uinl, Uin2, and uout-} The advantages of such DC macromodel
ing include reducing the size of the nonlinear system (since the internal voltage w is 
not needed) and alleviating some of the inherent singular behavior of DC operating
point problems. With our current Newton schemes and models, the same one-bit 
adder simulation with DC macromodels and zero inputs as described in [9J saves 
at least a factor of three in execution time (due to reduced Newton iterations and 
smaller nonlinear systems) for moderate accuracy requests. Additional savings are 
seen if the Newton stopping criteria are tightened. Moreover, the NAND's inter
nal node can be ill-determined (§ 5) and this is reflected by an increased need for 
damping and linear Newton convergence, unless the DC macromodel is employed. 

This static table approach can be extended to the transient case. The internal 
equation, hI (u, w) = 0, discretized by a one-step method, say backward Euler, with 
fixed time step l:!..t is 

(65) 

Given uo, Wo, and u, we can obtain w(u; uo, wo). As noted before, the above 
equation can be viewed as that of an individual macro element since the global hI 
is block diagonal. The external equation, hE (u, w( u)) = 0, can then be discretized 
similarly and u can be be computed by a Newton-like method using the w(u; uo, wo) 
from above. 

The ro(uo,wo;l:!..t) above is a linear combination of q's (and, in general, 1's), 
which arises naturally during the assembly of the global equations. Splines can be 
used to fit the internal equation solutions 

w=g(u,ro;l:!..t), (66) 

which gives w(u) and dw/du. Derivatives in the ro variable are not needed. 
This approach is the natural extension of the static macromodeling case. How

ever, ro and l:!..t are new parameters. It may be possible to create a few tables for 
several l:!..t values and interpolate to vary the time step. 

The scheme works for the two-input NAND where 

(67) 

but the four-dimensional tables are near the practical limit. 
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8.3 Operator-based macromodeling 

The table approach is limited to macroelements with few internal states and external 
connections. We will now study operator-based methods that have the potential of 
being used on arbitrary macroelements. 

Consider solving the block-diagonal system hI = 0 with some scheme suitable 
for differential-algebraic systems (DASs) and then iterating on hE with a Newton
like method. This requires taking Frechet derivatives. The outer Newton correction 
equation is 

d [ E dw E] E dw E E 
dt q2 du ~u + qI ~u + 12 du ~u + II ~u = -h (u, w(u)). (68) 

dw / du is still needed but is no longer easily obtained. The action of dw / du on a 
waveform ~u can be derived by taking 

Let 
dw 

~w= du~u. 

From Eqs. (52), (69), and (70), we obtain 

! [q~~w +q{~u] + IJ~w + j{ ~u = O. 

(69) 

(70) 

(71) 

Now we can solve the coupled DAS represented by Eqs. (68) and (71). Obviously, 
a general waveform method could be cumbersome. (Variants of nonlinear operator 
Jacobi and Gauss-Seidel [27] have proven effective for circuits with limited feedback 
[25,38].) 

This operator method can be substantially simplified if ·we restrict u(t) wave
forms to be, say, piecewise linear, that is, u(t) = Uo +a(t - to) on an interval [to, tI]' 
The algorithm to advance from t = to given Uo and Wo then becomes: 

Algorithm 6 Let ao be the initial guess for the slope. 

1. Set j = 0; 

2. Do 

a. Solve the block-diagonal DAS hI = 0 for w(t); 

b. Compute [(dw/da)(aj)](t) by solving small decoupled linear ODE sys-
tems; 

c. Using the previous step, solve [(dhE /da)(aj)]~a = -hE(aj) for ~a; 

d. Set aj+I = aj + s~a; 
e. Replace j f-- j + 1; 
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until converged. 

We are currently investigating a couple of variants of these operator-based 
schemes. Aspects of error and time-step control and how to exploit the hierar
chical circuit structure require additional study. 
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In this paper, we give an overview of the state-of-the-art in Circuit 

Analysis, Timing Verification, and Optimization. Emphasis is given to circuit 

analysis, timing verification and optimization since simulation is covered by C. 

Terman in this book. Also, the optimization of large circuits is receiving new 

attention due to the need for timing performance improvement in silicon 

compilation. 
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1. INTRODUCTION 

In this paper we give an overview of the state-of-the-art in VLSI circuit 

analysis, timing verification and optimization. Simulation is covered in detail in 

this book by C. Terman [24]. Hence, we will only cover aspects of the topic 

which are relevant for the other section in this paper. Circuit analysis is a 

subset of circuit simulation. Mainly, in circuit analysis, we employ numerical 

analysis type algorithms, and aim at accurate solutions. 

Time simulation is faster and requires less storage than circuit analysis with 

a commensurate decrease in waveform accuracy. The difference in the 

waveform representation for time simulation and circuit analysis was discussed 

in a recent paper [25]. Only very few data points are used to represent the 

waveforms for simulation. As a consequence, a speedup results for simulation 

techniques and time waveforms can be computed for a large number of logical 

gates. However, the waveform accuracy may not be sufficient for high 

performance VLSI circuits. 

In contrast, circuit analysis aims at waveforms with an accuracy in the 

order of 1 percent. However, the actual accuracy of the actual waveforms may 

be limited by the transistor models employed. Mathematically consistent 

numerical analysis algorithms are employed. This obviously comes at the cost 

of an increase in compute time as compared to simulation. To counteract this, 

new algorithms and techniques have been invented. One of these new 

approaches is the waveform relaxation (WR) technique [25] - [28]. This 

technique has resulted in an increasing number of logic circuits which can be 

analyzed simultaneously. The WR approach has been shown to have the 

potential for the analysis of circuits with 10,000 to 20,000 transistors if the 

parasitic and interconnect circuits do not contribute excessively to the number 

of nodes. 

Another area which promises to have an impact on the future of circuit 

analysis is parallel processing. The WR approach is well suited for parallel 

processing [31-33], [35] and we expect that the gain will be even larger for 

VLSI circuits with 20000 or more transistors. Parallelism of the order of 10, if 
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obtained, could have a considerable impact on circuit analysis on both 

mainframes and workstations. The most profound effect may be for 

workstations where a factor of 10 may make the analysis of reasonably sized 

circuits possible. 

Logic circuits delay time optimization has been attempted for more than 

two decades and the literature is surprisingly rich [4] - [23]. Both bipolar e.g. 

[18] and MOSFET [4]-[17], [19-23] circuits have been considered with an ever 

increasing complexity. Earlier, several authors attempted to increase the 

performance of single logic gate circuits for both bipolar [1] and MOSFET [3] 

circuits. The design variables for bipolar circuits are usually a set of resistors 

and less frequently bipolar device parameters. The main design parameters for 

MOSFET devices is the size of the FET gates. 

2. CIRCUIT ANALYSIS 

A problem of some circuit simulators and even some analyzers is the lack 

of flexibility. In fact, this problem has limited the utility of several interesting 

approaches like macromodeling. An approach which is based on specialized 

modeling of circuit configurations will always have limitations. Each new 

circuit configuration has to be modeled before it can be used. Methods which 

can solve a subclass of circuits like arbitrary configurations of MOSFET 

circuits have a far greater utility. It is obvious today that the generality of 

circuit analysis like AST AP [29] or SPICE [30] is one of the reasons for their 

success. 

General purpose analysis programs like SPICE and AST AP will always find 

numerous other applications in time domain analysis besides transistor circuit 

analysis. Further, they represent a standard against which all new analyzers 

and simulators are measured not only in terms of compute time requirements 

but also accuracy. In fact, accuracy is one of the most important aspects of 

these programs since many simulators have problems with complicated pass 

transistor circuits. We cannot expect that the speed of general purpose 

analyzers will increase drastically in the future since they are based on widely 
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known techniques which have been improved for more than a decade. Thus, 

we should expect to see the development of special purpose analyzers to 

address classes of important problems. 

Special purpose programs can be divided into two classes. In the 1970's 

macromodel analyzers were devised in parallel with approximate simulators. 

However, they could only compute waveforms for circuits for which 

macromodels were constructed. This usually involved a time consuming 

process. Most of these programs failed to find wide use. 

A newer generation of programs is finding wider use since they can treat a 

larger class of circuits. However, they are special purpose tools since they are 

restricted to de and transient analysis only. Also, many of them are limited to 

one technology such as MOSFET transistors. At present, the waveform 

relaxation analyzers Relax [27] and Toggle [28 ] are two examples. These 

programs have the potential of finding a large user community if they are able 

to handle arbitrary topologies. 

The Waveform Relaxation (WR) approach has been applied to a variety of 

circuits [26] - [28]. However, most practical implementations of WR are 
limited in generality. Mainly, the partitioning problem has to be solved for the 

general class of MOSFET circuits. The majority of the work has been done 

with MOSFET circuits. The special purpose WR programs like Relax [27] and 

Toggle [28] have to compete effectively with general purpose circuits analyzers 

like AST AP and SPICE. Hence, they provide stiff competition to any special 

purpose program at least for small to medium size circuits. Also, they can 

handle a mixture of MOSFET and Bipolar circuits. Combined analog and 

digital circuits can easily be mixed in both approaches. Mainly, WR programs 

use a small SPICE like program as the analysis "engine". Hence, analog 

circuits are accommodated by using this engine and properly partitioning the 

analog part into a single partition. 

The largest circuit analyzed to date with Toggle is an ALU circuit with 

9000 transistors which took 75 minutes of IBM 3090 computer time which is 

about a factor 100 faster than a SPICE type program. 
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The improvements in compute time for the WR are due to many factors. A 

few are listed below: 

1. The circuit matrix (Jacobian) is subdivided into smaller matrices of size Ns. 

The matrix solution time for a subsystem is N; where 1.2 < p < 2 for 

sparse matrix code. Hence, the sum of all subsystem matrices can be 

solved faster than the sparse solution of the full system Jacobian which 

takes time proportional to N~ where N A is the size of the Jacobian of the 

entire system. 

2. The decoupled subsystems are integrated at their own rate. Hence, this 

multirate decoupling of the subsystems prevents unnecessary 

computations. Specifically, the most time consuming task is the evaluation 

of the transistor models and many unnecessary time steps are taken in the 

subsystems in a SPICE like program. Unfortunately, computations of this 

type cannot be avoided in a conventional incremental program. 

3. A small change in a circuit can easily be updated in a WR program by 

utilizing previously computed waveforms. In a conventional program like 

SPICE, the entire solution must be recomputed. 

Circuit timing simulation uses up a large portion of the CPU compute time 

of the entire VLSI design budget. Hence, special purpose hardware can often 

be justified. Both specially designed hardware and more general parallel 

processing configurations provide viable approaches to decreasing the 

computation time. The two approaches can, in fact, be used simultaneously to 

effectively use two levels of parallelism [32, 33]. 

The lower level of parallelism would typically exploit parallelism within 

direct methods of circuit analysis while the higher level of parallelism might use 

the parallelism inherent in WR. The parallelism in the direct method comes 

from exploiting the parallelism in several of the steps of the direct method 

algorithm namely, prediction and integration, forming linear equations, solving 
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linear equations, and checking errors and convergence. The parallelism at the 

higher level, which has larger granularity, could employ the Gauss-Jacobi or 

time-point pipe lining version of WR. However, a mixed scheme that orders the 

computations so that subcircuits in parallel "chains" are computed in parallel is 

a good compromise [35]. This approach results from the observation that 

digital circuits tend to be "wide" in that gates fan out to more than one 

subcircuit. It should be possible to find a parallelism of 10 for circuits of 

moderate size. 

The gain obtained for parallel processing from the WR approach is expected to 

be even more significant for VLSI circuits with 20,000 or more transistors. If 

the parallel approach selected does not rely on specific hardware accelerators, 

then the same parallel approach may be used on both parallel mainframes and 

parallel workstations. These parallel structures are being investigated and built 

at several universities and industrial firms [36, 37]. The most profound effect 

may be for workstations where a factor of 10 may make analysis of reasonably 

sized circuits possible. Although improvements in processing time have been 

demonstrated, the amount of data storage and movement must also be 

carefully managed if the full potential of the available parallelism is to be 

realized. 

3. TIMING VERIFICATION 

A good timing verification model based on relatively simple ideas is given 

in this section. It is important for both timing verification as well as 

optimization as will be apparent from the next section. Here we will present a 

model for timing verification for combinational circuits which finds wide use in 

IBM [34]. 

The key advantage of verification over simulation is in the compute time. 

Simulation by path tracing is an exponential process while this algorithm is 

linear in the number of gates. 
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In this model, all the logic circuits are described as inverting or 

non-inverting. Both the rising and falling delays are defined by delay equations 

independent of the function of the logical gates as shown in Fig. 1. This total 

delay must be considered for completeness for combinational logic. The short 

delay check is needed when there is clock overlap. This insures that signals do 

not arrive too early so that the latches are not disturbed. The long delay check 

is the one which is usually considered so that the timing constraints are met. 

We can define the following signal times and delays: 

ap br = rising waveform arrival times for signals a and b 

af' bf = falling waveform arrival times for signal a and b 

dp df = delay of output rising or falling respectively 

cp cf = rising and falling output arrival times 

( a . ) (b. ) 

Fig. 1 (a). Noninverting circuit, (b) Inverting Circuit 

With these definitions, the long delay equations are for the inverting circuit in 

Fig.l(a). 

cr = max (af, bf) + dr 

cf = max (ap br) + df 

while the short delay equations are 

cr = min (af, bf) + dr 

cf = min (ap br) + df 

(1) 

(2) 
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For the non-inverting circuit in Fig. l(b), the long delay equations are: 

cr = max (ap br) + dr 
cr = max (ar, br) + dr 

while the short delay equations are 

cr = min (ap br) + dr 
cf = min (ar, br) + dr 

(3) 

(4) 

Using this model signal arrival times can be calculated in order to verify that 

they arrive neither too early nor too late. This is done by levelizing the circuits 

and by adding up the arrival times at each node without considering the 

function of the gates. This model has been used also for timing optimization as 

will be apparent from Section 4. 

4. CIRCUIT OPTIMIZATION 

New techniques have been invented for the optimization of large circuits 

on VLSI chips. Mainly, only a few design parameters should be used for each 

logical circuit since this may severely limit the number of logical circuits which 

can be optimized. Ideally, the timing model has only one global parameter per 

logic circuit. An example of such a model is a MOSFET circuit where all the 

FET gates are adjusted in proportion to a single design parameter W. 

VLSI circuit optimization has gained much more importance with the 

advent of silicon compilation. In fact, high performance silicon compilers must 

take timing into account. For example, it has been shown that minimizing the 

total wire length does not guarantee that the delay due to the wires is a 

minimum [7]. Hence, new techniques have been deviced to optimize the 

electrical performance of VLSI circuits at the large scale levels. 
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Probably the most common way to adjust the timing of MOSFET 

integrated circuits is the adjustment of the FET gates [4] - [11], [23]. Two 

fundamentally different algorithmic techniques are employed. Analytical 

nonlinear optimization techniques are used in several of the approaches 

[4] - [11], [13]. 

In [4] - [7] a Newton optimization technique is employed. Circuits with 

more than 1000 parameters were optimized and no limitations were found. 

Both the compute time and storage requirements are moderate if the Hessian 

matrix problem 

-1 
tJ.t = H g. (5) 

is solved in sparse form. In Eq. (5), H is the Hessian matrix and g the gradient. 

Table I gives a comparison of some of the results obtained with different 

optimization methods for a 138 gate circuit with 68 design variables. The 

circuit was optimized until the same minimum power was obtained for all the 

methods tested. 

TABLE I: COMPARISON OF OPTIMIZATION METHODS 

Method 

Davidson 
Fletcher 
Powell 

Conjugate 
Gradient 

Newton 

No. of 
Function 
Calls 

1405 

1709 

409 

Compute 
Time 

33.98 

32.59 

10.77 

These results show that the Newton method is very economical for this 

type of circuit. Further, it was found that methods based on an approximation 
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of the Hessian matrix like the popular Davidon Fletcher Powell method could 

not be employed with more than 100 variables. The main problem is the 

iterative computation of the Hessian. 

The Newton optimization scheme requires that the macromodel have 

analytical derivatives. In [4]-[7] a simple model is employed of the form 

w= A 
d-B 

(6) 

where d is the delay and A,B are functions of the device capacitances while W 

is the FET gate size. For NMOS circuits the power is proportional to the gate 

size, or 

P=kW (7) 

Hence, the total power for a circuit is given by 

A-I 
(8) 

Assuming a long delay constraint given by Eqs. (1) and (3), the timing 

equations can be written in the form 

(9) 

where d j is the delay to the output and t1, t2, ... are the arrival times at the 

inputs. To obtain a function with analytical derivatives, the max function in 

Eq. (9) is replaced by the smooth max function. 

-1 -atl -at2 
smax(t1, t2, ... ) = a In(e + e + ... ) (10) 

where a is adjusted during the iterations. Finally, the transition times at the 

different nodes are found from 

(11) 
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where t.t is given by Eq. (5) and ~ is found by a scalar minimization of P t with 

respect to ~. 

This approach has successfully been applied to the optimization of several 

circuits [7]. However, the most appropriate analytic formulation depends on 

several factors. The type of technology has a profound impact on the 

approach. It is necessary to distinguish between NMOS, CMOS and dynamic 

circuits. Also, the objective function which is minimized can be power, area, 

sum of gate size, the placement of the circuits, or combinations of these 

functions. Further, different constraints can be imposed. An example in the 

above formulation is imposing a timing constraint by fixing the times at the 

outputs of the circuits. We could also keep the power constraint while 

minimizing the timing. 

A number of other techniques have been employed besides the analytical 

techniques presented above. A major problem exists in the methods based on 

path delays, rather than the timing verification model presented above, since 

the path problem is of exponential complexity. 

The circuit placement is another design parameter which has been explored 

by several authors [5], [7], [12], [17] - 18]. Mainly, the critical circuits can be 

sped up by placing them closer together, a step which results in a decrease in 

the capacitances. An example is the delay weighted force directed pairwise 

relaxation [5], [7] where the position of a circuit connected to other circuits is 

weighted by l/delay. 

Finally, a recent addition to the VLSI optimization techniques is the 

redesign of the logic at hand [14], [21], [22], [23]. For example, the circuits 

which participate in a critical path can be redesigned to decrease the length of 

the critical path by reducing the number of logical stages. This is done at the 

cost of delay in the non-critical stages. This does not represent a problem since 

all paths are equally critical in an optimized circuit. 

All the above mentioned optimization techniques can be combined in a 

silicon compiler by applying them sequentially. For example, in [7] the 

following algorithmic steps were used: 



140 VLSI CAD Tools and Applications 

1. Placement for distance 

2. Global routing 

3. Gate size optimization 

4. Placement to minimize power 

5. Return to 2. if not converged. 

One can easily include a logic redesign optimization step in this algorithm. We 

should perform steps 1. and 2. before the logic optimization step since it is 

desirable to have a good estimate of the capacitances for this step. 

It is clear that this brief overview does not cover this new area of research 

completely. Many new results will be obtained in the near future in spite of the 

fact that VLSI timing optimization already has an amazingly rich history. 
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ABSTRACT 

CADTools for Mask Generation is a general title that refers to 
Computer-Aided Design software that produces as its output 
mask-level descriptions of integrated circuits. The current 
state-of-the-art for general mask generation in a custom design 
environment is that of symbolic design. So this chapter is about 
symbolic design and how it generates a mask. Included are 
discussions of design capture, circuit description languages, 
compaction and technology encapsulation all in the context of 
the symbolic design environment. General overviews are not 
given in most cases. Instead, a feel for this technology is given 
through specific examples of a system most familiar to the 
author. 
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INTRODUCTION 

Outline of chapter 

Advantages of symbolic design discusses the rationale and philosophy 
behind this method of designing integrated circuits. The goal in the 
end, of course, is an economic one: decreasing time, increasing pro
ductivity are ways to decrease cost. But it may also allow certain 
designs to be done that were totally infeasible otherwise and it may 
allow individuals to do a design that would not have done designs 
otherwise. 

Mechanisms for symbolic design outlines the steps in the design pro
cess under this methodology. Many of the steps are the same as when 
the design is directly laid out using a "rectangle pusher" but at each 
step there are differences that are significant. 

ABeD - a symbolic-level hardware description language is 
a description that gets into some detail of a particular hardware de
scription language that is used for symbolic design. It has some very 
important features that recommend it as a hardware description lan
guage and it is no small part of the overall improvement in the design 
process afforded by such a symbolic design system. 

Design capture in a symbolic design environment is another 
important part of the symbolic design process. The symbiosis between 
design capture and the hardware description language (and its circuit 
database role) are keys to efficient symbolic design. The user interface 
is fundamentally different from that used in a "rect.angle pusher." The 
description of this tools function gets quite detailed in order to fully 
explain the user interface. 
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Compaction - the key to symbolic design recognizes that without ef
fective compaction the rest is quite academic and the entire system 
becomes nothing more than a toy. Some comparisons of different com
paction strategies is made since this is still a very hot area of research 
and many schemes have been proposed in the literature. 

Technology encapsulation is the separating out from the application 
tools the information about the technology and process that will be 
used to fabricate the design under consideration. It is important to 
make this separation so that software remains immune to changes in 
technology. But it is equally important so that one can really take 
advantage of the inherent "delayed binding" that takes place in a sym
bolic design environment. I refer to the fact that a design need not 
specify the exact rules and models of the target process until the ma-

lent the design is generated at the mask level via compaction. And 
,he same design can be re-compacted (and re-fabricated) on different 
fabrication lines at will. 

Software engineering of a production CAD system discusses 
interesting insights into software engineering issues that come from 
the development of a production CAD system. The purpose of mak
ing these observations is to benefit others attempting the same thing. 

Why is better CAD important? 

Its all a matter of economics in the final analysis. Increasing productivity 
is important because design time is a critical issue in the production of 
all products and can make or break a product and a company.. Expert 
designers are a rare commodity and they are expensive so if they can get 
more design done in less time that is money saved. Symbolic design increases 
productivity because, 1) a designer works with an abstraction of a physical 
layout and so manipulates one symbol that represents many he would have 
manipulated in the strictly mask layout environment, and 2) compaction 
generating design-rule error free layouts means no worry about the difficult 
and complex details of design rules during the layout phase. 

All well and good but why do layout by hand at all, symbolic or mask? 
Why not just do standard cell layout or even better, just do gate array 
designs? Certainly these are very important design strategies where ap
propriate but there are times when they aren't appropriate. Even without 
symbolic layout many design groups have favored the performance-area-
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flexibility versus design-time tradeoff in favor of custom layout. As alluded 
to, their reasons are usually due to higher performance, higher silicon den
sity, architectural flexibility or combinations of all three. With symbolic 
layout, the down side of this tradeoff, design-time, is lessened so it is easier 
to justify going with full custom. Furthermore, even in standard cell en
vironments, symbolic design is making inroads as people see the enormous 
benefits of symbolic standard cell libraries compacted to mask cells at each 
technology change. The economic issue with full custom design is simply 
that success of a design may require performance out of the range of any 
other method; or, area is an all important factor since it gets very expensive 
to have more boards in a system; or, the project requires some technology 
or architectural feature not possible any other way. 

Performance, silicon area, and archit.ectural constraint are also inti
mately related to changes made in the fundamental technology of imple
mentation as well. Delayed binding, that is, an independence from complete 
specification of technology and process parameters until late in the design 
process, allmvs a design to fully exploit any technology advances. And even 
once a design is "completed", since the actual compaction to mask happens 
very late in the design process, it can be re-implemented very easily as tech
nology of fabrication advances. The economic advantages inherent in this 
have already been shown. 

Why is it hard? 

Why is it hard? is a question about which much could be said but I will 
suffice it by only making a few points as way of an answer. First, Computer
Aided Design software, since it is solving difficult algorithmic problems while 
continuously interacting with the designer who must perform a wide variety 
of design tasks, is large and complex. It is difficult to design the best possible 
user interface for such a wide variety of tasks. The users of such a system 
are very demanding - they have used software before and they expect to 
get a significant improvement out of a tool they take the time to learn. 
They are sophisticated users and expect the software to be easy to use, well 
documented, perform perfectly and do so efficiently. But, most of all, they 
expect this new tool to be a substational improvement over their last tool. 

Second, consistency is important within this system and between this 
system and those with which it must integrate. For it is clearly unwise to 
consider ones own system to be the only one a design team will use. This is 
not just consistency of user interface but also of compatible circuit database 
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formats, command inputs, and the like. 
Third, the basic VLSI algorithms are difficult and much more work is 

needed in placement, routing and compaction among other algorithms. 
Finally, in spite of the very strong motivation to provide higher-level 

design support, the goal of providing tools to do so remains quite elusive. 
This is partly due to the fact that the design process itself is still not well 
understood. 

Where do we stand? 

With respect to symbolic CAD, where do we stand? A great deal of experi
ence has been gained in the CAD field in general with interactive graphics 
for design capture. While the issue of improved user interfaces is certainly 
not closed each new interactive CAD tool seems to be very similar to existing 
ones which may indicate a maturing in this area. 

In the area of compaction, key to symbolic design as already stated, sev
eral different algorithms have been proposed and implemented. The single 
most important requirement for a compactor is that it make area efficient 
layouts. It is assumed that once the compactor is debugged it does not 
produce design-rule errors. The difficulty the implementors of compactors 
have had is il) keeping the implementation as clean as the basic algorithms 
because these programs have a real tendency to get filled with special cases. 
Until compactors regularly get very close to hand design silicon area (cur
rently the best ones get to within 20% on average if no pathologies exist) 
there will be a lot of motivation to improve them. Hierarchical compaction 
is also being done but not very satisfactorily. 

A stated goal of every CAD system should be to have it smoothly in
tegrate with existing CAD tools. But this is far from the case and proves 
to be very difficult. As is the case in many areas, lack of standardization 
is a serious impediment {e.g. home video cassette formats}. The lack of 
standardization in CAD means lots of translators must be used to get two 
systems to communicate. 

The design process is not a pure and simple oneway path - it has skips, 
gaps and loops all during the process. This is difficult to deal with and 
leads one to want effective common representations for circuits and to allow 
mixed representations. Unfortunately it is not well-understood how to do 
this and this remains a goal of most CAD development efforts. 

Finally, it should be pointed out that we are just taking baby steps. We 
would like to follow the analogy of software high-level language compilers 
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and provide such effective high-level silicon compilers that design at the 
mask level would no more be done than programming directly in assembly 
or machine language. 
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ADVANTAGES 

The symbolic virtual-grid design methodology presents significant advan
tages over other methods for custom VLSI design. This methodology has fa
cilitated development of a single integrated system which provides designers 
several important features: higher productivity; technology independence 
for a wide range of MOS processes (CMOS, nMOS, SOl); scale-independent 
circuit designs; an open architecture that simplifies integration with exist
ing tools and creation of new tools; fast simulation to layout loop; and fully 
automatic mask-generation and chip assembly. 

Higher productivity is offered by this approach due to a designers manip
ulating abstractions of circuit elements as opposed to the mask component 
rectangles. This is referred to as object-oriented editing and it allows the de
signer to think in terms of the circuit being designed instead of doing mental 
synthesis of circuit into rectangles continuously. Not having to worry about 
design rules enhances the power of this abstraction and so only relative po
sitioning of circuit objects concerns the designer. It has been shown in other 
domains such as software, that a powerful abstraction such as this allows 
designers to rip-up and re-do erroneous circuit fragments as opposed to the 
dangerous practice of patching. Thus not only is productivity is enhanced 
but quality as well since designers now can take a more global view of their 
design. 

Technology independence is a most important advantage. It means the 
same tool works over a broad range of MOS technologies and, within a spe
cific MOS technology, a given design tracks changes in the design (or ground) 
rules without redesign. Tools are configured at run-time to a technology and 
a specific process within that technology so the full capabilities, but no more 
than the available capability, are made available to the designer in a natural 
way. 

Whereas directly laid out mask designs do not scale (wire widths scale 
at a different rate than contact cuts, for example) symbolic virtual-grid de
signs scale perfectly. In an era of "planned obsolescence" this approach 
provides delayed obsolescence of designs. It also provides another economic 
benefit: second sourcing even on dis-similar process lines. Correctness-by
construction is promoted by eliminating the mask layout step. The com
pactor generates the mask layout, therefore, designers do not have to be 
aware of the design rules in order to create an error-free layout. Technolo
gies with many layers get prohibitively complex to design at the mask level 
(even CMOS is significantly more complex than nMOS) but they are equiva-
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lent in the ,symbolic virtual-grid environment. Process. lines frequently must 
simplify their ground rules at the cost of less than optimal layouts and/or 
performance for the sake of the designers working at the mask level - this 
is no longer necessary. 

The symbolic virtual-grid approach to CAD has facilitated an open ar
chitecture and very natural interfaces. Clearly defined modules have well
specified inputs and outputs so integration with other systems is greatly 
simplified. Once a base-line system is established, many tools can be added 
on, taking advantage of this methodology. For example, structure gener
ators, special-purpose routers, or silicon compilers have hidden from them 
the details of design rules so their developers can concentrate only on the 
hard algorithms of the problem. Research and development of modules can 
continue and individual modules can easily be replaced without disrupting 
the rest of the system. 

Quick estimated timing simulation of the symbolic layout provides a 
very fast simulation to layout loop. Designers are then afforded the ability 
to explore the function and performance of a circuit while remaining at 
the symbolic level. This greatly improves a designers productivity. Once 
compaction is done the details of the circuit are known to allow detailed 
timing simulation such as SPICE. 

Mask layouts are generated automatically by a compactor. The layouts 
produced are guaranteed to be design-rule error free. Rules for compaction 
are extracted from a table which is easily modified as design rules change. 
Hierarchical compaction preserves the advantages of hierarchical designs by 
only compacting members of arrays of common structures once. Chips are 
composed oflarge blocks of compacted structures routed together and routed 
to pads. 
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MECHANISMS 

Symbolic, virtual-grid layout 

Symbolic, virtual-grid layout can be viewed as an evolutionary refinement 
of mask layout. In mask layout, the designer specifies the circuit by drawing 
a set of polygons that indicate how to create a mask for each layer in the 
fabrication process. At the mask level, the basic elements of circuit design 
(such as transistors or contact cuts) are composite structures. Each transis
tor or contact cut is composed of polygons on several layers that are sized 
and positioned according to the design rules of the target fabrication pro
cess. In mask layout, each time one of these composite structures is needed, 
it is re-created from the component polygons. Symbolic layout provides a 
solution that eliminates this tedious and error-prone task. 

With symbolic layout, symbols are provided to represent the most com
mon structures. The designer organizes the symbols into a layout and the 
computer translates them into the proper mask representation. In its sim
plest form, the translation is done by replacing the symbol with a fixed 
collection of polygons that implement the desired structure. (Many mask 
layout systems provide translation with a "macro" feature.) A more flexible 
approach to symbol translation is to associate parameters with the symbols 
and to have a program use the parameters for generating a broad range of 
structures. For example, the symbol for a transistor might be accompanied 
by two parameters that specify the width and length of the gate region. 
The transistor generation program would then use the parameters to size 
the transistor when constructing the mask layout. 

Like symbolic design, virtual-grid layout is an extension of mask design. 
In mask design, the layout is usually created on a grid. The spacing of the 
grid represents some "real" spacing (for example, 3J.l) and the designer uses 
the grid as an aid to establish correct spacing between objects. The function 
of the virtual grid is the same as for a "real" grid except that the spacing 
between grid lines does not represent a fixed physical spacing. A symbol's 
placement captures only the relative geometry of the circuit. (For example, 
transistor A is above and to the right of transistor B.) The actual spacing 
between two adjacent grid lines is determined by the compactor program. 
The compactor examines the objects on adjacent grid lines and, based on 
the design rules, determines the correct spacing between the grid lines. This 
approach results in an appropriate division of labor - the designer makes 
the global decisions about the circuit topology and the computer performs 
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the detailed geometric construction. 

Layout verification 

A symbolic design system must provide tools for verifying symbolic virtual
grid layouts. Two such tools are: a symbolic level circuit extractor and an 
interactive circuit simulator. Design verification directly from the symbolic, 
virtual-grid layout rather than from the mask layout offers the advantage of 
fast response. This quick response allows the designer to perform extensive 
circuit debugging early in the layout process. 

The symbolic level circuit extraction is performed by a static semantic 
circuit checker. This tool references the technology database to calculate the 
electrical parameters associated with each circuit element. The calculated 
values are, by necessity, estimates since the mask generation has not been 
performed. However, these estimates are relatively accurate for all of the 
primitives except wires, which are directly dependent on the final size of the 
layout. Reasonable estimates of wire length can be obtained by assuming 
that the spacing between the virtual grid lines will average out over the 
design. This average grid spacing parameter is coded in the technology 
database and can be tuned by the designer according to the technology 
being used and the performance of the compactor. The extraction process 
is relatively fast since the extractor does not have to go through the costly 
process of inferring the circuit structure from the mask geometry. 

Circuit simulation is performed by a circuit-level timing simulator de
signed to work from symbolic circuit descriptions. The simulator has been 
designed for MaS simulations and can be used with circuits as large as sev
eral thousand devices. The speed of this simulator results from its selection 
of models and internal structure. Only MOSFET models are used and it 
precalculates tables of simulation values before beginning a simulation. Be
cause of its simpler modeling and use of symbolic, virtual-grid extraction, 
such a simulator does not provide the accuracy of a full network analysis 
program. However, it fills a gap between such programs and logic level 
simulators. It is faster than a detailed circuit simulator but still accurate 
enough to provide the waveform information necessary for debugging the 
analog behavior of a circuit. 

Mask generation 

The creation of a mask description from a symbolic, virtual-grid layout is 
accomplished by a hierarchical compactor. The compactor reads symbolic 
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circuit design descriptions and generates a rectangle-based mask descrip
tion of the circuit. The compactor operates in two distinct steps: leaf cell 
compaction and hierarchical compaction. 

Leaf cell compaction 

Leaf cells contain only circuit primitives: wires, devices, contacts and pins 
arrayed on the virtual grid. The compactor translates the symbols into 
their mask representation and then spaces them according to the design 
rules. Much of the difficulty of compaction arises because these two steps 
are not independent. In particular, the placement of wires and contacts on 
rigid structures (such as transistors) is dependent on the location of adjacent 
circuit elements. The compactor solves this problem by augmenting rigid 
structures with flexible wires that the compactor may extend when making 
connections. These wires "decouple" the rigid structures from the rest of 
the layout and allow the compactor to treat the mask-spacing problem in a 
uniform manner. 

Mask spacing is determined during two passes (one vertical and one 
horizontal) across the cell. During each pass the compactor positions the 
grid lines relative to a frontier that represents the previously compacted 
portion of the cell. The compactor partitions each grid line into groups 
of grid points such that all points in a group are connected by devices or 
wires. It then determines the minimum spacing possible between each group 
and the frontier. Once the spacing has been established for each group, the 
grid line is positioned and offsets from the grid line are assigned for each 
group. These offsets in effect "break" grid lines and allow the groups to be 
positioned with minimum spacing from the frontier. Without sacrificing the 
speed and predictability of virtual-grid compaction, this strategy provides a 
significant area improvement over previous virtual-grid compactors. 

There are two additional constraints imposed on the compaction process 
that enable the hierarchical portion of the compactor to automatically pitch
match cells and that improve the compactor's predictability when used for 
leaf-cell generation. The first is that a grid line is not allowed to move 
past another grid line during compaction. This constraint prevents the 
compactor from interlocking adjacent grid lines which would prevent cells 
from stretching during pitch-matching. The second is that the beginning 
and ending group on a grid line are positioned at the same location. This 
constraint allows the designer to lock the position of signal lines together 
and insure that a cell will pitch match to itself. Although this constraint is 
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not important if the design is entirely symbolic, it is valuable if the system 
is being used to generate leaf cells for use with mask-layout tools. 

Hierarchical compaction 

The hierarchical portion of the compactor compresses the hierarchy into a 
set of cells that completely cover the circuit layout. For each distinct leaf cell, 
the compactor analyzes all of the environments in which the cell occurs and 
generates a "worst-case" version of the cell. The compactor then performs 
a leaf-cell compaction and obtains a mask cell that can be placed in any 
of the original environments without causing design-rule errors. Once all of 
the leaf cells have been compacted, the mask cells are assembled according 
to the original layout. 

The main problem in the assembly phase is pitch matching the adjacent 
cells. Since each leaf cell is compacted separately, there may be wires on 
abutting cell boundaries that matched on the virtual grid but are offset now 
that the physical spacing has been established. The compactor, however, 
retains information about the original virtual-grid layout so it can stretch 
the cells by the appropriate amount to insure a match. The cells cannot be 
compressed to achieve a match because the leaf-cell compactor has already 
produced the smallest layout possible for each cell. The final output of the 
compactor is a mask description of the circuit in terms of rectangles and 
layers. 

Mask Layout 

The generation of a mask description by the compactor is the last step in 
the symbolic portion of the system and is the first step in the mask portion. 
A symbolic design system is intended to function as a front end to a mask
layout system. 

In many cases it is possible to design an entire chip with the system and 
remain independent of mask-layout tools; however, the addition of I/O pads 
and final routing must be done at the mask level. A chip assembler (or cell 
composition system) is used to combine mask-level blocks and I/O pads into 
a complete chip. 

Technology database overview 

Underlying the entire symbolic design system is a technology encapsulation 
and database referred to as the Master Technology File (MTF). The sym-
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bolic design system self-configures to a particular process technology and 
environment by consulting the MTF. The MTF contains all of the system's 
knowledge of circuit primitives. It controls their representation by defining 
the names of device types and process layers. Also, it controls the appear
ance of the circuit display by defining the symbol shapes, colors, and stipple 
patterns. It controls the rendering of circuit primitives in mask-layout form 
by providing symbol-to-mask translation rules. Finally, it contains infor
mation about the primitives' electrical properties, capacitances, sizing, and 
"best," "worst," and "average" case transistor models. 
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ABeD 

This section describes in some detail the ABCD language. ABCD is the 
symbolic-level circuit description language used in the VIVID System - the 
CAD system developed at the Microelectronics Center of North Carolina. 
The VIVID System is the fruits ofresearch into symbolic, virtual-grid CAD 
systems and is becoming widely available as a foundation for both design 
work and further software work as well. 

Introduction 

Taxonomy of languages 

Hardware description languages range from very high-level functional and 
behavioral descriptions like ISPS down to the very low-level physical mask 
descriptions like CIF and Calma Stream. ABCD is near the lower end of 
this scale being a layout language. Sticks is a similar language but it is lower 
still since it is just an abstraction of mask rectangles. ABCD is more than 
that since it contains information about circuit primitives like transistors 
and wires. Additionally, ABCD has a lot in common with higher languages 
that describe circuits at the net-work level since ABCD contains information 
about nets. 

Interaction with rest of system 

ABCD is the interchange language and the database format for all the 
symbolic-level tools. It is created by generators, the interactive design cap
ture tools, or by simple text editors. It is read by the interactiave design 
capture tools, the static circuit semantic checker, the place and route tools, 
and the compactor. Figure 1 shows the relationship between ABCD and 
the rest of the symbolic VLSI design system known as VIVID. ABCD as 
implemented in VIVID is both a language and a library of support routines 
to manipulate descriptions of circuits in the language. It is a parser for the 
language, it contains routines to generate legal statements in the language, 
it defines the data structure to be used internally by all tools as well as 
access routines to interact with those data structures (i.e. it is a database). 
It is integrated into all symbolic-level tools in the system so all such tools 
share the same code and thereby avoid any inconsistencies. 
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Figure 1: Block diagram showing ABCD In a symbolic CAD system 
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Major features 

ABCD, besides being the basis for all symbolic-level circuit descriptions, has 
a number of other noteworthy features. Each primitive language statement 
provides for extensions which allow the language to adapt to changes in CAD 
requirements over time. These extensions are not handled directly by any 
language routines but are passed along into and out of the data structure 
intact so that tools that need information contained in these extensions can 
use it and tools that don't can ignore it. The language parser that is part of 
the ABCD support library provides for incremental or hierarchical parsing 
which allow a tool to parse in only parts of a hierarchical design. This is a 
vast improvement over strictly depth-first parsing which required every last 
leaf cell in a design be parsed before any manipulation of the design could 
begin. For the first time, a symbolic-level language is providing support 
for analog circuit primitives: the resistor and capacitor. These objects can 
be freely intermixed in symbolic designs allowing both pure analog designs 
and hybrid designs to be done symbolically. Primitives that have electrical 
significance are considered to be part of a net and the information about 
nets is maintained in the ABCD data structures allowing tools to maintain 
net-lists. This is a great aid to correctness-by-construction since it helps a 
designer know of electrical net errors early in the design process. 

Notational conventions 

Conventions used to describe the ABCD language follow. 

Identifiers. Identifiers are used to name pins, contacts, layers, devices 
and instances. Identifiers are composed with the alphabetic and numeric 
characters, the underscore sign (_) and the hyphen (-) and are restricted 
in length to 32 characters. An identifier must begin with an alphabetic 
character. Identifiers are case-sensitive. 

Comments. A comment is any string that begins with a number sign (#) 
and ends with a carriage return. 

Keywords. A set of words is reserved explicitly for use in the ABCD 
language and cannot be used as identifiers. Keywords are composed of the 
lowercase alphabetic characters. They include: 
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begin 
end 
device 
wire 
contact 
pin 
label 
group 
instance 
capacitor 
resistor 
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Continuation. Most statements in the ABeD language begin and end on 
the same line. A continuation character (\) allows long statements to be 
continued on succeeding lines. 
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Backus-Naur form. Conventions used to describe ABCD syntax in Backus
Naur form are listed in the following table. 

BNF Not.ation 

Convention Example ! 

Reserved keywords are shown in bold low-
wne 
device 

ercase characters. Keywords must be 
instance 

writt.en exactly as shown in the BNF de-
scription 

Variables are represent.ed in italicized low-
cname 
units I 

ercase characters. 
width 

I 

Values are represent.ed in bold lowercase 
n-type 

characters, which cannot. be expanded. 
poly 
xoff 

, 
I [J 

I 
[ num ) I 
[ pname : ) I 

t 

I 
Brackets enclose an optional item. I 

I I 

I A vertical bar separates 
auto I vss I vdd 

options, one of 
which must be selected. 
() I 
Parentheses group choices 

( num , str) 

{} 

I Braces indicate zero or more repetitions 
{ ( width I length I orien ) } 

I of the enclosed expression 

Text and graphics 

An important design constraint on the ABCD language was that it be com
patible with interactive graphic design capture techniques. This leads us to 
the new phrase What you see is what we have. There is a one-to-one corre
spondence between primitives in the language and graphical objects as seen 
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(a) 

# 
I Cmos invef1er 
I 
belIin inwlter bOO. ~ (0,0.4.6) 
I Establish 1/0 klcations 

vrJr1_w: pin alum (0.6) 
vrJr1.....e : pin alum (4.6) 
vss_ w: pin alum (0,0) 
vss_e: pin alum (4,0) 
In : pin poly (0,3) 
out : pin alum (4,3) 

, Width 2 power and ground rails 
wire alum 10;2 (VI1d_w) (VI1d.....e) 
wire alum w~2 (vss_ w) (vss_ e) 

, Transistors 
pullup: clevice p_type (2.4) w - 2 
pulldown: device "_type (2.2) 

, Gate conoec1ion 
wire poly (pultup.g) (pultdown.g) 
wire poly (pullup .g.in) (in) 

I Connect soorteS to power and groond 
wire alum (PUltup .s)(putlup.S. VI1d_w) 
oontac1 md (pultup .s) 
wire alum (pultdown .s)(pultdown.S, vss_w) 
OOOtac1 md (pultdown .s) 

, Conned drains 
wire alum 
oontac1 md 
contac1 md 
wire 

end inverter 
alum 

(pultup.d) (putldown.d) 
(PUltup.d) 
(pulldown.d) 
(pultup.r1.out)(out) 

5 

3 in 1I.l •• 1 

-1 
-2 -1 

(b) 

~ metat 

II po/ysllicon 

o lHlilfusion 

o p-iliftus"n 

• contact cut 

III pin (poly) 

: grid 
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6 

Figure 2: ABCD description of CMOS invertor (a); its symbolic layout (b) 

through the symbolic editor. However, the language needed to be a good 
target for generators and silicon compilers so the language is also very flexi
ble when represented textually. Primitives and locations can be named and 
other primitives can be placed relative to these making for self-documenting 
descriptions. Design modification can be done with the interactive graphics 
tools or standard text editors as suits the designer. Figure 2 shows the text 
and graphics for a small design cell. 

Language Elements 

Extensions. Each primitive statement in the language can contain user 
defined fields of the form x = y and programs can be written to interro
gate, modify, create, and delete these extensions in the internal (parsed) 
ABCD structures. The ABCD parser places the information for all unfa
miliar fields of this form into the extension data structure attached to that 
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ABeD primitive. 

BEGIN and END declarations. Each ABeD cell description, not in
cluding comments, must begin with a declaration statement. This statement 
is identified by the keyword begin. The final statement in a cell description 
marks the end with the end keyword. 

begin cellname t.ech elements depth [exten] bbox 

cellname 
t.ech 
elements 
depth 
exten 
bbox 

cellname 
tech 

elements 

depth 

bbox 

.. - iden tifier 

.. - tech=(nmos I cmos) 

.. - elements= num 

.. - depth= num 

.. - iden tifier=identifier [exten] 

.. - bbox=(x1,yl,x2,y2) 

is the name of this cell 
is a parameter specifying the technology to be used 
for the cell. All cells within a design must use the 
same technology. 

tells how many primitives are in this cell. 

indicated how many levels of hierarchy are below this 
cell. -1 is used to indicate unknown and 0 means this 
cell is a leaf cell. 
is a parameter indicating the size of the cell's bound
ing box. A bounding box is specified by the coordi
nates of diagonally opposite corners (usually lower
left and upper-right) of the area covered by this cell. 

Here is an example begin line of a leaf cell: 

begin regl tech=cmos elements=16 depth=O bbox(O.O.10.8) 

Transistors 

ABeD transistors help to highlight the differences between mask descrip
tions and symbolic, virtual-grid descriptions. Although the transistor is 
graphically represented as a rectangular box with fixed connection points, 
in reality, this box represents a more complex physical and structural entity. 
If, for example, the design is fabricated in the CMOS technology, the box of 
diffusion material is surrounded by tubs and wells, which are also connected 
to other elements. ABCD models your knowledge of transistors by storing 
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technology-dependent details separately from the ABeD file and using them 
only when generating actual layout. 

[devicename:] device dtype [exten] location dmods 

devicename .. - identifier 
dtype .. - Any MTF supported device type 

enh I dep I load or similar in nMOS 
n-type I p-type or similar in CMOS 

location .. - See page 32 
exten .. - identifier=identifier [exten] 
devicenet .. - { snet I gnet I dnet } 
snet .. - snet= identifier 
gnet .. - { gnet= identifier I net= identifier} 
dnet .. - dnet= identifier 
dmods .. - { width I length I orien } 
width .. - w== (num [ . 015]) 
length .. - 1== ( num [ . 015]) 
onen .. - n I s I e I w 

ne I nw I se I sw I en I es I wn I ws 

dname is the name by which the device is symbolically ref
erenced. 

dmods represents any number (including zero); they can be 
specified in any order. Those not specified assume the 
default values, which are given in the master technol
ogy file database. 

width specifies the width of the transistor. If an integer 
is specified, it is multiplied by a predefined default 
width. If a fixed-point number is given, it specifies 
the device width expressed as a factor by which to 
multiply the default-size transistor. 

length specifies the length of the transistor. If an integer 
is specified, it is multiplied by a predefined default 
length. If a fixed-point number is given, it specifies 
the device length expressed as a factor by which to 
multiply the default-size transistor. 

OTten specifies the orientation with respect to the drain of 
the transistor as either north, south, east, or west. 
For transistors that are not symmetrical, all eight ori
entations are available. 



168 VLSI CAD Tools and Applications 

As device width increases, more connection points to the source and 
drain are needed for reduction of parasitic resistance. When points are 
connected to a gate, the connection is always made to the center of the 
device. 

For example, an ABCD description of a double-width device is given: 

device n-type (x.y) w=2 

The resulting double-width device, as compared with a single-width and 
triple-width device, is shown as follows: 

Single, Double, and Triple-Width Devices 

.............................. " .... " .......... . -.- ........ .. -_ ........................ . 

:. .-.- ....... : ....... ,., .~ ., .... " ... ; " ... , .... " : ....... -- .. :.. .... . 

i ~il;\ ~9!dll- 'I ·· 
1'·· .. ·'···'I···"'···'· t ·······'···~"···"'····1 ,····'·····1···""···'1···"'· : ",'. , ... ,,·.·.·1 . 
...... , .. -. : : ---- .......... ; ........... ;, .... ,., ... .; , .......... ,: ........ , ........ . 

width 1 width 2 width 3 

In this illustration, the gate connections are shown as rectangles filled 
with a stipple pattern, and the drain and source connections are shown as 
black squares. Connections to a device can be specified symbolically using a 
dot notation signifying connections to the gate, source, or drain of the device. 
In MOS, the drain and source nodes of a transistor depend on the relative 
voltages at each end of the device. The ABCD language uses these terms to 
identify locations of device parts rather than to specify electrical behavior. 
For example, if a device is named dl, then dl.g denotes the gate, dl.8 is 
the source, and dl. d is the drain. Furthermore, for non-unit-width devices 
having more than one connection point, a number can be appended to the 
name, such as dl.dll/ This number, which can be positive or negative, is 
interpreted as an offset from the default connection point in the direction 
perpendicular to the source-drain axis. 

The number of device connection points depends on the device's width; 
the number of gate connections, however, is fixed at the value of 1. If the 
width is odd, the number of source and drain connections is equal to the 
width of the device; if the width is even, the number of source and drain 
connections is equal to a value one less than the width of the device. The 
length of a device determines the location of the source and drain connections 
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relative to the gate. Normally, these locations are 1 virtual-grid unit apart 
but this distance becomes greater for longer devices. 

You do not have to specify device-sizing information; defaults are pro
vided. Defaults, which are technology-dependent, are read from a master 
technology file when the cell is processed. Device sizes should be dependent 
on the application and topology for a specific design. 

Wires 

The wire keyword is used to specify connections of circuit elements within 
cells and it also performs the composition function needed for cell intercon
nection. When wires are specified, a layer, a width, and a list of points are 
needed. 

wire layer width network [exten] loclist 

layer 

width 
network 
exten 
loclist 

any MTF supported layer 
e.g. metal ill I poly I ndiff I pdiff 
w={num [.015] 
net=identifier 
identifier=identifier [exten] 
location { locat.ion } 

layer is the fabrication material specification for the wire. 
There is no default layer for wires. The layer must be 
explicitly named in each wire statement. 

width is the wire width specification. The width remains 
constant for the entire length of the wire. There is 
a default width associated with each technology and 
layer. The expression, w=2, means that the default 
width is doubled. If a number containing a decimal 
point is used, the default width is multiplied by this 
factor. 

network is the electrical net specification for this wire. Electri
cal connectivity is maintained in ABeD descriptions. 

loclist is the list of points through which the wire travels. 

An example of a wire statement follows: 

wire metal (0,4) (12,4) 
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This wire statement defines a default-width wire in the metal layer be
tween virtual-grid points (0,4) and (12,4). Additional points can be specified 
by adding them to the end of the list. The width can be changed by adding 
a width parameter. For example, the wire can be extended and widened 
using this statement. 

wire metal w=2 (0,4) (12,4) (12,0) 

Only perpendicular wire placements are supported in the ABeD language. 

Contacts 

If circuit elements are located on different layers, the contact statement is 
used to ensure electrical connection. 

rename:] contact contype [exten] location cmods 

cname 
contype 

location 
exten 
dmods 
orten 

xoff 
yoff 

identifier 
Any MTF supported contact type 
auto Ivia Ivss Ivdd or similar in CMOS 
auto I buried or similar in nMOS 
See page 32 
identifier=identifier [extenJ 
{ orien I xoff I yoff } 
n I s I e I w 
ne Inwlse Isw lenles Iwn Iws 
xoff= num 
yoff- num 
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cname is the name by which a contact is symbolically refer
enced. 

co.ntype specifies the contact type. The possible contact types 
include auto and body contacts, vss and vdd, in 
the CMOS technology. Legal contacts in the nMOS 
technology include auto and buried. The body con
tacts connect power and ground to their respective 
substrates. 

cmods represents a set of contact modifiers. 

orlen represents a set of orientations for non-square con
tacts. 

xoJJ is an offset is the amount of distance (in mask units) 
to leave between the location specified and the true 
center of the contact on the x coordinate. Offsets are 
useful for mask generation and they become effective 
during compaction. 

yoJJ is the same as xoiJ, except it is used on the y coordi
nate. 
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A simple example of a metal wire connected to the diffusion of a device 
with a metal-diffusion contact follows: 

x: device n-type (12,4) or=w 
cxs:ontactauto x.s 

wire metal cxs (11,0) 

The device named x is numerically positioned at grid location (12,4) with 
its drain pointing west (or left). A contact cxs is symbolically referenced to 
the source of device x. A metal wire is connected between contact cxs and 
numeric coordinate (11,12). If the transistor is moved, the contact and wire 
also move to track the transistor. 

Pins 

The pin keyword is used for several functions. It is the entry point to a cell 
since it is legal to connect a cell only through its pins. Pins also provide 
you with useful feedback when a cell is displayed since the names of pins 
usually reflect their functions. The pins, in essence, form the link between 
a conventional circuit diagram and its ABCD description. 
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[pname:] pin layer [ext.en] location [network] 

pname 
layer 

location 
exten 
network 

pname 

layer 

.. - identifier 

.. - any MTF supported layer 
e.g. metal m I poly I ndiff I pdiff 

.. - See page 32 

.. - identifier=identifier [exten] 
net=identifier 

is the name by which a pin is symbolically referenced. 

is the layer to which this pin should be considered 
electrically connected. There is no default layer for 
pins. The layer must be explicitly named in each pin 
statement. 

Pin names are composed of two parts that are separated by an under
score (_). These two-part names are used when physically distinct nodes are 
treated as the same electrical node. The pin statement specifies layers be
cause pins are always connected to one layer at their position. An example 
follows: 

vdd_w: pin metal (0,12) 
vdd_e: pin metal (20,12) 
vss_w: pin metal (0,0) 
vss_e: pin metal (20,0) 

Four pins on the metal layer identify two distinct electrical nodes for 
power and ground connections. Pins are important in symbolic bonding 
since initial connection descriptions are specified only in terms of transistor 
nodes and pins. 

Groups 

A group type name can be assigned to a circuit description, which precedes 
a begingroup and endgroup grouping, to facilitate the automated wire 
router in its routing and unrouting activities. Especially in cases where wires 
overlap, the group name can identify for the router only the specific wires 
to be affected by a route or unroute action. Furthermore, group names are 
helpful in identifying instances to be expanded or un expanded when they 
overlap in the grid work area. (Refer to the next section for further details.) 
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! begingroup [ext.en] gname 

I
I ... any number of ABeD primitives 
i exten .. - identifier=identifier [exten] 

gname identifier 

All devices specified in a circuit description are presumed to be In a 
group. Instances, however, are excluded from such a group. 

begingroup 
wIre 
wIre 
wIre 

type=rout.e wr123 
routed (i ,3) (12,4) 
metal (i,3) (12,4) 
poly (12,3) (12,4) 

con tactw to (12,3) 
endgroup wr123 

The group keywords surround the statements that describe a pseudo 
wire and its subsequent conversion to metal and polysilicon wires and a 
contact. 

Labels 

The label keyword allows you to assign a symbolic name to a location on 
the virtual grid to facilitate relative placement of other devices on the grid. 
Arbitrary text can be associated with this point to label a design as well. 

[lname:] labelltype [exten] lleft [uright] qstring I 

lname .. - identifier 
ltype .. type= ( error I point I info) 
exten .. - identifier=identifier [exten] 
Heft .. - location 
uleft .. location 
qstring .. - " any printable characters" 

lname is the name by which the labeled point is symbolically 
referenced. 

An empty cell could be given a desired area, such as in fioorplanning, 
by specifying labeled points at diagonally opposite corners with the label 
construct. An example follows: 



174 VLSI CAD Tools and Applications 

begin blankcell 
II: label type=point (0,0) 
ur:label type=point (12,20) 

end blankcell 

This example produces a cell with an area of 12 by 20 virtual-grid units. 

Instances 

An instance is an explicit arrangement of a cell at a specific virtual-grid 
location and orientation, possibly replicated into an array. The instance 
primitive gives ABCD its hierarchical structure. 

A typical design includes a set of leaf cells, which do not contain in
stances, and a set of composition cells, which contain instances. Composi
tion cells are used to "glue" together parts of the design. Composition cells 
can instantiate other composition cells and, consequently, the hierarchy can 
contain multiple levels. To replicate a cell into an array, you specify the rep
etition factor and the spacing between array elements. The array elements 
can be positioned into one of eight orientations as follows: 

tSE iSW ~EN ~WN 

rNE 1'NW ~ES ~WS 

The eight possible orientations are derived from the arrangement of two 
arrows within a bounding box. The longer arrow is the major axis; the 
shorter arrow intersecting the major axis the minor axis. The group of ori
entations is divided in half; the selections on the left side are more frequently 
used than those on the right. In the preceding figure, the default orientation, 
NE (major axis points north, minor axis points east), is in the lower-left 
position. The NW orientation is produced from mirroring the minor axis of 
the default. SW mirrors the major axis of NW and SE mirrors the minor 
axis of SW. 
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In the second group, ES, is produced by rotating the default in a 90-
degree clockwise direction. The remaining orientations in the second group 
are formed in an identical manner to the first group. 

[iname:] instance cname iplace imods [connect] 

Iname 
cname 
iplace 
corner 
exten 
imods 
reps 
dir 
space 
onen 
connect 
connections 

identifier 
identifier 
[corner = ] location 
III ulllr I ur 
identifier=identifier [exten] 
{reps I dir I space I orien} 
n= num 
dir= (h I v) 
space= num 
nelnwlse Isw lenles Iwn Iws 
connect ( connections) 
{ identifier: identifier [,connections] } 
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mame is the name by which the instance is symbolically ref-
erenced. 

cname is the name of the cell being instantiated. 

iplace specifies the placement of the instance. 

index allows the specification of a particular repetition of a 
cell within an instance that has a specified repetition 
factor. 

corner specifies one of the four corners of the bounding box 
of the instance to be the reference point for placement 
on the grid. 

imods represents the instance modifiers; those not specified 
presume the default values provided in rep, or, dir, or 
space. 

rep is a number that specifies the repetition factor; the 
default is 1. 

dir is the direction in which the cell is positioned when 
successive cells are arranged; its value is either hori
zontal or vertical. The default is horizontal. 

space specifies the number of virtual-grid units of space to 
leave between individual cells within an instance. Use 
of this field is discouraged in favor of separate instance 
calls. The default is zero (0). 

orzen specifies which of eight possible orientations is to be 
applied to the instance. The orientation is applied to 
each cell individually before replication. The default 
IS ne. 

connect specifies cell-to-cell connections to be made between 
the cell being instantiated and another that is abutted 
to this one. 

A leaf cell contained in file inv.ab has its lower-left corner at the virtual
grid point (0,0) and its upper-right corner at (4,8). Thus, the bounding box 
has these coordinates: (0,0,4,8). 

A composition cell that instantiates inv.ab uses this statement: 

cinvl: inst cinv 11=(0,0) or=ne 
connect(in:neta, out:netb, vdd:Vdd, vss:Groundnet) 

The composition cell invl, which instantiates the leaf cell inv, positions 
the lower-left corner of inv at coordinates (0,0) in the virtual grid. 
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At this point, the lower-right corner of cinvl is at location (4,0). The 
pins with names "in", "out", "vdd", and "vss" are said to be connected to 
the parent cells nets or pins "neta, netb, Vdd, Groundnet". 

A statement to place a second copy of cell inv into the composition cell 
invl so that the left edge of inv2 is shared with the right edge of invl. 
Note that the network which was specified as being connected to invl's 
output is now said to connect to inv2's input. Because these cells abut, this 
connection should be redundant. The connectivity verification programs will 
report any inconsistencies between this designer intention and the actual 
layout connectivity. In top down design, the inverter cell may not have been 
designed and the inconsistency may arise long after the connect statment 
was created. Inconsistency may also arise if an existing consistent inverter 
design is modified. 

cinv2: inst cinv ll=cinvl[lr] or=ne 
connect(in:netb, out:netc, vdd:Vdd, vss:Groundnet) 

The preceding two statements can be replaced by one statement: 

inst cinv 1l=(0,0) n=2 dir=h or=ne 
connect(in:neta, out:netc, vdd:Vdd, vss:Groundnet) 

Because the connection information is optional, this could also be: 

inst cinv 1l=(0,0) n=2 dir=h or=ne 

A lower-left corner point (11) refers to the corner of the entire block of 
instantiated cells. The repetition factor specifies the number of repetitions 
of the cell in the instance (n = 2), and a horizontal direction (dir=h) is 
specified. 

The orientation specification in an instance statement applies to each 
cell to be instantiated. There is no concept of rotation or mirroring about 
an arbitrary point or axis; individual cells are oriented as specified and then 
placed at a position according to the corner and direction declarations. 

In places other than the connection specification, one may wish to refer 
to pins inside an instance for symbolic placement purposes. In this case, the 
following form is used: 

instance_name [instanccindex] .pin..name 
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In a repeated instance, the index must be specified in the range 1 to n 
forn cells. In an instance of a single cell, the index can be omitted. 

A sample ABCD cell description - a CMOS shift register that instan
tiates two cells, inv and tgatel - follows: 

begin regl tech=cmos elements=16 depth=O bbox(O,O,1O,8) 
# a shift register composed of an inverter 
# whose outputs go through a transmission gate 
# controlled by phil. 

# 
# instances: 

# 
inverter: instance inv 1l=(O,O) or=ne 
tgate: instance tgatel ll=inverter[lr] or=ne 

# the register's pins; 

# 
vdd_w: pin metal inverter.vdd_w 
f2br~w: pin metal inverter .f2br_w 
flbLW: pin metal inverter.f1 bLW 
m: pin metalinverter.in 
f2_w: pin metal inverter.f2_w 
fLw: pin metal inverter.fLw 
vss_w: pin metal inverter.vss_w 

vdd_e: pin metal tgate. vdd_e 
f2bLe: pin metal tgate.f2br_e 
flbLe: pin metal tgate.flbLe 
out: pin metal tgate.out 
f2_e: pin metal tgate.f2_e 
fLe: pin metal tgate.fLe 
vss_e: pin metal tgate.vss_e 

end regl 

This notation facilitates relative placement of instances, which illustrates 
another application of symbolic bonding and the textual design of circuit 
descriptions. It is also a powerful mechanism when used in a floorplanner. 
When any cell is modified in a way that changes its area, symbolic bonding 
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automatically implements the change throughout the circuit by shifting all 
symbolically placed instances to the right and up. 

In the above example, the bbox mayor may not be correct since it 
depends upon the size of the two instantiated cells. In general, these numbers 
are used to facilitate top-down design but are recomputed whenever a full 
design is parsed and analyzed. 

Symbolic Referencing 

Each primitive in the ABeD language requires placement information to 
determine its location in the virtual grid. The location parameter contains 
both symbolic and numeric specifications. Symbolic specification refers to 
the placement ofa primitive on the virtual grid, relative to another primitive. 
You can place two primitives at the same location or on the same horizontal 
or vertical grid line. Any primitive that is referenced symbolically must be 
defined somewhere in the current cell; however, a primitive definition does 
not have to precede a reference to the primitive. 

location. .. - ( xval , yval ) 
symbol 

xval,yval .. - num 
symbol 
[ instname ] edge 

symbol .. - instname [index] pin_name 
instname [index] [corner] 
pinname 
labelname 
devicename [.(s I g I d) 1 [offset] 
contactname 

instname .. - identifier 
pinname .. - identifier 
labelname .. - identifier 
devicename .. - identifier 
contactname .. - identifier 
edge .. - .n I .s I .e I. w 

I.ne I.nw I.se I .sw 
offset .. - [num] 
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num,num is an ordered pair of values that specify a numerIc 
reference. 

symbol is a symbolic reference to a point, contact, or pin. It 
is a name given to a primitive in the current cell. It 
is a local symbol that must be unique only within the 
current cell. 

edge refers to the edge (for a single coordinate) or a corner 
(for an entire point) of the current cell. This will be 
used primarily for pins and wire ends which should 
always stay on the edge of the cell. The actual grid 
coordinates of this symbolic points are not computed 
until all other primitives have been located and the 
bounding box has been computed. 
For this reason, only point primitives (eg. NOT de
vices and instances) can be symbolically bonded to 
an edge and no other primitives should be bonded to 
a primitive that is bonded to an edge. 

exten allows you to specify a connection to the drain, 
source, or gate (the default) of a device. Additionally, 
on non-default width devices having more than one 
drain and source connection, an offset can be speci
fied relative to the center of the device. For example, 
tl.s[-l] specifies one grid space down from the default 
source connection point. 

An example of symbolic referencing follows: 

pI: 
dI: 

pm 
device 
wIre 

metal 
p-type 
metal 

contact auto 
contact auto 

(43,0) # (numeric,numeric) form 
w=3 (43,56) # (numeric,numeric) form 
(pI) (dI) # lsymbol form & devref form 
(dl.d) # devref (drain) form 
(dl.d[-I]) # devref (offset drain) form 

A metal pin named "pI" is positioned at numeric grid location (43,0). 
The drain of a P-type CMOS transistor, "dI", is positioned at location 
(43,56). The third line represents a metal wire connecting pin "pI" and 
the gate (by default) of device "dI". The contact statement specifies that a 
contact cut is symbolically connected to the center of drain "dI" using the 
specification "dl.d". Finally, the last contact cut is symbolically connected 
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to the drain of "dl" , offset one grid line down from the middle drain location 
using the specification "dl.d [-1]" . 

Parsing Strategies 

Parsing is the process of reading a clear text file in some language and trans
lating it into an internal form suitable for further processing by a computer 
program. Most circuit description languages are hierarchical meaning that 
complex objects are made by including one or more less complex objects 
in them. We use the terms "leaf cell" and "composition cell" to differen
tiate between cells that have nothing but circuit-level primitives in them 
(i.e. "leaf cells") and those that contain calls to other cells (i .e. "compo
sition cells"). \Vhen parsing a hierarchical design (one where the starting 
cell is a composition cell) several methods of parsing can be used. The most 
important issue to consider when comparing methods is user wait time. 

User wait-time. We must be concerned at all times with user wait-time 
because excessive wait-time will frustrate users and decrease their willingness 
to use the CAD tool. Users have usually got a preconceived notion of which 
tasks are difficult and which are not so they will wait some "reasonable" 
amount of time. If they are planning to do some small manipulation with 
an interactive tool on a very small, localized piece of the design then they 
do not view it as reasonable to have to wait for the parser to process every 
cell in the entire design. 

Recursive depth-first parsing. The most common strategy for parsing 
is recursive depth-first parsing. It is most intuitive and easiest to implement. 
The parser process statements it reads from the input file in order and when 
a call to a su bcell is found it process that statment by calling the parser 
recursively. The result is a depth-first expansion of the tree representing the 
hierarchical design. It results, however, in worst-case user wait-time. 

Hierarchical parsing. Another approach to parsing available with the 
ABCD parser is parsing of one level in the hierarchy at a time. This mini
mizes user-wait time (if the user wants to only modify a small piece of the 
design - if the user wants the entire design on hand the time to parse is 
identical to recursive depth-first parsing) and spreads the time of parsing 
out. 
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DESIGN CAPTURE 

Introduction 

This section is about interactive design capture for creating nd viewing 
ABCD designs. The particular tool we will explore is called ICE and like 
ABCD it is part of the VIVID Symbolic VLSI CAD System. 

Interactive design capture is the most convenient way to create and edit 
ABCD. The one-to-one mapping between ABCD primitives and circuit ob
jects that are represented as single graphical entities makes this straight 
forward. ABCD is a shared library used by ICE as it is by other parts of 
VIVID. Being a shared library makes it possible to implement shared mem
ory when two programs occupy the same address space and communicate 
via common ABCD access routines. 

ABCD is the circuit database format used throughout the system. ABCD 
primitives are indivisible objects th at are translated into graphical objects at 
plotting time. ICE provides atomic editing functions on the circuit objects 
not the constituent rectangles. ICE is fully hierarchical so it used the ABCD 
instance construct to build-up arbitrarily deeply nested composition cells. 

The editing paradigm, that is the model used to manipulate objects, is 
one of: set up the attributes of an object and then do something to that 
object. This paradigm works better in an object oriented setting than the 
paradigm of "painting" used frequently in mask-level rect.angle pushers. 

The virtual-grid is explicit in ICE - it is a visual grid on the graphics 
screen to simplify object placement during editing. The designer just used 
this grid to assist in correct placement of objects but to the user, the grid 
remains evenly spaced while using ICE even though compaction will make 
spacing between grid lines uneven. 

ICE is a technology independent and process independent tool. At run 
time a choice of MTF database configures ICE to the users choice of tech
nology and process. This includes color maps, names of process layers, types 
of transistors and contacts, etc. 

The normal method of use for ICE is to interactively create, edit and 
modify a design cell by cell. Cells already in libraries can be brought into 
a design. ICE can be used as a viewing tool to get hard copy of a design. 
In many cases, with semi-automatic generators such as routers and placers, 
ICE can be used to view and/or modify intermediate results. 

ICE performance is critical as it is for any highly interactive design cap
ture tool. This is especially true for parsing (already discussed in reference 
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to ABCD) and plotting. But users make their overall evaluation of design 
capture performance more on the "snappiness" of the buttons during normal 
editing - how long after a button is hit can another be hit. This requires 
some very special data structures and access methods that will be discussed 
later. 

Structure 

VIVID is logically divided into two major parts separated by the compactor: 
symbolic virtual grid on one side and mask-level on the other. ICE, as the 
principal means of manipulating ABCD, is the central figure in the symbolic 
virtual-grid domain. 

ICE uses almost every subroutine library contained in VIVID; ABCD 
is its library circuit data-base access routines, Z is the graphics library for 
device independent interactive graphics, MTF is the technology database 
library of access routines, and WOMBAT is the library of general-purpose 
(i.e. miscellaneous) routines. 

User Interface 

Screen usage is a critical issue for design capture tools. It needs to be clean 
and simple so it is pleasant to use but all the -information a user requires 
must be there. Even 25 inch screens with over 1 million pixels represent a 
resource that must be managed carefully. In ICE, the majority of the usable 
screen space is dedicated to active editing - it is the work area. Below that 
is status information and keyboard echo. To the right of that is a facsimile 
of what is on the work surface with a "you-are-here" indicator arrow. When 
the work area is zoomed in for high magnification the facsimile still shows 
where that is relative to the un-magnified view. The entire right-hand strip 
of the screen is dedicated to menus. A representation of this screen layout 
is shown in figure 3. 

Input is managed via a mouse or data tablet primarily. Hits on menus 
change the state of the editor, hits on the work surface cause editing func
tions to be invoked. The keyboard is used for controlling editor attributes 
and for scripts. Scripts are short hand commands for a series of longer com
mands like menu hits. Usually, users would define single keys to correspond 
to commonly needed more complex operations - 'd' to mean delete, 'pI' to 
mean width 1 p-type CMOS transistor, etc. Additionally, strokes also can 
map to these scripts. Strokes are user defined symbols "drawn" using the 
data tablet puck or mouse. The purpose of a stroke is to allow the user's 
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Figure 3: Screen layout for symbolic design capture 
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eyes to remain on the worksurface concentrating on the important infor
mation - the design. A stroke can be done anywhere on the work area 
without losing ones concentration. Finally, voice input is also an important 
offerring; again, it maps to a script. The voice recognizer matches a spoken 
word or short phrase to one already known about and if it makes the match 
correctly it sends the appropriate command sequence to ICE. 

Menus are an important aspect to the user interface of a design capture 
tool. They should be simple and clear but functional enough so that users 
are not always hitting menu items to get their function performed. Pull
down menus may be a poor choice in a CAD design capture tool as they 
are in many applications. Instead, the ICE menus use colors, groupings 
and meaningful icons to aid in quick comprehension while providing the 
necessary functions to minimize menu switching. 

The user's use of files is primarily those ABCD files containing the de
sign description on which slhe is working. Because VLSI designs do not 
nicely map onto hierarchical file structures provided by operating systems 
like UNIX, a flexible mapping scheme is needed that performs a more nat
ural mapping. A scheme was developed in VIVID to allow a user to specify 
mappings by file, by module, or by file type in an arbitrary way. 

Flow of control- how you get from point 'a' to point 'b' - in a design 
capture tool also has great impact on the user interface. Frequently traveled 
paths should be short while less frequently traveled paths can be longer. The 
most frequent complaint from users of such tools is about how clumsy it is 
to do certain functions. In ICE the functions to change the state of the 
editor (e.g. grid on or off) are always accessible via keyboard hits. Common 
editing functions are always available like delete, modify and insert. To get 
from inserting one primitive to any other primitive is only one menu hit. 
Contacts and wires are available from the same menu since they are usually 
placed simult.aneously. There is not separation between leaf cell editing and 
composition-cell editing but warnings are issued if hierarchy is mixed with 
circuit primitives in the same cell. 

Function 

This section describes how this symbolic virtual-grid design capture tool 
known as ICE functions. 

Editor attribute setting. An alphanumeric menu containing the list of 
all settable attributes and their current values can pop-up over the work area 



186 VLSI CAD Tools and Applications 

any time the user requests it. But without it being visible, the user can still 
at any time change these attributes. The list of attributes is shown in the fol
lowing table. 
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CMD 
af 
ap 
aw 

b 
cc 

cd 

db 

fm 

gs 

gt 

ib 

11 

ir 

is 

ld 

It 
pb 

pf 

rc 

sh 

wi 

wI 

z 

Attribute 
audio feedback 
active primitives 
ABeD warnings 

background 

command char 

current. dir 

debugging 

fill mode 

grid spacing 

grid type 

inst bonding 

inst identify 

inst resolve 

inst snap 

level display 

label text 
preserve bonds 

pin file 

Res usage 

shell name 

wire ins mode 

wire layers 

zoom factor 

Value type 
on / off 
list of prims 

on / off 
on / off 
char 

string (legal directory) 

list of debugging flags 

solid / outline 

1..n 

off / ticks / dots / full 

on / off 

cell / inst name 

on / off 

on / off 

1..n 

on / off 
on / off 

string (legal file name) 

on / off 

string (legal shell n arne) 

norm /orth 

mtf wire layer list 

2 .. n 
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Description 
on-click when button hit 
list of prims that will be plotted 

on=display ABeD warnings 

on=grey background; off=black 

: is normal character to preface 
"long" commands such as chang
ing these attributes 

the current. project directory 

all encoded debugging flag 

solid=objects will be drawn using 
filled rectangles 

grid lines drawn on every virt.ual 
grid line 

three types of grids can be drawn 
or none at all 
use symbolic referencing when 
floorplanning so that the f1oor
plan can expand 

cell=use cell names when display
ing instances 

on=resolve the symbolic referenc
ing between instances as each 
editing operation is made 

on=snap instances to their near
est neighbor for abutment 

display the entire design at level 
x in the hierarchy 

on=show the label text 
on= preserve the symbolic refer
ences when editing 

the name of the file where all the 
signal names exist 

on=invoke ReS source code con
trol when writing cells 

usu ally Ibinl sh or Ibin/ csh 

rubber-band wires or strictly or
thogonal 

displayable wire layers from MTF 
list 
the multiplicat.ion factor to use 
when zooming in and out· 



188 

Top-level functions. 
VIa keyboard hits. 

CMD Action 
A Save attributes 

D Delete & reparse 

F Figure subsystem 

G Get new active cell 
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A series of commands are also available at all times 
They are listed m the following table. 

Explanation 
Save the current state of all the au,ributes (shown above) 
so that the next time the program is run it will begin with 
these values 
Delete the current cell from memory and reparse it from its 
unchanged disk file to restore memory to that cell before 
any editing was done 

Enter the figure subsystem to produce pictures to be placed 
in documents like design specifications or reports 

Yet another way to bring a new cell into the system 

H Hard copy subsystem Get into a subsystem that allows the setting of a special 
set of display attributes for hard copy 

L 

W 

List cells in m em ory 

Write cell to disk 

Escape to shell 

Get a list of all the cells in the system with some statistics 
about. them 
Yet another way to write the current cell to disk 
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CONTROL menu. The top six items are icons for primitive menus: device for 
transistors, pin, wire/cut, label, analog (resistors and 
capacitors) and instance (for composition cells). When 
one of these items is selected the large menu resting on 
top of this one changes to be the correct primitive menu. 

.- · ... ,....~nT 

ImN p Ln I 

Beneath that are three it.ems that also cause a change 
in the large menu above: CELLS, AREA, and MAIN . 
CELLS is a menu to control the ABeD cells resident in 
memory - parsing, writing and selecting which cell is cur
rently being edited. AREA is a menu allowing global area 
operations such as area delete, area move, area copy and 
area modify as well as grid operations such as adding or 
deleting a grid line. This later operation is very useful if 
the editing area gets too crowed for the complex circuitry 
necessary. This is an operation that is trivial in the sym
bolic virtual grid environment and is all but impossible in 
the mask environment. MAIN is the menu just described 
previously . 

