
Exploring Artificial
Intelligence:
Survey Talks
from the National Conferences
on Artificial Intelligence

Contributors
David Barstow
Woody Bledsoe
Daniel G . Bobrow
Randall Davis
Gerald DeJong
Kenneth D. Forbus
Nita Goyal
Michael P. Georgeff
Barbara J . Grosz
Walter Hamscher

Richard Hodges
Richard E . Korf
Wendy G . Lehnert
Ramesh S. Patil
Judea Pearl
C . Raymond Perrault
Raymond Reiter
Yoav Shoham
Howard E . Shrobe
Beverly Woolf

Edited by
Howard E . Shrobe and the
American Association for Artificial Intelligence

Morgan Kaufmann Publishers^ Inc.
San Mateo, California

Editor and President Michael Â. Morgan
Production Manager Shirley Jowell
Text Design Michael Rogondino
Cover Design Michael Hamilton
Cover Mechanical Irene Imfeld
Copy and Technical Editor Lee Ballentine
Composition Ocean View Technical Publications
Text Programming Bruce Boston
Index Frances Bowles
Proofreading Patricia Feuerstein

Figure credits can be found on page 671.

Library of Congress Cataloging-in-Publication Data

Exploring artificial intelligence
Papers from the 6th and 7th National Conferences

on Artificial Intelligence, held 1986 in Philadelphia
and 1987 in Seattle.

Bibliography: p.
Includes index.
1. Artificial intelligence—Congresses. 2.Reason

ing—Congresses. I. Shrobe, Howard. II. American
Association for Artificial Intelligence. III. National
Conference on Artificial Intelligence (6th : 1986 :
Philadelphia, Pa.) IV. National Conference on
Artificial Intelligence (7th : 1987 : Seattle, Wash.)
Q334.E98 1988 006.3 88-13041
ISBN 0-934613-69-9

0-934613-67-2 (pbk)
Grateful acknowledgment is made to the following for permission to reprint previously

published material.

Annual Reviews: Perrault, C. Raymond and Barbara Grosz (1986) Natural Language
Interfaces, Annual Review of Computer Science, 1:47-82; and Reiter, Raymond (1987)
Nonmonotonic Reasoning, Annual Review of Computer Science, 2:147-186. Repro
duced with permission from the Annual Review of Computer Science © 1986 and 1987
by Annual Reviews Incorporated.

Cover design with the kind permission of Michael Hamilton based on his original con
cept for the cover of AI Magazine, Vol. 6 No. 2.

Morgan Kaufmann Publishers, Inc.
2929 Campus Drive, Suite 260, San Mateo, CA 94403
Order Fulfullment: PO Box 50490, Palo Alto CA 94303

© 1988 American Association for Artificial Intelligence
All rights reserved.
Printed in the United States of America

No part of diis publication may be reproduced, stored in a reUieval system, or trans
mitted in any form or by any means—electronic, mechanical, photocopying, recording,
or otherwise—without the prior written permission of the publishers.

93 92 91 90 89 5 4 3 2 1

Preface
Howard Ε. Shrobe
Symbolics Incorporated

Cambridge, Massachusetts

This book is a collection of sixteen papers based on talks presented at the 1986
and 1987 national conferences of the American Association for Artificial Intel
ligence (AAAI). The original talks were presented as surveys of the scientific
state of the art in distinct subareas of artificial intelligence (AI) research. They
reflect the depth and breadth of a field diat has experienced enormous growth
and maturation during the last decade. AI is now a major technical discipline
with both a commercial and a scientific component.

As a commercial venture, AI has created a major market for a revolution
ary style of computing. There are now hundreds of AI products which solve
previously inaccessible problems. These commercial efforts have moved past
the application of routinely used research techniques, creating new intellectual
challenges even for the purely academic researcher.

As a scientific discipline, AI has undergone major stmctural changes
during the last decade. In 1973 (when I entered the M.I.T. Artificial Intel
ligence Laboratory as a first-year graduate student), virtually everyone was a
generalist. There was an intellectual core to the field shared by researchers in
all subareas. While researchers in natural language understanding (for example)
might have to master a few techniques (such as parsing) that were particular to
their specific discipline, they were likely to speak a technical language acces
sible to researchers working in other subareas of AI, such as expert systems or

vi Shrobe

intelligent tutoring. Virtually everyone in the field saw knowledge repre
sentation, inference, and search as the core concems of all AI efforts.

But as AI has matured, the subareas of research began to develop into dis
tinct intellectual disciplines, each with its own particular techniques and intel
lectual framework. Specialization has created so many subareas of research that
no longer can any individual stay abreast of the whole of AI literature.

Also, as AI developed into an applied conunercial practice, many new re
searchers and developers entered the field. Based in industry, many of the new
practitioners did not share the culture of those who had leamed their AI by ap
prenticeship training in a university research lab.

This led the AAAI program conunittee to establish a fomm in which the
AI community as a whole could be brought up-to-date with the state of the art
in each of the subareas: A series of invited survey talks was presented at the
AAAI national conferences in 1986 and 1987. The 1987 conference (which I
co-chaired with Ken Forbus) included an entire track of invited survey talks
presented by recognized intellectual leaders in tiie field.

The reaction to the survey talks was so favorable that we felt they should
be made broadly available. The survey talk speakers were invited to revise and
update the tape transciptions of their talks. This book is the result of that
process. Regrettably, not every survey talk presented could be included here. In
a few cases, the speakers were simply too overloaded with other obligations to
undertake the task of revising their talks for publication.

We have grouped the talks into several sections:

Teaching and Leaming

Interacting tiirough Language

• Planning and Search

Reasoning about Mechanisms and Causality

• Theoretical Undeöinnings

Architecmre and Systems

These cover a broad spectmm of current AI concems; although it is noticeable
and unfortunate that this collection lacks any papers in computer vision or
robotics.

The first section. Teaching and Learning, includes two papers. The first,
by Beveriy Woolf, addresses intelligent tutoring systems; the second, by Gerald
DeJong, is concemed with explanation-based leaming. Leaming is a major
concem of artificial intelligence; and one which has experienced a resurgence
of intellectual effort during die last few years.

DeJong's paper discusses one of the new machine leaming techniques. In
contrast with many of the classic AI leaming programs, explanation-based

Preface vii

leaming does not induce general mies by finding conunon patterns in many ex
amples. Instead, it works by using a theory of the domain to generate an ex
planation of how the concept to be leamed follows from the givens. The ex
planation (which may be diought of as a network of deductive links) is then
generalized to form a new concept which is added to the program's body of
knowledge.

Intelligent tutoring systems, the subject of Beverly Woolf's chapter, is
concemed with how to guide a student to leam new concepts. Building an in
telligent tutoring system is one of die most difficult tasks in AI because it in
volves mastering virtually all areas of the field. A tutoring system must under
stand how a student leams, it must understand the material it is trying to teach,
and it must be capable of planning how to instmct the student. Ideally, it
should also be capable of using natural language and other advanced modes of
interaction. Of course, no system exists today that meets all of those needs.
Woolf's paper surveys the progress that has been made in individual systems
that successfully attack one or a few of the needs.

The second section of the book. Interacting through Language, links
closely with at least one of the concems of intelligent tutoring systems, namely
how to interact through the use of natural language. This section also includes
two papers, "Knowledge-based Natural Language Understanding" by Wendy
Lehnert and "Natural-Language Interfaces" by Ray Perrault and Barbara Grosz.

The latter paper is concemed with natural language interfaces, particularly
with natural language interfaces to databases. Perrault and Grosz start with the
observation that a natural language query such as, "Who owns die fastest car?"
translates into more than 20 lines of code in a formal database query language.
Thus, a working natural language interface provides conciseness and natural
ness not otherwise available. However, providing this convenience requires
solving many technical problems. The syntactic stmcture of the query must be
determined, even though it is often ambiguous. Referents for determiners such
as "the," "each," etc. must be discovered. Often tins can only be done by un
derstanding the discourse stmcture of the ongoing dialog between the user and
the system. Perrault and Grosz survey the various systems and techniques that
have been used in building such interfaces.

Wendy Lehnert's paper is concemed with a different aspect of natural lan
guage understanding, namely the part that is "knowledge-based." As Lehnert so
gracefully puts it, "tiiis (designation) mercifully allowed me to ignore a large
body of work that focuses exclusively on the syntactic stmctures of natural lan
guage." Indeed, much of what is discussed in this survey might be character
ized as "story understanding." A story understanding system is typically pre
sented with a brief fragment of a story about which it is expected to be able to
answer questions. However, the answer to the question is not always explicitiy
present in the story, but rather refers to background knowledge that the pro
gram is presumed to possess. For example, a program might be told, "When

viii Shrobe

the balloon touched the light bulb, it broke. This caused the baby to cry. Mary
gave John a dirty look and picked up the baby." It is reasonable to expect an
intelligent agent (person or program) to understand why the balloon broke and
why the baby cried. Most of us can guess why Mary gave John the dirty look.
Obviously, we are drawing on a huge reserve of commonsense knowledge. But
what is this knowledge, and how is it to be organized to facilitate under
standing even brief story fragments like this? Lehnert's chapter presents a his
torical survey of various attempts to solve these problems.

The diird section of tiie book. Planning and Search, is concemed with
how computer programs can create plans to satisfy goals. Planning and search
have always been closely related disciplines in AI, since planning programs in-
herentiy engage in a search tiirough a space of actions, looking for a sequence
of actions that achieve a desired goal.

Michael Georgeff's chapter, "Reasoning about Plans and Actions," surveys
tiie work that has been done in building AI planning systems. Much of this
work is derived from the early STRIPS programs which established a framework
for representing actions and their effects. One major concem in this research
has been die problem of interactions between substeps of a plan for a conjunc
tive goal; often a step of a plan, which achieves one part of the conjunctive
goal, may undo the prerequisite condition for another plan. Another problem in
planning deals witii tiie representation of time. The STRIPS model assumes that
actions are atomic and may be described completely by their pre- and post-con
ditions. However, in many planning contexts of current interest, this repre
sentation is inadequate since multiple agents may be cooperating on a task and
the actions of these agents may have substantial time durations. Georgeff's
chapter discusses several approaches to these problems.

Richard Korf's chapter, "Search in Artificial Intelligence," surveys the
huge body of work tiiat tries to formally characterize heuristic search pro
grams. Search is the oldest area of AI research (some of this research on search
pre-dates the creation of a distinct field called "artificial intelligence"). Korf re
views the various styles of search problems, such as planning problems and
two-player game problems, and presents the various techniques (such as A*,
minimax, Alpha-Beta, etc.) that have been developed to increase tiie efficiency
of search programs.

Korf begins by presenting the basic bmte-force techniques such as
breadth-first and depth-first search. He continues by showing the various ways
in which more knowledge can be brought to bear to increase the performance
of the search program. The earliest techniques involve using a heuristic evalua
tion function to guide the search. Increasingly sophisticated versions of this
idea lead to A* and iterative deepening A* search. More knowledge can be
brought to bear, particularly in the context of planning, by using abstraction
and macro-operators—^techniques developed originally as part of the STRIPS
planning system. This chapter also looks at the areas of open research such as

Preface ix

how to exploit parallelism in search and how to leam heuristic evaluation func
tions.

The fourtii section of this book. Reasoning about Mechanisms and
Causality, mcludes three chapters. All of these deal with how to represent and
reason about mechanisms such as electronic devices, steam power plants, or
the human body.

The first of diese papers, by Ken Forbus, is concemed with qualitative
physics, which is the attempt to capture die informal and imprecise reasoning
about mechanisms that engineers use in much of their reasoning about en
gineered artifacts. Qualitative physics is also an attempt to capture the naive
reasoning of ordinary individuals in reasoning about the physical world around
tiiem. A typical qualitative physics program might be able to explain why
water will flow between two tanks of water that are connected when one is
filled higher than the odier. It also tries to produce an explanation that is causal
and mechanistic; for example, that the higher tank exerts greater pressure
which causes the water to flow.