I il~iBl 11 abe I II 
\-vVv'v- -1~ INSTANCE I 
CELLSIt AREA II MAIN 

I copy It move J 
I X 11 

mod I . 
I 

~ 

undo I 
Ired" !w I reset 

I.~I r J t · 

Beneath that row of three items is a group of five items 
relating to editing: copy, move, X (delete), mod, and 
undo. copy allows one primitive to be copied to a new lo
cation preserving the attributes of the copied object. move 
moves one primitive keeping all attributes except its loca
tion constant. X is for deleting primitives - it changes 
the mode of the editor. mod is for modifying one or more 
attributes of a primitive (e.g. changing a p-type transistor 
to n-type). undo simply un-does the last editing change 
that was made whether it was an area delete of 800 tran
sistors or the changing of a width 1 wire to a width 2. 

Finally, there are four items for changing the display. re

draw erases the graphics display and refreshes it so the 

picture is correct - necessary because of occasional hard

ware and software glitches that cause lint on the screen. 

reset changes the magnification and centering so the de

sign under scrutiny is back to its default view - centered 

and full size on the display. zoom zooms up or down de

pending on which part of the icon is hit - the magnifica

tion of the display on the design changes usually by factors 

of 2. up/down select different details of view when look

ing at a hierarchical design. Each 'down' selected shows 

one more level of detail until the internals of the lowest 

leaf cells has been displayed. 
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MAIN menu. The top two items are related to each other. edit-in
place allows one to edit a cell in context no matter what 
its orientation - this is critical since one usually cares how 
a cell communicates with its neighbors. copy & edit is 

"'AN similar except one may not want to edit every instance of 
a cell as with edit-in-place so this makes a new cell out 
of the desired cell in its current orientation and allows one 
to edit it. 

NICE 2.0 

edit C~f? in 
place e it 

I levels 'I 

I hardcopy ] 
I check J 
I auto-layout J 

I run prog I 
WRITE 

~ 

~lch.eck ] name 1 n 

I over wr it ] i 

levels controls selective level display on an instance by 
instance basis allowing detailed views of some cells while 
others remain only in outline form. 

hardcopy makes a plot on the current hard copy output 
device of what is currently displayed. 

check runs a static semantic circuit check on the cur
rent cell to identify electrical problems such as shorts and 
opens. 

auto-layout is an interface to an experimental technique 
for translating a net-list to symbolic layout. 

run prog is an interface to external tools; when selected 
the current cell is written out, the specified program is run 
with that cell as an argument, then the cell is read back in 
and normal operation continues. 

WRITE writes the current cell out to disk; it has associ
ated with it some special items to manage this process. 
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Primitive menus. 

TRANSISTOR Includes items for setting transistor length and width, con
trolling the user ext,ension fields, transistor orient.ation, and the technology specific 
transistor types (shown here is a CMOS version with p-type and n-type only). 

WIRE / CUT Includes items for the t.echnology specific layer, wire width, 
extensions, routing and jog insertion on the wire portion; it includes only technology 
specific cut type and feedback of x-offset, y-offset and orientation on the contact 
cut, portion. 

LABEL Includes items for label type, text formatting options and extension 

information. 

WTRF. 

DEVICE . WIRE -i~;' 

111=1<1111 I 
I·la;o;-]I ~ ] 
I ~]I~I 
I I I I 

0 C2:J00 
01 other= I 5 ] 

~IOdd IB next 

I~II un-
route I 

I 'jogl II other I end 

Contact Cut 

I 6 $ $ I[~I 
I autc&tact I 
I ,« mor:e » . I 

5/-lSn 'Y ~n lSr!i!n 

I ABJfI 

LABEL 

t rol O format ] 

I centered] 

I 1 eft just] 
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Hierarchy. This menu is the interface to editing composition cells -
sometimes referred to as Hoor-planning. 

INSTANCE 

t;<l i--.......-r-----I @ CE') namE' 

> 
< I--o--------.J 

~8BB 
eiJ,if J I cqJ>Y 

piece L emt 

6 ./I connections] 
u ./I force vectors) 
t./l congestion I 

cell name is a scroll region containing all the cells known 
to the program with items allowing perusal of this list as 
well as adding new cells to this list. 

inst name is also a scroll region of instance names which 
uniquely identify each instance of a cell. 

corner is a group of it.ems allowing specification of which 
corner of an instance is to be placed on t.he grid. 

direction is a group of two items to specify a horizontal 
or vertical array of cells to form an instance. 

repetitions is an item to specify how many cells are part 
of this arrayed instance. 

2-D is an interface to a method for placing 2-dimensional 
arrays of cells as would be used in memory arrays. 

exten is the standard group of items allowing changes to 
be made to the extension field of the ABeD instance state
ment currently under consideration. 

edit-in-place and copy & edit are duplicated here from 
the MAIN menu as a convenience. 

pins pins can sometimes be an annoyance when floorplan
ning so they can be selectively turned on and off. 

placement is an interface to a general cell placement sys
tem is provided here that allows different views of the cur
rent design that indicate how the placer will perform. The 
different views offerred are: show the connections that will 
control how communication between cells will be affected; 
show the force vectors that are pulling certain cells closer 
together; and, show the areas where congestion is a factor 
that will affect placement. 

global routing is an interface to an AI-based global 

router. The route can be executed, it can be un-done, 

what the router will do can be shown before it runs, and 

the results of the route can be modified through this inter

face. 
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Circuit net-list. This menu relates to pins - these are non-physical entities 
that form the backbone of the electrical specification of a 
circuit. 

signal the open area at the top of the menu contains a 
scroll region of all signal names known to the program 
with the ability to accept new names. One name in this 
list will be considered the current signal name of the pin 
being edited. 

UP IDN pulls pins in subcells up to the current level or, 
alternatively, it pushes pins in the current level down into 
subcells of the current cell. This aids bot.tom-up design or 
top-down design respectively. 

highlight net displays all the primitives on the current 
net identified by signal name. 

exten is the standard interface to the pin extension infor
mation (the most likely one to be used extensively). 

layer a group of t.echnology-specific items for specifying 
which layer the pin is associated with - t.his is the link 
between the physical and the electrical realms. 

electrical optimizer is an experimental interface to a tool 

that aids in finding critical paths and, having found such a 

path, it helps the designer make the speed/power tradeoff 

by sizing transistors appropriately. 
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Editing operations. 

INSERT is the normal mode of the ICE design capture tool. During this 
mode, the primitive menu currently displayed controls the type of object 
that will be inserted in the current cell when appropriate buttons are hit. 
With the cursor over the work area, if the middle button is hit the current 
type of primitive is inserted into the cell at that point. During this mode 
the right-most button is an eraser for the current type of primitive. This 
means that objects of the same type being inserted can be deleted just by 
hitting the right button when the cursor is over them. 

DELETE is an editing mode of the ICE design capture tool. Selection 
of the X menu item in the CONTROL menu puts ICE in this mode. Once 
in this mode, objects can be deleted with hits of mouse or data tablet puck 
buttons in an appropriate manner. Items are selected with the left-most 
button. With the displayed cursor. over an item or items this button is 
selected to pick an object. The first object picked will be of the same type 
as the current primitive menu displayed (if any) if such a primitive exists at 
this spot. Successive hits while at the same location will cycle through all 
the objects that intersect this location. The object selected will be hilighted. 
The top (or middle) button will delete the selected object. 

UNDO is available to un-do some editing operation at any time by se
lecting the UNDO item on the CONTROL menu. A stack of previous 
operations is maintained so more than just the last operation can be un
done. 

MODIFY is an editor mode selected from the CONTROL menu. Once 
in this mode the object to be modified can be selected which will cause the 
appropriate primitive menu to appear with the attributes set corresponding 
to the selected primitive. Selection of different attributes is immediately 
reflected by changes in the selected primitive. 

COPY is a one-time function selected from the CONTROL menu. In 
this function one can make copies of primitive objects which have identical 
attributes except for location. 
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AREA is a mode that is selected from the CONTROL menu. Selection 
of this item causes a new menu to appear in the upper menu region. Area 
operations are considered very important by most users. It is because they 
are such a time saver: large blocks of objects are manipulated as a group. 
In any order desirable the user chooses what operation is to be performed 
(move, cut, copy, modify, or paste), what objects are to be affected, what 
orientation to apply (in the case of move, copy or paste), and what area is 
to be affected. 

operation gives choices of move, cut, copy, modify, 
paste, and show buffer. move takes all selected objects, 
deletes them from their current locations and moves them, 
maintaining their relationship to one another, to a new 
set of locations after applying any orientation change. cut 
deletes all selected objects and saves them in a buffer for 
a later paste operation. copy takes all selected objects 
and makes a new copy of them, without destroying the 
originals, at a new set of locations after applying any ori
entation change. modify applys some attribute change to 
all selected objects at the same time. paste puts copies of 
all objects in the buffer at a new set of locations after ap
plying any orientation change. show buffer shows what 
is currently in the buffer without placing it anywhere in 
the circuit. 

object selection can be done as a group or individually. 
This set of items allows all objects in the selected area to 
be selected or de-selected (whichever reverses their current 
state). Individual objects can be toggled by selecting them 
with the cursor. 

orientation allows one of the standard eight orientations 
to be used when doing a move, copy or paste operation. 

grid change provides four items to add or subtrace ver
tical or horizontal grid lines from the current cell. 

Performance 

Three areas were considered most crucial in making the performance of 
this design capture tool acceptable: very fast pick operations, optimization 
of graphics display functions, and appropriate use of the ABCD parsing 
strategies. 

Pick is the operation used when finding all the objects that intersect a 
given point in the virtual grid. It must be fast since it is used constantly 
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during editing and can greatly impact the feeling of "snappiness" the user 
perceives. Most interactive design capture tools maintain the objects being 
edited in a simple linear linked list since this is a good structure for insertion 
and deletion and is simple to implement and maintain. However, if 1000 
objects are maintained in such a list the constant searching of the entire list 
to find all the objects at a given point slows down the system prohibitively. 
A very fast data structure for allowing a fast pick is simply a 2-d grid of 
pointers to linked lists of objects. Each cell in this 2-d array represents a 
grid location and the list at that cell is the list of objects that intersect that 
grid location. Pick is then a constant time operation. This 2-d grid could 
get quite large so it is restricted to be no larger than 50 by 50 grid units. 
This window is as large a window as designers edit in. The window slides 
around as the designer moves around but there is a lot of locality in editing 
so it doesn't have to move very often. The grid is not used during editing of 
composition cells because there a relatively small number of objects covers 
a relatively large area and the linked list is adequate. 

Display optimization looked for ways to minimize the amount of pro
cessing required to draw a circuit description on the graphics display. This 
is a procedure that occurred frequently as the designer moves around on 
the design getting different views to work from. One aspect of this opti
mization was to examine the way clipping was done. Clipping is the process 
of comparing the outside dimensions of an object to be displayed with the 
current viewing window - it the object is outside don't draw it at all, if it is 
inside then draw it and if it intersects the window draw only part of it. But 
clipping can be done on a cell by cell basis and eliminate the examination of 
the contents of entire cells as well. Transformations was another aspect of 
this optimization. In VLSI CAD, unlike three dimensional modeling, there 
are only a few transformation matrices ever used and these are sparse with 
lots of 1 and 0 entries. Therefore, the matrix multiplication by these types 
of matrices is much simpler than the general case. For each of the small 
number of possible transformation matrices ever used in VLSI CAD a very 
fast procedure that does the minimal number of operations was built to 
optomize the transformation, and therefore the display, speed. 

Implementation 

The symbolic virtual-grid design capture system described here is a second 
implementation of such a tool. The first implementation was developed in 
an exploratory environment as the issues and ideas of symbolic virtual-grid 
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layout were being explored. This meant that the tool was designed without 
any prior specifications. And it meant that as time went on more and more 
was added on to the system making the code horrendous to understand and 
maintain. It became clear that this was the one to throwaway and try again 
on a second system. 

Second systems have some pitfalls that must be avoided if the second 
system is to indeed be an improvement over the first. Most important of 
these is a tendency to put in "too much". Once you have seen how the 
first system performs, and, more importantly, what it doesn't do, there is 
a temptation to put in every feature that can be dreamed up. But this 
can be countered just by being aware of the temptation. One is provided 
an opportunity to develop complete and accurate specifications for the first 
time. This helps keep the system coherent and well-integrated. A cleaner 
implementation is possible both from the maintainers point of view but 
from the user's as well. This implementation of ICE was done initially 
under Berkeley UNIX 4.3 in C. It, like all of VIVID, is ported to SUN 
and Micro VAX II workstations. VIVID is made available to universities 
for a small distribution fee and in special cases is also made available to 
commercial firms. 
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COMPACTION 

Introduction 

What is compaction? In the symbolic virtual-grid environment, designs 
are captured in a symbolic-level circuit description language like ABCD; 
generation of mask-level information and correct spacing on design objects 
are completed by the compactor. Compaction is process independent by 
virtue of the fact that design rules and complex object synthesis details are 
table driven from the technology database. The output of the compactor is 
mask-level rectangles suitable for further editing if necessary by a rectangle 
pusher. 

Hierarchical context. Virtual-grid compaction as opposed to constraint
based compaction, is used because it allows the cells produced to be pitch
matched to abutting cells. This is essential if hierarchical compaction is to 
function and this, in turn, is essential if large designs are to be attempted. 

Modes of use. Experience has shown that it is very difficult to get com
pactors to give consistently good results irregardless of design style - some 
knowledge on the part of the designer about how it works is needed for de
signers to get consistently good compaction results. Therefore, on critical 
cells, designers usually get into a loop of symbolic layout - compaction -
examine mask output - repeat until the results are satisfactory. Once the 
basic cells are designed, designers usually wait to run the full hierarchical 
compactor until nearing completion. Another common mode of operation 
exists in the standard cell environment. Here, the goal is freedom from 
design rule and process changes necessary to preserve the integrity of very 
large cell libraries. Cell libraries are carefully designed at the symbolic level 
and maintained that way. As processes change and/or design rules change, 
the entire cell library is run through the compactor giving a new mask-level 
cell library using the full features of the target process line. 

Virtual-grid leaf cell compaction 

The basic algorithm in virtual-grid leaf cell compaction is quite simple. Grid 
lines are kept intact and spacing between grid lines is established by deter
mining the maximum design rule spacing between each object on one grid 
line and its neighboring grid line. First the process is run horizontally, then 
vertically producing a spacing between each pair of grid lines. It is clear 
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that this makes pitch matching between abutting cells trivial because only 
the inter-grid spacing needs to be examined and made larger if necessary to 
make connections meet. But, it is also clear that one gets a worst case spac
ing determined in many cases by one pair of objects at one end of a cell that 
makes a much larger than necessary space on the other end of the cell. And 
this gets progressively worse as the cells get larger and larger. This is why 
severe criticism has been leveled at compactors using this simple algorithm. 

In most other compactors a constraint-graph is used. Nodes in this graph 
are rigid structures that cannot be stretched or broken. Edges in the graph 
are spacing constraints. The result is that the output cell is fixed - it 
cannot be pitch matched. This precludes the use of this type of compactor 
in a fully hierarchical compactor and this in turn means that it could not be 
used in large designs. Hope remains for the virtual-grid approach if careful 
modifications of the basic algorithm and data structures are made. 

Improvements 

Two basis strategies present themselves: 1) position symbols, then translate; 
or, 2) translate and then position the resulting rectangles. Most compactors 
use technique number 1 - compact symbols first. This results in technology 
dependent code. The internal data structures are, of necessity, non-uniform 
and this results in excessively complex and unreliable code. A better ap
proach is to translate the symbols into a flexible mask representation first 
and then do compaction on this representation. In this way all technologies 
can be represented since any mask-level description can be represented as 
rectangles. There is only one single atomic data type - the rectangle. The 
code is simpler and inherently technology independent. 

The VMR array. The data structure so devised is called the virtual-mask 
rectangle (VMR) array. A leaf cell becomes a (two-dimensional) array of grid 
points. At each point is a list of rectangles. Some rectangles have missing 
edges and represent wires. Figure 4 shows an example of the VMR array at 
a contact cut with some fixed rectangles and some extended rectangles. 

A compactor based on this new data structure has been implemented. 
Using a very careful symbolic layout style resulted in mask-level output 
cells as compact as hand designed mask cells. However, many problems 
were discovered with this simple approach which led to several evolutionary 
enhancements. 

Several problems found are worth further explanation. There are cases 
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Figure 4: VMR array at a contact cut 
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where ostensibly hidden edges were not really hidden. For example, the 
diffusion rectangles of a transistor came in two parts because the two elec
trical nodes of source and drain caused each to be represented as a separate 
rectangle. When spacing was being done, the interior edges of these two 
rectangles caused undesirable (i.e. too much) spacing that really need not 
have occurred. This compactor had to have a very elaborate rule set and 
this set was very difficult to debug. Interactions between rules were common 
and fixing a bug in one rule usually caused some other rule to cause excessive 
spacing since the rules interacted so much. An additional problem is that 
critical information is missing. The polygons that are still to be placed can 
not be viewed as a simple leading edge of material as in this approach -
material further inside the polyginal region affect placement at the frontier. 

Edge-corner compaction. The examination of these problems led to 
refinements that resulted in a new compactor called the edge-corner com
pactor. Here, the data is explicitly represented as rectilinear polygons. The 
resulting data structure is more elaborate but the rules for how to do spacing 
are much simpler. Important is that technology independence is preserved. 

The internal representation for polygons is just to maintain the signif
icant edges and corners. The bottom and top edge are significant (com
paction is always done top to bottom - to do left to right the cell is just 
rotated 90 degrees). Convex corners are significant. Wires are represented 
as holes with concave corners. The diagram in figure 5 can help illustrate 
these points. 

Groups. The next important step was the addition of the group concept 
to this compactor. The idea is to cluster grid points into groups based on 
connected grid points (usually connected by a wire). The first and last 
point of a grid line are in the same group so pitch matching will work 
correctly. Within the cell interior, groups are given offsets relative to a grid 
line (i.e. "breaking" the grid line). The position of each group is determined 
independently. 

The results of these enhancements were impressive. The density of com
pacted cells is comparable to those done using a constraint-graph compactor; 
yet, the cells were still pitch-matchable. The groups used in this approach 
are larger than the similar concept in the constraint-graph approach and 
constraint-graph compactors have more small-scale flexibility since a rather 
simple model was used to determine what objects are in what group. 
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Hierarchical compaction 

A hierarchical compactor takes advantage of the fact that a typical hierar
chical design uses the same cell in several different places. Each cell is first 
examined in all of its contexts. The leaf-cell compactor next compacts each 
leaf-cell to its minimum possible size in its worst-case environment. The 
last step is to abut instances of the cells according to the original symbolic 
layout specification. During this pitch-matching step, instances of some cells 
may increase the spacing between grid lines in order to properly match the 
grid spacing in neighboring instances. The algorithm used in this process is 
outlined in the following steps. 

Remove intermediate-level cells. Hierarchy impedes rapid communica
tion between neighboring leaf cells during compaction. It may be necessary 
to ascend the hierarchy to the top-level cell and then descend just to find 
something out about a neighbor cell. The speed of this type of inquiry can be 
speeded up by temporarily eliminating intermediate levels of the hierarchy. 
To do this first all mixed cells are "smashed" to contain only primitives. Sec
ond, all intermediate-level cells are replaced with instances until the result 
is just a two-level hierarchy. 

Reorient cells. Inter-cell communication speed is so important it is also 
worth reorienting all cells to a single default orientation. So any cells not 
already oriented in this way are processed once so that when looking at 
primitives later, not transformations are necessary. 

Net-list extraction. The electrical connectivity is extracted from the 
symbolic design next. This information is important when deciding whether 
or not to merge rectangles on physically separate grid lines. Some spacing 
rules need not be applied between rectangles on the same electrical node. 
For example, a V-shaped wire need not have the spacing rules applied inside 
the V. 

Instance placement. Instance locations of the top level of the two level 
hierarchy are stored in a corner-stitched data structure. This data structure 
is very fast at neighbor operations and the approach used to hierarchical 
compaction described here does a great deal of neighbor operations. 
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Worst-case environment extraction. Because we wish to compact each 
unique leaf cell only once, the hierarchical compactor looks in each cell's 
total environment (i.e. at all of the cell's neighbors) and finds the largest 
environing features at each point on the cell bounding box. By spacing the 
cell's internal features far enough away from these worst case features, the 
compactor guarantees that all of the cell's instances can be placed without 
danger of inadvertent contact between the cell's internal features and the 
edges of other instances. 

When abutting cells have an empty grid point in common, both cells have 
to decide how far to space their internal elements from their edges. Because 
they do not know what is in their neighbor's interior, each is allowed to 
come only so close to the edge. Under this "mutual non-aggression pact," 
both cells agree to keep each feature one half the maximum distance for that 
feature from the edge. This agreement, along with worst-case environment 
extraction, allows leaf cell grid spacing to take place without having to 
communicate with the interiors of neighboring cells. 

Leaf cell compaction. Each leaf-cell is now compacted by the techniques 
described earlier. 

Pitch matching. Instances that represent cells that were compacted sep
arately may not, when placed adjacent to each other, communicate correctly. 
Their pitch is different and lines that communicated when in the symbolic 
are now broken. Communication is restored by expanding the grid spacing 
of some instances until the broken line is repaired. Broken grid lines that 
do not affect communication are not repaired. 

Anti-feature elimination and output. The leaf-cell grid spacing algo
rithm leaves certain rectangles too close together creating small spaces or 
gaps called "antifeatures." The leaf cell compactor is allowed to violate 
spacing rules in this way whenever the material on both sides of a space is 
electrically connected. 

The antifeature eliminator finds these spacing violations and fills them in. 
lt sorts the non-grid-based rectangles and then expands them by one half of 
the spacing rule. All of the rectangles are then merged into polygons which 
are then shrunk by one half of the spacing rule distance and then fractured 
back into rectangles. This is a standard technique known as bloating and 

shrinking. 
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Future directions 

There is a lot still to be done. Some of those things are listed here. 

Contact offsetting and wire jogging. This requires some decoupling 
of the groups. The two issues are related and the results could be dramatic. 
Since contacts are usually larger than minimum wires offsetting them to one 
side of a wire or the other can make a dramatic effect on material being held 
away by a contact spacing rule. Likewise, even simple wire jogging can make 
a dramatic difference in the size of the final mask cells. 

Handling pre-compacted chunks. In many cases, a designer wants to 
incorporate some hand designed cells (especially memory) in a symbolic 
design. The compactor will have to treat this as an unstretchable blob. The 
really hard part is how to communicate with this blob. 

Producing (smaller) hierarchical output. The output of the hierar
chical compactor is very large. This is because the uniformity of instances of 
the same cell is broken. Each instance of a cell has a different environment 
and so each ends up a different size; so, for all intents and purposes they are, 
in the output, different cells. Either under a designer's control or through 
some heuristics it should be possible to insist that like cells come out the 
same in the final output unless doing so really enlarges the design. 

Produce exact circuit parameters. The compactor know the exact 
sizes of wires and transistors and it has access to the technology database 
so it could produce the output one normally gets from a detailed mask
level circuit extractor. One needs this information for a detailed circuit
level timing analysis such as with SPICE. This circuit extraction should be 
produced directly by the hierarchical compactor. 
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TECHNOLOGY ENCAPSULATION 

Introduction 

The diverse group of tools in a system like VIVID, relies on a single compo
nent, the Master Technology File (MTF) system for technology encapsula
tion. The information in the MTF includes technology characteristics and 
process parameters as well as information that governs behavior of graphics 
devices used by design tools. Because all design tools use a single source of 
technology information, consistent operation is guaranteed. 

Technology database 

The MTF System allows designers who operate VIVID Syste!D tools (the 
users) to specify completely the characteristics of a target fabrication process 
on both the symbolic and mask levels. User-defined process characteristics 
recognized by the MTF System include these categories: 

• Process Layers The user can create both symbolic and mask-level 
process layers. In addition he can create special layers that are used 
to display menus and other bookkeeping information. 

• Transistors and Contacts The symbolic-level transistors and con
tacts existing in a process are declared by the user by specifying the 
process layers from which they are constructed. 

• Graphical Attributes The colors and stipple patterns used to dis
play each layer can be defined. 

• Graphical Shapes The appearance of circuit primitives supported by 
the ABCD (A Better Circuit Description) language can be described 
by the user. Graphical shapes can be tailored according to a circuit 
primitive's type, size, and orientation. 

• Virtual Shapes The virtual-grid points occupied by symbolic-level 
transistors can be specified. 

• Symbolic to Mask-level Translation The MTF System allows the 
VIVID System compaction program to be technology-independent by 
including two types of information. One master technology file con
tains instructions describing the translation of symbolic-level circuit 
primitives into constituent mask-level rectangles. Another file includes 
a list of mask layers and the physical distances that must separate each 
pair of layers. 
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• Electrical and Physical Constants The MTF System provides a 
mechanism for specifying the physical and electrical constants of the 
process layers, wires, and transistors existing in the target process. 

Features 

Two key strategies are responsible for the design of the MTF System: 

• Compilation 

• System-wide technology independence 

The decision to compile technology specification files rather than to in
terpret them or deal with them as a data base has resulted in a system with 
three separate parts, a procedural interface, a group of compilers, and the 
master technology files themselves. The second principle demanded that the 
MTF System give technology-independence to an entire spectrum of design 
tools, not to individual tools in a fragmented way. This section will discuss 
the features that these strategies have given to the MTF System. 

Compilation Both users and tool developers benefit from the MTF Sys
tem's use of compilation. The human-readable master technology files are 
written in a language that is quickly mastered. The binary representations 
produced by the compilers are more easily manipulated by machines than 
the human-readable form. The compilation step not only transforms the 
files into a format that is more easily handled by machines, but it also ar
ranges the contents so that operations, such as searches, can be performed 
faster. The overhead imposed on VIVID System tools by the MTF System 
is minimal. Routines within the procedural interface take advantage of the 
structure imposed on the master technology files by the compiler, making 
the routines quick and efficient. 

Languages Each master technology file is written in either the C pro
gramming language or the MTF language. The MTF language is a simple 
system of keywords and statements. Since there are only a few syntax rules, 
the designer can begin using the language quickly. The MTF language itself 
is defined with the UNIX tools Lex and Yacc, so that it can be easily ex
panded to accommodate new design tools. A sample of the MTF language 
appears below. Keywords appear in boldface type. 
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transistors { 

} 

p_type { 

} 
} 
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source = ndiff; 
gate = poly; 
drain = ndiff; 
modeLname = en 1; 
substrate = node_vss; 

source = pdiff; 
gate = poly; 
drain = pdiff; 
modeLname = epl; 
substrate = node_vdd; 

Master technology files that express more complex design features, such 
as the graphical appearance of circuit primitives, require the power of a 
general-purpose programming language. For this reason, the MTF System 
allows some files to be written with the C programming language. All fea
tures of the language can be used. However, the use of externaf variables or 
subroutines is forbidden, so that the resulting object code can be loaded at 
run time and linked to the executing program. Process features expressed 
with this language include the specification of graphical and virtual shape, 
the values of physical and electrical constants, and the mask-level represen
tation of symbolic circuit elements. 

Consistency Since the MTF System was developed to support an entire 
range of VIVID System design tools, there is a high degree of coordination 
among the components of the MTF System. The format and contents of 
technology rules allow individual design tools to share technology informa
tion. The ability to share information provided by the MTF System insures 
consistency and relieves the user of a considerable programming burden. 
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Partitioning The MTF System reduces the memory required by a design 
tool by partitioning the information contained in the MTF System. For ex
ample, graphical editors do not require information about compaction and 
simulation. Consequently, the MTF System allows graphical editors to ob
tain only the information they need for editing. Technology rules concerning 
compaction and simulation are ignored. This feature minimizes the memory 
required by a design tool, thereby increasing its preformance. 

Dynamic Loading The MTF System allows design tools to load and link 
additional object code after they have begun execution. This technique is 
called dynamic loading. Design tools employ dynamic loading in order to 
obtain technology specifications that have been written using the C program
ming language and compiled into object code. This object code is linked to 
the design tool at run time, allowing the user's specifications to be executed 
without a time-consuming re-compilation of the design tool. 

Modular Construction The structure of the MTF System is not dic
tated by the VIVID System tools that it supports. Completely new design 
tools can be designed around the MTF System and its companion VIVID 
System software libraries. 

Benefits of Technology Independence Finally, the MTF System prcr 
vides all the benefits associated with technology-independent systems. Tech
nology independence relieves the tool developer of the burden of creating 
an individual tool for every process. Software maintenance becomes much 
easier and changes in a process do not force software modification and re
compilation. Technology independence offers the tool user the ability to 
modify the tool's behavior. Adaptations can be made quickly, without the 
assistance of a programmer. If a designer works with more than one tech
nology, he can use a single tool for all of them by specifying appropriate set:. 
of rules. 
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SOFTWARE ENGINEERING 

The purpose of developing a CAD system must be to build real VLSI sys
tems with it. For this to happen, it must be given to some designers who 
have the ability to design real systems. Designers have seen a lot. of soft
ware come and go and they are quite sophisticated and busy so they will 
not give new software the time of day if they do not see it as being to their 
benefit. If for no other reason than this (and there are other reasons) it is 
worth making a serious CAD program into a programming systems prod
uct. A programming systems product is written in generalized fashion, is 
thoroughly tested and has thorough documentation. It is vastly harder to 
do this than just producing a CAD program. 

For a new idea in CAD like the symbolic virtual-grid methodology to 
succeed, a CAD programming systems product supporting this methodology 
must be built. VIVID is such an attempt and it has been largely successful 
but it also taught all concerned some lessons. 

A lot was done well in VIVID. Conceptual int.egrity is the most important 
consideration in systems design and conceptual integrity is very evident in 
VIVID. A system is best when one can specify things with simplicity and 
straightforwardness; in VIVID simplicity has been a high priority from the 
outset. A programming systems product must be generalized and VIVID is 
portable, accepts a wide variety of inputs, is very modular and offers an open 
architecture. VIVID was extensively tested by non-developers (but, it turns 
out, still got out with numerous bugs). The documentation is voluminous 
including both tutorials and references. 

The team approach used to develop VIVID was very productive. A 
leader of each project was clearly defined and tis leader had one or more as
sistants. All groups shared the services of software librarian, quality control 
technical, secretary, technical writer and legal assistant. Communication 
was mostly informal until near code freeze dates when it became formal and 
sometimes confrontational. 

The second system effect of "too muchness" was avoided mostly by be
ing worried about it creeping. Extra self discipline was exerted and more 
complete specifications were expected in the case of second systems. 

The work environment was ideal: good computer support, an excellent 
programming environment, personnel policies of flexibility and informality 
and no shortage of team spirit and enthusiasm. The typical traps associated 
with over-zealousness were not avoided however. 

Those are the traps that arise out of the classical optimism of program-
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mers - this small team believed it could do it all. This was to become a 
serious problem when associated with enormous and unreasonable external 
pressures. Those pressures, not adequately counteracted by program man
agers, forced software to be released much too early which meant it became 
unpopular software because it was, as is to be expected, very buggy. Prob
lems became even more severe as the group then attempted to market the 
software - also, much too early. The enthusiasm of the software group and 
its technical managers, combined with unwise marketing practices and the 
continued counterproductive external pressures were bad enough. But these 
forces were not tempered by good business-like management higher up in 
this non-profit organization that should have put on the brakes. Politics 
became a divisive force and the external and marketing pressures were too 
much for the group to withstand - it destroyed the group in the end. 

VIVID has made a real impact by showing the viability of symbolic 
VLSI design. As follow-ons to VIVID become commercialized by major 
CAD suppliers, custom VLSI design will reach a wider and wider group of 
designers and just may cause a mini-CAD revolution. 
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ABSTRACT 

A pipeline of three tools for the construction of high-quality macro 
modules or library cells is described. TOPOGEN is a synthesis tool that 
takes a logic description at the gate level and converts it into a symbolic 
layout of a static CMOS circuit on a virtual (coarse) grid. EDISTIX is an 
interactive virtual grid editor for the creation or modification of symbolic 
sticks diagrams. ZORRO is a two-dimensional compactor using the con
cept of 'Zone refining' to generate the mask geometry from the symbolic 
layout. The generation of the final layout of a cell is a two-step process 
using an intermediate symbolic representation on a virtual grid. In this 
intermediate state, the user can interactively make changes. 

1. INTRODUCTION 

The creation of high-quality cells and macro modules is a corner stone of 
automatic and semi-automatic chip synthesis. This is true regardless whether a 
full custom or a semi-custom standard-cell approach is taken. 

The rapid progress of VLSI fabrication technology renders existing standard
cell libraries obsolete rather quickly, so that they must be adapted periodically to 
a new set of mask layers and new design rules. Because of the repeated usage, 
density and performance of these cells is important, and thus a lot of effort is nor
mally spent to obtain optimal cell layouts. 

Emerging "Silicon Compilers" norma.lIy work in hierarchical stages. Hand
designed library cells and procedurally generated modules are assembled at the 
chip level by powerful placement and routing tools. The latter tools recently have 
started to outperform human designers for complicated tasks with many blocks. 
However, automatically generated cells and macro module rarely achieve the per
formance and density of hand-designs by a good designer. An exception are some 
special modules such as PLA's, but there the gain stems primarily from logic 
minimization and from topological folding rather than from the actual layout. 

In the last two years we have concentrated some of our efforts on tools that 
make the production of high-quality cells and macro modules easier and more 
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automatic. The emerging system consists essentially of three parts. TOPOGEN 
is a synthesis tool that takes a logic description at the gate level and converts it 
into a symbolic layout of a static CMOS circuit on a coarse virtual grid. EDIS
TIX is an intrractive virtual grid editor for the creation or modification of sym
bolic sticks diagrams. ZORRO is a two-dimensional compactor using the concept 
of 'Zone refining' to generate the mask geometry from the symbolic layout. 

The generation of the final layout of a cell thus becomes a two-step process: 
conv{'fsion of the circuit into a good topology on the virtual grid, and then the 
fleshing out of the sticks elements and their geometric compaction into a dense 
layout in accordance with a given set of geometrical design rules. At the inter
mrdiate lenl, the designer has the option to review and possibly improve the 
topology of the crll with the interactive program EDISTIX. It is also in this inter
mediate format that the design of the cell should be stored for rapid generation of 
a nt'w ('('II wlH'1I t1H're are small changt's in the implementation technology. 

2. THE ROLE OF SYMBOLIC REPRESENTATION 
The dir{'ct conversion of a circuit into a d{'nse layout is too big a step to be 

taken dirl'ctly, - this is true for the human designer as well as for a computer 
program. TIH' concerns of finding a good topology for the layout and of arranging 
t 1H' componrnts to satisfy all d!'sign rul!'s are independent enough, so that these 
two issues can be resolved separately in a two-step process. Between the two 
sh'ps lips thl' symbolic representation of the layout in some sticks-like format. 

W (' will bridly discuss th(' requirements for the representation at this sym
bolic level and then discuss our ehosen repres!'ntation. 

2.1. Requirements for a Symbolic Representation 

In th(' (·hoice of the primitives at the symbolic level, one tries to combine 
various divers(' goals. 

The reprl'sentation should be lean and uncluttered to make it easy for the 
designer to addr('ss the concerns he has at this stage of the design. These are to 
find an optimal topology for the module under construction that will produce a 
module of a dt'sirable aspect ratio, place the connections to the external world at 
the proper sides of the module, and produce direct and minimal internal wiring as 
well as simple geometry for the well f(·gions. 

To be able to make reasonable choices on the topology, the symbolic 
representation must be expressive enough to render the tricks that are routinely 
us{'d in the hand-layout of dense library cells. One such trick is to run metal 
wires ovrr large transistors and to produce, if necessary, a cross-under for a signal 
that enters the drain/source diffusion on one side of this metal connection and 
gets picked up on the other (Fig. I). This construction cannot be represented if 
the transistor at the symbolic l{'v{'1 is viewed as a point device with only Cour pos
sible connections, one each in the four major directions. 
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Figure 1. Cross-under produced by a diffusion region between two transistors. 
This could not be expressed if the FET were a point device. 

And finally, the symbolic representation should be efficient. It must 
represent succinctly and unambiguously the geometrical and electrical properties 
of the circuit, so that the sticks diagram can be checked for Cunctionality and 
evaluated qualitatively for the area required by the final cell. Of course, it is 
preferable to keep the size of the file describing the cell at the symbolic level as 
small as possible. 

2.2. Virtual Grid and Raster Components 

We have chosen a coarse virtual grid as the basic design space. It allows Cor 
a terse representation and makes the geometrical part of the data structure very 
simple. Further, the determination whether two components are actually con
nected is straight-forward; this makes the checks for possible illegal interference of 
components rather simple. 

Every component in this representation occupies a number of grid points. 
The set of basic components selected for our symbolic representation is show in 
Figure 2. All components can be viewed as linear elements spanning one or more 
grid points. For wires, this representation is an obvious choice. It also applies Cor 
the port, a formal terminal that can serve as a connection to the outside' world. If 
the port extends over more than one grid point, it is still considered an equipoten
tial node. Contacts are also linear equipotential elements, typically represented as 
rows of contact holes spaced one grid unit apart. 

Transistors are slightly more complicated. They occupy three rows of grid 
points next to one another, one each for the source diffusion, the gate, and the 
drain diffusion. They still fit the paradigm of a line element, as internally only 
the "stick" for the gate is represented explicitly, and the adjacent diffusion areas 
are implied and derived on the fly when needed for some check or for display on 
the screen. This gives the symbol set a cohesiveness that makes the various data 

215 



216 

. II· . II • 

. ~ . 
. · .. .. , . · . · 

Wires Ports 

· 
· 
· 

Mosfets 

VLSI CAD Tools and Applications 

· . 
· ., 
· . 

1m m ml 

~ . 
~ 

Contacts 

Figure 2. Virtual grid components in EDISTIX. 

structure manipulations more regular. 

In addition there is an auxiliary component called the joint. It is used wher
ever two or more wires join together. Joints are strict point elements. We first 
tried an implementation with a data structure that did not need these joints and 
connected wires directly to one another. The resulting data structure and its 
manipulation became rather cumbersome. The addition of the extra joints, where 
needed, simplified things. These joints need not be represented explicitly in the 
file that describes the circuit symbolically; they are introduced and deleted on 
demand whenever a wire end is not explicitly connected to a terminal, contact, or 
transistor. 

Every tool described below has its own internal representation of these sticks 
elements that is most appropriate for the task that the particular tool has to per
form. The information is passed between the various tools by means of terse 
ASCII files. The format of these files is very simple: Every element is represented 
by a keyword that implies its type and layer and the integer coordinates of its 
endpoints. In addition, ports and transistors can take names for identification. 
This decoupling through the use of these intermediate files makes the databases 
for each tool simpler and more efficient and permits separate tool development. 

3. EDISTIX 
The virtual grid components described above can give a reasonably accurate 

description of the layout organization and of the achievable packing of the com
ponents. This is necessary to allow the designer or an automated tool to find an 
optimal module topology. Because of the central role of the symbolic representa
tion, we will first give more details on EDISTIX, rather than present the pipeline 
of tools in the sequence that an evolving design would see. EDISTIX acts as the 
glue between the other two tools, and its internal data structures are a good 
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example how one can deal efficiently with the described sticks components. 

3.1. The Function 

EDISTIX is an interactive virtual grid editor that relieves the designer of 
many of the chores associated with the modification of symbolic sticks diagrams. 
The purpose of this tool is to make it easy to enter symbolic designs from scratch 
or to inspect and modify the ones that come out of a tool like TOPOGEN. 

In the first case, the goal is to make sticks entry as fast as sketching on a pad 
of paper, but with all the potential advantages of having a smart checking pro
gram looking over your shoulder and preventing you from making simple mistakes 
such as tying 'Power' and 'Ground' together. Particular attention was thus given 
to the user interface, with the goal of minimizing the necessary actions during the 
entry of circuit elements. 

In the second case, the main goal in EDISTIX is to make it easy to change 
the topology of a layout without changing its connectivity. If a designer wants to 
improve the layout topology (in cases where TOPOGEN gives less than optimal 
results) he should be able to spend most of his attention on finding an optimum 
topological arrangement without having to worry that the interconnections might 
be changed accidentally in the process. Thus, in this mode, EDISTIX keeps the 
internal netlist unchanged and tries to reroute all interconnections accordingly 
when components are moved. 

3.2. Data Structures 

Considerable effort has been spent to find efficient data structures to 
represent the geometrical as well as the electrical aspects of a design. 

In the geometrical data structure, because of the limited size of non
hierarchical macro modules or library cells, and since in good topological arrange
ments practically all vertical and horizontal grid lines contain at least one com
ponent, it is reasonable to represent all the rows and columns of the drawing area 
explicitly, rather than using sparse matrix techniques. Thus for every row and 
eolumn we list all the vertieal and horizontal line-elements, respectively. In each 
of the two directions, these elements are grouped into five linked lists sorted by 
element types (Fig. 3). Thus we store in separate lists: wires and links, contacts, 
joints, ports, and FET's. This makes it easier to search for a particular element 
type and to provide the different processing routines necessary for different ele
ment types. 

Since the elements are either horizontal or vertical sticks, their geometry is 
fully captured with three numbers: their row/column number and two values for 
the second coordinates of their endpoints. 

In the electrical data structure, a distinction is made between equipotential 
nodes such as ports, contacts, FET-terminals, or joints, and binary connection ele
ments such as wires and links (Fig. 4). All nodes are connected in a linked list in 
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Figure 3. Geometrical data structures in EDISTIX. 

the order they are created. They may carry an optional name. They also have a 
pointer that points to the first child, i.e., any attached wire or link, or is nil. 

Wire or links are two-ended elements that are attached to two nodes. At 
each end they have two pointers, one pointing to the node to which they are con
nected, and the other pointing to any 'siblings', i.e. other wires or links attached 
to the same 'parent' node. 

All the geometrical and the electrical information is contained in the same 
structure representing both aspects of an element. 

3.3. Operations 

The many possible operations can be grouped into various classes: edit opera
tions, selection and query commands, clean up operations, rearranging the topol
ogy, analysis, and output. 

Edit operations are used to build a circuit from scratch or to modify a given 
circuit. They include the standard operation to add or delete an element, and to 
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Figure 4. Electrical data structures in EDISTIX. 

select and modify an element. When adding an element, the program watches for 
illegal constructs such as running a poly wire across a diffusion area, or it warns 
you of questionable configurations such as level crossings of wires that will lead to 
an implicit electrical connection. The program maintains up-to-date information 
about all electrical connections, and it will warn the user when nets with different 
names are connected or when a loop is formed in a net. 

Selection and query commands permit the user to pick one or more elements 
on the screen and then see a listing of the detailed information on that element as 
well as a list of other elements it is connected to. Some fields such as the name 
can be changed. 

Clean-up operations remove dangling wires and contacts and merge pairs of 
collinear wires on the same level. This brings the internal representation into a 
minimal consistent state. 

Rearrangement commands allow the user to change the layout without 
changing the underlying circuit. These operations are using a generalized block 
move operation. A group of elements, selected individually or by an 'area select' 
command, are moved jointly by a given displacement vector. Connections that go 
beyond the selected area and connect to components that remain fixed have to be 
recreated. The system does as much rerouting as possible and shows the remain
ing connections that it cannot handle in contrasting color. It is then up to the 
designer to find a feasible implementation for these wires, or to make further 
changes that enable the wiring to be completed. 
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Analysis commands (not yet implemented) will eventually allow the user to 
interact directly with a simulator or a timing verifier. In this way it will be easy 
for the designer to verify functionality or to get a first estimate on performance. 
For the time being, the designer will have to produce an output file with one of 
the various drivers for a particular simulation tool, and then run that tool 
separately on this file. 

Output of the stored data on the design can be viewed in many different 
forms. Elements can be listed in geometrical order, going through the various 
types of devices on a row by row and column by column basis. This is the default 
scan mode used when the user wants to write out a file of the database in the 
ASCII format. Alternatively, the nodes with all the attached children can be 
listed in the order in which they were generated. Finally the whole network can 
be traversed in a depth first manner; this is the mode that is used when one wants 
to create an output file in the format for simulators such as SPICEl or ESIM.2 
There is also a possibility to create a file in the format of the OCT data base3 so 
that the other tools of the Berkeley Design Environment· can be run on the cells 
generated with EDISTIX. 
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Fiaure Ii. Virtual grid representation of a flipflop composed with EDISTIX. 

3.4. Results and Dlscuulon 

Figure 5 shows the sticks representation of a flipflop as it would appear on 
the EDISTIX screen. EDISTIX has been under continued development for a cou
ple of years. It has been rewritten from scratch at least four times, first a couple 
of times in Pascal, more recently in C. The general features discussed in this sec
tion have been rather stable over the last few versions, and we are confident that 
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they represent a good solution to capturing a symbolic layout. It gives a rather 
good idea of what the final layout might look like. 

4. TOPOGEN 

TOPOGEN is a generator program that takes a functional description at the 
logic gate level and converts this into a symbolic layout on a. virtual grid. The 
first version of TOPOGEN is aimed at standard cells for a static CMOS family. 
So far, the layout style is restricted to a single row of transistor pairs with one 
diffusion strip each for the p-channel and n-channel FETs, respectively, TOPO
GEN is organized in a modular fashion, so that one can experiment with different 
algorithms for the various steps mentioned below. 

-----------------,----------------- VDD 

INPUTS: 
A, n, C, D, E, 
CLOCK 

OUT 

----------!====±=====---------- GND 

Figure 6. Circuit generated form the following roPOCEN input: 
(eva/gate (output OUT) (npt CWCK) (or A (and BCD) E)). 

4.1. Circuit Generation 

The translation of the logic description into a corresponding circuit is 
straight-forward. TOPOGEN accepts nested AOI expressions that are converted 
to the corresponding series / parallel networks of transistors. The program looks 
at every AOI gate in the input stream separately. In the sequence in which the 
logic inputs appear in the original description, corresponding transistors are 
placed from left to right and from output rail towards the power/ground lines 
(Fig. 6). In addition, single or paired clocked switches can be specified. These 
clock inputs can be placed next to the output rail or next to the supply lines, 
depending on whether the clock input specification appears before or after the 
description of the Boolean logic block. 
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4.2. Gate Optimization 

The circuits obtained in the manner outlined above are now arranged as a 
linear sequence oC transistor pairs. In each gate the sequence oC the transistor 
pairs is arranged so that the mutual sharing oC the diffused drain/source areas is 
maximized and thus the length of the rows of transistors is minimized. This 
amounts to finding corresponding Euler paths through all the transistors oC either 
polarity. We use the method of adding a pseudo input in every series / parallel 
block with an even number oC components5 since that makes the construction oC 
an Euler path trivial. These pseudo inputs correspond to turned off gates or isola
tion zones in the final diffusion strips. Their number is minimized by permuting 
the sequence of the children at every node of the AOI tree (Fig. 7). MUltiple adja
cent isolation zones can then be collapsed into one. 

••••••. Pseudo-inputs 
(al (bl (el 

Figure 7. Gate rearrangement to produce an Euler path through a circuit. 

4.3. Gate Placement 

TOPOGEN subsequently rearranges these individual and-or-invert gates with 
the goal to minimize the width of the wiring channel between the two diffusion 
areas. A pairwise interchange algorithm is used to step through all the gate posi
tions once, comparing the potential gains in exchanges with all the gates that lie 
ahead in the line. The cost Cunction to be minimized is the width oC the resulting 
strip, i.e., the maximum oC the sum oC the width oC both the P and N transistors 
and the local density in the wiring channel. Since good channel routers can wire 
a channel without exceeding its density, this evaluation function is quite appropri
ate. 

4.4. Wiring 

When a suitable gate arrangement has been determined, all the necessary 
interconnections in the area between the two diffusion strips are generated. We 
use the latest channel router available to us. We have had good success with 
YACR II6 and we are currently experimenting with others such as 
CHAMELEON7 and MIGHTY.8 TOPOGEN simply writes an ASCII file 
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specifying the routing problem in the particular format that the router needs and 
subsequently reads the generated file with the wiring description. 

In trying to modularize our design environment, we are in the process of 
defining "standard" format for the description of a routing problem and for the 
generated solutions. To be general enough, we permit the routing region to be 
any arbitrary rectagon, signal input pins can lie on this rectagon boundary or 
inside, and there can also be obstacles inside the routing region on one or more 
layers. Issues that need to be resolved concern the transformation of the signals 
from the layers given by the original problem situation to the levels that the 
router is prepared to handle, and questions whether the router can introduce a 
level change right at the location of a signal pin. 
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Figure 8. Sample output generated by TOPOGEN. 

4.6. Output 

The final phase is to write an output file in the format understandable by 
EDISTIX. This is fairly straight-forward since TOPOGEN internally has built up 
all transistor positions and wirings on the same kind of coarse virtual grid used by 
EDISTIX. A typical output for a small group of simple gates is shown in Fig
ure 8. 
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4.6. Results and Discussion 

In its current form, TOPOGEN is a useful tool for clusters of gates totaling 
about a hundred transistors. The layouts are not yet competitive with a hand 
design. The main reason is that TOPOGEN carries out each phase of the chosen 
design process without much concern for the other phases and without any itera
tive feedback loop. Weare in the process of reducing this design gap by incor
porating more sophisticated routing algorithms that can route over large transis
tors. In order to handle larger gate clusters, We have started to extend the basic 
approach to modules with multiple strips of complementary transistor pairs; in 
this case the gate placement is a harder problem that requires more sophisticated 
techniques than simple pairwise interchange with the goal to minimize channel 
density. 

6. ZORRO 

The third step in the generation of a standard cell is the production of the 
final mask geometry for the particular technology to be used for implementation, 
i.e. the compaction of the symbolic circuit representation with proper dimension
ing and spacing of all elements. Most of the compaction or spacing programs in 
practical use today can alter only one coordinate of a component at a time. This 
leads to certain deficiencies in the compaction process that make the automatic 
spacing of layouts inferior to the work done by the human designer. The result
ing inefficiencies are typically considered unacceptable for frequently used library 
cells. 

Experimental two-dimensional compactors have been built with different 
approaches. One approach is to start with a totally collapsed layout and then 
remove the distance violations one by one.9 G. Kedem and H. Watanabe10 

translated the compaction problem into a special form of a mixed-integer pro
gramming problem. An even more fundamental approach uses simulated anneal
ing techniquesll for the placement of the components.12 All these approaches typ
ically show non-polynomial growth in runtime for large circuits. 

We have taken a less expensive approach to 2-dimensional compaction. Only 
a small part of the circuit is opened up for two-dimensional motion of the com
ponents. This open zone is swept through the precompacted layout in a strong 
analogy to the zone refining technique used in the purification of crystal ingots. 

6.1. Zone-Refining 

In close analogy to zone refining of crystals (Fig. gal, we start from a circuit 
layout that has been "crystallized" by precompaction with a one-dimensional 
compactor. In our case the "impurities" that we want to sweep out of the "cry
stal" are the unnecessary voids between circuit components. Starting from the 
bottom, individual circuit components or small clusters of components are peeled 
off row by row from the precompacted layout and are reassembled after they have 
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WNE 

Figure 9. XOlle refining: (top) of crystal ingots ilwi (bottom) of layouts; 
the l'referrrd dirertioll of c01llpar/ioll is vertical the direr/ion of the sweep, 

but the b1ock.~ in the :::one clln IIlso 7//ake lilteraI1ll0vemenl.~. 

bl'en moved across an open zonl' (Fig. Qb). As the components pass this free zone, 
they can move laterally to a more advantageous position that will result in a 
denser layout. In the proCl'SS of reassembling the components at the other end 
both coordinates of the moved components can be altered and jogs can be intro
duced in the connecting wires between the circuit components. These additional 
degrees of freedom permit a higher packing density in the newly formed part of 
thl' layout than can be achieved with a one dimensional compaction process. 

The geonwtrical design rules are observed by maintaining and using the con
straint graphs in both the x- and y-direction. 

5.2. Data Structures 

The main data structure is the adjacency graph, here illustrated on the sim
ple example of a packing problem involving rectangular boxes (Fig. lOa,c,d). The 
positions of all blocks are represented in the nodes of the graph. All horizontal 
and vertical adjacencies are represented as two types of corresponding arcs 
between the nodes (Fig. lOb,e). These arcs are labeled with the minimal allowable 
horizontal or vertical separations between the centers of the block; this adjacency 
graph can thus be turned into a constraint graph for properly placing the blocks 
without overlap. For an actual circuit layout, the constraints attached to these 
arcs become more complicated and contain upper as well as lower bounds. 
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Figure 10. Example of box packing in progress. (a) Intermediate constellation 
of boxes and floor and ceiling data structures. (b) Corresponding adjacency 
graph. (c) Box C has been selected to be moved; three candidate places Cl, C2, 
CS are evaluated. (d) Box constellation after box C has been placed and new 
floor and ceiling structures. (e) Updated adjacency graph. 

A second data structure is associated with the moving refinement zone and 
contains the currently active components that must be referred to frequently in 
each block move. All elements that form the boundary of the free zone, above 
and below, are joined together in the 'ceiling' and 'floor' data structures, respec
tively (Fig. lOa,d). They permit an efficient evaluation of the best position for the 
elements that are being moved across the zone. 

5.3. Zone-Refining Algorithm 

Elements are moved from the top part to the bottom part of the circuit 
across the open zone with the following algorithm. In the ceiling an element is 
selected that hangs farthest down. For simple box packing, an individual box is 
selected. For actual circuits, where the components are connected with wires, a 
whole cluster of components that is connected by horizontal wires without jogs in 



Design and Layout Generation 227 

them must be moved at once. The selected components are removed from the 
ceiling data structure and from the horizontal adjacency graph. They are now 
free to float arollnd in the zone. 

Now the best location for placing the component on the Ooor has to be 
found. We arc looking for the position that maximizes the narrowest part of the 
zone, because thl'n we know that the two halves of the circuit can fit together 
with minimum total height. In the case of box packing, all grid positions from the 
left extreme to the right extreme arc evaluated. For circuits, the lateral motion is 
much more restricted. In the first. version of ZORRO, components or clusters of 
circuits are only moved laterally within the freedom allowed by the attached 
wires. Wires can be moved to the extreme positions of terminals, and horizontal 
part.s of wires can be stretched, but no new jogs are introduced at this point. 

(a) 

(b) 

Figure 11. Automatic jog introdurtion in horizontal wires. 

Once the opt.imal x-position has been found, the box or the circuit cluster is 
moved onto til!' floor and is properly integrated into the floor data structure and 
into the two adjacency graphs. Updating t.he horizontal and vertical adjacency 
graphs is done in an increment.al manner. When a component is moved in the 
vertical direction, its horizontal arcs are removed. Once it is in the new y
position, the new adjacencies arc detected by sweeping a scan line across the 
height of the component and checking what ot.her components get intersected. 
New horizontal arcs are formed for all discovered adjacencies. Corresponding 
operations on the vertical adjacency graph are carried out whenever a component 
is moved horizontally. 

For the case of circuit compaction, all attached wires have to be placed prop
erly, once the best place for the moved component cluster has been found. Jogs 
may have to be introduced in the horizontal wires to permit the component to 
move all the way to the floor (Fig. lla). To maximize vertical compression, we 
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will also bend some of the horizontal wires that span over large enough regions of 
empty space (Fig. llb). 

5.4. Results and Discussion 

Figure 12 illustrates the zone refining process on a simple example oC box 
packing. We start from a randomly generated array oC rectangles and compact it 
in the upward direction; the overall height of the array is reduced from 80 units 
to 63 units. A first zone refining pass, where the boxes move downward across the 
open zone, reduces the height to 53 units. The second zone refining pass in the 
opposite direction brings the total height to 47 units. This is the limit; additional 
zone refining passes do not reduce the height ofthe constellation any Curther. 

1 - D pack: 

;> 
upward 

80 63 

ZR pass:.,Q. downward 

2R pass: 

< 
upward 

47 53 

Figure 12. Example of box packing with zone refining. 

Figure 13 shows various phases in the compaction process of a real circuit. 
First it shows the precompacted circuit with merged contacts and nets. The next 
two figures illustrate an intermediate and the final state of the first zone refining 
pass on this circuit. The last figure shows the result after Cour more zone refining 
passes in the vertical direction; these passes also include jog generation in horizon
tal wires. The obtained reduction in area is 33% compared to the result of simple 
one-dimensional compaction. 
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Figure 13. Example of circuit compaction. 
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For box packing problems, zone refining can reduce the area occupied by up 
to 30% beyond what a one-dimensional compactor can do, at a cost in total run 
time that is 10 to 30 times longer, depending on the Dumber of passes. For cir
cuits similar improvements have been observed, but because of the complications 
introduced by the attache wires, and the need for jog generation, total run time 
can be up to 100 times longer than that required for one-dimensional compaction. 

Interconnections playa crucial role in the performance of the circuit, and the 
given topology of the circuit often has been chosen based on considerations at the 
micro-architecture level. Thus we do not want the compaction tool to make pro
found changes to the topolog'f of the circuit; this is the task of a different kind of 
tool that can take properly into account concerns beyond observation of the 
geometrical design rules. Thus for the zone refining process we assume that we 
start from a good topology, given for instance in the form of a symbolic sticks 
diagram. The given basic ordering is maintained in the compaction process, dis
tinguishing our approach from the more general problem of block placement and 
routing. 

The advantage of the zone refining approach over global two-dimensional 
placement algorithms is that the number of components that must be considered 
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at any oue time is dramatically reduced, and the complexity of the algorithm thus 
is only of polynomial complexity. In addition, just as in the physical zone refining 
process, the compaction process can be repeated if the results are not yet satisfac
tory after the first pass. 

6. CONCLUSIONS 

"Silicon Compilers" as well as human designers like to reduce design com
plexity by separating concerns, where possible. In the creation of dense library 
cells or macro modules, finding a good layout topology and observing all the 
geometrical layout rules for a particular implementation technology are two dis
tinct concerns that can be addressed in subsequent design phases. A well-chosen 
symbolic representation to capture the design at the intermediate state is crucial 
to facilitate the design process and to obtain good results. The coarse-grid com
ponents used in EDISTIX seem to fulfill these needs quite nicely. 

With this symbolic representation at the center, the design of a high-quality 
module becomes a two-step process. First, the gate or circuit-level description 
gets converted to a good sticks layout, then this symbolic representation gets com
pacted to a real layout. Both these steps can be automated. With TOPOGEN 
we have created a prototype of a generator that will produce acceptable topolo
gies for clusters of CMOS logic gates. ZORRO is a first prototype of a new class 
of two-dimensional compactors that can convert sticks-representations to practical 
layouts. Before long, the process of module generation will be largely done by 
computers. 
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The Integrated Design Aides (IDA) toolset is a set of VLSI CAD software 
programs that have been developed to make the most effective use possible 
of a designer's time. IDA incorporates a number a layout synthesis tools 
capable of generating both structured circuits, such as ALU's, and random 
logic. The system centers around a constraint-based, symbolic language 
called IMAGES and a compacter methodology. This paper describes IDA, 
its capabilities, techniques, and status. 

1. Introduction and Background 

IDA was developed by researchers at Bell Lab's Murray Hill facility to assist 
in the design of their own custom MOS chips. In this environment, it is not 
uncommon for one or two people to develop a non-trivial. full-custom chip in 
a few weeks, from ideas to mask, for use in their research projects. In fact, 
for many projects the effort involved in building a custom chip with IDA is 
comparable to that of building a single TTL breadboard, with the 
considerable advantage that multiple copies are available with no additional 
effort or delay. 

In order to make this possible, the IDA environment has grown into a range 
of tools supporting almost all aspects of design, from entry to fabrication, 
including layout-rule checker~, simulators, routers, etc., all of which are 
designed to work with each other and present a uniform interface to the 
designer. These toob embody a set of design principles that have proven to 
be effective for VLSI CAD. The next section outlines the most important 
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principles; Sections 3,4 and 5 elaborate them. Section 6 summarizes the 
remaining aspects of IDA and sketches the implementation strategy. Section 
7 contains a short summary and concluding remarks. 

2. Key Ideas in IDA 

Experience has indicated a few ideas are important to the success of a VLSI 
CAD system. Some of these principles relate to the design methodology used 
to build chips; some relate to the design of the programs themselves. 
Specifically, the IDA design methodology relies on: 

• Layout by geometric constraint. Designers specify the relative positions of 
components on the chip symbolically, and the tools determine their final 
numeric positions. 

• Symbolical connectivity. When a design is specified by geometric 
constraints, it is simultaneously constrained electrically. This means that 
the intended connectivity can be compared with the actual topology, 
resulting in a higher degree of confidence in design correctness. 

• Compaction and assembly. Leaf cells are compacted and assembled into 
larger symbols which represent subsystems on a chip. This compaction 
step serves several purposes. In particular, it frees the design from the 
details of geometric design rules, and makes it easier to parameterize 
cells both geometrically and electrically. 

• Automatic layout synthesis. In order to get maximum productivity from 
the limited number of skilled designers available, IDA incorporates a 
number of layout synthesizers, called generators. Some of these generate 
regular, or fixed-floorplan cells, such as counters, while other generators 
accept arbitrary logic specifications. Practical chips require both 

This hardware design methodology is backed up by a software methodology 
that makes the tools easier to develop and use. The key points here are: 

• A common language. The IDA tools communicate in the IMAGES design 
language. Tools incorporate the IMAGES translator to read IMAGES 
files, build standard data structures from them, and write IMAGES files. 
The semantics of IMAGES makes many CAD programs simpler, because 
the programs are provided with a wide range of common semantics 
without duplicating functionality. 

• Technology independence. The f ahrica tion technology description is read 
from a technolog) file at the start of execution of each program. 
Programs access technolog) data exclusively through a data structure built 
from this file. Because the IDA ~oftware programs do not "hard-code" 
technology assumptions, they can be easily ported to new technologies. 
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• The UNIX™ system. All of the IDA tools work under UNIX and take 
advantage of its capabilities. This influences both the chip methodology 
and the tools themselves. For example, not only are the tools recompiled 
with the "make" facility·, but most non-trivial chips are assembled by a 
series of operations controlled by "make". 

These hardware design and tool-building strategies have evolved over time in 
light of experience using IDA to build chips. The next three sections discuss 
most critical aspects of these strategies: the IMAGES language. which is the 
glue that holds IDA together; the compacter. and hllw they combine to 

3. IMAGES: a Symbolic. Constraint-Ba~ed. Gener<ltur DeS/,?n Language 

Unlike a layout language that passively captures the mask-level information 
of an integrated circuit, IMAGES is a language for designing macro-cell 
generators, and serves as the primary medium for designing integrated 
circuits in the IDA environment. A language-hased design philosophy has 
been adopted for a number of reasons, including conciseness of description. 
the availability of a wide variety of tools for building and manipulating 
languages, and because the effective maintenance of information across 
levels of hierarchy is often easier in languages than in graphical systems. 

Among IMAGES' features are its facilities for modularity, maintenance of 
electrical connectivity, and user customizability. The IMAGES language 
supports both virtual and fixed grid representations of a design. In the 
virtual-grid mode, the user works on a coarse grid, where each grid point 
exactly fits one wire, one contact, or one connection to a transistor. This 
speeds up and simplifies editing, since everything automatically snaps into 
place. Because the user does not have to worry about the spacing of circuit 
elements or design rules, writing generators in IMAGES is easier than 
writing generators in "L" [MCB85], HILL [LeMe84], ALLENDE [M085] or 
other languages that do not operate in a virtual-grid design environment. 
The constraint-based nature of the language also gives it an advantage over 
alternate languages in virtual-grid environments, such as ICDL [AcWe83] 
and ABCD [R084]. 

IMAGES is a successor to the "i" language developed by Steve Johnson 
[1082]. IMAGES' features reflect needs and interests of IC design groups as 

• "Make" is a C:-;IX utility that controls system software bas~d on the modification times of 
files. It is normally used to automatically recompile programs \\h~n source fiks are n~\\"~r 
than the corr~sponding executable images. 
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well as collective experience with the Gate Matrix [Lop80], GRED, (early) 
IDA [Hi84b] and MULGA [AcWe83] design environments. As a language 
for writing macro-cell generators IMAGES can be compared to other 
descendants of "i" including HILL and "L", as well as ALI [LN82] and its 
successors [L V83j [M08S]. 

3.1 Principal constructs 

IMAGES programs consist of a list of packages, marked by the keyword 
PACKAGE, each containing a list of symbols, which are sometimes referred to 
as cells, and which are marked by the keyword SYM Symbols contain 
primitive circuit elements including devices such as nand p type MOS 
transistors (DEVICE), contacts or vias (CONTACT), wires (WIRES), ports, which 
are sometimes called pins or terminals (PORTS), and primitive pieces of mask 
geometry such as polygons (BLOB) and rectangles (RECT). In in order to 
support hierarchy, symbols may also contain instances of previously defined 
symbols(INST). 

Other IMAGES statements exist for manipulating the geometric placement 
and electrical connectivity of primitive circuit elements. The position 
constraining statement (BIND) is used to constrain geometric placement of 
circuit elements. Another statement (PASTE) is used to constrain 
geometrically and electrically connect instances of symbols. To help specify 
geometric relations, arbitrary points in the layout may be named (MARK). A 
simple example of an IMAGES program is given in Figure 1, and the 
corresponding layout is shown in Figure 2. 
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DIRECTIVE VIRTUAL 
PACKAGE my_design 
SYM inv_v IBEGIN 

DEF_NET out_net; 
DEVICE TP top WIDTH=2 ORIENT=VER 
DEVICE TN btm WIDTH=1 ORIENT=VER 
PORT POLY in ; 
WIRE POLY WIDTH= 1.2 btm .gn UP 4 TO top .gs; 
WIRE POLY in RIGHT 8 TO btm.gn; 
CONTACT MDP dpout top.de ; 
CONTACT MDP srcpwr top.dw ; 
CONTACT MDN dnout btm.de ; 
CONTACT MDN srcgnd btm.dw ; 
WIRE METAL dpout TO dnout; 

PORT METAL vddleft ; 
MARK METAL vddcenter 
PORT METAL vddright ; 
WIRE METAL WIDTH=2 vddleft RIGHT 4 

TO vddcenter RIGHT 8 TO vddright; 
WIRE METAL WIDTH=2 srcpwr UP 8 TO vddcenter; 

PORT METAL gndleft; 
MARK METAL gndcenter; 
PORT METAL gndright; 
WIRE METAL WIDTH=2 gndleft RIGHT 4 

TO gndcenter RIGHT 8 TO gndright; 
WIRE METAL WIDTH=2 srcgnd DOWN 8 TO gndcenter; 

CONTACT MNTUB tubtop vddcenter; 
CONTACT MPTUB tubbtm gndcenter; 
PORT METAL out (dnout,in); 

CONNECT out_net out dnout; 
IEND 
ENDPACKAGE 

Figure 1. An IMAGES Leaf Cell 

237 
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Figure 2. The Resulting Layout 

More detail on language features will be given in the sections below. 

3.2 IMAGES Use 

A typical design path for using the IMAGES language to build a chip might 
include invoking an awk-like or C-like pre-processor whose output would be 
directed to the IMAGES translator. This would result in a virtual-grid layout 
which could be viewed graphically. The compacter, and optionally the suite 
of symbolic routers, would then be invoked to produce a fixed layout. This 
process is graphically depicted in Figure 3. Once the design is settled, this 
process may be coordinated by means of UNIX tools, especially the make 
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Figure 3. IMAGES Use in the IDA Environment 
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Each IMAGES primitive circuit element has a number of attributes. The 
IMAGES language provides constructs that allow the user to query the 
values of attributes of instantiated cells. For instance for an instantiated 
symbol c with port p the expressions: 
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c.p'x 
c.p'LAYER 
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give the value of the .\' coordinate of p and its layer respectively. Supported 
attributes in IMAGES include the geometric coordinates of an object (x and 
Y), its layer (LAYER) and its net (NET). 

3.4 Technology Independence/Technology Accessibility 

In order to make the language as technology independent as possible, 
IMAGES uses a technology file reader and technology database, which will 
be described in Section 6. The technology file influences the IMAGES 
translator in two ways: it determines the set of technology words, such as 
METAL, that will be recognized; and secondly, it provides some quantitative 
access to the underlying technology. This complements the use of the 
compacter: many global positioning tasks and wiring need be parameterized 
by only a few simple constants in order to acheive technology updatability. 
To accomplish this, a set of technology specific keywords are supported, 
including TECH 'MIN _DESIGN _RULE. TECH 'LAMBDA, TECH' 
METAL_TO_METAL_SPACE and others. These keywords and their values are 
supplied by the technology database, which means that new categories of 
information can be added with little effort. 

35 Constraint-Based Design 

Fixed coordinates are rarely used in hand-edited IMAGES programs. Tools 
which generate IMAGES as output vary in their use of constraints, from 
tools such as the editor, which writes a dialect of IMAGES that is free of 
constraints, to the routers, which write generate an IMAGES output that is 
heavily constrained. 

As an example of constraint-based design, note that the inverter example 
given in Figure 1 contains no fixed coordinates at all. Instead objects are 
placed relative to each other by using the WIRE and BIND statements in the 
IMAGES language. For instance the statement: 

WIRE METAL dpout DOWN TO dnout; 

constrains, by virtue of the DOWN keyword, the x coordinates of dpout and 
dnout to be the same and the y coordinate of dpout to be greater than the y 
coordinate of dnout. The same constraint-based geometric placement of 
these elements could be accomplished without adding a wire by the following 
statement: 
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BIND dpout ABOVE dnout; 

Alternately, dpout could be constrained to be a distance of exactly three 
units above dnout by any of the following statements: 

WIRE METAL dpout DOWN 3 TO dnout; 
BIND dpout ABOVE dnout BY 3; 

or, at the time of defining dpout: 

!place the x coordinate of dpout 
tat the x coordinate of dnout 
lplace the y coordinate of dpout 
tat the y coordinate of dnout + 3 
CONTACT MP dpout (dnout , dnout + 3); 

This technique of "design by constraint" is useful for people writing directly 
in IMAGES, since it eliminates the tedious job of recalculating absolute 
positions whenever there is a minor layout change. This motivates the use of 
constraints as a floorplanning tool, which is discussed in a later section. 

3.6 Modularity 

In a generator design environment a problem of naming conventions often 
arises when several independently designed generators are integrated into a 
single layout. To solve this problem in IMAGES a simple analog of the Ada 
packages construct is used. This construct allows designers to use names 
freely and to "package up" their designs in a way that will allow for easy 
integration. 

Modularity is also supported at the symbol level. IMAGES' symbols are 
broken down into the external view and the internal view. The external view 
consists of the ports of a symbol, while the internal view consists of all other 
circuit elements. This provides for further protection of the global name 
space. 

3.7 Electrical Connectivity 

IMAGES provides constructs for specifying the electrical connectivity of a 
circuit design and uses this information to make inferences about the circuit 
when processing the design. This facility does not replace the need for 
circuit extraction but rather complements it. The IMAGES view of electrical 
connectivity can be checked against the extracted view to ensure that the 



242 VLSI CAD Tools and Applications 

actual connectivity reflects the designers intention. 

Inside IMAGES a net is a property associated with a set of IMAGES 
connections. Connections represent electrical connection points in the three 
dimensional design space. Connections are associated with terminals of 
devices, and contact cuts, as well as with ports and marks of symbols. 
Connections differ from simple geometric locations in that they have a layer 
and a net associated with them. 

The IMAGES translator has two rules for deriving electrical connectivity 
from information supplied by the user: 
1)if an IMAGES object that is a member of an net is placed at a connection, 
and if the layer(s) associated with the connection are consistent with the 
layer(s) associated with IMAGES object, then a single net results that is the 
union of the nets associated with the connection and the object. 
2)if a wire connects two or more connections, and if the layer(s) associated 
with the connections are consistent with the layer associated with wire, then 
a single net results that is the union of the nets associated with each of the 
connections. 
As an example of connectivity derivation, consider the following portion of 
Figure 1: 

DEVICE TP top WIDTH=2 ORIENT=VER 
PORT METAL vddleft NET=vdd; 
MARK METAL vddcenter ; 
PORT METAL vddright ; 
lplace the contact at the diffusion west 
lterminal of transistor top 
CONTACT MDP srcpwr top.dw ; 
WIRE METAL WIDTH=2 vddleft RIGHT 4 

TO vddcenter RIGHT 8 TO vddrightj 
WIRE METAL WIDTH=2 srcpwr UP 8 TO vddcenter; 

After the IMAGES translation of this design srcpwr. vddleft. 
vddcenter. vddright. top .dw. will all share the same user-defined 
electrical net vdd. The contact srcpwr and the transistor port top .dw 
will share the same net because srcpwr was placed at top .dw and the first 
rule comes into play. The connections srcpwr. vddleft. vddcenter. and 
vddright will all share the same net because they are wired together and 
the second rule is in effect. 

A set union-find algorithm [Tar75] is used to dynamically resolve the 
electrical connectivity of the circuit described by an IMAGES program. The 
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advantage of using a union-find algorithm over simply finding the connected 
components (i.e. nets) of all the nodes (i.e. connections) in the circuit is that 
errors in the user program may be discovered more quickly and more 
carefully related to the particular element of the user program that is 
responsible for the error. 

3.8 Translator Directives 

When a user wants to consider only the electrical connectivity of a circuit, 
before a real geometric placement has been determined, processing of 
geometric placement information may be turned off. Alternately, electrical 
connectivity maintenance may be turned off, and only geometric information 
represented. As mentioned above, the user may elect only to interpret the 
external view of a cell and ignore internal cell features. Finally at the 
statement level a general syntactic construct is provided for passing extra 
pieces of information to other programs downstream. In other languages 
this information typically clutters comment fields. 

3.9 Summary of the Various Uses of IMAGES 

The relationships among the ways that IMAGES is used is summarized in the 
following table: 

VIRTUAL FIXED 
CONSTRAINT -BASED output of some generators chip assembly 

NUMERIC output of editor output of compacter 

3.10 Geometric Constraint Resolution 

User-defined constraints in IMAGES are of two types, equality constraints 
and inequality constraints. The user-defined constraints of an IMAGES 
program are similar to the design rule constraints that a constraint-based 
compacter must solve, but several important differences exist. Typically, a 
compacter, working from a "sticks" or virtual-grid design, has an initial 
layout and can easily find the topmost or leftmost elements of the layout. 
Locating these elements is useful for ordering vertices of the design-rule 
constraint graph associated with the circuit. Since circuit designs in 
IMAGES have no initial layout, the problem of finding the leftmost or 
topmost elements of the circuit is equivalent to the problem of finding a 
feasible layout, which is precisely the problem that the IMAGES constraint 
resolver is trying to solve. On the other hand. if the initial layout fed to the 
compacter is design-rule correct, illegal constraints in the design-rule 
constraint graph should not be present. In a user-defined IMAGES program, 
however, any number of illegal constraints may have been mistakenly 
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included in the program; moreover, one of the important jobs of the 
IMAGES constraint resolver is providing intelligent error· messages in this 
situation. A third difference between the problem facing the IMAGES 
translator and a compacter has to do with the number of fixed objects. In a 
one-dimensional compaction algorithm the compacter assumes that leftmost 
and topmost circuit elements are fixed, and compaction is performed with 
respect to those. In comparison, in an IMAGES circuit design, geometrically 
fixed elements may appear throughout the design. or alternately, there may 
be no fixed elements in the design at all. Because of these differences, the 
IMAGES constraint resolver faces a somewhat more complex problem than 
the constraint resolver of an ordinary one dimensional constraint-based 
compacter. 

The resolution of constraints in IMAGES is performed using an efficient 
technique [Ke86] that uses a union-find algorithm for solving equalities 
[Tar75] [Leng84] and an adaptation of a shortest-path algorithm [John77] 
[LiW083] for solving inequalities. Using this algorithm constraint resolution 
is accomplished in nearly linear time and is always reduced to a small 
fraction «10%) of total processing time for an IMAGES program. The bulk 
of the processing time is inevitably spent in processing the syntax of the 

4. Compaction and Assembly 

Today almost all IDA designs pass through a compaction stage and an 
assembly stage. Compaction relieves the designer of responsibility for 
satisfying the detailed design rules for a technology, while assembly controls 
the compacter and expedites the task of fitting cells together. 

4.1 Compaction 

In IDA, compaction is thought of as a technology-binding process, not as a 
process for making a layout smaller. This is why the IDA compacter is 
named ibind. The compacter accepts a design that was generated without 
knowledge of the design rules, and a description of the rules for the target 
technology. It binds the rules to the input symbol, and creates a new symbol 
that conforms to them. In IDA, the input symbol exists in a different 
"universe" than the output symbol. The first is on the virtual-grid, the 
second on the fixed-grid. For that reason, it is impossible to take the output 
of the compacter and feed it back into the compacter again. However, both 
are described in IMAGES, and the virtual and fixed-grid representations 
bear a strong resemblance to each other (though the "uncompacted" one may 
actually look smaller on the screen). 
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4.1.1 Combining Cells: Routing and Pitch Matching The compaction-and
assembly process allows designers to choose to make connections using 
pitch-matching or routing as needed. Pitch-matching is done by selectively 
de-compacting cells, and then placing them next to each other with a small 
amount of overlap, so that wires in one subsymbol touch the wires in the 
next. An alternative technique is to add routing wires between cells. This 
can be done with or without pitch-matching the cells: If they are pitch
matched, only a tiny section of wire will be needed for each connection. If 
they are not pitch-matched, more wires, perhaps on several layers, may be 
required. The IDA system supports both methodologies: the first is most 
useful for regular arrays such as RAM cells, the second for chip assembly . 
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Figure 4. Spacing the Virtual Grid 

At present, the ibind program uses the virtual-grid algorithm. Virtual-grid 
compaction is more straightforward to implement than some other 
compaction techniques because there are fewer degrees of freedom. In 
particular, all the objects than begin compaction on a single virtual-grid line, 
either horizontal or vertical, are normally still lined up after compaction 
[West81]. The process of compaction is therefore reduced to one of finding a 
spacing between these lines. In most cases, the distance required between 
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adjacent grid lines is the maximum spacing required between any two 
components that face each other on the grid. For example, in Figure 4, 
because d t -t is larger than d v -v it will be used as the distance from grid 1 to 
grid 2, and there will be some extra unused space between the contacts. 

4.1.2 Displaying a Virtual-Grid Symbol - Points Around Transistors A virtual
grid layout is usually a reasonable representation of the actual layout. 
Transistors are not represented in their exact dimensions: they are 
approximated by a three-grid by three-grid region. Its center represents the 
center of the active area, one grid away on each side are the source and 
drain connections, and one grid away in the orthogonal dimension are the 
connection points to the gate. These symbolic layout connections to 
transistors are preserved as transistor sizes are changed. During compaction, 
the actual size of the transistors is determined by multiplying the default size 
for each type of device (e.g. TP or TN) by the individual size of the device. 
A typical example might be a pMOS device whose width is 2.5 times' the 
default width for pMOS devices (3 microns), or 7.5 microns. By deferring 
this multiplication until ibind is run, the design can more easily be ported to 
new technologies with different transistor properties. The compacter also 
moves the transistor connection points rigidly with the center of the 
transistor, which may result in a gap between the transistor and the wires 
connecting to it. The IDA compacter automatically inserts wires into the cell 
as necessary to fill this gap. 

4.13 Strapping Wide Transistors When contacts to metal wires are attached 
to the source or drain of a transistor, the compacter automatically introduces 
a metal wire and a row of contacts. This process is called strapping, and is 
critical in high performance circuits. Since the resistance of diffusion is high, 
a large transistor without strapping may actually be a net loss, since its drive 
is diminished, and its parasitic capacitance slows down adjoining circuitry. 

4.2 Assembling Compacted Cells 

Assembly is performed by the pasteup program. Pasteup takes a specification 
the cells to be assembled and which terminals on those cells are to be 
connected. For example, to abut two cells, "a" and "b" so that the wires "gnd" 
and "vdd" were pitch-matched, the user would specify: 

PASTE a.gndright TO b.gndleft; 
PASTE a.vddright TO b.vddleft; 

In contrast, the MULGA[Wes81] assembler requires that ports to be 
connected must be on the same virtual-grid line. That is, if the two virtual-
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grid cells are plotted next to each other, the connected ports must be 
coincident. This may require the designer to add virtual-grid lines to cells to 
achieve connectivity. Once this task is done, it has the advantage the the 
module is easier to view in the virtual grid, since all the wires line up neatly. 
However, it is tedious, and may make the individual subcells cells harder to 
reuse in other designs, since they must to be modified to fit their context. 

IDA's pasteup program and finds legal spacings between the PORT's on 
subsymbol using a graph traversing form of linear programming. It then 
writes the PORT spacings out to file, which is used by the ibind program to 
stretch the leaf cells. The stretched cells are then assembled with the 
IMAGES language. 

4.3 Beyond Virtual-Grid Compaction 

Experience with virtual-grid compaction has led to an appreciation of its 
virtues and limitations. Although leaf cells compacted by the virtual-grid 
algorithm are not as small as they could be [Wolf85], in many practical chips 
it is cell assembly, not leaf-cell compaction, that is the process most in need 
of improvement. The area inefficiencies of the virtual-grid compaction 
algorithm are magnified when it is used for cell assembly. The pitch
matching algorithm does not easily allow a cell to contain both subcells and 
primitive elements, so that random wires, vias, and transistors used to 
connect cells must be put in specially-created cells., In addition, IDA's 
facilities for finding the required spacing between cells are, at present, not 
fully automatic. 

To correct these problems, an effort is underway exploring constraint-graph 
hierarchical compaction as a more efficient means of assembling large chips. 
Constraint-graph compaction has been used in a variety of systems, such as 
CABBAGE [Hsueh79]. In constraint-graph compaction, unlike virtual-grid 
compaction, each component is assigned its position independently, giving the 
layout elements greater freedom of movement. The design-rule constraints 
can be written as linear inequalities; these inequalities can themselves be 
represented as a graph, where nodes reflect components or wires. Weighted, 
directed edges represent the value and direction of the inequality. 
Connections between components can be represented by pairs of constraints 
that specify the upper and lower bounds on the distance between two 
components. The graph can be solved using a critical-path algorithm to find 
positions for the components (represented by values of the nodes) that satisfy 
all the design rules and make the layout as small as possible. The constraint
graph representation can be extended to composite cells. For example, Lava 
[U1l84] assembles hierarchical layouts using the constraint-graph technique. 
To reduce the complexity of the compaction problem, an abstraction of the 
cell is built that represents. in simplified form. the cell's stretchability. The 
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only components represented in the abstraction are the ports. Constraints 
between the ports define how the cell can change shape during compaction. 
The port constraints are determined from the design-rule constraints for the 
cell; the abstraction therefore behaves exactly as would the full cell during 
compaction. The hierarchical compaction step finds the positions of the ports 
that match the cell to its environment. The complete layout for the. stretched 
cell is found by recompacting the original cell with added constraints that 
force the ports to their new positions. 

One limitation of some hierarchical compacters is their inability to determine 
the minimum spacing between cells. The spacing required from a component 
to a cell can be found only by looking inside the cell to find the objects near 
the boundary that affect spacing. Some hierarchical compacters use the 
maximum design rule as the spacing from a cell to any other object. The 
worst-case spacing is rarely necessary, and the waste can be significant in 
large arrays of cells. The difference between the worst-case rule and the 
actual required spacing can be particularly costly in CMOS technologies, 
where the tub-tub spacing is typically much larger other than spacings. 

The donut abstraction [Rei86] extends the notion of a cell abstraction with 
enough information to allow the compacter to determine the spacing between 
cells or to overlap cells where feasible. The donut abstraction for a cell 
includes both the cells' external ports and components near the boundary that 
can affect cell spacing. The abstracted constraint graph for the cell describes 
how ports and components in the donut stretch during compaction. The 
compacter can then look at the positions of components within the donut to 
determine the separation between the cell and other objects. 

4.4 Cooperation Between Compaction and IMAGES Translation 

Nothing in the IMAGES language or the IDA methodology requires that the 
virtual-grid compaction algorithm be used. Indeed, because both the 
IMAGES translation process and many modern compaction algorithms center 
around resolving a graph of constraints, it seems likely that there may be 
some advantage to combining the two steps. Research into this possibility is 
underway. 

5. Layout Synthesis 

The IMAGES language, combined with the compacter system, can greatly 
accelerate the design process of full-custom chips. However, to get 
maximum leverage a higher level of automation is required, in which the 
primitives are not transistors or contacts, but subsystems more closely tied to 
the intended architecture. This is the motivation behind the IDA layout 
synthesis tools. These tools come in two varieties: fixed-floorplan generators, 



Overview of the IDA System 

and random-logic generators. 

5.1 Fixed-floorplan tools 
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Even with the assistance of all the general-purpose tools, developing a major 
subsystem of a chip still requires two things: expertise and effort. In order to 
get the most from both, the notion of generators was introduced to the IDA 
system. These generators are software units that contain a carefully 
worked-out design and allow it to be parameterized so that it can be applied 
in a number of different contexts, without the effort of redesigning from 
scratch. This technique captures both circuit and layout expertise in 
machine-readable form, so that the generator user need not be 
knowledgeable about the internals of the circuit being created. In addition, 
generators can be used within generators, further multiplying their utility. 

5.1.1 The C-IMAGES and Awk-l Languages The special purpose generators 
provided under IDA are written in either the 'C-IMAGES or AwkcI 
languages. The first is a mixture of IMAGES + the C language, the second a 
mixture of IMAGES + awk (Awk is a string processing language under 
UNIX.) These languages were developed specifically for this purpose. Each 
line of the source file belongs to either IMAGES ·or the host language. A 
preprocessor determines which, and maps IMAGES statements into print 
statements. In order to do this the preprocessor must understand the 
technology words such as METAL and MPTUB, so it starts by reading the IDA 
technology file. The result is then compiled with the ordinary compiler , and 
the executable file is stored in a library as a generator. Each time it is 
executed, the user can specify a set of parameters, such as the number of bits 
in an N-bit counter generator. During execution, the print statements 
introduced by the preprocessor are executed and generate an IMAGES file. 
Exactly which print statements are executed, and how many times, is 
controlled by the host language (C or awk), and this determines the nature 
of the design being generated. 

5.2 Fixed-Floorplan Generators: Parameterized Layouts 

In the IMAGES language section, an inverter was used as an illustration. 
This inverter could be compacted and assembled as a generator, the resulting 
code shown here. 
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DIRECTIVE FIXED; 
gen_row (name , stages) char *name; int stages; 

SYM %sname IBEGIN 
INST inv_l inv[1 .. stages]; 

FOR j in [1 .. stages] LOOP 
PASTEALL inv[j] .gndright TO inv[j+1] .gndleft; 
WIRE AUTO inv[j].out RIGHT TO inv[j+1].in; 
ENDLOOP; 

PORT AUTO in inv[1].in; 
PORT AUTO out inv [stages] .ou t ; 
PORT AUTO gnd inv [1] .gndleft; 
PORT AUTO vdd inv[stages].vddleft; 
lEND 

main (argc, argv) char **argv; int argc; 
gen_row (argv[ 1], atoi (argv[2]»; 

This generator produces a symbol with a user-specifiable number of inverters 
connecting its input to its output. It accepts the name of the output symbol 
and the number of stages as parameters from the UNIX shell. (In practice, a 
production-quality generator normally checks its inputs and prints a line 
explaining its proper use if the parameters are unreasonable. Very complete 
parameter checking and default services are provided in the GENASYS 
system, which is a subsystem of IDA developed at Allentown, PA.) This 
generator was run with a parameter of 3, the resulting layout is shown below: 
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In this case the generator is basically just a programmable repetition of 
lower-level symbols, with little "value-added." However, the same technique 
can be applied to far more complex subsystems. For example, one generator 
in IDA lays out cyclic redundancy code (CRC) counters. An N-bit counter of 
this type has a period of 2N , but has only a fraction as much circuitry as 
binary counter. In order to do this, the generator has to contain a table of 
irreducible polynomials of degree 2 through 16 (the maximum value of N 
supported). When it is invoked, it looks up the appropriate polynomial, and 
then allocates and wires together a series of shift-register cells and XOR 
gates. One of these counters was used in a dynamic RAM chip to supply row 
addresses during automatic refresh. 

5.3 Technology-Updatable Generators 

While developing a custom symbol represents a good deal of effort, 
developing a generator represents an even greater investment. In order for 
such an investment to be justified, the generator should be useful for the 
longest time possible, preferably longer than the lifetime of anyone 
technology. Therefore, the recent work in generators has combined the C
IMAGES language with the compacter, in order to produce layouts that are 
independent of the detailed design rules. Because cells need to be combined 
with each other in a variety of ways, the IDA methodology includes three 
techniques for using compaction in generators: 

1. The subsymbols can be compacted once and put in a library. Each time 
the generator is used, they are constrained together using the IMAGES 
language. This is convenient when some portion of the cells are not 
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built with the compacter, as with RAM designs. 

2. The cells can be created in the virtual grid once, perhaps with the 
editor, in the virtual grid, and then compacted and assembled each time 
the generator is run. This automatically provides two degrees of 
freedom: pitch matching and transistor sizing. This method is used by 
most of the IDA fixed-floorplan generators today. 

3. Finally, the generator can create a new, custom, virtual-grid symbol 
each time it is run. This is then compacted, and the job is complete. 
One such generator, SC2, is discussed in the next section. 

5.4 SC2: A Custom-Logic Layout Tool 

When a designer needs a medium-sized block of custom logic, and there is no 
such block pre-developed, he or she may consider using SC2 as an alternative 
to a developing a symbol for it from "scratch." The choice between using 
SC2 or a full-custom symbol is normally based on the degree of regularity in 
the logic, and the speed and size requirements. For small to medium-size, 
highly random symbols, SC2 can represent an attractive alternative. 

The input to SC2 basically consists of a transistor connectivity list. This list 
can be created in a number of ways: 

1. By hand, textually. 

2. By graphic schematic capture, using "icon," the IDA editor. 

3. By extracting it from a preexisting layout. 

4. By synthesis. The PROLOG program "itrans" is available in IDA to 
convert arbitrary boolean equations into transistors. It understands 
simple logic transformations, such as DeMorgan's law, and the 
principles of complementary, domino and zipper logic. 

The list of transistors is enhanced with geometric specifications. For 
example, the user may specify on which side of the circuit module each input 
or output needs to be located. SC2 parses the input, converts it into CMOS 
transistor connectivity, orders and orients the transistors, and wires them 
together in the gate-matrix style. The steps inside SC2 are as follows: 

1. Very wide transistors are split into several smaller ones, wired in 
parallel. 

2. pMOS and nMOS devices are grouped into pairs. 

3. The pairs are arranged in order from left to right. The algorithm to do 
this is a min-cut technique invented by Kernigham and Lin [Ker70j. 
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4. The source and drains of the devices are flipped as necessary to 
maximize the number of abutting diffusion regions, and secondarily, to 
minimize routing requirements. 

5. Routing takes place using a variety of techniques, ranging from the 
cheapest (in terms of area) to the most costly. A "greedy" channel 
router is used last. 

6. Extraneous contacts are eliminated, and wherever possible poly silicon 
wires are replaced with metal wires. 

7. An IMAGES language file is written. 

An example of an input file to SC2, using "itrans," is shown below: 

symbol(mult2_v). #this is a one bit multiplier 
generate :-

mb := (xiO * t) + (xi * 0), 

b := ( mb * nc ) + ( ( Amb) * n ). 
cxb := ( ci* (Ab) ) + ( (Aci) * b). 
so := ( cxb * (Asi) ) + ( (Acxb) * si). 
co := ( (si + b) * ci ) + ( si * b ). 

access ( xi 1 • [left. bottom, right]). 
access ( xiO. [top]). 
access ( ci, [left]). 
access ( si. [right]). 
access ( 0 • [top. bot tom] ) . 

The output is shown here: 
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5.5 Routers 

Symbols created by icon, SC2, or other means need to be interconnected in 
order to do useful work. For highly regular layouts, the easist and most 
efficient way is usually to generate the interconnection wires using a loop in 
IMAGES. For example, if a and bare subcells, with b below and to the 
left of a, then the loop 

FOR i in [1 .. 10] LOOP 
WIRE METAL b .ou t [i] RIGHT UP TO a .in [i] ; 

ENDLOOP; 

would connect the outputs of b to the input of a. 

For more randomly-connected layouts more complex routing is needed. To 
support this, IDA provides a set of routers that take advantage of the 
IMAGES language. The key idea here is to insert the routing wires in the 
same cell as the symbols to be routed, not in a rigid subcell. The wires and 
contacts can then have their positions constrained symbolically to one of the 
objects being routed, and the wires are allowed to stretch to the other. This 
way, the objects are still not fixed rigidly even after routing, and may be 
moved further apart to meet other requirements. Moreover, this method 
does not require that the designer provide any prediction of the space 
required for the route. 
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6. Other Tools and Features of IDA 

In addition to the items discussed above, the IDA toolset incorporates several 
additional facilities to support and extend it. These are summarized here 

6.1 Technology Description File 

The IDA tools are parameterized by a technology description file [Chu83] 
that describes the set of layers, transistors, contacts, and other facilities 
provided by each technology. Each tillie an IDA program begins execution, it 
starts by reading a technology description from a file into a global data 
structure known as the technology database. Programs get their information 
about a technology through the technology database-no constants are hard
coded into the programs. This makes is easier to write CAD programs that 
handle designs involving a number of technologies. The technology database 
has been successfully used to describe a number of different nMOS, CMOS, 
and wafer-scale technologies. 

The first step in describing a technology is to define the layers available. 
Each layer is defined by a name and a mask level. Some of the symbolic 
levels, such as NDIFF, may actually translate into several mask layers (such 
as THINOX and DIFFUSION). Others, such as the ANNOT (annotation) layer, 
do not translate into any mask, but are just used to "comment" the design. 
Each layer has a minimum width (the size of the smallest allowed feature), 
and a default width associated with it. Once the layers have been defined, 
design rules can be specified between them. A RULE statement specifies the 
spacing between two layers under normal circumstances; a field in the rule 
statement allows specification of different spacings for elements on the same 
electrical node and those on different nodes. A FLAG statement describes 
exceptions to those rules: it includes two layers, an integer code identifying 
the type of exception, and the value of the rule. (The meaning of the flag is 
defined by the program using the flag information.) For example, in one of 
the older, 2.5 CMOS technology file, some layers and rules are: 
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# LEVEL name, minimum-width, real-level, flag, MASK 
LEVEL METAL 2.5 1 1 METAL -1 0 -1 0 N70 
LEVEL NDIFF 2 1 1 NDIFF NPLUS 2.5 -1 0 N31 
LEVEL POLY 2.5 1 1 POLY -1 0 -1 0 N40 

# RULE from, to, net-equivalence, distance 
RULE NDIFF POLY both 1.25 

# FLAG from, to, net-equivalence, flag 
# flag=Ox02 == NOTCH; flag=Ox01 == TRANSISTOR 
FLAG NDIFF NDIFF other 1 

Layers are also used in the definition of transistors. The technology database 
understands transistor and contact primitives, and allows any number of 
component types of each primitive to be defined. The IMAGES language 
defines transistors as stretchable objects: the exact geometry depends on the 
transistor type information combined with that particular transistor's channel 
length and width. Examples of transistor specifications are shown below: 

# Transistor: 
# TRAN name substrate min-width min-length default-width 
# default-length effective-chan-length V-sub-t mobility 
TRAN TN PTUS 2 3 6 3 1.3 700 640 

# The rectangles that make up the transistor: 
# TRLAYER type-name logical-level layer 
# left-extension bottom-extension right-ext, top-extension 
TRLAYER TN SOUNDSOX SS DEF -6 -9 6 9 
TRLAYER TN DIFFUSION NDIFF DEF 0 -3 0 3 
TRLAYER TN GATE POLY DEF -3 0 3 0 

Other parameters define global properties of the database. Available 
properties include a flag to indicate whether the technology is nMOS or 
CMOS, the oxide thickness, the name of the transistor type to be used as a 
pullup, (required for displaying interactive simulation), and the contact to 
use for power and ground connections to the tubs in a CMOS technology. 
While this decree of parameterization has complicated the software of IDA 
to some degree, the effort has been rewarded many times as IDA has been 
ported to new technologies with minimal effort. 
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6.2 Quick Access to Large Designs 

In the case where all the IMAGES symbols have been produced graphically, 
all coordinates are fixed and there is no need to parse a design "bottom up." 
The IDA tools can take advantage of this situation with a "pseudo-database" 
that provides quick, random access to the individual cells. In this format, 
each symbol normally resides in its own file. A design can be spread out 
over any number of UNIX directories, a feature that is heavily used when 
libraries of standard symbols are needed or when several people cooperate 
on a design. The text in these cells is a dialect of IMAGES, forma ted in a 
way that allows the external information about a cell to be accessed 
independently from its internal details. Because the structure of these text 
segments limits the amount of information that must be scanned to enter the 
editor, editor start-up time is independent of the overall size of the chip. 

Because the basic IMAGES medium is textual, it is possible to use a wide 
range of conventional text manipulation tools on it. For example, under the 
UNIX operating system a command called "grep" is available that searches 
for a pattern occurring in any specified set of files. This turned out to be 
useful for identifying various features when it was necessary to adapt a 
design to new design rules. For example, to find all nMOS pullup transistors 
with channel length equal to 2 lambda, the command 

grep "TI .* WIDTH=\<2\>" * .im 

was used. 

Because IDA can accept a mixture of hand-made IMAGES symbols and 
machine-edited symbols, it retains flexibility for those parts of the design 
undergoing current revision and needing IMAGES design-by-constraint. But 
because non-essential low-level details need not be read in until needed, the 
session start-up time can be dramatically reduced. 

63 The leon Editor 

"Icon," the editor supplied with IDA, is capable of supporting both 
schematics and layout editing [Hill84a]. In schematics mode, the logic 
designer can use icon to design with logic cells from one or more libraries, 
and see them on the screen in logic diagram format. In layout mode the 
designer sees the layout with accurate dimensions. Because the internal 
structures icon uses for schematics are the same as those used for layouts, it 
is possible to intermingle the two. This gets around the problem of 
interfacing schematics with automatically generated layouts, and assists in 
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simulation and documentation. 

The icon editor's command structure is based on a "reverse-polish" model. 
In this model, one first specifies the operands, then the operation. The 
operands are denoted by a subset of objects on the screen known as the 
"chosen" group. Icon provides many ways of selecting a portion of a symbol 
to be part of the chosen group, e.g. everying right of the cursor, all the 
transistors, everything within a certain box, and so forth. Icon then provides 
a wide range of operations that can be performed on it, e.g. deleting them, 
duplicating them, creating a subsymbol out of them, etc. While editing, icon 
also keeps track of the electrical net associated with each object. This can be 
tied into the editing operations, For example, one can choose every metal 
wire associated with the Vdd net and change its width to two times the 
minimum. Almost every operation in icon can be undone with the "undo" 
command, including the "undo" command itself. 

6.4 SOISIM simulator 

In order to help verify the correctness of the logic design, IDA includes an 
interface to a logic simulator called SOISIM which models MOS logic at the 
switch-level[Szy82]. The model understands the notions of pull-up, pull-down 
and pass transistors, resistance ratios, and stored charge, and is similar in 
nature to MOSSIM [Bry80]. Internally, the simulator understands and 
optimizes the functions of common MOS structures, such as pass transistors 
and AOI gates. 

One unusual feature of the IDA toolset is the ability to combine simulation 
with interactive graphics. While inside icon, the user can invoke the SOISIM 
simulator. This forks off a simulator process interacts with it via data 
streams, and displays the results on the graphic screen. The user can enter 
values by pointing to nodes on the screen and setting their values. This form 
of simulation can be performed in schematics, virtual-grid, and fixed-grid 
modes. In schematic mode, it is relatively easy to make logic changes 
quickly. After committing a logic design and beginning its layout, the 
interactive simulation is normally used only to track down bugs, not to 
modify the logic. 

For large designs, interactive simulation gets tedious, so designers write C 
language programs that drive the SOISIM simulation and print out the 
results. These two modes of use are complimentary. Experience has shown 
that the non-graphical interface is invaluable for testing out complete systems 
when they are nearly correct, but that when there are errors users tend to go 
back to the graphical mode to puzzle them out. 
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6.5 Design-Rule Checking 

IDA includes a layout-design-rule checker that is parameterized by the 
technology database. This checker works hierarchically, examining only the 
boundary of large symbols where they may interact with other adjoining 
circuitry. Because electrical connectivity and transistor placement are 
specified textually and explicitly in IMAGES, the checkout tends to be 
thorough and meaningful. The performance is fast enough to allow a circuit 
to be checked in time that is perhaps double that required to parse it, which 
is on the order of tens of minutes for a 30,000 transistor chip on a DEC V AX 
111780, depending on its structure and hierarchy. 

6.6 Transistor Sizing 

In order to operate at a specified speed, it is mandatory that individual 
transistors be sized appropriately to the load that they must drive. TILOS is 
a tool that examines the timing requirements of a circuit, and automatically 
determines the minimum transistor sizes that will achieve the required 
speed[Fish85]. TIL OS and SC2 can work with each other, and with SOISIM, 
so that a design with a performance requirement can be simulated and then 
fabricated automatically. 

6.7 Tub Inserter 

CMOS chips require that transistors be surrounded by tubs of the opposite 
polarity. Ida includes an automatic tub inserter to expedite this. The 
designer or generator is required to provide a reasonable number of tub 
contacts, the tub inserter works by finding the closest contact to each object 
requiring a tub, and then surrounding both by a rectangle of tub material. 
Extraneous or redundant rectangles are then eliminated. 

6.8 Circuit Simulation 

In order to evaluate analogue circuit performance, IDA can interface with a 
circuit capacitance extractor called GOALIE [Szy83]. This produces a circuit 
description file that is read in by a circuit simulator based on SPICE. 
Because of the effectiveness of SOISIM and TILOS, today only small, critical 
circuits, such as clocks or carry propagation lines, are normally simulated 
with ADVICE. 

6.9 The IDA Software Environment 

The IDA design environment consists of the major tools described above plus 
many utility programs. The code of the IDA design environment amounts to 
over 200,000 lines of the C language. At the .core of the IDA environment 
are the IDA common data structures for representing circuit design, as well 
as the IDA technology data structure, which embodies the information in the 
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technology file. To build and manipulate these data structures IDA employs 
a library of common code including: 

1. a technology file reader; 

2. memory allocation and reclamation routines; 

3. routines to build the IDA common data structures associated with 
circuit elements; 

4. routines to manipulate the IDA common data structures associated with 
circuit elements; 

5. routines for string and symbol table manipulation; 

6. routines for writing the circuit represented by the IDA data structures 
as an IMAGES program. 

In addition, considerable attention has been paid to making the code as 
portable as possible. Two facets of IDA illustrate this: the facilities for 
working with multiple host machines from a single, networked set of source 
files; and the set of extensible graphic terminal drivers that are bound into 
the code with a "jump-table" at run-time. 

7. Summary 

The IDA tools have helped to test a number of ideas and demonstrate their 
feasibility. Specifically, they have clearly demonstrated the utility of: 

1. the "design-by-constraint" techniques of IMAGES; 

2. interactive graphical simulation; 

3. tools based on a technology database; 

4. C-IMAGES and A WK-I language generators; 

5. the combination of machine and hand-compacted layouts; 

and other ideas. 

To be sure, there are gaps in the IDA toolset, most noticeably in the area of 
test generation, where work is just beginning. However, the overall 
experience in using IDA has been very positive. More than 60 different 
chips have been designed and fabricated, in technologies ranging from 3.5 
micron nMOS, to I-micron, high-speed nMOS technology, to three different 
CMOS technologies, and even to a new wafer-scale technology. The most 
encouraging statistic is that the majority of designs created with IDA have 
been fabricated with no logic errors. This is due in large part to the accuracy 
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and speed of the SOISIM simulator, which allows a thorough testing of the 
whole chip down to the transistor level. Equally important has been the 
accurate (and perhaps conservative) design-rule checker combined with the 
net specifications of IMAGES, which has made sure that designs do not fail 
because of unintentional shorts or missing power connections. But there is 
one other factor which has probably had the most important effect of all: all 
the CAD programmers are also chip designers. This gives them, first hand, 
the experience and understanding of which issues are important to building 
real chips. As a consequence, almost every chip built has had a side benefit 
of polishing or improving some portion of the IDA toolset, making each new 
design effort at least a little easier than the one preceding it. 
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1 Introduction 

NS is an integrated design system which unifies a broad spectrum 
of different IC design tools. NS currently contains facilities for 
schematic capture, electrical level simulation, switch level simulation, 
virtual grid symbolic layout with compaction and pitch-matching, 
automatic standard cell layout generation, fioorplanning, and network 
comparison between the layout and the schematic representations of a 
design. Designs may be entered either through a graphical editor or 
via procedural generation. All facilities of the system are accessible 
through a single graphical editor; they are all driven from a single 
data base and they may be manipulated through a single procedural 
interface. 

The technique NS uses for integrating large systems is radically 
different from that employed by more conventional (UNIX-based) CAD 

systems. The entire NS system has been implemented in an object
oriented extension of LISP (called Flavors) on the Symbolics LISP 

Machine. NS relies on the use of a large virtual address space in 
which all procedures and data are available from the time of their 
creation until they become garbage or the machine is rebooted. The 
various facilities in the NS system do not communicate by character
stream oriented techniques (that is, files or pipes); rather, procedures 
communicate by passing objects as arguments. Our central concern in 
this paper is to explain how such a system facilitates the construction 
of a highly integrated VLSI design system supporting a broad range of 
diverse tools. 

Integrated is probably the most abused buzz-word in the lexicon of 
VLSI. The typical integrated CAD system consists of a collection of 
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separate tools, each with its separate data structures and procedures 
which communicate by generating and parsing a plethora of file 
formats. In the best of cases, a "user-friendly" front end isolates the 
user from this by performing the various file conversions behind the 
user's back. Even in these cases, however, the level of integration 
achieved is fairly low. A collection of tools that communicate in this 
manner require a large collection of conversion routines. It is also 
difficult to force all of the complicated relationships involved in a 
sophisticated design to flow through too narrow a pipe. Finally, it is 
virtu8lly impossible for the end users of such systems to extend or 
customize the system to their own needs. 

This paper describes a design system, called NS, which is in fact 
highly integrated. There is a single graphical editor for manipulating 
all graphical aspects of a design (for example, schematic, and layouts), 
a single set of data representations, and a single programming 
language for manipulating these representations. These uniform 
interfaces provide a broad spectrum of facilities. The NS graphics 
editor facilitates the entry of both schematics and layouts. The 
editor's data structures represent the fact that at various levels of the 
design hierarchy, a particular layout is meant to be a faithful 
implementation of a particular schematic. This correspondence is 
checked by one of the NS verification tools. Simulators can simulate 
the behavior of both the layout and the schematic at both the 
electrical level (SPICE) and the switch level (RSIM), displaying the results 
through the NS graphical interface. Switch level simulation can be 
merged with and checked against a high-level functional simulation 
written in the host LISP language. At no time does a user of NS need 
to know about or be aware of file formats; the user only thinks about 
the objects in the design. 

The ability to achieve this integration comes from the use of a 
radically different programming style. NS runs on a Symbolics LISP 

Machine and makes use of the Flavor object-oriented extension of LISP 

[1]. There are four features that make such an environment a much 
better vehicle for integrating a large, diverse collection of tools into a 
single, uniform CAD system. 
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• Object-oriented programming, which allows a diverse collection of 
objects to exhibit a generic behavior. 

• The use of a large and uniform virtual address space, which 
holds all procedures and data structures. 

• Procedures communicate by passing data structures instead of by 
character streams or meso 

• Programs and data within such an environment are long-lived; 
they remain in the environment as long as they are needed and 
are garbage collected automatically by the system when they 
cease to be useful 

Another form of integration that NS exhibits which distinguishes it 
from more conventional CAD systems is its integration with the 
surrounding programming environment. All of NS is implemented in a 
single language (LISP). LISP is directly accessible from NS, since the top 
level of NS is an extension of tire LISP interpreter. End users of the 
system can employ all of the program development facilities of the LISP 

programming environment to create procedures which manipulate the 
NS data base. In most conventional CAD systems there are typically at 
least two programming languages with which the end user must be 
familiar: the command language of the host system and the language 
of the design system. Often, there is yet a third language which is 
the programming language of the host system. For example, in the 
MULGA system [2,3] these languages were the UNIX shell language, ICDL, 

and C, respectively. In contrast, NS provides an extension of LISP 

embedded in the LISP environment. There is only one language that a 
user need learn. As with most graphics editors, one can do quite a bit 
without learning any programming language at all. 

Finally, NS integrates its procedural and graphical elements. The 
graphics editor can, of course, display designs which were generated 
procedurally. In addition, the graphics editor can be used to create 
parameterized cell designs which are represented by generator 
procedures. This idea was employed earlier in the DAEDALUS [4,5] 
design system. 

This paper has two goals: to present the NS system, and to convey 
an understanding of how NS is implemented. The following section 
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explains the programming methodology used to construct NS and 
illustrates how this helped to. achieve the high level of . system 
integration. The next section outlines the NS core data structures. 
The following two sections describe the tools used for functional 
design and physical design in NS. 

The intellectual roots of NS lie in several systems: MULGA 

suggested the techniques of virtual grid symbolic layout, compaction 
and the pitch-matching style of layout assembly; DAEDALUS provided a 
style of user-interface and the representations used to support 
procedural generation; finally SUDS [6] and SCALD [7] greatly.influenced 
its schematic capture and network extraction techniques. 

2 The Programming Environment 

The features of the surrounding programming environment which 
make it possible to build a tightly integrated system as extensive as NS 

are expanded upon in the following sections. 

2.1 Flavors 

All objects in Nsare implemented in Flavors, an object-oriented 
extension to the LISP language. A flavor corresponds roughly to the 
idea of a Class in Smalltalk or Simula. Each flavor defmes a set of 
instance variables which any instance of the flavor will possess. The 
values of the instance variables are private to each instance of the 
flavor. In this respect a flavor instance is very similar to the data 
structures found in other high level programming languages. In 
addition to instance variables, a flavor also defmes a set of methods. 
A method is simply a named LISP function which is run whenever the 
function with this name is called when the fIrst argument of the 
function is an instance of the method's flavor. 

There are two advantages that methods have over normal LISP 

functions. The method has fast access to the instance variables of the 
instance on which it is invoked. The method can treat instance 
variables as local variables without the necessity of extracting the 
slots in the instance data structure (destructuring). _ Because the 
methods are specific to a flavor, defming methods of the same name 



Object Oriented CAD Programming 269 

for multiple flavors provides an efficient mechanism for dispatching on 
the instance type. As an example, consider a function to display an 
object on a window. In COMMON-LISP it might look like: 

(defun display-object (object window) 
(case (typep object) 

(line (draw-line window 
(line-x1 object) (line-y1 object) 
(line-x2 object) (line-y2 object») 

(circle (draw-circle window 
(circle-x object) (circle-y object) 
(circle-radius object») 

(text (draw-string window 
(text-string object) 
(text-x object) (text-y object) 
(text-font object»») 

Notice that this function must know about every type of object 
that is to be displayed. If a new object type is introduced, the display
object function must be augmented to handle it. As the number of 
objects increases, so does the time it takes to determine the 
appropriate action to take. Of course, one can implement a more 
efficient dispatching mechanism; this is precisely what the flavor 
system provides. Rewritten in flavors, the display-object function is 
dermed as a collection of methods, one for each type of object. 

(defmethod (display-object line) (window) 
(draw-line window x1 y1 x2 y2» 

(defmethod (display-object circle) (window) 
(draw-circle window x y radius» 

(defmethod (display-object text) (window) 
(draw-string window string x y font» 

When the display-object function is invoked, the method that 
runs is determined by the type of the rust argument in the function 
call (the object to be displayed). This dispatching is is provided by the 
function calling mechanism on the LISP Machine using microcoded hash 
tables so that it is very efficient. The function display-object is 
termed a generic function, because it works for a variety of instance 
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types. Also notice that the instance variables of the flavor are 
accessible in the method, and need not be extracted from the instance 
data structure as in the fIrst example. 

Methods are usually designed in sets that derme a uniform 
interface to objects that have a particular behavior. Such a set of 
methods is called a protocol. A protocol can be implemented as a 
flavor that can be combined (mixed in) with other flavors. In using 
flavors one concentrates on a different set of issues than one does in 
more conventional programming. One thinks about the set of protocols 
that the objects in the world must obey, and then concentrates on 
creating modular flavors to form the basic building blocks of the 
system. If these two issues are attended to, then coding is often 
replaced by the simpler effort of combining already existing behaviors 
to form new and useful compound objects. This technique was used to 
create a prototype layout editor by two developers in a one week, given 
that we already had the flavors to implement a schematic editor. 

In NS, all objects that are parts of diagrams obey protocols for 
displaying, highlighting, copying and moving. Each primitive type of 
object handles these protocols in its own way. The display-object 
example above illustrated how one part of the display protocol is 
implemented. The modularity inherent in the message based approach 
is made clearer when the "window" is allowed to be either a screen or 
a hardcopy device. As long as the hardcopy device and the window 
handle the same drawing protocol (using a common abstract unit 
system), the same display code can be used to display on either device. 

As in Simula and Smalltalk, the set of messages handled by a 
particular flavor consists of those messages handled directly by the 
flavor plus those handled by· any of its component flavors. In contrast 
to the hierarchical classes of Simula and Smalltalk, a flavor may have 
more than one component flavor from which it inherits methods. The 
existence of multiple superclasses leads to a different view of 
inheritance. One does not think of a flavor as inheriting behavior 
from its component flavors; rather, one thinks of a flavor as mixing 
together the behavior of its various components into a larger, more 
complex behavior. In fact, the natural style of using flavors is to 
build mixin flavors which capture some basic packet of behavior. 
These mixins are then combined to produce more complex objects 
which exhibit behaviors derived from each of its component flavors. 
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The advantage of the Flavor system is that it allows an elegant 
means for combining nearly orthogonal packets of behavior. This is 
brought about by the ways in which methods from separate component 
flavors (mixins) are combined at the time of defInition of a new flavor. 
Consider the problem of producing textual descriptions of graphical 
objects such as 1 i nes, wi res, and vg-logs (layout sticks). All of these 
objects are types of lines. However, vg-logs and 1 i nes have a width 
property; vg-logs and wi res have signal-name properties. This leads to 
the flavor inheritance graph shown in fIgure 1. 

haHianal-name basic-line his-width 

I \ 
va-loa wire line 

foo ";;::::~:r:::::::::::::::::,::::~ 
~ 

foe-r-
Figure 1. Flavor Inheritance Graph 

The mixin flavors has-signal-name. basic-line. and has-width (on 
top) are combined as shown by the connecting lines to build the 
graphical object flavors vg-l og. wi re and 1 i ne. This inheritance 
combination is specifled to the Flavor system in the following manner: 

;; M;x;n Flavors 
(defflavorbasic-line (point1 point2) (» 
(defflavor has-width (width) (» 
(defflavor has-signal-name (signal-name) (» 

;; Graphical Object Flavors 
(defflavor vg-log () (basic-line has-signal-name has-width» 
(defflavor wire () (basic-line has-signal-name» 
(defflavor line () (basic-line has-width» 

All of these objects are lines which run from one point to another; 
therefore, they all want their textual description to begin as: 

(part <type of object> :from <pt1> :to <pt2> 
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We would like to have the has-signal-name mixin insert the signal 
name component of the textual description, and the has-width mixin 
insert the width component. The Flavor system facilitates this 
through the use of daemon methods that run before or after the 
primary method. When two flavors are combined, the flavor system 
rmds all the :before and :after methods contributed by any of the 
component flavors. It then builds a combined method for the composed 
flavor, a procedure which rrrst calls all of the : before methods, then 
calls the primary method, and rmally calls each of the : after methods. 
To obtain the desired behavior for the : text-form method, the basic
line mixin should derme the primary method that prints the type of 
object and the two end point locations. The has-signal-name and has
width flavors derme :after methods for the : text-form message. The 
:after method associated with has-s i gna l-name, prints the signal-name 
and the :after method for has-wi dth, prints the width. The usp code 
for these : text-form methods is dermed as follows. 

;; primary method 
(defmethod (basic-line :text-form) (stream) 

<code to print the word ·part·. the type of the object. and the two points» 

;; after daemon method 
(defmethod (has-signal-name :after :text-form) (stream) 

<code to print the signal name on the stream» 

;; after daemon method 
(defmethod (has-width :after :text-form) (stream) 

<code to print the width on the stream» 

2.2 A Uniform Large Scale Persistent Virtual Memory 

Programming in the usp environment bears another set of 
distinctions from more conventional programming. All procedures and 
data live within a single virtual memory which continues to exist for 
long periods of time. 

In conventional programming environments, various procedures are 
compiled and linked and then are loaded into the system as a job (a 
job is a process allocated to run within its own private memory, 
separate and inaccessible from the memory of other jobs). Jobs run 
for a while and then terminate. Jobs are also typically subjected to 
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arbitrary space limitations and compete with one another for resources 
of the machine. Finally, data within one job is, in principle, 
inaccessible to other jobs. To date, the most creative ideas on how to 
make the best of this situation have been found in the use of pipes in 
UNIX which at least provides a uniform means for jobs to communicate 
data. However, pipes are still remarkably limiting when they are used 
to convey large amounts of complex information between programs. 
The sequential character stream nature of pipes makes them a poor 
vehicle for communicating the networks of relationships between 
objects which are the natural representations found within CAD 

systems. In addition, when one wants to change an existing procedure 
or add a new procedure to an existing job one's only recourse is to kill 
the program, recompile, relink and start over. 

In the usp machine environment things are quite different. 
Objects and procedures (procedures are just one distinguished type of 
object) exist within a single virtual address space. One procedure can 
call another at will, passing references to whatever objects seem 
appropriate; since all the objects live within the same environment, 
there is no question of whether the access is possible. Since the 
procedures live within the same environment, there is no need to 
transform the objects into a form suitable for transmission through a 
pipe. The object together with all its rich interconnections to the rest 
of the world is simply passed onto the callee. The called procedure 
may in turn follow some of the references in the objects passed to it 
or it may modify the object. Finally, since this interaction never 
involves searching a large data base stored on an external medium, 
the programmer is not plagued by the worries of inefficiency which 
haunt those who try to obtain uniformity through use of relational 
data bases. 

2.3 Persistence and Sharing 

In the section on flavors, we emphasized the ability to build and 
share packets of behavior. The uniformity of our environment also 
contributes to this style of reusing software. Since procedures are 
persistent (that is, they stay in the environment) and the virtual 
address space is large and uniform, it becomes possible to provide 
within the system many facilities which have general utility. The 
construction of NS did not require a significant investment in basic 
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user interface facilities like menus and windows simply because these 
are already part of the basic system. In those parts of our system 
which require attention to algorithmic complexity such as the layout 
extractor, we did not have to build our own hash-tables, priority 
queues (heaps) or Union-fmd algorithm because these are provided as 
existing flavors within the system. Furthermore, each application tool 
within the NS system does not need its own copy of these facilities; the 
uniformity of the environment lets them be shared. Finally, since the 
address space is large (28 bit word addresses) one does not have to 
worry about shoe-homing everything into a small place. Bit-twiddling 
plays a much smaller role in our style of programming. 

2.4 Dynamic Linking and Garbage Collection 

Procedures in our system are recompiled from within the 
environment. The editor and compiler exist in the same virtual 
address space as other system and user facilities. Whenever a 
procedure is recompiled, it is linked into the environment immediately 
and automatically; running programs call the new version of the 
procedure rather than the old. This dynamic linking means that 
program development can proceed at a much faster pace. When the 
system is observed to be behaving incorrectly, the developer simply 
jumps into the editor, fIxes the offending procedures and is off and 
running again. Furthermore, data which stimulated the offending 
behavior is still around and can be used to test the change 
immediately. Contrast this with the more conventional approach of 
killing the original job, editing the source code in an environment 
removed from the one in which the problem was found, compiling, 
linking and loading and then trying to recreate the test case. 

Procedures and data which are no longer accessible to anyone (the 
old version of a procedure which has been replaced, for example) are 
considered garbage. The system is responsible for periodically 
reclaiming all such garbage and making the reclaimed space available 
for new allocation. Programmers never reclaim space and never worry 
about deallocation. There is never the problem of incorrectly freeing 
space which is still in use. The garbage collector runs in its own 
process and does not interrupt the normal use of the machine. 
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3 The Organization of NS 

A system design consists of a set of descriptions covering many 
different aspects of the design, such as the logical, electrical, 
functional, or physical structure. NS is an integrated design system 
that captures the entire description and maintains links between each 
of these aspects in one data base. 

Some of the aspects of a design are diagrams (such as a logic 
schematic or· mask artwork), some are textual (such as documentation 
or simulation programs), and some are generated by the design tools 
(such as mask data produced by the compactor). The aspects that NS 

currently supports are: 
• Schematic 

• Schematic Icon 

• Virtual Grid Symbolic Layout 

• Mask Layout 

• Floorplan 

• Documentation 

• Electrical Network 

Schematic and schematic icon aspects are for logical design. The 
virtual grid aspect is for design rule independent layout that is 
"compiled" into mask geometry placed in the mask aspect. The 
floorplan aspect is to plan a design physically in a top down fashion 
and as a specification for the automatic composition of a design into a 
complete chip. 

A collection of aspects that represent the same subsystem is 
grouped together into a module. For example, a CMOS inverter module 
has schematic, schematic icon, and virtual grid aspects as shown in 
Figure 2. Each of the aspects of a module are different 
representations that should all be consistent if they exist. A collection 
of modules forms a library. Each module resides in a single library. 
Libraries can be used to partition a large design, or for sharing of 
common functionality between subsystems. 
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Figure 2. Aspects of a CMOS inverter 
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Figure 3. Design Database Hierarchy 

The user is encouraged to keep the hierarchies for the schematic 
and layout aspects congruent, but this is not a hard and fast rule. For 
example, the symbolic layout aspect for a module may have a different 
subtree than the logic schematic if physical constraints require the 
cell to be broken up differently than the logic. In this case, the logic 
sub-modules will not have layout aspects, and the hierarchies will split 
at the containing module. NS can check to make sure that the 
schematic and layout for a module represent the same electrical 
network. The advantage of making the layout and schematic 
hierarchies congruent is that inconsistencies between the layout and 
schematic are limited to the composition of the modules if each sub
module is itself consistent. 
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Aspects of modules may be parameterized. For example, the 
schematic icon aspect of a NAND gate can be parameterized to control 
whether it displays as an AND gate with bubble on the output or as an 
OR gate with bubbles on the input (its DeMorgan equivalent). A 
collection of variant aspects is held in a data index for fast retrieval of 
the appropriate aspect given a set of parameters. In cases like the 
NAND gate's schematic-icon, where there is little commonality between 
the two alternate icons, the variant aspects can be entered as separate 
diagrams through the graphical editor; these separate diagrams are 
then stored in individual permanent data structures. However, in 
many other cases, such as the layout of a decoder there is enough 
commonality to merit the use of a procedure to generate the layouts 
on demand. Once an aspect is generated it is stored in the aspect 
data index, future requests for an aspect with the same set of 
parameters will retrieve this stored aspect. 

Most aspects are diagrams such as layouts and schematics. A 
diagram contains a set of parts which may be primitives (for example, 
points, lines, and text) or instances of other diagrams called 
diagram-instances (which correspond to calls in elF). A diagram
instance contains a geometric transform, and a pointer to a diagram. 

Windows that display a scaled portion of a diagram are called 
views. To facilitate fast retrieval of objects based upon geometric 
criteria and windowed redisplay, diagrams store their parts in quad 
trees [8]. 

Although there are many types of diagrams in NS, there is a single 
diagram editor. This makes it possible for the user to move freely 
between different aspects of the design hierarchy as well as up and 
down the hierarchy. It also means that the user must learn only one 
command interface to edit all types of diagrams. For each different 
type of diagram there is a corresponding mode that customizes the 
available commands and primitive objects appropriate to the diagram 
type. For example, while editing schematics the WIRE command is used 
to start drawing a wire. While editing a layout the same command 
starts drawing a layout VG-LOO (stick). 

The diagram editor is organized as a basic editor that is used to 
draw, display, and manipulate objects. The basic graphic primitive 
objects are lines, points, circles, arcs, and text. These basic primitive 
objects have specialized behavior in the various domains. For example, 
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the graphic primitive BASIC-LINE is an object that has pointers to its end 
points and knows how to stretch when its end points are moved. 
Schematic WIRES are BASIC-LINES that can have signal names. Layout 
YO-LOGS are BASIC-LINES that have a layer and a signal name and display 
as a stipple on a monochrome screen, or in the layer's color on the 
color screen. This layered approach to implementing the domain
specific primitives makes it a simple matter to implement new 
diagram and primitive types. 

3.1 Electrical Networks 

There is a single representation for electrical networks used in NS. 

The circuit and switch level simulators, and network comparison 
program supported by NS are all driven from this one representation. 

For each electrically meaningful type of diagram (schematics, 
virtual-grid layouts, mask) there is an extractor which produces an 
electrical network corresponding to the diagram. The network is 
annotated with pointers to the objects in the diagram and similarly the 
objects in the diagram are annotated with pointers to nodes or devices 
in the network. These annotations allow a user to interact with the 
verification tools in a very natural way. Because the objects in the 
diagrams know which nodes in the network they correspond to, the 
user may tell NS to plot a node from a simulation simply by pointing at 
a wire in the schematic, or a location in a layout. The annotations 
are used to highlight nodes to a user. For example, when the network 
comparison program fmds a node in a schematic which has no match 
in the virtual-grid layout, the problem is shown to the user by 
highlighting the unmatched node on the window containing the 
schematic. 

Networks are composed of nodes, devices and device-terminals. A 
device corresponds to an electrical primitive appropriate to a target 
tool, such as MOSFETS in circuit level simulation. A device has a set of 
named terminals that connect it to nodes. A node connects together 
device-terminals that have the same electrical potential. Figure 
4 illustrates the basic network topology. Additional data structure 
slots are added depending on the type of diagram being extracted to 
aid in mapping locations in the diagram to nodes and visa versa. 
Additional slots are also added for specific tools that use the network, 
such as the various simulators in the NS environment. A property list 
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DEVICE 
type: MOSFET 
terminals: ( I .... ) I~ 
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device: 
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I 

Figure 4. Network Topology 

is included in all network structures so that arbitrary information can 
be added to them during development of network tools. 

4 Design Verification in NS 

In this section we will review the major subsystems that are used 
in the verification of a design which may be at the schematic level, 
layout level or both. 

4.1 Network Comparison 

Network comparison is used to verify that two electrical networks 
are identical. This is useful for checking the consistency of a 
module's layout with its schematic, or alternatively comparing a new 
implementation of a module with a known correctly constructed 
version. 

To perform the comparison, both representations of the circuit are 
converted to networks, which are a flat representation of the circuit 
containing only nodes and transistors. The networks can be viewed as 
a particular type of graph. To verify that the circuits are identical, 
the network comparator must establish that the graphs are isomorphic. 



280 VLSJ CAD Tools and Applications 

Many variations on a graph partitioning algorithm have been described 
for performing connectivity comparisons. The graph isomorphism 
algorithm used in NS is based on the algorithms described in [9,10,11]. 
If there are differences in the networks, the algorithm marks a set of 
nodes that it regards as suspicious. Suspicious nodes are presented to 
the user in a graphical fashion by highlighting them on the screen. 

4.2 SwItch SImulatIon: RSIM 

For chip level simulation of MOS designs, the basic tool is a LISP 

version of RSIM [12] which models a transistor network as a resistor
divider network, provides acceptable timing estimates, and can handle 
charge-sharing. 

There is a procedural interface to RSIM consisting of three 
functions: val ue, to fmd the value of a signal or bus, set-val ue to 
cause the next simulation step to force a signal or bus to the given 
value, and s i m-step to settle the network in response to changes in 
input values and then return the time it took to settle the network. 
Using this interface, the designer can write LISP code to generate test 
cases, simulate them and check that the results are as expected. The 
graphical interface to RSIM which is part of the NS editor provides the 
ability to probe layout or schematic diagrams to set and measure 
signals (logic and timing). As an example of such a test program, the 
following function simulates a 32-bit boolean function and compares 
the result to the expected result. 

;; individual boolean operation test 
(de fun boole-test (func a b) 

(set-value 'func func) ;set function code 
(set-value 'a a) ;set first input 
(set-value 'b b) ;set second input 
(sim-step) ;step simulator 
(let «expected-value (boole func a b» ;the right ans 

(rsim-value (value 'output») ;get simulated ans 
(= EXPECTED-value rsim-value») ;return T if OK 

RSIM also provides a hook which lets a user-specified function be 
called whenever a node's value changes; the arguments are the node, 
the simulated time, the old value and the new value. This hook has 
been used to implement: 
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• A software "logic analyzer" which can trigger on certain events, 
and when triggered keep bounded or unbounded (except by 
virtual memory) traces of all transitions happening in the 
simulation. It later displays waveform traces of either all or 
selected signals during the whole history or a specified interval . 

• A facility which keeps an event trace of nodes that change 
during a simulation step. The trace corresponding to the longest 
simulation step contains the "worst delay" path invoked by that 
particular set of simulation events. The nodes on the worst case 
path can be displayed on the layout or schematic, and frequently 
help in determining the critical path of a circuit. 

FUNcrIONAL RSIM is a generalization of RSIM that supports mixed 
mode simulation at the MOSFET and functional level FUNcrIONAL RSIM is 
useful for modeling the behavior of simple but large structures such 
as ROMS and RAMS, or a complex function prior to a gate or transistor 
level implementation. When a functional model is defmed in the 
design environment for a module it is substituted during extraction of 
the schematic instead of expanding the hierarchy down to the MOSFET 

level. 

The following example is the functional model for a lK by 32 bit 
RAM array. The delay to data-out is specified as 40 ns, with a 7 ns 
rise time and 5 ns fall time. 

(deffunctional-model 1Kx32-RAM 
(:inputs (address<9:B> write-data<31:B> write-enable) 
:outputs «data-out<31:B> 48 7 5» 
:local-state «ram-array (make-array '(1888»») 

(if write-enable 
(setf (aref ram-array address) write-data) 
(setq data-out (aref ram-array address»» 

Functional models are written in usp. The model writer has the 
full power of a complete programming language at ones disposal. 
Incremental compilation of functional models is supported as with any 
other function in the usp Machine environment. When the designer 
fmds an error in the functional model one can correct and recompile it 
in a few keystrokes, and then resume or restart the simulation with 
the corrected model 
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4.3 Circuit Simulation: SPICE 

To provide electrical level simulation facilities, NS also contains an 
interface to SPICE [13]. SPICE can either be run on a remote machine 
via a network connection or it can be run locally on a usp Machine (a 
FORTRAN compiler is available). SPICE has been modified to output a 
complete trace of the value of each node at each time step. NS collects 
this data for graphical plotting. NS maintains a mapping between the 
objects in the original schematic and their assigned SPICE node 
numbers. This makes it possible for the user to specify which nodes 
are to be plotted by pointing directly at them in the schematic. When 
the schematic is hierarchical the internal nodes of modules can be 
graphically probed by "pushing" down into the hierarchy to a lower 
level schematic. 

5 Physical Design in NS 

Physical design in NS is based on the use of the virtual grid 
symbolic layout methodology [2,3]. In this methodology, layout is 
carried out at the circuit level by placing transistors and wires on a 
grid that conveys relative placement information. Mask geometry is 
created by compacting the symbolic layout, not by the designer editing 
mask layers. Because the layout is specified symbolically, it is easily 
targeted to a variety of similar Ie technologies with different spacing 
and width design rules. This ability is key to taking advantage of 
improvements in design rules as a technology matures. It also allows 
the design to progress without commitment to a manufacturing vendor. 

5.1 Virtual Grid Compactor 

Layouts are created by editing symbolic layout objects. For a CMOS 

process, the primitives are N and P type transistors, vg-logs (sticks), 
inter-layer contacts, and well contacts. These objects are placed on a 
virtual grid. The width of vg-logs and transistors are specified in 
multiples of the minimum dimension rather than in microns. 

The grid upon which the objects are drawn is symbolic. The grid 
represents only relative placement, not physical spacing. If one object 
is drawn on a grid to the left of another, then this relative placement 
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will be preserved in the fmal artwork. However, there is no 
significance to empty grid lines. It is the job of the compactor to turn 
the virtual grid into a physical one by spacing the grid lines far 
enough apart so that all layout design rules are satisfied. The output 
of the compactor is a mask diagram, the physical geometry 
corresponding to the virtual-grid layout. The user manipulates only 
the virtual-grid layout, remaining unconcerned with spacing geometry 
to satisfy design rules. The current compactor guarantees that objects 
drawn on the same grid line will remain aligned. We have also 
experimented with various forms of "grid sliding" versions of the 
virtual grid compactor. 

The virtual grid compaction strategy is two-tiered. Leaf cells are 
compacted into mask diagrams. However, it is important that the 
assembly of leaf cells into larger modules can still proceed in the 
virtual-grid framework. In particular, it is important to guarantee 
that connectivity expressed in the virtual-grid framework be 
maintained in the physical mask diagram. Consider the two abutting 
cells shown in figure 5. The horizontal bus wires that run through 
both cells. If the virtual-grid layout of two cells are compacted 
separately they will be compressed to different sizes and the ports will 
not line up in the mask diagram. If the entire diagram were treated 
as a single compaction problem, this problem would not arise. 
However, in that case, aligned virtual grids from different cells which 
had no port in common would still be treated as a single grid, forcing 
unrelated objects from different cells to line up. This would result in 
an inferior compaction. The solution to this problem is the second tier 
of the compaction system, the pitch-matcher whose job it is to stretch 
the compacted leaf cells so that connection points do align in the mask 
diagram. This style of symbolic layout is derived from that used in 
the MULGA design system but the algorithms have been redesigned. 

Before compaction begins the virtual grid layout is extracted to 
determine electrical connectivity. This allows the compactor to know 
that certain objects belong to the same electrical node and therefore 
are not subject to spacing constraints. Next, the mask rectangles for 
each symbolic layout object are generated with their edges expressed 
as offsets from a virtual grid location. Each layout primitive can 
generate the necessary mask rectangles, using the design rule 
database. The fmal step is to compact this set of rectangles. 
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The compaction algorithm implemented in NS is a left to right 
scan algorithm which maintains a per-layer cache of the active spacing 
constraints (a fence). As the left edge of a rectangle is scanned, its 
spacing from the fence is determined. The spacing between two 
virtual grids is the maximum of all the implied constraints. When the 
right edge of the rectangle is encountered, the fence is updated to 
include it. Mter left to right compaction, a bottom to top compaction 
is performed, taking into account diagonal interactions. A command is 
provided that graphically displays the horizontal and vertical 
constraints between virtual grids for tuning the layout for minimum 
size. 

Supports provide a mechanism for the designer to explicitly set 
the minimum spacing between two virtual grids. This facility is 
particularly useful for designing structures where the normal process 
design rules do not usually apply or one wishes to "space" geometry 
rather than compact it. The support facility allows such structures as 
bonding pads and guard rings to be expressed symbolically. With 
supports an entire design can be described in terms of virtual grid 
symbolic components. The compactor deals with supports by checking 
to see if any supports would impose a greater spacing on the current 
virtual grid just after it has spaced that virtual grid against the fence. 

The pitch matcher begins by flattening the hierarchical layout into 
non-overlapping leaf cells that contain primitive objects. The virtual 
grid layout of each of these leaf cells is then compacted. The pitch 
matcher does an x sweep followed by a y sweep of the global virtual 
grids. At each global virtual grid the pitch matcher has to determine 
the physical grid location of the leaf cells that intersect this virtual 
grid. Pitch match points are locations on the border leaf cells where 
vg-10gs communicate to neighboring leaf cells. Pitch match points are 
kept aligned in the physical domain by grouping all cells that are 
locked together by a pitch match point at the current virtual grid into 
gangs. All the cells in a gang have their physical grids updated to the 
maximum physical grid found within the gang. 

Many symbolic design systems allow compaction of primitive cells 
and achieve composition by river routing between connection points of 
adjacent cell edges. This methodology is very inefficient for regular 
array structures such as ROMS, RAMS, and PLAB. A key feature of the 
virtual grid methodology is that adjacent cells truly abut. 
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Abutting leaf cells can introduce design rule constraints between 
the interior rectangles of the abutting cells. One solution to this 
problem is to space all non-connection geometry from the cell edge by 
one half of the maximum design rule distance. Unfortunately, this 
approach is rather pessimistic. Designs that contain large numbers of 
small cells are heavily penalized. The block pitch matcher which was 
subsequently developed solves some of these problems. 

The block pitch matcher uses the same basic pitch matching 
algorithm but follows this with a global compaction This eliminates 
the need for half design rule spacings. To do this, the block pitch 
matcher needs to consider only inter-cell interactions, not just those 
dealing with boundary rectangles. The global compaction is done 
using a variant of the standard compactor. 

The block compaction phase involves alternate x and y sweeps 
across all global virtual grids. At each virtual grid all rectangles with 
minimum edges (left or bottom) at that virtual grid are compared to 
the fence. The result of the comparison is a spacing between that edge 
of the rectangle and the rectangle in the fence. This spacing is 
recorded on the virtual grid of the leaf cell which contains the 
rectangle. Block compaction needs to consider the interaction of 
rectangles in different cells. The rectangle-rectangle spacings within 
the cell have already been dealt with by isolated compactions. 

The block compaction algorithm is very similar to that of the 
normal compactor. The major difference is that in the normal 
compactor constraints are recorded on a per virtual grid basis for the 
whole cell In the block compactor the constraints are recorded on a 
per virtual grid basis on the leaf cell that contains the non-fence 
rectangle. In the normal compactor all spacings for a virtual grid are 
grouped together to calculate the physical grid for the current virtual 
grid. In the block compactor there is no single physical grid for the 
current virtual grid. Each leaf cell calculates its own placement for 
the current virtual grid based on the spacings that have been recorded 
on it. 

In order for the pitch match points to remain aligned, all leaf 
cells that intersect the current virtual grid are grouped into gangs 
that are locked by pitch match points on this virtual grid. All the cells 
in a gang have their physical grids updated to the maximum physical 
grid found within the gang. 
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Figure 5. Symbolic Layout for MASK-GREATERP-STAGE and MASK-XOR3 
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Figure 6. Mask for MASK-GREA TERP-ST AGE and MASK-XOR3 

Each sweep of the block compactor may alter the physical grids of 
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a cell in the direction of the sweep. However if the virtual grid in an 
adjacent cell does not move by the same amount it is possible to create 
spacing problems in the direction opposite to the sweep. (See Fig 4) To 
ensure that no spacing problems are left unnoticed, the block 
compactor performs alternate x and y sweeps until no new spacing 
constraints are discovered. In most cases three sweeps are required to 
converge. 

Figure 5 shows two abutting symbolic layouts (MASK-GREATERP-STAGE 

on the left and MASK-XOR3 on the right). Note that an isolated instance 
of the MASK-GREATERP-STAGE layout will compact to a shorter cell than 
MASK-XOR3 because its transistors are not stacked. The compacted and 
pitch-matched mask diagram for these two cells is shown in figure 6. 

5.2 Floor Planning and Composition 

Pitch matching is used to compose layouts that communicate by 
abutting ports. These cells form the major subsystems of a chip, such 
as RAM, ROM, or data paths. To interconnect these pitch matched 
blocks NS provides a set of composition tools. Placement is guided by 
a floorplanner which allows the relative topology of the blocks to be 
expressed in a floor plan diagram. Connectivity between blocks is 
specified by the module's schematic. The composition system uses 
these specifications to construct the final mask of the chip by routing 
the mask blocks together. Since relative rather than exact placements 
are specified, the composition system can guarantee one hundred 
percent signal routability. Power and ground. signals are routed on a 
single layer. To aid in the layout planning phase of chip design 
approximate block dimensions and port locations may be specified 
before detailed layout has· been completed. This style of chip assembly 
is similar to that found in the Sprint system [14]. 

The placement of cells in a floor plan is specified by :flrst adding 
them to the floor plan by invoking a command that adds a mask 
outline instance (with port locations) for each icon in the module's 
schematic. These outlines are then arranged by moving them in the 
floor plan. 

The composition sequence is specified by recursively grouping 
horizontal rows or vertical columns of blocks. Groups are specified by 
drawing dividers in the floor plan. This is a simple extension of the 
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F 

Figure 7. Floor Plan Example 

binary composition methodology (where each group composes exactly 
two blocks) used in Sprint. 

For example, the floor plan in figure 7 specifies the following 
composition: 

• Horizontally compose blocks A and B to form a new macro block 
(AD) 

• Horizontally compose blocks c, D and E to form a new macro 
block (COE) 

• Vertically compose blocks AD and COE to form AD-CDE 

• Horizontally compose blocks AD-CDE and F 

These steps are illustrated in figure 8. 

Blocks are constrained to have a power bus connection on their 
top left comer and a ground bus connection on their bottom right 
comer. This constraint and the recursive composition ordering are 
sufficient to insure that power and ground can be routed to all blocks 
on a single metal layer. All of the blocks in a group share common 
power and ground busses. Power is routed to the cells in a horizontal 
(vertical) group by connecting their power bus to the group's power 
bus on the top (left) of the group. Ground is connected similarly, as 
shown in figure 8. 

A channel for routing signals is inserted between each block in 
the group. Routing in this channel is used to connect signals between 
the edges abutting the channel and also to the edge of the stack. 
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Ports on the edges of blocks that need to connect to other blocks are 
extended with wire stubs across power and ground routes to the edge 
of the stack. Thus, the result of composing a group is a new block 
that has ports on its edges, and power and ground connections in the 
required locations. ' 

A global routing phase determines what channels to route a signal 
net on before composition actually takes place. Global net assignment 
is is done by fmding the shortest path for a net (Steiner tree) that 
touches all channels that have port connections to the net. Channels 
are routed by a simple Z channel router first. If this router fails 
because of cyclic dependencies, a greedy channel router is invoked. 

Notice that routing channels only intersect in "T" conflgurations. 
Never having four channels intersect in a "+" conflguration eliminates 
the need for switch box routers. This is an important advantage of 
this composition methodology because switch box routers cannot be 
guaranteed to route all nets successfully. 
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Composition is done by routing instances mask diagrams 
(generated by the pitch matcher). Virtual grid layout is not used for 
composition to avoid the the necessity of pitch matching an entire 
chip. Since the geometry used in composition is fairly simple (channel 
routing), there is not a lot to be gained by using the virtual grid 
methodology. 

5.3 Standard Cell Layout Generation 

ANNEAL is a facility for automatic generation of standard cell 
layouts from schematics. Standard cells are a convenient layout 
methodology for implementing control logic because it lacks structure, 
and hence is tedious and time consuming to layout by hand. ANNEAL is 
modeled after the TimberWolf'3.2 package developed at Berkeley [15]. 
I t uses simulated annealing to determine optimal placement of 
standard cells. 

The standard cell library used by ANNEAL is captured symbolically 
using the virtual grid methodology. Thus, the investment in standard 
cell layouts is not lost when a new technology is chosen for the design. 

Standard cell schematics can be drawn using the icons in the 
standard cell library or compiled from logic equations. We have found 
this capability particularly effective for generating control logic, since 
this logic is typically the most volatile part of a design. Estimates of 
control logic area are easily obtained without time consuming hand 
layouts. 

Logic equations are dermed in a simple declarative language 
modeled after an optimizing PAL compiler developed at Symbolics. A 
simple example of the syntax used is shown below. 

(def-std-cell-schematic (control :inputs (select<1 :9> A B ph1) 
:outputs (select=8 select=1 

selected-AB 
backup-select<1:9») 

(setq select=9 (bus= select<1:9> 9» 
(setq select=1 (bus= select<1:9> 1» 
(setq selected-AB (mux2 A B select<1») 
(setq backup-select<9> (d-reg select<9> ph1» 
(setq backup-select<1> (d-reg select<1> ph1») 
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5.4 Procedural Generation of Layouts and Assembly of Modules 

Procedural generation of layout diagrams and. procedural assembly 
of layouts into larger layouts have been found useful in raising the 
abstraction level of design. NS incorporates a tool for supporting this 
style of design. Procedural generation of layout diagrams is an 
effective way to provide parameterized diagrams. Diagrams are usually 
parameterized for one of three reasons: Transistor sizing, flexibility of 
connection, and the programming of decoding logic. Below we show 
the generator function for a layout in one of our chips. This is an 
example of the decoding style of parameterization. The generator 
takes a single parameter (called bit). The diagram produced by the 
generator takes five input signals and produces an output which 
indicates whether the five bit input number is greater than the 
parameter passed to the generator. There are thirty two separate 
parameterizations of this layout; were it not for procedural generation, 
the designer would be forced to draw 32 layouts and thirty two 
schematics. 

(defaspect-generator (mask-greaterp-stage :virtual-grid) (bit) 
(let «spacing 4» 
;; mark the LSB 
(part text :string "LSS" :height 12 :center (pt (II spacing 2) 5» 
;; input vdd for pullups 
(part vg-log :from (pt B 24) :to (pt B 22) :layer 'metal) 
(part vg-log :from (pt B 24) :to (pt 16 24) :layer 'metal) 
(part vg-log :from (pt B 22) :to (pt 16 22) :layer 'metal) 
(loop with first-input = (how-many-low-bits-on bit) 

for i from B to 4 
for x = (* i spacing) 
do (if « i first-input) 

(part mask-greaterp-dummy :bottom-left (pt x B» 
(if (bit-on? bit i) 

(part mask-greaterp-seri es :·bottom-l eft (pt x B) 
(part mask-greaterp-parallel :bottom-left (pt x 8»» 

finally (part mask-greaterp-final :bottom-left (pt (* i spacing) 8»») 

Notice that the generator code is USP, extended by the NS function 
part, which constructs NS objects. The dump format for saving 
diagrams in the rue system is also a uSP procedure, leaving no real 
distinction between the way gene.rators are written and the way in 
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which diagram themselves are described. Often a generator is written 
simply by modifying the code written by NS as the dump format of a 
non-generated diagram. 

This style of parameterized layout defInition was pioneered in DPL 

[4,5]. However, in that context the parameterization was very difficult 
because of the need to deal with physical dimensions and design rules. 
The use of the virtual grid relieves the designer of this overhead by 
providing an intermediate abstraction level This simplifIcation 
relieves the writer of procedural cells from incorporating the many 
constants and inter-layer relationships of the process in the generator. 
This makes it far easier to build technology independent generators. 

6 History and Results 

The entire NS system contains about 50,000 lines of LISP code (this 
does not include the FORTRAN code in SPICE, but does include the 
interface to SPICE). The development of NS began in the summer of 
1983. The cumulative effort needed to develop the system (up until 
June 1986) has been about ten person-years. 

NS has been used so far to design a thirty two bit (plus tag bits) 
data path chip, suitable for use in LISP processing applications. The 
chip has been designed using NS as the sole design vehicle. The chip 
contains a thirty two bit lookahead adder, barrel shifter, fIeld masker, 
boolean function unit, interfaces to external busses, internal registers, 
and control logic. It contains about 24,000 transistors and is 
implemented in CMOS. The chip was designed primarily by three 
people in about nine man-months. NS is currently being used as the 
sole tool for the design of full custom VLSI LISP machines. 
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Abstract: Here is how commercial VLSI microprocessors have been designed, starting 
with the Motorola MC68000 (1977-79). I impart the design method and say what 
software tools were used. Here is how the chips, methods, and tools have evolved. I 
project tlle trends. In 1977, logic design was done with pencil and paper. Design 
verification consisted of programs simulating small sect.ions of a chip and of lTL 
breadboards. Today (1986), logic design is still done with pencil and paper, but it is 
entered into a computer using an ordinary text edit.or. Design verification programs then 
check this t.ext file. In the next 5 to 10 years, logic design will still be done with pencil 
and paper, but it will be entered into the computer wit.h a specialized editor. Design 
verificat.ion will stay the same. I don't think the level of aut.omation will increase 
significantly for commercial VLSI microprocessor design. The design tools will run faster 
because the computers they run on will be faster. There will be more comput.ers. So 
tJlere will be more instances of the use of design lools. Dut for commercial 
microprocessors, I don't t.hink logic design tools will do substantially more than they do 
today. The opinions expressed are solely those of the author. These opinions do not 
reflect positions held by the IBM Corporation. 
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INTRODUCTION 

This is about logic design and logic design tools for commercial VLSI 
microprocessors. ("Commercial" means intended for the high-volume, 
commodity market. "Microprocessor" implies single-chip.) This is a "view from 
the trenches" of commercial VLSI microprocessor design. I worked at Motorola 
(1977-1979) where I did the microcode and logic design of the MC68000 
microprocessor. I went to work at the IBM Thomas 1. Watson Research Center 
(l979-present), where I did the microcode and the logic design for the IBM 
Micro/370 microprocessor [Ong-86]. I will cover Motorola and IBM designs in 
chronological order. I tell something about: design method, verification, circuit 
design, layout, fabrication, initial test, manufacturing test, project staff, computers 
used, design tools, and problems. 

I do an overview of each project in chronological order so I can point to 
trends in design method, design tools, and project organization. I project the 
trends a few years and I draw conclusions. I use the Motorola MC68000, 
MC680JO, and MC68020 microprocessors as historical examples. I talk in detail 
about current practice using the Flowchart Method to design the IBM Micro/370 
microprocessor. I mention current practice on the Motorola MC68030. 

HISTORICAL DESIGN PRACTICE 

Motorola MC68000 

The MC68000 was Tom Gunter's idea. The project began (more than I 
person) in the first quarter of 1977. When I joined the project in the third 
quarter, there were 7 of us. The project was called "MACS," for Motorola 
Advanced Computer System. Tom was managing the project. Skip Stritter and 
David Leitch were derming the instruction set and writing the user's manual. 
Doyle McAlister and Richard Crisp were designing circuits. I started designing 
logic and microcode. Paul Lee, temporary hire, was evaluating software 
performance. Our project didn't have a computer. No one had a terminal or 
personal computer. 
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Architecture: The architecture (instruction set, registers, interrupts, etc.) for the 
microprocessor was unknown. Defining it was part of the project. The 
architecture evolved considerably. The original definition had a 24-bit program 
counter, 8-bit condition code register, 8 32-bit address registers, and 8 16-bit data 
registers. The original defmition evolved into an architecture with a 32-bit 
program counter, 16-bit condition code register, 9 32-bit address registers 
(counting the two stack pointers at A 7), and 8 32-bit data registers. Addresses 
and the program counter were specified at 32-bits, though the package only had 
enough pins to allow 24 bits of address to make it off the chip. [Moto 16-83], 
(Moto 16-84], (Strit-79]. 

The architectural defmition (and writing the user's manual) happened in 
parallel with the logic design and the circuit design. Instruction definitions 
changed even after the first chips were fabricated, in May 1979 (mask J SH). 
Second-pass parts (mask R9M), back in September 1979, contained these 
instruction changes. 

l,ogic D('Sign: Under the heading of logic design, I include: state sequencer 
organization, microcode, microword definition, PLA definition, PLA 
minimization, and general logic design. All the logic design for the MC68000 was 
done manually. 

A processor consists of a "data path" (alu, shifter, registers, etc.) and a 
"controller." I use the term "execution unit" interchangeably with "data path." 
The execution unit elements are latent-alus and shifters only add and shift when 
they're told to. The controller tells the execution unit what to do when. 

I use a design method I call the "rlowchart Method" ITrede-81]. It is a 
method I developed while working on the MC68000 at Motorola. A 
"Flowchart" is a bunch of boxes containing register transfers and other 
information (like sequencing information and external bus activity). The point of 
the method is to cycle through many register-transfer-Ievel designs. By changing 
the register transfers (and the "other" infonnation) and execution unit 
simultaneously, one can arrive at an optimum design for the controller and 
execution unit. The usual approach is to define (fix) an execution unit and to fix 
a controller structure. Fixing an execution unit defines an "instruction set." 
Fixing a controller structure sets the sequencing rules. The controller is then 
literally programmed-the execution unit operations are sequenced to achieve the 
functions specified by the architecture. I think this common approach is the 
reason people think of micro coding as programming with wide opcodes. The 
common approach is the reason microcoded implementations are slower. Using 
the Flowchart Method, there should be no difference in speed between a 
microcoded implementation and a random-logic implementation. 

Back to the Flowchart Method. Each Flowchart box is a state in the 
controller and each box "is" one processor cycle. A sequence of boxes is an 
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instruction execution. Box labels say which instructions use which sequences. 
Box contents become the control store words in a microcoded implementation. I 
drew Flowcharts for the state sequencer on 22"xI7" vellum, in pencil. The 
Flowcharts for the MC68000 took 6 sheets-representing 544 ~tates in the control 
store. 

I reduced the Flowcharts to standard-si7ed copies for distribution to project 
members. I marked changes on a copy, then made changes to the pencil original. 
Flowcharts for new instructions were first done on scratch paper, then transferred 
to the vellum. I updated the vellum and produced new copies a conple of times 
a week. 

The control store was compacted by splitting the contents of a control 
word into- two parts. One part of the control word, called the micro word, 
controlled state sequencing. The other part, called the nanoword, controlled the 
execution unit. Register transfers from the Flowchart boxes went into the 
nanoword. Sequencing information from the Flowchart boxes went into the 
microword. Several micro words could share the same nanoword. The MC68000 
microwords were 17 bits and the nanowords were 68 bits, so the savings could be 
significant. The final version of the MC68000 contains 544 microwords and 328 
nanowords. The microword store is 9248 bits. The nanoword store is 22,304 
bits. Total control store is 31,552 bits. Without shared nanowords, the control 
store would have been 46,240 bits. Control store space saved is about 30%. 
(Potential savings using this method of compaction were greater, but changes to 
instruction defmitions late in the design dropped the savings to 30%.) [Strit-78J. 