In contrast to classical physics, qualitative physics works with abstract
quantities rather than witii precise numbers; one major area of concem in this
field is how to abstract quantities. Forbus discusses various altematives: In one,
quantities are abstracted into three values—^positive, negative, and zero. In
odier approaches, die abstraction includes a set of inequalities. These abstrac
tions allow a program to work in conditions where precise information is un
available, but they also introduce ambiguity. The survey also discusses the
problems of qualitative reasoning about spatial relationships.

Randall Davis and Walter Hamscher discuss model-based troubleshooting,
the attempt to use knowledge of the stmcture and function of a device and its
components to troubleshoot and repair malfunctions. Like Forbus's work on
qualitative physics, this work is very much concemed with understanding how
a mechanism works and how causality flows within it. In model-based trouble
shooting, a model of the device is used to predict how it should respond to its
inputs. This prediction is compared with the acmal observed behavior; the
places where the two differ are symptoms of the underlying malfunction of the
device. Model-based troubleshooters typically record die causal flow dis
covered while simulating the device's expected behavior. This representation
can then guide the search for a set of components whose malfunctioning can
explain the observed symptoms.

Model-based troubleshooting differs from classical AI diagnostic programs
such as Mycin in important ways. The basic framework is applicable to vir
tually any artifact. In principle, a single program can be given a schematic or a
blueprint for a variety of artifacts and be capable of diagnosing all of them.
Mycin-style programs, in contrast, are hand-engineering one for each new arti
fact. Mycin-like programs reason through associations between symptoms un-

÷ Shrobe

derlying causes using probabilistic techniques; model-based systems reason
about the causal flows using exact techniques.

Of course, not all diagnostic tasks are subject to model-based techniques.
Often we don't have a complete description of the artifact. Frequentiy, even if
we do have the complete description, it 's too complicated to be used directiy
without imposing simplifying abstractions. The cutting edge of research in this
field is the search for ways to abstract problems to ease the diagnostic task.

Ramesh Patil's chapter discusses one important diagnostic task where
these problems are pressing, namely medical diagnosis. Obviously, our under
standing of the human body is more limited than our understanding of the digi
tal components that make up a computer. The body is also a more complex
system. Patil discusses several medical diagnosis programs, such as Mycin, In-
temist, MDX, and PIP, which have attacked a variety of medical diagnostic
tasks. He also discusses programs, such as his ABEL, which combine qualitative
reasoning, such as Forbus's, with mechanistic reasoning, such as in the model-
based troubleshooting programs.

The next section. Theoretical Underpinnings, presents four more formal
accounts of techniques used throughout AI. The first of these is a survey by
Judea Pearl of the techniques used to reason about uncertainty, including the
calculus used in Mycin as well as Bayesian calculus. Pearl draws attention to a
trade-off between precision and tractability. Many of the techniques in tfiis
field have well-understood formal properties, but in practice are computation
ally very expensive. Other techniques have some rough edges but are quite
cheap to apply. Pearl also presents work of his own that attempts to identify
conditions under which one can have both nice computational properties and
semantic clarity.

Yoav Shoham's chapter, coauthored by Nita Goyal, discusses temporal
reasoning, i.e., attempts to model and reason about time. This is of great con
cem for planning programs that attempt to piece together strings of action
which achieve some goal over time. This problem is deceptively simple. When
one attempts to capture temporal reasoning in a formal system that can reason
about change, several unexpected problems emerge. The frame problem is
probably die most significant of these: this is the problem of compactly repre
senting how actions affect what's tme. In many representational systems, one
is forced to say what facts each action doesn't affect. This is an unbounded
problem. Shoham and Goyal discuss die different representational systems used
to attack this problem and the reasoning tasks tiiat result from using them.

One particular system that arises in temporal reasoning is nonmonotonic
logic, the topic of Ray Reiter's chapter. Nonmonotonic logics are formal sys
tems concemed with reasoning about exceptions and defaults; such as in the
statements, "The cup stays put, unless something moves it," or "Normally birds
fly." What all such systems have in common is a formal property that, as ax
ioms are added, the set of derivable conclusions may, in fact, decrease (hence

Preface xi

the name, since the size of the set of derivable facts is not a monotonic func
tion of die size of the set of axioms). Nonmonotonic reasoning is ubiquitous in
commonsense tasks. Most people will believe that Tweety can fly when told
tiiat Tweety is a bird; upon leaming that Tweety is an ostrich, most people im
mediately revise that belief. Building formal systems that account for such rea
soning is siuprisingly difficult. Reiter's survey discusses the various ap
proaches to Ulis task tiiat have been developed.

Woody Bledsoe's survey, coauthored by Richard Hodges, on automated
deduction tries to sunmiarize what we know about how to make programs per
form deductions, particularly (but by no means exclusively) those deductions
that are required in formal contexts such as proving matiiematical theorems.
This is a herculean task, because dtis is one of the oldest and most studied
parts of AI. Bledso and Hodges trace the development of automated deduction
from the discovery of the resoluton principle in the mid-1960s up to the
development of some very powerful theorem-proving programs that have pro
duced formal proofs of results that are difficult for mathematicians.

Much of this chapter discusses the development of formal techniques with
mathematically guaranteed correctness. However, there is another mnning
theme, which is the search for ways to achieve the efficiency of a professional
mathematician who reasons at a very abstract level making large jumps in the
proof. This search for strategic efficiency in theorem proving draws upon many
ideas from other areas of AI such as planning and knowledge representation.
Expert mathematicians know a lot of mathematics and a lot of theorem-proving
techniques; tiiey are not mechanical proof generators who proceed a step at a
time. Bledsoe and Hodges see the attempt to capture this expertise of the pro
fessional madiematician as die key to future progress in die field, and he points
to several preliminary results in this direction.

The final section of this book. Architecture and Systems, is concemed
with computational facilities that support artificial intelligence research.

My own paper on symbolic computing architectures is the first of the three
in tiiis group. This paper traces the development of computer architectures mo
tivated by the needs of the AI computing community. TTie first section tries to
show what features are present in modem LISP - and PROLOG-oriented architec
tures and how diese are likely to continue evolving. I pay a lot of attention to
machines in whose design I participated (such as the Symbolics 3600 and the
new Ivory chip) not only because I know the most about them, but also be
cause these machines contain many leading-edge features. The second half of
the paper discusses how parallelism may impact AI computing. I review a
large number of attempts to build parallel Al-oriented machines. Not too many
of diese have been successful, but I believe the failures highlight certain design
principles that are cmcial.

Daniel Bobrow discusses a newly standardized programming language sys
tem called Common LISP Object Standard (or C L O S , usually pronounced "C-

xii Shrobe

Loss"). This is an object-oriented extension of Common LISP which provides a
unifying framework for much of symbolic computing. This dovetails nicely
with my survey on computing architectures which emphasizes the object-
oriented viewpoint as a key feature.

David Barstow surveys what artificial intelligence can offer to software
engineering. AI has long tried to apply its techniques to various programming
tasks such as code synthesis, debugging or code understanding. Barstow sur
veys the work in all these areas. He particularly tries to identify what makes
these tasks so difficult and why so little benefit has yet resulted.

Acknowledgments

Before concluding this Preface, I would like to tiiank many people for their un
rewarded contributions to this effort. Each of the authors spent an enormous
amount of time converting transcripts of their talks into intelligible text. This is
not easy, as I've leamed. A number of people were involved in providing the
logistical support for these survey talks, particularly Claudia Mazzetti, execu
tive director of AAAI, whose organizational skills are tmly remarkable; and
Steve Taglio of the AAAI office, who manages the logistics for the AAAI con
ferences. Several of my colleagues contributed time to reviewing the papers,
proofreading, and indexing: Bob Cassels, John Hotchkins, Steve Rowley, John
Aspinal, Steve Anthony, and John Watkins. Finally, I 'd like to extend a special
thanks to Ken Forbus who was co-chair with me of the AAAI-87 program
committee. Ken did more than half the work of identifying topics and soliciting
just the right people to present the survey talks.

I hope that this collection of papers will prove to be a useful base of infor
mation about AI for experts, serious students, and new practitioners in the
field. These talks represent a serious attempt by the intellectual leaders of
many of the subdisciplines of AI to analyze what their work is about and pre
sent it in a way tiiat is accessible to the newcomer while still being informative
to tiie neophyte. The reaction to tiie talks at tiie conference was enthusiastic;
we hope tiiat the quality of this collection merits tiie same enthusiasm.

Howard E. Shrobe
Chairman, AAAI Conference Committee

Chapter

1

Intelligent Tutoring Systems:
A Survey
Beverly Woolf
Department of Computer and Information Science
University of Massachusetts
Amherst, Massachusetts

Introduction

This paper surveys the field of intelligent tutoring systems.^ It focuses on the
breakthroughs and barriers in the field, describing how we got where we are
today, where we think we're going, and what is needed to accomplish the jour
ney. The survey does not provide implementation details nor does it enumerate
advantages or disadvantages of various languages.

Before describing the computer science products that have been built, I'd
like to set the stage for this discussion by talking about the state of education
today. For those who don't yet know, education is in trouble. Recent studies
confirm this view. For example, an NSF study says, "Most Americans are
moving toward virtual scientific and technological illiteracy" [National Science
Foundation, 1983]. Naisbitt says, "The generation graduating from high school
today is the first generation in American history to graduate less skilled than its

1 This work was supported in part by National Science Foundation grant MDR-8751362, Air
Force Systems Command. Rome Air Development Center, Griffiss AFB, New York, 13441 and
the Air Force Office of Scientific Research, Boiling AFB, DC 20332 under contract #F30602-85-
C-0008. This contract supports the Northeast Artificial Intelligence Consortium (NAIC). Partial
support also was provided by ONR University Research Initiative Contract #N00014-86-K-0764.

2 Woolf

parents..."[Naisbitt, 1984]. R. Buckminister Fuller says, "Classrooms are
desensitizing, stultifying and boring" [Fuller, 1962].

Another study found that the average Japanese student scores 100% better
in mathematics than the average American student [Walberg, 1982-3]. Andrew
Molnar from NSF says that only 75% of the teachers in America are qualified
to teach the courses they are teaching [Molnar, 1986]. For example, people
trained in physical education often end up teaching physics because both words
have the same root. In addition, America will be short one million teachers
within four years. Currently, one-fourth of all college freshmen take remedial
mathematics, and there has been a 63% increase in college remedial courses,
such as writing, reading, and mathematics. With a 63% increase in college re
medial courses, the question is "What kind of learning goes on in high
schools?" People graduate without the basic skills necessary to function at the
college level.

The problems are great, and I certainly don't suggest that intelligent tutor
ing systems will solve all the problems in education. But there are some fasci
nating opportunities provided by these new machines and we shall look into
them as we survey what these systems can do.

Building Effective Teaching Systems

A study by Bloom [1984] shows that conventional teaching, which means a
teacher presenting material in front of 20-200 people, provides one of the least
effective methods for educational delivery. The larger curve in Figure 1 shows
the results achieved through conventional teaching—the typical bell curve with
a median range of 50 to 60, as you'd expect. The mastery curve in Figure 1
shows the performance results when a teacher not only gives a lecture, but also
uses diagnostic tests to determine where the students have problems and mis
conceptions, and then adjusts his/her lectures accordingly. If mastery teaching
takes place, then the mean test results seem to be around 84%.

However, and here is the important part of this study, students involved in
one-to-one tutoring seem to perform around the 98th percentile as compared
with traditionally trained students. These results were reproduced four times
with three different age groups on two different subjects. This study provides
evidence that tutoring is one of the most effective educational delivery
methods. If we plan to build new tools for education we should not replicate
methods that have already failed, such as lecture style teaching. Rather, we
should focus on one-to-one tutoring methods and thus, we need to begin by un
derstanding the tutoring process.

Developing one-to-one machine tutors is not a straightforward process. For
instance, let's say a student and teacher had the conversation shown in Figure
2. After the student's initial expression of lack of understanding of how rain is
made, the tutor might think about what the student doesn't know. It might rea-

Chapter 1 Intelligent Tutoring Systems 3

STUDENTS TESTED

One-on-One Tutoring

Mastery Teaching χ /
(1 : 30)

Conventional Teaching
(1 : 30)

ACHIEVEMENT SCORES
(PERFORMANCE)

Figure 1 Advantages of One-to-One Tutoring (Adapted from Bloom [1984])

son about the student's knowledge and causal modeling in the domain and
his/her ability to make inferences. The tutor might ask diagnostic questions to
figure out what the student doesn't know and might then do some planning and
choose, as in the figure, to first teach about the effects of heat on moist air, and
then to teach about ocean currents, saying "Can you tell me what happens to
heated moist air?"

However, to generate this final response on a computer requires reasoning
about natural language processing, knowledge representation, diagnosis, and
causal modeling (see Figure 3). For example, to reason about "the effect of
heat on moist air," the tutor must understand the causal effects of heat on air
and moisture, and must comprehend how such components interact in the
domain. The tutor must perform qualitative processing, that is, envision the
factors that contribute to the production of rain and be able to identify steps
within the evaporation/condensation cycle. The tutor must perform planning
and plan recognition and should recognize the student's intentions, the peda
gogical constraints in effect, and finally, the linguistic and pragmatic considera
tions that need to be handled. For example, in the figure the tutor chooses to

4 Woolf

Student: *' I don't see why there is so much
rain in warm places.**

Tutor (thinlcs): Aha, ha. . . This student probably doesn't
know about ocean currents.

He also probably doesn't understand the causal
effects of heat on moist air.

I should first teach him about the effects of heat
on moist air and then about ocean currents.

Tutor (says:): "O.K."
"Can you tell me what happens to heated moist air?"

A d a p t e d from David Littman. 1987

Figure 2 Proposed Tutoring Conversation

say "OK." Why should it say "OK" at this time? Linguistic and natural lan
guage considerations, in addition to all of the above processes, are required in
order to engage in a tutorial discourse.

Therefore, building an intelligent tutor requires performing most of the
other activities of AI researchers (see Figure 4). This field is not an application
area of AI in which we can take off-the-shelf material developed by other AI
researchers and use it to build our systems. In fact, we have to complement all
the work done by researchers in AI, particularly in planning, knowledge acqui
sition, and discourse management. We must use and augment what AI re
searchers have been doing for years.

In addition, researchers in our field have several research efforts that go
beyond work in AI. For example, we are concerned with visualizing problem
solving, as discussed in connection with William Clancey's work (Section 3).
Our systems do more than explain how problem solving and diagnosis are
done; they need to show the student how to construct the knowledge for
him/herself and improve his/her ability to understand the material. We study
novice/expert research because we need to present materials in a way that ena
bles a novice to understand the domain; in addition, we need to perform error
diagnosis on the student's performance.

Chapter 1 Intelligent Tutoring Systems 5

NATL LANGUAGE
UNDERSTANDING

Student: - I don't see why there^
Is so much rain in warm places.*'

KNOWLEDGE
REPRESENTATION

DIAGNOSIS I Tutor (thinlcs): Aha. ha. . . This student

DOMAIN
KNOWLEDGE

probably doesn't know about
ocean currents.

PLANNING

He also probably doesn't understand
about the causal effects of heat
on air moisture.

PRAGMATICSt

I should first teach him about
the effects of heat on moist air

and then about ocean currents.

QUALITATIVE
PROCESSING

Tutor (says:): "O.K, can you tell me what
happens to heated moist air?

NATL LANGUAGE [/
GENERATION

LINGUISTICS

Figure 3 Models of Reasoning in the Proposed Tutoring Conversation

On the other hand, researchers in artificial intelligence are concerned with
issues that we don't currently focus on, such as natural language processing
and machine learning. We may wrestle with these topics soon. I don't mean to
imply that there is an exclusive relationship between AI and work done on in
telligent tutoring systems. We obviously need to work together with AI re
searchers and to use the materials now emerging through expert systems tech
nology. On the other hand, we expect that technology which we produce will
ultimately be found useful by other members of the AI community.

The bottom line is that intelligent tutoring systems are AI complete, that is,
solving intelligent tutoring problems requires solution of nearly all the prob
lems of artificial intelligence.

So, we take advantage of technology that is just now emerging. Such in
novations as high resolution graphics, expert system shells, and qualitative
modeling are applications that can now be made available to education.

6 Woolf

Art i f ic ia l InUHigenqe Intelligent Tutoring Systems:

Figure 4 Active Research Areas

Factors in ttie Deveiopment of Inteliigent Tutoring Systems

How do we define an intelligent tutoring system? First, we see intelligence as a
way to perform qualitative modeling [Clancey, 1986]. Soloway in his program
ming research, and Clancey in his diagnostic work in medicine, have both de
scribed their work as a modeling process [Soloway, 1986]. Soloway described
programming as a process whereby a student has a plan of a program and then
executes it, Ken Forbus [1986] and Ben Kuipers look at physics problem solv
ing as modeling processes. By this reasoning, intelligent tutoring systems are
systems that model teaching, learning, communication, and domain knowledge
(Figure 5). They model and reason about an expert's knowledge of a domain
and a student's understanding of that domain.

For example, if a system teaches about physics, it should model and rea
son about physics problems. At some level this is already being done by people
who build shells for expert systems. Since expert systems are linked to com
mercial possibilities, I think such reasoning systems will continue to expand
and we can take advantage of them.

We also take advantage of communication models to illustrate the scien
tific method as well as human problem solving methods. For example, if a sys
tem teaches optics, we would expect that it would show a screen with several
lenses. It would allow the student to test many lenses on the screen and to send
rays through each, measuring the exit angle. Builders of our systems need to
take full advantage of the available communication resources, such as simula
tions and animations, rich icons, pop-up windows, and pop-down menus.

)Error Diagnosis

VisuDlize "\..
Problem Solving

Represent
Tenching Strntegies

Novice/Expert
Studies

Cognitive Modeling

Qunlitntive Processes

Plnnning/Ph,n Recognition
Knowledge Representntion

Intelligent User Interfnces

Plnnning/Plnn Recognition

Knowledge Acquisition

Oiscourse Mnnngement

Nnturnl lnngunge
Processing

Mnchine lenrning

Chapter 1 Intelligent Tutoring Systems 7

KNOWLEDGE & REASONING
MODEL

R E S E A R CH
P R O C E E DS

I N D E P E N D E NT OF ̂ L I N K ED TO C O M M E R C I AL
T U T O R I NG W O R K. ̂ Λ P O S S I B I L I T I ES

COMMUNICATION
MEDIA

P O S S I B LY T HE M O ST
D I F F I C U LT A R E A.

J TUTORING \

M O ST P R O M I S I NG A R EA F OR |
I N T E L L I G E NT . T U T O R S.

- . FORCES IN THE DEVELOPMENT
I MODEL ; OF

INTELLIGENT TUTORING SYSTEMS

Y ET L E A ST S T U D I ED A R E A.

Figure 5 Factors in the Development of Tutoring Systems

Modeling domain and communications knowledge are now being accom
plished, since both communications and domain knowledge are being
developed independent of our community researchers. Our workers need to
focus on models of cognitive processes and tutoring.

By cognitive process modeling, I mean those factors necessary for a per
son to learn a domain or for a teacher to teach in that same domain. Included
in this model is whether or not the student is motivated or has a clear mental
model of this domain. We need to determine whether the student's domain
model is integrated or fragmented, whether it 's compiled, and whether it 's in-
teφretable. We also need to look at whether the student (1) knows what he/she
is talking about, (2) needs to be interrupted, or (3) might be insecure about the
answers. This kind of research takes a long time and requires help from cogni
tive scientists, instructional designers, psychologists, and expert teachers. We
are now learning about cognitive principles and it's possibly the most difficult
material in our systems. As shown in Figure 5, we have not yet made great
progress in this area.

The fourth and last factor needed is the tutoring model. Tutoring involves
knowing how to remediate the student, when to interrupt, what examples to try.

8 Woolf

what analogy to present, and how to respond to the idiosyncrasies of a student.
Without this information, there is nothing about the system that would keep
him/her working with the system.

Three Case Examples

I now present a few of the systems that have emerged in this field. I'll look at
some key issues addressed by these systems and then later look at many more
systems. The purpose of this survey is not to include all existing systems, just
those that represent advances in each of the areas mentioned above. Figure 6
shows the envisioning machine by Jeremy Roschelle at Xerox [Roschelle,
1987]. I particularly like this system because it presents a visualization of con
cepts that have been very difficult to learn in the past. The screen shows an ob
ject being thrown in the air and then falling down again. Large arrows are used
to show the velocity of the object as it rises and a smaller arrow is used to
show the acceleration. If you take an object and throw it upward, the velocity
starts off positive and high and then it decreases until it reaches zero at the
apex of the curve; as the object comes down, the velocity begins at zero and
then increases until it lands. Though the velocity reaches zero at the top of the
curve, the acceleration does not, because acceleration is always constant, origi
nating from a gravitational pull downward. The direction of acceleration
changes as the ball rises; its direction also changes as the ball descends. Figure
7 shows the original graphic placed beside a picture of the Observable World.
In the Newtonian world on the left, the student sees the object moving accom
panied by the illustrative arrows, and on the right is a picture of the same
movement without the arrows.

In the past, acceleration and velocity have been difficult to demonstrate, in
part, because they have been illustrated solely through still-picture problems at
the back of the book. Traditional drills with formulas don't allow students to
see velocity or acceleration in a way that compares with the rich modeling
capability of the computer.

The goal here has been to help the student acquire a mental model of force
and acceleration in a way that can be taken back to the observable world. The
student can directly manipulate the interface, can move an object in any direc
tion, add two or three balls, and use his/her observations to adjust possible mis
conceptions. This system contributes in the areas of modeling communications
and the domain. In addition, it helps model cognitive processes and represents
a student's understanding of physics. The author has also made a judgment
about whether the field is coherent or interpretable to the student. Roschelle
bases his work on P-prims, a system of physics primitives that offers a
theoretical basis to the explanation of physics phenomena.

Chapter 1 Intelligerit Tutoring Systems 9

N e w t o n i a n \ A^orld

v̂.
•

/
•
;
;
:
:
!

\
\

*·

. · • %
*·

*·

Figure 6 The Envisioning Machine [Roschelle, 1987]

10 Woolf

4. I I 1 • I I t t I I t I I I I ' I I I

Figure 7 The Envisioning Machine, Part 2: Roschelle

Figure 8 shows a second system from Xerox, the Altemate Reality Kit
(ARK) system by Smith [1987], which demonstrates objects in a bubble cham
ber. The student uses switches, such as the one for "gravity" or "motion," to
turn off gravity or motion. You can imagine using objects from Roschelle's
system and turning off gravity and watching the velocity and acceleration. New
objects or switches can be created by the student.

Figure 9 shows the screen of an older system that remains one of the best
in terms of its ability to model tutoring discourse [Brown and Bell, 1982]. This
system is from the mid-1970s and was published in 1982. SOPHIE, as it is
called, provides a simulation of an electronics circuit and helps a student debug
a failure in the system (Figure 9). The student is told that there is a failure and
tries to diagnose the bug. SOPHIE has a hypothesis generator that simulates so
lutions offered by the student, testing whether they are correct. It also has a
semantic parser that parses the student's typewritten words, not by using a
grammar, but rather by using a semantic representation of possible phrases for
each word that might be used in this domain.