Finding micro words which might share a common nanoword was a manual 
procedure. This procedure is called "state minimization." Here's what I did: 
• Alphabetize the register transfers in each state. 
• Write the register transfers in each Flowchart box on the back of an IBM 

card and alphabetize the card set. 
• Go through the cards, comparing each card in the deck to all the cards below 

it. 
• Look for similar states (Flowchart boxes with similar or identical register 

transfers) . 
• On fmding two similar states, look at the Flowcharts to see if the states could 

contain a common set of register transfers without affecting the logical 
correctness of their respective Flowchart sequences. 

• If one set of register transfers could serve both sequences, put the register 
transfers into a common nanoword (the microwords had to remain distinct 
since they controlled the sequence of control words executing the 
instruction ). 

The bit patterns for the control words are derived from the Flowchart 
boxes (each Flowchart box becomes a control word). Before the MC68000 
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project got a computer, no translation from Flowchart boxes to control word bit 
patterns was attempted. Once we got the computer, I typed the contents of the 
Plowcharts into a text file. I proceeded to translate the Flowchart states into 
control word bit patterns, using an ordinary text editor. John Zolnowsky, my 
office mate, felt sorry forme. Or he got worried about the error-proneness of 
doing it that way. He wrote .aprogram to convert the Flowchart text me into 
control word bit patterns. 

The assignment of control words to control store locations was done 
manually. I did it six times. We never considered a placement program for the 
control store words. The problem was too complicated. (You'll see what I 
mean, shortly.) Some control word addresses (such as the first control word for 
bus error and system reset) were in fixed locations (for time-critical events). 
Control words with fixed addresses are placed first. 

The MC68000 state sequencer allowed 4-way control-word branches. 
Branch target control words are related in the control store-they share the same 
base address. Two bits from the branch-control PLA are substituted for two bits 
in the microwordnext-adoress field to select the next control word. 
Branch-target control words had to be placed in the same column in the control 
store. The row they are in was determined by ,the two address bits from the 
branch-control PLA. 

The MC68000 control store is divided into a microword store and a 
nanoword store. Look at a photograph of the MC68000. The control store is 
divided into 3 horizontal segments, by thin lines. The top segment is the 
microword store and the bottom two segments are the nanoword store. The 
microword store has 34 rows of 16 17-bit micro words (544 words). The 
nanoword store has 82 rows of 4 68-bit nanowords (328 words). (It forms a 
rectangle because 16x17 = 4x68. Actually, 66 bits of the nanoword are used. 2 
bits are unused.) The control store address enters the top of the control store, 
almost in the center. (There are 8 groups of 16 bits to the left of the address and 
there are 9 groups of 16 bits to the rigllt.) Microwords exit the control store at 
the top and nanowords exit at the bottom. Each control store address produces 
one micro word and one nanoword, simultaneously. 

Several microwords can share the same nanoword. In the MC68000 
control store, there isa restriction on the number of microwords which can share 
a nanoword. Nanowords are shared by leaving a transistor out of one row in the 
nanoword address decoder. If a bit is left out of a nanoword address-decode row, 
two micro word addresses produce the same nanoword. If 2 bits are left out of 
the nanoword address-decode row, 4 micro words share a nanoword. If 3 bits are 
omitted, 8 microwords share a nanoword. Since rows in the nanoword store 
contain 4 nanowords, leaving bits out of a row in the nanoword address decoder 
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creates 4 sets of micro words (one set of microwords for each nanoword in the 
row). 

Of course, a shared nanoword could also be a branch target. Shared branch 
target nanowords are placed second (after control-store words with fixed 
addresses). After the shared branch-target control words, the remainder of the 
branch-target control words are placed. Next are the shared nanowords. Finally, 
all other control words are placed. Address assignments also attempt to balance 
electrical loads on the address decode lines. 

I belabored the point on control word placement to show the complications 
in a seemingly inconsequential problem-just putting the control words in the 
control store. Essentially, the same control word strategy is used for all 
microprocessors in the Motorola family and for the IBM Micro/370 
microprocessor. Details of the implementations differ. Since I have given the 
gory details, the rest of the examples can describe variations and discuss progress 
in automating what started as a manual procedure. 

About a year after I joined the MC68000 project, Motorola bought a DEC 
PDP 11170 computer for our use. We got one terminal for every two people 
initially. I never used the computer much, but others did. It quickly became 
saturated. PLA defmition and minimization were done manually. Logic design 
was done manually. I used Kamaugh maps to design and to minimize the 
instruction decoders and the control word decoders. MC68000 instruction op 
codes are 16 bits (excluding addressing extensions), so the Kamaugh map was a 
16-variable map occupying 20 pages. Late in the project, John Zolnowsky wrote 
a program to place transistors in the OR array of the instruction decode PLAs, 
using information in the logical description of the PLA. [Trede-79J, [Zolno-79J. 

Design Verification: Les Crudele, who specified the MC68000 bus protocol, 
designed and built the TTL breadboard of the MC68000 logic design. The TTL 
breadboard was 13 large SSI and MSI cards. It ran at about one-fourth of chip 
speed. The breadboard was for logic and microcode verification. It was 
connected to the PDP 11/70. So test programs could be stored on the main 
computer and loaded into the breadboard to run. A special card in the 
breadboard had a socket to hold the MC6ROOO so test programs could be run on 
the breadboard or on the chip. The breadboard was the host for initial chip 
debugging. 

Instruction set definition, logic design, circuit design, layout, and 
breadboard design were in progress at the same time. The breadboard was large 
and complex and it could not be completed until the instruction set defmition 
and the logic design were completed. More people were working On circuit 
design and layout (which also could not be completed until instruction set 
defmition and logic design were completed) than were worlcing on the 
breadboard, so the completion of the breadboard was very near the end of the 
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project. Although the breadboard ran MC68000 programs and helped debug the 
microcode, it was completed too late in the project to aid substantially in 
debugging the logic design and microcode. 

Most of the microcode errors were found by Mike Spak, who did circuit 
simulation [Nash-79]. Mike constructed simulation models for small parts of the 
chip using the Flowchart states to determine input signals. lbe circuit simulator 
was not capable of simulating the whole chip or even large segments of the chip. 
Bill Keshlear wrote a program to simulate the Flowchart algorithms used for 
multiply and divide. 

The MC68000 project had no Flowchart simulator and no logic simulator. 
We verified the Flowcharts and logic by manually going through them several 
times. Colleen Collins and I spent many days reconstructing designs and 
comparing results. The breadboard did help verify Flowcharts and logic, but the 
breadboard could have saved much more work if it had been available earlier. 

Circuit Design & I,ayout: I didn't work on circuit design or layout on the 
MC68000 project, so I won't say much about how it was done. These are my 
impressions. Circuits were designed by hand with some computer simulation of 
small circuits. Each circuit was designed to do exactly its required task (e.g., 
drivers were no larger than necessary to drive the expected load in a particular 
instance of a circuit). All layout was custom. Each circuit was laid out to fit its 
particular instance. Layout was done by hand on Mylar and later digitized into a 
Calma file. Circuit designers were assigned to the project, but layout was done 
by the equivalent of a large secretarial pool. 

Layout checking was done by hand. One person would read the circuit 
diagram and a second person would crawl around on an 8-foot square plot with 
colored markers and trace the circuits for verification. 

Fabrication: We sent the design to Motorola in Phoenix, Arizona for mask 
making and fabrication. The MC68000 used a 3.5-micron nMOS process. It 
didn't seem to take very long. I think it took about a month if we weren't in a 
hurry and two weeks if we were in a hurry. My notes say the design was frozen 
and committed to the mask shop on 24 April 1979. We got functional chips 
back the week of 14 May 1979. (Just 20 months after logic design began.) 

Initial Test: The initial MC68000 parts were placed on a tester to see if they 
functioned at all. Once we found the chips were functional, a packaged part was 
inserted on the special breadboard card. The breadboard acted as host to the 
MC68000 chip. It held the program, generated the bus protocol responses, and 
provided controls to run, stop, and single-step the chip. Small test programs 
were loaded into the breadboard memory from the PDP 11170 and run on the 
chip. By comparing what the chip did with what the Flowcharts said the chip 
would do, it was possible to verify and debug instructions. My notes record 
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about 13 microcode, logic, and circuit errors in this initial design. Many of the 
errors were known and had been corrected (in the files for the next-pass parts) by 
the time the first parts returned. 

Manufacturing Test: Motorola uses functional testing for manufactured parts. I 
think the goal is to take no more than one second to test each part. A packaged 
part is mounted on a tester and a program is run in a pass/fail functional test. 

Project Summary 

Project Staff: It is hard to estimate the size of a project. Projects (usually) start 
small, grow, fluctuate, and then shrink or diversify. I think the MC68000 project 
had about 10 people working for about 2 years. (The number of people does not 
include the people in the layout pool). 

Computers: At the beginning of the MC68000 project, we didn't have a 
computer. The circuit designers had access to a computer for circuit simulation, 
but for instruction set design, microcode development, and logic design, there was 
no computer. Mter a year, our group got the PDP 11/70 computer and it rapidly 
got saturated. 

Design Tools: Since we didn't have a computer for the first year, there weren't 
any design tools to aid microcode development or to aid logic design. Once we 
got the computer, we used it to maintain the Flowchart files and we developed 
programs to assemble the microcode from the Flowchart file. There were no 
tools for PLA design or minimization. There were no tools for logic design, for 
assigning control word addresses, or for verifying microcode. Circuit design was 
done manually. Layout was done manually on Mylar and was manually digitized 
into a Calma file. 

Bottlenecks & Problems: A few people did a major design project very well and 
very quickly. Tom Gunter, the project manager, thoroughly insulated the 
engineers from political battles. (This is something I didn't appreciate at the 
time.) We worked mostly without interference and without, in my case, 
awareness of the political environment. 

Most of the engineers on the MC68000 project were young and 
inexperienced. I didn't know what I was getting into. I had never designed a 
commercial state sequencer and 1 had never designed microcode. I certainly 
didn't know what chip design was about. [Trede-79), [Zolno-79]. 

The design and construction of the breadboard was a bottleneck. The 
breadboard was a bottleneck because it would have been useful if it had been 
running on the first day of the project. No matter when it was ready, it wouldn't 
have been soon enough. 
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Logic design was a bottleneck. Motorola supported the design with enough 
circuit designers and with enough layout designers to make me be a bottleneck. 
Someone was always waiting to use the work I finished. 

Motorola MC68010 

Architecture: The MC68010 is essentially the same as the MC68000 
([MotoI6-84], [MacGr-83]). TIle MC68010 added a loop-mode feature and 
virtual memory support. Several instructions execute faster on the MC68010 
than on the MC68000, notably, multiply and divide. In the MC68000, address 
calculation microcode was shared among aU op codes. Therefore, instructions 
like Set According to Condition (Scc) and Clear an Operand (CLR) rpad the 
operand at the computed address even though it wasn't needed to complete 
instruction execution. The MC68010 did not access unused operands in most 
cases. The MC68010 supports virtual memory using a method known as 
instruction continuation (as opposed to instruction restart) [MotoI6-84J. When a 
page fault occurs, the MC68010 can stack enough information to suspend 
execution till the page is available. (Execution can be suspended part way 
through an instruction.) When the page is available, the processor is restored to 
its pre-page-fault state and instruction execution continues. .Tohn Zolnowsky, 
who did most of the detailed instruction set definition for the MC68000, defined 
the instruction set changes for the MC6801O. 

l,ogic Design: The MC68010 project began in the third quarter of 1981. The 
project was to be a straightforward modification of the MC68000 design, to 
support virtual memory. The project was expected to take a year. The new 
loop-mode, however, was more complex than anticipated, so the project took 
more than a year. The circuit designers intended to do a straightforward cut and 
paste modification to the original MC68000 layout, to make room for added 
microcode and for extended instruction decoders. In the end, the major macros 
from the MC68000 design were reused, but the entire chip was manually placed 
and wired from scratch. Implementing the idea of cutting and pasting the 
MC68000 design became too awkward and it did not correct the existing layout 
imperfections. Since the project was late because of the logic designers, the 
circuit designers used the time to clean up the layout by doing it over. It was 
about 12 months from the start of the MC68010 project to first-pass parts. 
(Second-pass parts are considered the end of the project. The first-pass parts are 
expected to have enough problems to prevent sampling.) 

Doug MacGregor did the microcode for the MC6801O, including the 
Flowcharts, the state minimization, and the control word placement. The 
nanoword (68 bits in the MC68000) was extended to 80 bits in the MC68010. 
Three bits were unused (compared to two bits in the MC68000). One control bit 
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was repeated in 2 control store columns for convenience (rather than touting it 
from one column to both destinations). As a consequence of extending the 
nanoword, the rnicroword grew to 20 bits (from the original 17 bits). The 
control store is laid out with 10 groups (16 columns per group) on each side of 
the control store address lines. So there are 320-bits pet row in the control store. 
There are 16 20-bit rnicrowords per row in the microwotd store. And there are 4 
80-bit nanowords per row in the nanoword store. 

Doug did the instruction Flowcharts on paper and he entered them into the 
computer directly (no vellum). The computer files were the official design. A 
Flowchart-drawing program produced working copies in readable fonnat. Doug 
did the state-minimization (sharing nanowords among microwords) and the 
control-store placement manually. 

Some of the MC68000 logic design was reused. Bill Moyer wrote a 
consensus-based prime-implicants program to minimize PLAs. A PLA assembler 
filled in the transistors in the AND and OR arrays. 

Design Verification: There was no TTL breadboard for the MC68010. Instead, 
an attempt was made to verify the architecture using the N.MPC simulator from 
Case Western. This simulator ran on the DEC PDP 11/70. A logic simulator 
called Simulsys was used to verify the logic for macros (small blocks) and 
eventually, for the entire chip. The test ftles for the verification programs were 
generated manually. 

Circuit Design & Layout: . Most of the cell layouts and macros from the 
MC68000 were adapted to the MC6801O. 

Initial Test: For initial test, the MC68010 was plugged into a special card on the 
breadboard for the MC68451 MMU. (The MC68451 is the Memory 
Management Unit for the MC68000; it was developed before the MC6801O.) 
Since the MC68010 and MC68000 are pin compatible, architecture verification 
could be done using the MC68451 breadboard. First, an MC68000 was plugged 
into the special card and programs were run. Then the MC68010 was plugged 
into the card and the same programs were run. The memory images were 
compared. 

Project Summary 

Design Tools: Most of the design tools used on the MC68010 project were 
originally developed on another project. Bill Moyer's prime-implicant 
PLA-minimization program was an exception-it was developed on and for the 
MC68010 project. 



Trends in Commercial VLSf Microprocessor Design 305 

Bottlenecks & Problems: The bottlenecks on the MC68010 project were in logic 
design and in architecture verification. Since the N.MPC and Simulsys 
simulators were much slower than a breadboard, verification became a major 
bottleneck. This experience with software simulation and verification made 
Motorola managers favor breadboards for design verification. 

Motorola MC68020 

Architecture: The MC68020 microprocessor extends the M68000 to full 32-bit 
external data and address buses. (The Motorola MC68000 and MC68010 
microprocessors have a 24-bit external address bus and a 16-bit external data 
bus.) The MC68020 introduced "dynamic bus sizing" whereby the processor 
determines from system responses whether an attached device is operating on 8, 
16, or all 32 bits of the external data bus. An instruction cache of 256 bytes is 
also featured. The MC68020 has new address modes, 32-bit multiply and divide 
instructions, new comparison and checking instructions (e.g., compare and swap 
and compare register against bounds), new bit-field-manipulation instructions, 
and a new coprocessor interface. Appendix E of the MC68020 32-bit 
Microprocessor Users Manual [Mot032-84) summarizes the MC68020 extensions 
to the M68000 family architecture. The architecture of the MC68020 was defined 
by John Zo1nowsky and Dave Mothersole. For additional details, see: 
[MacGr-84), [Mot020-84), and [Mot032-84). 

Logic Design: The MC68020 project began in the second quarter of 1982 with 3 
or 4 people. Unlike the MC68010 project, which began as a modification to the 
MC68000 design, the MC68020 was to be a complete redesign. It wasn't possible 
to salvage pieces of the earlier designs for the new design, because the MC68020 
was converting from the nMOS of the earlier designs to CMOS. Doug 
MacGregor did the microcode for the MC68020, including the Flowcharts, the 
state minimization, and the control-store placement. 

The MC68020 control store, like its predecessors, is divided into two 
sections. One section, the microword store, controls sequencing of the controller 
and the other section, the nanoword store, controls the execution unit. The 
micro word is 36 bits. The micro word store is organized as 60 pairs of rows of 8 
microwords per row for 960 microwords (2x60x8). The microword store is 
34,560 bits (larger than the entire control store of the original MC68000). The 
nanoword is 74 bits. The nanoword store is organized as 57 pairs of rows of 6 
nanowords per row for 684 nanowords (2x57x6). The nanoword store is 50,616 
bits. These numbers include extra control store words and spare bits. The total 
MC68020 control store has 85,176 bits. With no sharing of nanowords, the total 
control store would have been 105,600 bits-so nanoword sharing saved about 
20%. 
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Ed Rupp wrote a Flowchart assembler and syntax checking program for the 
MC68020. The program also checks for assignment conflict:- within states. Ed 
also wrote a Flowchart drawing program. 

Control word placement' for shared nanowords and for branch targets was 
done manually. Once the location of restricted microwords was fixed, a program 
could be enlisted to complete the control word placement. Ed Rupp wrote a 
program which placed unrestricted control words in the control store. 

Bill Moyer's PLA generation program (which was written on the MC68010 
project) was used to generate the PLAs for the MC68020, 

Design Verification: Design verification used both a breadboard and logic 
simulation. 

Circuit Design & IJayout: New circuits and new layouts for all the pieces were 
mandated by the change from nMOS to CMOS technology. 

Project Summary 

Project Staff: About 8 to 10 people worked on the MC68020 project. This 
figure includes architecture, logic design, and verification, but not circuit design 
and layout. 

Computers: The design team used DEC PDP 11170 and IBM mainframe 
computers; and they used workstations from Apollo, Daisy, and Calma. 

Design Tools: Many design tools were rewritten for the MC68020 project (e.g., 
the Flowchart assembler and syntax checking programs). The PLA generation 
program was carried forward from before. A limited control word placement 
program was added; 

CURRENT DESIGN PRACTICE DETAILS 

Micro /370 . Research Project 

Brion Shimamoto and I started the IBM Micro/370 project in January, 
1981. We work at the IBM Thomas .1. Watson Research Center. Micro/370 is a 
research project. Our objectives were to: 
1. Do a commercial quality logic design for a microprocessor. 
2. Write a detailed description of the Flowchart Method. 
As the project grew, we decided we wanted to see the chip fabricated. Building a 
chip became a project objective; the chip would be a tangible, well-documented 
demonstration of the use of the Flowchart Method. We got our first functional 
chips in the third quarter of 1985. 
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Architecture: Brion Shimamoto did the architecture for Micro/370. The 
Micro/370 instruction set is a 102 instruction subset of the IBM System/370 
instruction set. Micro/370 is a 32-bit microprocessor. Ithas 32-bit external data 
and address buses. It has 32-bit registers and 32-bit internal data paths. 
Developing the Micro/370 architecture differed considerably from developing the 
M68000 architecture. The M68000 architecture started from a blank sheet of 
paper. The challenge to the computer architects was to create a good base for 
later generation microprocessors. Successive microprocessors extended the 
architecture. The Micro/370 architecture began with the fully defined (some say 
over-defined) System/370 architecture. The Micro/370 architectural challenge was 
to defme an IBM System/370 architecture subset, in a way that permitted 
graceful, but optional, construction of the missing (not on-chip) parts of the 
System/370 architecture, at the card level. In this scenario, successive 
microprocessors extend the subset and come closer to the goal architecture. For 
M68000 microprocessors, each generation is the definition of the whole 
architecture. For System/370 microprocessors, each generation is a an 
implementation subset of the whole architecture. For more information about 
IBM System/370 and the Micro/370 design, see: [IBMop-79), IHadse-85), 
[Ong-86). 

I~ogic Design: I did the logic design and the microcode for Micro/370, except for 
the bus controller. Shauchi Ong and Bruce Gavril did the logic design for the 
bus controller. I used the Flowchart Method (the method used for all the 
microprocessors described in this paper). I did the Flowcharts for each 
instruction on scratch paper. Then I typed them into the computer. A 
Flowchart-drawing program produced working copies of the Flowcharts from the 
computer file. Richard Hadsell wrote programs to check the Flowchart syntax, 
to assemble Flowcharts, to index states (by location in the Flowcharts), and to 
draw and to print the Flowcharts from the computer files. 

PLA design and minimization were done manually. The PLAs were 
entered into the computer in the form of text. A computer program used the text 
mes and some cell designs to create the PLAs. Input to the instruction decode 
PLAs is the (pre-defined) instruction bit patterns. Since the inputs are defined by 
the architecture and the outputs are defined by the control word placement 
program, the instruction decode PLAs are good candidates for program 
minimization and generation. PLAs controlling the execution unit, however, 
have micro word or nanoword fields (and other bits) as input lines and have 
execution unit control lines as output lines. The output lines are defined by the 
PLA function and design of the particular execution unit macro. The input lines 
are defined by the encoding of the control word field. My PLA design procedure 
treats the encoding of the control word field as an unknown. I assign control 
word bit patterns to best minimize the PLAs they drive. So encoding of the 
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control word is an output of the PLA design procedure. (This is backwards from 
the usual procedure and a reason why PLA minimization programs weren't used. 
Programs which generate and minimize PLAs expect defined inputs and outputs.) 

Flowchart state minimization was mostly manual. Dick Hadsell wrote a 
computer program to print Flowchart states in an order conducive to fmding 
similar state-pairs. Dick wrote a program, called "Path," to find all the 
predecessors of a named Flowchart state. The Path program was very helpful. 
On the MC68000 design, I had trouble knowing the consequences of changing 
the contents of a Flowchart state (nanoword). Because mechanically, it was hard 
to fmd the predecessors of a given state. Flowcharts are like a river system: there 
are many sources (almost one per instruction), but they flow together toward the 
end. It is easy to follow anyone instruction from start to end, but it is hard to 
begin at a random Flowchart state and trace all paths backward. 

Control word placement was done automatically. I described the difficulties 
of control word placement to Dick Hadsell at lunch one day. lIe got interested 
and wrote a special program to do placement for Micro/370. (The details of 
control word placement for Micro/370 and for the MC68000 are different, 
because of differences in control store organization and control.) Unlike the 
MC68000, where control word placement was completely manual, I never had to 
do manual placement of control words on Micro/370. Ultimately, the decision 
was made to implement the full control store with no sharing of nanowords 
among micro words. (The people implementing the control store used a dense 
ROM from a previous design, with 32K-bits more than we asked for.) Dick 
modified his program to place the control store words with no sharing. Dick's 
program also assigned the addresses in the OR arrays of the instruction decoders. 

Placement of logic macros and global chip wiring were done manually. 
Once we knew the major blocks in the design and their approximate sizes, we 
planned where they would be placed on the chip. ITsai-82J 

Design Verification: We did not build a breadboard for Micro/370. Architecture 
verification was done using a simulator ("Flowchart Simulator") written by Linh 
Lam. The simulator contains a model of the Micro/370 execution unit. It 
executes a Systcm/370 instruction by driving its execution unit model with 
controls-Flowcharts-read from the Flowchart file. Carol Chiang, Molly Elliott, 
Donna I1awrot, and Linh Lam wrote test cases to verify the Flowcharts. The 
test cases attempted to exercise every path through the Flowcharts and to test 
extreme cases (like largest negative number or operands overlapping by a single 
byte). Linh also ran official IBM Systemj370 instruction test cases ("Architecture 
Verification Programs"-AVPs) on her simulator. Once we had Micro/370 chips, 
engineers at IBM Endicott ran a more complete set of A VPs on a real 
Micro/370, mounted on a test card they had built. Robert G. Sheldon worked 
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on getting test cases run on a special-purpose computer meant to do fast 
simulation. 

Logic verification was done using a simulator called "DASH," written by 
Dick Hadsell. DASH is a detailed, general-purpose, interactive, logic simulator. 
You can sit at a terminal and step through the design, one clock phase at a time. 
DASH uses the assembled Flowcharts and text file descriptions of the PLA logic. 
Dick generated most of the test cases for logic verification manually. He did use 
a program to automatically generate all input combinations for some of the 
PLAs. 

Circuit Design & Layout: lbe circuit designers and layout designers were Bu 
Chao, Shauchi Ong, Jeff Tang, W. Belmett Smith, .Tohn Bou, Cindy Trempel, 
Kelvin Lewis, .Toe Higham, and myself. Mon Yen Tsai, David Yang, Mark 
Birman, Vic Di Londardo, Phil Cronin, Stephen Parke, Bill Feaster, and others 
worked on the project too. Most of the circuit design was custom. That is, each 
circuit macro was specifically designed for Micro/370. Drivers were designed to 
drive specific loads, based on precise knowledge of what was being driven and 
where it was located. The layout of the individual macros was done knowing the 
placement of neighboring macros and knowing the global wiring. Layout was 
done manually, on both IBM's Interactive Graphics System and GE's Calma 
systems. 

Fabrication: Micro/370 used a 2-micron nMOS process with two levels of metal 
and one level of polysilicon. 

Initial Test: Warren Shih, a test engineer, was the mastermind of the Micro/370 
testing (Greie-86). Initial functional test was done on a Tektronix 3295 tester. 
(We used an IBM tester for a test chip.) Paul Greier and Rob Franch set up and 
ran the Tektronix tester, running the 40,000 or so special test patterns generated 
by Dick Hadsell with his logic simulator. Once we were convinced the parts were 
functional, we gave some packaged modules to engineers at IBM Endicott. The 
Endicott engineers had built an experimental card to hold the Micro/370 chip and 
had developed test programs. They exercised the Micro/370 chips by running 
diagnostics and A VPs. 

Project Summary 

Project Staff: The project began in .Tanuary 19R I with 2 people. Over the years, 
the project grew to about 10 people. We always had more people actually 
working on the project than were formally assigned to the project. Dick Hadsell, 
for example, wrote several important design-aid programs before he even joined 
the project. (He wrote the programs to help make up his mind about whether 
there was enough substance in the project.) Architecture, logic design, and logic 
verification for Micro/370 were done mainly by people from the Computer 
Sciences Department. Circuit design, circuit modeling, layout, and layout 
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verification were done main1y by people from the Semiconductor Sciences and 
Technology Department. 

Computers: We are in the Research Division of IBM. We have lots of 
computer resources but we have few people to build breadboards. The division is 
growing fast so lab or office space is hard to get. We therefore have a strong bias 
towards simulators, over breadboards. Motorola builds breadboards for their 
microprocessors because, for them, it is cheaper than the cost to do equivalent 
verification by computer. A breadboard, running at a quarter the speed of the 
chip, is probably thousands of times faster than a simulator with equivalent 
diagnostic function [Carte-86J. In addition, the breadboard acts as the host 
processor during the initial chip testing. But, a simulator might be available 
earlier than a breadboard, particularly for a next generation processor. Since we 
were building a System/370 and our simulators were running on the same 
architecture, our simulators were more efficient than if they had been running on 
an alien architecture. (We could run a program on the System/370 mainframe, 
then compare the memory image to the output of the simulator.) 

Design Tools: At the beginning of the Micro/370 project, we had no computer 
design aids. I began the way I did at Motorola, working on vellum and not using 
the computer. After Linh and Dick joined the project, I started using the 
computer. At first, I just used the computer to make nice drawings of the 
Flowcharts. I worked from the printed output of the Flowchart drawing 
program. By the end of the project, we had an impressive set of design tools. 
We now have: a Flowchart simulator, a syntax checker, a Flowchart drawing 
program, a Flowchart path program, a Flowchart indexing program, a 
state-sorting and printing program (aids in state minimization), a Flowchart 
assembler, PLA generators, control word placement programs, a logic simulator, 
and programs to print various design ftIes. 

Dan Beece wrote a switch-level simulator (SLS), which we used with the 
logic simulator to verify the layout against the logic. Gabby Silberman, Vijay 
Iyengar, and l,eendert Huisman made major contributions to the ideas in SLS. 
SLS handles full-custom circuits and it is fast. Dan developed SLS at exactly the 
moment we needed it. 

Bottleneck~ & Problems: Being a research project, we got low priority for chip 
fabrication. Product chips come first. Micro/370 took well over 5 years to 
complete in tlus environment, so the people on the project had to be sure they 
really wanted to be part of the effort. Over the years we had 15 or so managers 
(counting two levels above us). (That's a lot of briefmgs!) Part of the reason 
Micro/370 took long is that it was only gradually, that we decided to fabricate the 
chip. People joined the project one at a time and just did what they happened to 
be good at. We had many summer students, several students who helped us part 
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time during the school year, many temporary employees, and many people who 
helped us even though they weren't formally attached to the Micro/370 project. 
It wasn't till sometime in 1983 that we looked up, sawall these people who had 
signed up, and said "Hey, let's go for it." 
1. On the Micro/370 project, logic design was never the bottleneck. I did the 

logic design, took a year's sabbatical leave to teach at {J.e. Berkeley, wrote 
most of a book, did layout for about a year, and traveled and spoke all over 
the country. I never felt rushed (except when I was doing layout). 

2. Once we decided to build a real chip, the bottlenecks became architecture 
verification and layout. The large number of verification test cases that had 
to be written and run, and the labor intensive nature of custom layout means 
you need lots of people to do this. We had few people, so it took a long 
time. 

FUTURE DESIGNS 

Motorola MC68030 

Motorola is working on the MC68030 (Raju-86]. The project was begun in 
the second quarter of 1985. About 6 people are working full-time on the project. 
They are using the same tools and the same computers which were used on the 
MC68020 project. The MC68030 will have the same architecture as the 
MC68020, but it will have a data cache to complement the MC68020's 
instruction cache and it will have memory management compatible with the 
MC68851 (paged memory management unit). The bus protocol will probably be 
augmented with 2-cycle bus accesses (the MC68020 has a 3 cycle minimum for 
external accesses). 

M68000 family CPU design projects beyond the MC68030 are only in the 
planning stage now (June 1986). 

Motorola has introduced a new design in the M68000 family about every 2 
years. Between 1977 and 1984, they introduced four major microprocessors in 
the M68000 family, not counting variations such as the MC68008. Since the 
MC68000 in 1979, they have designed the remicrocoded MC68000 (used in the 
XT/370 and AT/370 options for the IBM Personal Computers), the MC6801O, 
and the MC68020. Expect Motorola to sample the MC68030 this year. 
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IBM Micro/XA Research Project 

This is only a research project in logic design. We do not plan to fabricate 
a chip. Our objectives are to: 
1. Do a commercial quality logic design for a System/370-XA microprocessor. 
2. Design for a performance rating in the 5 or 6 System/370 MIP range. 

Architecture: The IBM Micro/XA microprocessor will implement a subset of 
the IBM System/370 Extended Architecture. Micro/XA will include the basic 
IBM System/370 instructions, plus the decimal and the floating-point 
instructions. The chip will contain the System/370 control registers and the 
essential features of the IBM System/370 Extended Architecture. 

Logic Design: We will use the Flowchart Method to design the IBM Micro/XA 
chip. For this design, there will be 2 logic designers instead of one. Logic 
designers will work directly from the English language specification of IBM 
System/370 Extended Architecture in the new principles of operation 
[IBMXA-83]. 

Ibe IBM Micro/XA will be a complex design. We think the design will 
take about a million transistors. We plan to use extensive pipelining of the 
processor controller, instruction prefetch, translation and checking hardware, and 
the execution units. The preliminary plan for the logic design includes 
semi-autonomous processors for general instructions, floating-point instructions, 
and the storage-and-storage instructions. 

Design procedures will be about the same as for the IBM Micro/370 
project. Logic designers will either do initial Flowcharts on scratch paper and 
transfer them to computer flIes, or do initial Flowcharts right on the computer 
with an interactive Flowchart editor. PLA designs will be done manually and 
entered into the computer as text flIes. 

Design Verification: Design verification takes the most people, time, and 
computer power. It would benefit the most from more automation. Automatic 
generation of test files would be helpful. 

Circllit Design & Layout: We do not plan to do circuit design and layout. (The 
Micro/370 project began with no plan for producing a working chip-I suppose 
we could get carried away with this one too.) 

Project Summary 

Project Staff: There are 6 people working on this project, 2 full-time and 4 
part-time. 
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Computers: We have lots of System/370 mainframe power. We plan to move 
some of the logic design tools to an IBM Personal Computer AT/370. Each 
person has a mainframe-connectable personal computer in their office and in 
their home. 

Design Tools: W. Bennett Smith and Dick Hadsell will be working on design 
tools to support the Flowchart Method on an IBM Personal Computer. There 
will be an interactive Flowchart editor and there will probably be 
Flowchart-syntax checkers and a Flowchart assembler. Dick is improving his 
DASH logic simulator. We want to generate test patterns for PLAs 
automatically. 

Bottlenecks & Problems: The logic design, even for a million transistor 
microprocessor, will not be the bottleneck. On Micro/XA, the bottleneck will be 
design verification. There just isn't any easy way to do that yet. 

FORECAST 

In the following sections I speculate about where microprocessors, design 
methods, and design tools are headed. These forecasts apply to commercial 
microprocessor designs, methods, and tools. They are my personal forecasts and 
do not reflect positions held by the IBM Corporation. 

Where Microprocessors Are Going 

Architecture: A few years ago Business Week published market share estimates 
for 16-bit microprocessors [Busin-82J. They estimated Intel and Motorola would 
each have 45% of the 1990 market. TI, National, and Zilog would share the 
other 10%. In 1986, Electronics published their estimates of the 1990 32-bit 
microprocessor market shares [Wolfe-86J. They gave Motorola 27%, Intel 25%, 
National 18%, AT&T 11%, and Zilog 9%. All others shared the remaining 
10% of the market. 

RISCs: RISCs are trying not to be architectures. I think they will be 
successful-at that. The idea of a RISC is to reduce the instruction set, make it 
simple enough to execute every instruction in a single cycle. If every instruction 
is a single cycle, there is no need for a state sequencer and microcode. In effect, 
the compiler compiles to the former microcode interface. Users should program 
everything in high level language, so there is no need for the user to know the 
architecture of the particular RISC implementation the program will run on. 
(RISCs are essentially, super bit-slices.) 

System costs are significantly higher for RISC processors. Instructions are 
simplified and instruction throughput is boosted to compensate. R ISC 
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processors usually assume· a factor of about 4 to 10 in bus bandwidth 
improvement over processors like the MC68000. The RISC CPU from MIPS 
Computer Systems, for example, claims a peak bus bandwidth of over 128 
Mbytes/sec for the 16 MHz component [Mouss-86J. A 16 MHz MC68000 would 
have a peak bus bandwidth of about 8 Mbytes/sec. The 16 MHz MC68020 has 
a peak bus bandwidth of about 22 Mbytes/sec. Since the chip interface to the 
memory system has always been the performance bottleneck for microprocessors, 
significant improvements in throughput incur significant costs. 

Others: I have been discussing 32-bit microprocessors. (I included 32/16-bit 
microprocessors like the MC68000-32-bit machines trapped in a 16-bit package.) 
8-bit microprocessors are, by far, the largest share of the microprocessor market 
in total dollars. (If they lead in dollars, they have a runaway lead in volume, 
since 8-bit microprocessors are much cheaper than 16-bit or 32-bit ones.) 

What about developments in the 8-bit microprocessor market? There 
won't be any. Economies of scale again (explained a few sections ahead). The 
8-bit microprocessor market is mature. There are only a few commercially 
successful architectures and there won't be any more. Here's what happened: 

When no one was in the market (i.e., nobody was making an 8-bit 
microprocessor), there were some applications for which no good hardware 
solution existed. The .existence of any 8-bit microprocessor conferred the 
competitive advantage on users almost independently of cost. The ftrst 
companies to make an 8-bit microprocessor found a ready market-though part 
costs were high. Eventually, competition drove prices down. (I think 8-bit 
microprocessors in large quantities are less than $2.) Once the price is low, the 
development cost for creating a new part to compete in the market are again 
signiftcant (even if the volume is high). Companies with established markets have 
amortized their development costs, so their prices depend solely on production 
costs. The companies making commodity microprocessors keep working on their 
successful parts; tuning and shrinking them to get higher performance and lower 
production cost. Even discounting development costs, a company introducing a 
new microprocessor would have a new design competing with a tuned, mature 
design. Production costs would be higher for the new design. Other pressures 
against introduction of new microprocessors include lack of a software base, lack 
of development tools, lack of documentation, and lack of peripheral components. 

The same scenario is playing in the 32-bit microprocessor market now. 
The ftrst arrivals in the market can be successful. But the market will mature 
quickly, permitting just a few architectures to be commercially successful. 
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What is on the Chip: In the past few years, there has been a controversy over 
what to put on a chip. I feel the controversy is about to end. The fIrst 
microprocessors integrated only a basic instruction set. The next generations of 
microprocessors diverged as technology improved to allow more function on 
chip. Intel opted for operating system and memory management functions in the 
80386 (Gold-85]. The Intel 80486 (or whatever it will be called) seems destined 
for memory management, caches, and floating-point instructions. Motorola 
opted for an instruction cache in the MC68020. They are building instruction 
and data caches for the MC68030 and and they will have an on-chip translation 
lookaside buffer (TLB). One might expect the follow-on to the MC68030 to 
have on-chip instruction and data caches, and to have floating-point instructions. 
The IBM Research Micro/XA (IBM System/370-XA microprocessor) design will 
include all the System/370-XA instructions a microprocessor needs-including the 
floating-point and decimal instructions. 

Commercial microprocessors have always been bandwidth limited at their 
pins. On-chip functions can be performed more quickly than data and 
instructions can be transferred, so the on-chip controller is usually waiting on 
memory transfers. In the past, this resulted from a paucity of pins combined 
with simple, lengthy, transfer protocols. In the future, I think the number of pins 
will increase to allow multiple external buses. Designers might provide separate 
32-bit instruction and data buses. Micro/370 uses the MC68000 bus protocol; 
this is a general, asynchronous protocol. Performance-oriented bus protocols are 
synchronous and use very few clock edges. Bus requests might be tagged so 
multiple requests could be pending and responses could come in any order. 

Starting with microprocessors one or two generations beyond chips like the 
MC68030, we should be seeing CPU-on-a-chip architectures which are essentially 
complete. I will refer to these chips as MAXIs. I expect to see MAXI chips by 
1990. I do not believe MAXI implementations will have significantly increased 
function, architecturally speaking. The successors will need improved 
performance or improved cost/performance. But sophisticated control and 
pipelining techniques will have been used in predecessor designs. So 
improvements (sufficient to warrant a new product) will have to come from a 
change in technology which the MAXI itself could not exploit. I consider this 
outcome unlikely. Instead, I think designs will diversify. 

About 1990, I expect to see custom-order chips, in the following sense. 
Divide a chip into four quadrants. Put, for example, a chip like the MC68030 in 
one of the comers and choose the occupants of the other comers from your 
Custom Mega-Cell Catalog. Want a chip with an MC68030, two special-purpose 
I/O controllers, and some RAM? OK. Want a chip with an MC68030, two 
quadrants of RAM, and a quadrant of ROM? OK. 
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For microprocessors which have microcoded implementations, there is the 
possibility of using the microprocessor "chassis" as a universal host machine 
(UHM). In his master's thesis at u.c. Berkeley, W. Bennett Smith showed it 
was feasible to use Micro/370 as a UHM [Smith-84]. lIe and Robert G. Sheldon 
and I remicrocoded Micro/370 as a System/370 Decimal coprocessor. Similarly, 
Robert proposed the design of a "mail box" coprocessor. A company could 
publish characteristics of the chassis and let customers determine their own 
instruction sets. I like this idea conceptually, but the cost of supporting custom 
architectures will probably keep it from happening. 

Once complete architectures are implemented on a single chip, it will be 
difficult for successor chips to show substantial improvements in performance or 
cost/performance. I think this will lead to greatly increased use of the 
microprocessor as a component on a custom IC ([Schne-86],[Buric-84]). I think 
the biggest future in ICs is in application-specific ICs (ASICs). When you read 
about new work in VLSI design (workstations, software, CAD, silicon compilers, 
architecture, silicon foundries, etc.), about 90% of the time the object or target is 
ASICs. Intel has an ASIC business. Motorola has an Application Specific IC 
Division. In addition, Motorola is teaming up with Silicon Compilers Inc., so 
designers can base ASICs on Motorola's CMOS [ElecD-86). I think using an 
excellent family of microprocessors and peripherals as on-chip components, and 
adding one or two ASIC macros on the same chip, is a winner. 

Where Design Methods Are Going 

Design methods in commercial design environments show little change. 

Formal Specifications: High level language specifications and formal description 
languages receive considerable trade press attention. If a program can specify a 
design, there is a potential for easing design verification. If both the specification 
and the design data base are set in a kind of formal language, they might be 
compared by a program to verify their correspondence. If the specification exists 
in a fonnal language, a program might be used to convert the specification into a 
logic design. Why stop at logic design? That's a formal description too. Why 
not just use a program to convert that into the circuit design, the layout, and 
ultimately, the mask patterns? That is the silicon compiler tenet. 

The formal specifications I have seen look like Pascal programs. If 
someone gave me a processor specification written in a formal language, the first 
thing I would do is attempt to translate it into English. All the commercial 
microprocessor design projects I know anything about began with an English 
language specification. I don't expect this to change. Future commercial VLSI 
microprocessor design projects will begin with an English language specification. 
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A formal description seems to be the starting point for many proposed 
design methods. But the formal description must come from somewhere. I think 
it unlikely that someone would produce the formal description as the first level 
specification of an architecture. The English language user's manual seems a 
logical starting point. If the English language description is the starting point, 
producing the formal specification costs time and effort. I suspect the time and 
effort to produce an efficient formal description from an English language 
specification is comparable to the time and effort to produce an efficient logic 
design. 

Silicon Compilers: Even though considerable trade press attention is given to 
automatic chip design programs, such as silicon compilers, these programs do not 
always meet expectations [Schin-86J. Converting a formal specification to mask 
patterns through logic and circuit design is not yet efficient. I don't think it will 
be any time soon. The program has to make many decisions at many levels. It 
is still too hard to know what a good designer considers. Figuring out the 
parameters of the decision process and incorporating them in a program is a 
formidable task. Too much time has been spent working on solutions to the 
problem and not enough time studying what the problem is. Specifically, I think 
very few people understand design method-even though they are working on 
automatic design systems. 

I think silicon compilers are good for integrating logic from a formal 
description. If you have a card of TTL you want to integrate into one or a few 
chips, silicon compilers are appropriate. I think there is a giant market for silicon 
compilers for application-specific integrated circuits (ASICs). But silicon 
compilers are not as efficient as human designers for new designs of commercial 
microprocessors. Here's why. 

Economies of Scale: The cost of producing an integrated circuit can be modeled 
as a one-time development cost and a per-part production cost. Development 
cost is amortized over the number of parts. Production cost is the manufacturing 
cost for each part. Yield, which directly affects manufacturing cost, follows a 
non-linear curve with respect to chip size. (Smaller chips have much better 
yield.) A 10% reduction in chip size might double yield-cutting manufacturing 
cost by two. 

If the number of parts to be manufactured is small (say, in the thousands), 
development cost can be more significant than production cost. Companies 
marketing commodity microprocessors must have the lowest possible cost per 
part. If the number of parts is large (millions), production cost is more 
significant than development cost. 

Suppose it costs $10 to manufacture a certain Ie. (There must be some 
chip size you can manufacture for $10. You can buy MC68000s in large 
quantities for around $10, so such a chip might be just a little larger than the 
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current MC68000 (to allow something for mark up).) If I can reduce chip size 
10%, manufacturing cost might decrease to $5. If I expect to sell a million chips, 
I can make more money as long as the added development cost (to reduce chip 
size by 10%) is less than $5 million. Motorola probably spends $10 to $50 
million in development cost for each M68000 family CPU design project (my 
own wild guess). I think this is typical for commodity market microprocessor 
development using current commercial design methods. 

If I expect to sell a million chips, each extra million dollars I spend on 
development increases the purchase price by a donar per part. If I expect to sell a 
thousand chips, each extra million dollars I spend on development increases the 
purchase price by a thousand dollars per part. Clearly, if I expect the market to 
be in the thousands, anything I can do to reduce development cost dramatically 
affects cost per part. Silicon compilers produce area-inefficient parts cheaply (and 
quickly). Development cost for a chip produced by a silicon compiler is 
probably in the tens of thousands of dollars. The resulting chip is perhaps 50 to 
100% larger than what could have been produced by a development effort 
costing a thousand times as much. If the manufacturing cost is 10 times greater 
($50 per part), it's still insignificant compared to the savings in development cost 
(thousands of dollars per part). I think this stuff is called economies of scale. 

Design: The Flowcharts for the MC68000 through the MC68020 (four chips in 
the series) and for the IBM Micro/370 were done on scratch paper and 
(eventually) entered in computer ftles. I don't expect much change here. For our 
next project at IBM Research, I expect to be using a special interactive Flowchart 
editor. Designers at Motorola will either enter the Flowcharts directly using a 
Flowchart editor, or they will continue to use scratch paper for the initial 
Flowcharts (Raju-86). 

The processor state minimization for all the projects I mentioned was done 
manually. I expect state minimization in future projects to be done manually. 
It's the kind of job humans are better than computers at. You need a good 
overview of processor operation combined with an ability to recognize significant 
(but not exact) similarities and subtle, but compatible (or almost 
compatible-with adjustments) differences. Computers can help. They will order 
the states, alphabetize, index, and they can identify definite incompatibilities. But 
they won't do the minimization (unless you don't care much about quality). 
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Logic Design: Logic design has been done on scratch paper and will continue to 
be done on scratch paper. 

Motorola has gone from hand-generated PLAs to computer-generated 
PLAs. [Raju-86), [Zolno-86). The IBM Micro/XA designers will still be 
generating PLA logic by hand. The hand-generated PLA will be represented as a 
text file in the computer. Computer programs, using the PLA text file as input, 
will generate the PLA layout. 

My PLA design procedure uses output lines defmed by the macro the PLA 
controls. (The circuit designer can tell you exactly what control lines the PLA 
must generate for each macro.) The Flowcharts define PLA function. Input 
control for the PLA might be any lines in the microprocessor (e.g., control word 
field, instruction register, condition codes). If (at least part of) the input is a 
control word field, I treat the encoding of these bits as an unknown and attempt 
to fmd the encoding that produces the minimum PLA. 

The chip floor plan will continue to be done manually. 
Macro design, placement, and wiring will still be done manually. 

Where Design Tools Are Going 

There is a lot of pressure on companies making commercial 
microprocessors to further automate the design process. Design cycles seem 
impossibly long and costs too high. The trade press puts wood on the fire by 
headlining fantastic design tools which produce design quality equal to the best 
custom designer at a small fraction of the cost. Most of the reported 
improvements are applicable only to ASIC designs. The comparison with 
commercial designs is meant to demonstrate the quality of a new product against 
a known standard of excellence. The claims tend to be overstated-which causes 
immediate problems for commodity-part design managers. Corporate executives 
send their staffs to the trenches to hear the justification for high costs and long 
schedules in the face of programs reported to be fast and cheap and achieve 
equivalent results. The long term effect, however, is positive. The corporate 
executives are amenable to real improvements in design tools. 

The most trade press attention is given to improvements in the function of 
design tools. As I said, these reported improvements apply to ASICs, not to 
commercial microprocessors. For commercial microprocessors, I would ask for a 
lOx improvement in the speed of the simulators, microcode assemblers, and other 
programs-with no improvement in function. 
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Design Verification: I think design verification has become the biggest problem 
in designing a single-chip microprocessor. How do you know the thing you 
designed is the thing you wanted? The number of test cases you have to run to 
determine whether the part is doing what you expect it to do is increasing rapidly 
as levels of integration increase. We need verification checks in two categories. 

One category is checks for the pathological cases in the architecture itself. 
These are (architecture) verification programs for the architecture. In the case of 
IBM System/370, for example, the company has developed a set of programs 
called Architecture Verification Programs (AVPs). This set of programs is 
collected test cases for the architecture. Over time, the set should improve in its 
ability to detect variance with the architecture. The A VP test cases are 
independent of the implementation. 

The second category of verification tests is tailored to a particular 
implementation. These test cases might invoke certain functions, for example, 
because they will cause the outputs of a certain PLA to assume all possible 
values. IBM developers sometimes call these Implementation Verification 
Programs (IVPs). The algorithm I use for checking for destructive overlap in the 
Move Character Long (MVCL) instruction, for example, should he checked with 
data that tests the boundary values for branches in the algorithm. Verification 
programs for the implementation have to check every path in the flowcharts. 
They should check every path in the Flowcharts at the limits of that path (i.e., 
with data that causes Flowchart branch conditions to just be met or just miss 
instead of data in the middle of the path). Test cases of this sort cannot be 
collected and accumulated over time, because they are unique for each set of 
Flowcharts. It would be nice to have a program to look at the filowcharts and 
generate implementation verification programs (IVPs). 
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Table I. Design Style Comparison 

Architecture and Logic Design 

Feature \ Chip MC68000 MC68010 MC68020 ~/370 MC68030 ~l/XA 

Specification English English English English English English 
TTL Breadboard Yes No Yes No Yes No 
Flowchart Simulator No No No Yes No Yes 
Logic Simulator No Yes Yes Yes Yes Yes 
Self Test Logic No No? Yes No Yes Yes 
Architecture Test File Manual Manual None Manual Manual 
Logic Test Pile None Manual None Manual Manual 
Flowchart Assembly Mix Program Program Program Program Program 
Howch. Syntax Check Manual Program Program Program Program Program 
Flowchart Drawing Manual Program Program Program Program Program 
Microcode Placement Manual Manual Mix Program Mix Program 
State Minimization Manual Manual Mix Mix Mix Mix 
Flowchart Generation Manual Manual Manual Manual Manual Manual 
PLA Minimization Manual Mix Program Manual Program Manual 

Circuit Design and Layout 

Feature\Chip MC68000 MC68010 MC68020 ~/370 MC68030 p/XA 

PLA Generation Manual Mix Program Mix Program Mix 
Macro Design Manual Manual Manual Manual Manual Manual 
Macro Placement Manual Manual Manual Manual Manual Manual 
Global Wiring Manual Manual Manual Manual Manual Manual 

Table 2. Microprocessor Comparison 

Feature \ Chip MC68000 MC68010 MC68020 ~1/370 MC68030 ~l/XA 

Start of Design 3Q77 3Q81 2Q82 IQ81 2Q85 4Q86 
End (1st working part) 3Q79 4Q82 3Q84 3Q85 2Q90 
Technology nMOS nMOS CMOS nMOS CMOS CMOS 
Minimum Peature(~lm) 3.5 2.3 1.8 1.0 
Cbip Size (mm) 6.3x7.1 9.5x8.9 IOxlO 14x14 
Transistors (k)(sites) 68 200 200 1000 
Microcode (kb) 36 85 92 400 
Clock MHz (Nominal) 8 8 16 20 40 
Pins 64 64 114 171 264 
External Address Bus 24 24 32 32 32 32 
External Data Bus 16 16 8,16,32 8,16,32 8,16,32 8,16,32 
Instruction Cache (B) 0 0 256 0 256? ?? 
Data Cache (B) 0 0 0 0 256? ?? 
TLR Entries 0 0 0 0 64 
Pioating Point No No CoP CoP Col' Yes 
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SUMMARY 

Tables I and 2 show the development of design methods and commercial 
microprocessor chips for Motorola and for IBM. (Information about the 
MC6801O, MC68020, and MC68030 .comes from [Raju-86) and [Zolno-86).) 
There may only be one or two more generations of microprocessors until all the 
pieces of a complicated CPU are on one chip. Sophisticated pipelining and 
controller techniques are used now, so significant progress beyond the next one 
or two generations wilt be difficult. Components will diversify, moving 
special-purpose coprocessors, custom logic, and memory onto a chip with a 
microprocessor in the comer. That microprocessor will implement one of the 
few commercially successful architectures. 

Conunercial microprocessor logic design methods have been largely manual 
because these manual methods were the only ones available. Commercial 
microprocessor logic design methods will continue to be largely manual (though 
aided by computers for tedious, simple tasks) because manual design produces 
higher-speed, more compact chips. If the expected part volume is large, a 10% 
decrease in chip area could be worth a thousand times the development cost (the 
possible cost difference between a manual design method and a silicon compiler 
method). Macro layout, macro placement, and global wiring will be manual. 
Flowcharts will be manually generated and processor state minimization will be 
manual. 

Microprocessor design projects fall behind schedule because each project is 
organized using previous design projects as a model. But the projects are 
becoming more complex-and the focus of the work is changing. Circuit design 
and layout has been the bottleneck. In the next microprocessors, design 
verification will probably require more effort than circuit design and layout. 

Design tools with sufficient function to support commercial microprocessor 
logic design exist today. They need to be 10 times faster. (They don't need more 
function.) But logic design isn't the bottleneck (verification is). Tools to 
support design verification aren't adequate. We need programs that can 
automatically generate the test cases for verifying the design. But the programs 
must do this without putting constraints on the designers (like defining the logic 
or circuit vocabulary). 

Acknowledgements: I thank John Zolnowsky of ViewTech and I thank Raju 
Vegesna and Dave Mothersole of Motorola for their help in providing historical 
and contemporary information on the Motorola microprocessor design projects. 
Forecasts are my own and do not reflect official positions or policies of either 
Motorola or IBM. Thanks to Sue Sanicky of IBM in Los Gatos for many hours 
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Experience with CAD Tools for a 32-Bit VLSI Microprocessor 

Introduction 

David R. Ditzel 
Alan D. Berenbaum 

AT&T Bell Laboratories 
Murray Hill, New Jersey, U.S.A. 

As the complexity of VLSI devices increases, so does the need to rely 
on computer aided design (CAD) methods. As VLSI designs grow they 
push the limits of the CAD tools, and in some cases require new 
approaches to design and verification. This paper reports on experiences 
with a particular approach taken to design a 170,000 transistor single chip 
CMOS microprocessor. The chip was an implementation of the Bell Labs 
C-Machine I, 2 architecture, code-named CRISP (C-Machine Reduced 
Instruction Set Processor) during its design. The major design tools used 
are described along with pleasant and unpleasant surprises in their use. 
Problems with more traditional approaches due to the increased size of 
designs are discussed. 

Top Down Simulation 

A first step in building a complex chip is to thoroughly understand 
the specification. For a microprocessor, this first specification is usually 
the instruction set. For our microprocessor, the instruction set was 
designed with an iterative cycle based upon writing a compiler, compiling 
many programs and measuring the output of the compiler to refine the 
instruction set. We then built successively more refined models of the 
machine until we finished with the physical implementation. 

As the level of detail of simulation increases, substantially more cpu 
time is required and the total number of instructions one can realistically 
simulate grows smaller. When a bug occurs, it is often much harder to 
understand in the more detailed model of the machine than in a less 
detailed model. For this reason, we started by simulating as much as pos
sible at the highest level. Many bugs, of course, will not be present at the 
most abstract level of simulation, so simulation must eventually be done at 
a very detailed level. 
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The Interpreter 

Our first goal was to implement the exact specification and semantics 
of the instruction set. An instruction interpreter was written to execute 
instructions with the same semantic effect as the final hardware was to 
have. Using the C compiler with the interpreter allowed us to execute real 
programs. Two benefits from this are (I) being forced to detail the exact 
specification of the instruction set and (2) debugging the compiler early: 
Debugging the compiler early is essential so that detailed logic simulation 
does not appear to have hardware bugs that turn out to be compiler errors. 
The interpreter is also the fastest of the instruction simulation models and 
hence usually the easiest to debug the compiler with. Our interpreter 
included its own debugging system which allowed one to set breakpoints, 
dump memory, run for a specified number of cycles, dis-assemble instruc
tions and other features. 

Architectural Simulator 

The first simulation of the hardware architecture of the processor was 
done with a C program called the architectural simulator. The architec
tural simulator modeled the hardware at the register transfer level. This 
simulator could run large programs, such as the C compiler, and provide 
an estimate of performance in terms of the number of clock cycles 
required. The pipeline structure and cache memory sizes could be easily 
changed at this stage, this allowed us to use the simulator to gather statis
tics on the performance sensitivity of various features. Features of the 
machine were only added if they could provide a sufficient performance 
boost to justify increased implementation complexity. 

While the architectural simulator modeled all the major machine 
registers and datapath it was not partitioned to reflect the physical imple
mentation. The control for the datapath elements was not explicitly 
modeled. Numerous details, such as the exact handling of faults and 
exceptions were not dealt with in the architectural simulator. The speed of 
the architectural simulator is about an order of magnitude slower than the 
instruction set interpreter. 

Functional Simulator 

As the final architecture of the machine solidified the architectural 
simulator was rewritten into what became the Functional Simulator (Fsim). 
The Fsim is partitioned into modules which correspond to the physical par
titions of the final silicon, and all datapath and control signals are explicitly 
modeled. The functional simulator represents the complete design, and so 
is used to verify the sanity of the design, and also to provide test vectors 
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for all later stages of debugging. CRISP uses a four phase clock, the Fsim 
models the hardware accurately down to the individual clock phase boun
dary. Each of the major pieces of layout has a corresponding C header file 
that details every wire entering or leaving the block and a C code file to 
model logic within that block. Other files contain display routines, an ela
borate debugger and other support for the simulator. 

We found the C programming language3 both sufficient for describing 
the detailed hardware of the machine and efficient in execution speed. 
Figure la shows some edited excerpts from a header file and figure Ib 
shows excerpts from the corresponding C file. Each signal entering or 
leaving the block is described as an input, output or bidirectional ioput. 
Major internal signals are also identified. For the purposes of the func
tional simulator, the C preprocessor transforms these new keywords into 
the standard integer datatype, making this just another ordinary C pro
gram. Each signal declaration may optionally be followed by field specify
ing the number of bits (assumed to start at bit 0), or an explicit naming of 
the starting and ending bits of a bus. Signals without this field are 
assumed to be single bit values. The bit range specifiers are ignored by the 
functional simulator, but are used in backporting, which is described 
below. 

Figure I b shows more detail of how the functional simulator simulates 
the hardware. In this case the logic block is called pdureg, this subroutine 
is called once for each of the four clock phases in simulating a single clock 
cycle. Figure Ib shows a master/slave pipeline register clocked from the 
master pdpc into the slave Pdpc during clock phase one if the enable signal 
ckpdpc is active. Adders, subtracters and other bit manipulation are easily 
handled with standard operators in the C language. A multiplexor can be 
handled with a switch statement, as well as being able to check for illegal 
values of the mux control. In short, most hardware constructs could be 
easily modeled simply by writing in a stylized form. Translation of func
tional simulator code into schematics was usually quite straightforward. 

C was chosen as the simulator language to ensure maximum simula
tion speed - the more code we could run through it, the easier it would be 
to uncover bugs. On an IBM 3081, the Fsim runs approximately 500 
cycles per second, approximately IO times slower than the architectural 
simulator and about 100 times slower than the interpreter. In opting for 
speed, we lost some advantages of specially-designed simulation languages. 
In particular, modelling parallel behavior in the sequential C model led to 
to calling order bugs that had to be ferreted out. Honesty was required by 
the Fsim writers to only write code which resembled reasonable circuits. 

One of the practical advantages of writing the functional simulator in 

329 
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#define input extern int /. from fsim.h ./ 
#define output extern int /. from fsim.h ./ 
#define ioput extern int /. from fsim.h ./ 
#define internal extern int /. from fsim.h ./ 
#define when break; case /. syntactic sugar ./ 

output list for data path of "the PDU ./ /. Input 
input Pdpra; 
input Pdprb; 
input eunpc; 
input bradj; 
input addpdu; 
input ckpdpc; 

/. 0,15./ /. instruction stream parcel from the queue ./ 
/. 16 ./ /. instruction stream parcel from the queue ./ 
/. 1,31./ /. Next pc from IR stage of execute unit ./ 
/. 2 ./ /. branch addition value (0,1,3) ./ 

/. put the PDU address on the address bus ./ 
/. used to enable clock of pdr.pc ./ 

output pipc; /. 1,31 ./ /. Tag for Instruction cache ./ 
output pbpbi; /. 3,31 ./ /. pbi master for prefetch buffer address 
output irpieq; /. high when eunpc equal to pipc ./ 

ioput adbus; /. 2,31 ./ /. bidirectional main address bus ./ 

internal offset; /. output of offset mux and pc adder ./ 
internal tpc; /. target pc -- pc + offset ./ 
internal spc; /. sequential pc ./ 

Figure lao Edited portion of Fsim header file pdureg.h 

/. PREFETCH DECODE UNIT datapath - Registers and adders and muxes ./ 
#include "fsim.h" 
#include "pdureg.h" 

pdureg( ) 
{ 

In phase one, slaves 
( CLK1 ) 
Pbpbi z pbpbi; 
if (ckpdpc) 

Pdpc = pdpc; 

are latched ./ 

/. Latch every phase 1 •• / 
/. If clock enable is on ./ 
/. clock master into slave latch •• / 

if (CLK2) 
{ if (addpdu) /. double word align the pdu address ./ 

adbus = (Pbpbi & (-Ox7» : Pdusec « 3; 
irpieq = ( eunpc == pipc ); /* 31 bit compare ./ 

if (CLK4 
{ offset +z bradj «1; /. add in instruction length ./ 

tpc = offset + (pdpc & -Ox1); 

switch (pbpcmx) /. model pbpc 3 input mux ./ 
{ case R_PBPCHX: pbpbi rpc; 

when T _PBPCHX: pbpbi = tpc; 

./ 

when P8_PBPCHX: pbpbi = (Pbpbi + 8 ) & -8; 
default: error(WARNING,"Bad PBR mux control ",,", pbpcmx ); 

Figure lb. Section of C code of Functional Simulator. 
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C was that it was comfortable since all. the tools and techniques for stan
dard programming were available. The writers of the functional simulator 
went beyond mere simulation, and developed an extensive set of com
mands and debugging facilities to facilitate design and make debugging 
easier. One of the nicest features was an interactive display of the major 
machine registers. Each of the pipeline stages was shown on a CRT 
screen, allowing one to watch multiple instructions flowing through the 
machine. The practical effect was that newcomers understood the machine 
more easily than by looking at the simulator code, and those intimately 
familiar with the machine were able 10 understand the cause of bugs much 
sooner. 

The functional simulator models the value of every signal at the end 
of a phase, but not necessarily the exact combination of logic gates neces
sary to produce that signal. All signals in the simulator are active high. 
Undefined signals, precharged nodes in dynamic logic and tri-stated out
puts in lIO circuitry are not modelled. These features were left out to 
reduce the time it took to write the simulator and run the simulator, as 
well as to improve the clarity of the code. As a result some bugs (espe
cially problems coming out of reset) were only discovered later in the back
porting process. 

In addition to internal consistency checks, like the validation of mux 
controls, the functional simulator was verified by dynamic comparison with 
the interpreter. No attempt was made to compare on a cycle-by-cycle basis 
(since the interpreter does not model cycles) or on the basis of any control 
signals. Stores, either to internal registers or off-chip memory, were 
matched to that of the interpreter. Most errors were quickly revealed this 
way. Since the interpreter ran about 100 times faster than the functional 
simulator, it was run as a background process with the Fsim, so no log 
files needed to be stored, and virtually every run of the Fsim could be veri
fied this way. Errors that delayed execution but eventually produced the 
correct result were not automatically detected. Those that were found 
were uncovered by casual inspection noting that some tests seemed to take 
too long. A more formal regression mechanism, which compares a "good" 
Fsim version to a "new" Fsim, is probably required. 

Schematic Logic Drawings: Draw 

Schematics were used as the exact circuit and conceptual description 
of the machine. It is certainly possible to build complex chips without 
schematic diagrams. As long as some of the layout is not done automati
cally, schematics provide the clearest description for traditionally trained 
layout engineers. Engineers were comfortable with schematic 
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representations but did not express the same appreciation for circuits 
described using textual representations. Some part of this is probably that 
schematics were able to convey 2-dimensional information, whereas text 
did not. We discovered and corrected many bugs at the schematic level 
before layout had begun. 

The CRISP microprocessor was represented using 616 pages of 
schematics using the UNIX Circuit Design System.4 Schematics were 
organized as a series of hierarchical macros. Unlike many systems, the 
hierarchy did not stop at the gate level, each gate or macro had to ulti
mately be defined from p-fet and n-fet transistors. About one third of the 
schematics define basic cells such as nand gates, inverters, multiplexors and 
latches. In this fashion, the schematics represented the exact transistor 
connectivity of the entire layout. Schematics could freely mix transistors in 
with other macros; this allowed designers to make good use of dynamic 
logic and to invent their own cells, rather than simply trying to design from 
a catalog of predefined gates. 

The UNIX Circuit Design System is composed of a number of small 
programs that work together, rather than a monolithic schematic system. 
The circuit editor, called draw, is simply a graphics editor that facilitates 
the drawing of shapes, pins, wires and text. Draw produces one binary 
graphics file for each 8 112 x II inch schematic page. Each graphics file is 
first converted in to an ASCII net list file. These individual netlist files are 
then run through a macro expander that produces the final netlist. 

A macro is a schematic entity such as a nand gate or (! multi-bit 
adder, that has inputs and outputs, and is composed of transistors or other 
macros. By convention the name of the file is the same as the type of the 
macro. A single macro may consist of a single or multiple schematic 
pages, for multiple page schematics the filename need be the same only 
until the first non-alphanumeric character. Since one of the main points of 
schematics is to make the intent of the circuit intelligible the macro 
expander also helps eliminate needless repetition. 

Figure 2 shows an example circuit that makes use of the macro expan
sion facilities. This figure has 7 inputs and I output, all but ck4 and 
precharge are busses. Signal brad}<O:J> represents the two wires brad}O 
and brad}J, and tpcmx[abdJ is expanded into the three wires tpcmxa, 
tpcmxb, and tpcmxd. A IO-bit register can be similarly drawn using the 
macro expander. Formal and actual parameters are connected through pin 
names, one interesting feature is that pin names and wire names need not 
be the same. This is convenient when dealing with busses at high levels of 
the hierarchy. Consider how confusing multiplexor abdmux would be if all 
43 inputs and output pins had to be explicitly shown in the macro call. 



Experience with CAD Tools 

Each macro call has both a name (or names) and a type. Shown is a 
macro named (pine of type add2tolO drawn in two pieces, so that the 
precharge input will not impede the understanding of the function of the 
adder, whose internal circuitry is shown in figure 3. 

One might assume that the design would progress in a completely top 
down fashion, where pages of schematics would be the specification handed 
to an engineer to layout. This was the case only for the control logic in 
our chip. For the remainder of the logic the functional intent was under
stood by the layout engineer, who then designed the circuit to execute that 
function according to his requirements for layout area and timing. 
Schematics for the bottom levels of the hierarchy were then drawn accord
ing to what the layout would be. The schematics were also driven by the 
layout in the sense that the physical topology was also reflected. For 
example, for a 3 input nand gate, we accurately reflected the order of the 3 
inputs. This was necessary for later verification of the layout. 

While the schematics were drawn to be as understandable as possible, 
there came a tradeoff in that they also had to be drawn to reflect the physi
cal layout structure for use in verification. For example, a decoder might 
be too large to fit in a layout of a group of registers, but might fit con
veniently into a hole in an adjacent adder; this had to be reflected in the 
schematics. 
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Pigure 2. Circuit using macro expansion. 
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Experience with CAD Tools 

Switch Level Simulation: Soisim 

Transistor level simulation was handled with a switch level simulator 
called Soisim. The input to Soisim is a transistor level netlist containing 
transistor sizes and net capacitance. This ASCII input file is compiled 
before simulation begins. The compilation phase analyzes the circuit and 
produces additional information to facilitate simulation. For example, 
many gates are recognized and evaluated by function, rather than exhaus
tive transistor evaluation. Special cases usually hard for switch level simu
lators, such as the four transistor exclusive-or gate and memory sense 
amplifiers, are also recognized and handled properly. Another powerful 
speedup recognized by the compiler is to recognize memory cells and 
model rather than simulate them, as memory can be a large fraction of the 
total circuit. Capacitance information is used to handle dynamic logic cir
cuits as well as detect potential problems with charge sharing. Transistor 
size information is used to evaluate ratioed logic. 

Soisim has a number of interactive commands. Small circuits can 
easily be tested by setting input values, settling the circuit, and printing out 
nodes of interest. A benefit of the compilation process is that one may 
inquire as to which "gates" drive a particular node, where the notion of a 
gate has been automatically reverse engineered from the transistor level 
input net list. The Soisim command interpreter follows the conventions of 
the UNIX Shell in two ways. One may traverse the hierarchy of a circuit 
using cd and pwd commands. Names use the character '/' as the hierarchy 
separator. Second, names may be specified by shell-like regular expres
sions using *, ?, and character classes. This is particularly convenient for 
dealing with groups of signals such as a 32-bit bus. Commands to the 
interpreter can be read from a UNIX file, and output from any command 
may be sent to a file rather than the terminal. The apparent command set 
of the Soisim interpreter can be extended with user supplied C programs 
compiled with Soisim, or by writing output to a file, then using combina
tions of the UNIX commands awk, sort and grep. 

Soisim also has a non-interactive mode which can be driven from a C 
program. This is useful when the number of inputs and cycles of execution 
is too large to be conveniently typed in by hand. The values of C program 
variables can be bound to wires in a circuit to be simulated. Assigning a 
value of 0,1 or X to a variable will cause that value to be placed on the 
signal net before the next circuit evaluation begins. Variables must be 
specified as input, output, or a mixed input/output as specified by a control 
variable. 
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8ackporting: Switch level simulation without vector fIles 

The conversion from the functional simulator to schematics was a 
manual process. An engineer stared at the C code in the simulator and 
drew a series of gates to represent that code. Without another mechanism, 
there is no guarantee that the gates in fact produce the same behavior as 
the C language statements. The mechanism we use to prove that the logic 
is correct is called backporting. One by one, C-coded modules in the func
tional simulator are replaced by switch level simulation of the schematics 
for that module. Eventually the entire chip is modeled at the switch level 
by Soisim, and the Fsim is a skeleton which provides an operating environ
ment, verification and debugging facilities. The result is an efficient mixed 
mode simulation capability. 

Each module of the functional simulator, when called by the main 
driving procedure, takes all its inputs (which are C external variables) and, 
at the end of the phase, calculates appropriate values into its outputs (also 
C externals). When backporting a module, the C code is replaced by a 
special C code that binds a module's inputs to Soisim variables, issues a 
call to Soisim to settle the circuit, then maps the appropriate Soisim vari
abIes. back to C variables for the module's outputs. The binding, settling 
and mapping function is handled automatically from the module's header 
file and the netlist file generated from the schematics. 

The tool which generates the linking module automatically translates 
between the Fsim naming convention and the schematics naming conven
tion. (The distinction exists primarily so the simulator can represent 
multi-bit signals as C integers, instead of a collection of I-bit variables.) 
In addition, the tool provided another level of verification, since it com
plained if the inputs and outputs specified in the C header file do not agree 
precisely in number with the inputs and outputs specified in the schematics. 

Backporting more than one module at a time is a simple extension of 
the procedure to back port individual modules. All that is required is an 
I/O list (which is in the form of a C header file) for the union of all the 
modules in question, and a netlist, which could be generated either by 
hand in schematic form or automatically from the constituent modules. 
Generating the I/O list is a manual process, but it is straightforward and 
eventually is double-checked against the logic. For back porting the full 
chip, the I/O list was the specification of the chip's I/O. 

All facilities of the functional simulator are available to the back
ported simulator, so that the interactive debugging interface looks as it did 
without Soisim, all verification mechanisms function, and all Fsim variables 
are available for inspection by the debugger, including signals being simu
lated by Soisim. In addition, all nodes internal to the Soisim model could 
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be examined or traced. The debugging paradigm is the same' as the stand
alone Fsim: run a test while comparing its results with the background 
interpreter, and when a conflict occurs, inspect signals until the problem is 
revealed. Usually, once a bug was known, its cause could be uncovered in 
a few minutes. As a result, we did not use any vector files until just 
before the chip mask date, when vector files were necessary for detailed 
110 protocol verification as well as for the silicon wafer testing machines. 

The speed of a back ported functional simulator depends on the size 
and the nature of the circuit being simulated by Soisim. A small block of a 
couple of hundred transistors runs in nearly the same time as the bare 
Fsim. A full CRISP model, all 170,000 transistors, runs very slowly, on 
the order of two cycles per second of IBM 3081 CPU time. This is about 
two orders of magnitude slower than the bare Fsim. The process, even 
with the hierarchical names in the Soisim netlist flattened to save space, 
takes about 7 Megabytes of virtual memory space. Therefore, we ran a 
full-chip model infrequently, and only after we were reasonably certain 
that all of its sub-modules back ported successfully. A full regression of the 
full-chip model through the 200-odd tests takes about 3 3081-CPU -days. 

Layout Tools: Mulga 

The layout was accomplished by three different methods. The 
memories and final chip assembly was done with a vlsi graphics editor 
called GRED. GRED allowed the editing of arbitrary polygons and mask 
levels in a fixed absolute geometry system. The two control PLA's were 
generated automatically from high level equations, and major routing chan
nels were generated automatically using the LTX2 routing system. The 
remainder, and by far the majority of the drawn layout was done using the 
Mulga system. 

Mulga5 , 6, 7,8 provides a layout system using symbolic virtual grid lay
out with compaction. Layout is entered using a high resolution color 
display and digitizing tablet for cursor control. Transistors, wires and con
tacts are symbolic entities that can be placed at the crossing point of con
ceptua! grid lines. These grid lines appear in the symbolic layout as if a 
piece of graph paper was superimposed on the screen. Symbolic layout still 
requires that the designer decide on the relative placement of transistors 
and wires, but actual physical design rules for spacing can be ignored. 

After a symbolic design is entered, is then goes through a compaction 
process yielding final physical mask data. Virtual grid compaction in 
Mulga is conceptually accomplished with two passes, first an X-compaction 
step, then a Y -compaction step. In the X-compaction pass, all elements on 
that X coordinate are examined to see how far they might be moved to the 
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left without violating the physical design rules to elements on the virtual 
grid line to its left. A single fixed mask X coordinate is then assigned to 
all elements on that virtual grid line which is determined by the most con
straining path. This step is then repeated for the next virtual grid line to 
the right, and so on. The V-compaction step is repeated similarly, with the 
constraints also including diagonal clearances. After compaction, all X and 
Y virtual grid coordinates have a corresponding physical coordinate. A 
program converts the symbolic data and physical coordinate information 
into the final physical mask data. Compaction is more a process of push
ing objects closer together than one of re-arranging layout. The compac
tion sys.tem also adds additional mask layers not covered by the symbolic 
representation, such as tubs and N +. 

Using symbolic layout proved beneficial in several ways. Layout of 
cells seemed to progress about 3 times faster for our designers with sym
bolic layout rather than with more traditional absolute geometry "paint" 
style layout editors. Symbolic layout is easier to deal with in several ways. 
Objects can be placed with a single atomic operation, rather than having to 
paint individual mask layers. For example, placing a single symbolic 
transistor is easier than drawing separate layers for each of diffusion, 
polysilicon and tubs. Time was also saved by not having to worry about 
particular design rules, for example the absolute length and width of 
transistors or the absolute spacing of wires; these would later be deter
mined by the compactor. 

Use of the compaction system also eliminated bookkeeping required 
for pitchmatching. Pitchmatching is necessary when many heterogeneous. 
cells are packed in a matrix with precisely lined up interconnecting busses, 
as is common with datapath design. In figure 4a two cells need to be con
nected after layout and compaction, but the busses running though them 
are not aligned appropriately so that they may be butted together. If these 
cells are large, re-Iayout could be very time consuming. In a fixed 
geometry system one solution would be to interpose a routing channel 
between the blocks as in figure 4b. Such a routing channel could use large 
amounts of area, very unacceptable for microprocessor designs where area 
is always at a premium. Our execution unit datapath had 250 individual 
cells, each of which had to abut with cells on each of its four sides. The 
automatic pitchmatching used with the Mulga system aligned these cells by 
first compacting all cells to minimum size, then expanding the virtual grid 
lines of cells so that they abut exactly. Once a cell is compacted, adjacent 
virtual grids can be expanded without causing any design rule violations by 
holding the relative spacing of other grid lines fixed. Cells would now 
abut without the need of a routing channel between them, as shown in 
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Figure 4a. Representation of 2 cells after compaction 
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a t---a 

b -----I ~--b 

c- ...---c 

Figure 4c. 2 Cells expanded after pitchmatching now abut. 
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figure 4c. 