Chapter 1 Intelligent Tutoring Systems 11

Figure 8 Alternative Reality Kit [Smith et al., 1987]

Figure 10 shows a typical conversation with SOPHIE, although the output is
pretty ugly on the screen. The student can say, "What is the output?" and the
machine says, "The output voltage is (whatever it is)." The student can say,
"What is it in a working instrument?" Using a model of dialogue for reasoning
about indefinite pronouns, the machine understands that by saying "it" the stu
dent meant the voltage in the previous sentence. And the machine answers. Re
ferring to locations on the circuit, the student can say, "What is the voltage be
tween R8 and Q l ? " The machine says the voltage is so-and-so. The student
can also say, "I have a hypothesis. Is this the problem?" and suggests that Q6
may be open. The machine actually takes that hypothesis, evaluates it in the
simulator, and determines whether the student has solved the problem.

12 Woolf

Sí

%
CO

?
(0
c

a
UJ
X
CL

Ε
S

Q.
Q.

Q.

<

Chapter 1 Intelligent Tutoring Systems 13

Welcome to SOPHIE, a reactive learning environment

The instrument has a fault and Its present control settings are: ^ ^ ^

CC = 1.CR = HÍGH,LOAD = 20, VC = 1, VR = HIGH ^^^-^^ j ^ « * ^ J

»What is the output?
The output voltage is 11.7 volts. f\±.^t^ ^

>>What^riíXa working Instrument?
In a working circuit the output voltage is 19.9 volts.

»What is the voltage between R8 and Q1?
The voltage at Ν1 is 47.6 volts.

»What is the base emitter voltage of the voltage limiting transitor?
= transistor ·
The base emitter voltage of Q5 is -.037 millivolts. v ^ l * * *

^ h r ' " " ' '
» l s it possible that 0 6 is open? ^
Is the complete fault mode EB/EC/BC = OP/OK/OP what you intended?

When the settings were:

CC-1.0, CR = HIGH, LOAD = 20, VC = 1.0, VR « HIGH /
That fault conflicts with the following measurement. You observed that the
output voltage was 11.7 volts. If 0 6 had fault mode EB/EC/BC « OP/OK/OP It
would be 23.9 volts. In a working circuit it is 19.9 volts.

That fault does not explain any of the symptoms you observed but Η is
consistent with the values for the base emitter voltage of 0 5 and the voltage at

^ α / χ ο 0 lctcrrv%«A/e Γ C u K e i t IS ^^^ouJi*"

Figure 10 A Conversation with SOPHIE [Brown and Burton, 1982]

14 Woolf

Interestingly, in this case the system finds the student's hypothesis incon
sistent with facts already received. This is pointed out to the student. First the
system clarifies the student's hypothesis, "Is this what you mean?" (the student
says "Sure"). Then the machine says, "The fault that you've suggested con
flicts with the following measurements. You observed that the output voltage
was 11.7. If this really had a fault mode, it would be 23 volts, and a working
circuit is 19.9." It constructs the counter example and says that the fault does
not explain any of the symptoms observed, but is consistent with the values of
such-and-such. In this way, the system determines appropriate portions of the
student's hypothesis and inconsistent portions.

This dialogue is quite friendly; it succeeds in modeling tutoring discourse
and in some sense, in understanding the student. The researchers stopped work
on this project, interestingly enough, because they could not represent in-depth
student's reasoning about electronic circuits. They found that their existing
quantitative approach enabled success in analysis and diagnosis. Yet the system
could not help the student with deep misunderstandings because it didn't un
derstand the student's cognitive models of circuits, which are assumed to be, in
part, qualitative. So, the researchers moved on to work in qualitative process
models. Subsequent work from this group has led to a new body of research in
qualitative process models [deKleer and Brown, 1986; Forbus, 1986]. Also, a
nice body of work has been produced by White and Fredricksen [1986] which
does represent a student's first-order qualitative mental models about electronic
circuits. In this system, multiple models of a circuit are encoded in the system
and a student's progression to a more advanced model is prohibited until evi
dence is provided that he/she has mastered earlier models.

Figure 11 shows a system I've been working on, which been reported in
AAAI-86 [Woolf et al., 1986], so I'll review it quickly. This figure shows the
screen of the Recovery Boiler Tutor, RBT. The system was built in response to
the excessive number of accidents and explosions caused by human error in re
covery boilers located at papermills across the United States. The insurance
companies threatened to cancel the insurance for the industry if the papermill
companies did not learn how to better train their staff in use of the boiler. The
system was built by Jansen Engineers, Inc. in Woodenville, Washington, and
has been placed in about 60 papermill sites around the country. In light of the
usefulness of this system, the insurance companies have offered discounts on
the premiums for any company that uses the tutor.

An actual recovery boiler is a difficult mechanism to operate. It is 14 sto
ries high and costs about $90 million to build. It acts like a time bomb in the
sense that potential inorganic explosions are always threatening. Explosions,
accidents, and inefficient operations are frequent occurrences. Typically an
operator has only a high-school education, yet must understand complex physi
cal, chemical, and thermo-dynamic processes to run the boiler. The tutor simu
lates 100 parameters that participate in the process and it provides students

Chapter 1 Intelligent Tutoring Systems 15

with about 40 problems or critical events to work on. Figure 12 shows a fo
cused display of the boiler and Figure 13 shows the control panel. The tutor
encourages the student to abstract his/her information about the process in at
least three ways. The first way is to engage in an on-line dialogue with the ma
chine. The second is to use trend lines that show how various variables are
measured against each other (Figure 14). The third is to use the meters shown
on the left-hand side of Figures 11 through 13. These meters abstract seven or
eight parameters that reflect measurements of safety, emission, efficiency, or
reliability of the boiler at every moment. These are abstractions that would
probably never be calculated by the operator because they are too complicated.
Yet they need to be understood in order to operate the boiler.

-FLUE GAS-

JLfi.
TRS
PPM

02

755 1815

ψ HPPI. ^ PS i
FEEDUATER-

481.8
Hpph

iquor
291 xsol
„p„ 65.8

Figure 11 The Recovery Boiler Tutor [Woolf et al., 1986]

RECOUERV
BOILER
TUTOR

EHISSIONS

EFFICIEMCY

RELIABILITY

C D — C D Ύ ""»^ ^
FEEDUATER-j-

384.1 :

TRS
ppn

STEAM

02

.8

Figure 12 Focus on the Fire Bed

16 Woolf

RECOMERV
BOILER
TUTOR

EHISSIONS

RELIABILITY

Brun • • •
Φ :

i L e v e lJ

STEAH
1ββ7

®
PS i
Hpph
755

®

FLUE GAS
FEEDUATER
Hppb 488.3
•F 388
PS ig 12β8
attemp 1.9
DCE Dilution
gpM 8
Sootblower
Hpph 36.8 DCE

COhUUSTIOH AIR
Sp 1 11 Press Tenp LIQUOR HAKE-UP

(X) Hpph 194.1
prin 55 1.9 388 9PM

•F
291
248 Saltcake

sec. 44 5.8 388 κ Sol 65.8 IbXhr 8
DISSOLÜIHG TANK

Floii(gpn)
s W l i q 3.68 AUXILIARY OIL

LauelCx) Densitt^Cx) Floii(gpn) P«i Β gp« 8
463

gp« 8

Figure 13 The Control Panel

RECOUERV
BOILER
TUTOR

SAFETY

EHISSIONS

EFFICIENCY

RELIABILITY
Li<iuor flow
Steam flow Air flow

Drum level

Feedwater flow
Stean pressure
02 TRS

Figure 14 Trends in the Recovery Boiler Tutor

The dialogue shown in Figure 15 is produced by cutting and pasting text
loaded with each problem. The dialogue shown here comes directly off the
screen. The student says, "Will I check smelt spout cooling water?" The tutor
says, "It looks as though the liquor isn't burning." The tutor's response implies
that the student wasn't focused on the correct parameters. The system then
directs him/her to what should be investigated. The student says, "Help, what is
going on here?" He/she can stop at any time and say, "How did I get here?"
"How do I get out of this?" "How can I avoid this?" The tutor responds with,
"A partial blackout is occurring, etc. and I think part of the bed is not burn
ing." And the student says, "Rod the primary air ports." The system then says,

Chapter 1 Intelligent Tutoring Systems 17

"Your action is correct, however, at this time, rodding alone is not effective."
In other words, if the student had performed this action earlier, it would have
worked, but he/she waited so long that now a more serious action must be
taken. Finally, after a little bit, the student gets the right answer, and the tutor
says, "That solves the problem all right, good thinking."

The third way this system helps a student abstract knowledge is through
trending (Figure 14). The student can look at feedwater flow, and can begin to
associate it, for instance, with steamwater flow. He/she should identify those
parameters unaffected by the problem, and those which have been affected,
such as TRS, sulphur, and O2. The student ought to see which parameters are
linked together and which are not.

We try to provide the student with tools that help him/her reason about the
problem. Actually, people who work in the mills say that some of these tools
would be helpful if put on the actual control panel. This is being considered.

Figure 15a

{ AN ALARM SOUNDS

Student Check smrlt spout cooling water
iStudent's action does not result
In a change fn tñe ItoíierJ

Tutor: It looks as though the liquor Isn't burning .

(STUDENT REQUESTS HELP)

Student: Help What Is going on?

Tutor: A partial blackout Is occurfng and this
causes TRS. CO. S02 and 02 to Incroaso. Steam
flow and steam temperature are dropping.

I think part of the bed is not burning.

(GRAIN OF TRUTH CORRECTION J

Student: Rod the primary air ports.
Tutor; Your action Is correct, however, at this time

rodding alone is not effecttve...
Student: Raise the liquor temperature.
Tutor: Rodding the air port apparently was not enough

to undo the blackout fMo/mfiro^ement
Mew aiarm soundsj

(CONFIRMATION)

Student: Increase the oil fuel supply.
fEmergency fs now reversed./

Tutor: That solved the problem alright.
Good thinking.

Figure 15b A Dialogue with RBT

18 Woolf

Z
lU

is
> ζ
lU

UJ
X
o.
o
in

oc
UJ

o
CD QC

^ t ;

O
Ü
UJ
QC

MODEL OF
KNOWLEDGE

AND
REASONING

COMMUNICATIONS
MEDIA τ

MODEL
COGNITIVE
PROCESSES

MODEL
TUTORING

AND
DISCOURSE

ν/

F/gu/19 t5 Four Models Within Selected Intelligent Tutors

Chapter 1 Intelligent Tutoring Systems 19

Accomplishments Thus Far

I stop now after this brief introduction and ask: Where is the intelligence in
these three systems? We have moved ahead in some of the areas mentioned in
Section 1.2. In others, we're moving ahead less rapidly. Figure 16 gives a pre
liminary evaluation in terms of modeling accomplished within these four sys
tems. The first system, the Envisionment World, enables a student to visualize
and make predictions about physics concepts. I give it good marks in modeling
knowledge and communication, and less good marks in modeling cognitive
processes and tutoring. SOPHIE, the system about debugging electronic circuits,
makes some contribution to knowledge representation, but it has a weak cogni
tive model because it provides a quantitative, not qualitative model. However,
it receives high marks in tutoring. The Recovery Boiler Tutor represents
knowledge but its model of the student is weak. Its communication model does
not take advantage of icons, windows, and simulation or animation capabilities
of computers.