Compaction allowed the layout to proceed long before the final design 
rules stabilized. When a design rule changed the effort was not in fixing 
the layout, but rather in changing some tables in the compactor. The only 
real concern was that all cells be compacted with the final version of the 
compactor. Our compactor was changed several times in the course of the 
layout, due both to design rule changes and to a few bugs in the compactor 
uncovered by use of a design rule checker. (A working compactor by 
definition does not produce any layout errors.) When we wished to evalu
ate a new circuit design for the ALU before 1.75v. processing was avail
able, we simply took the symbolic layout and recompacted it using a com
pactor for 2.5v. design rules. Different compactors have also been used to 
create new layout based on preliminary design rules for future processes. 

Circuit Extraction: Goalie 

Two problems need to be solved after layout has been generated. 
First, is the layout correct? Second, what are the timing characteristics of 
the circuit? The first step in determining these answers is to automatically 
extract the circuit connectivity and capacitance from the final mask art
work. We used a new circuit extractor called Goalie.9 Goalie's two most 
important features for a large chip design are that it is very space efficient, 
and also very fast compared to other circuit extraction systems. The work
ing space required by Goalie is proportional to the square root of the size 
of the artwork being analyzed. Even though Goalie was space efficient, 
we still had problems due to the large amount of data involved. The final 
mask data for CRISP was 34 megabytes. The operating system for our 
largest IBM computer had process size limits of 10 megabytes per process, 
this limited us to extracting circuits of about 20,000 transistors. Larger cir
cuits had to be extracted on machine with greater process size, but which 
were an order of magnitude slower. For a 35,000 transistor circuit, circuit 
extraction took about 12 hours on a VAX-l 11750. Hence the CPU effi
ciency of Goalie was important to us. The final 172,189 transistor mask 
was extracted in about 6 hours using an AIliant multiprocessor, about 26 
hours on a V AX-l 11750. These extractions included parasitic capacitance 
and also generated intermediate files for simulation and net list verification 
tools. 
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Netlist Comparison: Gemini 

If schematics are used to specify layout, one needs a technique for 
certifying that the actual layout is as was intended. One might consider 
using simulation as a tool for verification, but this quickly becomes prohi
bitive as the size and complexity of circuits grow. Even if computer time 
were not a factor, catching a minor layout error would require perfect fault 
coverage, a very difficult prospect. Simulation can be considered a form a 
dynamic verification, we instead opted for static verification via netlist 
comparison. The schematics provide a transistor level net list for the entire 
chip. The layout is extracted using Goalie to provide a second netlist. The 
two netlists are then compared for equality by a computer program called 
Gemini. 10 Gemini was written at Carnegie-Mellon University by Carl Ebel
ing and Offer Zajicek and was the only tool obtained from outside Bell 
Labs. 

Gemini has a number of essential features for large circuits. First, its 
running time and space requirements are nearly linear with the size of the 
circuit. Second, it is convenient in that it does not depend on the actual 
names being equivalent; in fact, no names need to be supplied to get the 
program started. Third, when the circuits do not match, it does a reason
able job of producing diagnostics to help pinpoint the error. 

A number of practical considerations have to be taken into account 
before relying on this method. One that almost caught us by surprise was 
the amount of virtual memory space that would be required for the fin
ished chip simply due to the large number of transistors. Our final Gemini 
run took I \0 Megabytes of virtual memory! This is still an average of only 
slightly more than 300 bytes per transistor, quite respectable. Most of the 
UNIX systems available to us provided for only 2 to 32 megabytes of vir
tual memory space per process. We were fortunately able to borrow a 
recently purchased Alliant mini-supercomputer which allowed for up to 256 
megabytes per process. Our project could have been in serious trouble 
without the use of this machine. How big a process does your machine 
really allow? Try the C program in figure 5. 

The sizes of files also became almost unmanageable. The Gemini 
input format was a flat ASCII database, with one line per transistor. Each 
line contained the device type (p or n), the names of the nets on the gate, 
source and drain, the length and width of the transistor, and a unique 
name for the transistor. For the extracted circuit the net names and 
transistor name contained no hierarchy, and were typically 6 characters in 
length (the default name for nets with no identifying text was "N" followed 
by a net number). The size of the Gemini file for the extracted chip was 
about 9 megabytes. The Gemini file generated from the schematics was 
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over 25 megabytes, as the hierarchical names were each often long, for 
example crisp/pfdatalpbufdata/array_dlnybleOO/zlbiLL. Other than disk 
space, one problem with large files was that they occasionally had to be 
moved between machine and few networks could transfer files that large in 
reasonable amounts of time. Magnetic tape ("tapenet") was used all too 
often. 

It is best to start verifying small pieces of layout first, then gradually 
work to larger pieces. The intent is to verify a circuit where there are 
never more than a few errors, otherwise the diagnostics are not likely to be 
very useful. This incremental debugging approach required us to carefully 
draw the schematics so that there would be exact correspondence with lay
out blocks at various stages of the hierarchy. This required many tradeoffs 
between making the schematics easy to understand versus making them 
model some physical layout. 

Although Gemini could often describe an error in terms of connec
tivity, finding the error in the physical layout could sometimes be difficult. 
Consider the case where a long wire is broken in two pieces by accident. 
Looking for the error with the naked eye may be impossible at any resolu
tion large enough to see the entire circuit. Several of our plotting pro
grams had the ability to highlight a particular net, thereby making the phy
sical location of many problems plainly visible. The most difficult problem 
to identify turned out to be when power was accidentally shorted to ground 
creating a single power net. We found no easy way to detect the physical 
location of this particular error. 

Gemini was extremely successful at finding bugs in what we would 
otherwise have thought was "perfect" layout. One of our strongest recom
mendations is that netlist comparison be a fundamental part of chip design 
methodology. 

#include <stdio.h> 
maine ) 
{ int i = O,meg = 0; 

while ( ( i= malloc( 1000000) ) 1= NULL) { 
printf("space for a meg at %d\n", i ); meg++; } 

printf("allocated a total of %d megabytes\n", meg ); 

Figure 5. C program to determine maximum process size. 

Timing Analysis: ADVICE and Leadout 

Detailed timing analysis was first done with a detailed circuit analysis 
program called ADVICE, II a Bell Labs proprietary version similar to the 
more commonly available SPICE .12 ADVICE models the device physics of 
fets to produce highly accurate analog simulation based upon the actual 
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process parameters. Input decks for ADVICE were initially hand 
extracted from plots, measuring transistor sizes and wire lengths via ruler 
and entering best approximations of values. Goalie was later modified to 
automatically extract an input deck for ADVICE, but it was still necessary 
to type in input stimulation waveform information. While this was merely 
tedious for small circuits, the job quickly became difficult for large circuits. 
Simulations of this kind had absolute limits of a few thousand devices due 
to both program memory requirements and excessive amounts of CPU 
time. ADVICE use concentrated around the design of the memories, drive 
and noise analysis in the 10 frame, and on a few expected critical areas 
such as adder and ALU design. 

One option we had available to us for large scale chip timing was to 
use a less accurate multiple delay simulator such as MOTIS. 13 This could 
have been used to simulate the execution of the machine for many clock 
cycles at a given clock frequency, i.e. a dynamic timing analysis. In addi
tion to the still massive CPU requirements this would have cost, we saw 
several more basic problems with this approach. First, errors caused by 
signal paths running too slow would likely be very difficult to find. One 
might have to examine hundreds of nodes to determine which signal was at 
fault; this seemed unreasonable for large complex circuits. Second, this 
type of vector driven simulation would have no guarantees of exercising 
and finding all worst case signal paths. Third, the information conveyed 
by a timing failure would show only the last gate in the chain. The 
designer needs to be told the entire path of a signal in order to fix it. For 
these reasons, we abandoned this technique of dynamic timing analysis in 
favor of static critical path analysis. 

For static critical path analysis we used a new program called 
Leadout. 14 Leadout's main job is to tell the user what paths do not arrive 
at their destination soon enough for proper operation at a given clock fre
quency. Leadout analyzes a circuit over a single clock cycle in a way that 
is independent of the logical values of most nodes. It does take into 
account and exploit information about clocks, invariant signals and other 
controlling signals whose timing behavior is specified. Leadout assumes 
that a circuit will run correctly if clocked slowly enough. This correct 
behavior is used to produce a set of internal equations that describe the 
time of occurrence of signal changes for any frequency, and a set of con
straints on these times that must be satisfied in order for the circuit to 
operate correctly. The result is a fast timing static timing analyzer that 
could handle our entire chip in reasonable time (minutes) on a V AX-
111750. Accuracy of Leadout is within 10% of the time predicted by 
ADVICE. 
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Because Leadout was fast and easy to use it was convenient in sizing 
transistors. Gates driving signals internal to small blocks of logic were 
first laid out using minimum size devices. This provided a benefit by 
reducing the gate loading for most signals. Leadout was then used to 
selectively identify slow paths, these were then resized with larger transis
tors. Leadout would provide immediate feedback on timing improvements 
from transistor sizing. Designer time was probably saved as no time was 
wasted optimizing non-critical paths. Before Leadout was available we had 
done transistor sizing based on fanout, assuming that a gate with a large 
load needed more drive. If a gate had more than an ample timing budget 
(slack), then this unnecessarily increased both the area and capacitance on 
its inputs. 

Leadout was not a substitute for ADVICE, but a tool that worked 
well with it. In fact, one of Leadout's commands is to produce a complete 
input deck for ADVICE for a critical path or other net, including input 
stimulus and producing plots. Leadout could not be used for circuits of a 
more analog nature, such as memory sense amplifiers. 

Naming Conventions 

What's in a name? Headaches. One of the biggest factors in making 
all the tools work together smoothly was in defining names. Our set of 
tools came from many sources, each with its own history for why what it 
had done was the "right" choice. The tools themselves were not even as 
much of a problem as the languages they had to deal with. The oldest of 
these was the XYMASK physical mask layout language, which had des
cended from the days of making printed circuit boards. XYMASK names 
could be a maximum of 8 uppercase alphanumeric characters, ,officially no 
special characters such as underscore were allowed. The C compilers on 
the large IBM machines initially also had restrictions of 7 characters on 
names, but would allow both upper and lower case, and underscore. Seven 
characters in a flat name space (i.e. no hierarchy) is just not enough. For
tunately the schematic system allowed hierarchical names of essentially 
unlimited length. In the end we decide not to try to force all cad tools to 
use exactly the same names. We cared mainly about the schematics and 
layout, Gemini provided the key by producing a dictionary of equivalences 
as it matched the two nets. In practice, using a dictionary turned out to be 
only a minor nuisance, perhaps no worse than would have been the book
keeping to try to keep 68,000 unique 8 character net names. 

The first fight among any group of engineers is how to represent 
active low signals in their schematics. Here is how we solved the problem. 
Names could optionally be followed with an underscore and tag field. If 
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the tag was the letter L, the signal would be considered active low; xyz_L is 
an example of an active low signal. There were often many variants of the 
same signal, a common variant was to distinguish the master and slave 
nodes of a latch. Slave nodes would contain the character S in the tag. 
Buffered versions of the same signal could contain a number in the tag, 
hence xyz3J_2SL would be the second slave latched version of bit 31 of bus 
xyz active low. Tags could in practice contain any legal characters, and 
their use. was merely a convention extendible whenever the need would 
arise. 

Most of the tools had their own ASCII intermediate language. Inter
facing different cad systems could quite often be done with a relatively 
trivial translation program written in awk or C. 

Our use of Gemini to match the schematics against the layout 
required that the nets match exactly. In particular, the order of inputs to 
gates had to match, so we needed a naming convention for gates. Our 
convention was that lower valued pins would be nearest the Vss and Vdd 
supply rails, higher valued pins would be nearest the output. For this 
definition, the value of I was less than 2, and the value of A was less than 
B. This convention seemed to work well even for gates such as the 3-2-1 
input and-or-invert gate of figure 6. 

c 

Figure 6. Example of naming convention for an And-Dr-Invert gate. 
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Control the Source Code 

In almost every case we obtained copies of the source programs for 
our tools. In retrospect, this was not only a wise choice, but essential in 
making the tools effective. Our tools came from several different sites, 
each with its own view of a particular problem. As a result, few of the 
tools would interface with each other in their original form. For example, 
our schematic entry system was originally designed to handle wire-wrapped 
circuit boards of a small number of TTL chips, not a large scale VLSI 
design. The wire-list format for TTL chips was not used directly by any of 
our tools, but a simple program converted the file into the format required 
by the Soisim simulator. 

Few of the tools were equipped to handle the massive size of the cir
cuits used in the chip. In many cases a program would halt with a diag
nostic saying that the size of our circuit exceeded the allowed size of some 
internal data structure. By having the source locally available we were 
able to quickly identify the problem, change our copy of the source, recom
pile, and be in operation again in only a few minutes. These errors were 
too frequent to have the problem fixed by some separate support organiza
tion, and of course occurred on nights and weekends when no official sup
port would have been available. The operating system also required 
changes to support our tools, primarily in adjusting process size limits and 
adding device drivers. 

Having the source to tools helped create dozens of spinoff tools. 
Because the amount of data was large, many repetitive tasks could be more 
efficiently handled by a program. The tradeoff was always to determine 
whether writing a one time tool was more expedient than just doing the 
brute force repetitive task by hand. By stealing lexical analyzers, parsers 
and code to build data structures from an existing tool, complex new tools 
could be put together in only a few hours. In the end we had created 
many new programs that significantly enhanced the productivity of our 
CAD environment. 

UNIX 

The CAD environment consists of more than just layout and simula
tion tools. For us, the best foundation for our tools was the UNIX operat
ing system. UNIX was useful in several ways. First, it provided a number 
of support programs, we most frequently used grep, awk and sorl. Second, 
its ubiquity was important in that we had to deal with a large number of 
different computers. The last thing an engineer wanted to have to deal 
with was a new operating system. In our particular case, VMS was 
favored by some of the CAD tool writers as its FORTRAN compiler ran 



Experience with CAD Tools 

somewhat faster than that offered by UNIX for the same computer 
hardware. In no case was this change to a non-UNIX operating system 
appreciated by our designers. Early in the project we had available an 
order of magnitude increase in performance available on a non-UNIX 
machine and turned it down. 

Some Statistics 

Numerology is often interesting, table I contains some of the more 
relevant statistics gathered during the design of CRISP. The CRISP 
microprocessor was designed in 36 months by a team that averaged about 6 
full time engineers. Additional support staff also made contributions. The 
sizes of programs are listed to give some feel as to the amount of effort 
required to install and maintain them. Some of these, such as Mulga, are 
actually a suite of several programs. In this case the total lines of code for 
all programs in the suite is given whether we used them all or not. 

I 
172,189 
68,341 

616 
2,892 
3,507 

26 
370 

5 
240 
ItO 

25,500,634 
9,032,022 
34,205,222 

3,295 
4,308 
4,654 
16,670 
20,023 
21,699 
36,738 
119,401 

3 

° 

1.75fL CMOS Microprocessor 
transistors 
nets 
schematic pages 
files in the mulga subdirectories 
files in the draw subdirectories 
VAX-I 11750 hours to extract with goalie 
megabyte directory needed to extract chip 
V AX-I 11750 hours to rasterize a 200fL/inch color versatec plot 
disk megabytes reserved for rasterizing plots 
megabyte process size for final gemini run 
bytes schematic generated gemini file 
bytes goalie extracted gemini file 
bytes final mask data 
interpreter lines of C 
architectural simulator lines of C 
gemini lines of C 
fsim lines of C 
draw suite lines of C 
Leadout lines of C 
goalie/soisim suite lines of C 
mulga suite lines of C 
IBM-3081 CPU days for full back port regression 
card images 

Table l. Some statistics gathered during the design. 
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Weak Spots 

On the whole we were very pleased with our methodology and the 
tools. One area for improvement would be in the layout system. Layout 
was done in two vastly different styles, symbolic layout with compaction 
and a physical layout editor; a single integrated layout system would have 
been vastly superior. Mulga was excellent for designing small cells, but 
not very good for large blocks and final chip assembly. Symbolic layout 
was very time consuming as the size of blocks got large, even for a tiny 
change as layout verification was necessary every time. Recompacting, 
then circuit extracting in order to verify with Gemini could take several 
hours for a large circuit. Many hours could have been saved had the lay
out editor kept electrical net information and been able to generate a Gem
ini netlist directly. 

A small change in a symbolic cell might change the overall size of a 
layout block after compaction, as well as the position of its inputs and out
puts. This greatly interfered with inserting the compacted layout into the 
physical layout system during chip assembly. A single integrated system 
allowing both compaction and physical placement might alleviate this prob
lem. 

Results 

There now exist working CRISP chips that run at speeds at or above 
the design frequency. As of this writing we have found only two bugs in 
the initial silicon. One bug was a charge sharing problem, another was 
due to Miller effect problems involving a dynamic node. The charge shar
ing problem was at the interface of two blocks, and would not have been a 
problem if the timing interface had been constrained in a slightly different 
way. This bug could have been caught by our Soisim backporting, but due 
to either haste or lack of communication this simulation was done without 
ever having included extracted capacitances. The Miller effect problem 
was a clear design bug, obvious when one looked at the schematics. We 
had no tools to effectively look for this type of analog design problem. 
The Miller effect bug could only have been seen through detailed ADVICE 
simulation, which was of little use unless one knew exactly where to look. 
If we had known where to look, we wouldn't have needed simulation to 
see the bug. A few of our first wafers had been held back from final 
metalization, we were able to make a minor change to the metal mask to 
correct these two bugs and obtain working chips from our first silicon 
wafers. 



Experience with CAD Tools 

Conclusion 

While many of the CAD tools have not been described, the overall 
methodology and experiences give a good view of how the chip was con
structed, and the obstructions along the way. We urge designers of large 
chips to follow a few key recommendations. First, use tools that are capa
ble of handling circuits as large as the entire chip. Piecepart verification 
would have left us with many bugs. Second, verification efforts should 
start as early as possible, and be capable of incremental verification. Mul
tiple levels of simulators worked well for us compared to the more tradi
tional approach of not simulating until extracted layout was available. 
Third, static timing and layout verification is vastly superior to dynamic 
verification. Apart from the tools themselves, the hardware resources were 
never sufficient or perfectly reliable. Much time was spent dealing with 
computer issues of networking, broken hardware, porting software and a 
constant stream of bugs that stole time that might have been used for use
ful design. 
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OVERVIEW OF A S2-BIT MICROPROCESSOR DESIGN PROJECT 

INTRODUCTION 

Pat Bosshart 

Texas Instruments Incorporated 

Dallas, Texas 75265 

This paper will attempt to give an overview of a large microprocessor design 
project. Its purpose is not so much to describe a particular machine, but rather 
to describe the design process. It will present the design approaches taken and 
the design tools used or created during the project, and will cover topi('s such as 
the division of work, problem areas and important results. However, in order to 
properly set that discussion in perspective, a brief description of the mln(}pro('essor 
will also be given. 

The first section will provide an introduction to the architecture of thf> LISP 
processor chip Next some of the external constraints and high level decisions which 
affected the overall shape of the design task will be discussed. The following section 
will describe the design flow, with emphasis on the design tools which were used 
or created in the design. Tracing the flow of design information will provide the 
great.est detail in understanding the design process. The next section will discuss 
the division of labor. Finally, some of the problem areas in the design task will be 
described. and the paper will conclude with discussions of some of the important 
results from the project. 
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PROCESSOR DESCRIPTION 

The chip is a 32-bit LISP microprocessor which is upwardly compatible at the 
microcode level with an existing LISP machine, the Texas Instruments Explorer-I. 
Microcode is contained off-chip in a writable control store; the chip implements a 
fairly simple microengine. 

A simplified block diagram of the processor datapath is shown in Figure 1. 
The machine has a 3-address architecture: microinstructions may specify two 
sources and a destination. One of the two sources is the A-memory, a lK-word on
chip memory intended for use as a microcoder's scratch pad. A variety of inputs may 
drive the other source, the M-bus. M-memory is a 64-word microcoder's scratch
pad, and the lK-word PDL-memory is used as an on-chip stack cache. The virtual 
machine implemented by the system microcode is stack-oriented, so the presence of 
the top-of-stack on-chip reduces off-chip memory references. There are numerous 
other inputs to the M-bus. Among them are pointers to address the PDL-memory, 
one of which is maintained to point at the top of stack, and registers which imple
ment the interface to off-chip virtual memory. There are also other registers, such 
as the macroinstruction program counter, whose purpose is to aid the emulation 
of macroinstructions, and also connections to load and read other local memories, 
such as the microprogram stack memory. All microinstruction destinations may be 
reached through the O-bus. 

All sources feed the execution unit, which consists principally of an ALU and 
barrel shifter/masker. The ALU performs all arithmetic and logical operations, in 
addition to atomic operations necessary for multiplication and division. The shifter 
performs rotation and arithmetic or logical ~hift operations. The masker allows 
a rotated field from the M-source to be merged into the A-source operand with 
single-bit resolution. 

A simplified block diagram of the processor's control paths is shown in Fig
ure 2. At its heart is the microprogram count,er or PC. Jump and call instructions 
obtain the next-PC directly from a field in t he microinstruction. A call instruction 
will push a return-PC onto the micro-stack (UpeS) memory. Microcode can im
plement either normal or delayed branches. A set of hardwired trap locations form 
another PC input, while the last input romps from Dispatch memory, and is used 
for multi-way branch instructions. A dispat, h mstruction allows any field from any 
source to form the index into a dispatch table whose base is specified in the microin
struction. The dispatch entry retrieved from the 45K-bit dispatch memory contains 
both the target address and the transfer type (jump, call, return, or no-branch). 
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O-BUS 

M-BUS 

O-BUS 

yltA itO 

Figure 1. Processor datapaths. 

The machine has four types of microinstructions; ALU, Byte, Jump and Dispatch, 
which differ in format only slightly from one another. 

The character of this processor can therefore be briefly summarized as follows: 
It is a simple micro-engine with a fairly regular structure and simple datapath. 
It processes microinstructions, all of which are single-state instructions and are 
fairly horizontally encoded to minimize the amount of control logic required on
chip. In particular, there is no extensive control logic to interpret complex macro
instructions in hardware. The processor is memory-dominated; it contains 114K 
bits of on-chip RAM, and 16K bits of on-c-hip microinstruction ROM, used for 
self-test and boot load. Its large pin count of 224 is necessitated by the use of 
off-chip microcode. Chip area is dominated b)' I. hree large RAM's, with a regular 
datapath structure occupying most of the rest of the chip area. Only a small amount 
of control logic exists to provide detailed cont.rol of the datapath. The processor 
contains about 550,000 transistors. 
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Figure 2. Processor control paths. 

HIGH LEVEL DECISIONS AND INFLUENCES 

This section will describe some of the outside influences and technical con
stramts which determined some of the global aspects of the chip design. It includes 
marketing, financial and schedule considerations. The most important external fac
tor in the entire project was the source of funding; this project was done under II. 

grant from the Defense Advance Research Projects Agency (DARPA) for the pur
pose of developing a compact LISP machine to be used in future embedded military 
applications. While the contract would provide for the development of the processor 
hardware, software development would be in common with Tl's commercial LISP 
machine family. In any case, wit hout that external funding, the project would not 
have been possible. 

Since this processor chip was meant to be a new member of an existing com
puter family, opportunity for architectural experimentation was limited. Microcode 
compatibility was required. Another reason to restrict the range of architectural 
innovation was the fact that the group doing the design had never before designed a 
microprocessor. Though the laboratory had extensive experience in RAM design, its 
experience in designing logic devices was limited to a few projects of a much smaller 
scope. In fact, almost no one on the design team including the team leader, had 
ever participated in a microprocessor design A third reason for close adherence to 
the Explorer-I implementation was schedule. It was felt t hat it was more important 
to be able to introduce the product on time than it was to achieve revolutionary 
improvements in functionality or performance Therefore the aim of the project 
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was to produce a relatively faithful implementation of the earlier machine, relying 
heavily on Ie technology for cost/performance improvements. 

The large number of on-chip memories meant.that the entire processor had 
to go on a single-chip; connecting to multiple external RAM's would have cost far 
too many chip pins. Likewise, there was no easy partition which would allow a 
multi-chip implementation. Once all the memories could fit onto the chip, their 
effective access times could be dramatically reduced because signals did not have to 
traverse chip boundaries, allowing much faster microinstruction execution rates than 
before. The Explorer-I executed microinstructions at a 7MHz rate; a 20MHz rate 
was (rather arbitrarily) chosen for the LISP chip. This proved to be an aggressiv~ 
goal, for an instruction included not one but two memory access times. 

Writable control store relieved the design team from the requirement for 
correct system microcode before the end of the chip design cycle. It also meant that 
simulation of all the high-level system microcode routines was not considered part 
of the chip design. The job of the design team was reduced to designing a machine 
which would correctly implement the four above-mentioned microinstruction types. 
This is perhaps a factor of two smaller job than designing a machine with a large 
amount of built-in microcode. 

The design team leader had 6 months before the start of the design to learn 
enough about the processor so we would know what it was we were supposed to 
build. During that time there was a large amount of interaction with the designers of 
the ExplorE'r-l. Mat.erials provided for study included the Explorer-I processor and 
virt.ual machine specification documents, system microcode, processor schematics 
and PAl equations, microcode diagnostics and an architectural simulator. This 
time coinCIded with the later stages of the Explorer-I design, so design reviews, bug 
reports and design change notices all helped fill in dE'tails of the workings of that 
machine. 

DESIGN TOOLS 

This section will describe the design tools ui>ed during the course of the 
project, and how they related to each "ther This will provide the most detailed 
account of the design process. The foil •.. " mg lE'sign steps will be included in the 
discussion: computing environment, s('hemall< E'ntr) , electrical simulation, logic 
simulation, functional simulation, fund I'>nal test generation, RTL design, control 
section layout, timing verification, floor planning nanuallayout entry, layout veri
fication, datapath assembly, chip assembly object-oriented database, structural test 
pattern generation, fault grading, test pau,f'rn tra 1l~lation, and chip debug. 
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Computing Environment 

About 9 months before the official start of the design project, an evaluation 
was made of commercially available design tools. Our group eventually concurred 
with the decision made by our Design Automation Department (DAD) to use the 
MENTOR system for schematic entry. We also chose at that time to buy a ZYCAD 
logic simulation accelerator. At the start of the design project, our local computing 
environment consisted of the following machines: 1 VAX 11-750 and 2 VAX 11-
780's !'Onnected via DEC NET (also used by other groups in the laboratory); 4 
APOLLO's (2 DN600's and 2 DN660's) connected together via Apollo's DOMAIN 
network, but not connected to the VAX'es by any network; One Symbolics-3600 
LISP machine connected to a VAX via CHAOSNET; 1 ZYCAD LE-1002 hardware 
simulation engine interfaced to one of the VAX'es; one Fairchild SENTRY-20 64-pin 
chip tester, not interfaced to any other machine; one AMRAY Scanning Electron 
Microscope with a LINTECH waveform sampling unit to do SEM probing; and an 
R JE link to more IBM mainframes than we could ever possibly afford to use. 

During the course of the design project, we acquired a VAX 11-785 and 
transferred the ZYCAD interface to it. This machine was most,ly used for running 
large batch jobs, such as SPICE and the ZYCAD flattening software. All the VAX'es 
were clustered during the course of the design. We acquired 4 more Symbolics 3600 
LISP machines, and when the TI EXPLORER LISP machine became available, 6 of 
those. These LISP machines were connected to the now ubiquit.ous Ethernet which 
linked all our systems, including the APOLLO's. We acquired a CALMA system, 
mostly out of fear that the APOLLO-based in-house layout editor would not be 
able to handle large databases. That fear turned out tcy be unfounded, and the 
extra layer of data transmission and translation made the CALMA so inconvenient 
to use that we hardly used it at all for layout.. It was Ilsed as the driver for the 
color VERSATEC plotter we acquired. For t,esting we acquired a MEGATEST 
MEGAONE tester with 220 pin capability, also interfaced via Ethernet; and a 
MICROVAX to interface to the SEM prober It took a long time into the design 
cycle before TCP lIP Ethernet was available to interface APOLLO's to VAX'es; 
during the interim we had to make do with a file transfer interface routine built on 
top of an RS232 link. During the course of the project, an SNA link was also added 
between the VAX'es and the central IBM mainframes. 

Schematic Entry 

Schematics were entered using the MENTOR schematic editor resident on 
APOLLO workstations. We wrote our own software to interface MENTOR to our 
design system; MENTOR is a closed-architecture system which makes this task 
more cumbersome by not allowing the user to directly get at the internal database. 
Instead, a service routine outputs MIF (MENTOR Intermediate Format), a text file 
expressing the connectivity of the design block. Unfortunately, this routine wanted 
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to flatten hierarchical schematics before producing MIF, rendering it useless for all 
but very small circuits. It was a small matter to defeat the flattening mechanism 
to output a hierarchical description in MIF. MIF was then translated to HDL, 
TI's Hardware Description Language, and hierarchical SPICE descriptions. HDL 
is the hierarchical description language used for schematic verification and for the 
centrally-supported logic simulation programs. There was no automatic provision 
for updating old MIF and HDL files; updating was initiated manually. 

The largest problem we had with the MENTOR system was that it was very 
inconvenient to enter schematics of very large blocks; a symbol for the datapath 
would have had over 400 interface signals. There was no facility which would allow 
a user to write software to draw schematics or manipulate the internal database in 
any way. Another problem we had with MENTOR was that while HDL and SPICE 
use call-by-position syntax, MIF uses call-by-name syntax. Therefore, in a MIF 
subcircuit call, the order of the interface signals carries no meaning, while that is 
not true in HDL and SPICE. After one of MENTOR's new software releases, we 
found that the MIF signal ordering had changed from reverse alphabetical order 
to alphabetical order, with the result that all the HDL and SPICE data had to be 
regenerated to restore consistency. 

Electrical Simulation 

For many performance-critical circuits, we performed electrical simulation 
using TI-SPICE on our VAX 11-780 or 11-785. These blocks included the RAM's 
and ROM, the ALU and shifter, the clock generator, and most of the library cells 
used in the datapath, control section, and pad frame. Schematics were drawn on 
MENTOR to provide the circuit description, and MENTOR logic simulation log files 
could be automatically translated to provide input stimuli, or the stimulus control 
text files could be written by hand. A variety of output formatting tools were used, 
most commonly waveform plot routines which could add additional information such 
as signal transition times. These were viewable on screen or as hardcopy. Other 
formats included outputs where the parameters of interest such as delay times, rise 
and fall times, and voltage levels were automatically extracted. 

Before running SPICE, circuit files were sent through a program which added 
estimated parasitic diode areas. A simple formula was used which related average 
diode area to transistor width. The formula was arrived at by processing layout 
extractions of previous designs, producing statistics and adding a dose of conser
vatism. In post layout simulation, we never had to change a circuit design due to 
layout parasitics except in a few cases where the designer had forgotten to include 
the effects of long metal wire capacitances. 

A program called SPYE [1] (Statistical Parametric Yield Estimation) was 
used to determine the parametric yield of a circuit vs. process statistics. For exam-
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pIe, this was used to compute the yield of thE' RAM's in meeting speed requirements 
given typical process variations in the transistor performance. Another program, 
OPDIC, was used to automatically choose ciruit transistor sizes based on desired 
performance parameters. Both of these programs are based on SPICE. 

Statistically accurate transistor parameters were automatically extracted 
from test chip devices using the AMSAM (Automated MOS Statistical Analysis 
and device Modeling) [2] system, which provided SPICE models for mean, +sigma 
and -sigma devices over temperature. Large amounts of statistical process data were 
collected and analyzed using the SPADS (Statistical Process Analysis and Design 
rule Synthesis) [3] system to validate process integrity and accurately model other 
process parameters. 

Logic Simulation 

Very small logic simulation jobs were initially run on MENTOR's resident 
logic simulator. That approach was extremely limited both due to the inconvenience 
of entering stimuli manually, and due to the need to visually check outputs for 
correctness. However, the most important limitation was due to the long conversion 
(EXPAND) times from schematics to the logic simulator circuit structure database. 
At one point, the entire ALU was simulated there, but the EXPAND time was 
measured in hours. 

For most of our logic simulation jobs, we used a ZYCAD LE-1002, a hardware 
accelerator for logic simulation. The ZYCAD was resident in our local computer 
facility, and was interfaced first to a VAX 11-780, and later to an 11-785. Our 
design group wrote all our own interface software for the ZYCAD. We output a 
simple hierarchical description language called HIF (Hillcrest Inte.rmediate Format) 
from MENTOR's MIF to use as the input language for the flattener, thE' program 
which would produce the flat (non-hierarchical) circuit description in the required 
binary ZIF (ZYCAD Intermediate Format). Our first generation flattener was so 
I/O bound that it would take 3 hours to flatten the datapath, even though the 
CPU time was considerably less. The second generation flattener eliminated the 
I/O bottleneck and could flatten the entire chip into about 60K ZYCAD primitives 
in about 35 minutes. Moving the interface to the VAX 11-785 reduced flattening 
time to under 20 minutes. 

Our third generation flattener stores Pascal binary record versions of each 
block, so time spent in parsing input files and creating the internal data structures 
for the flattener is minimized. This system, which was not available in time for the 
LISP chip PG release, can typically flatten the entire chip in about 4 minutes of 
11-785 time, if not many newly changed blocks must be parsed from MIF. It also 
eliminates the extra step of translating frum \fJF to HIF. 
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We also defined formats for stimulus, expected response, and signal and mem
ory initialization files. These files were normally produced by the functional simu
lator. When running, the ZYCAD would produce binary files storing output signal 
values, and these would be compared with the expected results on the VAX. The 
user output would be an error list, displaying for each time which signals had in
correct output values. Other output interface routines allowed probing any internal 
ZYCAD signals. 

The ZYCAD was also used to generate long tests which were used at wafer 
probe. In these cases, the functional simulator was not run. The input stimulus files 
were trivially simple, and the signals of interest were probed inside the logic simu
lator. The ZYCAD would simulate the entire chip at about 15 clock cyles/second. 
When running tests generated by the functional simulator, typically a few thousand 
signals would be probed, so the ZYCAD execution rate would decrease by about 
50% due to the increased I/O activity. No attempt was made to decrease the level of 
detail in the ZYCAD simulation in order to speed execution; many domino circuits 
were modeled at the transistor level. 

Functional Simulation 

Our functional simulator had two conflicting goals. The first was to provide a 
high-level architectural simulation of the processor, while the second was to provide 
a system which would produce test patterns for logic simulation, so that the logic 
simulation results would never have to be checked manually. The problem with these 
goals is that the very same decisions which lead to a simple, efficient architectural 
simulator also make it unlikely that it will track the operation of the logic model 
closely enough to allow automatic test pattern comparison at every clock cycle. 

In our functional simulator, the control section was modeled at the Register 
Transfer Level (RTL), but the datapath and memories were modeled functionally. 
This turned out to be a mistake; the datapath should also have been modeled in 
RTL. We had inherited an architectural simulator from the Explorer-I effort, and 
instead extended its modeling of the datapath until it had sufficient accuracy for test 
pattern generation. This turned out to be a time-consuming, error-prone process; 
the architectural simulator grew unwieldy as the level of detail it carried increased. 
When using test patterns to debug logic simulations, for every logic bug which was 
found, several functional simulator bugs of various sorts had to be repaired. 

The original Explorer-I architectural simulator and our functional simulator 
were both implemented on a LISP machine, and extensively used capabilities inher
ent to the LISP language which are not available elsewhere. Typically this meant 
using the capability of LISP to efficiently represent LISP programs as data. Pro
grams would be written to write custom programs which would run very efficiently 
after compilation. 
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In a normal hi-level simulator, there is some type of decoding for each mi
croinstruction field in order to determine what operation to perform. This decoding 
activity is often far more expensive than modeling the microinstruction itself, which 
may simply add two registers together and put the results in a third. Instead of 
decoding instructions at run time, the simulator decoded each of them at load time, 
producing a LISP function which would express exactly the intended effect of that 
microinstruction. These were then compiled, and executing only these at run time 
eliminated the extra overhead. The architectural simulator ran at an execution rate 
of 1000 microinstructions per second. 

The control section of the processor chip was written in RTL equations, 
which drove both the functional simulator and the control section layout synthesis 
program. The control section RTL simulator was quite simple, in that it needed 
neither hierarchy nor the ability to represent signals more than one bit wide. It 
also only needed to model static gates and registers; all other more detailed timing 
information was suppressed, so it did not need to model events at a finer grain 
than a complete clock cycle. The RTL module given to the simulator contained 
both the RTL equations and a list of signals meant as either test pattern inputs or 
outputs. Starting from these signals, equations were included for simulation until 
there was a consistent set, with input signals coming from the functional simulator. 
In this way, unneeded equations were not simulated. These included equations were 
ordered for execution, so that each equation was evaluated exactly once per clock 
cycle. LISP machines have an internal stack which can hold up to 128 function 
arguments and local variables. During execution, the I-bit wide control equation 
signals were packed many to a word and pulled onto the local stack, so that all the 
logical operations worked off the stack, eliminat.ing data memory references. The 
equation translator wrote a LISP function to copy values onto the stack, do all the 
single bit logical operations and then return values to storage. This function was 
compiled, and would typically run at 20,000 gate evaluations per second. Custom 
functions were also written (by LISP programs) to write test patterns, so that 
pattern generation runtime overhead was minimized. 

The main problem with this approach of building custom functions was the 
time required to compile them. Depending on the size of the control equation set 
being run, the turnaround time to make an equation change varied from 3 to 12 
minutes. Fortunately, most equation development was done with small simulation 
modules, where changes could be implemented in under 5 minutes. During actual 
execution, the entire simulator with its RTL and functional parts could simulate 
the processor at about 3 clock cycles per second, with most of the computation 
time spent in the functional portion of the simulation. When generating large test 
pattern sets, execution speed would drop to 2 cycles/second due to the file system 
activity. 
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Figure S. Functional Simulator Window Interface. 
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The window interface to the functional simulator is shown in Figure 3 for 
a typical configuration. Included are panes to display various memories, including 
contents of microinstruction RAM in a disassembled format. A group of registers to 
be displayed can be selected from a pop-up menu, and a group of control equation 
signals can likewise be selected. While only the current value of registers and 
memories are displayed, a trace history of RTL variables is kept for display, and the 
display window may be scrolled to show older values. The interface also includes 
menu items to select memories for display, load and compile control equations, 
enable test pattern generation, and output tpst patterns to the ZYCAD. Other 
windows show virtual and physical memory, the cache and memory map for system 
simulation. A window interface generator package was written which let the user 
generate custom interfaces with only a few pages of code. 

Fundional Test Generation 

Functional tests were written in microcode. These could be used to exercise 
the whole chip or any smaller module; the correct inputs and outputs for a chip 
partition simply had to be listed together to create test pattern files. There were 
automated ways of generating input and output signal lists for almost any chip 
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module, including various pieces of datapath, control sections, clock generators or 
bondpads, together with combinations of these. Some of the functional tests were 
self-checking; these "good" diagnostic routines had code built in to independently 
ensure that the various operations being tested worked correctly. Other test results 
had to be visually checked on the functional simulator, a clearly less desirable 
situation. Ultimately, good self-checking microcode diagnostics should be the final 
test of system functionality. Altogether there were some two dozen functional tests 
totaling about 25,000 clock cycles. The simplicity of the machine and the lack of 
a requirement to check out any macrocode greatly contributed to the small size of 
the microcode test suite. 

RTL Level Design 

Very early in the design it was recognized that even with this simple processor, 
the amount of control logic present prohibited gate level design of the processor 
control section. Instead, arbitrary boolean equations were written to drive the 
simulator and control section autolayout system. A typical equation is written 
below: 

(DEFEQN A F IIG + (B + lie) DE) 

This would define a complex static gate producing the signal A as an OR of 
two terms: the first is an AND of two signals, F and NOT G U I means complement), 
while the second is more complex. The boolean equations can also express dynamic 
domino gates of various clock phases, registers, and latches of different phases. In 
general, the keyword replacing DEFEQN in the example is used as a directive to 
the auto-layout system, and as the design progressed, other types of gates implying 
specific layout styles also were included. 

As the equations were processed to assemble a layout module, the equations 
were manipulated in several ways. Some complex equations were factored into 
simpler ones, sometimes default terms (such as scan connections) and additional 
equations were added mechanically. For conversion to simulation, similar processing 
was done. For example, equations were added to check multiplexer control signals 
for conflicting inputs. 

For simulation, all equations types were also compressed into either static 
gates or registers. As a result of this loss of det.ailed timing information, this 
timing had to be verified in a different way A small rules-based Timing Syntax 
Verifier was used, which ensured that gates were not connected together in illegal 
ways. For example, a domino gate of a particular clock phase can drive another 
identically clocked domino gate, but not through an inverter. This verification 
approach was better than simulation because it gave instant diagnostics without 
having to simulate a particular errorful circuit. All of the control equation software 
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was written in LISP. 

Control Section Layout 

Once control equations were produced and collected together into a layout 
module, the RESCUE (Rtl Equations Synthesize Control Unit gEometries) [4] sys
tem automatically synthesized the control section layout. There were actually three 
generations of the control section synthesis program produced during the course of 
the design. Each generation allowed more layout flexibility, produced a more com
plete layout solution with less manual intervention, and increased the layout density, 
with perhaps 1/3 of the total 1.5 man-year software effort specifically directed at 
achieving enough layout density to allow the control logic to fit into the allotted 
area. 

The control section was laid out as a regular array of static and dynamic 
domino gates, river-routed to an overhead section where output buffers and registers 
were placed. Outputs from the overhead section could be routed back into the 
array, so that several logic levels could be implemented per clock phase. A layout 
block diagram of this arrangement is shown in Figure 4. An extensive analysis of 
charge sharing effects in the domino array was done; this sometimes resulted in 
manual directives to the array folding program to minimize charge sharing effects, 
in addition to other corrective measures. It was also found that by manually altering 
the folding of the array, about 10-15% size reduction could be achieved. This manual 
folding manipulated intermediate folding files and required a few man-weeks of effort 
at the end of the design cycle. 

Part of the layout synthesis effort included automatically writing HDL, our 
logic description language. This output was used for logic simulation and schematic 
verification (checking of layout topology vs. HDL). 

Timing Verification 

While SPICE was used to check the speed of small blocks and some functional 
units like ALU's, RAM's, ROM and clock generator, it was incapable of checking 
the performance of the entire chip. In the datapath, there were no formal tools 
to support timing verification. The execution unit of the datapath (the module 
including the ALU and shifter) was extensively SPICE'd, but most other datapath 
sections were not. Since the datapath was composed mostly of a relatively small 
number of library cells, those cells were characterized and used to manually calcu
late signal timings. Datapath cells were c:haracterized using loads large enough to 
include standard datapath wiring. While the architecture of the datapath tended 
to concentrate critical paths in a few well-known places, mostly involving RAM 
accesses, the lack of true timing verification allowed a critical timing path to escape 
until almost the very end of the design cycle 
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Figure 4,. Control section layout block diagram. 

The control section had many critical paths, so automated verification of 
timing [5] was essential. A small custom timing verifier was written to check the 
speed of operation of the control section; since it only had to deal with a few types 
of logic gates, simple equations could be written for gate delays and calibrated using 
SPICE runs. These equations worked for any synthesized gate, and included effects 
due to fanout and actual wiring lengths. A static timing analysis was then done 
to compute delays of all signals. The timing verifier was integrated into the LISP
based equation processing package, and gave turnaround times of under a minute, 
allowing rapid interactive timing optimization. 

Floor Planning 

Chip floor planning was made easy by the simple chip architecture and large 
amount of memory. Arranging the large datapath modules to communicate effec
tively with the RAM's above and the bondpad connections at the left and right ends 
was the only requirement. The larger floor planning task was estimating datapath 
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length. Very near the start of the design, about one man-month was spent doing 
a coarse datapath design, and performing quick trial layouts of various blocks to 
estimate area. That estimate proved to be about 17% optimistic, partly because 
extra functions were added through the course of the design, and partly because 
the overhead circuit areas of the small RAM's and ROM which lay in the datapath 
were underestimated. 

Manual Layout Entry 

Manual layout entry was done on an in-house layout editor ICE (Integrated 
Circuit Editor) running on APOLI.,O workstations. Our layout assembly tools also 
output to this database, and the final chip layout database resided there. The fact 
that our layout editor used a LI.SP-readable text file format (LAFF - LI.SP Archival 
File Format) as an ASCII transmission standard made it much easier to interface 
to our LISP-based layout tools. 

With the exception of the RAM's and ROM, all layout and chip assembly was 
done in a coarse grid sticks layout style. A locally-generated software system called 
INCOGNITO (INtelligent COarse Grid Non-compacting InstantiaTOr) was used 
to instantiate these symbolic layouts into full geometric realizations. The resultant 
geometric layouts were read back into a different layout database. Schematic verifi
cation programs could be run off the symbolic layout database before instantiation, 
or off the geometric database afterwards. 

INCOGNITO was resident on a LISP machine connected through Ethernet 
to the APOLLO'S. The program did not do compaction, but it did perform some 
local movement of geometries to satisfy design rules. In other words, symbolic grids 
were directly tied to geometric coordinates through a scale factor, rather than being 
much more loosely coupled as in compacting [6] systems. The program allowed some 
of the layout productivity improvements due to working with symbolic figures and 
working on a coarse grid while avoiding more complex issues such as pitch-matching 
that true compactors face. Sample symbolic and geometric layouts are shown in 
Figure 5. 

Layout Verification 

Schematic verification programs were run to ensure that the layout topology 
matched that of the schematics, represented by HDL. Schematic verification was 
performed by running batch jobs on remote mainframes. For small jobs the layout 
and HDL databases were shipped with the job, but for larger tasks each transmission 
and processing step could be run to completion separately, with the intermediate 
databases kept on the mainframe. For large tasks, a separate program was used 
first which checked the layout for opens or shorts in the signal names placed in 
the layout. The diagnostics from thiS program were so much better for high-level 
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Figure 5. Sample symbolic and geometric layouts. 

interconnect errors that it was generally useless to run the SV program until the 
open/ short checker came back error-free. A liberal sprinkling of (automatically 
generated) global signal names made this program very useful. When the whole 
chip was verified, the inner core cells were removed from the large RAM's, but the 
core cells of the small RAM's and ROM were left intact. 

The SV system suffered from productivity problems. The fact that it was a 
batch program on a distant mainframe gave tasks a minimum overhead time which 
lowered productivity on the numerous small SV jobs. The fact that it didn't use 
hierarchy made turnaround times unavoidably long for big jobs, such as verifying 
the whole chip. 

Small design rule verification tasks (,0uld be run locally on the APOLLO, 
while large jobs were run on remote mainframes. The prf'sence of local verification 
improved productivity on small jobs, but the non-hierarchical nature of the tool 
made turnaround times long when verifying the whole chip, or large fractions of 
it . We attempted to run medium-sized DRC jobs on our resident CALMA, but the 
overhead of translating the layout data from the APOLLO-based system negated 
any productivity gains, and the checker was incapable of verifying some of our more 
complex rules. The diagnostics were also poorer, so this effort disappeared shortly. 
We had also attempted to use the CALMA for layout entry, but again the database 
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translation and transmission times made it so inconvenient to interface to our design 
tools that we soon stopped. 

When verification jobs were run on the centralized IBM mainframes, until 
we were verifying the entire chip the layout data was sent over the SNA link. When 
the layout database for the entire chip had to be sent, it became faster to write a 
tape and carry it the few miles to the main site. 

CIDER, (Circuit Interconnect and Device Element Recognizer), the circuit 
extractor used for schematic verification, was also used to extract layouts with 
parasitics for post-layout SPICE simulation. It was capable of extracting area and 
fringing capacitances for either node to substrate or node to node capacitances, but 
was incapable of extracting fringing capacitance between two adjacent wires on the 
same layer. It could also extract resistances, but none of the circuits which were of a 
scale small enough to simulate on SPICE had resistances of interest. The resistance 
extraction program was part of a larger timing verification system which at that 
time was not sufficiently mature to use in a production mode. 

Datapath Assembly 

While small cells were laid out manually, all datapath and chip assembly was 
done via software, so that the final chip layout was intended to be "untouched by 
human hands." The only point at which this was violated was by some final manual 
edits which widened some power supply wires to use up available space around the 
pad frame. Manually laid out cells included library cells for the datapath, control 
section and bondpad, and various larger special purpose cells in the datapath, such 
as the ALU. The execution unit, RAM's and ROM were also assembled by hand. 
The datapath placement and routing, pad frame and final chip assembly were all 
accomplished using special software tools, all written in LISP. 

An initial file to list datapath components in order to estimate datapath 
length grew into a full datapath floor plan, which usually simply placed cells by 
abuttment. Datapath library cells had a standard geometry placed in them which 
indicated the length of datapath they would ronsume. The datapath cells were 
placed by processing these two sources. All datapath cells also had their intercon
nect points indicated by geometries in the cell, so these could be extracted by the 
datapath router. Datapath routing between cells was done horizontally using the 
second metal level, and normally the I/0 points in library cells were run on vertical 
first metal wires which attempted to span as much vertical distance as possible in 
order not to constrain the 2nd metal routing interconnect points. 

The datapath HDL was read to determine the high-level connectivity, and the 
datapath placement and cell I/0 position information were collected. The datapath 
router then performed a routing, where the simple wires were routed correctly, but 
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in difficult situations would allow wires to overlap and cross in order to complete 
the routing. We then used a routing editor on the LISP machine which would allow 
the user to move wires in order to eliminate overlapping and crossing wires, but 
would not allow any required connections to be broken or additional connections to 
be made. This eliminated the potential for the manual datapath routing effort to 
introduce connection errors in the datapath layout. 

The routing editor would choose the most complex bit of the particular data
path section for the user to manually route, and then use that as a template to route 
the other bits, presenting the user bits which still were not correctly completed for 
further work. Signal names were placed on all connection points and connecting 
wires to aid in the open/short check and in schematic verification. Intermediate 
results were stored a format which allowed the wiring to be reconstructed automat
ically when small changes to the placement occurred, for example, when the size of 
a particular datapath layout cell changed. 

Chip Assembly 

The pad frame was laid out using a manual software approach. This pro
gram simply started with an ordered listing of bondpads and the layout cells which 
implemented them, together with the cell sizes. It constructed the frame and used 
the resulting terminal positions in the routing software. A simple floor plan of the 
entire chip allowed assembly of the top level layout cells to be relatively independent 
of final sizes. 

The channel routing between the control section and the datapath used three 
level routing; poly and 2nd metal ran horizontally, while 1st metal ran vertically. 
YACR, (Yet Another Channel Router), a two-layer channel router from the Uni
versity of California at Berkeley, was used to do the routing, given the absence of 
a three layer router. A program divided the routing into two separate jobs, with 
some time-critical signals constrained to route on 2nd metal, and others free to 
choose either layer. The two separate routings were afterwards combined, with 
post-processing to eliminate any 1st metal conflicts between the two routings. This 
worked fairly well, since the 1st metal layer was quite unconstrained in the layout, 
whereas the other two were naturally much more critical. In the end, however, our 
software couldn't always eliminated the conflicts, and about half a dozen places had 
to be manually edited to finish the job. 

Once the entire chip layout had been assembled and was undergoing final 
touch-ups, there were still a few late logic simulation bugs which had to be corrected. 
Rather than run the entire control section, datapath or channel routing software 
over again, the last few small changes were entered into the layout by hand. 
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Objed-Oriented Database 

A design tool which was used in several different places was DROID, (Design 
Representation using an Object-oriented Integrated Database), our object"oriented 
database system. This LISP tool implemented a data structure which could rep
resent schematics and some aspects of layout in an internal Flavor-object based 
representation. The representation was documented for users and easily extensible. 
Interface routines were provided to read in and write out common design languages, 
and many utilities were included which allowed users to write software which moved 
around in or manipulated this database. 

The effort to write HDL for the control section of the chip actually created 
this database, and then used a standard utility to output the HDL text. The 
datapath layout system used DROID to represent the layout and HDL data in a 
common form. There were also other manipulations of the HDL representation 
used for simulation, schematic verification and test pattern generation, which were 
implemented with DROID. 

Strudural Test Pattern Generation 

We committed very early to using a Scan design, as well as several other 
design for testability strategies [7]. While the control section uses serial scan, the 
datapath uses a different arrangement designed to make use of the data buses al
ready present. The scan system only added 2.5% to the total chip area. One reason 
that this cost is so small is that a large fraction of the chip area is RAM, which incurs 
no scan overhead. The most important benefit a Scan design gave was the ability to 
use automatic test pattern generation software. We used a commercially available 
system, AIDSTG, which can generate tests for static com binational circuits, includ
ing transistor level faults. The HDL schematic description for AIDSTG had to be 
topologically manipulated in order to be acceptable as input; this manipulation was 
done using DROID. 

AIDSTG performs its own fault grading; however, we evaluated its test pat
terns on FMOSSIM, a switch level fault simulator, and on the ZYCAD run in 
serial fault simulation mode. Only after resolving the differences between the three 
systems were we willing to believe anyone of them. 

Other design-for-test features implemented include special microcode exten
sions for testing the on-chip memories at full speed, and enough space in the on-chip 
microcode boot ROM to execute a self-test routine. Also included were signature 
analyzer registers on the main data buses for c.ompressing test results, use of a scan
ring or boundary scan to enable wafer-probe testing of this 224-pin chip using only 
13 signal pins, two-pattern test capability, and zero static power for current-mode 
testing. 
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Chip Debug 

Wafer probing was done on a MEGATEST MEGAONE tester connected via 
ETHERNET to the rest of our machines. Functional test patterns were generated 
either by the functional simulator or by the ZYCAD logic simulator. A LISP
based facility translated these HIF format vectors to the VPL format required by 
the MEGAONE. This translator could also take functional patterns and expand 
them out to scan mode, or take structural test patterns generated by AIDSTG and 
produce the correct scan sequence to set up the required state and observe the 
output state. This translator is part of a larger system, currently in development, 
wherein the functional simulator can be run to produce tests which are translated to 
VPL and interactively run on the MEGAONE across the ETHERNET. Test results 
are brought back to the functional simulator for display. This will allow the design 
engineers to run tests directly on the finished chips in the same way the functional 
simulator was used during the design stage. 

Early in the design cycle, a test chip was produced which contained the large 
RAM's and process test structures. This was tested on a FAIRCHILD SENTRY-20 
tester with 64-pin capability. 

During initial chip debug, the MEGAONE was used to run functional tests, 
and an Electron-Beam Prober was used to measure analog waveforms on internal 
nodes. Many nodes had small pads with protective oxide openings to facilitate SEM 
probing. This was used to verify that all the clock generator delays were in spec, 
for example, and to chase down some problems with voltage margin. It was also 
extensively used t.o characterize the RAM's on the test chip. 

DIVISION OF LABOR 

This section will describe how the design was apportioned among the various 
members of the design team. Perhaps the most striking feature of how this design 
was accomplished was the large amount of work which went into custom tool de
velopment, and the large fraction of designers who were also required to be expert 
or at least adequate programmers. Often custom tools can be implemen,ted quickly 
enough and have a large enough impact on design productivity that the payback 
period is considerably shorter than the design cycle. An additional advantage to 
this approach is the improvement in the design infrastructure remaining at the end 
of the design cycle. Having a large fraction of the design team actually doing tool 
development means that fewer people are actually involved in the details of the 
design, with the result that design assumptions and changes have to be communi
cated among fewer people; the number of people who actually have to know how 
the processor works, in whole or in part, lS ~ignificantly reduced. It is an efficient 
way to structure a large design project, givpn that productivity is often inversely 
proportional to the number of people invohpJ in any given task. 
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Of the 14 engineers working on the design, only 4 did not do significant soft
ware development. Of the remaining 10, 6 spent literally all their time developing 
design software, with 3 of the other 4 spending large amounts of time in software de
velopment. As a result, the productivity of 7 of the team members was completely 
determined by their software development skills, rather than by their IC design 
ability, and the productivity of 2 more team members was significantly influenced 
by their software skills. 

Another way of viewing this division of labor is to examine what various 
team members needed to know about the design in order to do their job effectively. 
Three team members who worked on basic tools needed to know almost nothing 
about the design; it was almost impossible for any design change to cause them 
to do any extra work. Three more team members needed to know only something 
about the design style of a particular part of the chip; as long as the design style 
remained within bounds, their programs would work and individual design changes 
were transparent. Two more team members needed to know more about the chip 
design, but still only in a limited way. These people were designing well-defined 
parts of the chip which were cleanly interfaced to the rest of the design, so they 
could proceed quite independently of the others. This meant that 8 of the 14 
engineers were separated from the detailed design of the main body of the chip. 

This left only 6 people who had to be directly involved in the main design 
flow, who might potentially have to respond to ECN's of one sort or another. The 
tasks of these 6 included lead designer, execution unit design, cell library design, chip 
schematics, logic simulation, functional simulator design, datapath layout assembly, 
and whole chip assembly and verification. The datapath assembly task was actually 
a software development job which was difficult enough that the program could not 
be made powerful enough to be completely insulated from design changes, but it 
was decoupled from most of them. In practice, not all of these 6 were at anyone 
time involved in the mainstream of design. It was highly unusual for a design change 
to involve more than four people, with most changes involving two or three people. 

In addition, three technicians worked on the project, mostly performing chip 
layouts and doing layout verification. One of these was promoted to engineer status 
during the course of the project. The small number of dedicated layout people was 
mostly due to the automated layout methodologies used in the project. 

Table 1 lists several categories of tasks in the design, together with the people 
who worked in those areas. Table 2 lists the various team members, together with 
the areas they worked in. Work items marked with an asterisk indicate software 
development activities, where productivity was mainly limited by the rate at which 
software could be written and debugged; it does not include simply using existing 
tools. 
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TABLE 1 TASK COMPOSITION 

DESIGN MANAGER 
DESIGN LEADER 
ARCHITECTURE AND HI LEVEL DESIGN 
MEMORY DESIGN, LAYOUT 
LOGIC & ELECTRICAL DESIGN, LAYOUT 
LOGIC SIMULATION/CHIP SCHEMATICS 
ZYCADINTERFACESOFTWARE 
FUNCTIONAL SIMULATOR 
RTL SIMULATOR, ZYCAD TEST PATTERNS 
OBJECT ORIENTED DATABASE 
CONTROL SECTION AUTOLA YOUT /HDL 
DATAPATHAND CHIP ASSEMBLY 
CHIP LEVEL LAYOUT VERIFICATION 
TESTABILITY 

CRH 
PB 
PB 
TH, ey 
MCC, KC, DS, TH mo, sy 
KR 
RLS, MCC 
CH,PB 
DM, CH, PB 
SL, VK 
CHS, VK 
SSM, CH 
SSM, KC 
TS 
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TABLE 2 DESIGN TASKS 

CRH: DESIGN MANAGER 

PB: DESIGN TEAM LEADER 
FLOOR PLANNING 
HIGH LEVEL DESIGN 
RTL CONTROL SECTION DESIGN 
RTL DESIGN SYSTEM * 
MICROCODE TEST DEVELOPMENT * 
FUNCTIONAL SIMULATOR * 
FUNCTIONAL/LOGIC SIMULATOR INTERFACE * 
DATAPATH WIRING * 
LOGIC SIMULATION DEBUG * 

MCC: EXECUTION UNIT DESIGN 
APOLLO GURU * 
ZYCADINTERFACESOFTWARE* 
MICROCODE TEST DEVELOPMENT * 

KC: DATAPATHCELL LIBRARY DESIGN 
BONDPAD CELL LIBRARY DESIGN 
DATAPATHDESIGN 
CLOCK DESIGN 
LARGE LAYOUT VERIFICATION 

DS: LOGIC AND ELECTRICAL DESIGN 

TH: MEMORY DESIGN 
TEST CHIP DESIGN 
VERIFICATION SOFTWARE TECHNOLOGY FILES 
PG 
CHARGE SHARING, TIMING ANALYSIS 

KR: DATAPATHDESIGN 
DATAPATH SCHEMATIC ENTRY 
LOGIC SIMULATION 
ZYCAD SOFTWARE* 
ELECTRICAL DESIGN 

* INDICATES SOFTWARE DEVELOPMENT TASK 
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TABLE 2 DESIGN TASKS, CONTINUED 

TS: DESIGN FOR TEST, CHIP TESTING 

SSM: DATAPATHASSEMBLY * 
CHIP ASSEMBLY * 
LARGE LAYOUT VERIFICATIONS 

RLS: ZYCAD INTERFACE SOFTWARE * 
CALMA SOFTWARE * 

SL: OBJECT-ORIENTED DATABASE * 
FULL-CHIP HDL * 
TESTABILITY RESEARCH * 

CH: FUNCTIONAL SIMULATOR * 
MICROCODE TEST DEVELOPMENT * 
BOOT ROM PROGRAM * 
CHANNEL ROUTER * 
PAD FRAME PLACE/ROUTE * 

DM: FUNCTIONAL SIMULATOR ENVIRONMENT * 
FUNCTIONAL SIMULATOR TEST PATTERN SOFTWARE * 
RTL SIMULATOR * 
CHARGE SHARING ANALYSIS * 
TEST PATTERN TRANSLATION * 
TESTER INTERFACE * 

CHS: CONTROL SECTION LAYOUT SYNTHESIS * 

VK: CONTROL SECTION HDL SYNTHESIS * 
OBJECT-ORIENTED DATABASE * 

* INDICATES SOFTWARE DEVELOPMENT TASK 
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PROBLEMS 

This section will describe some of the problems we had in the design. In 
many cases these problems were just the inevitable result of inadequately planned 
tool capabilities; other times they were the problems we faced in dealing with early 
versions of our own tools, which weren't quite up to the job. Other problems just 
seemed to arise spontaneously. 

The biggest problem area in the entire design was the functional simulator. 
Recall that it was composed of two segments: an RTL simulator for the control 
section and a functional part for the datapath. The RTL simulator worked ex
tremely well, but the functional part was a constant source of problems. It was 
a special piece of code to model the datapath, which didn't always model it with 
sufficient accuracy. When errors occurred in the ZYCAD logic simulation, often it 
was the fault of the functional simulator. Sometimes the error was in the functional 
simulator itself, and sometimes it was in the mapping between functional simulator 
variables and logic simulation signals. We attempted to cover up for the simulator's 
deficiency by allowing extra control signals in the RTL simulator to compute on 
a cycle by cycle basis whether any particular datapath signal should be compared 
with the ZYCAD output or not. But this was not adequate either. Of the 91 errors 
found during logic simulation, 50 were in the functional simulator and its associ
ated test pattern generation modules, 20 were control equation bugs, with only 21 
being true logic errors. The person debugging the logic simulation had to know the 
chip specification, the logic design of the entire chip, the control equations, and the 
functional simulator and test pattern module code. Unfortunately, there was only 
one such person on the team, and he was already quite busy enough. 

The obvious better choice would have been an RTL simulation of the data
path, but by the time we realized this, we had no additional resources to develop 
it. 

Another problem area was the first generation ZYCAD flattening software. 
It was slow; requiring 3 hours to flatten the datapath. As a result, logic simulation 
productivity was very poor until the second generation software emerged about 4 
months before the end of the design cycle. This problem, coupled with the functional 
simulator problems, made the logic simulation task constantly on the critical path, 
with the result that in the last month before PG there were 8 (small) logic fixes to 
the chip, just as the chip layout was going through all its final verification stages. 

During early tests of our schematic verification capability we wanted to ensure 
that there would be no problems of scale in trying to verify the topology of a circuit 
containing about lOOK devices (RAM cells in the large memories were omitted). 
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We found that the HDL we were producing would run much too inefficiently on 
that. portion of Tl's SV program which flattened hierarchical HDL into an internal 
database. The problem was that while HDL and the TI design system in general 
makes use of arrayed signals and sub-component calls for the sake of efficiency, 
the MENTOR system didn't preserve the array information. Each member of an 
arrayed compone~t call would be called separately in MIF. In order to -get the HDL 
input routine to work, we would have to reconstruct the arraying information in our 
HDL, by combining separate calls to arraY!'d sub-components into a single arrayed 
call, and combining arrayed signals likewise. Even if we would have wanted to do this 
manually, there were still many design changes filtering in, so there was no choice but 
to do this with software, so updates could be readily included. The DROID database 
was used for this task. In about one man-month, a utility was written which took 
the internal representation and combined together all signals and components which 
could be arrayed. The signal or component name and subscripts were used to guide 
the arraying process, so that X<l> and X<O> could be combined into a single 
signal X<1:0>, for example. This would not have been a large problem except that 
we couldn't start large scale schematic verification jobs until the HDL had been 
arrayed, so it was on a critical path. 

Another problem with large scale HDL was one we brought upon ourselves. 
It was sufficiently inconvenient to draw schematics of large scale blocks on the 
MENTOR system that we didn't. Instead we made all I/O signal names global 
on the top level drawn schematics, and connected them together by name. The 
top-level HDL was created by loading all these blocks into DROID and creating the 
top-level blocks which would pass all the right signal connections down to them. 
This was another man-month job on DROID, but here the problem was getting 
consistent I/O signal lists from all the required blocks in the design. For example, 
the datapath control signals specified by the RTL control section design had to 
match the control signals output by the control section layout synthesis program, 
and had to match the control input signals in the datapath schematics. Other high 
level blocks were also involved. The main problems here were that there was no 
central design representation where these different types of information could be 
kept and resolved earlier, and that we weren't very systematic about deriving that 
information and making sure it was correct from the start. This was an unpleasant 
exercise to go through because this top·level HDL was required to do whole-chip 
simulations, with the result that for a while, the ~imulation effort had to grind to 
a halt until these problems were resolved \,-(.uaJly, in our very first design review, 
this issue had been brought up by a visitor from another part of TI, but somehow 
we forgot to respond to it untillt was promot.!'d to emergency status. 

A smaller problem which was f!'1t parlier III the design cycle came from con
flicting signal name formats in the differ!'nt d!'sign languages. Different signal for
mats which might be acceptable in differ!'nt places were foo-bar<l>, foo_bar<l>, 
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foo-bar<01> and foo_bar<Ol>. It took us awhile to get all the permutations cor
rect and have all the translators in place. This is just a small example of what 
happens when a seemingly unimportant detail is not organized effectively. 

The RESCUE control section layout synthesis program was constantly on the 
critical path, due to a large degree to the magnitude of the software development 
effort required to reduce the layout area so the control section would fit in the 
allotted space. Most of the last 6 months of RESCUE development were devoted to 
this problem, and until close to the end of that time, it was difficult to predict how 
long it would take to make the control section fit. If it weren't for the fact that logic 
simulation was going so slowly, we would have been much more concerned about 
this delay. Not until a few months before PG was this issue completely laid to rest. 

Not until late in the design of the RESCUE system did we get serious about 
modeling charge sharing in the domino gates implementing most of the control 
section. Fortunately, some team members were finishing their portions of the design 
so people were available to work on this problem, but several steps had to be taken 
to mitigate charge sharing effects, and the worst problem was that not until we had 
shown the problem to be eliminated for all gates were we sure that we could actually 
accomplish that goal. This was another problem area which was not completely 
resolved until about 3 months before PG. 

One somewhat more legitimate problem area concerned the mapping of signal 
names from RTL to schematics. Often one RTL signal name mapped to more than 
one signal name in the logic model; this usually was due to differently buffered 
versions of a signal. In other places, the node which was required to have the 
name that matched the RTL signal name was not the node which would have to 
be initialized for logic simulation; it may have been one buffer downstream from 
the initialized node. These are a few examples of the problems which occur due 
to the sometimes loose mapping between RTL and schematics. We handled most 
of these classes of problems on an individual basis, but we recognize that a more 
formal mechanism was required. 

After careful datapath floor planning and routing analysis, the height of each 
datapath bit was set at 12 2nd metal pitches. Fifteen months later we found the 
part of the datapath where the 13'th 2nd metal wiring track per bit was required. 
Since the region involved was rather small and was populated with regular circuits, 
we did a relayout of that area which allowed some of the more local connections 
to be routed internally to the cells on the poly layer. The problem was relatively 
quickly taken care of, but it did create quite a bit of worry while it lasted. 

About 6 months into the design, we released PG for a test chip which con
tained the three large RAM's and several process test structures. This would allow 
us to verify the performance of a critical part of the design, while giving the pro-
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duction fabrication facility a vehicle to test yield on. After PG we suffered a long 
series of delays. All along we had been working on getting a commitment from a 
production fabrication facility to process the both the test chip and the processor. 
Just as the test chips were finally about to start in the process facility after some 
delays due to reticle sizing problems, that commitment evaporated. So we ran PG 
again and produced reticles for our process development laboratory, where a few 
weeks later the test chip was again started, only to have the lot scrapped a week 
later due to resist problems. When the lot started again (this time for real!), 12 
weeks had elapsed from the original test chip PG. 

Several of our tools were in a state where they could accomplish 95% of the 
job, but the remainder had to be done manually. This was true of the control 
section array folder, the 3-1ayer channel router, and the standard cell layout tools 
we used for the clock generator. With this approach, when a small change occurs it 
is easier to update the layout manually than it is to rerun the program and manually 
re-do that last 5% of the job. Unfortunately, if there are ten changes, as each one 
occurs it is easier to enter it manually, but in the end a lot of manual work has 
been done. With fully automatic tools changes are inexpensive, but with almost 
automatic tools changes are only inexpensive if they don't come at the end of the 
design. 

IMPORTANT RESULTS AND CONCLUSIONS 

In spite of all the problems and delays in accomplishing the design, there 
were many advances in design technology which emerged from this work. Some of 
them emerged early in the design cycle and resulted in areas of the design which 
went smoothly, while others emerged only as hindsight. 

One task which was very pleasant due to the available tools was the design 
of the processor control section. Writing control equations was a powerful way 
of expressing a very flexible form of logic. The RTL simulator, other than its 
long compile time, was an almost ideal tool on which to debug these equations. 
The internal representation of the equations was simple to manipulate, so various 
analytical tools, such as a timing syntax checker and a timing verifier, could be 
added to provide early and thorough checks of important aspects of the design. 
The existence of the RESCUE layout synthesis tool meant that changes could be 
entered with impunity, since no one else was involved in individual changes. Over 
the course of the design, ten cont.rol equation releases for layout were made, some 
of which were for RESCUE development purposes. 

The approaches used to ensure a test.able design have proven so worthwhile 
that it is difficult to see how anything can be accomplished without them. In 
particular, our recommendation is to ne~er, ever, ever do a processor design which 
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does not use scan. To avoid a scan system is to avoid being serious about quality. 
Scan design provides a basis for a large range of capabilities; it is the foundation 
upon which more difficult test problems can be solved. 

The goal of producing a final chip layout "untouched by human hands" lead 
to several software tools for layout assembly, which provided far more flexibility than 
manual layout methodologies would have. This was true of the datapath placement 
and wiring programs as well as the full chip assembly tools. Changes would be 
implemented easily by changing and re-running programs, whereas in manual ap
proaches, once work had been invested in doing the job once, it would have to be 
thrown away and re-done to incorporate changes. Small details of the datapath 
floor plan evolved continually as better ways were found to place and route com
ponents, resulting in more efficient layouts. Without our software-intensive layout 
methodologies, these improvements would have been too expensive to implement. 

The initiation of the DROID object-oriented database effort was a very impor
tant result. It provided a quantum leap in the ability of the designer to manipulate 
design data. Integrated databases are clearly the wave of the future, and placing 
this development in the middle of a design project gave the opportunity to use this 
new tool to solve some very real-world problems. With this tool as well as with 
others, initiating new tool efforts within design projects provides quick feedback 
about real issues and problems, and serves as an effective guide to keep tool devel
opment moving in the right direction. Of course, the problems inherent in trying 
to use tools as they are developed are not at all trivial, but they are minimized by 
maintaining close communication between the chip builders and the tool builders. 

The demonstration of LISP-based design tools was an important result. Some 
of the capabilities of the language and the programming productivity provided by 
the LISP machine environment are markedly superior to any competing systems; 
but that can only be proven by results. We feel that some of the tools we have pro
duced are a step towards demonstrating those results. In any case, tool development 
in our laboratory will continue to move solidly into the LISP environment. 

The goal of requiring almost every designer to be a programmer (usually 
a LISP programmer) produced the most important results of the entire project. 
After awhile, software infrastructures were built up so that it was easy for designers 
to accomplish small tasks by writing programs. Once the designers got used to 
the idea of writing software to accomplish design tasks, they felt that without 
that capability they couldn't get anything done at all. This software-based design 
methodology caused some painful learning curves, but it was a good investment. 
While first generations of home-grown tools often often didn't quite do the job, the 
next versions were much better, and now the tool effort has taken on a momentum 
of its own. After all, there are no more dedicated CAD people in the world than 
those who have just recently suffered through a design. 
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In recent years, the focus of VLSIarchitecture effort has been primarily on 
the tradeoffs possible in new microprocessor instruction sets. The result has 
been a collection of machines with new streamlined instruction sets, and new 
hardware subsystems tuned to maximize performance. This leaves many 
designers with a difficult problem: how to apply these new ideas within the 
constraints of an existing instruction set. Moreover, as the industry 
converges on faster internal architectures for microprocessors, the design 
problem changes to address more system-level issues, such as caching 
structures, I/O, memory interfaces. and peripherals. Traditionally, it has 
been difficult to analyze these system-level issues in detail, and as a result, 
many machines have been built based on intuition or incomplete data. 
However, the availability of existing microprocessors, and rapid advances in 
CAD techniques, have made possible experiments that help guide design 
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decisions with more solid data. 

This chapter discusses how these issues affected some of the design decisions 
and tradeoffs made in the development of several generations of AT&T's 
32-bit microprocessor chip-set. The first section reviews the considerations 
involved in instruction set design, including the issues involved in speeding 
up an existing instruction set. Crucial issues here include pipelining, caching, 
and detailed formatting of the instructions. Section 3 deals with memory 
management architecture, and the tradeoffs involved in caching, 
segmentation and page fault systems. Section 4 describes another peripheral 
subsystem that accelerates I/O. In each case, the design decisions discussed 
were based on measurements made on the existing chips (where possible) 
combined with detailed simulations of the proposed architectures. These 
simulations make use of custom-coded C language programs that model the 
architecture of the chip in great detail, so that cycle-accurate, or even phase
accurate performance data can be obtained. 

2. Microprocessor Architecture Design Considerations 

Microprocessor performance is dependent on the following aspects of the 
architecture: 

1. Efficient encoding of the instruction set - The instruction set encoding 
should be regular, simple to decode, with predictable instruction lengths 
and addressing modes. 

2. Highly-tuned pipeline decode and execution units - A well-engineered 
pipeline reduces cycle overhead due to discontinuities, such as branches, 
as well as overhead from hazards such as the back-to-back access of the 
same register or memory location. 

3. Efficient I/O architecture - The I/O subsystem should provide sufficient 
throughput for the processor, so that "idle" or "blocked" time within 
the CPU is reduced to a minimum. In addition, the I/O to memory 
protocol should maximize the time allotted for the memory system to 
respond to a read or write operation without incurring additional wait 
states. 

The original AT&T WE32000 was designed in 1977 when the most widely 
accepted metrics for an efficient instruction set were based on size of the 
object code, and the ease with which one could program the machine (for the 
compiler writers and the assembly programmer). At the time the size of the 
object code was a concern due to the cost of memories. 

Today, we find that the focus of concern is in achieving the highest 
performance at the lowest system cost. This has lead to the popularity of the 
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"RISC" architectures(1],[2], By using the simplest instructions, they encourage 
the use of efficient decoders and fairly simple execution units, The tradeoff 
here is to use more advanced software/compiler technology in place of 
complexity in the hardware, Some measurements show that with the simpler 
instructions, code size could increase 25% to 50%, compared to more 
traditional instruction sets like the VAX 111780, Likewise, the number of 
instructions executed would also be greater, However, the resultant overall 
performance of the simpler machine could be much higher. Furthermore, 
some people hold that simplicity in the VLSI hardware has the additional 
potential advantage that it can be easily updated to a more advanced 
technology, and thus can run at higher clock speeds, 

In evaluating and redesigning the WE32000 microprocessor, the sensitivity of 
performance to the instruction set architecture was carefully studied, The 
following describes some of the analysis that were done, and compares it to 
the designs of RISC-like machines, 

2.1 Efficient Instruction Fetch Units 

The recent "RISC" machines[3],[4],[5] have all adopted a 32-bit wide 
instruction format, in which the instructions are word-aligned and therefore 
decodable with one instruction fetch, Many of the more traditional machines 
allow variable-length instructions, and thus make it more difficult to decode 
a whole instruction in one cycle. Although variable-length instructions offer 
more compactness in the object code, they can fall across word boundaries 
and therefore require more than one fetch before the instruction can be fully 
decoded, as shown in Figure 1. 