In assessing what we have accomplished thus far, we need to focus on the
issues, not just on the machinery built. Thus I look at the relationship between
these systems and AI programs in general (Figure 17). As mentioned earlier,
there is no need to compete with other AI workers, yet it is valuable to note
how our respective jobs differ. We need to recognize that AI systems, often
abbreviated to only expert systems, serve a very different puφose than do in
telligent tutoring systems. Expert systems are intended to solve a problem. Our
systems solve problems yet they also construct a model of the human problem
solver. For instance, a system that can solve the electronics problem is not rele
vant as a tutor if it does not also comprehend how the human solves the same
problem. Expert systems can use any problem solving method, such as predi
cate calculus, semantic networks, PROLOG, or whatever language suits the pro
grammer. Somewhere within our systems, we have to encode human problem
solving methods. We might represent the domain using some declarative lan
guage, but ultimately we must represent how the human solves the problem in
order for the system to recognize the student's reasoning.

Explanations and interpretations are important in expert systems. However,
explanations are not enough for tutoring systems. Our systems must actively
and systematically engage the user in a dialogue.

A tutoring dialogue might be compared with a police chase of a bank rob
ber; neither can be planned ahead of time. One does not plan, say, four months
before the robber comes to town, which streets and buildings to search for the
robber. In fact, the police must respond and react to every action taken by the
robber. The same principle works in computer tutoring. As programmers, we
can't decide what's going to happen after we ask the student a question. The
system must plan what will happen in an opportunistic and dynamic way—and
must systematically engage a student based on his/her own actions.

20 Woolf

An expert system should also justify its reasoning and explain how it made
its decisions. In our systems we have to justify and explain our reasoning so
that the knowledge and problem solving process is remembered and mimicked
by the student. A system might say, "This is how we solve the problem," but
that won't help the student. Students should become so enamored of our
methods, or at least they should understand them so well that they will mimic
that problem solving process.

Expert System L Intelligent Tutoring
System

Solves a problem, i \ Solves a problem and constructs
a model of the human problem
solver

Uses any problem ς
solving method.

A Uses human problem solving
methods

Responds to the
user

Actively and systematically
engages in a dialogue
with the user

Justifies its
reasoning.

Justifies and explains its reasoning
so that the knowledge and problem
solving process is remembered and
mimicked

Figure 17 Expert System vs. Intelligent Tutors

Chapter 1 Intelligent Tutoring Systems 21

PHYSICIAN

Figure 18 MYCIN Assists a Doctor

As an example of the difference between expert systems and tutoring sys
tems, I describe one of the most famous tutoring systems derived from an ex
pert system. This is the GUIDON system built from MYCIN, a medical diagnostic
system that contains over a thousand rules and provides a diagnosis of an inter
nal disease along with an appropriate therapy (Figure 18) [Clancey, 1979a;
Shortliffe, 1976]. While diagnosing a disease, the expert system can provide
the user with an explanation of its reasoning and its active rules. The physician
dealing with MYCIN can ask, "Why is it important to determine whether or not
the patient acquired an infection while hospitalized?" (Figure 19). The answer
is, "It has already been established that the moφhology of organism-one is rod,
the gram stain of organism-one is gram neg, the aerobicity of organism-one is
facul; therefore, if the infection with organism-one was acquired while the
patient was hospitalized, then there's weakly suggestive evidence (.2) that the
identity of the organism is Pseudomonas." The system can also show the
specific rule, in this case rule 50, that was used.

22 Woolf

Why is it important to determine whether or not the
patient acquired an infection while hospitalized?

It has already been established that:

the morphology of ORGANISM-1 is rod
the gram stain of ORGANISM-1 is gramneg
the aerobicity of ORGANISM-1 is facul

Therefore, if

the infection with ORGANISM-1 was acquired while the
patient was hospitalized

Then
there is weakly suggestive evidence (.2) that the
identity of ORGANISM-1 is Pseudomonas [rule 050] .

Figure 19 Conversation with MYCIN [Clancy, 1985]

PROBLEM i n

TEACHER

•9
STUDENT

Figure 20 The Doctor a s Teacher

Chapter 1 Intelligent Tutoring Systems 23

S t u d e n t : The patient h a s se izures .

Guidon: Se izures may indicate meningitis.

However if you can also show intracranial p r e s s u r e , then
severa l more cons i s ten t interpretat ions a r e avai lable
to you.

For example , you might explore the possibility of
an intracranial m a s s lesion, a suba rachno id h e m o r r a g e .
or a brain aneurysm.

Figure 21 Rephrased Conversation with GUIDON (Adapted from Richer and
Clancey [1985])

Consider what a teacher might need to teach that same material (Figure
20). A system that teaches diagnosis might prefer to show a student its thou
sand rules. Much of the work that Clancey has done with GUIDON at Stanford
is to recognize how medical knowledge is acquired and how medical students
analyze data [Clancey, 1984]. Clancey has developed a system that demon
strates how and when a student should ask for new data, which hypotheses to
expand, which hypotheses are still viable, and how to refine current hypotheses
[Richer and Clancey, 1985].

Test-Hypo
Lung Infect

Test-Hypo
Bact-slnusft

Test-Hypo _
Ear- lnrect lon

Test-Hypo
Av malformation

Test-Hypo
Braln-aneurysm

Test-Hypo
Mass-LeslonN

Test-Hypo .
Hemorrage"

Test-Hypo ,
IC-Pressure

Test-Hypo
Mass-Les ion"*

Test Hypo
Hemorrage

Test-Hypo
IC-Pressur

^ rest-Hypo
Intracranial -pressure

Find-out
Focal -selzure-durat lon

[Seizures 061

Test-Hypo
^ Intercranlal -Pressure-

Test-Hypo
Acute meningitis —

Find-out
— D i p l o p i a

Find-out
-Photophobia*

luestlon
Ivisual-problems 0 7

Figure 22 Graphic Conversation with GUIDON (Adapted from Richer and
Clancey [1985])

24 Woolf

GUIDON demonstrates this knowledge graphically, not in natural language
(Figure 22). I've rephrased the conversation into text (Figure 21) for explana
tion puφoses. For example, while examining a patient, the student might say,
"The patient has seizures." GUIDON comes back and says, "Seizures may indi
cate meningitis. However, if you can also show intracranial pressure, then
several more consistent inteφretations are available to you. For example, you
might explore the possibility of an intracranial mass lesion or a subarachnoid
hemorrhage or a brain aneurism." The system tells the student how he/she
should make hypotheses and which data he/she should collect. GUIDON does
not presently use natural language to carry on the conversation, GUIDON uses
graphics to explain that "If you have asked about seizures, then you ought to
test the hypothesis of meningitis. However, if you want to test the hypothesis
of intracranial pressure, then some other hypotheses are available to you. If the
pressure hypotheses work, then these other hypotheses are also available to
you." For every piece of reasoning that the system performs, it explains the
kind of hypotheses the student might consider and the kinds of data to collect.

More Case Examples

I have addressed some of the issues of building intelligent tutoring systems and
have looked at a few start-up examples. Now I will examine more cases and
evaluate all the systems presented. In the conclusion, I will discuss controver
sies, bottlenecks, and barriers facing further research.

Figure 23 shows a geometry tutor developed by Anderson at Carnegie-
Mellon [Anderson et al., 1985]. This system provides a new form of visual rea
soning for the student. Backward and forward chaining of geometry proof steps
are made visable. In the top of the top figure, the student is asked to prove that
Μ is the mid-point of EF. In the botton of that same figure, the student is given
that Μ is already a mid-point of AB and CD.

Every time the student suggets a step of the proof, the machine not only
writes down the step, but also annotates the triangles with the known relation
ships. The machine shows the relation of each step and how it lies or does not
lie on a path of the proof. If steps performed don't contribute to the proof, they
are shown on the trace as disjointed from the path. If the student can't go any
further in the forward direction, he/she can always start at the top of the
graphic and go backward, adding proof steps in reverse. This system makes a
contribution to cognitive modeling and to the communication of tutoring. It
provides a structure for problem solving that was not previously available.

Figure 24 shows Anderson's other tutor for teaching LISP [Anderson and
Reiser, 1986]. One good feature of Anderson's work is the use of his cognitive
model of learning, the ACT theory, to build systems in geometry, algebra, and
LISP. The systems are used to test his model. If they don't work well, Anderson

Chapter 1 Intelligent Tutoring Systems 25

can go back to refine his cognitive model. This methodology, the scientific
method, involves a hypothesize-test-evaluate cycle and is used too rarely in ar
tificial intelligence. Anderson has demonstrated that he can improve on both
his cognitive model and the building of intelligent tutors.

DEF.MIOPOMT

Μ It midpoint of

Μ It miOOO<n(of CF

DEF-MIDPOINT

E M í M F

ΔΜΘΟΚΔΜΑΟ

I
S AS

Z.AMCS¿BMO
•

VERT OEF-MIOPOINT

Μ I· midpoint of

I of U

¿MCA ftupp^MCE ΜΘ3ΑΜ

AOJ-SUP-ANGS*'^ OEF-MIOPOINT

Μ I« midpoint of AB

•
OEF-MIOPOINT

•
ΠϊΓϊμΓ

CORRES-PARTS

Z-AMCaELBMO

VERT

MÜsCÍCÍ

OEF-MIOPOINT

Μ I« midpoint of δ ϋ

LAME 2¿. BMF

VERT

Figure 23 Geometry Tutor [Anderson et al., 1985]

26 Woolf

Returning now to the LISP Tutor (Figure 24), the student is asked to pro
duce code for the function Factorial. He/she produces code and the machine
comes back with a response every time a new line is entered. In the second
line the student tried to test if a number argument was equal to zero. The ma
chine said, "I assume you were trying to test if the number argument is equal
to the number zero. There's a special function for testing equivalence to zero.
Try to use that function instead of equal." The system uses 325 production
rules to represent LISP concepts and 475 rules to represent buggy concepts.

Anderson has accumulated some impressive results with this tutor. This
system was used to teach the first six lessons of LISP in a typical college course
at Carnegie-Mellon. Anderson says that it takes about forty hours with lecture-
style presentations to get through the first six lessons of LISP. It took only fif
teen hours for people using this system. He found also that those students who
had both lectures and this system produced grades which were 4 3 % better than
those of students who had only attended the lectures.

A Student-Tutor Dialogue for Coding a Recursive Function to Calculate Factorial
Define the function fact. It takes a

number argument η and computes the
factorial of n, which is the result of
multiplying η Χ η - 1 Χ η - 2 Χ · · · Χ 1 .
For instance, (fact 3) « 3 X 2 X 1 « 6. By
definition, the factorial of 0 is 1.

1 . (defan <NAME> <PARAMETERS> <BODY>)

2. (defun fact (n)
(cond ((«quäl) <ACTION>)

<RECURSIVE-CASE>))

I assume that you are trying to test if
the number argument is equal to the number
zero. There is a special function for
testing equivalence to zero. Try to use
that function instead of EQUAL.

What code can you write to test if the
condition for terminating case is true? Try
writing a predicate.

3. (defun fact (n)
(cond {(«·Γθ <ACTIOM>)

<RECURSIVE-CASE>))

Old you mean zerop (y or n)? y

4. (defun fact (n)
(cond ((i«rop n) 1)

<RECURSIVE-CASE>))

Is the value of fact in the recursive cases
calculated by:
PRESS: IF YOU WANT TO:

1 Calling fact recursively with n.
2 Multiplying η by fact of η minus 1.
3 Getting 1 2 ... η and then

multiplying the results.
4 Have the tutor choose.

Menu choice: 3

That is a reasonable way to think of
doing factorials, but it is not a plan for-
a recursive function. Since you seem to be
having trouble with the recursive cases,
let us work through some examples and
figure out the conditions and actions for
each of these cases.

The recursive relationship is the
relationship between fact called with η and
fact called with:
PRESS:

1
2
3
4

IF YOU WANT TO:
η minus 1.
η equal to 0.
η plus 1.
Have the tutor choose.

Menu choice: 1

We will consider some concrete examples.
We will characterize the recursive
relationship between fact called with 1 and
fact called with 0.

What is the value of (fact 1)?
Answer: 1

What is the value of (fact 0)?
Answer: 1

EXAMPLES
fact (η) fact (η - i)

A. (fact 1) = 1 (fact 0) = 1

We wi}l consider some more concrete
examples, we will characterize the
recursive relationship between fact called
with 3 and fact called with 2.

What I S the value of (fact 3)?
Answer: 6

Figure 24 LISP Tutor [Anderson and Reiser, 1986)]

Chapter 1 Intelligent Tutoring Systems 27

1.1 ^ ^^ (Oivioc)

ill) Ι·Ν-2.5-: UueiMci)
ill) ni (Oo-«ri(h«<ii<c)
(13) M.J (SOLVtO)

ISOATE «he übl*
COLLECT lik.» »*'·ίη·; into i singU <»pi<ijiún
GROUP to.9et»-ir terms (»rinjpoit ».*r«5)
SPLII »fMrt Λ-ρΓ.»?ϊίΛηί. conr» mío.] »ĥi ν»η»Ι

\i7tlk-7\s lOf A

4(2-»·Ν) = 20

WJLflPLV I OtVIOÉ

(undo) (next problem)

Figure 25 Algebraland [Foss et al., 1987]

Another intelligent tutor teaches algebra (Figure 25) [Foss et al., 1987].
This system provides the student with a problem, such as 4(2 + N) = 20, and
asks the student to solve for N. As the student performs each operation the sys
tem allows him/her to plan the solution. The student can say, "I want to collect
all like terms," "I want to transpose terms," or "I want to split apart expres
sions containing like variables." For every plan the student suggests, the sys
tem provides the basic operations. The student can perform the operation or
ask the system to do it. He/she can expand expressions, add to both sides, sub
tract from both sides, or divide by both sides simply by asking the machine.
Every action is seen in a trace window.

As shown in the figure, both sides of the equation are divided by 4, further
steps will be placed on the right side of the trace until the Ν = 3 value is
reached. On the other hand, if dividing by 4 is not the first step, and instead
multiplying through by 4 is the next step, then the steps will be shown on the
left-hand branch of the trace. The student would arrive at the same answer for
either path, as shown at the bottom of the trace.

file:///i7tlk-7/s

28 Woolf

This system begins to act as a partner in the sense that it can do the steps
anytime the student asks for assistance. Certainly the machine can do algebra,
that's not the problem. The question is, can it also provide a view of algebra
that is intuitive, motivational, and helpful for the student? It does that by pro
viding a trace, a record of all the steps performed, and by providing a higher-
level view of algebra operations. It acts as a partner in that if the student can
not solve the problem or cannot do the arithmetic expansion, he/she can effec
tively say, "I don't want to fool around with this lower-level stuff, I want you
to do it" and the machine will do it. Several systems have been implemented in
this way. They act as mentors in that they tell the student what is correct or in
correct and they also act as partners and actually perform the required steps.
Anderson's LISP tutor acts as a partner in this way by executing the student's
code.

The system called STEAMER is famous, in part, because of the icons pro
vided, which the student "inserts" into a simulation of the working steam boiler
(Figures 26 and 27 [HoUan et al., 1984]. As a result, the student can see and
measure the effects of his/her actions on a working simulation of the steam en
gine. By adding a pump or a toggle switch, the student can envision how the
real steam engine would perform under the same changes.

A tutor with the same methodological approach is the Intelligent Main
tenance Tutoring System (EMTS), which also allows the student to place com
ponents into a simulated working hydraulics system (Figures 28 and 29)
[Towne et al., 1987]. This system trains students to fold helicopter wings. It
determines which problem the student should solve next, keeps track of how
much time it took to solve the problem, and maintains a model of the student's
presumed leaming.

One difficulty with the technology of the systems previously discussed is
that there's little transference experience for the author building new systems.
There's currently no way to implement a new system using technology from an
earlier system. The next three systems represent an exception to this rule
(Figures 30-32). These systems are built with bite-sized architecture, a repre
sentation in which knowledge is bundled in bite-sized units and accessed by
several modules of the system [Bonar et al., 1986]. The bites communicate
with each other to exchange information about the next curriculum topic, or to
evaluate and respond to the student's input.

The economics mtor, built on this architecture, allows a student to adjust
parameters in a simulated society, such as the size of the population, the num
ber of stores, and the number of suppliers, etc. (Figure 30). The student's task
is to deduce economic principles. For instance, he/she can see how much non-
dairy creamer, coffee, and tea have been sold; can change variables such as
price, distribution, or size of competition to deduce the rules in place; and then
can observe some relations between supply and demand. For each modification
made by the student, a record is kept noting how many parameters were

Chapter 1 Intelligent Tutoring Systems 29

changed and what increments were used. When the student has a hypothesis,
he/she writes the observed relationships down and the tutor evaluates them.
The tutor monitors the student's actions and judges whether he/she is changing
the correct parameters and making appropriate changes in those parameters.

80

o i g ' t ai b ar bar

ary
pump

force bar

air ejector

Stop
valve

Oraph

check
valve

O C Z)
d i a m o nd i n a ' > g ie octagon l o z e n ge

" Γ - - 1 0 0

column S i g n al

swich

reguUiior regulator stop
valve valve valve

multi-plot graph

D 2 4 6 8 10

Figure 26 STEAMER Icons [Hollan et al., 1984]

30 Woolf

P O RT E M E RG

F E ED T A NK

F R OM E N G I NE R O OM

1 2 6 G PM

T O
MN C O ND X

•

I

•

F R OM A UX C O N D E N S E RS

i j i %9 %m um^ma mm m ma ij 34 G P M ¡

V A C U UM D R AG

—ÖGPM I

• 1 B F W D P U MP

F R OM HP D R A IN S YS

D FT

21

•ZiKIlUL IflDii^
M A K E - UP V LV

« 4

I I o I
• S RPrt · R EG

V LV

1 1 50

1 1 05

8 95

8 50

S T BD E M E RG
F E ED T A NK

1 A F W D P U MP

F R OM F R E SH
W A T ER D R A IN
S Y S T EM

C O O L ER

T O B O O S T ER P U M PS

Figure 27 STEAMER [Hollan et al., 1984]

Chapter 1 Intelligent Tutoring Systems 31

I I

Copy

C y c l *

D e l a t a

R o t a t e

S c a l e

S e l e c t

S t a t e - O p e

you a r a editing llbrery ftle {D;íK)<L IS»F II ES>(M ADf FOl Ü .; 1

0··· ' >!·»>'

Λ 5 <0, ^rnJ
o o

' ί " ^ ^ ^ ^ ^

C S S I
> ! ! . ' { : ! M>l{ ^

f> ' -^ HEID
mum

Figure 28 IMTS Icons [Towne et al., 1987]

Figure 29 IMTS [Towne et al., 1987]

32 Woolf

iGood/lkfyic*: - l e o
fxpcrmeíM No, ̂ t
I «rtc rilcf vüi 9
Qii.» ilily Dwiiurtded = 10?0
OiHiilily r.«i,»(.lirU 1600
ÍKjfl.Kjir : XA)
S.#plus - O
Price ̂ $ l./O per 100 l»g box

A d j u s t p n c « y o u r t d l * Conttoud
S » t u p T a b l e

• H y p o l h a m

d. S a m e V a r u C h a n g a G c x) d . S a m e V a f >a5ie(s;
SaineW C h a n g e V a r i a b l e } «]

j C h a n g e G o o d , C h a n g e

C o n t i n u e T o N e x t M e n u

Ci «·«»·
Cr«aui «
Cüfrt«

I74<t
II»«

1·'.«

Figure 30 Economics Tutor [Boner, 1986]

Two other tutors in this series also allow for student hypotheses within a
rich simulation environment. The OPTICS tutor allows a student to move lenses
over a screen; it sends a ray of light through each lens, and allows the student
to measure the entry angle and the exit angle for each of these lenses (Figure
31). This system is similar to the economics tutor in that the student creates
original experiments and matches his/her hypotheses against the actual per
formance of the lenses. In this way, the student starts to intuit principles of op
tics. Similarly, an electronics tutor demonstrates principles of electronics
(Figure 32).

Chapter 1 Intelligent Tutoring Systems 33

I Repiayexperimem I M i k e S u b T a b te I E d i i N o i e b o ok I
^^^^^ Nk)ti*)oci*< (or PirpeTFniKnt rmuirxH >^ ^

ÍlHi.,.ili¿il.BiailtkHJ

Figure 31 OPTICS Tutor [Boner et al., 1986]

Ihn ΙΐΗηρΜνΙ «ι Choni t lo ut«. (S.fios (lickitlor) (PraáOeni Rol curren! allur ,11 (ih-kulur)) (r).w«lur) (fruüU-ni ΠμΙ t̂ rwil Mtr 0*1 (lletiklur))) (((((Ik-I Ihllir.irfl) (S KrcUjMUaw)) (S llMhMtfAiHjAllS) iMKivt)
(V.JUi|.S.Hjri.c) (Ik-vikliv) (INuIjIcim tlul • •riiitl «lltír u(((n̂ vt̂ lur)) (ΠοΜίν) (l'iiiliii.-Mi IU<4 curiiiil «IIiíT mi (llc-Mklitf))) (l'-raicH (Serio» (Hcw.lur) (iWkKtur) (lloi»lar ')) (Ν*···» (lk.'v»lir) (llcviklur))) ((l'ar̂ltH (
k>i>iu| (lh.M»lir)) (HarjM (lk.'vi»tur) (iTiitinr)) (lleminr)»
i'&IC.iri.iiit nV0lli[MCt 3o;)

IaIi.t Di;i.iik,'CKj..l0n.iiilO1lül

Figure 32 Electronics Tutor [Boner et al., 1986]

34 Woolf

Evaluating Tutoring Systems

We have looked at more than a dozen systems and we can now ask: What has
been achieved? Do these systems demonstrate completeness and reliability
within the four models: knowledge and reasoning, communication, cognitive
processing, and tutoring? The answer is no. Yet each system does demonstrate
varying amounts of completeness for each model (Figure 33). (Completeness
and reliability in a system indicate that it can be used effectively in training or
classroom situations.) In the right-hand column, under Advanced Results, I
identify those systems that can be used reliably by students and can provide
some coverage of a topic, albeit for a limited domain. Such systems can be
used generally by many students. Systems listed in the center column have, by
and large, demonstrated only knowledge engineering capability for one of the
four models. These systems demonstrate the prototypical behavior for an expert
in that model; yet that model is not complete and reliable.

M O D E L

K N O W L E D G E

A N D

R E A S O N I N G

I s s u e s I d e n t i f i e d
K n o w l e d g e E n g i n e e r i n g

P r o t o y p e s a n d

S m a l l S c a l e T e s t i n g

A d v a n c e d R e s u l t s
C o m p l e t e n e s s a n d

R e l i a b i l i t y C o n s i d e r a t i o n s !

yt.e Sized Tut

Electronics

Clancey

White 4 Frederickapn

¡ y ^ L i s ^ ^ u t o r y

| C O M M U N I C A T I O N S |

M E D I A

M O D E L

C O G N I T I V E

P R O C E S S E S

Maintenance

Towne Í Munroe

Ric

1 ^

Medicine

\i Clancey r

W h i t e (F r e d e

P a s c a l T u t o V ^ [Τ Π ^ Τ ^ ^ Ο
o h n s o n t S o f o w a y Anderson Κ

i r o n i c e ^ I g e b r ^ ^

M O D E L

T U T O R I N G

A N D

D I S C O U R S E

jJElectronl^^

B r o w n & B u r t o n

JBoUe^^utor.

W o o l ^ t a i r

Woolf 4 MacDoYiald

Figure 33 Completeness and Reliability in Tutoring Systems

Chapter 1 Intelligent Tutoring Systems 35

As you saw, the LISP tutor by Anderson has been placed in schools and has
achieved completeness and reliability within its knowledge representation and
reasoning model. Its cognitive model is also very good. The medical education
tutor by Clancey has also been used by students and seems able to represent
complex data in a visual and intuitive way.