2.1.1 Instruction Caching In the case of AT&T's WE32000 microprocessor, 
instructions are variable length and can fall on arbitrary byte boundaries. An 
instruction queue was added to provide for alignment and queuing of 
pre fetched instructions, so that the additional cycles that would have been 
required for fetching across word boundaries and alignment can be 
overlapped with the previous instruction decode. To further improve the 
throughput of instruction fetch so that the decode unit can maximize its 
efficiency, an on-chip pre fetch buffer/instruction cache (I-cache) was added. 
In the WE32100 microprocessor, a 64-word instruction cache provided a 
performance boost of about 15% to 20% for typical programs, when 
measured with zero-wait-state external memory. The size of this case was 
determined by software simulations, which showed that the performance 
improvement that could be obtained by doubling the I-cache to 128 words, 
was only an additional 5% at zero wait-states, or about 7% at three wait
states. These were measured for typical UNIX C programs that had hit rates 
at around 50%-60% for the 64 word I-cache. 
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In a study of a more aggressive pipeline design proposal of the WE32200, we 
found the on-chip I-cache to be less significant in its contribution to the 
overall performance of the processor. The performance improvement was 
only about 3% for a 64 word I-cache, and the overall sensitivity of caching 
instructions on-chip was no more than 7% to 8%. The reason for this is that 
the decode unit was already operating at, or near, it maximum efficiency, 
with the just the help of a simple instruction fetch queue. This shows that 
the effectiveness of an I-cache is highly dependent on the overall cycle 
structure of the machine, and that the need for an I-cache may be 
questionable for machines that have an efficient I/O subsystem and 
instruction queue that can maintain a high occupancy of the decode unit. This 
is particularly true if the machine is memory-bound on data fetches. In some 
applications this is unavoidable, but often the effect can be reduced by 
improving the compiler's use of the machine's registers or its stack/data 
cache. 

In summary, the need for an I-cache is a function of all the stages in the 
pipeline. If the execution unit, or the instruction fetch/decode unit is 
operating at maximum utilization, then the processor will probably be less 
sensitive to caching. For example, if the decode unit is approaching 
maximum utilization, further improvement of I/O throughput would have 
little performance impact on the overall processor. We have found that 
discontinuities due to branches and multiple-cycle instructions usually cause 
the decoder of an efficient machine to operate at slightly better than half its 
occupancy rate. This is because one third to one fourth of all instructions are 
usually branches; multiple-cycle instructions and pipeline hazards account for 
the rest of the delays. 

2.2 Data Caching 

There are several options for reducing the delays for data fetches. For 
example, the BELLMAC-8[6] used a register-file scheme for this purpose, as 
did subsequent machines such as the RISC microprocessor. In the case of 
BELLMAC-8, register sets in memory are pointed to by a register pointer. 
The register set is just a cached representation of the memory-based 
locations. A write-through convention is used for updating the registers. 
The register can be treated as a stack by using it as a circular register file. 
This provides an efficient means of storing local variables on the stack, 
without incurring the overhead of memory accesses. 

More conventional machines have explicit register-based operands. For 
example, the WE32100 provides 16 general registers. The WE32200[7] CPU 
has increased this number to 32. Since these registers are not designed as a 
contiguous register set, efficient usage of these registers is dependent on an 
efficient optimizing compiler. With proper allocation of local and global 
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registers, and user versus privileged registers, it is believed that can reduce 
the number of saves and restores across subroutines and system calls. 

Still another approach is illustrated in the C Machine[8] which makes use of 
stack cache keyed to subroutine entries and exits. In the analysis of one 
model of the C Machine, we have found the optimal stack frame size to be 
between 32 and 64 entries. Doubling the stack would contribute to only about 
3% to 4% more performance compared to a 32 entry stack cache, depending 
on the load and external memory speed. A stack cache has the advantage of 
providing a simplified model for compiler optimization, since the cache is 
treated like memory. However, in this case the compiler has to provide 
efficient algorithms for stack compaction to assure efficient usage of stack 
space. 

The use of an on-chip data cache may enhance operand accesses, but it also 
incurs additional complication of cache coherency for shared memories. If 
the on-chip data cache operates in virtual address space, it would be difficult 
to provide physical address bus monitoring to guarantee on-chip cache 
flushing if updates of the same physical memory was made over a back plane 
bus. The speed advantage of on-chip cache accesses over even the best 
external memory (zero wait-state) is almost one cycle, and has an additional 
advantage in that it reduces bus utilization. At the same time, caching is no 
substitute for fast memory: zero wait-state memory has the advantage of 
minimizing contention in the I/O control, thus reducing conflicts between 
instruction accesses and data accesses. We found that speeding up instruction 
fetches by using quad-word fetches, in some designs, actually contributed to 
degrading or having negligible performance impact on the overall processor 
at zero wait state. This is because quad word fetches could block operand 
accesses needed for the execution unit. In machines that have a lower 
number of data accesses, such as the C Machine, additional on-chip data 
caches would not impact performance significantly ( 5%). 

In the new WE32200 Memory Management Unit, which has a physical data 
cache on-chip, we found that a minimum of 4 Kbytes of data cache was 
needed to obtain a performance gain of about 10-15% in the WE32200 chip 
set environment. 

23 Accelerating the Decode Unit 

In order to execute one instruction per cycle, it is usually (but not always) 
necessary to decode instructions at that rate. In general, an instruction 
contains several fields. In the WE32100 instruction format, the opcode field 
specifies which operation is to be performed and what resources will be used. 
If the operation requires data, it can be implicit in the opcode (i.e. POP the 
stack) or it can be explicitly described in the operand fields. Each operand in 
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a WE32100 instruction contains a descriptor which indicates which addressing 
mode is being used, and zero to four data bytes. 

Decoding an instruction requires the decoding of each of these fields. It is 
evident from the instruction formats used in RISe machines that fixed-length 
instructions with independent fields and few formats are easiest to decode. 
Since the WE32100 instruction set does not possess these characteristics it 
decodes each field of an instruction serially. The serial decoding of a simple 
dyadic register-to-register instruction (i.e. ADDW2 %rO, %rl) requires three 
cycles to decode (one cycle for each field). The actual execution of this 
instruction requires only a single cycle! This speed mismatch between 
processor units has driven us to explore decoding schemes with more 
parallelism. 

To perform a single-cycle decode, the entire instruction must reside in the 
instruction queue. Unfortunately, the maximum length WE32100 instruction 
is 25 bytes long. Single-cycle decoding for all instructions is therefore 
impractical because it is difficult for the instruction fetch unit to load such 
large numbers of bytes into the queue in a single cycle. The processor can 
fetch at most four bytes at a time from off-chip memory. Even if an on-chip 
cache is organized as an array of double or quad words, it would still not be 
sufficient to fetch every instruction in a single cycle. Rather than allowing 
the decode unit to idle until the entire instruction arrives, it is advantageous 
to decode instruction fields as they arrive in the queue. Furthermore, it is 
difficult and chip area intensive to implement a maximum size (25 byte) 
queue and to provide all the logic and control necessary to decode every 
possible instruction format which can occur. 

23.1 Encoding Format Regularity of instruction encoding is necessary to 
achieve a one-cycle decode. For this purpose, it would be desirable for the 
instructions to be word-aligned, with predictable instruction lengths and 
simple addressing modes. However, in the WE32100, variable-length 
encoding was adopted to reduce bandwidth to memory and also to reduce 
program size. The resulting variable-width instructions complicated the 
instruction fetch unit in several ways. To retain a one cycle per instruction 
execution, the instruction fetch unit's output register would have to be 
sufficiently wide to contain the longest instruction. Instructions are not 
word-aligned, introducing an additional requirement for aligning instructions. 
Also, the instruction fetch unit must provide status indicating the amount of 
valid data in its output register. To obtain the absolute maximum 
performance, alignment and instruction fetching would all be implemented 
within the one-cycle per instruction constraint. 
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23.2 A Revised Instruction Format In the case of the WE32100, it would have 
been difficult to decode all the instruction fields in parallel because the 
variable length of the operand fields makes their location within the 
instruction difficult to determine. For example, although operand one always 
begins at the second instruction byte, the beginning of operand two is 
unknown unless the length of operand one is known (this is the essence of 
the serial decode problem). With the current instruction format, it is not 
difficult to decode the opcode field and the entire first operand in parallel. 
Additional operands would require an additional cycle for each one. 
However, decoding additional operands at the same time would be difficult. 

In order to simplify decoding, it has been proposed to re-order the 
instruction format such that all operand descriptors follow the opcode. 
Hence descriptor one is contained in byte 2, descriptor 2 is contained in byte 
3, etc. The part of the instruction containing theopcode and operand 
descriptors will be called the base instruction. The format of the base 
instruction is simple enough to allow the decoding of each field to proceed in 
parallel. Instructions limited to the base instruction format would include: 
register, register deferred, positive and negative literal \ and argument 
pointer and frame pointer short offset2 addressing modes. 

233 Look-Ahead Decoding In decoding the fields of the base instruction in 
parallel, one also has to deal with problems related to the lack of 
orthogonality of the fields. The number of operands, and hence the length of 
the instruction, is unknown until the opcode is decoded. Also, the descriptor 
for operand one may indicate a register- displacement addressing mode. An 
effective address will be formed by adding the displacement to the contents 
of the specified register. If the opcode is MOV, the address must be issued 
to the memory system to fetch the instruction's data. However if the opcode 
is MOV A (move address) the effective address is itself the desired data. 
Worse still, if the opcode is BCCB (branch on carry clear with byte 
displacement) there is no operand descriptor, just the displacement. 

To simplify the decoding of operands it may be advisable to use a look-ahead 
decoding scheme also known as "pre-decoding". A look -ahead decoder can 
decode the next instruction's opcode while working on the current 
instruction. It actually takes two cycles to decode the instruction but the 

A literal for the WE321000 is an immediate between -16 and +63. 
2 The address of the operand data is formed by adding a literal to the contents of the argument 

or frame pointer register. 
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process is pipelined to achieve a one cycle throughput. During the pre
decode, the number and type of operands can be determined. This may 
simplify the decoder but not without some penalty. Although the two stage 
decode is pipe lined to achieve a one-cycle rate, a one-cycle penalty is 
encountered any time the pipeline breaks because of program discontinuities 
or stalls (i.e. the instruction fetch does not deliver enough instruction bytes). 
Under these circumstances the decoder cannot overlap the look-ahead with 
any other useful work. The penalty on discontinuities is mitigated somewhat 
by the nature of instruction fetching in variable length instruction set. In an 
instruction set like the WE32100 where instructions may start on arbitrary 
byte boundaries but instruction fetches always occur on word boundaries, the 
first fetch often will not acquire enough bytes to decode a whole instruction. 
However only one byte is needed for the pre-decode. Hence the pre-decode 
can sometimes be hidden in the instruction fetch delay. 

23.4 Hardware Tradeoffs in the Decode Unit In order to achieve the parallel 
decode of all operands, the necessary hardware resources must be accessible 
to each operand. In load/store architectures the sharing of hardware for 
ALU operations and address computations is reasonable. Only one address is 
generated in a single instruction. Also, memory accesses can be scheduled to 
occur before the data is actually used in the pipeline, avoiding data 
dependency delays (hazards). However in memory-based architectures, there 
is a significant benefit to dedicating hardware to perform address 
computations as early in the pipeline as possible. 

The WE32100 instruction set has 17 different addressing modes. Six of these 
modes can be encoded in the base instruction's operand descriptors without 
needing additional data bytes (register, register deferred, positive and 
negative literals, and two short-offset addressing modes). In order to support 
the single-cycle decode of the base instruction, three read ports to the 
register file are necessary for the register modes. Adders are necessary for 
the short offset addressing modes to add the offset to the argument pointer 
or frame pointer. The remaining 11 addressing modes involve generating 
addresses or data using additional bytes in the instruction queue and adding a 
displacement to the contents of a register to form an address. 

There are a number of design tradeoffs to be examined here. A cycle
accurate behavioral simulator is an invaluable tool in analyzing the 
performance impact of these design decisions. It would quantify the 
performance benefit of particular implementation choices. These choices 
must be carefully considered. Conceptually, the decoder could be 
implemented as four interacting state-machines, one for each field? In 
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attempting to decode the three operands in parallel, it may be simpler to 
design three independent address arithmetic units instead of one common 
unit. Adding hardware increases the size of the decoder. Certainly chip area 
is another important consideration, since the size of the decode unit is 
bounded. There are other considerations related to address generation. 
Although two short-offset addresses could be decoded in the same cycle, one 
of them will go unused in that cycle unless a multi-ported memory interface 
exists for operands. In all other cases of address generation, additional bytes 
are necessary beyond the base instruction. It would be costly in hardware to 
attempt to generate more than one address per cycle in these cases. 

Machines have been designed to decode both opcode and first operand in 
parallel. This frequently would require look-ahead decode to determine 
point of termination of the instruction, unless the instruction length is fixed. 
This improved decode rate does not always translate directly into an overall 
instruction execution improvement because of the interaction of the various 
pipeline stages. The execution unit has to be able to keep up with the decode 
unit. 

2.3 5 Discontinuities A discontinuity is the result of writing a new target 
address in the program counter (PC) that breaks the sequence of instructions 
fetched b,y earlier stages of the pipeline. In the case of conditional branches, 
condition flags are set at the last stages of the execution unit. If a new target 
branch address is loaded, a latency of several cycles could result because of 
the discontinuity. At least one additional cycle is imposed for fetching the 
next instruction, with additional cycles for decoding and fetching of the 
operands for the new instruction (if the instruction fetch unit did not 
anticipate the branch). Return and indirect addressing modes would require 
even more additional memory accesses. 

As the pipeline becomes more efficient the delay associated with 
discontinuities becomes more pronounced. Since 20 - 30% of the instructions 
executed are discontinuities, the delays associated with them are significant. 
Reducing the number of pipeline stages will minimize the penalty associated 
with discontinuities, but more than this can be done. 

3 At first glance, it seems the opcode decoding is a simple one-to-one mapping. However, 
instructions such as CALL, invoke a micro-sequence that requires the decoder to generate 
several internal instructions. 
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The latency of unconditional transfers can be reduced by informing the 
instruction fetch unit to prefetch from the anticipated branch-target address 
as soon as it is computed. For conditional transfers, condition evaluation is 
typically performed in the execute unit. Evaluation of the condition 
frequently results in delay of the pipeline. During that delay, instructions 
can be inserted in the pipe consistent with some predicted outcome. 

There are two techniques for optimizing on branches: static branch prediction 
or dynamic branch prediction. Several branch prediction strategies were 
discussed in a study by Johnny K. F. Lee and Alan J. Smith [9l. As was 
discussed in the study, dynamic branch prediction can be done by a "look
ahead" technique, where the earlier stages of the pipeline may be able to 
resolve condition codes affecting the branches, and essentially prefetch the 
target branch address, thus reducing the overhead due to delays in 
discontinuities in the pipeline. 

There are four ways to implement static prediction: 

1. always predict no discontinuity, 

2. always predict a discontinuity, 

3. always predict the same for a given opcode, where the prediction is 
statistically determined and built into the hardware. 

4. Provide two versions of each conditional instruction; one predicts 
branch, the other no branch. Prediction can be done intelligently by the 
programmer/compiler. 

In trying to optimize branches in the WE32100, branch prediction was found 
to be worthwhile. A static branch prediction algorithm based on the branch 
opcode (i.e. branch on overflow is always predicted not taken) was found to 
be over 75% accurate on series of e benchmarks representing UNIX 
programs. Since this branch-prediction algorithm is built into the machine, it 
cannot be expected to perform equally well over all applications. 

Branch prediction can be used to avoid effectively the latency between 
instruction decode and execution during discontinuities. However it does not 
always avoid the instruction fetch delay. Even if a branch is predicted 
correctly, the instruction queue may have to be flushed and refilled from the 
branch target address. 

As mentioned earlier, the WE32100 instruction set was optimized for 
compactness of object code. The 110 limitations of machines like the 
WE32100 are less than those of a RISe machine. The degree of bottleneck 
can be measured by determining the frequency of 110 contention between 
different stages in the pipeline. In a RISe machine, 110 bandwidth can be 
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crucial to achieving higher performance, especially if there are no on-chip 
caches. For these machines, a high performance I/O protocol is essential to 
achieving one cycle per instruction execution. 

Experiments with various I/O protocols showed that an instruction cache may 
not always be necessary to sustain best throughput in instruction decoding. 
Nearly all the delays in an efficient instruction fetch unit in a highly tuned 
pipeline processor were attributable to discontinuities. In these cases, 
efficiency of the machine could be improved by adding branch target address 
caches. A branch address cache can help reduce the penalty associated with 
discontinuities. Whenever a new program counter value is sent to the 
instruction fetch unit, the instruction bytes fetched at that address are 
cached. When that discontinuity occurs again, the target address will hit in 
the branch address cache. The instruction bytes can be loaded into the queue 
immediately while an incremented version of the address is sent to the I/O to 
fetch along that path. The number of bytes cached with the branch address 
would depend on the results of performance analysis and chip area 
considerations. 

2.3.6 Decoded Instructions Queues and Caches Some processors, such as the 
Intel 286 and 386, contain a decoded instruction queue between the decode 
unit and execute unit. The queue is loaded with all the control information, 
and possibly the data, necessary to execute the instruction. The queue is 
capable of storing several instructions. The latency of the queue when empty 
should be minimal since the longer the pipeline becomes, the greater the 
penalty for discontinuities. 

One advantage of a decoded instruction queue is that the buffering it 
provides can reduce the performance penalty caused by speed mismatches 
between the decode and execute units. If the execute unit slows down, the 
decode unit can insert several instructions into the queue. If at a later time 
the decode unit slows down, the execute unit can continue to operate at its 
peak rate until the queue is emptied. 

Another advantage of a decoded instruction queue involves memory-based 
data. In accessing data from memory, the latency between address 
generation and receiving the data is generally greater than one cycle. If 
addresses are generated in pipeline stage i and data is collected in stage i + 
1, there will be a i cycle delay each time an off-chip operand is fetched. If 
the decode unit issues an address. it must wait before decoding the next 
instruction because the next pipeline stage is busy waiting for the data to 
return. If the 110 protocol is pipe lined to maximize throughput, then the 
internal pipeline can be designed to take advantage of it. The decoded 
instruction queue can be used to collect data and pipeline the memory access 
latency while the decode unit continues to work. For an n-cycle memory 
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access latency, the queue must be able to store n instructions. 

A logical extension of the decoded instruction queue is a decoded instruction 
cache. Just as a regular instruction cache reduces the delay of instruction 
fetch, a decoded instruction cache will reduce the delay of instruction fetch 
and decode. In the ideal case of a 100% hit rate, the processor would be 
limited only by the speed of the execute unit and operand fetch delays. Some 
of the considerations in implementing such a cache are discussed below. 

Decoded instructions would be cached based on their address. The cache 
would be organized as an array of n bit elements where n is the length of a 
decoded instruction. Since decoded instructions are generally much longer 
than their encoded form, the size of the decoded cache would be much larger 
than a normal cache with a comparable hit rate. Studies are necessary to 
quantify the performance gain as a function of the size of the cache and 
evaluate the effectiveness of such a scheme. 

A policy must be established to handle discontinuities. Some unconditional 
transfers can be followed by the decoder. However transfer addresses which 
are runtime dependent cannot be followed. The decode unit must stop at this 
point until the execute unit can compute the next instruction address. 
Conditional transfers can also be followed by the decoder if a prediction 
scheme is used (provided of course that the target address is not runtime 
dependent). The execute unit must be able to indicate when the prediction is 
incorrect and reset the decode unit to the correct path. Once the decoded 
cache has been filled, many program control transfers will incur no more 
delay than sequential code. This could prove to be a significant benefit. 

The insertion of a cache between the decode unit and execute unit, allows 
the two units to operate even more independently. If the execute unit is 
faster it will have to wait for the decode unit to decode the next instruction. 
However, if the decode unit is faster it can start to thrash the decoded 
instruction cache. The decode unit may be adding an instruction to the cache 
which replaces a previous instruction before the execute unit gets to it. The 
execute unit would then have to reset the decode unit to fetch and decode 
the missing instruction again. The probability of thrashing is related to the 
size of the cache. This could be avoided by devising a tighter synchronization 
scheme. 

Another consideration particularly relevant to an instruction set like the 
WE32100 is how to handle micro-sequences. Certain instructions, such as 
"process-switch," generate internal sequences of instructions within the 
processor. Each micro-instruction is associated with the same instruction 
address and cannot be cached in the normal manner. Furthermore, a 
significant portion of the cache would be used up for each micro-sequence. 
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This would crowd-out other instructions. The alternative is not to cache each 
of the micro-instructions but to re-Iocate a portion of the decoder on the 
execute unit side of the cache in order to generate the micro-sequences. 

One final consideration is the amount of decode unit functionality that must 
exist on the execute unit side of the cache. As previously mentioned, run
time dependent information cannot be cached. This includes register 
contents and operand addresses formed using register values. A portion of 
the operand decoders must be present in the stage following the cache in 
order to handle the run-time dependent decoding. This lengthens the 
pipeline and increases the chip size. 

2.4 Pipelining 

The efficiency of a pipelined implementation depends on many factors: the 
interface and control between stages in the pipeline, the handling of 
anomalous conditions (hazards) in the execution sequence, and the efficiency 
of code generated by the compiler, which could reduce contention or 
conflicts in resource (lIO, registers) accesses during execution. 

This section briefly reviews some of the considerations in designing a 
pipeline, how performance can be impacted, and how a design might 
compensate for these performance degradations. 

2.4.1 A Basic Pipeline Figure 2 shows a 4-stage pipeline in a simple register
based machine. Suppose an instruction is fetched at each cycle, and an 
instruction completes at each "store" cycle. The execution time per 
instruction over the length of the pipe would be four cycles. Even this over
simplified model exhibits some of the pipeline problems. For example, in an 
efficient pipeline design, the propagation delay for each pipeline stage 
should be approximately equal. Therefore, in order to retain a full pipe, the 
instruction fetch stage must fetch and assemble its output, ideally, at one 
instruction per cycle. Each subsequent stage should require only one cycle. 
If more cycles are required, due to operand resolution or conditional flag 
computation, the pipe would have to be halted. This would incur additional 
complexity, as well as performance penalty. Increasing the number of stages 
could reduce this impact for code with no branches. However, for branch 
instructions, additional stages in the pipe could result in delays due to 
pipeline flushing and overhead due to refilling of the pipeline stages. 

2.4.2 Managing Data Dependencies Data dependencies in the pipeline result 
from anomalous conditions. They are a result of operand access conflicts, 
which introduces delays in the pipeline. A data dependency in the pipeline 
results when an operation to be performed requires a variable, where that 
variable has a pending change from a previous instruction. Three types of 
data dependencies are examined: register-operand dependencies, base-



394 VLSI CAD Tool8 and Application8 

register dependencies and memory-based operand dependencies. 

1. Register-Operand Dependencies - In Figure 2, if the result of 
instruction 1 is the same register as the one identified as a source of 
instruction 2, the operand fetch in clock cycle 3 will fetch the incorrect 
data. A pipeline implementation must detect the occurrence of such a 
dependency and either halt the pipe's advance, or appropriately manage 
the dependency with bypass control between stages in the pipeline. 

One solution to avoiding data dependencies is to require that the 
compiler guarantees that no data dependencies exist, by reordering 
instructions or by inserting sufficient no-op instructions between 
instructions that would otherwise result in a dependency. This is the 
approach taken by MIPS. It requires the compiler to include 
knowledge of the cycle architecture of the processor. Runtime 
conditions in the pipeline may prevent a potential data dependency 
from taking place. In these cases, compiler inserted no-op's would be 
unnecessary and would reduce the performance of the processor. Since 
all memory addresses cannot be known at compile time, the occurrence 
of memory-based operand dependencies can not be totally eliminated, 
and so some hazard detection hardware is still required. 

As mentioned in the previous section, the pipeline advance can always 
be stalled until the operand conflict is resolved (i.e., valid or available). 
The occurrence of the dependency, however, must always be detected, 
so that advances in the pipeline can be controlled. 

Figure 3 shows a bypass which manages the register-operand 
dependencies without imposing any cycle delays. The multiplexers at 
the inputs to the execute unit can select the execute unit's result from 
the previous cycle. To use this technique, a bypass must be provided to 
each stage between the registers and the execute unit. In fact, the 
equivalent of the bypass is also required within the register file (i.e. 
write before read each cycle). 

2. Base Register Dependencies - The second type of dependency involves 
data accesses to memory. Figure 4 shows the memory interface as well 
as a separate address arithmetic unit, and an added pipe stage. All 
addresses are assumed to be dyadic, formed by adding an immediate 
field, contained in the instruction, with a base register. By zeroing the 
base register or the offset, the AAU input provides an absolute address, 
or register indirect, respectively. Note that the use of a register value 
yielded a potential hazard. A bypass expedites updating of AAU inputs. 
However, an inhibit of the pipe's advance is still required. Otherwise, 
the AAU add, as well as the memory access, would be required within 
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the single cycle. Assuming a single cycle access and a single cycle AA U , 
the pipeline would be delayed by one cycle. Memory wait-states would 
increase this delay cycle for cycle. An alternate approach, as shown in 
Figure 5, includes the AAU operation as part of the path to memory 
instead of an additional pipe stage. Although register-based 
instructions now execute faster, memory-based fetches require the pipe 
to be delayed by a minimum of two cycles. 

3. Memory-Based Operand Dependencies - The third type of dependency 
involves memory-based accesses. Any memory based operand read can 
result in a hazard if a memory write is pending. If the addresses match, 
the hardware must inhibit the data read access until the store 
completes. 

2.4.3 Special Cases Multi-cycle instructions - Most ALU operations complete 
in a single cycle; exceptions are integer multiply, divide and modulo as well 
as floating point, which are typically implemented as micro sequences. In the 
WE32100, a Macro ROM was implemented to simplify implementation of 
macro instructions that can be decomposed into micro instructions. Here, the 
macro instructions consisted of process switch sequences, interrupt and 
exception sequences of the processor. 

Faults - Faults are handled in s.equence, even though different stages in the 
pipeline could potentially cause a fault to be recorded out of order. 
Complexity in handling faults result from the need to determine validity of 
the fault depending on the status of execution of latter stages in the pipeline. 
For example, a memory fault may result for an instruction following an 
inaccurate branch prediction. That instruction will not be executed, and, 
therefore, the fault should be ignored. Another example is a memory fault 
that was preceded by a divide-by-zero fault. 

Faults can be managed by accumulating all reported fault indications in the 
pipelined representation (microinstruction format) of the associated 
instruction. Each instruction, on reaching the execution stage, will either be 
executed or cause a fault. 

Restartability or Resumability of Instructions - In order to recover from a 
fault, the address of each instruction, or at least the ability to compute that 
address, must accompany the pipelined representation of the instruction. 

2.5 I/O Architecture 

One calibration of the efficiency of an I/O architecture is to what extent the 
internals of the CPU are blocked waiting for I/O. This is dependent on the 
number of instruction and data fetches needed by the microprocessor when 
executing a program, and can vary depending on the efficiency of the 
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compiler in utilizing on-chip registers or caching. For the same machine, 
with different compilers, we have observed a difference of 10% or more due 
to differences in compiler register usage. 

We have also observed a difference of a factor of two in the number of data 
fetches in the same program, when comparing a register-based versus a 
stack-cached-based architecture. One reason for such a dramatic difference 
is that many local variables, such as arrays or structures that could be pushed 
onto the stack, cannot easily be stored into registers (unless the registers are 
organized sequentially as register files). 

The amount of I/O required for a given program determines to what extent 
the processing units in the CPU are dependent on the efficiency of the I/O 
subsystem. In analyzing the different I/O architectures that can be applied to 
a given microprocessor, we have observed that the sensitivity of performance 
to the different I/O architectures was not more than 15%, when comparing 
the most efficient I/O to the more traditional standard I/O, if the machine 
was higbly pipelined. In this study, "standard I/O" was taken as one with 
de multiplexed instruction and data buses used for both data and instruction 
fetches, 2-cycle overlapped I/O (which effectively provided 1-cycle access), 
and with all memory hazards resolved in the I/O frame, as opposed to the 
memory system. 

The following options in I/O architectures were considered: 

1. No I/O bottlenecks - (5 buses) with separate instruction-address bus, 
instruction-data-fetch bus, data-address bus, data-fetch-write bus and 
data-fetch-read bus. 

2. Split address/data buses for instruction fetch and separate address/data 
bus for data fetch (4 buses). 

3. Separate address bus, with separate read/write data bus (3 buses). 

4. "Standard bus" - demultiplexed address and data bus used for both 
instruction and data fetches (2 buses). 

The above options resulted in the following observations. Using the 
"standard bus" architecture as baseline: 

• There was a 10% - 12% improvement with the 5-bus system, due to 
splitting address and data (with separate buses for reads and writes) . 

• There was an 8% - 10% improvement with the 4-bus approach - i.e., 
separate address and data (no split data buses for reads and writes) for 
instruction and operand fetches. 
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• There was a 5% improvement if memory hazards were checked and 
handled by the memory controllers, as opposed to the I/O frame. 

We found that in this particular design, the maximum performance gain, 
assuming best-case I/O, would only be about 17%. Since increasing buses on 
the microprocessor would increase the pin count, and thus the cost of the 
system, the standard bus architecture was chosen. 

3. Memory Management Architectures 

The design of a memory management unit must be tightly coupled with the 
design of the operating system. AT&T's WE32101 Memory Management 
Unitt10j was derived from evaluation of the needs of the UNIX System V 
operating system. Special OS considerations include: 

1. Memory partitioning conventions -

• Paging - The page sizes may be variable or fixed, and they usually 
range from 512 bytes up to 4 or 8 K bytes in some systems. The 
page-size variation is dependent on the available physical memory 
size of the target system, and also on the frequency of process 
switching and the number of simultaneous processes. The objective 
is to find an optimal size that minimizes thrashing, and maximizes 
efficiency of the physical memory. Today, hardware support for 
page replacement procedures is common. This requires the hardware 
to provide automatic update of indicators for Reference or Modified 
bits . 

• Segmentation - Segments can range from a few bytes long to several 
thousand bytes long. The smaller segments can be used for message 
passing, or for special data shared amongst multiple processes. The 
larger segments are a means of managing categories of text or data 
under one common access protection scheme and within a 
contiguous memory (e.g., stack, kernel text, shared libraries, etc.) 

Shared segments are supported in WE32101 so that multiple 
processes can access the same physical memory space with different 
virtual address mapping and under different access protection 
schemes. (That is, one process may be allowed read-only access, 
while another may be allowed to write into the segment space). 

The convention used in the System V UNIX operating system, 
supported on AT&T's 3B machines, is to use the segment as the 
logical partition of memory space that is visible in the OS 
architecture. For example, this is used separating shared libraries, 
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kernel versus user text and data. Pages are used as an internal 
memory management scheme as the structure for managing virtual 
memory. 

2. Memory protection schemes - hierarchical protection structure for 
user/kernel access on any combinations for read/write/execute/no 
access. 

3. Multiple process support - The WE32201 memory management for 
AT &T's third generation 32-bit chipset provides an automatic process 
tracking mechanism, whereby processes are uniquely identified by the 
base-table pointers of the page or segment tables. This tag is used to 
identify uniquely the process id associated with each entry in the 
translation buffer cache. 

In systems that rotate among a few processes (say no more than 3 or 4), 
such as real time systems, the memory management hardware can 
provide automatic replacement of translation descriptors, without the 
need for the operating system to flush the cache entries at process
switch time. Each translation descriptor will be tagged so that on 
returning to a recently executed process, the overhead to reload 
descriptor will be minimized. 

Interprocess communication can be achieved in the WE32201 by loading 
the active process tag with the target process id (with privileged 
instructions), and writing into the target process's segment or page, if 
the target process space is defined to be accessible by the active 
process. 

4. Virtual machine support The IBM/RT machine[ll] supports the 
concept of virtual machine. This gives users the ability to switch from 
one OS environment to another. To facilitate this, the IBM/RT has 
increased the addressing space from the more popular 32 bits to 40 bits 
of addressing. With the additional bits, one could switch from one 
kernel space to another, while executing under the same user process. 

The WE32101 supports systems that require contiguous segments, or paging, 
or both in a mixed mode. The tradeoff between segmentation versus paging 
is external fragmentation (gaps between segments when doing segment 
placements) versus internal fragmentation (wasted memory space between 
end of text or data to end of page) of memory. In systems (like System V 
Release 2.0 UNIX), where demand paging is not needed or supported, 
segmentation is more desirable. This is typically used in very small systems 
(turn-key applications) with small programs that do not need virtual space. 
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3.1 Tradeoffs in On-Chip Memory Management Unit 

There are several memory interface functions that fit naturally into the 
memory management unit. They include virtual-to-physical address 
translation, structuring of memory partitioning, memory-access protection 
checking, translation buffer cache control (miss processing), memory access 
fault detection, memory control interface, direct memory access control for 
accelerated block moves. In evaluating the functions of an on-chip MMU, 
analysis was done in the following areas to determine the tradeoffs between 
feature versus area. This analysis uses the WE32101 MMU as baseline. 

1. Size and types of translation buffers - We found that fully associative 
buffers for page descriptor caches at 64 entries would provide a 99% hit 
rate for typical UNIX programs. This compares with 96-97% for two
way set-associative caches of the same size. We also found that a 
degradation of 3-4% in hit rate reduced overall system performance by 
10-12%. This is based on a miss processing overhead of 15 to 30 cycles 
(for systems with a few wait states), depending on whether there was a 
miss in both segment as well as page descriptor caches. 

2. Hardware versus software support of miss processing - Software miss 
processing could take 150 to 300 cycles. By supporting miss processing 
in hardware, we can improve performance of the overall system by 15-
25% depending on the miss rate. 

By integrating the MMU with the CPU, one can save the translation 
overhead by overlapping translation with prefetching. This would provide a 
1 cycle advantage over a separate MMU. In terms of performance, this 
would be an 8-15% gain for typical programs. However, the impact of this 
savings is reduced when examining the WE32201. We find that with an 
integrated data cache on the MMU, like the WE32201, translation overhead 
can be reduced, even though the MMU is separate from the CPU. This is 
because a data cache hit on the MMU would be equivalent to a zero wait
state access. In this case the 4K bytes of data cache on the MMU, and the 64 
word I-cache on the CPU provided a better than 60% hit rate for most 
memory accesses. 

In this case, if one were to put the MMU, without the 4K bytes data cache on 
the CPU, and reduce the translation buffer to a 2 way set associative 
convention, as oppose to the fully associative cache, the loss in system 
performance would outweigh the benefit of the 1 cycle savings. This is 
further amplified as one increases wait states in the interface to memory. 

The integrated CPU/MMU approach does provide cost savings, and would be 
attractive for low end systems that do not require elaborate memory 
management features and well-behaved locality of program execution. 
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4. Memory Interfacing Peripherals 

In evaluating UNIX program behaviors we found that about 10% of its time 
was spent in memory moves. Overall system throughput could be improved 
by hardware support of memory to memory copies and memory fills. UNIX 
system routines, such as Fork, Exec and buffer copies between user and 
system space could be accelerated by a fast intelligent DMA capability. 

The WE32104 DMAC was designed to address some of these needs. This 
provided an efficient interconnection between a 32-bit system bus and the 
byte oriented peripheral devices, such as UARTS, disk controllers and 
network interfaces. We found that typically 4 channels could be used 
simultaneously in a fully configured system. This provided a maximum 
throughput of 11.2MB/sec for memory copies, and 20.3MB/sec for memory 
fills when running in burst mode. This is about 5 times faster than the CPU 
for large block moves. For transfers over the peripheral bus, a maximum 
throughput of 6MB/sec could be achieved. To provide maximum flexibility in 
transfer modes, byte, halfword, word, as well as double and quad word 
transfers were supported. In quad word transfer mode, bus utilization is 
reduced by a factor of ten compared to the byte mode transfer. 

The WE32103 DRC was designed to support efficient memory accesses. 
Special features such as options to select page and nibble mode for fast 
double and quad word memory accesses, pre-translation mode for improving 
access time to paged memories. The pre-translation mode reduces access 
time by overlapping the row portion of a memory access with the address 
translation time performed by the memory management unit. Overall, an 
efficient memory interface can improve overall performance by over 5% if 
these features are properly utilized. 

5. Summary 

The overall architecture of a chipset contributes to the total performance of 
a system. At the core of this is the CPU. Central to the consideration, 
beyond the instruction set architecture and implementation, is the interface 
to the peripheral chips. We have found that CPU performance is reduced 
when it measured in a system configuration. Performance loss of 20-40% 
could be recovered if the peripherals are configured and used properly to 
maximize throughput. 
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Abstract 

14 
A Comparison of Microprocessor Architectures 

in View of Code Generation by a Compiler 

N. Wirth 

A high-level programming language mirrors an abstract computing engine, implemented 
by a combination of a. concrete computer and a compiler. The pair should therefore be 
carefully tuned for optimal effectiveness. Otherwise, compromises between more complex 
compiling algorithms and less efficient compiled code are inevitable. We investigate three 
processor architectures and analyze their effectiveness for use with a high-level language. 
The conclusion: neither particularly sophisticated nor drastically "reduced" architectures are 
recommended. Instead, the proven and pivotal mathematical concepts of regularity and 
completeness hold the key to performance and reliability. 

Introduction 

To a programmer using a high-level language, computer and compiler appear as a unit. 
They must not only be regarded, but also designed as a unit. Most computers, however, 
display a structure and an instruction set - an architecture - that mirrors the metaphor of 
programming by assembling individual instructions. More recent designs feature 
characteristics that are oriented towards the use of high-level languages and automatic code 
generation by compilers. 

By orienting an architecture towards high-level languages two prinCipal goals are pursued: 

- Code density. Densly encoded information requires less memory space and fewer accesses 
for its interpretation. Density is increased by providing appropriate resources (e.g. fast 
address registers), suitable instructions and addressing modes, and an encoding that takes 
into account the instructions' relative frequency of occurrence. 

- Simplicity o/compilation. A Simple, compact compiler is not only faster, but more reliable. 
It is made feasible by regularity of the instruction set, simplicity of instruction formats, 
and sparcity of special features. 

In this paper, we make an attempt to measure and analyze the suitability of three 
processors in terms of the above criteria. In general, this is a difficult undertaking, because 
three variables are involved, namely the computer arChitecture, the compiler, and the 
programming language. If we fix the latter two, we have isolated the influence of the 
architecture, the quantity to be investigated. Accordingly, we shall involve a single language 
only, namely Modula-2 [1]. Unfortunately, fixing the compiler variable is not as easy: 



408 VLSI CAD Tools and Applications 

compilers for different processor architectures differ inherently. Nevertheless, a fair 
approximation to the ideal is obtained, if we use as compilers descendants of the same 
ancestor, i.e. variants differing in their code generating modules only. In particular, we have 
designed compilers that use the same scanner, parser, symbol table and symbol file 
generator, and - most importantly - that feature the same degree of sophistication in code 
"optimization" . 

It is reasonable to expect that a simple and regular architecture with a complete set of 
elementary operations corresponding to those of the language will yield a straightforward 
compiling algorithm. However, the resulting code sequences may be less than optimally 
dense. The observation that certain quantities (such as frame addresses) occur frequently, 
may motivate a deSigner to introduce special registers and addressing modes (implying 
references to these registers). Or the observation that certain short sequences of instructions 
(such as fetching, adding, and storing) occur frequently, may spur the introduction of special 
instructions combining elementary operators. The evolution of more complex architectures 
is primarily driven by the desire to obtain higher code density and thereby increased 
performance. The price is usually not only a more complex processor, but also a more 
complicated compiling algorithm that includes sophisticated searches for the applicability of 
any of the abbreviating instructions. Hence, the compiler becomes both larger and slower. 

Whereas for decades the future was seen in more baroque architectures (the huge 
number of instructions being a favourite item for advertisements), the pendulum now 
appears to swing back towards the opposite extreme. The ideal machine is now said to have 
few, simple instructions only [2]. Quite likely the optimal solution is to be found in neither 
extreme. 

The processor architectures chosen for this investigation are: Lilith [3,4], National 
Semiconductor 32000 [5], and Motorola 68000 [6]. (To denote the latter two, we shall use 
the abbreviations NS and MC). Lilith is a computer with a stack architecture specifically 
deSigned to suit a high-level language compiler, i.e. to obtain both a straightforward 
compiling algorithm arui a high code density. Both the MC and in particular the NS are 
claimed to be designed with the same goals, but feature considerably more complex 
instruction sets. The same observations hold for the DEC V AX computer family. 

Although the above considerations are correct in general, our empirical results do not 
support them. It is disappointing that the more sophisticated architectures of the NS and 
MC do not only demand a more complicated compiler, but also result in considerably less 
dense code. We shall try to pinpoint some of the causes for this negative achievement. 
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The Target Architectures and their Instruction Formats 

We first present the essential and relevant features of the three considered architectures 
in a comparative way. For further details the reader is referred to descriptions of the 
specific processors. All three mirror a run-time organization tailored for high-level 
languages involving a stack of procedure activation records. Lilith and NS feature three 
dedicated address registers for pointing to the frame of global variables, to the frame of the 
most recently activated procedure, and to the top of the stack. In the Me three of the seven 
general purpose address registers are dedicated to this purpose. 

For expression evaluation and storing intermediate results, Lilith features a so-called 
expression stack. i.e. a set of fast registers that are implicitly addressed by an up/down 
counter whose value is automatically adjusted when data are fetched or stored. The 
expression stack logically constitutes an extension of the stack of procedure activation 
records. It is empty at the end of the interpretation of each statement. Therefore, the 
difficulties inherent in any scheme involving two levels of storage are minimized: the 
expression stack need be unloaded (from the registers) into the main stack (in memory) only 
when context is changed within a statement, i.e. only upon calling a function procedure. In 
contrast, the other processors offer a set of explicitly numbered data registers. The run-time 
organizations of the three processors used by the Modula-2 system are shown in Fig. l. 

The processors' instruction formats are shown in Figs. 2, 3, and 4. Lilith and NS 
instructions form byte streams, whereas the Me instructions form a stream of 16-bit units. 
Lilith is a pure stack machine in the sense that load and store instructions have a single 
operand address and actual operators have none, referring implicitly to the stack. 
Instructions of the NS and Me mostly have two explicit operands. Their primary 
instruction word contains fields al and a2 indicating the addressing mode (and a register 
number), and frequently require one or two extension fields containing the actual offset 
value (called displacement). In the case of indexed addressing modes the extensions include 
an additional index byte specifying the register to be used as index. 

The so-called external addressing mode of Lilith and NS deserves being mentioned 
specially. It is used to refer to objects declared in other, separately compiled modules. These 
objects are accessed indirectly via a table of linking addresses. The external addressing 
mode, when used properly, makes program linking as a separate operation superfluous. 
This is a definite advantage whose value cannot to be overestimated. In the case of Lilith, 
module linking is performed by the loader. The use of a single, global table of module 
references makes it necessary that the loaded instructions are modified. Module numbers 
generated by the compiler must be mapped into those defined by the module table. The NS 
system eliminates the need for code modification by retaining a local link table for each 
module. The loader then merely generates this link table. 

Another difference worth mentioning concerns the facilities for evaluating conditions. 
Lilith allows to treat Boolean expressions in the same way as other expressions. Each 
relational operator is uniquely represented in the instruction set and leaves a Boolean result 
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opcode operator (no operands) 

I op I a single operand instructions 

opcode a 

opcode a 

opcode a 

opcode b a external addressing 
~~--~------~----~ 

Fig.2 Instruction formats of Lilith 

conditional jumps (FO) 

1 opcode procedure calls (F1) 

10PCode 1 c a1 operand c is a small integer (F2) 

1 opcode a1 single operand instructions (F3) 

IOPCode I a2 a1 double operand instructions (F4) 

opcode a2 a1 double operand instructions 

10 

(each address field may require extension bytes for 

index and/or displacement values (see below» 

d -64<= d<64 

d -8192 < = d < 8192 

Fig. 3. Instruction and displacement formats of NS 32000 

411 

(F6, F8, F11) 
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opcode 

opcode a1 

I op I a2 a1 

(each address field may require additional words 

for index and displacement values) 

Fig. 4. Instruction formats of Me 68000 

on top of the stacie In addition, there are conditional jumps corresponding to the AND and 
OR operators; they are suitable for the abbreviated evaluation of expressions: if the first 
operand has the value FALSE (TRUE), this value is left on the stack and the processor skips 
evaluation of the second operand. 

By contrast, the NS and MC architectures offer a single comparison instruction leaving 
its result in a special condition code register. The distinction between the various relational 
operators is established by the use of different condition masks in a subsequent instruction 
that converts the condition code into a Boolean value. As a result, the compilation of 
Boolean expressions differs from that of arithmetic expressions and is more complicated. 
The condition code register is an exceptional feature to be treated differently from all other 
registers (see Examples 1 and 5 in the following Section). 

The following tables summarize the mentioned primary differences. 

Instruction lengths 
Address lengths 
Addresses per instr. 
External addressing 
Condition code 
Data registers 
Address registers 

Lilith 

8,16,24 
4,8,16 
0, 1 
yes 
no 
stack (16) 
G, L, S,(H) 

Data addressing modes of Lilith (M = memory) 

mode 

stack 
local 
global 

operand 

T 
M[L+a] 
M[G+a) 

NS 32000 

8, 16, 24, 32,40, ... 
8,16,32 
1,2 
yes 
yes 
RO- R7 
SB, FP, SP, MOD 

comment 

MC68000 

16,32,48,64,80 
16,32 
1,2 
no 
yes 
DO- D7 
AO - A6, SP 

top of expression stack 
a = offset 
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external 
indirect 
indexed 
immediate 

Notes: 

O. M denotes memory. 

M[M[t+ b]+ a] 
M[T+a] 
M[T+T'] 
M[PC] 

t = module table origin 

base adr + index value 
for literal constants 

1. capital letters denote resources of the processor, small letters parameters of the Instruction 
2. T denotes the top of the expression stack, T' the next to top operand. 

Data addressing modes ofNS and MC 

mode operand (NS) operand (MC) 

register R[n] D[n] 
address register A[n] 
register indirect M[R[nll M[A[nll 
autoincrement M[SP); INC(SP) M[A[n)); INC(A[nJ) 
auto decrement DEC(SP); M[SP] DEC(A[nJ); M[A[n]) 
direct M[SB+d) M[A[n]+d] 

M[FP+d] 
M[SP+d) 

indirect M[M[SB+dl]+d2] 
M[M[FP+dl]+d2] 
M[M[SP+dl]+d2) 

indexed M[SB+d+R[x)*s) M[A[n] + d + D[xll 
M[FP+d+R[x)*sj M[A[n] + d+ A[x]] 

indirect indexed M[M[SB+dl]+d2+ R[x)*s) 
M[M[FP+ dlj+d2+ R[x]*s) 

external M[M[M[MOD+8)+dl)+d2) 
immediate M[PC] M[PC] 

Notes: 
O. capital letters denote resources of the processor, small letters parameters of the Instruction 
1. n, x are register numbers (0 ... 7), c\, dl, d2 are displacements (offsets) 
2. autoinc and -dec modes are called stack mode on the NS and apply to the SP register only. 
3. s denotes a scale factor of I, 2, 4, or 8 
4. Me's term for "direct" is "register Indirect with offset". 

Code Generation 

413 

The three compilers not only use the same scanner, parser, table handler, and symbol file 
generator modules, they also use the same method for code generation [7]. This is a 
straightforward technique based on the premise that each syntactic construct be represented 
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by a (recursive descent) procedure and by its result parameter. This parameter (defined to 
be of type Item) contains the various attribute values describing the parsed construct. The 
method is further based on the premise that the values of the construct's attributes, and the 
corresponding code generated, are to be determined exclusively by the attribute values of 
the construct's constituents, i.e. that they are context-free. 

Before we proceed to demonstrate the method by a few characteristic examples, we need 
to know what attributes might be involved in describing constructs and what determines 
their choice. When compiling an expression, for instance, we wish to distinguish whether 
the expression represents a constant or a variable, because if an addition is compiled, the 
compiler may add directly, if both operands are constants; otherwise it issues an add 
operator. In order to allow (constant) expressions to occur in declarations, the compiler's 
ability to evaluate expressions is indispensible. In essence, we wish to distinguish between 
all modes of operands for which the eventual code might differ. Code is emitted whenever a 
further deferment of code release could bring no advantage. The following table displays 
the modes of item descriptors and their attributes chosen for the three processors. 

Lilith NS 32000 MC68000 

conMd value conMd value conMd value 
dirMd adr dirMd adr 
indMd offset indMd adr, offset 

indRMd R indAMd adr,A 
inxMd inxMd adr, RX inxAMd adr,D, A 

inxiMd adr, offset, RX 
inxRMd R, offset, RX 

stkMd stkMd stkMd 
regMd R AregMd A 

DregMd D 
cocMd cc, Tjmp, Fjmp cocMd ce, Tjmp, Fjmp 

typMd type typMd type typMd type 
procMd proc procMd proc procMd proc 

Note: The value adr is actually a triple consisting of module number, level, and offset 

The "original" modes are conMd, dirMd, indMd, typMd, and procMd They are the modes 
given to a newly created constant factor, variable, var-parameter, type transfer function, or 
procedure call respectively. The other modes emerge when appropriate constructs are 
recognized: for instance, an item is given inxMd(or inxiMd), when an item is combined with 
an index expression to form an indexed designator (see Example 4 below). Or an item 
obtains iruiMd, if a pointer variable (dirMd) followed by a dereferencing operator and a field 
identifier have been parsed (see Example 3 below). In general, the more complicated modes 
originate from the reduction of composite object designators. 
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Evidently the modes of an item are determined largely by the available addressing modes 
of the target processor. The more addressing modes, the more item modes, the larger the 
state space of the items to be compiled, and the more complicated the transformation and 
code selection routines. This comes as no big surprise; the benefit of a complex instruction 
set is, alas, not expected to lie primarily in a simpler compiling algorithm, but rather in 
shorter and more efficient target code. 

The following examples show the parsing steps for several simple assignment statements. 
At the left the syntactic reduction step determined by the parser is indicated. Then follows 
the mode of the attribute (item) associated with the syntactic unit resulting from the step. 
The next column displays the code generated by this step, if any; and lastly, for clarification, 
the column labelled stack indicates the sequence of values stacked at this point during the 
execution phase. 

Example 1: x:= y+z 

Lilil11 l::I~ ~2QQQ IIllg M~ ~aQQQ 

reduction mode code stack mode code 

vartl .. x dir x dir x 
var1 .. y dir y diry 
factl .. var1 stack LLWy y dir y 
exp1 .. factl stack y diry 
var2 .. z dir z y dir z 
fact2 .. var2 stack LLWz y.z dir z 
exp .. exp1 + fact2 stack ADD y+z reg 0 MOV y.RO; ADD z.RO 
stat .. vartl : = exp STOx MOVRO.x 

Example2: x:= 3+5 

reduction mode code stack mode code 

vartl .. x dir x dir x 
factl .. 3 con 3 con 3 
expl .. factl con 3 con 3 
fact2 .. 5 con 5 con 5 
exp .. expl + fact2 con 8 con 8 
stat .. vartl : = exp LIT 8; STOx MOV8.x 

Example 3: x: = rt.f 

reduction mode code stack mode code 

vartl .. x dir x dir x 
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varl .. r dirr dir r 
varl .. varl t indir 0 LLWr r = @rt ind reg 0 MOY r,AO (MC) 

indir r, 0 (NS) 
varl .. varl . field indir f r ind reg 0, f (MC) 

indirr, f (NS) 
exp .. varl stack LSWf rt.f ind reg 0, f (MC) 

indir r, f (NS) 
stat .. varD : = exp STOx MOY f(AO),x (MC) 

MOY f(r),x (NS) 

Example 4: a[i]: = b[j] (without index checks) 

reduction mode code stack mode code 

varD .. a dir a dir a 
varD .. varO [ indir 0 LLAa @a dir a 
varl .. i dir i @a dir i 
expl .. varl stack LLWi @a,i dir i 
varO .. varD expl ] index @a,i inx aRO MOYi,RO 
var2 .. b dir b @a,i dir b LEA a,A4 (Me) 
var2 .. var2 [ indir 0 LLAb @a, i, @b dir b 
var3 .. j dir j @a, i, @b dir j 
exp3 ... var3 stack LLWj @a,i,@bj dir j 
var2 ... var2 exp3 ] index @a,i,@bj inx b Rl MOYj,Rl 
exp2 ... var2 stack LXW @a, i, b[j] inx b Rl LEA b, A3 (Me) 
stat ... varO : = exp2 - SXW - MOY b(Rl), a(RO) (NS) 

MOY (A3,Rl),(A4,RO) (Me) 

Example 5: x:= y< z 

reduction mode code stack mode code 

varO .. x dir x dir x 
varl .. y diry diry 
fact! .. varl stack LLWy y diry 
expl .. fact! stack y dir y 
var2 .. z dir z y dir z 
fact2 .. var2 stack LLWz y,z dir z 
exp .. expl + fact2 stack LESS y<z coc< CMPy,z (NS) 
stat .. varO : = exp STOx SCC< x (NS) 

(for Me: MOY z,DO; CMP y,DO; SCS DO; NEG DO; MOY DO,x) 

The following further examples are included to provide additional insight into specific areas 
of code generation and the processors' influence on it. 
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Procedure declaration: 

PROCEDURE P(x, y: INTEGER; V AR z: INTEGER); 
VAR i,j: INTEGER; 

BEGIN ... 
ENDP 

ENT 5 
SLW z 
SLW Y 
SLW x 
RTN 

Procedure call: 

P(17, k+5, k) 

LIB 17 
lGW k 
LI5 
UAOO 
lGA Ie. 
ell P 

ENTER 0 4 

EXIT 0 
RTN 8 

MOW 17 TOS 
MOW k(SB) R0 
AOOW 5 R0 
MOW R0 TOS 
AOORO Ie.(SB) TOS 
BSR P 

417 

LINK A6, 4 

UNLK A6 
RTD 8 (NS) 
MOVE (A7)+,A4 (Me) 
AOOQ 1118, A7 (Me) 
JMP (A4) (Me) 

MOW 17 -(A7) 
MOW Ie.(A5) 00 
AOOW 5 00 
MOW 00 -(A7) 
PEA Ie.(A5) 
BSR P 

Procedure parameters are passed via the stack of activation records. The NS/MC 
processors deposit the parameters' values or addresses on top of the stack (allocated in 
memory) before control is transferred to the procedure. Since parameters are addresssed 
relative to the local frame base, they are already in their proper place when the procedure is 
entered. In the Lilith computer, parameters are also put on the stack. However, because the 
top of the stack is represented by fast registers (the expression stack), and because this stack 
is reused in the procedure for expression evaluation, the parameters have to be unstacked 
into the memory frame immediately after procedure entry. This complicates code 
generation somewhat, but in general shortens the generated code, because the unstack 
operations occur in the procedure's code once, and not in each call. The fact that the 
NS/MC architectures include a move instruction alleviates this advantage of Lilith, because 
the move instruction bypasses registers (which play a role corresponding to the Lilith 
expression staCk). 

Indexed variables: 

VAR a: ARRAY [0 .. 99] OF INTEGER; 
b: ARRAY[-10 .. +10] OF INTEGER; 
c: ARRAY [0 .. 99], [0 .. 15] OF CHAR; 

u:= a[9] 

lGW a 
lSW 9 

MOW a-18(SB) u(SB) MOW a-18(A5) u(A5) 
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SGW u 

u : = a[i] 

lGW a 
LGW i MOVW i(A5) Oil 
LIB HIGH(a) CHK 99 Oil 
CHKZ CHECKW R0 [0.99] i(SB) ASLW 1 00 
LXW FLAG LEA a(A5) A4 
SGW u MOVW [R0:W] 8(SB) u(SB) MOVW 0(A4.00.W) u(A5) 

U : = b[i] 

lGW b 
lGW i MOVW i(A5) 00 
LIW -10 AOOW 10 Oil 
ISUB 
LIB 20 CHK 20 00 
CHKZ CHECKW R0 [-10.+10] i(SB) ASiW 1 00 
lXW flAG LEA b(A5) A4 
SGW u MOVW [R0:W] b(SB) u(SB) MOVW 0(M.00.W) u(A5) 

u:= c[9,9] 

lGW c 
lSA 216 
LSW 9 
SGW u MOVB [R0:W] c-450(SB) u(SB) MOVB c-450(A5) ch(A5) 

U : = c[i, j] 

lGW c 
lGW i MOVW i (A5) 00 
LIB 103 
CHKZ CHECKW R0 [0.99] i(SB) CHK 99 00 
LIB 24 flAG 
UMUl ASlW 4 00 
UAOO LEA c(A5) A4 
lGW j MOVW j(A5) 02 
LIB 23 CHECKW Rl [0.23] j(SB) CHK 15 02 
CHKZ flAG 
lXW INOEXW R0 23 Rl LEA II(M. 00.W) M 
SGW u MOVB [R0:W] c(SB) u(SB) MOVB 0(A4.02.W) u(A5) 

Because indexed variables occur very frequently, the resulting code should be short. All 
three processors therefore include special instructions for indexed address computation. 
They include the validation of array bounds, i.e. they check whether the index value lies 
within the bounds specified by the array variable's declaration. In the case of Lilith, the 
code differs in the case of the low bound being zero. Although this may appear as an 
insignificant peculiarity, it contributes to the effectiveness of the architecture due to its high 
frequency of occurrence. 

Arithmetic expression: (assume global variables a, b, and local variables i, j) 

(a + 10) - «i + b * 5 + j * 2) DIV 4) 
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LGW a MOVW a(SS)R0 MOVW a(A5) 00 
LI 10 
UAOO AOOW 10 R0 AOOIW 10 00 
LLW i 
LGW b MOVW b(SB) R2 MOVW b(A5) 02 
II 5 MEIW 5 R2 
UMUL MOVW i(FP') R1 MULS 5 02 
UAOO AOOW R2 R1 AOOW i(A6) 02 
LLW j MOVW j(FP) R2 MOVW j(A6) 04 
LI 1 
SHL LSHW1 R2 ASlW 1 04 
UAOO AOOW R2 R1 AOOW 04 02 
LI 2 EXTl 02 
SHR LSHW -2 R1 OIVS 4 02 
USUS SUSW R1 R0 SUBW 02 00 

The NS/MC compilers utilize the data registers in a manner similar to a stack. The 
compiler does not keep track of what was loaded into these registers. Hence it is clear that 
the registers are not used in an optimal fashion; but any further improvement increases the 
compiler's complexity considerably. However, multiplications and divisions by integral 
powers of 2 are (easily) recognized and represented by shift instructions. 

Boolean expressions: 

Boolean expressions require special attention. Although they are specified by the same 
syntax as other expressions, their evaluation rules differ. In fact, the definition of the 
semantics of Boolean expressions is inconsistent with their syntax, at least if one adheres to 
the notion that a syntax must faithfully reflect the semantic structure. This anomaly is due 
to the facts that the syntax of expressions is defined regardless of type, that arithmetic 
operators are defined to be left-associative, and that logical operators are right-associative. 
For example, x+y+z is understood to be equivalent with (x+y)+z; by contrast p&q&r is 
equivalent with p&(q&r). The logical connectives are defined in Modula in terms of 
conditional expressions, namely 

P & q = if P then q else false 
p OR q = ifp then true else q 

Consequently, 

p OR q OR r = if P then true else (if q then true else r) 

which is obviously right-associatve. The Boolean connectives are implemented not by 
logical operators, but by conditional jumps. And since Boolean expressions occur most 
frequently as constituents of if and while statements, a further complication arises: an 
efficient implementation must unify conditional jumps within expressions with those 
occurring in statements, thus effectively breaching the syntactic structure of the language. 
Fig. 5 fndicates the structural transformations implied by the generated code sequences for 
the NS by showing a few simple examples. The resulting structures could not be expressed 
by a context-free syntax. 
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IF P & q THEN SO ELSE S1 END 

, S1 + 
t 

IF P OR q THEN SO ELSE S1 END 
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IF (p & q) OR (r & s) THEN SO ELSE S1 END 

, S1 + 
t 

IF (p OR q) & (r OR s) THEN SO ELSE S1 END 

~t 
!IT] S1 

t 

Fig. 5. Boolean connectives represented by conditional jumps 

For Lilith, no structural transformations are necessary thanks to the existence of the 
and-jump and or-jump instructions which either cause a jump or the removal of the Boolean 
value on top of the stack. Whereas the compilation of Boolean expressions is 
straightforward, the resulting code is, however, less than optimal. 

IF «x < y) OR (z <= x)) & «u < v) OR (w <= u))THEN x:= y ELSE u:= v END 

LGW x 
LGW Y 
LSS 

ORJ L1 
LGW z 
LGW x 
LEQ 

L1: AJP L2 
LGW u 
LGW v 
LSS 
ORJ L2 
LGW w 
LGW u 
LEQ 

L2: JPC L3 
LGW Y 
SGW x 
JP L4 

L3: LGW v 
SGW u 

L4: 

CMPW Y x 

BGT L1 
CMPW x z 

BLS L3 
Ll: CMPW v u 

BGT L2 
CMPW u w 

BLS L3 
L2: MOW y x 

BR L4 
L3: MOW v u 

L4: 

MOW x(AS) DO 
CMPW yeAS) DO 

BLT L1 
MOW z(AS) DO 
CMPW x(AS) DO 

BGT L3 
Ll: MOW u(AS) DO 

CMPW v(A5) DO 

BLT L2 
MOW w(A5) DO 
CMPW u(A5) DO 

BGT L3 
L2: MOW y(A5) x(A5) 

BRA L4 
L3: MOW v(AS) u(AS) 

L4: 

The considerable complications caused by the NS/MC architectures for handling 
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expressions is modestly reflected by the introduction of a new item mode (cocMd) with the 
meaning "the item's value is represented by the condition code register". Its attributes are 
the mask value CC appropriately transforming the register value into a Boolean value, and 
two sequences of locations of branch instructions that require updating once their 
destination address is known. These sequences are labelled Tjrnp and Fjrnp, locating the 
branches taken for the Boolean result being TRUE or FALSE respectively. 

In summary, we observe that - as expected - the NS/MC architectures lead to a smaller 
number of generated instructions compared to that of the pure stack architecture of Lilith. 
The gain is at the expense of more complicated compiling algorithms. 

Measurements 

The essential characteristics, source program length and object code size, of the 
investigated compilers are summarized in the following table. 

Module source text object code (bytes) 
lines chars Lilith NS MC NS/L MCIL 

Scanner (M2S) 410 11200 2640 4180 5580 1.58 2.11 
Parser (M3P) 1300 39520 8190 11340 18500 1.38 2.26 
Table Handler (M3T) 210 8400 1350 2460 3500 1.82 3.29 
Symbol File Gen. (M3R) 530 20850 3680 5130 9240 1.55 2.51 
Code Gen. for Lilith 1490 50200 10190 
Code Gen. for NS 2050 69000 (15340) 22960 1.50 
Code Gen. for MC 3180 150000 (21550) 48630 2.26 
Total 26050 46610 83450 1. 79 3.28 

Objectively considered, the results are not only against all intuitive expectations, but they 
are also highly disappointing with regard to the commercial microprocessors. Because of the 
complex instruction set, the hardware is considerably more intricate than that of Lilith, and 
the cost of it has been felt severely by long development delays. Another consequence is the 
need for more sophisticated code generators, if the "power" of the instruction set is to be 
fully tapped. The compiler program is 14% longer for NS and 56% longer for MC than for 
Lilith. If we consider the code generator parts only, the respective figures are 37% and 
154%. But most disappointingly, the reward for all these efforts and expenses appears as 
negative: for the same programs, the compiled code is about 50% longer for NS and 130% 
longer for MC than for Lilith. The cumulative effect of having a more complicated 
compiling algorithm applied to a less effective architecture results in the compiler for the NS 
being 1.8 times more voluminous than that for Lilith, whereas the compiler for the MC is 3.3 
times as long. Quite evidently, the value of a megabyte of memory strongly depends on the 
computer in which it is installed. 

Translated into the time domain, we obtain similar results: measured over a reasonable 
number of diverse programs, execution times are in the average about 1.4 times as high on 
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the NS32016 operated with a 10MHz clock as on a Lilith with a 7MHz clock. For the sake of 
fairness, it has to be mentioned that the commercial microprocessors offer a slightly richer 
set of data types (Le. operand lenghts); Lilith does not offer operations for double precision 
integers and double precision floating point numbers. However, the influence on the 
instruction format or the compiling algorithm are rather marginal, and could not account for 
more than a few percent of additional length. 

Naturally, one wonders where the architects have miscalculated. Measurements 
condensed into the following tables shed some light on this question. There is, of course, no 
Single contributing factor to the poor result, but several; consequently, one sould not expect 
a single, simple answer. 

The first table displays the relative frequencies of occurrence (in percents) of various 
instruction formats of Lilith. Of particular relevance is the distribution of instruction lengths. 
Hence we distinguish between operators with various lengths of their operand field: 0, 4, 8, 
16, 24, 32. As objects of this investigation we again use the modules of the compilers 
themselves. Admittedly, this introduces some bias, e.g. against long operands (real 
numbers), but other measurements have largely confirmed these results. 

M2S M3TL M3Rl M3Gl M3PL Total 

length 2744 1356 3684 10274 8194 26252 
no of instr. 1912 1026 2489 7001 4898 17326 
bytes/instr. 1.44 1.32 1.48 1.48 1.67 1.52 

operator 20.92 13.74 14.18 17.90 15.31 16.72 
4bit opd 46.50 65.98 55.36 49.62 43.16 49.24 
8bit opd 23.54 8.67 13.06 18.75 15.80 17 .03 
16bit opd 7.06 6.04 8.28 12.06 11.33 10.40 
24bit opd 0.10 0.10 0 0.11 0 0.06 
32bit opd 0.84 0 0.04 0.20 0 0.18 
ext adr 1.05 5.46 9.08 1.36 14.39 6.36 

The quotient of the length of the code and the number of generated instructions yields 
the average instruction length. Among the listed programs it varies between 1.3 and 1.7 
bytes per instruction. About 15% of all instructions are operators without explicit operand 
fields, implicitly referring to operands on the expression stack. About 55% of all instructions 
have a Single operand field 4 bits long; between 10 and 15% require a one-byte operand 
field. In the case of the 4-bit fields, it is packed together with the operator field into a Single 
byte. This facility of short operand fields holds the key to Lilith's high code density. The 
idea stems from the Mesa instruction set of Xerox's D-machines [8, 9]. 

The next table shows the relative frequencies of occurrence (in percent) of instructions 
generated for the NS architecture, classified according to their formats. We emphasize that 
the pictures shown in Fig. 2 contain the operation code and one or two address mode 
indicators only. These one, two, or three bytes are usually followed by further bytes 
containing the addresses, operands, and indexing information. In rare cases, a single 
instruction may consist of a dozen bytes or even more. The average instruction length 
measured for the compiler is about 3.5 bytes for the NS versus 1.5 bytes for Lilith. The 
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number of generated instructions, however, (the figure that looked so appealing in the 
examples above) is only 1.6 times higher for Lilith. 

Module M2S M3TN M3RN M3CN M3EN M3HN M3PN Total 

length 4184 2464 5732 5396 12216 5348 11344 46684 
no of inst 1114 671 1512 1508 3288 1534 3251 12878 
bytes/inst 3.76 3.67 3.79 3.58 3.72 3.49 3.49 3.63 

F0 jump 17.24 10.58 14.02 13.06 23.48 17.93 21.04 18.66 
Fl call 21.45 21. 91 21. 96 22.94 16.18 21. 71 25.38 21.39 
F2 quick 10.95 17 .59 11. 51 11.94 14.75 12.52 8.74 12.07 
F3 case 0.09 0.60 0.40 0.33 0.18 0.07 0.03 0.19 
F4 2-opd 29.62 32.49 46.36 35.21 30.93 33.57 32.17 33.84 
F5 0 0.30 0 0 0.70 0.13 0.06 0.23 
F6 l-opd 13.55 16.24 3.31 12.47 11.10 13.17 11.81 11. 25 
F8 check 3.59 0.30 2.45 4.05 1.06 0.91 0.74 1.65 
Fll fltpt 3.50 0 0 0 1.61 0 0.03 0.72 

i-byte 38.69 32.49 35.98 36.01 39.66 39.63 46.42 40.05 
2-byte 40.66 50.67 58.27 47.48 45.86 46.15 40.94 46.10 
3-byte 20.65 16.84 5.75 16.51 14.48 14.21 12.64 13.85 

The NS and MC architectures feature a particularly rich set of data addressing modes, 
designed to reduce the number of instructions and to increase the density of code. The 
relative frequencies of their usage is tabulated below. Between 7 and 20% of references are 
to registers directly. This percentage roughly corresponds to the implicit stack references of 
Lilith. The stack mode of the NS is used exclusively for plaCing procedure parameters into 
the stack of activation records, and therefore has no relationship to Lilith's stack usage. The 
frequency of stack references is nevertheless surprisingly high (over 20%). 

A noteworthy although not surprising result is that local objects are considerably more 
frequently accessed (via FP) than global ones (via SB). The ratio varies from 1.7 to 6.9, 
however. Surprisingly frequent are indirect accesses (up to 30%); this mode uses two 
displacements. This is a reflection of the preponderance of access to record fields via 
pointers. This addressing mode is present in the NS, but not so in the MC architecture. 

Looking at constants, represented as immediate mode data placed in the instruction 
stream "immediately" following the instruction, one recognizes the predominance of 16-bit 
operands. Knowing the data size distribution measured for Lilith, one realizes that a major 
flaw of the NS/MC designs lies in the requirement that the length of an immediate operand 
be exactly as defined by the operator; no automatic lengthening (with either zero or sign 
extension) is provided, as it exists in the case of addresses (displacements). 

Module M2S M3TN M3RN M3CN M3EN M3HN M3PN Total 

no of inst 1114 671 1512 1508 3288 1534 3251 12878 
no of addr 1322 824 1839 1891 3532 1736 3317 14461 
addr/inst 1.19 1. 23 1. 22 1.25 1. 07 1.13 1.02 1. 12 

register 16.87 7.89 10.55 21.89 14.89 15.67 9.41 13.87 
reg indir 0.53 2.55 6.31 1. 27 1.81 4.49 4.22 3.11 
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dir (FP) 18.00 12.86 16.91 17.72 11.44 13.94 18.24 15.50 
di r (S8) 24.21 10.07 11.69 14.97 3.40 1. 96 3.77 8.16 
indir (FP) 0.23 11.17 18.71 12.37 30.27 21.37 12.00 17 .36 
indi r (S8) 0 6.80 1.41 0 0 0 0.09 0.59 
immed byte 12.78 6.80 3.53 7.09 4.53 5.70 13.14 7. 74 
immed word 8.17 9.59 5.06 9.52 9.31 10.43 6.84 8.28 
immed dbl 0.98 0 0 0 0.45 0.06 0 0.21 
absolute 0 0 0 0 0 0 0 0 
exte rnal 0 5.22 3.10 0.53 2.80 3.28 10.49 4.25 
indexed 3.18 0.49 2.01 3.23 0.99 0.81 0.75 1.51 
stack 15.05 26.58 20.72 11.42 20.10 22.29 21.04 19.43 

This brings us to a final investigation of the frequencies of the various displacement sizes. 
The NS architecture provides sizes of 1, 2, or 4 bytes. The length is not dictated by the 
operator code, but instead is encoded in the displacement value itself. This is a desirable 
solution also from the point of view of code generation. As expected, the l-byte 
displacements dominate strongly. 

Module M2S M3TN M3RN M3CN M3EN M3HN M3PN Total 

no of disp 941 787 1979 1568 4160 1768 3808 15011 

byte 50.37 79.16 59.47 78.51 74.50 78.22 70.14 71.00 
word 45.59 20.71 40.47 18.18 23.73 21.72 28.94 27.65 
double 4.04 0.13 0.05 3.32 1. 78 0.06 0.92 1.35 

bytes/disp 1.58 1.21 1.41 1. 28 1. 29 1.22 1.32 1.32 

The frequency of instructions classified according to their length for the MC code is 
shown in the following table. These values hold for all compiler modules combined, and the 
avaerage instruction length is 3.46 bytes per instruction. 

I-word 35.09% 
2-word 57.36 
3-word 6.85 
4-word 0.70 

The distribution of addressing modes indicates a dominance of register addressing with 
an offset. As in the tables above, PC relative addressing is not counted, as it is not being 
used for data access. 

Addressing modes: 
Ddirect 
A direct 
A Indirect 
A Ind postlncrement 
A Ind predecrement 
A Ind displacement 
A Ind Index 
Immediate 

12.72% 
24.58 
5.67 
5.62 
12.12 
30.20 
0.49 
8.53 

An analysis of displacement sizes is only of academic interest, since there is only one size. 
However, it is noteworthy that 94% of all displacement values could be places into a single 
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byte instead of a 16-bit word. 

Conclusions 

The NS and Me architectures have been compared with the Lilith architecture as a 
prototype of a regular, stack-oriented design. The increased complexity of their resources, 
instruction sets, and addressing modes fails to lead to a simpler, but rather requires a more 
complicated compiler. Regrettably, it also results in longer and often less efficient code. In 
the average, code for the NS is about 50% longer, code for the Me 130% longer than that for 
Lilith. Among the commercial products, this puts NS far ahead of Me. An improvement 
could be obtained only by substantial efforts for code "optimization", at the expense of 
much more complex compilers. 

Although the two investigated microprocessors are by far the best architectures widely 
available, these Jesuits suggest that they also leave room for improvement. Among the two 
the NS yields markedly better results, particularly when judged by the compiler designer. In 
the author's oppinion, both designs could have avoided some serious miscalculations, iftheir 
compilers (for some high-level language) had been implemented be/ore the deSigns of the 
processors were fixed. 

The analysis presented here reveals the two main pinpointable causes of the low code 
density as being 

1. the lack of short (less than 1 byte) address or operand fields, and 
2. the use of explicitly addressed registers for intermediate results. 

The principal underlying syndrome, however, is a misguided belief in complexity as a 
way towards better performance. Both the NS and Me architectures are marred by too 
baroque instruction sets and addressing modes. Obviously, they are compromises trying to 
satisfY many uncoordinated, imagined requirements, and results of an unbounded belief in 
the possibilities of VLSI. But not everything that can be done should be done. 

This critizism appears to point in the direction of architectures featuring a simple 
structure, a small set of simple instructions, and only a few basic addressing modes. Such 
designs have become known as RISe architectures [2]. One should be cautious, however, 
not to rush from one extreme into the other. In fact, recent RIse schemes propose facilities 
- such as a register bank effectively implying a two-level store - which require complicated 
code generation algorithms to achieve optimal performance. Once again, the deSigners are 
primarily, if not exclusively, concerned with speed. But there is no reason why features 
could not be added to a design that cater to specific, genuine problems posed by the 
implementation of high-level languages. Under no circumstances, however, should such 
additions involve a complicated mechanism, or infringe on the regular structure of the 
existing scheme. Regularity of design emerges as the key. Features must solve problems, not 
create them. In order to promise genuine progress, the acronym RISe should stand for 
Regular (not Reduced) instruction set computers! 
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Regularity alone, however, is not sufficient. It must be accompanied by completeness. 
The instruction set must closely mirror the complete set of basic operators available in the 
language. In this respect the NS architecture represents a significant improvement over 
earlier products, whereas the MC design gives rise to innumerable grievances and is ill suited 
for effective compiler design. We emphasize that regularity and completeness have been 
pivotal concepts in mathematics for centuries. It is high time that they be recognized by 
engineers designing mathematical machines. 

This analysis perhaps gave the expression of predominant concern with code density and 
code efficiency. But there is a much more profound reason to strive for regularity of design 
than efficiency. It is reliability. Reliability unquestionably becomes a victim whenever 
unnecessary complexity creeps in. Unreliability grows at least proportionally to the 
complexity of a device's specification, let alone its implementation. This "law" applies 
equally well to hardware as to software. 

Reliability (and not convenience of programming) had also been the primary motivation 
behind the development of high-level, structured languages. They are supposed to provide 
suitable abstractions to formulate data definitions and algorithms in forms amenable to 
preCise, mathematical reasoning. But these abstractions are useless unless they are properly 
supported by a correct, "water-tight" implementation. This postulate implies that all 
violations of the axioms governing an abstraction must be detected and reported. Checks 
against violations must be performed by the compiler whenever possible, and otherwise by 
additional instructions interpreted at run-time. It is therefore a primary characteristic of 
architectures deSigned for high-level languages that they support these abstractions by 
suitable facilities and efficient instructions in order to make the "overhead" minimal. 

The consistent support of such checking is perhaps the most commendable characteristic 
of Lilith. The following violations lead to immediate termination of a computation: 

1. Access to an array with an invalid index. 
2. Access to a variable via a pointer variable with value NIL. 
3. Overflow in integer, cardinal, and real number arithmetic. 
4. Selection of an invalid case in a case statement. 
5. Lack of data space on procedure call (stack overflow). 