The majority of systems discussed lie in the middle column; they reflect
good knowledge engineering yet are not fully reliable in the classroom. We've
learned to build good prototypes and to perform small-scale testing on these
systems.

For some modeling tasks, notably that of representing tutoring primitives,
we've only just identified the issues. Development of tutoring models lags be
hind development of knowledge and reasoning models. We've done some pro
duction work in representing knowledge and communications, and are not
doing production work in representing cognitive processes or tutoring strate
gies.

Figures 34 and 35 show how each system might be rated in terms of its
ability to implement each of the four models.

E N V I S I O N M E NT
W O R LD

S O P H IE
R E C O V E RY

B O I L ER
T U T OR

M A I N T E N A N CE
T U T OR

S T E A M ER B Y TE S I Z ED
T U T OR

M O D EL OF
K N O W L E D GE

A ND
R E A S O N I NG F A CT

/ V
S Y S T EM S Y S T EM

s/
S Y S T EM S Y S T EM

s/
; . Y S 7 tM

C O M M U N I C A T I O NS
M E D IA si s/
M O D EL

C O G N I T I VE
P R O C E S S ES

M O D EL
T U T O R I NG

A ND
D I S C O U R SE

M e n t or M e n t or

Figure 34 Qualitative Models, Part 1

36 Woolf

E L E C T R O N I CS
T U T OR M E D I C I NE L I SP T U T OR

A L G E B R A-
L A ND

G E O M E T RY
T U T OR

B R I D GE
T U T OR

M O D EL OF
K N O W L E D GE

A ND
R E A S O N I NG

S Y S T EM

s/
M E TA

K N O W I t l X i t-

s/
F O R M AL

v /
F O R M AL F O R M AL F O R M AL

C O M M U N I C A T I O NS
M E D IA

M O D EL
C O G N I T I VE
P R O C E S S ES

M O D EL
T U T O R I NG

A ND
D I S C O U R SE

V'
P A R T N ER P A R T N ER

F/0Cire 35 Qualitative Models, Part 2

Figures 34 and 35 also indicate the variety of knowledge we teach and the
variety of ways in which we teach it. For example, we are able to teach facts,
e.g., velocity and acceleration, as well as whole systems, e.g., electronic sys
tems, boiler system, and maintenance system. We have also begun to teach
meta-knowledge, or the knowledge needed to reason about and make infer
ences in a domain, e.g., the medical education tutor shows how to organize and
focus data. Several other systems teach formal logic and formal knowledge,
e.g., Algebraland and the geometry tutor.

We have also developed new ways of teaching. Figure 34 indicates that we
use a mentor method in the SOPHIE and Recovery Boiler Tutor System, where
the system oversees the student's actions and doesn't necessarily comment, or
at least might reserve comment, while continuing to model the student's ac
tions.

We have systems that act as partners, e.g., the LISP tutor or Algebraland,
which allow the student to ask for help or which themselves execute the next
step (Figure 35).

What have we really achieved? Clancey has put it succinctly: "Education
has not been turned upside down." Clearly we have not placed a lot of systems
in educational institutions. Neither have we performed extensive evaluation on

Chapter 1 Intelligent Tutoring Systems 37

these systems. We require around two years to build each system. Thus, in a
few more years we will have more systems in educational institutions, yet even
these systems will not be ready for evaluation. Classroom tests do not provide
a measure of success for these systems because they have not been integrated
into the curriculum. Soon however, we need thorough evaluations of these sys
tems.

As shown in Figure 36, systems have been placed in grade schools, in
dustrial sites, military training sites, and universities. In the grade schools, the
geometry and algebra tutors have been tested by Anderson. In industry, 60 or
so copies of the Recovery Boiler Tutor have been used at various papermill
sites. In military training, the original electronics tutor was used briefly and the
equipment maintenance tutor is about to be used. More progress has been made
in university training, perhaps because computer science researchers are often
found at universities. Thus, the Johnson and Soloway Pascal tutor [Johnson and
Soloway, 1984], the Anderson LISP tutor, a second Pascal tutor, called the
Bridge tutor [Bonar and Weil, 1985] and the medical education tutor have all
been used with university students and in some cases have undergone detailed
testing.

Figure 37 provides a rough estimate of the number of units used, where
units is taken to mean copies of software, rather than separate pieces of hard
ware. Obviously the field is still new. As we begin to move into production
with these systems and produce hundreds of these units as in the case of the
Recovery Boiler, and the geometry, and STEAMER projects, we will be able to
more properly evaluate the effectiveness of these systems. Ten units might
mean that 10-30 students have used the system, and as we begin to actually
use systems for a semester or so, as was done with the Pascal or LISP tutor, we
will have hundreds of units available and can begin performing summative
evaluation on student performance.

APPLICATION
AREA 1960 1970 1980 1990 2000

GRADE SCHOa Gtography Tutor

Algebra Tutor Geometry Tutor

INDUSTRIAL
SITES

Recovery Boiler Tutor

MILITARY
TRAINING

Steam Boiler Tutor

Electronics Tutor Equipment Maintenance Tutor

UNIVERSITY Pascal Tutor
Medicine Tutor Lisp Tutor

Bridge Tutor

Figure 36 Intelligent Tutors in the Classrom and Training Sites

38 Woolf

HUNDREDS OF UNITS

TENS OF UNITS

SINGLE UNITS

Pascal Tutor
Lisp Tutor
Recovery Boiler Tutor
Geometry Tutor
Electronics Tutor
Steam Boiler Tutor
Medicine Tutor
Bridge Tutor
Equipment Maintenance Tutor

Algebra Tutor

Geography Tutor

1987 P R O D U C T I O N L E V E L S O F A I T U T O R I N G S Y S T E M S

Figure 37 Number of Units

Controversies

Several controversies surround this work. As discussed above, a major problem
is that we have not yet evaluated these systems. For example, if a system
succeeds, which models should be assigned the credit? How can the various
models be fine-tuned to improve the next generation of systems? Such evalua
tion studies are beginning. Anderson [1988] and Soloway have made detailed
studies of the effects of their systems on learning and performance in the class
room.

A second issue of controversy is the definition of intelligent tutoring sys
tems. Frequently, researchers in the field develop two or three of the models
suggested in Section 1.2 and say that the resulting system is intelligent. If, for
instance, a system has a good interface and representation of the domain, but
lacks a cognitive or tutoring model, is it intelligent? I suggest that until all four
models are achieved the system is not intelligent.

Another controversy concerns the effectiveness of these systems. And as
I've said, there are very few systems out there. Moreover, funders are reluctant
to pay for evaluation of these systems. Apart from a few isolated efforts, no
large scale effort to evaluate this work has been undertaken.

Yet another controversy concerns the theory, or lack of same, that guides
development of these systems. Ideally, we should look at cognitive theories,
model them in the design of a new system, and use the systems to test the

Chapter 1 Intelligent Tutoring Systems 39

theory. The crucial step is the iteration, which enables results from one step to
inform development of the next: A working tutor should enable refinement and
evaluation of a cognitive principle and vice versa. Results from a working tutor
should, in theory define a new cognitive model. Currently, precious little
theory guides development of these systems. Not enough has been learned
from cognitive processes results or from instructional design literature. There is
nothing so practical as a good theory.

Another issue is use of the scientific method. Do we hypothesize, test, and
evaluate rules and processes? Most of us do not. We need to clarify how hy
potheses are generated in this field, how experiments help test those hypothe
ses, and then how results are to be evaluated.

We have been unclear abut the intersection of our field with other applica
tions of computers for education, such as simulations and microworlds. Do
they work? For the most part, they do not. There is some evidence that simula
tions alone do not work, that microworlds are effective in getting the student to
manipulate specific parameters. But there is little evidence of transference from
either system to other domains. In both cases the missing element is a tutor
that guides the interaction. Without some reasoning about the student's inten
tions and some appropriate remediation, effective teaching does not take place.

Bottlenecks, Barriers, and Breakthroughs

Many bottlenecks stand in the way of full realization of these systems. A pri
mary one is the acquisition of sufficient person-power to build these models.
How can researchers in psychology, education, and instructional design partici
pate in this effort? A great deal of education and networking is required. Com
puter scientists need to work with instructional designers and educators who
need to work with psychologists. We all need to benefit from prior work in the
other fields. Currently, there is minimal communication between participants.
Computer scientists, psychologists, domain experts, and teachers each publish
in distinct journals using non-intersecting vocabularies. Results from empiri
cists are often not precise enough to enable production of knowledge and con
trol structures.

Another barrier concems the intensive amount of work necessary to build
each tutor. Without the aid of shells and authoring systems this task is over
whelming. Even with software tools, each new domain requires indentification
of topics and prerequisite topics, causal and temporal reasoning between topics,
and the relative difficulty for learning topic. Cognitive modeling requires iden
tification of meta-cognitive skills and an index to how a person might organize
knowledge in the new domain, as well as identification of human strengths and
weaknesses. Building a communications model requires visualization of the

40 Woolf

reasoning process, such as Clancey has done with the medical tutor or as Bonar
has done with the OPTICS tutor. It also requires taking advantage of high resolu
tion graphics, windows, menus, icons, and other available graphics tools.
Building a tutoring model requires specification of the relative difficulty of
each topic, as well as strategies and tactics for tailoring instruction to an in
dividual student, and coφus analogies, examples, and error diagnosis tech
niques for teaching each topic. Thus, each new tutor requires exensive pro
gramming and empirical results.

Some breakthroughs however, facilitate future development of these sys
tems. Powerful and inexpensive small computers have become availabe for ed
ucation. For example, the Recovery Boiler Tutor was built on an IBM AT. It
might have had more powerful communication capabilities if it had been
developed on an Al-workstation, and we are beginning to scale down such sys
tems to run on microcomputers. Funding for this research has recently become
available at different levels through industry, government, and military sources.
For example, Xerox PARC has established an Institute for Research on Leam
ing, the purpose of which is to research new ways of teaching adults, using a
computer. The founding of this Institute was motivated by the urgent need for
adult education, particularly in industry. Xerox contributes a solution to this
problem by funding researchers at Palo Alto to look at the cognitive process of
leaming and applying this knowledge to the building of intelligent tutors. The
National Science Foundation and the Office of Naval Research have funded
this type of work for a long time.

Existing software facilitates development of these systems. Expert systems,
particularly the advent of expert systems shells, enable us to use existing sys
tems, especially those in qualitative process modeling, and to base our tutors
on the expert knowledge contained therein. This is not a simple, direct process,
as Clancey has shown, but it does provide a starting point. Recent advances in
cognitive modeling have also helped. Studies in leaming, inferencing, and
modeling processes are available. We are beginning to know more about what
we're teaching and how to model the individual student as he/she learns. Cur
rently we need more information about activities that engage particular students
and that distinguish novice from expert behavior [Larkin et al., 1980; Chi et al.,
1981], and about how to respond to the individual student.

Conclusions

In sum, I want to be very clear that we do not offer a panacea for the problems
discussed at the beginning of this talk. Even if we build systems as powerful as
suggested here, these systems will not fix all the educational deficiencies listed
earlier. But they do provide some exciting possibilities, one of the most excit
ing is the possibility of building enticing leaming environments that appear

Chapter 1 Intelligent Tutoring Systems 41

more effective than any existing forms of teaching. They also provide experi
ments for simplifying complex learning: For example, the Recovery Boiler
Tutor and the maintenance tutor attempted to reify complex situations and
make numerous components and parameters easy to manipulate.

One potentially significant impact of these machines is to transform educa
tion from a push to a pull, whereby people eageriy choose to work using these
systems. Operators who have the Recovery Boiler Tutor report working on it
up to 76 hours in the first three months. We don't ask the operators to work
that many hours, they just enjoy playing with the system. Teaching systems
that attract people have a significant advantage over non-attracting forms of
teaching media.