All these violations except the first are detected without the need for additional 
instructions. The checks are built into the address computation, arithmetic, case selection, 
and procedure entry instructions. Index values are validated by additional instructions 
inserted before the address calculation. These features - above anything else - have 
characterised Lilith as high-level language oriented. During five years of intensive use they 
have proven to be not only most valuable, but indispensible, and they have made possible a 
truly effective environment for program development. Protecting the validity of a 
language's abstractions is not a luxury, but a necessity. It is as vital to inspire confidence in a 
system as is the correctness of its arithmetic and its memory access. A processor must be 
designed such that the "overhead" caused by the guards is unnoticeable. 
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By these standards, both the NS and MC architectures can be called at best 
"half-heartedly high-level language oriented". But this already represents a tremendous 
improvement over all earlier commercial processor designs! Both processors feature 
convenient index bound checks. But unfortunately tests for invalid access via NIL values, or 
for stack overflow are available only at the cost of cumbersome instruction sequences which 
most programmers - too confident in their art - are unwilling to accept. Even tests for 
arithmetic overflow require additional instructions. It is simply incomprehensible that 
instructions specifically deSigned for reserving space for local variables upon procedure 
entry can be deSigned without the inclusion of a limit check. 

The neglect of such essential properties is even harder to comprehend considering the 
sizeable efforts made towards easing other supposed problems. An example is the 
elimination of the requirement for address alignment. (A datum is said to be aligned, if its 
address a is a multiple of the computer's wordlength). A good compiler will align data even 
if the processor does not require this, thereby avoiding unnecessary memory accesses. The 
complex mechanism to handle non-aligned data will therefore rest unused all the time, 
whereas badly needed tests have to be implemented by additional, explicit instructions. 
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ABSTRACT 

An approach is presented to increasing the reliability of future high
end systems beyond what is possible with technological solutions alone. 
The system consists of computation nodes and communication nodes, 
interconnected by high-speed dedicated links. These components are relied 
upon to detect errors while system level protocols are used for error 
recovery and reconfiguration. The use of duplication and matching for 
implementing the self-checking nodes allows us to restrict a detailed 
analysis of the impact of all possible faults to the comparator, a circuit 
that can be implemented in a relatively straight-forward way in NMOS or 
CMOS technology. 

1. INTRODUCTION 
Certain computational problems such as weather forecasting, simulations of 

complex systems, or design optimizations, exceed the capabilities of current com
puters. They require a substantial increase in compute power and, since such 
computations may run for an extended amount of time, improved systems reliabil
ity. There are fundamental limitations to the gains in reliability and performance 
that can be obtained from advancing technology alone. A more important contri
bution will have to come from organizational improvements in such computing 
systems: performance can be enhanced by exploiting parallelism, while the limits 
on reliability can be overcome using fault tolerance techniques. 

If the computational problem can be subdivided into a sufficient number of 
simultaneously executing tasks, then this inherent parallelism of the problem can 
be used to achieve high performance by a system that comprises many computa
tional nodes. A possible systems architecture that is compatible with the con
straints of VLSI interconnects these computation nodes using high-speed dedicated 
links, and communication nodes which provide hardware support for communica
tion functions such as message routing.23 Computation nodes my consist of a sin
gle processor chip and several memory chips surrounded with the associated glue 

* Now with the Computer Science Dept., University or Calirornia, Los Angeles, CA 90024. 
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logic, forming a powerful self-contained computer. The communication node has 
several ports through which it is connected to computation nodes and other com
munication nodes. Such a system is called a multicomputer. Ideally, the two 
types of nodes and the links between them are building blocks that can be used to 
construct multicomputers with a wide range of organizations and performance. 

COMMUNICATIONS NODES: ® PROCESSOR NODES: 0 A. ~ 
Figure 1: Conceptual View of a AJulticomputer. 

When the behavior of a system deviates from its specification at the interface 
with the "outside" world, we say a 8y.~tem failure 1 has occurred. System failure 
is often the result of a failure of one of its components. However the failure of a 
component does not necessarily imply that a system failure must occur. The sys
tem is fault-tolerant if it can eontinue operating correctly despite the failure of 
some of its components. Various techniques can be employed to provide fault 
tolerance at the different levels of the system hierarchy. 

A multicomputer is particularly well suited for reliability enhancement using 
fault tolerance techniques since it is naturally divided into fairly independent 
modules of substantial "intelligence" - the above mentioned nodes. Fault-free 
components can adjust their behavior to the changes in faulty components and 
continue their operation in such a way that the overall output of the system 
remains correct despite the occurrence of a fault. 

The design of a VLSI chip or of a multicomputer system is in itself a very 
hard task. Adding the extra demands of fault tolerance may just make this task 
unmanageable, unless we simplify the task by using principles of regularity and 
repetition. Using the multicomputer system as an example, it will be demon
strated how the concerns of fault tolerance can be concentrated on a few critical 
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components, and how, by a suitable modular approach, the whole system can 
become fault tolerant, without undue penalty to either system design time or sys
tem performance. 

2. FAULT TOLERANCE 
The reliability of any system can be enhanced by increasing the reliability of 

its components through fault prevention 1 techniques, such as specialized design 
methodologies, stringent quality control, and extensive validation and testing. 
These techniques typically result in more complex designs,S greater cost, and 
lower performance.20 Furthermore, the effectiveness of these techniques is limited 
by our inability to exhaustively test complex VLSI chips.19 

The reliability of components can also be increased by employing fault toler
ance techniques at the component level. These techniques attempt to ensure that 
each component will continue to perform according to its specifications despite 
the failure of its subcomponents. Unfortunately, no component can tolerate an 
unbounded number of faults. Thus, the system must be able to handle com
ponent failure. The contamination of the system by incorrect output from a 
faulty component can be prevented only if, at some stage, other system com
ponents find out about the failure of the component and physically or logically 
isolate it from the rest of the system. 

IC a node fails due to a transient fault, it need not be removed from the sys
tem, but rather should be reset to a proper state, and then continue to be a useful 
part of the system. If the failure is detected by a neighboring node, then this 
node must have the authority to initiate some action that might eventually lead 
to a resetting of the node. However, the same authority also gives a failed node 
the potential to invoke the resetting of an operational neighbor, so that a single 
node failure could result in a total system failure. To prevent this undesirable 
situation, each node must be responsible for its own reset. Hence the node should 
include a mechanism to detect its own erroneous states and to initiate a reset. 

System level fault tolerance techniques need not rely on the components to 
report faults themselves. Instead, system level protocols could be used for detec
tion and recovery from the component failure. For example, each task may be 
performed in parallel on three nodes and a "majority vote" taken on the results. 
Such a system with triple modular redundancy30,32 can continue to produce the 
correct output even if one of the nodes fails. The effectiveness of this approach is 
limited by the fact that after a single fault, a node may loose its ability to tolerate 
any additional faults. While the scheme does not make any assumptions about 
the nature of the individual subcomponents, it requires the system level protocols 
to ensure that the parallel task execute on different nodes and that the messages 
between themselves and the initiation node travel via independent paths. Hence 
this method leads to very high overhead in the use of the computation nodes as 
well as in message traffic. Additional problems concern locating failed com
ponents and effective handling of transient faults. 
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Many of the deficiencies of fault tolerance techniques that rely only on 
hardware or only on system-level protocols can be overcome by using a combina
tion of hardware error detection in self-checking components and system-level 
protocols that perform error recovery and fault treatment. Errors caused by 
faults in the communication links are detected through the use of error-detecting 
codes. All nodes are self-checking and signal to the rest of the system when their 
output is incorrect. In addition, failed nodes attempt to reset themselves and 
reestablish a sane state. The immediate neighbors are informed whenever a node 
fails. If the node does not reset itself or fails too often, the neighbors can logically 
remove it from the system by refusing to communicate with it. The diagnostic 
status information is distributed throughout the system so that, eventually, no 
fault free node will attempt to use the faulty component. 

On top of the self-checking hardware there is a low-overhead, application
transparent, distributed error recovery scheme. It involves periodic checkpointing 
of the entire system state and rolling back to the last checkpoint when an error is 
detected (Section 7). 

3. SELF-CHECKING NODES 

For all likely faults, a self-checking component must either produce the 
"correct" output (according to its specifications) or somehow indicate that its out
put is incorrect. A component that satisfies this requirement is said to be fault 
secure. 22 If the component does not produce an error indication immediately fol
lowing the first fault, it is possible for several faults to exist in the component 
simultaneously without any indication to the rest of the system. Even if the com
ponent is fault secure with respect to any single fault, several faults together may 
lead to the failure of the self-check mechanism and, eventually, to incorrect out
put from the component. In order to prevent this situation, the component must 
also be self-testing. 22 In the presence of one or more faults, a self-testing com
ponent is guaranteed to produce an error indication before additional faults can 
occur that may lead to the failure of the self-check mechanism. Components 
which are fault-secure as well as self-testing are said to be totally self-checking22 

(T8C). 

Error detecting or correcting codes can be used to implement TSC nodes. 
Redundant information is carried by busses, memories, and registers in order to 
detect (and possibly correct) errors.22 Unfortunately, different coding schemes 
must be used for different parts of the node. This increases the complexity of the 
design task and makes design verification and testing more difficult. As a result, 
failure modes that are harder to predict and "tolerate" are more likely to occur. 

An alternative is to construct the TSC computation or communication node 
using two identical, independent modules, each performing the function of the 
node. Inputs from neighbor nodes are fed to both modules. Except for the, hope
fully nearly-impossible, case where both modules produce identical incorrect out
put (Section 6), if the modules operate synchronously, errors can be detected by 
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simple comparison of the outputs of the modules. The comparator that performs 
this function is part of the node, and its output is connected to neighboring nodes 
through dedicated wires. The output from one of the two modules is the "func
tional" output from the node (Fig. 2). A "no-match" signa.l from the comparator 
is used locally as a reset signal and is also sent to all neighbors as a failure indica
tor. Similar failure indicators from the neighbors cause an interrupt and invoke 
system-level routines that handle the node failure. 

SELF-CHECK] G 
SELF-RESElTlNG 
COMPUTATION 
NODE 

SELF-CHECKlNG 
SELF-RESElTING 
COMMUNICATION 
NODE 

Figure 2: Self-Checking Nodes for Multicomputers 

Implementing the TSC property in a component using duplication and com
parison may appear wasteful since it more than doubles the required hardware. 
'However, this scheme becomes more attractive when issues such as design com
plexity, fault coverage, reliability prediction, and the ability to recover from tran
sient faults are taken into account. 

Traditional fault models are not adequate for VLSl.lO, 29 As a result, low-cost 
error detection schemes, that are based on these models, may no longer be suffi
cient. With duplication and compa.rison, errors are detected as long as the 
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comparator remains functional and the two modules produce diCCerentoutputs the 
Cirst time one or both oC them Cail. Since a Caulty comparator can mask Caulty 
functional modules, faults in the comparator must not go undetected, i.e., the 
comparator must be self-testing .. Thus a detailed analysis oC the efCects oC all 
likely Caults on the comparator is required. 

4. DEFECTS AND FAULTS IN VLSI 

The design of self-checking circuits requires an understanding oC the physical 
deCects that commonly occur in VLSI and oC the resulting logical Caults. In the 
past the stuck-at Cault model has been w,idely used to model, at the logical level, 
the effects of physical deCects in circuits. This model does not cover many of the 
possible defects in VLSI.7, 10,29 The Cabrication flaws and physical processes that 
can cause malfunction of NMOS and CMOS VLSr circuits are summarized in this 
s('ction. 

VLSI chip failures may be caused by design or fabrication flaws, may be due 
entirely to environmental factors, or are the end result of a degenerative process 
invoked by operational and environmental stresses but often attributable to 
design or manufacturing flaws.!),22 Fabrication defects in MOS chips consist 
mainly of ' shorts and opens in each interconnection level, (metallization, difCusion, 
and poly-silicon), shorts between different levels, and large imperfections such as 
scratches across the c hip.1O Other fabrication defects include incorrect dosage oC 
ion implants, contact windows that fail to open, misplaced or defective bonds, and 
penetration of the package by humidity and other contaminants.9 During the 
operation of the chip, faults may be caused by electromigration, corrosion, electri
cal breakdown of oxide, cracks due to thermal expansion, power supply fluctua
tion, and ionizing or electromagnetic radiation.!) 

At the logical level, most oC the faults can be represented in a circuit model 
consisting of switches, loads (for l\i'MOS), and interconnection lines that directly 
correspond to the transistors and interconnections in the actual circuit. lO Most of 
the physical defects, such as opens and shorts, can be represented in this model in 
an obvious way.7 A "switch" may be permanently on or permanently off, 
corresponding to a gate input stuck-at-I or stuck-at-O, respectively. Shorted 
NMOS loads (pullups) are equivalent to an output line s-a-1. Disconnected gate 
inputs are usually equivalent to s-a-O or s-a-I faults. 

Some physical defects have a more complex effect on the circuit. In NMOS, 
incorrect dosage oC ion implants may cause a threshold shiCt in a load transistor. 
This can result in an output voltage that lies between the voltages assigned to 
logic 0 and logic 1. If the fanout Crom the gate is greater than one, some oC the 
gates connected to its output may "interpret" it as logic 1 while others will inter
pret it as logic O. If, at some point in time (clock cycle), the line is supposed to be 
a logic 1 but is interpreted by some of the gates as logic 0, we call it a weak 1 
Cault. Conversely, iC the line is supposed to be a logic 0 but is interpreted by some 
of the gates as logic 1, we call it a weak 0 fault. A single physical defect, resulting 
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in a single weak 0 or weak 1 Cault, has the same eCCect as multiple s-a-l or s-a-O 
Caults, respectively. 

In CMOS, a transistor which is permanently ocr or a break in a line can 
result in a high impedance state where the output of a combinational logic gate is 
dependent on the previous output rather than the current input.29 Such a Cault 
(called a stuck-open Cault) may escape detection eveniC all possible input vectors 
are used to test the circuit.29 

6. SELF-TESTING COMPARATORS IN VLSI 
The duplication and matching scheme relies entirely on a self-testing com

parator to detect Caults in the Cunctional modules. Implementing such a compara
tor requires knowledge oC how diCCerent Caults will aCCect the circuit. Fortunately, 
a comparator is a simple circuit that can be implemented with a regular structure 
and is therefore amenahle to thorough analysis. Hence, we can have confidence in 
our ability to predict the likely physical deCects,. develop a valid Cault model, and 
prove that the implementation we propose is indeed self-testing. 

We assume that physical deCects in the node occur one at a time. A fault 
that is the result oC a single physical deCect is called a single fault. It is assumed 
that there is a negligible probability that the time interval between the occurrence 
oC successive single defects in the comparator or between a single deCect in the 
comparator and an arbitrary collection of deCects in the functional modules, is less 
then some value T. In order to ensure that Caults in the comparator will not mask 
Cuture Caults in the Cunctional units, during normal operation, the comparator 
must "test itself" Cor any single Cault in less than time T. 

6.1. Single Stuck-At Faults 

As a first step to constructing a comparator which is self-testing with respect 
to any single Cault, we will discuss the implementation of a comparator which is 
self-testing with respect to any single stuck-at Cault. 

In this context "two-rail" codes prove useCul. They consist oC all words (bit 
vectors) such that a speciCied half of the word is the complement oC the other half. 
If. the output oC one of the modules in a self-checking node is complemented, a 
two-rail code checker can serve as a "comparator" that checks the validity oC the 
output (Fig. 3). Such a code checker, which is self-testing with respect to any sin
gle stuck-at Cault, can be implemented as a two level NOR-NOR PLA (Fig. 4).6,31 
The output Crom the checker is a two-bit two-rail code that is 01 or 10 (code out
put) if the input is a two-rail code word (code input), and 00 or 11 (noncode out
put) otherwise (noncode input). It can be shown that iC any single stuck-at Cault 
exists in the checker, there is a two-rail code input word that results in a 00 or 11 
output, thereby "detecting" the Cault.31 

The requirement that the checker must be selC-testing with respect to any 
single stuck-at Cault poses severe constraints on its implementation. It can be 
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Figure 3: Self-Testing Two-Rail Code Checker 
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Product Term Line 
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Figure 4: NMOS Implementation of Code Checker 

shown that any two level AND-OR (or NOR-NOR) implementation for an input 
of 2n bits (n bits (rom each module) must use 2ft product terms, one (or each 
code input.28 If the output from each module is, say, 16 bits, this implementation 
is impractical since it requires 21ft = 65536 product terms. Furthermore, all possi
ble (2ft) code words must appear at the checker's inputs (or it to perform a com
plete self-test. 

Several small self-testing two-rail code checkers can be used as "cells" for 
constructing a self-testing checker for a wide input word (Fig. 5).12,22 While the 
self-testing property is preserved, the number of input patterns required (or a 
complete self-test is dependent only on the size of the largest "cell" .12 
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Figure 5: A Self-Testing Two-Rail Code Checker Tree 

5.2. Other Single Faults 

The faults that commonly occur in aMOS PLA are stuck-at faults, shorts 
between adjacent lines, breaks in lines, and contact Caults that include missing or 
extra devices at crosspoints. 13•31 In addition, weak 0/1 faults can occur on the 
input or product term lines. Fortunately, it turns out that the straightforward 
NOR-NOR PLA implementat.ion of the checker discussed above is self-testing 
with respect to anyone oC the aCorementioned single Caults. The rest oC this sec
tion contains an inCormal "proof" of this claim; a more Cormal proof can be found 
elsewhere.28 Faults in the input lines, product term lines, output lines, AND array 
crosspoints, and OR array crosspoints, are considered separately. 

Any single stuck-at fault or short in the input lines will cause one or more O's 
to change to l's or one or more l's to change to O's (but not both) Cor some code 
input. It can be shown that such an error (called a unidirectional error13 ) on the 
input lines results in noncode output.31 The eCCect oC a break in an input line 
depends on its location. A break in the input line outside the AND array is 
equivalent to the line stuck-at-O or stuck-at-l. A break in the middle of the AT\lJ) 
array affects only some product terms. For an affected product term, if the break 
is equivalent to a stuck-at-1, the one code input that is supposed to select this 
product. term won't, and a noncode output will result. If the break is equivalent 
to a stuck-at-O, there exists a code input that results in a noncode output since it 
seleet.s two product term lines each DC which is connected to a diCferent output 
line. 28 

An extra device in the AND array is equivalent to the corresponding product 
term stuck-at-O. The code input that is supposed to select that product term 
results in a non code output. If there is a missing device in the AND array, there 
exists a code input that produces a noncode output since it selects two product 
term lines, each oC which is connected to a different output line. 28 

An extra device in the OR array means that one oC the product terms is con
nected to both outputs. A missing device in the OR array is equivalent to the 
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corresponding product term stuck-at-O. In either case, the code input that selects 
the relevant product term will result in a noncode output. 

If the output lines are shorted, their values are equal and that is a non code 
output. IC one oC the lines has a stuck-at Cault, there exists a code input that 
causes the other line to have the same value, so the output is noncode. For some 
code input, a break in one oC the output lines is equivalent to a stuck-at-l or 
stuck-at-O Cault on that line. 

A stuck-at-O Cault on a product term line will result in a noncode output if 
the input is the code word that is supposed to select that product term line. A 
stuck-at-l Cault on a product term line will result in a noncode output to any 
input that selects a product term line that is connected to the other output line. 
A break in a product term line is equivalent to a stuck-at Cault on that line since 
each product term line is connected to only one output line. A short between two 
product term lines will result in a noncode output iC the input selects either one oC 
these lines.28 

Product term lines are not susceptible to weak 0/1 Caults since each product 
term line is connected to only one output line (Canout of one) so that a weak 0/1 
fault is equivalent to a single stuck-at fault. Input lines have a Canout greater 
than one and are thus susceptible to weak 0/1 Caults. A weak 1 Cault on an input 
line is equivalent to one or more missing devices in the AND array. Each product 
term that is connected to a "missing device" will be selected by an input code 
word that also selects a product term line that is connected to the other output 
line.28 Thus, a noncode output will result. A weak 0 fault on an input line is 
equivalent to one or more product term lines which are stuck-at-O. Any code 
input that is supposed to selett one of these product terms will result in a noncode 
output. 

In CMOS chips, PLAs are usually implemented in dynamic "pseudo 
NMOS".29 All product term and output lines are precharged during every clock 
cycle beCore being selectively discharged according to the input. ThereCore, no 
stat(' is preserved Crom one cycle to the next, and the circuit is combinational 
despite any opens in the precharge or discharge paths.28 Hence the PLA used in 
CMOS chips is only susceptible to the same Caults as the traditional static PLA 
used in NMOS chips. 

This analysis shows that Cor all single faults in our Cault model, there exists a 
code input that results in a noncode output Crom the proposed two-rail code 
checker PLA. Thus, the checker is self-testing with respect to any likely single 
Cault. Based on this result, it can be shown that the checker constructed as a tree 
oC smaller self-testing check('rs (Fig. 3) is also self-testing with respect to any 
likely single Cault.28 
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6. IMPLEMENTATION ISSUES 

The key to the fault tolerance technique presented in the previous chapters is 
the use of self-checking nodes implemented with duplication and comparison. As 
discussed in Section 3, one of the potential weaknesses of duplication and com
parison is that if the two functional modules fail simultaneously in exactly the 
same way, the failure is not detected, and incorrect results are accepted as correct 
by the rest of the system. Thus we have to look at the causes of such common 
mode failures and at techniques for reducing their probability of occurrence. 
While it is not possible to entirely eliminated common mode failures, there are 
some practical implementation techniques for reducing the probability of these 
failures in the context of commonly used NMOS and CMOS circuits. 

Common mode failures (henceforth, CMFs) may be caused by environmen
tal factors such as power supply fluctuations, pulses of electromagnetic fields, or 
bursts of cosmic radiation, affecting both modules at the same time, triggering 
similar design weaknesses, and causing simultaneous identical failures of both 
modules. If the two modules to be matched are physical duplicates, then design 
weaknesses are a particular worrisome source of CMFs. Any pattern-sensitive 
marginal performance is likely to trigger the same erroneous output in both 
modules. Simultaneous module failures may also be caused by faults that occur at 
different times in parts of the modules that suffer from identical design 
weaknesses and are exercised only rarely. 

Advancing VLSI technology will soon make it possible to implement an entire 
self-checking module, such as a computat.ion or communication node in a multi
computer, on a single chip. This would provide nice logical building blocks25 for 
the construction of powerful and reliable computer systems. Furthermore, such 
chips offer some advantages in production testing. Simplification of testing is 
achieved by eliminating the need to store the correct responses to long test 
sequences and compare them with the actual responses of the chip during testing. 
Testing. can proceed at the normal system clock rate, and only the outputs of the 
comparator need to be monitored. However, the danger of CMFs masking design 
flaws may prohibit this approach for the case where the two modules are copies of 
the same physical design. 

Unfortunately, if the two functional modules (and the comparator) are fabri
cated on the same chip, the probability of CMFs during normal operation is 
greater than if they are on separate chips. This increased probability of CMFs is 
due to the tighter electrical and physical coupling between the two modules and 
to similar weaknesses in the two modules that may be caused by fabrication flaws 
specific to the wafer containing the chip. Thus, having physical copies on the 
same chip enhances the possibility of CMFs to the point where it might defeat the 
overall purpose of fault tolerance. One must therefore consider to create different 
modules with the same desired behavior but with independent failure modes. 

As noted in Section 3, one of the benefits of using duplication and 
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comparison for self-checking subsystems is that relatively little extra design effort 
is required to implement the self-checking property. Creating two different imple
mentations for every function clearly violates this goal. The question thus arises, 
how little extra effort is required to create two modules with the same function 
but with different enough implementation to reduce the chance of CMFs to an 
insignificant level. 

How the two modules should differ to achieve independent failure modes 
depends on the implementation technology. In the following, approaches are out
lined that are suitable for NMOS and CMOS VLSI. 

6.1. Dual Implementations 

For every combinational Boolean function /(x) = /(%1,%2, ... ,%n) there is a 
corresponding dual function g such that g(x) = J(z) for every x. In the circuits 
c, and c. that implement th{' functions / and g, respectiv{'ly, voltage levels 
represent the logic values. If the circuits are implemented using positive-logic, the 
"high" voltage level represents a logic 1 and the "low" level represents a logic O. 
Because of the above relationship between the functions / and g, C. is a negative
logic implementation of the function /, and c, is a negative-logic implementation 
of the function g. The circuits c, and c. are said to be dual implementations of 
the function /, and c, and c. are said to be dual circuits. 

Dual implem{'ntations of arbitrarily complex sequential logic circuits are also 
possible. If the inputs to the negative-logic implementation are complements of 
the inputs to the positive-logic implementation, the corresponding outputs from 
the two implementations are complements of each other. 

Sedmak and Liebergot21 have suggested that the probability of CMFs in a 
srlf-checking functional block can be reduced by using dual modules rather than 
pairs of identical modules. To make use of dual modules, the inputs to the self
checking block are passed unmodified to the positive-logic module (henceforth 
called the P-module), and are complemented for the negative-logic module (N
module). If the two modules are operating correctly, their outputs are comple
ments of each other and can be "compared" using a two-rail code checker6 (see 
Fig. 6). 

There are some immediate advantages to the use of dual modules. The 
difference in the two modul('s forces the use of different masks, and thus it is not 
possible that a pattern defect gives rise to identical behavioral problems in both 
modules. Since one module is a negative-logic version of the other, electromag
netic pulses or noise on the power line will almost certainly produce different 
effects in the two modules. Finally, crosstalk problems within a module itself will 
typically appear at different times in the two modules because the sensitivity to 
electrical pickup at a particular circuit node is sensitive to the polarity of the vol
tage transition, and with dual circuits, the voltage transitions on corresponding 
lines in the two modules are in opposite directions. 
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Figure 6: Self-Checking Block Based 011 Dual Modules 

In S8I technology, the realization of a dual circuit is relatively straight
forward; the negative-logic module can readily be derived from the positive-logic 
module by a simple one-ta-one replacement of gates and flip flops by their 
negative-logic equivalents. In VLSI technology, the implementation of dual cir
cuits is more problematic since it is not possible to convert an existing positive
logic chip to negative-logic by a simple replacement of standard building blocks. 
Even the replacement of NOR gates with NAND gates is difficult. First, the dif
ferent gates have different cell topologies and sizes, and the layout of the entire 
chip may have to be modified in order to accommodate the replacement gates. 
Second, the fan-in capability of the two gates may be different for example, in 
NMOS, it is possible to implement a NOR gate with a large number of inputs 
while NAND gates are limited to about four inputs. Finally, practical circuits are 
often not simply a collection of standard logic gates; they may contain transmis
sion gates, precharged busses, register files, PLAs, dynamic logic subcircuits, etc. 
For some technologies, converting such circuits to negative-logic may require sig
nificantly more area and/or result in lower performance. 

Thus, a practical conversion does not necessarily involve converting the 
entire module at the lowest level (i.e., individual FETs) to negative-logic. It may 
be preferable to design the N-module so that some of the subcircuits in the 
P-module have direct negative-logic equivalents in the N-module while other sub
circuits are used unmodified in the N-module. The only critical requirement is 
that the N-module "behave" as the negative-logic equivalent of the P-module at 
the interface to the N-module. 

6.2. Partial Conversions 

Standard NMOS circuits are fundamentally asymmetrical. The available 
devices are enhancement mode transistors (EFETs) and depletion mode transistors 
(DFETs). There is no device that can perform the dual function of the EFET, 
i.e., be turned on by a low gate voltage and off by a high gate voltage. These 
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constraints prevent a simple conversion of many common NMOS subcircuits into 
negative-logic. A more practical approach is to selectively convert only some of 
the circuits and keep others unchanged. If this is done judiciously, the sensitivity 
of the system can still be strongly reduced.26 

Tamir proposes an approach28 in which the N-module essentially stores and 
transfers all data in negated form, but where processing and control is done by 
positive-logic subcircuits. This approach avoids many problems with the conver
sion of control circuits: busses, multiplexers, and latches are not modified, and the 
transmission gates and pull-down transistors in them are controlled with signals of 
the same polarity in both modules. 

Even though there are a lot of similarities between the two implementations 
of the modules, the probability of CMFs is greatly reduced. Shorts between data 
lines carrying complementary values usually pull both lines to the low voltage. 
Thus, both lines in the P-module change to logic 0 while similarly shorted lines in 
the N-module change to logic 1. Busses that fail to precharge in both modules 
will be interpreted as all zeroes in the P-module and all ones in the N-module. If 
timing is not properly designed and there is insufficient time to drive the bus from 
one of its sources, different lines on the bus will be affected (the ones that must be 
discharged), and the failure will be detected. The extra design effort with this 
approach is quite moderate. 

CMOS tcehnology offers switches of both polarities. Specifically, it can be 
shown that a positive-logic, ratioless CMOS circuit can be converted to a 
negative-logic circuit by simply replacing all NFETs with· PFETs, replacing all 
PFETs with NFETs, connecting all VDD lines to ground, and connecting all ground 
lines to VDD • It thus appears that it should be simple to convert a P-module to 
negative logic. 

Unfortunately, due to the different. mobilities of the majority carriers in 
NFETs and PFETs, these devices are not completely symmetrical. The W /L 
ratio of a PFET has to be approximately twice the W /L ratio of anNFET in 
order to achieve similar drive capability. Therefore, a typical CMOS processor 
may employ many more NFETs than PFETs. In order to maintain similar perfor
manee and module area, the P-module cannot be converted to an N-module by 
simply complementing all FETs, and the difficulties in achieving an efficient 
conversion are often similar to the diCCiculties encountered for NMOS circuits. 
Thus, similar solutions and considerations apply, on the other hand, the availabil
ity of PFETs can simplify the conversion.26 

6.3. Two Independent Implementations 

Modules that are independently developed from the same specifications by 
two separate teams, are likely to fail in different ways. This approach is normally 
impractical because of the increased design costs. However, this situation may 
change for· two reasons. 
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The generic modules needed to build VLSI multicomputers may become so 
popular, that different companies will develop the same product. Two modules 
fabricated by different companies can then be used to build self-checking nodes. 
Platteter14 utilized this idea in constructing a fault-tolerant processor from three 
functionally identical microprocessors manufactured by different companies. 

The other avenue to obtaining different implementations for a functional 
module2 will come from the emergence of "silicon compilers". Before too long, 
design systems will get powerful enough to produce competitive macro modules or 
even whole chips in a fully automatic manner. The same set of specifications can 
then be run through two different compilers, or through the same compiler but 
with additional constraints that force two different implementations. At this 
stage most of the design effort will go into producing a full and unambiguous set 
of specifications. Once these specifications exist, obtaining different versions of 
the same module is only a matter of a few extra hours on a fast computer. 

7. SYSTEM LEVEL PROTOCOLS 

The internal state of a system is the ordered set of the external states (set of 
output values) of all of its components.} When a component fails, its external 
state is erroneous. Thus, component failure implies an erroneous internal system 
state. and an erroneous internal state can lead to system failure, i.e., incorrect 
output. Special measures, beyond simply detecting the error, must be taken in 
order to prevent system failure. In particular, in order to recover from the error, 
a valid internal system state must be restored, and the system must then be 
reconfigured so that it will not continlle to use the faulty component. These 
actions require coordination between several (perhaps all) components. Hence, 
they involve system-level protocols. 

7.1. Error Recovery 

Most techniques for performing error recovery can be classified into two 
groups: 18 Forward error recovery techniques attempt to modify an erroneous sys
tem state so that it becomes a valid state. Backward error recovery techniques 
involve resetting (rolling back) the system to a previous valid state rather than 
trying to modify the current state. 

Forward error recovery techniques are based on anticipating the types of 
errors that may occur and devising specific techniques for handling those errors. 
These techniques often involve special actions by the application program running 
on the system. On the other hand, backward error recovery techniques can cope 
with unanticipated errors. These techniques involve periodically recording the 
state of the system. When an erroneous state is detected, it is abandoned, and 
the system is reset to the previously recorded error-free state, called a recovery 
point or a checkpoint. The process of creating a recovery point is called check
pointing. No matter what type of error occurs, as long as it can be detected, 
some valid system state can be reinstated. Hence, a backward error recovery 
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scheme can be totally independent of the application. 

Many error recovery schemes are designed for a system where all communica
tion is over a common bus or Ethernet.4.15 This allows the implementation of a 
"recording node" that keeps a record of all inter-node messages transmitted in the 
system15 and facilitates the implementation of an efficient atomic operation that 
transmits a message to a "primary" process and to its "backup" that resides on 
another node.4 

On a multicomputer, communication is point-to-point between nodes. In 
order to keep track of messages that are transmitted throughout the system, they 
must be explicitly forwarded to the "recording node"15 or to the "backup node".4 
This requires extra delays in processing: Before any action can be taken which 
counts on a message having been transmitted reliably, an acknowledgement from 
the destination and the backup node must be received. 

Barigazzi and Strigini propose an error recovery procedure that involves 
periodic saving of the state of each process by storing it both on the node where it 
is executing and on another backup node.3 The critical feature of this procedure is 
that all interacting processes are checkpointed together, so that their check
pointed states can be guaranteed to be consistent with each other. Therefore, the 
domino effect that may require backing up to successively older states18 cannot 
occur. As a result, it is sufficient to store only one "generation" of checkpoints. 

With the recovery scheme described in [31 a large percentage of the memory 
is used for backups rather than for active processes. The resulting increased pag
)ng activity leads to increases in the average memory access time and the load on 
the communication links. This load is increased further by the required ack
nowledgements of all messages and the transmission of redundant bits for error 
detection. The communication protocols, which are used to assure that the mes
snge "send" and "receive" operations are atomic, require additional memory and 
pro('e~siJlg resources for the kprIll'1. Thus, p<'fformance is significantly reduced 
relative to an identical system wlH're no error recovery is implemented. 

7.2. A Low-Overhead Error Recovery Scheme for Multicomputers 

As we described previously,27.28 the technique of simultaneously checkpoint
ing the state of all processes belonging to the same "task" can be taken a step 
further: simultaneous checkpointing of the complete state of all the user and sys
tem processes on the system. A new global checkpoint is periodically stored on 
disks. When an error is detected, diagnostic information is distributed throughout 
the system. Normal operation is resumed after all the operational nodes are set to 
a consistent system state using the last checkpoint. 

Creating and saving a global checkpoint is expensive; however, if the time 
between checkpoints is sufficiently large compared with the time it takes to estab
lish a new checkpoint, the net system overhead for error recovery is still small. 
With the proposed scheme, in a large multicomputer the expected time to 
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establish a new checkpoint is less than one minute. Thus, keeping the overhead 
low requires that a new checkpoint be established only once or twice an hour. It 
is clear that the loss of as much as an hour of processing when an error is detected 
is tolerable only for non-interactive applications. 

The details of the proposed scheme are described elsewhere27,28 and will not 
be repeated here. The technique consists of two major components: a scheme for 
saving a consistent global checkpoint of the entire system and a scheme for rolling 
back the system to a previously saved checkpoint once an error is detected. The 
technique relies heavily on the self-checking property of the nodes that ensures 
that faulty nodes are detected before erroneous information from them is allowed 
to spread throughout the system. As mentioned above, the technique is useful 
only for a system running non-interactive applications. 

The scheme for saving a consistent global checkpoint is an adaptation of the 
standard two-phase commit protocol used for preserving consistency in distributed 
data base systems. ll Initially, a designated node, say node 1, is assigned to serve 
as the coordinator for establishing global checkpoints. If the coordinator fails, all 
the other nodes are notified, and the next node, according to a total ordering 
betw('en the nodes, takes over the task of being check pointing coordinator. Every 
node includes a "timer" that can interrupt the node periodically. Check pointing 
i:, init.iated by the check pointing coordinator when it is interrupted by its timer.3 

The checkpointing coordinator initiates checkpointing by stopping all local 
normal processes and notifying all of its neighbors that checkpointing is in pro
gress. Each node in the system, in turn, repeats this process. Once all the neigh
bors are informed, each node begins to send its state to a node with a disk where 
the state is saved. When the entire state of the node is saved, the checkpointing 
coordinator is informed. After all the nodes have saved their states, the check
pointing coordinator directs the entire systcm to resume normal operation. 

Since the nodes are self-checking, the failure of a node is detected by its 
neighbors. The neighbors "spread the word" throughout the system, indicating 
which node has failed and that recovery is in progress. When a node with disk 
st.orage finds out that recovery is in progress, it b('gins sending the previously 
sav('c\ st.ate to all nodes that used it for check pointing. Each node that receives a 
complete previous state informs the coordinator. After all the nodes have 
obtained their previous states, the checkpointing coordinator directs the entire 
system to resume normal operation. 

It is possible to obtain a rough estimate of the overhead of the proposed sys
tem by making several specific assumptions about such system based on the 
intended application environment and on current and near-future technology. We 
base our assumptions on the use of the INMOS Transputer chip as the node.33 We 
assume a system with 1,000 nodes, each with 256,000 bytes of memory, connected 
in a network with a diameter of 15. With communication link bandwidth of 
1.5 X IOe bytes/second, check pointing or recovery are expected to take less than 20 
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seconds.27 If the system has a mean time between failures of 10 hours and a 
checkpoint is saved twice an hour, the total overhead for checkpointing and 
recovery will be approximately 3.7 percent. 

7.3. Reeonfiguration 

Following error recovery, it is easiest to resume normal system operation if 
no changes are made in the operation of the nodes or the interconnection between 
them. This is possible if the error was caused by a node that failed due to a tran
sient fault. Following recovery the node can resume its previous role in the sys
tem if it is capable of resetting itself to a "sane state" at the same time it informs 
the neighbors of the failure (see Section 2). However, if the node fails due to a 
permanent fault, the system must be capable of continuing normal operation 
without this node. 

One of the requirements for the interconnection topology of the system is 
that the failure of anyone node does not partition the system into two indepen
dent networks that cannot communicate. More generally, the maximum number 
of nodes that can fail without the possibility of partitioning the system, is a criti
cal parameter in determining system reliability. 

Nodes that fail due to permanent faults are effectively removed from the sys
tem. The algorithms used to route messages between nodes in the system must 
adapt to such changes in the topology of the system. If the system uses table
driven routing, the routing tables throughout the system must be updated follow
ing error recovery.5,24 If the system uses "algorithmic" routing that does not 
require routing tables, the interconnection topology must allow such routing even 
after some of the nodes are removed. 17 

If a node fails due to a permanent fault, processes that were executing on it 
must be moved to a different node and continue to execute there. Thus, following 
recovery, messages from proce~'ses that were communicating with processes on the 
failed node must somehow be redirected to the new node. This ability to tran
sparent.1y migrate processes between nodes is a critical requirement for the operat
ing system of a fault-tolerant multicomputer. Powell and Miller propose one pos
sible scheme for such process migration in multicomputers. 16 

8. CONCLUSIONS 

As the number of switching elements in a VLSI system starts to exceed a few 
hundred millions, the reliability and thus the fault-tolerance of the system must 
become a major concern. The design of a VLSI system is in itself a very hard 
task, and adding fault-tolerance may just make it unmanageable, unless we use 
the principles of regularity and repetition to simplify the task. 

At the example of a mUlticomputer system, consisting of hundreds or 
thousands of VLSI computation nodes interconnected by dedicated links, we have 
demonstrated how the concerns of fault-tolerance can be concentrated on a single 
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critical component, and how, by a suitable modular approach, the. whole system 
can become fault tolerant, without undue penalty to either system design time or 
system performance. The discussed scheme combines hardware that performs 
error detection with system-level protocols for error recovery and for fault treat
ment. 

We have shown that a high probability of error detection can be achieved 
with self-checking nodes implemented using duplication and comparison. These 
nodes use two modules that perform identical functions but are not susceptible to 
simultaneous identical failures. The output of these modules is compared in a 
self-t.esting code checker that has been thoroughly analyzed for all likely defects in 
present-day VLSI circuits. 

The proposed low-overhead, application-transparent error recovery scheme 
for the system involves periodic checkpointing of tbe entire system state using 
protocols that ensure that the saved states of all the nodes are consistent, and roI
ling back to the last checkpoint when an error is detected. No restrictions are 
placed on the actions of the application tasks, and the communication protocols 
used during normal computation are simpler than those required by most other 
schemes. A multicomputer system that follows the general principles outlined in 
this paper can provide a general-purpose, high-performance computing environ
ment in which the fault tolerance features are completely transparent to the user. 
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An IBM System/370 Design 

T. J. Kowalski 
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Murray Hill, New Jersey 07974 

ABSTRACT 

The Design Automation Assistant, OAA, is a knowledge-based 
expert-system that generates a technology-independent list of 
operators, registers, data paths and control signals from an algo
rithmic description of a VLSI system. This chapter shows the gen
erality of design knowledge in the OAA by comparing and con
trasting an IBM System/370 designed by an expert human 
designer, Claud Davis, against the design produced by the OAA. 
For each difference, possible changes in the CMU/OA system and 
the OAA are discussed. Davis himself felt the design produced by 
the OAA exhibited the quality he would expect from one of his 
better designers. 

INTRODUCfION 

Recent advances in integrated circuit fabrication technology have allowed larger 
and more complex designs to form complete systems I on single VLSI chips. These 
chips use one-micron to five-micron features to achieve complexities equivalent to 
100,000 to 250,000 transistors. This level of design complexity has created a com
binatorial explosion of details - a major limitation in realizing cost-effective, low
volume, special-purpose VLSI systems. To overcome this limitation, design tools 
and methodologies capable of automating more of the digital synthesis process must 
be built. 

We have been developing just such synthesis tools2• 3 at AT&T Bell Laboratories 
and Carnegie-Mellon University. These tools help the designer develop the algo
rithmic description of the system and interactively add the details required to pro
duce a finished design. This structured approach can decrease the time it takes to 
design a chip, automatically provide multi-level documentation for the finished 
design, and create reliable and testable designs. 

This chapter focuses on the synthesis, or allocation, of the implementation-design 
space as it advances from an algorithmic description of a VLSI system to a list of 
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technology-independent registers, operators, data paths and control signals. Our 
approach is aimed at aiding the designer by producing data paths and control 
sequences that implement the algorithmic system description within supplied con
straints. Thus, the designer can consider many alternatives before deciding on a 
final design. 

This task has inspired a variety of approaches, ranging from the most simplistic 
backtracking methods through the most complicated constraint propagation 
methods.4-8 Owing to the complexity of design synthesis, simplistic backtracking 
schemes consume large amounts of CPU time, and the constraint propagation 
method is too cumbersome for large designs. Because of the combinatorial explo
sion of details and implicit dynamic constraints involved in choosing an implemen
tation, this problem does not lend itself to these algorithmic solutions. An alternate 
approach to design synthesis uses a large amount of design knowledge to eliminate 
backtracking; whenever possible, the focus is on specific design details and con
straints. Artificial intelligence researchers have called systems developed under this 
heuristic approach knowledge-based expert systems, KBESs.9 

1. CONCEPTION 

KBESs are generally developed in several stages. First, "book knowledge" of the 
problem is codified as a set of situation-action rules; interviews with experts then fill 
in knowledge gaps and refine current knowledge. Then, many example problems 
are given to the KBES, and experts closely examine and validate the results. Often, 
errors are found through the examples, and new rules are added to the system to 
correct the error situations. 

This iterative process is necessary because experts are often unaware of exactly how 
they go about designing a chip and are inexperienced at articulating the procedure. 
Furthermore, the knowledge base is not an exact codification of the expert's 
knowledge, but a compilation of what is understood by the knowledge engineer. 

After gathering current book knowledge about synthesis of the architectural design 
space,4-6 we interviewed four designers of varied experience: one was a novice, two 
were moderately experienced, and one was an expert. The interviews, which lasted 
about an hour each, started with a determination of the designer's background, 
including years of experience, logic families used, and designs created. Most of the 
time was spent discussing the design process, with some time given to a discussion 
of the DAA system. Our interview method was designed to allow the interviewees 
as much freedom as possible in generating ideas; we emphasized such questions as 
"What do you do next?" and "Could you elaborate?" 
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The designers discussed the global picture, partitioning, selection, and allocation 
tasks. They began with a high-level overview of the hardware, which listed inputs 
and outputs to the outside world, the functions the hardware should provide, gen
eral constraints, and design feasibility with consideration of the target technology. 
They generally partitioned the global picture into smaller blocks and emphasized 
minimizing connections among blocks, selecting blocks that operate as parallel or 
serial units, and grouping according to similarity of function. Partitions were 
chosen for allocation in a decreasing order of difficulty or degree of constraint. The 
designers reasoned that if the most difficult part could be designed, the rest of the 
design was feasible. 

Once a partition was selected for allocation, it was carried out either in parallel or 
in series. A parallel design made thinking of the control logic much simpler, while 
a serial design minimized the design area. The constraints of the parallel design 
were examined for size violations to determine the parts to be serialized by adding 
data paths, registers, and control logic to the initial parallel design. The constraints 
of the serial design were examined for speed violations to determine the parts to be 
reimplemented in parallel. If the designers recognized a part of the design as simi
lar to a part of a previous design, they used what they knew had worked in the 
past. Within each partition, designers allocated clock phases, operators, registers, 
data paths, and control logic. The order was interesting because once registers and 
data paths were allocated, they were not changed. The control was changed 
because it was the hardest thing to think about and because it depended on a con
stant structure for the data path elements. 

The designers described the iteration process as a step-by-step refinement to meet 
violated constraints. They looked for a technology change to meet a constraint 
before making a design change. This could be as simple as finding a new chip in 
the TTL data book or as complicated as a design-rule shrink. Next, they would 
sacrifice functionality to meet a constraint. One designer summed it up best by 
saying, "An engineer's training teaches him when constraints can be swept under 
the rug." 

The relative importance of constraints is application dependent. The designers 
mentioned the constraints of speed, area, power, schedule, cost, drive capabilities, 
and bit width. Other design changes consisted of global improvements not recog
nized until the design neared completion. This suggests that the general choice of 
partitions and the initial design style selections approached optimum and that 
designers do not seem to use much backtracking in their designs. 
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2. BIRTH 

Even though many details were missing, enough book knowledge had been gathered 
to put together a prototype version of the DAA system using the OPSSIO KBES writ
ing system. While the DAA system was far from perfect at this point, it stimulated 
further elicitation sessions with expert designers. We now turn our attention to the 
flow of control in the prototype system and how the KBES approach formulate the 
problem. 

2.1 Flow of Control 

The DAA starts with a data flow representation extracted from the algorithmic 
description. This representation resembles the internal description used by most 
optimizing compilers, I I but computer programs manipulate it more easily, and it is 
felt to be less sensitive when the same algorithm appears in a variety of writing 
styles. 

The DAA produces a technology-independent hardware network description. This 
description is composed of modules, ports, links, and a symbolic microcode. The 
modules can be registers, operators, memories, and buses or multiplexers with 
input, output, and bidirectional ports. The ports are connected by links and are 
controlled by the symbolic microcode. 

The DAA uses a set of temporally ordered subtasks to perform the synthesis task. 
It begins by allocating the base-variable storage elements - constants, architec
tural registers, and memories with their input, output, and address registers - to 
hardware modules and ports. Then a data flow BEGIN/END block is picked, and 
the synthesis operation assigns minimum delay information to develop a parallel 
design. Next, it maps all data flow operator outputs not bound to base-variable 
storage elements to register modules. Last, it maps each data flow operator, with 
its inputs and outputs to modules, ports, and links. In doing so, the DAA avoids 
multiple assignments of hardware links; it supplies multiplexers where necessary. 
The last two mapping steps place the algorithmic description in a uniform notation 
for the expert analysis phase that follows. 

The expert analysis subtask first removes registers from those data-flow outputs 
where the sources of the data-flow operator are stable. Operators are combined, 
according to cost and partitioning information across the allocated design, to create 
ALUs. The DAA also examines the possibility of sharing non-architectural regis
ters. Where possible, it performs increment, decrement, and shift operations in 
existing registers. Where appropriate, it places registers, memories, and ALUs on 
buses. Throughout this subtask, constraint violations require trade-offs between the 
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number of modules and the partitioning of control steps. The process is repeated 
for the next data flow BEGIN/END block. 

2.2 The OPSS Writing System 

The DAA is implemented as a production system via the OPS5 KBES writing sys
tem. The KBES tool is based on the premise that humans solve problems by recog
nizing familiar patterns and by applying their knowledge in the current situation. 
The tool formulated a problem by using three major components: a working 
memory, a rule memory, and a rule interpreter. 

2.2.1 Working memory. The working memory is a collection of elements that 
describe the current situation. The elements resemble the records in conventional 
programming languages: 

literalize module 
id: adder.O 
type: operator 
atype: two's complement 
bit-left: 17 
bit-right: 0 
attribute: + 

This working-memory element describes an operator module adder.O, which can 
perform two's complement addition on 18 bits of binary data. 

2.2.2 Rule memory. The rule memory is a collection of conditional statements that 
operate on elements stored in the working memory. The statements resemble the 
conditional statements of conventional programming languages: 
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the most current active context is to create a link 
and the link should go from a source port to a destination port 
and the module of the source port is not a multiplexer 
and there is a link from another module to the same destination port 
and this other module is not a multiplexer 

THEN: 
create a multiplexer module 
and connect the multiplexer to the destination port 
and connect the source port and destination port link to the multiplexer 
and move the other link from the destination port to the multiplexer 

This rule recognizes situations in which a multiplexer needs to be created to con
nect one port to another. 

Each subtask in the DAA is associated with a set of rules for carrying out the sub
task. An example of a rule for the fourth subtask appeared above. Most of the 
rules, like the example above, define situations in which a partial design should be 
extended in some particular way. These rules enable the DAA to synthesize an 
acceptable design by determining, at each step, whether a certain design extension 
respects constraints. 

2.2.3 The rule interpreter. The rule interpreter pattern matches the working
memory elements against the rule memory, to decide what rules apply to the given 
situation. The rule-selection process is data driven; the rule interpreter looks 
through the rule memory for a rule whose antecedents match elements in the work
ing memory. This is also called forward chaining or antecedent reasoning. The 
consequences of the rule are applied, and the process is repeated until no more rules 
apply or until a rule explicitly stops the process. If more than one rule applies, the 
rule dealing with the most current working memory is selected first. If multiple 
rules are still applicable, the most specific rule is selected. This selection mimics 
following a train of thought, as far as possible, and uses special-case knowledge 
before general-purpose knowledge. The separation of expert knowledge from the 
reasoning mechanism makes the incremental addition of new rules and the 
refinement of old ones easy because the rules have minimal interaction with one 
another. 
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3. FIRST STEPS 

The prototype DAA system had about 70 rules and could design a MOS Technology 
Incorporated MCS6502 microcomputer in about three hours of VAX 111750 CPU 
time. We asked many expert designers at INTEL and AT&T Bell Laboratories to 
critique the design by explaining what was wrong, why it was wrong, and how to fix 
it. After each critique, rules were modified, new rules were added, and the 
MCS6502 was re-designed. Based on the critiques, the development DAA system 
now has over 300 rules, and has designed a much better MCS6502 microcomputer 
in about five hours of VAX 111750 CPU time. In retrospect, clearly much of what 
we learned was common-sense design knowledge, the same things human designers 
learn through apprenticeship. The DAA has undergone many improvements and 
produced many designs of the MCS6502 microcomputer. Below, we illustrate a few 
of these changes. 

Each knowledge acquisition interview began by giving the designer a drawing of the 
design with a sheet of clear plastic over it. Before the designer started the critique, 
pieces of cardboard were placed over the design. As the designer proceeded, a 
piece of cardboard had to be lifted, the plastic written on, and covered by new plas
tic to correct the design. This provided a complete record of where the designer 
was focusing attention and what was corrected. The designers found this elicitation 
procedure compatible with their normal spatial mode of operation. 

The first prototype DAA system was used to produce the design summarized in 
Column 1 of Table 1. Each row shows the bits of the specified operator or register 
type found in the design.t The expert criticism is summarized in four points: 

• Operators of different types and sizes should be combined into ALUs. 
• One-bit operators within the same block should not be combined, because multi

plexers are more expensive than most one-bit modules. 
• Registers should increment, decrement, and shift their values internally, where 

possible. 
• Temporary registers to the controller should be eliminated, and one latched 

register should be placed in front of the controller. 

The rules were changed to produce the design summarized in Table 1, Column 2, 
and illustrated in Figure 1. To produce this design, partitioning information was 
added, based on connectivity of data paths and similarity of operators among 
blocks. This simplified the decision about which modules to combine when 
hardware operators are shared among abstract operations detailed in the algo
rithmic description. Rules were also added to combine modules of different sizes 

t A figure is not provided because it is totally inscrutable. 
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Table 1. MCS6502 - THREE DESIGNS 

Designs 1 2 3 

And 20 20 20 
emp 177 1 1 
Minus 64 0 0 
Or 9 9 9 
Not 21 21 21 
Plus 540 0 0 
Shifts 35 1 1 
Xor 9 9 9 

Alu 0 35 35 

Dreg 450 281 210 
Treg 1227 0 62 

MuxIn 2122 2657 473 
MuxOut 293 377 84 

Bus In 0 0 769 
Bus Out 0 0 210 

and types. As Column 2 shows, the ALU number increased, decreasing the plus, 
minus, shift, and compare numbers. Rules were also added to decrease the amount 
of temporary register storage. 

Figure 1 shows the eight-bit data paths of the MCS6502. The one-bit and 16-bit 
data paths were omitted for clarity. Each of the symbols represents a module. The 
circles are single function ALU modules to AND, SHIFT, NOT, XOR, and OR data, 
the small trapezoids are multiplexers that gate one of their inputs to the output, the 
small rectangles are registers, the large rectangle is the memory, the large trapezoid 
is a multi-function ALU, and each of the lines represents a link between the 
modules. Where the links join with the modules, a port is defined. An obvious 
problem, pointed out by our experts, was overuse of multiplexers. They suggested 
ways of distributing the mUltiplexer hardware to form buses. 

The rules were changed in response to these critiques, resulting in the design of 
Table 1, Column 3, and Figure 2. To produce this design, rules were added to 
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recognize when a multiplexer should be converted into a bus and how to share that 
bus with other distributed multiplexers. In addition, new rules decreased the 
amount of declared register storage. Specifically, registers were not needed to mul
tiplex information into the data flow BEGIN/END blocks. As Column 3 shows, the 
multiplexer numbers decreased, increasing the bus numbers. The declared register 
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Figure 2. MCS6502 - 8 BIT BUS DATA PATHS 

number also dropped. 

Though this design was acceptable to our experts, it was not perfect. Further 
changes led to improvements such as multiple buses of different widths. However, 
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these changes did not affect the MCS6502 because it did not require multiple buses. 
This brings up an interesting point about expert systems: they are never totally 
finished. Like human designers, the DAA becomes a better designer as its rule 
memory expands. Until all possible world knowledge about designing microproces
sors has been codified in the DAA's rules, there will always be room for improve
ment in its designs. 

4. THE IBM SYSTEM/370 EXPERIMENT 

After the DAA successfully designed a MCS6502 microprocessor, it had to be deter
mined whether the system had also acquired knowledge about processor design in 
general. In this regard, an experiment was designed to see whether the DAA could 
design a processor substantially different and more complex than the MCS6502. 

An ISPS description was chosen for the complete IBM System/370 from the 
descriptions maintained at Carnegie-Mellon University. This description included 
memory-management operations, channel controller I/O instructions, and all the 
370 instructions, except the extended-precision floating point, the characters under 
mask, the edit and mark, and the packed-decimal instructions. The unmodified 
System/370 description, missing only a small percentage of the total 370, is more 
than 10 times larger than that of the MCS6502, t and it had not been used to build 
the DAA. Important benefits of this choice are that a single-chip design of the 370 
had been made at IBM, information is publically available, and Claud Davis, the 
design team manager and a key designer, was willing to critique the design. Thus, 
the experiment was a fair and convenient way to test the generality of the DAA's 
design knowledge. 

4.1 The DAA 370 Design 

The DAA designed the D370, its version of the System/370, in 47 hours of CPU 
time on a VAX 11/780 with six megabytes of memory and two memory controllers. 
The D370 was designed without rule modifications or design iterations of any type. 

The D370 is an IBM System/370 data-flow design using a 50x clock, where x is 
some scaled unit of time like #,seconds, with multiplexer and bus style data paths. 
The DAA's constraints were set to produce a high-performance machine - that is, 
it could use as much hardware as required to allocate the data paths and retain 
maximum parallel operator usage. To meet this performance constraint, the D370 

t The next higger description, the Digital Equipment Corporation VAX 11/780, wouldn't compile 
through the VT compiler in a six megabyte address space 
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has eight-bit, 24-bit and 64-bit buses, 32-bit, 64-bit and 68-bit ALUs, a few discrete 
components, six memory arrays, and a great many architectural registers. 

4.1.1 The three ALUs. The three ALUs and bus sizes arose from three different 
groups of data operations and major transfer widths in the IBM System/370. The 
basic busing style placed a temporary register before an input to each ALU and 
assumed the ALU latches its result so it can be read on the next clock phase transi
tion. Thus, a two-phase clock set up the inputs to an ALU in one clock cycle and 
stored the result on the next clock cycle. 

For clarity, the data path of the D370 is drawn in two separate figures, Figures 3 
and 4. The connection between the two figures is through the eight-bit, 24-bit and 
64-bit data buses. Figure 3 contains the arithmetic portion, the temporary regis
ters, and the controller; Figure 4 shows the architectural registers, including the 
register arrays, such as the 16 general purpose registers R. 

The 32-bit ALU is used for most of the arithmetic operations in the System/370 
architecture. It can ADD, SUBTRACT, and COMPARE two binary numbers from 
the TO temporary register and the 64-bit bus. It gates a result out on this bus. 

The 64-bit ALU is used for most of the address calculation operations and a few 
low-frequency operations, such as MULTIPLY and MODULUS in the System/370 
architecture. It can ADD, SUBTRACT, COMPARE, MULTIPLY, MODULUS, and 
SHIFT RIGHT two binary numbers from the T1 temporary register and a bus. It 
can gate a result out on either the 24-bit or 64-bit bus. 

The 68-bit ALU is used for most of the floating-point operations in the System/370 
architecture. This ALU can ADD, SUBTRACT, COMPARE, and SHIFT LEFT two 
binary numbers from the TO register and the 64-bit bus. Its result is gated onto 
the 64-bit bus. 

4.1.2 The discrete components. Not all data manipulation is done in the ALUs. To 
aid debugging, one of out expert designers from INTEL keeps single-function logic 
outside the ALU. Thus, the logic instructions are implemented with separate distri
buted logic elements: the 32-bit AND, OR, and XOR. 

Smaller logic elements are provided for a variety of functions. The four-bit OR 
takes input from two fields of the instruction register IR and feeds the result to the 
microcontroller. This aids in instruction decoding. The virtual storage system uses 
three discrete components. The 24-bit OR takes input from the byte index 
BYTE.lNDX register and the 64-bit bus and places the resultin the dynamic 
address translation DAT register. The two-bit AND takes input from the 24-bit 



The VLSI Design Automation Assistant 465 

bus and the page table entries PT.ENT and feeds the result to the microcontroller. 
The six-bit AND takes input from a group of constants and T2 and places the result 
on the eight-bit bus. 

4.1.3 The memory arrays. The D370 architecturally defines the primary memory 
MB, the storage keys ST.KEYS, the general purpose registers R, the control regis-

Table 2. MEMORY ARRAYS IN THE D370 DESIGN 

Abbreviation Bits Words Address Inputs Outputs 

MB 8 121072 24bb 8bb,64bb 64bb 
ST.KEYS 7 64 R,DAT 8bb 8bb 
R 32 16 8bb 8bb, 64bb ST.KEYS, 

8bb,24bb, 
64bb 

CR 32 16 Constants 64bb 
FP 32 8 8bb 64bb 64bb 
FVU 1 3 Constants 64bb 64bb 

ters CR, the floating point registers FP, and the floating point error registers FVU. 
Table 2 lists the bit width of each memory array, the number of words in the array, 
and what buses bb or registers connect to the address, input, and output ports. 
Thus, there are 64 storage keys, each seven bits wide, with their address port con
nected to the general purpose registers and the dynamic address translation register. 
The input and output ports are connected to the eight-bit bus. 

4.1.4 The architectural and temporary registers. The D370 architecturally defines 
many registers. Table 3 lists the bit width of each register and tells what buses or 
registers connect to the input and output ports. Thus, the instruction register is 48 
bits wide with its input connected to the 64-bit bus and its output connected to the 
64-bit bus and the four-bit OR described above. 

4.1.5 The control specification. A symbolic microcode word controls the D370. A 
microcode word is required for each cycle of the machine. The generation of either 
PLA or ROM based micro-engine is possible in later phases of the design synthesis 
task. A sample sequence from the dynamic address translation BEGIN/END has 
the 24-bit bus gating the MAR to the MB address port, the 64-bit ALU adding the 
MAR from the 24-bit bus and the temporary register T1 and gating the result on 
the 64-bit bus to the MB input port, with the six-bit AND anding the temporary 
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Table 3. REGISTERS IN THE D370 DESIGN 

Abbreviation Name Bits Inputs Outputs 

MAR memory address 24 24bb,64bb 24bb,64bb 
MBR memory buffer 32 64bb 8bb, 64bb 
MDBR memory double 64 64bb 8bb,64bb 

buffer 
PSW processor status 64 24bb,64bb 8bb,24bb, 

word 64bb 
PS.EC extended code 6 64bb 
TOD.CLK clock 64 64bb 64bb 
CLK.CMP clock comparator 64 64bb 64bb 
CPU.TIM CPU timer 64 64bb 64bb 
PREFIX prefix 12 64bb 64bb 
IR instruction regis- 48 64bb 64bb,4-bit 

ter OR 
ST.ENT segment table 32 8bb, 64bb 8bb 

entry 
PT.ENT page table entry 16 8bb 8bb,64bb, 

2-bit AND 
SEG.INDX segment index 8 24bb 8bb 
PAGE.INDX page index 9 24bb 24bb 
PT.DSP page table dis- 4 24bb 24bb 

placement 
BYTE.INDX byte index 12 24bb 24-bit OR 
DAT dynamic address 24 24bb, 24-bit 24bb, 

translation OR ST.KEYS 
TO temporary 0 64 64bb, 32-bit 64bb, 32-bit 

AND, OR, ALU,68-bit 
XOR ALU, 32-bit·· 

AND, OR, 
XOR 

T1 temporary 1 64 64bb 64bb, 64-bit 
ALU 

Tl temporary 2 24 8bb,24bb, 8bb,24bb, 
64bb 64bb,6-bit 

AND 
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register T2 and a constant, gating the result on the eight-bit bus to a field in the 
PT.ENT. This illustrates the high degree of parallelism possible in the 0370. 

4.2 The ~370 Design 

The ~370 is an IBM System/370 micro-processor data flow on a single bipolar 
gate-array masterslice chip. It uses a 100-nanosecond cycle clock and is capable of 
executing 200,000 instructions per second. The physical chip is 7x7 mm and dissi
pates 2.3 watts. The plan was to use no more 5000 wired circuits, 3 watts of 
power, and 200 pins. To meet these size and power constraints, the problem was 
divided into on-chip and off-chip sections. This section discusses the functional 
blocks of the ~370. 

4.2.1 The on-chip functional block. The on-chip functional block has an eight-bit 
ALU, a 24-bit incrementer/decrementer, 110, a 24-bit shifter, two nine-bit parity 
generators, 17 eight-bit working registers, two eight-bit buffer registers, a 16-bit 
status register, a 24-bit register, and hardware to calculate the next microcode 
address. These components are wired together with two fan-in eight-bit buses, a 
fan-out eight-bit bus, a bidirectional 16-bit bus, a fan-in 24-bit bus and a fan-out 
24-bit bus. These are shown in Figure 5. 

The eight-bit ALU can ADD, SUBTRACT, OR, AND, and XOR either binary or 
packed-decimal numbers. The arithmetic operations of the ALU can be controlled 
directly from a microcode field or indirectly through a status bit located in register 
s. This indirect control feature allows sharing of microprogramming routines for 
the ADD and SUBTRACT operations. Two eight-bit buses feed two eight-bit buffer 
registers, A and B, which feed the ALU. These two registers can selectively gate 
groups of four bits that correspond to hex digits within the byte or pass the com
plete byte to the ALU. This gating is used for decimal operations. The A register 
can also pass its eight bits, rotated by four bits to reverse its two hex digits. This is 
used by the pack and unpack instruction. The output of the ALU is placed on an 
eight-bit bus gated to all the working registers. 

The 24-bit 110 is a special purpose adder that can add a 24-bit binary number with 
the constants 0, 1, 2, 3, -1, -2, or -3. The constant input is directly controlled 
from a microcode field. This 110 is dedicated to address calculations. An address 
is gated from a set of three working registers onto the 24-bit bus feeding the 
memory address register MAR. Any value present in this register is gated to the 
memory address bus MAB, the input of the 110, and a shifter {discussed below}. 
The output of the 110 is placed on the 24-bit fan-out bus and gated back to the 
same three registers that fed the MAR. 
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The 24-bit shifter can do d few complex shift operations to produce a 16-bit result. 
This shifter is dedicated to handling the 12-bit address field used for page address
ing in the virtual storage system. Input is gated from the MAR, and output is 
gated onto the 24-bit fan-out bus. 

Two nine-bit parity generators check the parity of each data byte arriving at the 
chip and place it on the 16-bit memory data bus, MOB. They can also affix a par
ity bit to each data byte leaving the chip from the MOB. 

The 1J,370 has 17 eight-bit registers, two eight-bit ALU buffer registers, a 16-bit 
status register, and a 24-bit MAR. The 17 eight-bit registers are grouped in func
tional pairs and triples. The R, G, L, and H register pairs are primarily the 
memory data registers, MORs. Because the G register pair has special microcode 
branching capabilities, it is the OP code register. The I and U register triples are 
the program counter and operand register, respectively. The T register pair is the 
local-store address. The I, U, T, and R register groups can pass two bytes of data 
to one another with or without a displacement. This feature is part of the virtual 
storage management of the IBM System/370 architecture. The S register pair is 
the CPU status register and serves as input to the microcontroller. SI can be set 
and reset by external inputs. The interrupt register F is also settable by external 
conditions. 

A 54-bit microcode word controls the 1J,370. A microcode word is required for each 
cycle of the machine and is fetched during the last 75 nanoseconds of each cycle 
from the read only store, ROS. To select the next ROS word, a 16-bit address is 
generated in the first 25 nanoseconds of each cycle. Six bits of the ROS address are 
taken directly from the ROS word. The low order two bits are extracted from con
ditions within the chip. ROS fields dictate the internal conditions to be examined. 
The remaining bits are taken from the previous ROS address. However, if an 
external-trap bit is raised, the ROS address is forced to a specific value for a trap 
handler. Possible traps are parity errors, IPL request, page overflow, storage wrap, 
memory protect violation, stop request, and I/O control. 

4.2.2 The off-chip functional block. The off-chip functional block has the architec
tural registers, two external memories, an I/O port, and the ROS. The 1J,370 chip 
uses 512 bytes of architectural registers. They are kept in a local store that can be 
accessed in 60 nanoseconds. The local store, which is limited to 64K bytes, is 
addressed by the TO and TI registers. The 1J,370 uses up to 16 megabytes of 
memory, which is addressed by the MAB, while data is gated on the MOB. Read, 
write, memory-I, memory-2, and ready signals allow up to two memories of any 
speed to be interfaced to the chip. If neither memory line is asserted, the MOB is 
connected to an I/O bus that uses the MAB to choose the I/O device being 
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serviced. 

4.3 The D370 and p.370 Design Comparison 

The previous two sections have discussed the individual attributes of the two 
designs. This section brings those designs together by comparing and contrasting 
their differences. Claud Davis compared the two designs at IBM Poughkeepsie. 
During his career of over 25 years at IBM, Davis has worked on designs and 
managed teams of designers for the 701, 702, 7074 MA, 360/50, FAA, 360/67, and 
the p.370. His vast experience with the higher-performance processors and the 
p.370 made his critique valuable in two ways. First, we could determine what is 
needed for a single-chip IBM System/370 architecture; second, we could determine 
what is needed for a higher performance processor. Davis summarized his com
parison thusly:12 

"The 370 data-flow we reviewed exhibited the quality I would 
expect from one of our better designers. The level of detail was 
what we call second level design. This encompasses all 'archi
tected' registers, status latches and sufficient working registers to 
implement the functions defined by the instruction set. This level 
of design is independent of implementing technology. 

The review included a test for 'architected' registers, data path 
widths, latches for exceptional conditions, signs, and latches for 
temporary information in multi-cycle instructions. 

The assumptions for clocking and controls were examined and 
found to be consistent." 

The complete transcript13 is also available. 

In the following discussion, differences are grouped by objectives and functional 
blocks including: ALUs, buses, memories, and registers, which are summarized in 
Table 4. For each difference possible changes in the CMU/DA and the DAA sys
tems are discussed. 

4.3.1 The objectives. The objectives and testing of the two designs differed. The 
p.370's objective was to place a fully functional System/370 on a single chip, while 
observing such technology constraints as number of wired circuits, power, and 110 
pins. The D370's objective was to design a high-performance System/370 sensitive 
to technology constraints, but independent of power and number of 110 pins. The 
p.370 was produced as a working chip, whereas the D370 is only a paper design. 
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Table 4. IBM SYSTEM/370 - DESIGN DIFFERENCES 

Design D370 ~370 

Objectives High performance, Strict observance of 
technology sensitive, technology criteria 
independent of such as number of 
power and I/O pins; wired circuits, 
paper design power, and 110 pins; 

working chips 

ALUs 32-bit, 64-bit, and Eight-bit and 24-bit; 
68-bit; Binary Binary and packed-
numbers; hardware decimal numbers; 
for virtual memory, microcode for virtual 
floating point and memory, and multi-
multiply ply 

Buses Eight-bit, 24-bit, Three 8-bit, a 16-
and 64-bit; bidirec- bit, two 24-bit; fan-
tional in, fan-out and 

bidirectional 

Memories 12-byte buffer; sin- Eight-byte buffer; 
gle ported single ported 

Registers Discrete Memory array 

4.3.2 The ALUs. The number, size, and type of functions supported by the ALUs in 
the two designs differed. The D370's design had one extra ALU that can be 
directly traced to the implementation of floating-point operations, while the ~370 
planned a separate floating-point chip. In addition, the D370 implemented the 
dynamic address translation hardware, while the ~370 supplied a shifter that had a 
few complex shift patterns to aid in calculating the virtual address by using micro
code. 

The DAA does a high-level floor layout to help decide how to partition the algo
rithmic description, but this does not currently allow exclusion of functionality; the 
whole algorithmic description is implemented. Changes that modify the algo
rithmic description by including or excluding functionality are best made by chang
ing the initial description or by having a postprocessor feed size constraints to the 
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DAA. 

The ALUs also differed in size. The J,L370 serialized the 32-bit and 64-bit opera
tions of the System/370 architecture into four or eight cycles through an eight-bit 
ALU. The DAA's constraints were set to design a high-performance processor, and 
thus the data paths were not serialized. Less than a dozen rules could be added to 
the DAA to allow it to serialize on ALU width. However, this change would be 
better made by adding a transformation to the CMU/DA system that removes a 
single-abstract data flow operation, and replaces it with several smaller ones. 

Finally, the ALUs differed in the functions they provided. The J,L370 has an ALU 
that can ADD and SUBTRACT packed-decimal numbers; the D370 performed these 
operations by adding hardware and microcode. The D370 has an ALU that can 
MULTIPLY, while the J,L370 MULTIPLIED by SHIFTING and ADDING. Davis felt 
the choice of an ALU that could MULTIPLY was reasonable and consistent with the 
constraints used by the DAA. 

4.3.3 The buses. The designs differed in the number, size and type of buses used. 
The J,L370's eight-bit buses and 16-bit bus serve the same purpose as D370's eight
bit and 64-bit buses. The size difference is accounted for by the J,L370 serializing 
the 32-bit and 64-bit operations of the System/370 architecture down to eight-bit 
operations, as discussed above. Also, the D370 uses bidirectional buses, where the 
J,L370 used separate fan-in and fan-out buses. Davis felt the design choices made by 
the DAA were reasonable for the higher-performance D370 design, citing the IBM 
System/370 model 158 as an example of this style of busing. 

4.3.4 The memories. The memory functional blocks differed only slightly. The 
D370 uses an eight-byte buffer with a four-byte memory data register, while the 
J,L370 uses eight bytes of memory data registers. Davis felt this and even more ela
borate cache schemes suited the higher-performance processors. He suggested the 
D370 use dual-ported memories for its general-purpose registers, to allow the use of 
two registers during the same cycle. Dual-ported memories would require a few 
rule changes, but would allow up to two memory array accesses during the same 
clock cycle. The rules for finding the address, input and output ports of memories 
would have to be enhanced to check for idle ports. All told, about 20 rules would 
have to be modified or extended to effect this change. 

4.3.5 The registers. Both descriptions have about the same number of bytes of 
architectural and temporary registers. However, the J,L370 groups all the architec
tural registers off chip in a fast local store, which can be thought of as memory. 
This would be a major change in the structure of the DAA. However, it could be 
accomplished simply, as a post-processor pass by the CMU/DA system as other 
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technology-specific hardware is bound to the modules. 

S.SUMMARY 

We are exploring the allocation problems of operators, registers, data paths, and 
control paths from an algorithmic representation of a VLSI system. We are using a 
KBES to test the knowledge gathered from interviews with experts; from this 
knowledge, we are attempting to create interesting and usable designs. 

This chapter has shown the generality of design knowledge in the DAA by compar
ing and contrasting an IBM System/370 designed by an expert human designer, 
Claud Davis, against the design produced by the DAA. The differences were either 
explained and shown to be unimportant, or changes to the system were discussed. 
Davis felt the design produced by DAA exhibited the quality he would expect from 
one of his better designers. 

This chapter has shown the first large implementation design, automatically gen
erated from an algorithmic description and constraints, that has been favorably cri
tiqued by an expert designer. Furthermore, the design required 47 hours of CPU 
time, which with some work can be reduced by a factor of 12 to about 4 hours of 
CPU time. This clearly shows the dramatic improvement in CPU time for large 
designs obtained using methods that replace backtracking by match techniques. 
Finally, because this design was generated using synthesis techniques, it is possible 
to verify its operation by construction14 and link it to the rest of the CMU/DA 
design environment. 
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Abstract 
This paper gives an introduction to Computer Hardware Description Languages 
(CHDLs) and their application in early phases of the VLSI design process. It first 
gives a survey on objectives of its use in simulation. Then it briefly introduces a 
subset of a modem register transfer language (RT language). Finally it gives a 
survey on various CHDL-based CAD tools and its linkage to physical design, as 
well as its integration into CAD environments. 
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INTRODUCTION: WHY CHDLs? 
The next higher abstraction level above gate level is called register transfer level (RT 
level), since its primitives are registers, register arrays, and data transfer paths, such 
as e. g. operators, buses, multiplexers, and others. Hardware descriptive notations at 
RT level (and sometimes above) are called Computer Hardware Description 
Languages (CHDLs). Some of them [Ill. W86] have a mnemonics which is similar 
to that of the Pascal programming language. CHDLs may be used to feed higher 
level simulators, to feed silicon compilers (at least future ones), for automatic 
generation of go / no go test patterns [HaW085], for hardware specification, and for 
documentation, for more concise teaching the principles of digital hardware, use as a 
design calculus, and for many other applications. 

All modern CHDLs are hierarchical and thus have structural description capabilities, 
so that this should not be used as a classification criterium. We may distinguish two 
major classes of CHDLs: non-procedural languages and algorithmic languages. 
Non-procedural languages may be used only for description of input/output 
behaviour of systems and modules. Algorithmic CHDLs, have additional 
programming features to describe sequences of mircoinstructions and other sequences. 
So the same language may be used e. g. to describe and simulate the data paths of a 
microcomputer and the microprograms running on it. The question only is, which 
solution has more advantages: using an algorithmic CHDL, or, using a 
non-procedural CHDL system, which is interfaced to a separate microprogram 
compiler. 

Substantial Reduction of Complexity. What are the benefits in using such 
CHDLs, compared to traditional abstraction levels, such as e. g. the gate level? The 
most important benefit is the reduction of notational complexity. Gate level 
notations, such as e. g. Boolean equations, do not yield a substantial reduction of 
complexity, compared to circuit diagrams. The average number of transistors per gate 
is the quotient of complexity reduction: this is only about 3 to 5, in CMOS and 
some other circuit techniques only about 4 to 8. In using CHDLs this quotient may 
by much higher, sometimes up to several hundreds. 

One reason for reduced complexity is the fact, that CHDLs use to bundle a bit 
vectors of bits into words, like in high level programming languages. In describing a 
32 bit data path, for instance, its data values are kept in a single word to be processed 
at once within the simulator and other tools. A second reason is the fact, that at RT 
level more powerful operators are available, such as e. g. multiplication, an 
equivalent up to hundreds of gates, and many others. A third reason for reduced 
complexity is found in the flexibility of RT language use. Modern CHDLs feature 
capabilities to describe a particular hardware in different levels of abstraction. That's 
why in using the same language a design process may start with a very high level 
specification of very low complexity, and after several steps of refinement it may end 
up with a more complex and more detailed description of a solution concept. 
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Training. So it is sure, that the complexity problem of VLSI design can be solved 
only by using CHDLs. Later in this paper a number of additional benefits will be 
illustrated, such as support of design for testability, early test pattern development, 
structured VLSI design, experimenting with alternative architectures before starting 
logic design, and many others. Why does a majority in industry hesitate to introduce 
CHDLs? Some quite interesting tools are available. However, most Universities do 
not teach using CHDLs, which would be an effort taking about less than half of the 
time needed to introduce Pascal. Another problem is the lack of methodology. At 
gate level a very elaborate and formal design methodology has grown, mainly within 
the last 30 years, due to contributions of thousands of scientists throughout the 
world. At register transfer level, however, most contributions are more of narrative 
character and of analytical nature, rather, than being a design methodology. A 
generally and widely accepted formal notation - comparable to Boolean algebra at 
gate level - has not yet been established in most application areas at RT level. So 
design tends to be more a trial and error procedure, or, to use one of a few popular 
concepts, such as e. g. systolic arrays and others. 

EARL Y PHASES OF THE DESIGN PROCESS 
CHDLs are an important opportunity to avoid expensive redesigns needed to correct 
errors, such as e. g. bad testability, bad topology and bad structure of the circuit, to 
much area comsumption, or, bad (VLSI-) architecture, missing the requirements, and 
others. Many of such errors could be avoided, if design concepts would be decided at 
a very early phase of the design process, definitely before the costly logic design 
procedure has been started. 

Specification and Design Problem Capture 
One important role of CHDL use could be design problem capture. To be sure to 
meet the requirements the design problem has to be pinned down the correct way. A 
concise notation has to be used to express the design problem. A description of a 
design problem using such a notation is called a specification. To be sure to capture 
the design problem correctly the specification has to be checked against the 
requirements. 

Specification Verification by Simulation. If a CHDL imple- mentation 
including a simulator is available, the requirements could be simulated, after the 
specification has been accepted by the tool. So the CHDL system may serve for 
design problem capture. Such a CHDL system could be also used as a 
communication medium between customer and design center, or, if within the same 
company: between product planning division and design division. The customer uses 
the CHDL system, such as e. g. a KARL compiler and simulator, for design 
problem capture. Reacting to simulation results the customer successively debugs 
the specifications. Finally the verified and debugged specifications (for instance, a 
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KARL description of the design problem) are handed over to the design center. 

Experimenting with alternative Architectures 
Bugs in specifications are not the only possible reasons for missing the 
requirements. Sometimes the principles of a design concept are critical with respect 
to real-time performance, to design cost, or other important aspects. Often several 
possible solutions have to be considered and analyzed, so that experimenting with 
alternative architectures is needed. Of course such experiments should be carried out 
at the highest possible level of abstraction to avoid incomprehensibility of 
descriptions and high labour cost because of high complexity. For more detailed 
discussion see [GHW85]. For a survey on automated optimization support 
see[Wod86]. 

Design for Testability 
Testing VLSI circuits currently is a major desaster area in industry, since the 
technology of testing and test pattern generation is far behind the possibilities of 
manufacturing technology and design capabilities. For mass production very often 
the time needed for testing is too long. Desirable would be around a second or less. 
For automatic test pattern development often an excessive amount of CPU time is 
needed. A very critical aspect is the fact, that for a given set of test patterns often the 
test coverage is much too low. This means, that the percentage of circuit faults, 
which will be detected by using a given set of test patterns, is far below 100%. This 
issue is critical, since it severely affects product quality. In some applications, such 
as where malfunction of circuits could be a danger to human life (process control, 
aerospace, some modem automotive, medical applications etc.), or, could make the 
entire mission fail (aerospace applications etc.) this quality aspect is one of the most 
important objectives at all. 

Very early Test Pattern Developoment. In many cases the design is the 
reason, why a circuit's fault coverage is low. In such a case the best possible test 
patterns could not achieve high fault coverage. That's because of properties of the 
design important inner subcircuits cannot be reached by a sufficient percentage of 
stimuli. Nor a sufficiently high percentage of its responses could be observed from 
outside the circuit. Only an expensive redesign of the circuit, which takes testability 
aspects into account, could solve such a problem. The product development schedule 
could slip for months or more. 

All this illustrates that design for testability is an important ingredient of the VLSI 
design process. Not only testability per se, but also the length of the test needed is a 
very important objective in design for testability. The best solution is to carry out 
test patern development in very early phases of the design process, at least before 
logic design has been started. The most desirable time would be, when the 
specifications are ready. Instead of being part of the logical design, and thus being 
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highly expensive, testability would be a subject of early design planning and 
partitioning definition. The designer could fully concentrate on the testability 
architecture of a circuit and could experiment with alternative architectures. However, 
this would require, that the test patterns are available at such an early time, so that 
testability data and test length data of different version architectures are available. 
Otherwise the designer would not know, which alternative to decide, and, whether the 
design for testability efforts have to be continued or not. 

Functional Testing. All this is feasible, since fortunately for production testing 
of integrated circuits only a go / no go test (sometimes called afunctional test) is 
needed. That's because integrated circuits are not repaired, so that fault locating is not 
required. A functional test can also be developed without any structural knowledge 
about the circuit. (A test also exhibiting fault location diagnostics would be called a 
structural test.) That's why a functional test can already be developed from the 
functional description of a circuit, i. e. from its specification. 

Integrating Simulation and Test Development. Although the area of 
functional test pattern generators currently is rather immature, it is useful to have it 
available along with the circuit specificaiton for designing for testability. For 
instance, the output of the KARATE test pattern generator (currently being 
implemented in Kaiserslautern [HaW085]) uses the same language SCIL [HHa86], 
which is also accepted by the KARL simulator. Problems yet to be solved, are the 
following ones. For large circuits an exhaustive simulation is not possible, unless 
an accelerator is available which runs the simulator, or, a physical model extension 
is used. So the user will have to select subsets of the test patterns in a clever way to 
run the simulator. (This would be supported by the good readability of the SCIL 
language, and the KARL simulator's dialogue mode capability.) Currently there is 
also no way to an optimization of functional test patterns with respect to those 
errors which have an extremely low probability for technological reasons. However, 
it is not known, how many of such errors could be expected. Also the automatic 
testability analysis area is rather immature. Some of the more widely known 
analyzers having been published yield quite obscure results. About a more recent one 
[SM85, SMP86] this paper's authors have only limited information. 

Structured VLSI Design 
The term of structured VLSI design has been coined by the Mead-and-Conway scene. 
It stands for a method to implement algorithms directly onto the planar surface of 
silicon in away, which attempts that most cells of the design are connected by 
abutment. This means, that by means of port matching between neighbour cells no 
routing area between these cells is needed. This in many application problems is a 
highly efficient way to save chip area, since routing areas tend to eat up very much 
more chip area (sometimes up to about 95% of the chip) than active cells. The best 
way to use this method is it, to try to plan the chip in a way, that most of it is made 
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up by arrays of abuttable cells. The success of such a solution highly depends on the 
cleverness in planning the shape and the topology of key cells. being efficiently 
abuttable. Often a successful key cell design is possible only, when a clever 
partitioning and placement strategy has been used in chip floor planning. All this 
means, that layout considerations are needed at very early phases of the design 
process, about when the specification is formulated. 

Innovative Power of VLSI Design. Structured VLSI Design as a design style 
has an innovative power. The success of structured VLSI design efforts depends on 
selection of the best possible task realization algorithm for a VLSI solution. 
Sometimes the smart memory approach is a good solution (this is shown in 
tutorial-like explaining the design of a simple sorter chip example in [BBad85]). 
Also this illustrates the benefit of very early chip planning. To provide means for 
design plan verification at this early phase, a simulator input language (a CHDLS) is 
needed, which can express such partitioning and topological features already at 
specification level. Such language features will be shown later. 

INTRODUCING A CHDL AND ITS USE 
To get a more illustrative presentation a particular CHDL will introduced. It is the 
KARL-III non-procedural language which is the most familiar one to the author 
[Har77 , NN85, HLW86, HHa86]. KARL-III is a multi-level language which 
includes the RT level, gate level, and the switch level. This has good 
reasons: sometimes small pieces of a description cannot be expressed at RT level, so 
that this 'remainder' can only be presented in using gate level primitives. Another 
important reason is the bus, being an important architectural resource at high levels 
of system description: it is a switch level concept [Ha77]. This multi-level paradigm 
has more advantages: in using the same language as a top-down design medium a 
specification can be successively refined to a more hardware-near detailed concept. 

KARL-III is a multi-paradigm language. It is not only multi-level, but also 
strongly typed (for diagnosability), it features structural description as well as 
functional description, it also features topological description including a cell 
abutment expression sublanguage (for floor plan capability). We believe, that all this 
is a nearly optimum mix to fulfil the requirements of design problem capture, early 
design for testability, and, structured VLSI design. Nevertheless, KARL is not a 
baroque language, like Ada, for instance. 

Comprehensibility. Although being multi-level, KARL is substantially more 
easy to learn than Pascal. For instruction and documentation we believe, that the 
simultaneous use of two versions of a RT language is quite useful for better 
comprehensibility. This fact has been recognized quite earlier, so that in fact at gate 



Higher Level Simulation and eHDL 

St ructura primitives KARL f unctlOna pnmltlves 

group primitives level combinational Iw. memory 

modules cell declaration RT arithmetic: regi ster, 

(user- topology: level +, - * /, mod array reg. , , 

defined) front, back, relational: 
RAM 
ROM left, right, >, <, =, =<, >=, <> 

ports: constant 

in, out, bi multiplexers: 

function 
if ........ 

declaration 
case ....... 

abutting make expr.: gate logical: not, delays 

chip floor @, :, mirx, miry, level and, nand, or, 

planning rotr, rotl, rotu nor, exor, coin 

inter- simple: .- .- switch bus drivers: dynamic 
connect bus, terminal level oeo, oco, memory 

formatting: enables . , I (catenate) buses: 
[ ... J (subscript) upbus, downbus 

also see wiring tri bus 

Ifunctions 

user-defined cells clockin.g: at, on, wile 

Utilities (standard functions): 
operative standard functions / wiring standard functions 

I comment / word format I array format 

code conversion fcts: 
decode 
encode 
decount 
encount 

test functions: 
equ, odd, even 
testunary, 
testsingulary 

miscellaneous: 
inc ncrement 
dec Irtecrement 
pril 'priority left 
prir 'priority right 

. 
shift functions: 

shr shl push pop 
dshr dshl dpush dpop 
cshr cshl cpush cpop 
nshr nshl npush npop 
eshr eshl epush epop 
cirshr cirshl cirpush cirpop 

shuffle functions: 
fold I merge 

butterfly fcts. (not y.released) 

mirror functions: 
feflect 

field 
msb, 

select 
Isb 

I reverse 

functions 
I msw, lsw 

Fig. 3.1. Survey on KARL-III language primitives and utilities 

481 



482 VLS[ CAD Tools and Applications 

Language Primitives 
The language, its power, and its flexibility is determined by the repertory of its 
primitives. We may distinguish structural primitives from functional ones. 
Structural primitives within KARL-III are uniform throughout all abstraction levels: 
they are all the same, no matter whether being used at RT level, gate level, or, at 
switch level, and even at circuit, and symbolic layout levels [We186]. KARL-III 
structural primitives are much more easy to use than those of KARL-II (which is no 
more supported). 

Structural primitives may be subdivided into module definition features, and, 
into notations to specify interconnect. KARL III provides two different module 
declaration facilities, the func declaration for user-defined function modules, and the 
cell declaration also including topological features, which are explained in section 
3.2 (for a survey see fig. 3.1). There are two kinds of interconnect descriptions: 
implicite descriptions within expressions and explicite descriptions in terminal, bus, 
assign- ment statements, as well as by means of actual parameters (connections to 
cell ports) in cell instantiations (for details see [HLE86, NN85]). 

Functional primitives may subdivided into RT level, gate level, and switch 
level primitives (see fig. 3.1). RT level primitives of KARL-III are: arithmetic and 
relational operators, multiplexers, and alilements with permanent memory (register, 
RAM, ROM, etc.). This supply is extended by RT level utilities (standard 
functions), such as e. g. ~, ~, priority functions etc. The group of wiring 
operators 
also considered to be RT level operators, are subject of sect.3.3. Gate level 
primitives of KARL-III include the usual logical operators, and two kinds of delay 
elements which may be used to model propargation delays at all levels. At switch 
level a simple but flexible technology-independant bus modelling scheme has been 
developed [Ha77, NN85, HaEIS86], providing an upbus, downbus, and, tribus (for 
three-state bus) declaration for the 3 basic bus types. Three technology-independant 
bus driver primitives ~ ('open collector output'), ill<Q ('open emitter output'), and 
enables (having a separate control input) provide a method for modelling bus 
systems, and to model the circuit principles of of MOL (matrix-oriented logic) 
using personality matrix specifications (see section 4.0). 

Cell Modules with Floor Plan Capability 
The concepts underlying the KARL cell definition and instantiation features 
efficiently supports structured VLSI design and the integration of KARL-based CAD 
tools into physical design. Relative to its declaration orientation a KARL cell 
distinguishes four different sides am, right. front, and, b.aQ0 of port location (fig. 
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3.2 a), as well as 3 different port types in, IDlt, and bi (fig. 3.2 b). These declaration 
attributes are used for automatic interconnect generation for cell abutments. Fig. 3.2 
c shows the ABL diagram of the external view of a full adder cell example named 
FA. Fig. 3.2 d shows two instances FA&1 and FA&2 of this cell, due to be abutted 
C&' is the separator between cell name and instant number). Fig. 3.2 e shows the 
abutment expression which is the notation for this instruction, where ':' stands for 
horizontal abutment, i. e. for abutment of slices. Fig. 3.2 f shows the result of the 
abutment operation. Fig. 3.2 g illustrates vertical abutment of two cells X and Y, 
described by the abutment expression X@ Y, using the '@' connective. 

Abutment Expressions. Figures 3.2 h through k illustrate the alternatives 
between routing connection (h and j) and abutment (with automatic interconnect, 
generated by the KARL compiler, see figs.i and k). Figures j/k illustrate interconnect 
between sister and brother cell (same level within the hierarchy). Firuges hji 
illustrate daughter-to-mother interconnect (the daughter cell is an internal component 
within the mother cell). Also complex abutment expressions may be formulated for 
the synthesis of complex supercells including several levels of cell hierarchy, as well 
as rotate and mirror transforms on single cells and compound cells. Figures 3.2, I 
through q show two examples of compound cells described by non-trivial abutment 
expressions. The cell X in fig. I is used as a component. Fig. m shows the ABL 
diagram of a two cell abutment example, and fig. n shows its abutment expression. 
The parameter list within parentheses describes the interconnect of the compound cell 
with nodes (L, R, B) of its environment. Fig. p (ABL diagram) and q (its equivalent 
abutment expression) describe the instantiation of a four cell compound also using 
rotate and mirror transforms (transforms are relative to the declaration orientation of 
the cell X, shown in fig. I). For more details about this abutment algebra and its 
chip floor planning application also see [HLW86, NN86]. 

Description of Wiring Patterns 
Any arbitrary wiring can be expressed in KARL by user-defined descriptions, and, 
by user-defined routing cells. However, let us look at those wiring patterns 
which are predefined by KARL language primitives. In KARL-III there are three 
classes of wiring descriptions: 1) those changing path width Co' and 'I' for 
juxtaposition of paths to create a wider path, as well as (2) uses of subscripting 
to split up a path; compare section 3.1 and fig. 3.1), and those (3) which preserve 
data path width. The latter ones may be split up into subgroups: (3a) direct 
connections which do not affect the sequence of bits, user-defined routing boxes, and, 
(3b) wiring operators which rearrange the sequence of bits algorithmically, such as 
shift, shuffle, reflect, and butterfly operators. 

Wiring Standard Functions. The implementation of wiring operators in KARL 
uses the KARL standard function format. Fig. 3.3 illustrates a few examples, 16 bits 
wide: a) cirshr&3 a circular shift right by 3 bits, b) fold&2, the 'perfect shuffle', 
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Fig. 3.3. 

c) fold&4, a shuffle with destination step width of 4, d) a butterfly example. The 
constant number behind the '&' separator is the function parameter. For shift 
operators the wiring pattern is well known. The algorithm generating the shuffle 
wiring pattern is illustrated for a particular path width (8) and parameter (4) by fig. 
3.4/3.5. By the KARL compiler the wiring patterns are automatically adapted to 
both parameters. Illegal parameter combinations (possible with shuffle and butterfly 
patterns) are detected and diagnosed by the compiler. Fig. 3.4 illustrates the meaning 
of the destination step width parameter in shuffle patterns. 

Butterfly Wiring Patterns. Butterfly patterns have many applications, such as 
for example in digital signal processing, micro processor and micro computer 
interconnect networks and many other areas [Bat76, GoL73 , MGN79 , TYF74 , 
TYF81, etc.]. Fig. 3.3. e illustrates the butterfly shape. The precise wiring pattern 
of the elementary butterfly, however, is that shown in fig. 3.3. g. For wider data 
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paths the butterfly pattern usually is shaped by the superposision of several 
elemantary butterflies, such as illustrated by the 4-layer example in fig. 3.3 f. This 
figure is only an illustration of the pattern generation principle. The precise wiring 
pattern of it, however, is shown by fig. 3.3. h. The butterfly function parameter 
indicates the number of segments. Figures 3.3 d through h only show examples with 
the parameter value i = 1 (butterfly default parameter value within KARL). Figures 
3.3 i, or, j, show examples with i = 2, or, with i = 3, respectively. 

Within the KARL System the wiring operators illustrated above are provided in two 
versions: a word format version rearranging the bit sequence, and, an array format 
version reordering the word sequence in an array. For a survey see fig. 3.1. The array 
format versions of these wiring operators are useful for concise description of 
interconnect patterns in switch boxes like bunyan networks etc. (e. g. see [LaMa86, 
Ba V86]), for parallel signal processing circuits, such as e. g. for fast fourier 
transform. Shuffle operators are also useful for mixed mode (word format) RT level 
and (single-bit format) logic simulation in using KARL, where the shuffle pattern 
may be used as an adapting interface between both kinds of the hardware description. 
For more details you may request [m... W86, NN86]. 
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Step-wise refinement using a CHDL 
Refinement capability is an important language property to achieve its use as a 
design language. So you do not need to change the language in top-down planning 
from a purely functional specification to a more detailed description which then may 
be used to enter logic design and physical design. So you may use the same language 
and the same tools to analyze and to synthesize a conceptual description being a 
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structural/topological / functional notation which carries along all the clever 
architectural ideas for testability, for structured design, etc. over to the silicon 
implementation team. 

Fig. 3.6 illustrates stepwise refinement in KARL and ABL by an example circuit, a 
simple 2-way multiplexer. It always shows two notations: the textual (KARL) 
notation at the left side, and the ABL notation (such as produced by the ABLED 
editor [GHW85, Far86]) at the right side. It shows the circuit in different degrees of 
detailedness, in different abstraction levels: a) at RT level, b) at gate level, c) at 
switch level. So this also illustrates, that the KARL descriptions a) thru c) are 
technology-independant. By the way: the simulator gives the same response for all 
three of them. So this is required to have a consistent implementation of the 
language KARL. 

Figures 3.6 d) and e) are no more KARL descriptions, but circuit diagrams of 
different implementations: d) in CMOS technology, e) in NMOS technology. 
Figures d) and e) have been produced bei another graphic editor MLED [WeI86]. This 
is a mixed-level editor including all levels from RT down to layout. Bei menue 
guidance any mixed-mode representation can be arranged, such as e. g. showing one 
cell at ciruit level, another one at layout level, a third one at RT level (here using 
ABL) etc. 

CHDL Use as a Design Calculus 
Section 3.4 has illustrated the consistency of KARL and its capability for step-wise 
refinement, so that top-down design can be carried out without changing the 
language. This is a requirement if it is desired to use the language as a design 
calculus in order to reach design goals by means of a sequence of algebraic 
manipulations. However, such a language can only be a medium to express such 
algebraic rules, however, it cannot be this algebra itself. This medium, however, is 
powerful, suitable for effective exploration of many areas of application by 
experimenting with alternative architectures and structures. In [NN85, Lem86] an 
example is described, where a regularly structured integer multiplier layout has been 
developed from the algorithm description by a sequ3nce of successive algabraic 
manipulations. In [Ha77, Lem 86] approaches to a general algebraic schematics 
development are illustrated in using binary-to-BCD, BCD-to-binary code converter, 
and universal shifter examples. 

CHDL-BASED DESIGN ENVIRONMENTS 
The KARL core system (fig. 4.1 a) as well as the KARL environment are modular 
systems. The KARL core system uses three different languages: the hardware 
description language KARL as a description source, the simulator activation and test 
description language SelL [HHa86], and the executable intermediate form called 
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Fig. 4.1. 

RTcode. RTcode [HaMa86] has turned quasi-standard interface to a number of tools 
within and outside the CVT project [NN86] (fig. 4.1 b). For instance, three different 
simulators have been implemented, which accept RTcode: the original KARL 
simulator [Web81, HHa86], the fault simulator of the CVT CAT system [SMP86, 
SM85]' and an event-driven fast simulator having been implemented at CSELT 
[per86]. 

Figures 4.1 c) and d) illustrate the implementation of other languages by means of 
precompilers or interpreters generating KARL source descriptions. The language 
superKARL [GHH086] is a KARL extension featuring parametric cell descriptions 
using array size and path width parameters [HaHa86]. Fig. 4.6 illustrates the 
generation of cell arrays under control of superKARL array size parameters and data 
path width parameters: on-dimensional cell arrays (a), bit node arrays (e), and word 
node arrays (0; two-dimensional cell arrays with linear growth(c), exponential 
growth (d), node arrays with exponential growth (g), as well as recursively definde 
two- dimenstional cell arrays (b). superKARL also features a rule-driven, and thus 
technology-adaptable algorithm for translation of personality matrixes into KARL 
functional descriptions for a wide variety of matrix-oriented logic (MOL) circuit 
techniques, such as e. g. PLAs, folded PLAs, Weinberger arrays, folded Weinberger 
arrays, Lopez/Law dense gate matrix layout, KOLTE arrays, and others [GHH085]. 
There are also other CAD tools having interfaces to the KARL system [NN86] , not 
described here because of lack of space. 
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Using an Interactive Graphic CHDL Editor 
This section briefly illustrates a new interactive graphic RT level editor ABLED, 
from a user's point of view. ABLED has been developed within the CVT project bei 
CSELT (Torino, Italy) and Kaiserslautem University [GHW85]. It is an interactive 
graphic interface to the KARL system (see fig. 4.1 d). Its typical diagram symbols 
are illustrated by the right side of figures 3.6 a thru c, as well as by Fig. 4.2. The 
arrows to indicate ports are placed on the edge of cell boundary boxes to allow the 
DOMINO notation [Ha77] to show symbolic abutment (of abstract boxes) in 
architectural diagrams, and, to show physical abutment (when boxes reflect the shape 
of real cells) in case of a partitioning derived from a chip floor plan. (This DOMINO 
feature is especially useful in MLED [WeI86], which combines the features of 
ABLED, and those of editors for layout, circuit diagrams, and logic diagrams (also 
see section 3.4).) The symbols are automatically created by picking via menue. The 
editor also includes an on-line graphical syntax check, which immediately diagnoses 
illegal matings. This accelerates working with KARL considerably, since most of 
the diagnostics is already interactively available, before the KARL compiler has been 
called to parse the derivative of the ABL data structure (fig. 4.1 d). ABLED (and 
MLED) uses a tightly guiding menue technique, so that working with KARL is 
much more easy to the user via ABLED, than directly at the KARL textual interface. 
For illustration fig. 4.3 shows a more complex diagram example having been plotted 
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by ABLED. A detailed description of ABLED, from a users point of view, gives 
[GHW85]. 

CHDL-based CAD Tools 
A number of KARL-related CAD tools [NN86] have been developed within research 
projects: within the CVT project having been funded by the Commission of the 
European Communities, by the multi-university E.I.S. project being funded by the 
German Federal Minister of Research and Technology, and also outside these 
projects. Those programs are tools for automatic synthesis (silicon compilers using 
KARL source input [ArMa86, EvP85]), for interactive synthesis (microprogram 
transformation [RaGr86], interfacing to RTcode of the KARL core system, compare 
fig. 4.1 b) for RT level verification [GSch85, SchG86], for test pattern development 
and testability analysis (the CVT CAT Environment [SM85, SMP86], the 
KARATE program [HaW085]). Fig. 4.4 a.) shows how test development and 
simulation are integrated by using the same language SCIL (Simulator Command 
and I/O Language [HHs86]), which at the same time is the test description language 
used as an output language by the test generator KARATE, and, the stimuli and 
command language used as an input to the KARL simulator inside the KARL 
core system (compare fig. 4.4 b). A test assembler program is used to assemble 

superKARL 
language 

layout 
converter 

RIF .... --.·I 
a) format 

Fig. 4.5 

paramete rized 
KARL cell 
library 

layout 
library 

array size! personality 
path width Tmatrixes 
parameters 

superKARL 

b) 
language 

fi Ite r ~ KARL 
language 

a device-specific test program for the test device in use (fig. 4.4 a). Only this 
assembler has to be changed, when an other test device will be used. 

Fig. 4.4 b shows, how also a physical model extension feature (PMX [HaHi86]) is 
integrated into the same set-up. (A PMX allows the simulator to communicate with 
real hardware 'physical model' , such as e. g. an already existing prototype hardware 
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module of the system to be developed. This requires by far less CPU time, than 
simulating the whole system.) Since the tester anyway is directly coupled to the 
computer which is hosting the KARL core system, as well as the test program 
assembler, the physical model may be just plugged into the adapter of the testing 
device: The only difference is, that the tester is talking to another piece of software: 
to the simulator. 

Interfacing to other CAD Tools 
This section briefly illustrates interfacing to layout level by means of a few example 
configurations. The most direct connection from CHDL down to layout is the 
silicon compiler, having been mentioned above [LaMa86, EvP85]. 

KARL Extraction from Layout. The other way around is behavioural 
extraction from layout. The REX system [Neb86] directly generates KARL 
descriptions from Layout (so the interface is simple). It is rule-driven, and thus 
technology-adaptable. REX is useful, but wasting CPU time for large circuit design 
verification, however, would be more efficient for verification of critical cells and 
library 
cells. So such an extractor could be very useful to verify the basic circuit 
library needed for a much more efficient methodologies based on personality matrix 
notations of MOL (matrix-oriented logic; compare section 4.) 

KARL Extraction from Personality Matrixes. The MOL extractor 
[GHH085] accepts description sources at higher symbolic layout levels, using 
personality matrix formats, or similar notations. At this abstraction level many 
CAD tools are much more efficient than those based on Igeometric ayout sources. 
Examples: extractors (generate KARL description from a personality matrix) 
synthesizers and topological optimizers [HaEIS86] layout architectural converters 
(see next paragraph) etc. 

Support of Layout Conversion. Let us go a little bit into detail in layout 
conversion. Its goal is the architectural exptension or compaction of circuit layout 
with respect to array size and path width. The goal, for example, be the automatic 
conversion of the layout of a 64 kbit memory into that of a IMbit memory. The 
memory array size has to be extended, and its peripheral logic has to be extended 
linearly and to be relocated geometrically, where a modified layout format RIF 
(relative intermediate form) may be helpful (fig. 4.5 a). (Also fan-out changes etc. 
have to be considered, of course). However, the organizational aspects are of much 
higher level, than layout. Such a layout converter has to be guided by RT level data. 
A KARL extension like superKARL (also see section 4.) or its forerunner version 
hyperKARL [Borr85] uses such array size and path width parameters. The actual cell 
hierarchy tree is produced after parameter assignment and translation into KARL (fig. 
4.5.b). The layout converter (fig. 4.5 a) has to be partly implemented in a similar 
way, or, has to be part of, or, interfaced to, the filter program. This again shows the 
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usefulness of interfacing RT level tools to low level CAD tools. 

KARL interfaces to other CAD Tools. The following tools, having been 
interfaces to KARL, or, beeing KARL-based, have not yet been mentioned in this 
paper. The VERENA verifier, based on theorem proving techniques, compares two 
different KARL descriptions for equivalence [GSch85, SchG86]. Also the 
ARIANNA chip planner has interfaces to KARL [ARA84]. The CVT CAT 
(Computer-Aided Test Development) environment uses 5 different tools, part of it 
beeing KARL-based [MHM84, SMP86]. For more literature and other information 
on KARL and its applications see [NN86, LM86]. 

CONCLUSIONS 
We have illustrated the usefulness of using CHDLs and related tools. We shave 
shown, that contemporary CHDLs are a better front end of the ASIC design process, 
that CHDLs are very useful in concise design problem capture, in design for 
testability and, in efficient structured VLSI design in directly casting algorithms onto 
,ilicon. We tried to illustrate the substantially improved acceptance of CHDLs by 
provided an interactive graphic user interface. We also tried to show the substantial 
lcceleration of the design process by using such a graphic interface including an 
)n-line graphic syntax check. We hope to creasonalble onvince the readership of the 
VLSI community that in an ASIC-oriented and USIC-oriented (User-specific IC) 
iesign environment there is no way to cope with complexity of design planning and 
product planning without using such high level tools. 
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INTRODUCTION 

Test data generation for complex integrated circuits or today printed circuits 
requires an hierarchical approach including the possibility of using diversified types 
of descriptions (behavioral. functional. structural) as well as diversified test 
generation methods for elementary blocks. 
Moreover. new techniques. mainly Artificial Intelligence ones. seem to be useful to 
store test experiences. to provide test advices and to solve some problems encountered 
during the test generation. 
The scope of this paper is to present an integrated approach of the test generation 
problem fullfilling these requirements (figure 1). 

I CAD Interfoces I I TEST ADVISOR I 
TEST 

ASSEMBLER 

ATPG for 11111 ATPG for 
Rondom Logic PLA 

ATPG for 
Controller 

ATPG for 
I terot i ve Logi c ATPG for 

Memory 

Figure 1 : a system for an integrated approach of test generation 

Automatic test programs generators (ATPG) are used as low level servers. They 
are specific to different types of logic (random logic. structured or iterative logic. 
PLA. memory. processor •... ). The most original ones (dealing with controllers. PLA. 
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and memories) will be illustrated in section 1. 
Section 2 defines the task of the test assembler which receives informations about the 
test patterns generated for the elementary blocks and which helps to construct the 
global test program. This global test program has to exercize each elementary block 
according to the local test patterns. 
Section 3 outpoints the help which may be expected from a test advisor : the test 
advisor starts from a high level description and aims at providing the test assembler 
with an efficient help or advices about the global optimization of the test. 
Finally. the interface with the CAD data base is discussed in section 4 ; in order to 
organize the different informations related to the test problem in an efficient way. an 
object oriented description based upon frames will be used. 

1 - THE LOW LEVEL ATPG SERVERS 
1.1 - ATPG for random and semi random logic 

ATPG for random logic detecting stuck-at faults on gate level models are of 
common use [1] ; a lot of progress deal with algorithmic improvments [2] and 
research concerns mainly the extensions to complex MOS gates [3]. By semi random 
logic. we mean mainly iterative or bit sliced logic. Iterative logic test methods have 
been extensively studied [4] but their implementation in a convenient ATPG is less 
common. As random logic is. in most systems. computation logic thus iterative logic. 
this point is of high importance. 

1.2 - ATPG for PLA 

A huge amount of litterature has already covered this topic ([5]) ; the regularity 
of PLAs allows to start from a list of realistic defects which is better than a list of 
faults on an equivalent logic schemata. 
The main problems to be solved by an ATPG for PLAs are related to the following 
remarks: 

- the type of defects and the resulting errors depends on technology (NMOS. 
CMOS. pre loaded CMOS. Bipolar .... ). 

- the number of commonly considered defects is very large (shorts at every 
crosspoint .... ). 

The study of the possible defects and of their related effects in various technologies lead 
us to conclude ([6]) that the functional errors are either the disappearance of PLA 
product terms or the appearance of other product terms which can be characterized 
(product terms "adjacent" to the implemented ones .... ). 
In addition. memorization errors must be considered in CMOS technologies (stuck open 
faults). 
Thus the ATPG implemented in our system is composed of 2 modules (figure 2) : the 
first one deduces the set of functional errors equivalent to the set of defects selected by 
the user ; the second one generates the test itself. starting from a classical description 
of the PLA and the previous functional errors list. 
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Figure 2: ATPG for PLAs 

The related software is 2000 Pascal lines long and is running on VAX-VMS. 

1.3 - ATPG for memories 

Algorithms for memory testing are well known and are implemented on any test 
equipments. The assistance given in our system consists in selecting a test algorithm 
according to the following criteria : 

- the error hypotheses given by the user, 
- the internal organization of the memory cell array, in order to reduce the test 

length without loss of the efficiency (for example, low probability cell couplings are 
eliminated), 

- the suitable test length and the memory environment ; the assistance leads to 
define a balanced test for complex circuits: the test of a local memory, for instance, is 
generated with respect to the coverage rate in the other blocks of the circuit. 

1.4 - ATPG for controllers 

A controller implements next state and output equations, the set of states being 
stored in memory points. It is well known that a structural approach to test 
controllers is inadequate and inefficient. 
The good way to approach its test is to start from its functional specification in term 
either of a classical state graph or a flowchart. In our system, the state graph of a 
controller is described using the high level language CADOC.LD ([7)). 
In CADOC.LD, outputs signals are associated with the nodes and timed input conditions 
with the transitions (an example is given on figure 3) ; a special effort is made to 
allow an easy description of timing diagrams for both input and output signals. 
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not B : cd 

C3:= (I,cd) (O,CK!) 

CKl 

Figure 3: Example of a CADOC.LD description 

Remark: 

Cl := (U,O) (l,d)(O,CK1) 

wi 11 be interpreted 6S : 

CK~ 
Cl_ I it----+ '----

i d 

The ATPG for controllers aims at giving the timing diagrams of required inputs to 
go through the pathes of the graph. These test cases may be found automatically by 
"timed symbolic execution" of the state graph ([8],[9)). Nowadays, only guided 
assistance is given to find the path conditions required to test the controller. These path 
conditions are stored as test results associated with the controller and will be used for 
determination of the global test involving this controller. These path conditions 
express time-symbolic timing diagrams and are illustrated on figure 4 ; the outputs 
results are stored under the same form. 
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CK 
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B 

~ Cl 

I C2 

C3 ~ ~ ____ -+ __ -+ __ -+~ ____ +-~r-l~: ____ __ 
~ ~ 

to t t2 t3t4 tS t6 t7 time 

Figure 4a : Timing diagrams for path PO,Pl,P2,P3 

path A = (0,0) (l,tl) to < t1 
condition B = (0,0) (l,t2) t2 = fex (Ck,tl,l ) 

Cl (0,0) (U,t4) (l,t4+d) (O,t5) 14 = fex (CK,tl,2) 
output C2 = (0,0) (l,t2) (O,t4) t5 = fex (CK,tl,3) 
sequences C3 = (0,0) (l,tS) (O,t7) tS = rex (CK,t5,l) 

t7 = fex (CK,tS,l) 
t2 < t3 < t4 

where 
- fex (CK,li,j) represents the jt h falling edge on variable CK 

after time ti 
- rex (CK,ti,n represents the jth rising edge on variable CK 

after time ti 

Figure 4b: time-symbolic timing diagrams 

2 - THE TEST ASSEMBLER 

The test assembler is the key point of the system ; its goal is to generate a test 
program for a complex circuit or a complex printed board starting from the knowledge 
of the local test patterns for each elementary block. In other words, the system has to 
find functional global test activations exercizing the different blocks with the expected 
test patterns (figure 5). 
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LOCAL TEST ACTIVATIONS 

RESOURCES 
LOCAL TEST PATTERNS 

Figure 5: multilevel approach of the test generation problem 

2.1 - Description language and knowledge base for elementary blocks 

The description language has to, model a circuit as an interconnection or a 
cooperation of elementary blocks or resources. A block may be described at a 
behavioral, functional or structural level ; the language used in practice in this 
approach is still CADOC ([7],[8)). A resource is described by its timed 10 
specifications and its internal functioning which may be described by a classical 
bipartite state graph (nodes and transitions). Let us notice here that the same language 
is used for describing both control and data path parts of circuits. 
Two types of knowledges have to be stored for each elementary resource, one is made up 
of the global informations about the functional activations of the block, the other one is 
made up of the test activations suitable for the block. 

2.1.1 - General knowledge of a resource 

With a resource, must be associated the set of possible functional pathes labelled 
by the corresponding 10 timing diagrams. These informations may be stored using a 
rule-like representation : 

IF {input sequence } THEN {ouput sequence} (figure 6). 
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TO 

ACTIONS 
PO : AO; 
Pl:Al; 
P2: A2; 

.-++ PO P3 : A3 ; 

T3 

T5 

P4:A4; 

TRANSITIONS 
(firing conditions) 

TO: CO ; 
T1 : Cl 

CADOC descrl pt 1 on of 8 resource 

RULES: 
1 : IF (CO,C1 ,C2) THEN (AO,A1,A2,AO) 

path condition expected outputs 
2 : IF (C3,C4) THEN (AO,A3,AO) 
3 : IF (C5,C6) THEN (AO,A4,AO) 

Figure 6 : knowledge base of a resource 
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The automatic generation of this information is equivalent to process the timed 
symbolic execution of the functional model of the resource ; this has been extensively 
studied in ([9),[10J). The difference with controllers (cf. 1.4) is that the execution 
is symbolic with respect to time and value. 
In practice, an assistance is given to the designer to create this knowledge; this 
assistance generates the set of pathes and gives explicitely the sequences of inputs 
appearing in path conditions. 

2.1.2 - Test oriented knowledge of a resource 

With a resource is also associated the test sequences and/or the test data which are 
the target test of the resource. These data may be generated either by ATPG tools or by 
the designer. These informations are declared in the same format as the global 
informations associated to complex blocks (10 timing diagrams or rule based 
descriptions). In the case of combinatorial blocks, the test oriented knowledge is 
reduced to a list of vectors. 

2.2 - Top-down interactive and semi-interactive mode of the test 
assembler 

In the interactive mode, the test assembler works like a classical fault simulator; 
but it works at a functional level instead of the logic level and the notion of fault 
coverage is replaced by the notion of functional test activations covering. The designer 
chooses himself test inputs and for every activation of the global circuit, the system 
updates the list of covered activations for each resource ; it analyses the completness 
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with regards to the local test target ; it gives, for instance, the list of not yet reached 
test cases (pathes or data within a path). 

The semi·interactive mode leads to a guided generation of the inputs. This guidance 
is based either on control flow or data-flow, according to the type of the circuit. 

2.2.1 - Control guided generation 

This mode allows a "semi-symbolic" simulation : the designer determines some 
inputs but is allowed to leave other ones undetermined. The simulator performs the 
simulation by declaring "unassigned" all variables depending on unassigned values. As 
long as no simulation choice (path selection or activated resource selection) is 
conditionned by such a variable, the simulation and analysis go on. If a choice raises 
up, it is submitted to the designer jointly with the current state of the test. To 
complete its test, the designer may choose a path rather than another one or activate a 
block rather than another one by assigning some unassigned variables. 

2.2.2 - Data-flow guided generation 

This mode is based on the result of a previous analysis of the data flows in the 
circuit ; this analysis is performed by the test advisor presented in next section. This 
test advisor suggests a general organization of the test which is followed by the 
designer helped by the functional simulator. 

2.3 - Bottom-up test generation 
test case 

backward and forward chaining of a 

This mode is dedicated to difficult cases; when a local test case (a critical point of 
the circuit) does not show up easily using the first two modes, an automated test 
generation may be started. The test case is locally identified and consistency to the 
inputs as well as propagation to the outputs are looked up for ([10]). As previously, 
this is very similar to a classical approach ( path sensitization) but at a different 
level and on different types of descriptions. The system refers to the designer and an 
interactive research is performed if an impossibility or a loop is detected. 

The two steps are illustrated on figure 7. 

i 
n 
p 
u 
t 
s 

Figure 7 

Resource Under 
Test 
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STEP 1 : consistency 

Goal: activate a path Pi of the Resource Under Test (RUT) 

Procedure: 

1 : Determine all the resources connected to the inputs of the RUT. 
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2 : Find the set {Rkl of rules of these resources the right part of which satisfies 

the left part of the rule 
related to path Pi. (backward chaining) 

3 : Do step 2 until reaching the primary outputs. 

Example (The RUT is D) 

D 
Rule 1 : IF CO (i 1 ,i2) THEN out (01,02) 

I 

Rul enD :. • • • 

B 
.., 

Rule 1 : IFCB (i4,i5) THEN out (i 1,i2) 

Rul en·· • • • B . .., 
A I Rule 1 : IF CA (inputs) THEN out (i4,i5) 

Rule n A . 

STEP 2 : forward propagation 

Goal : observe the test results at the primary outputs 
Procedure: 

1: Determine all the resources connected to the outputs of the RUT. 
2: Find the rules {Rjl of these resources the left part of which is satisfied by the 

right part of the rule related to path Pi. (Forward chaining) 

3: Do step 2 until reaching the primary outputs. 

An automatic system realizing the backward and forward propagation is not yet 
available ; but it is possible to give a very efficient interactive help which. for a given 
test case in a resource. processes parts 1 and 2 of the consistency and propagation 
steps. 
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2.4 - Conclusion on the test assembler 

This test assembler is original on many aspects : 
. logic and structural levels are definitively left, 
- functional activation covering replaces fault covering, 
-propagation and consistency problems for test generation are 

studied as backward and forward chaining on a rule based 
functional model. 

3 - THE TEST ADVISOR 

The test advisor gives advices about the general organization of the test, the 
adequacy of the test to its objectives (type of test and equipment), insertion of test 
facilities, ... 

3.1 - Advices on the test organization 

Such an advice has been implemented successfully in the CATA system ([11)) 
starting from a data flow analysis of the circuit or the board. A simplified abstract 
model describes how the information is propagated through the different blocks of the 
circuit and the system calculates the set of data flows and the set of activated blocks 
associated with each data flow (figure Sa,b). The designer chooses a strategy 
(presently a startsmall one) and the systems suggests an ordering on the set of 
activations and gives the resulting diagnosis. 

BUS1 

Qutb 

ADDER 

Qut6dd 

BUS2 

Figure 8a : CATA model 

data flows: 
BUS1, REGB, BUS2, LDB, OUTB 
BUS1, REGA, REGB, BUS2, LDA, LDB, OUTADD 

Figure 8b : CATA results 

Diagnosis blocks 
(BUS1,REGB, BUS2) 
(REG1, ADDER) 
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3.2 - Advices on the complexity and the test coverage 

According to the goal of the test, the advisor gives several options; for instance, 
for a first debugging test, each block has to be activated once in order to have a rough 
idea of the circuit functioning (correct power supply, ... ). A complete debugging test 
requires the activation of all the pathes within the resources (this leads to a huge test 
program), end of manufacturing test has to exercize each block with shorts optimized 
patterns. 

3.3 - Insertion of test points or BIST facilities 

From a previous global expertise (using CATA system for instance) or according 
to special difficulties in the test assembly process, the advisor suggests the insertion 
of new test points. These points may be either connected to 10 pads or stored serially 
through a shift register or compacted through a signature analysis device. It suggests 
also the use of local test generators if the controlability problem is critical. 

3.4 - Advice on diagnosis 

In the case where a fault is detected, the designer must find which blocks have to 
be suspected, according to the test organization. This may be prepared by the test 
organization advisor. For a required diagnosis, the advisor suggests new activations in 
order to distinguish between the suspected blocks. 

4 - INTERFACE WITH THE GENERAL DATA BASE 

In order to facilitate test data generation, all informations related to a circuit and 
belonging to different domains (functional and structural descriptions, test 
methodology, ... ) must appear within the same data base. 
The proposed solution is to consider a circuit as an abstract object with a list of 
attributes related to each domain and a set of methods indicating either how to calculate 
the values of attributes or how CAD tools can interact with a given object. Methods will 
also be useful to check consistency between informations related to different domains. 
Such needs will be easily implemented using an object oriented paradigm ; a complete 
description of this implementation is out of the scope of this paper and we will just 
briefly introduce its main characteristics. 
In a first time we will define a set of classes according to their characteristics in the 
test domain : 

Class "random logic", 
Class "memory element", 
Class "controller", 
Class "memory". 

The following attributes will then be defined for the previous classes : 
associated test data (these data will either be given by 

the designer or calculated by an ATPG linked to this 
attribute) , 
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- complexity and efficiency of the test algorithm, 
- Built In Self Test facility, 

A global circuit will be defined hierarchically as a cooperation of objects belonging to 
one of the previous classes, mechanisms to check data consistency will be activated 
according to the methods defined within the classes. 

CONCLUSION 

Test generation is presently one of the most acute problem for all people involved 
in the ICs area (designer, manufacturers, etc ... ). The three main features outpointed 
in this paper are, according to us, required to solve it. 
First, a hierarchical approach makes a clear distinction between loIN level servers 
(ATPG for blocks of the circuit) and the test assembler guided by test advisors. 
Secondly the levels of representation of blocks and of the whole circuit or system have 
to be diversified and in any cases, a functional normalized representation is needed. 
Finally test coverage is evalued with respect to functional covering (covering of 
functional pathes) ; test pattern generation is replaced by test case generation ; 
backward and forward chaining are performed on functional models. 
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The increasing complexity of the design primitives used and the higher 

degree of integration now possible are two factors that impede testability. 

This is due to the higher number of gates which is not matched by an 

adequate increase in pin count. Using CAD tools, the cost of designing such 

"more complicated chips" can of course be kept within reasonable limits, but 

the cost of test preparation will explode due to the level of complexity. 

Another fact is that semicustom design is on the increase. Bearing in mind 

that the intention underlying semicustom design is to achieve low-volume 

production of a great variety of circuits in a very short turn-around time, it is 

obvious that the factors of high cost and long test preparation time are 

becoming more critical, as compared with universal chips produced in large 

quantities. Thus it is essential to automate test preparation by using 

adequate CAD tools, such as automatic test pattern generation (ATPG). The 

basis for the effectiveness of these tools is a strict design for testability (DFT), 

even if the chip area becomes somewhat larger. 

This paper presents several DFT strategies, which can be selected as a 

function of the internal structure of the chip to be tested. Another main topic 

is the presentation of state-of-the-art CAD tools. 
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DFT Strategies 

Design for testability is necessary for achieving a high quality standard and 

supporting the automation of test preparation. What all the presented 

methods have in common is that additional circuits, called test aids, have to 

be implemented by the chip designer. An essential condition for the designer 

is to keep in mind certain design rules. 

The main idea is a fully synchronous design. The result is circuits whose 

behavior can be completely described as a function of the external inputs and 

the internal states at discrete times (tn-1,tn,tn + 1 .... ). The change from one 

state tn to the next state tn + 1 is initiated by a special signal, called the clock 

signal. This can be achieved by using master slave flipflops, strictly 

partitioning between clock and data signals and by forbidding loops in 

combinatorial circuits. Most of the dynamic faults can thus be avoided. 

Another rule is the limitation of sequential depth S during test mode, i.e. the 

number of clock steps necessary to make a signal change at an input visible 

at the outputs. This can be realized by using additional input/outputs and 

multiplexers, controlled by a test mode signal (Fig. 1). A more systematic way 

is using a scan architecture. A further step in OFT is the built-in self-test 

techniques. 

.... Data Path 5>6 ~ ~I~ ____________________ ~r~ 

TE5TMODE 

Testdata-in Testdata-out 

5<6 5<6 

Fig.1: Reduction of sequential depth 
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Scan Architecture 

The first and foremost method of obtaining an automatically testable design 

is to reduce the sequential depth, because most automatic pattern gene

rators perform best for the purely combinatorial part. Most of the well

known ad-hoc methods to achieve this, such as partitioning, are within the 

province of the user of a design system. But since they involve additional 

investigation effort on the part of the designer to keep test preparation cost 

low, they are only of limited value. Another disadvantage is the lack of 

standardization, which is necessary for automatically deriving a circuit model 

for ATPG. The scan technique, on the other hand, can mostly be imple

mented automatically by a CAD system. There are two representatives of this 

technique: scan path 

random access scan. 

Both have the aim of transforming a sequential circuit into a purely 

combinatorial one. In this paper we will only discuss the scan-path strategy, 

and refer, with respect to the random-access scan, to the literature. 

The introduction of a scan path into a circuit means providing a possibility of 

concatenating the flipflops into a shift register (Fig. 2). An extension of the 

basic flipflop is necessary. Well-known is the LSSD concept from IBM (bevel

~ensitive ~can Qesign). The basic level-sensitive latch is here extended by an 

additional one, (Fig. 3) to implement the shift function. In this paper, 

however, we will discuss edge-triggered flipflops. The resulting model for 

ATPG is the same. 

The general flipflop consists of a D-flipflop and an appendix A defining the 

type of the flipflop (Fig. 4). For realizing the shift function, we only have to 

consider the basic D- flipflop. This can be done by inserting a multiplexer, 

which switches as a function of the TESTMODE signal, the flipflop input from 

function to scan (Fig. 5).Every flipflop gets its input data from, and passes its 

output data to a combinatorial part of the circuit. Data coming from, or 
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combina- • 

torial 
part 

SCANIN 

fig.2:General principle of scan path 

going to, the combinatorial part can now be observed and set by means of 

the scan path. One test sequence consists of three steps: 

shifting the test pattern into the scan flipflops 

storing the test answer in the scan flipflops after the delay 

time of the combinatorial part by using a clock signal 

observing the test answer by shifting it out. 

The model of each flipflop presented to ATPG can be substituted by a 

fictitious outpout and a fictitious input (Fig. 6). Thus every sequential circuit is 

transformed into a purely combinatorial one, allowing the use of a very 

effective ATPG. Besides, the sequential part can also be tested separately by 

shifting certain test patterns through the scan path. 
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Data 

Q 

Clock 
IQ 

Scanin 

Scan Clock 2 

Fig.3:lSSD storage element 

L 
11 

A >0 Q - D-FF 

12 CI 

Fig.4: Universal master slave flipflop 
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K 
D Q 

D-FF SCANOUT 
CI 

Fig_S: Universal master slave scan flipflop 

L 
11 

K 
D Q 

12 

FOUT FIN 

Fig_6:generator model 

Self-Test Architectures 

Self-test architectures have in common with the scan path concept the 

objective of enhancing the testability of devices by means of active test aids 

applied to the chip. The problem of getting suitable test patterns to the 

module to be tested and of transporting the test answers to the circuit 

outputs is solved by generating the test patterns locally and evaluating the 

test answers in the module itself. There are two alternative selftest methods: 

the first (incomplete self-test) is limited to hard-to-get-at circuit sections (e.g. 

embedded RAMs), while the second tests the entire device. The self-test can 

be controlled either on the chip or externally. 
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When automatic testing equipment is used, the test objects are examined 

sequentially, i.e. one device after the other. This is associated with a relatively 

long test time for circuits of high complexity. In contrast, the self-test permits 

parallel testing. This is an advantage especially for the wafer test in which no 

preselection has yet been made. The precondition for parallel testing is that 

all devices are supplied with the operating voltage and provided with a few 

signal lines required for the self-test. Suitable test adapters must be made 

available for this purpose. 

The self-test can be used not only for production testing but also for the field 

test of the system. For this purpose, the possibility of self-testing must be 

offered to the user of an integrated circuit. In a number of semicustom 

circuits, the self-test option is already contained in the device specification. In 

order to simplify the field test, a suitable interface must be made available. 

Like all integrated testing aids, the self-test results in a hardware overhead in 

the form of additional chip area and, possibly, a higher pin count. As 

integration density continues to increase however, this point may lose its 

significance. The modification and inclusion of components which are in any 

case required for the device function also permit the outlay to be reduced. 

Extensive automation is necessary for minimizing the design overhead 

required by the self-test equipment. It relies on suitable CAD tools which 

allow for, or implement, self-test integration at all design levels. Design 

reglementation is a prerequisite for design automation, involving a certain 

restriction of the designer's leeway in favor of enhanced testability. 

Besides the principles of self-test a number of conceivable self-test 

architectures will now be presented in more detail. The individual concepts 

are organized in line with the structure of the circuit to be tested. Since only 

the most important distinctions are to be indicated, a high degree of 

abstraction was chosen for the presentation. In real architectures, the rule is a 
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mixed form of the outline architectures shown. Naturally, other concepts are 

also conceivable in addition to the procedures shown here. 

Principle: In traditional tests with an automatic test equipment, the device is 

stimulated by precalculated test patterns and an anticipated-vs.-actual 

comparison of the individual test answers is made by the test equipment. In a 

self-test, these functions are performed with the aid of supplementary logic 

present on the device itself. In an externally activated test mode , test 

pattern generators (TPGs) produce the stimuli, and test answer evaluators 

(TAEs) assess the answers at the circuit outputs (Fig. 7). A control logic ensures 

the interaction of these test circuits. 

inputs 

Test Pattern Generator 

stimuli 

circuit to be tested 

test test answer 

Test Answer Evaluator 

outputs 

Fig.7: Self test scheme 

An effective self-test architecture selects the test pattern generators and test 

answer evaluators most suitable for a given type of device. The efficient 

generation of test stimuli and the evaluation of the test answers are of 

critical importance for a self-test. The storage of deterministic test patterns in 

a ROM is no economic proposition unless a processor structure is present. As 
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a rule, test patterns are generated by linear-feedback shift registers (LFSR). 

Fig. Sa shows a test pattern generator of this kind. By suitable selection of the 

feedback function, the most diverse pseudorandom numerical sequences 

may be generated. Of particular importance are sequences which contain all 

2n (n: width of the register) vectors with the exception of the zero vector. 

They can be used to perform a test which is complete with respect to the 

stuck-at-fault model in a relatively simple way. 

FF1 I-----iM FF2 FF3 t-"-I~ FF4 

X1 X2 X3 X4 

Fig Sa: Test pattern generator (LFSR) 

Nonlinear-feedback shift registers (NFSR) are more useful for a number of 

self-test methods (Fig. 8b). In them, the feedback function is not performed 

by linear circuit elements (exclusive OR) but rather by a network of AND or 

OR gates. Deterministic test patterns, in particular, such as are required for a 

RAM test (walking one/zero, marching one/zero etc.), may thus be simply 

generated. 

Compression of the individual test answers to a signature is the rule for 

evaluating the test answers. This task is performed by signature registers. As 

is shown in Fig. 8c, these are built out of linear-feedback shift registers with 

additional parallel inputs (MISR: Multiple Input Shift Registers).Due to this 

data compression, the fault detection rate for the occurence of multiple 

faults is less than 100% and depends on the register width. Apart from this, a 

comparison of the actual signature with an anticipated signature allows only 
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/ , 
\c 

....... 

4 FF1 .. FF2 .. FF3 .. FF4 I--,. .. .. .. .. .. .. 
X1 X2 X3 X4 

Fig 8b: 'rest pattern generator (NFSR) 

U1 U2 U3 U4 testanswers 

Signature X1 X2 X3 X4 

Fig. 8e: Test answer evaluator 

a Go/Nogo statement to be derived. Fault location is not possible, but usually 

not necessary either. 

Test pattern generators, test answer evaluators and control units are the 

elementary modules of a self-test architecture. With their aid, a self-test can 

be performed at module level. Combination of single module tests leads to a 

device test concept. Over and above this, a convenient self-test architecture 

should also take into account the possible system environment of the 

individual device. 
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Random structure: The most general application of a self-test architecture is 

in testing random logic. For this function, a self-test procedure is 

recommended which does not presuppose any specific circuit structure. 

Random logic may consist of combinatorial and sequential parts. It was 

shown in the chapter on scan architecture that the scan path principle is 

suitable for testing this class of devices. In a self-test, the scan path must be 

extended by a test pattern generator for the primary and fictitious inputs 

and by a signature register for the outputs. Fig.9 shows this concept 

schematically. 

scan 
in 

LFSR 

Scan-Path 

Combinatorial 
Part 

(random) 

MISR 

outputs 

Fig. 9: Selftest architecture for random logic 

By combining the scan path register, test pattern generator and signature 

register into a BILBO (Built-in Logic Block Observer), the hardware overhead 

can be reduced. This may be done by using the test answer evaluator for one 

module as the test pattern generator for a second module in the subsequent 

test. But this involves the disadvantages of an increasing control overhead. 

A serious disadvantage of this self-test procedure is the greatly increasing 

scan-path length for a large number of primary inputs and of storage 
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elements. Since the rule is the exhaustive test, very long test times result. This 

can be at least partly relieved by the use of pseudorandom test patterns. This 

involves the generation not of all possible test patterns but only of a number 

sufficient to obtain the required fault coverage. Another approach aims at 

Partitioning the circuit into several smaller units. An important point is to 

determine the optimal subunits to ensure minimal mutual coupling. 

Bus structure: When a bus structure is present, the device can be separated 

relatively easily into single modules to be tested, with several modules being 

connected by common buses. Enable control lines can then be used to link 

the individual modules to the bus or uncouple them from it. This permits 

relatively simple partitioning into single submodules. 

In the self-test of bus structures, a rough division can be made into two types 

of test architecture: global self-test 

local self-test 

In case of global self-test a common test module exists for all submodules to 

be tested (Fig. 10). It contains the test pattern generator, the test answer 

evaluator and the control unit. The stimuli and the test answers are 

transported on the common bus. At any given time, only a single module 

(test specimen) on the bus is activated. The advantage of this procedure lies 

in the low extra expenditure it involves, since TPG, TAE and the control unit 

can be used in common by several modules. However, since all modules must 

be tested in sequence, the test time can become unreasonable long under 

certain circumstances. 

This disadvantage is avoided by the local self-test (Fig. 11). Every module to 

be tested contains its own test pattern generator, test answer evaluator and 

control unit. The bus is needed here only to decouple the individual modules 

from each other. All modules perform the self-test simultanously, the 

individual golnogo statements being linked to a common golnogo flag. It is 

obvious that the reduction of the test time must be traded off with a higher 
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Fig. 10: Bus structure with global selftest 

hardware overhead. A conceivable and effective mix of both variants could 

be realized with common test pattern generation and local answer 

evaluation for all modules. 

~ w go 
Control - Control ~ Control no go 

gol gol gol 
TPG nago TPG nogo TPG nogo 

Module Module Module 

1 off 2 off 3 
off 

~ +- +-
TAE TAE TAE 
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Fig 11: Bus structure with local self test 
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Processor Structure: Fig. 12 shows a simplified form of a possible self-test 

architecture for processor devices. Use is made of the bootstrap method. In 

the first step, the command decoder is tested. This fault-free component can 

subsequently be used to test the data path. In this way, an increasingly 

powerful test hardware is available step by step. By exploiting the 

"intelligence" of the device, a self-test can be realized with low control 

expenditure. Processor devices with self-test components have therefore 

been on the market for some time already. 

Data Bus Instr. Reg. -..... - -..... -
test 

I/O-Unit TPG 

· . . . . . . . . 
• • Testinstruction 
• 

g 
• · . . . . . . . . 

• n • 
Data • a • Instruction 

t • 
Path • • Decoder • u • 

• r • • • • • • • • • • • • Testinstruction 
• • • • • • • • • 

Fig. 12:· Selftest of processor structure 

Regular Module Structure: Regularly structured modules like PLA, ROM and 

RAM are used in many complex circuits, because they are easily designed. For 

PLAs there exist minimization programs and layout generators. Memories are 

parameterizable in address space and word length. However, the increasing 

complexity leads to great difficulties in testing these circuits. Accordingly self-
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test may be the solution for the types of structure described before .In 

addition, self-test has the advantage of exploiting the topological structures 

of these circuits. Typical faults in the PLAs are shorts between adjacent 

bitlines or product-term lines. These faults are detectable by efficient self-test 

methods. 

For PLAs, many self-test methods have been published. For small PLAs 

(number of inputs <20), an exhausting test with an lFSR and a signature 

register is possible. For larger 'ones, it is better to separate the test for the 

AND and the OR plane. In Fig. 13 the structure of a typical MOS PLA is 

S PP 

h 
AND-Plane OR-Plane 

R 
e 
g 

......... - P1 

input decoder signature reg. 

NFSR comparator 
reset 

n-inputs m-outputs 

Fig 13: PLA selftest 

depicted. Both planes consist of NOR gates. Nor gates can be easily tested. 

The problem is to observe the outputs (product terms) of the AND plane and 

to control the inputs of the OR plane. In Fig. 14 a shift register disables all 

product terms except one. Therefore the selected one can be observed at the 
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output without interference from the other product terms. The input stimuli 

are generated by an NFSR, which produces a walking-one sequence. The 

product term shift register also supplies the test patterns needed for testing 

the OR plane. The number of test c::ycles is :::: n p (p = number of product 

terms), which is far less than 2n. 

The difference between PLAs and ROMs ist that ROMs are fully coded. This 

means that there exists one output for every input combination. For testing a 

ROM, all input combinations must be applied. Therefore, a counter can be 

used as a pattern generator. One may prefer an LFSR, because the order of 

the test pattern sequence is of no importance. 

For testing static RAMs, simple and linear algorithms can be used. For 

example, the "marching one/marching zero" algorithm may be 

implemented. Both units of information, one and zero, have to be written in 

all cells. Therefore, one needs a counter to generate all addresses. An 

additional unit, activated by an external test enable signal, controls the 

input/output unit.and concurrently generates the input data. The test 

answer is compressed by a MISR. At the end of the test, the generated 

signature will be checked by a comparator. After that, the result is a go/nogo 

flag. Errors in the comparator can be detected by an additional shifting-out 

of the signature. To reduce the hardware overhead, peripheral modules of 

an embedded RAM can be modified in TPGs and TAEs. The hardware 

overhead depends on the memory size .. the test algorithm and the modules 

of the circuit available in the periphery (Fig. 14).For large RAMs the test time 

increases enormously. Parallel testing of sections will reduce the test time. 
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Fig 14: RAM selftest 

CAD-Tools 

The test problems have to be considered at every stage of the CAD process. 

As part of the logical design process it must be verified that the circuit is 

testable, and that it is possible to generate testvectors automatically and 

with a high fault coverage. As part of the physical design process, the test 

program is generated, which contains all necessary tests. 

A typical system with the most important functions for automatic test 

preparation in a CAD environment is shown in figure 15. Input to the system 

is a description of the circuit, output is a tape with a test program, written in 

the language of the automatic test equipment. 
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Fig 15:Testing in the CAD process 
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We shall here discuss principles and algorithms for testability analysis, 

automatic test pattern generation, fault simulation and test program 

generation. However, the test problems often have to be considered also by 

other CAD tools, for example if test aids are to be integrated automatically. 

Testability Analysis 

It is important to be able to verify at an early stage of the design process that 

the circuit will be easily testable and that the tests can be generated 

automatically. One important part of a "Design for Testability" is the 

application of the test aids discussed earlier, another is the testability 

analysis, for which we shall here present two approaches: 

• Design rule audits which investigate whether or not the circuit obeys a 

set of testability-related design rules. 

• Algorithms which calculate values for controllability and observability for 

different nodes of the circuit. 

Rule Audit: In a CAD system, a set of testability-related design rules are 

defined as a basis for the automation of test preparation. This means that 

rules are given, which will create a design standard that allows for testing. 

The main goals of the rules are 

• to achieve testability ofthe circuits 

• to avoid certain kinds of faults (e.g. dynamic ones) or to make them 

detectable as static faults 

• to reduce the costs for test preparation 

• to guide the designer with respect to the integration of test aids. 

A fundamental principle of the design rules is the construction of strictly 

synchronous circuits. These are usually more tolerant of variation in 

production parameters, and in them dynamic faults can be avoided or 

detected as static faults. 
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On the basis of the circuit structure and of information about the elements, a 

-rule auditn can investigate whether the defined design rules were obeyed 

or not. The number and character of the rule violations are a measure for 

testability. 

A rule audit uses algorithms from the field of graph theory. Violations of 

structural rules can be detected by tracing paths through the circuit with due 

regard to the different types of elements. Rule violations involving timing 

problems, however, cannot always be detected through this kind of 

structural analysis. The result of the rule audit is a listing of the violated rules 

and the sites of the violations. This provides the designer with information on 

what must be changed in the circuit to make it more easily testable. A further 

development of this approach is to have the rule audit automatically give 

advice as to how the violations can be corrected or how test aids can be 

integrated. 

A rule audit can be used with advantage for hierarchical designs where the 

blocks can be analyzed individually. 

Controllability and observability: To quantify the testability of a circuit, 

measures aiming to cope with the difficulty of controlling and observing the 

logical values of internal nodes from inputs and outputs are calculated. The 

result of this analysis is statistical information giving values for all nodes. 

Nodes, which are difficult to observe or control can thus be found, and the 

circuit can be modified to make it more easily testable. 

This analysis can support the integration of different test aids. The calculated 

measures can also provide guidance for the test pattern generator. 

Six functions are defined for each node (N): 

CCO/1 (N): Combinatorial 0/1 controllability 
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co (N): Combinatorial oberservability 

SCO/1 (N): Sequential 011 controllability 

SO (N): Sequentialobservability 

The combinatorial controllability of a node is related to the minimum 

number of node assignments required to justify a 0 or a 1. 

The combinatorial observability of a node is related both to the number of 

elements between the node and an observable output and to the minimum 

number of node assignments required to propagate the logical value from 

the node to the observable output. 

The sequential controllability and observability, on the other hand, estimate 

the number of sequential nodes that must be set to put the desired value on 

N or to propagate the value of N to an output. The sequential values are a 

measure of the number of time frames required to control or observe an 

internal node of a sequential circuit. 

For an external input node I , the controllability functions are defined as: 

CCO ( I ) = 1 

CCl ( I ) = 1 

SCO ( I ) = 0 

SCl ( I ) = 0 

Starting with the external inputs, the controllabilities are calculated for all 

nodes. For a 3-input ( I 1, 12, 13) NOR gate, the controllabilities for the 

output (0) are defined as: 

CCO (0) = min [CCl ( I 1), CCl ( I 2), CCl ( 13)] + 1 

CCl (0) = cco ( I 1) + CCO ( I 2) + CCO ( I 3) + 1 

SCO (0) = min [SCl (I 1), SC 1 (12), SC1 (13)] 

SCl (0) = SCO( 11) + SCO( 12) + SCO( I 3) 
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To set the output to 0, one of the inputs has to be set to 1; thus the most 

easily controllable input is chosen. To set the output to 1, all inputs have to 

be set to O. 

The NOR gate has the combinatorial depth 1 and the sequential depth 0, so 

the combinatorial controllabilities are increased by 1. 

For an external output node 0, the observability functions are defined as: 

CO (0) = 0 

50(0) = 0 

Starting from the external outputs, the observabilities can now be calculated 

for all nodes. For one input (e.g. the first one) of the 3-input NOR gate, the 

observabilities are defined as: 

CO ( I 1) = CO (0) + ceo ( I 2) + ceo ( I 3) + 1 

SOC 11) = SO (0) + SCO( I 2) + SCO( I 3) 

To observe the value of I 1, it is necessary to set 12 and I 3 to 0 and to 

observeO. 

Automatic Test Pattern Generation 

Generally speaking, to test a circuit means to apply some values to the inputs 

of the circuit, to observe the output values, and to compare these with the 

expected output values. If there is a discrepancy between the observed and 

the expected .values, the circuit is said to have a fault. 

There are many different approaches and ideas how to find test patterns for 

a circuit. The easiest one would be to apply all possible input vectors and 

observe the outputs (exhaustive test). This is not normally possible because of 

the amount of necessary test patterns. For a combinatorial circuit with n 
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inputs, we would .have 2n test patterns. For a sequential circuit, the number 

would be even larger by several orders of magnitude. 

There are different methods of generating a smaller number of test patterns 

for a given circuit:. 

• functional test pattern generation, in which a functional circuit 

description is used and.the faults are in some way defined as deviations 

from this function. 

• Random test pattern generation, in which a randomly chosen subset of 

the exhaustive testis used. The method can be improved if a suitable 

distribution of zeros and ones can be calculated for the inputs. 

• Structural test pattern generation, a structural circuit description is used 

and the considered faults are directly related to the physical elements or 

signals. 

The state of the art is to use structural and/or random test pattern· 

generators. We shall here discuss the D algorithm as an example of structural 

test pattern generation. Most of the structural ATPG algorithms are 

extensions of the D algorithm. 

Before we go on to discuss the algorithms for automatic test pattern 

generation (ATPG), we have to define what faults we shall test for, i.e. a fault 

model. 

Faults and fault models: There are many different types of fault: 

A static (logical) fault changes the function of the circuit. A commonly 

considered type of static fault is a fault through which the value of a signal is 

stuck at logical 0 or. 1. (The stuck-at-fault model). 
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A dynamic fault changes the function of the circuit at a certain frequency or 

under certain timing conditions. A typical dynamic fault is an excessive time 

delay for an element. 

A parametric fault changes the magnitudes of circuit parameters, such as 

voltage or current. 

These faults may, further, be permanent or intermittent, single or multiple; 

they many be caused by shorts, open connections or other physical defects, or 

their occurrence may depend on temperature, aging and so on. 

To be able to generate test patterns automatically, it is necessary to specify 

what faults shall be considered, that is, to define a fault model which 

describes the effect of the faults on the logical behavior of the circuit. Such a 

fault model will necessarily regard only certain types of fault. 

Usually, test patterns are generated automatically only for single stuck-at-OI1 

faults. Most static faults are detected by using test patterns generated for 

this fault model. There are however static faults, e.g. CMOS-stuck-open

faults, which are not always detectable with this fault model. 

There are different approaches to the automatic generation of tests for some 

dynamic faults. One possibility is the so called clock rate test, i.e. a static test 

executed at a high frequency. 

Tests for parametric faults are usually added to the other test patterns, 

depending on the technology involved. 

Structural test pattern generation: As discussed above, test aids such as the 

scan path technique transform a sequential circuit into a combinatorial 

circuit during test. Hence, we shall only consider combinatorial circuits here. 

Extensions for sequential ones are described in the literature, but they are 

much more sensitive to the size and the complexity of the circuits. 
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To generate a test pattern for a certain fault, the behavior of the faulty 

circuit is compared with that of the faultfree one. A test pattern is 

successfully generated, when an observable value differs in the faulty case 

from that of the faultfree case. To facilitate the comparison, the two circuits 

are considered in parallel using composite generation values: 

Generation 

value 

o 

D 

D 

Fault free 

case 

o 

o 

Faulty 

case 

o 

o 

To describe an element for test pattern generation, different aspects have to 

be considered. They will here be shortly explained by using a two-input 

NAND gate as an example. 

11 
NAND o 

12 

Fig 16: A two-input NAND-gate 

• The primitive cubes describe the normal, logical behavior of the 

faultfree element. 

• The propagation- D cubes describe how a faulty signal with the value 

D or D can be propagated from an input to an output of the 
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o 
1 

1 

o 

element,i.e. how the other input values have to be set, to make the 

output value change if one input value changes. Normally, there 

should also be vectors with more than one input DID. This means that 

all of these inputs have to change to make the output value change. 

d 
e 
f 

9 

11 

D 

1 

D 

1 

12 

1 

D 

1 

D 

o 
D 

D 

D 
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• The 0 cubes of a logic fault describe how the element is to be tested, 

i.e. what fault model was chosen. They contain the input vectors that 

must be applied to the element in order to test it, and the expected 

output values (embryonic test). 

We shall here consider the single stuck-at-fault model, which for the NAND 

gate implies six different faults: 

I 1: s-a-O s-a-1 



VLSI Te8ting 541 

11 12 0 11 12 0 

h 0 1 0 s-a-1 s-a-O 

1 0 0 s-a-1 s-a-O -J 1 1 0 s-a-O s-a-O s-a-1 

I 2: s-a-O s-a-1 

o : s-a-O s-a-1 

To explain the main steps of the algorithm, we shall study a simple circuit 

consisting of four NAND gates (figure 17). We want to find a test pattern for 

the fault: input 11 of gate G2 is stuck-at-1 . 

1. Embryonic test. Select a D-cube for the fault. This defines the faultfree 

values of the inputs and the possibly faulty one (DID) of the output. 

For G2 we choose h, which defines L6: = 0, 13: = 1 and L7: = D. (Figure 17a) 

2. 0 drive. Select propagation D-cubes for a chain of elements from the 

considered one to an observable output, so that the output value will 

change depending on whether the fault exists or not. 

For G4 we choose 1. which defines L8: = 1 and L9: = D.(Figure 17b) 

Since 19 is an observable output, the D-drive is finished. 

3. Line justification. During the first two steps, many elements got 

defined input values. These have to be set via controllable inputs. To 

doso, the primitive cubes will be used. 
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Injededfault: G2-11: s-a-1 
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L6 OJ NAND 
G1 

NAND 0 L7 
1 G2 

13 

NAND L9 

G4 
,.....-

L4 NAND 
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Fig 17a: Embryonic test 
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Fig. 17b: D-drive 
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We have defined values for L6, L7 and LB. We now have to make sure that the 

signals L6 and LB, which are not directly controllable, are set properly. To set 

L6 to 0, we use C for G1, which defines U: = 1 and L2: = 1. To set LB to 1 we 

choose a, which gives L4: = O.(Figure 17c) 

1 
L6 

NAND 0 ... 1 G1 

U 

L2 NAND D 
1 1 G2 

L3 

0 
1 

NAND L4 

G3 
LS 

Fig. 17c: Line justification 

We now have a test pattern for the studied fault: 

(U, L2, L3, L4, LS, L9) = (1,1,1,0, X, D). 

Ll 

D 
-

1 

LB 

If the fault exists, the output value will be a 1, otherwise a O. 

-
NAND D L9 

G4 ~ 

In all steps of pattern generation there may exist many alternative choices. It 

must be kept record of what alternative was chosen so that, if necessary, the 

other ones can be considered later on. The reason is the common case that a 

signal is set to a certain value over one path and must be set to the opposite 

value over another path (figure 17d). To resolve such an inconsistency, it is 

necessary to go back to the last step, where a not yet used alternative exists ( 

backtracking), and make another choice. For G3 in the example of figure 17d 
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1 L6 
NAND O. 1 G1 

L1 

L2 NAND D L7 
1 1 G2 

L3 

t D -
D NAND L9 

0 1 G4 ~ 

-- OR 0 0 G5 1 NAND L4 
G3 

LS L8 

Fig. 17d: Inconsistency 

we choose b instead of a, which defines LS : = 1. 

Fault simulation 

Fault simulation means that a circuit is simulated under certain fault 

assumptions and the results are compared with a simulation of the faultfree 

circuit. The fundamental goal is to find out if certain faults can be detected 

with the given test patterns. 

In testing, fault simulation is used for the following tasks: 

• Calculation of exactly which of the considered faults were detected by 

the given patterns. This information is used as input to the ATPG tool, 

which then shall generate test patterns explicitly for the not yet 

detected faults. Since the ATPG tools do not normally exactly know all 

the faults that are detected with the generated patterns, an iterative 

strategy is often used, where ATPG and fault simulation are executed 

alternatingly. 



VLSI Te8ting 545 

• Calculation of the fault coverage of a given test pattern set. The fault 

coverage is the ratio of the number of detected faults to the total 

number of faults possible with the given fault model. The fault 

coverage is a measure of the quality of the test patterns. 

• Creation of a fault catalog with information on which faults are 

detected through which patterns. This is important if a fault diagnosis 

is to be carried out. For ICs a fault diagnosis is not normally made, since 

there are no components which could be exchanged or repaired. 

Test Program Generator 

A test program contains parts for the following functions: 

• Parametric tests. Here the magnitudes of some circuit parameters, such 

as voltage or current, are measured. 

• Functional tests for logical faults. 

Here the logical function of the circuit is tested. This is done by using 

the generated test patterns, which can be extended by manually 

written patterns. 

Tests should be carried out both for static and for dynamic faults. 

The functional test for static faults can be executed once more but at a 

high frequency (clockrate test), to detect certain dynamic faults. 

• Statistics and shmooplots. Statistics are used to calculate the yield and 

to detect design weaknesses. The shmooplot describes within what 

area (e.g. of voltage or frequency) the circuit functions correctly. 

As part of a CAD system, the test program should be generated automatically 

for the automatic test equipment (ATE) used. To do this manually would 
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consume too much time.The generation of the test program can be done by 

a program with the following functions: 

• The parts for the parametric tests are generated. On behalf of 

technological parameters and a general test program for the actual 

technology and ATE. 

• The test patterns from the ATPG and/or the manually generated ones 

are translated from some neutral ·format into the language of the 

actual ATE. 

• The instructions for the desired statistics and shmooplots are 

integrated. 

Conclusions 
To test an arbitrary complex and highly integrated circuit for all possible 

faults may be an almost impossible task. To obtain the tests automatically as 

a part of a CAD process is even more difficult. In order to be able to 

guarantee a high quality and a highly automatic design process a test 

strategy and a standardization are necessary, which means that testability 

aspects have to be considered in all stages. A high degree of testability may 

be achieved by observing certain design rules and/or by integrating extra test 

aids. 

Whether or not the testability aspects have been considered, can be checked 

by CAD-tools for testability analysis in an early stage of the design process. If 

the results from this analysis are good, it can be guaranteed that the circuit is 

easily testable and that the necessary tests can be obtained automatically. 
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