As shown above, intelligent tutoring systems research is not an application
area of AI. We cannot take off-the-shelf products from AI and use them to
build our systems. This means that we are required to do a lot of work and to
be more eclectic and persistent in modeling cognitive, tutoring, domain, and
communication knowledge. However, the possibility is there for us to create
world-class teaching systems that will change the current education delivery
system.

References

Anderson, J., C. Boyle, and G. Yost, 1985. The Geometry Tutor. Proceedings
of the International Joint Conference on Artificial Intelligence. Los Angeles,
CA.

Anderson, J., and B. Reiser, 1986. The LISP Tutor. Byte 10(4): 159-175.
Anderson, J., 1988. Unpublished talk at NSF MDR Principal Investigator's

Meeting, Phoenix, AZ.
Bloom, B. S., 1984. The 2-Sigma Problem: The Search for Methods of Group

Instruction as Effective as One-to-One Tutoring, Educational Researcher
13:4-16.

Bonar, J., R. Cunningham, and J. Schultz, 1986. An Object-Oriented Architec
ture for Intelligent Tutoring. Proceedings of the ACM Conference on Ob
ject-Oriented Programming Systems, Language and Applications. ACM,
New York.

Bonar, J. G., and W. Weil, 1985. An Informed Programming Language. Paper
presented at the meeting Expert Systems in Government. Washington, D.C.

Brown, J. S„ and A. Bell, 1982. SOPHIE: A Sophisticated Instructional En
vironment for Teaching Electronic Troubleshooting (An Example of A.I. in
C.A.I.). In Sleeman, D. and J. S. Brown, ed. Intelligent Tutoring Systems.
Academic Press, Cambridge, MA.

Chi, M., P. Feltovich, and R. Glaser, 1981. Categorization and Representations
of Physics Problems by Experts and Novices. Cognitive Science 5:121-152.

42 Woolf

Clancey, W., 1979a. Transfer of Rule-Based Expertise Through Tutorial Dia
logue. Ph.D. Dissertation, Department of Computer Science, Stanford Uni
versity.

Clancey, W., 1979b. Case Management for Rule-Based Tutorials. In Proceed
ings of the International Joint Conference on Artificial Intelligence,

Clancey, W., 1979. Tutoring Rules for Guiding a Case Method Dialogue. Inter
national Journal of Man-Machine Studies 11. Also in D. Sleeman and J. S.
Brown, ed.. Intelligent Tutoring Systems. Academic Press, Cambridge, MA,
1982.

Clancey, W., 1984. Classification Problem Solving. Proceedings of the
National Conference on Artificial Intelligence.

Clancey, W., 1986. Qualitative Student Models. In Traub, J. F., ed.. Annual
Reviews, Inc. Palo Alto, CA.

Clement, J., and D. Brown, 1984. Using Analogical Reasoning to Deal with
Deep Misconceptions in Physics. Cognitive Processes Research Group,
Physics Department, University of Massachusetts, Amherst.

deKleer, J., and J. S. Brown, 1986. A Qualitative Physics Based on Con
fluence. In Bobrov, D. C , ed.. Qualitative Reasoning about Physical Sys
tems. MIT Press, Cambridge, MA.

Forbus, K., 1986. Qualitative Process Theory. Artificial Intelligence 24:85-168.
Reprinted in Bobrow, D. C , ed., Qualitative Reasoning about Physical Sys
tems. MIT Press, Cambridge, MA.

Forbus, K., and A. Stevens, 1981. Using Qualitative Simulation to Generate
Explanations, Report #4480, Bolt, Beranek and Newman, Inc.

Fuller, R. B., 1962. Education Automation: Freeing the Scholar to Return to
his Studies. Southern Illinois University Press, Carbondale, II.

Hollan, J., Hutchins, E., and L. Weitzman, 1984. STEAMER: An Interactive
Inspectable Simulation-Based Training System. AI Magazine. Summer.

Johnson, L., and E. M. Soloway, 1984. Intention-based Diagnosis of Program
ming Errors. Proceedings of the National Conference on Artificial Intel
ligence, pp. 369-380, Austin, TX.

Larkin, J., McDermott, J., Simon, D., and H. Simon, 1980. Expert and Novice
Performance in Solving Physics Problems. In Science 208:1335-1342.

Molnar, Α., 1986. An unpublished talk presented on the panel "AI in Educa
tion," E. Soloway, Chair, National Meeting of the American Association on
Artificial Intelligence, Philadelphia, PA.

Naisbitt, J., 1984. Megatrends: Ten New Directions Transforming our Lives.
Warner Books: New York, NY.

National Science Foundation, 1983. Educating America for the 21st Century.
Washington, DC.

Richer, M., and Clancey, W., 1985. GUIDON-WATCH: A Graphic Interface
for Viewing a Knowledge-Based System. IEEE Computer Graphics and Ap
plications 5(11):51-64.

Chapter 1 Intelligent Tutoring Systems 43

Roschelle, 1987. Unpublished paper title presented at The Third International
Conference on Artificial Intelligence and Education, Pittsburgh, PA.

Shortliffe, E., 1976. Computer-based Medical Consultations: MYCIN, Ameri
can Elsevier Publishers, New York, NY.

Sleeman, D., and J. S. Brown, ed., 1982. Intelligent Tutoring Systems. Aca
demic Press, Cambridge, MA.

Smith, 1987. ARK. Unpublished Paper presented at The Third International
Conference on Artificial Intelligence and Education.

Soloway, E., 1986. Learning to Program vs. Learning to Construct Mechanisms
and Explanations. CACM. 29(9):850-858.

Stevens, A„ Collins, Α., and S. Goldin, 1978. Diagnosing Student's Miscon
ceptions in Causal Models Technical Report 3786, Bolt, Beranek and New
man, Cambridge, MA, also in International Journal of Man-Machines Stu
dies 11 and in Sleeman, D. and J. S. Brown, ed.. Intelligent Tutoring Sys
tems, Academic Press: Cambridge, MA, 1982.

Towne, D., A. Munroe, Q. Pizzini, and D. Surmon, 1987. Simulation Composi
tion Tools with Integrated Semantics. Abstracts of the Third International
Conference on Artificial Intelligence and Education, p. 54. Learning Re
search and Development Center, University of Pittsburgh, PA.

U.S. Department of Education, 1982. Computers in Education: Realizing the
Potential.

U.S. Department of Education, 1983. Proceedings of the Office of Education
Research and Improvement.

White, B. and J. Frederiksen, 1986. Intelligent Tutoring Systems Based upon
Qualitative Model Evolutions. Proceedings of the National Conference on
Artificial Intelligence.

Woolf, B., D. Biegen, J. Jansen, and A. Verioop, 1986. Teaching a Complex
Industrial Process. National Association of Artificial Intelligence, Philadel
phia, PA.

Woolf, B., and D. McDonald, 1984. Context-Dependent Transitions in Tutor
ing Discourse, National Association of Artificial Intelligence, Austin, TX.

Woolf, B., and D. McDonald, 1984. Design Issues in Building a Computer
Tutor. IEEE Computer September. Special issue on Artificial Intelligence
for Human-Machine Interaction.

Woolf, B., and D. McDonald, 1984. Representing Discourse Conventions in
Tutoring. In Expert Systems for Government Symposium. IEEE and MITRE
Coφ. , McLean, VA.

Walberg, H., 1982-3. A Series of Reports (1982-3) Concerning Computational
Studies of Mathematics Skills Scores between U.S. and Japanese Students.

Chapter

2

An Introduction to
Explanation-based Learning

Gerald DeJong
Coordinated Science Lakx>ratory

University of Illinois

Introduction

What is explanation-based leaming? That is the central question we will ex
amine. Unfortunately, there is yet no satisfactory answer to this question. Nor
is there universal agreement among researchers on what phenomena should and
should not be included under the rubric of explanation-based leaming (EBL).
Such an admission may first seem rather unsettling to a scientist. Is it im
possible to scientifically study a topic whose very boundaries have not been
clearly delineated? Is EBL a paradigmatic conundrum? My answer (not sur
prisingly) is "No!" The difficulties are real but quite natural. They are a reflec
tion in part of EBL's immaturity—it is young even by AI standards, and in
part of similar problems with the broader field of AI.

What would it mean to have a satisfactory answer to our central question?
We would need a complete and precise characterization of EBL. The conjunc
tion of these two attributes is the problem; it is too early to be complete and
precise. We can offer imprecise and ad hoc characterizations that capture many
of our intuitions about EBL, or we can give precise characterizations which are
stultifying and shallow.

45

46 DeJong

While we may accept this description of EBL's current state as accurate,
we cannot be content with it. It is the presence of these difficulties that makes
EBL worthy of scientific study, and it is the stmggle of scientific study by
which we can eliminate them.

There are two approaches to EBL research. We will call them the "formal
ist" approach and the "implementationalist" approach. Each has its advocates.
The formalist takes small, certain steps, building on a firm foundation. The im
plementationalist throws caution to the wind, programming large systems with
impressive input/output behavior. An ideal researcher must be a bit of both.
The proper task of a formalist, aside from formalizing, is to broaden the scope
of his research. The proper task of an implementationalist, aside from im
plementing, is to distill a little true progress from the overabundance of im-
plementational details.

An honest formalist, when asked "How can you be sure what you're
studying is important?" must reply "I cannot"; an honest implementationalist,
when asked "How can you be sure your work represents a scientific advance?"
must give the same response. Both researchers rely ultimately on their own in
tuition—their own gut feeling for what is an exciting research direction. So it
is with explanation-based leaming. Each component brings its own brand of
progress, and it is only through their nexus that EBL can arrive at the scientific
Nirvana of completed research.

In this paper we begin by building an intuitive appreciation for EBL. Next,
we will briefly compare EBL with similarity-based leaming (SBL). Then we
will list and discuss the various types of EBL generalization and present
several formalisms that have been advanced to handle some small fraction of
them. After discussing why these formalisms fall short of capturing EBL, a
brief historical account of EBL development will be given followed by a dis
cussion of a few of the important outstanding research issues.

An Intuitive Specification of EBL

Explanation-based leaming is best viewed as a kind of leaming from observa
tion [Mitchell, Mahadevan and Steinberg, 1985; DeJong and Mooney, 1986a].
It allows a system to acquire general knowledge through an analysis of a few
specific episodes. Background knowledge plays a cmcial role in the analysis
process. In large part, the background knowledge substitutes for the massive
training sets needed in traditional machine leaming. It is convenient, though
not necessary, to view EBL in the context of problem solving, or more pre
cisely, leaming about problem solving. We will primarily explore EBL in this
context.

It is important to realize that the determining feature of an EBL system is
not the presence of something called an explanation. Many systems constmct

Chapter 2 Explanation-based Learning 47

explanations or proofs but are not EBL systems (e.g., [Fikes and Nilsson, 1971;
Chamiak, 1977; Wilensky, 1978; Schank, 1986]). Rather, it is how the ex
planation is used that qualifies a system as taking an EBL approach. Each EBL
system uses the explanation of a very few examples (usually just one) to define
the boundaries of a concept. The concept's definition is determined by a
domain-theory-guided inspection of why an example worked, not by similari
ties and differences between this example (or example's explanation) and pre
vious instances.

"Hey! Look what Zog do!"

Figure 1 Early explanation-based learning. "The FAR SIDE cartoon
by Gary Larson is reprinted by the permission of Chronicle Features,
San Francisco, California."

48 DeJong

Figure 1 is a reproduction of a "Far Side" cartoon which shows an ex
ample of early explanation-based learning. A group on the left are Neander
thals. They are familiar with fire but have not yet discovered the concept of a
cooking skewer. Zog, the Cro-Magnon with glasses on the right, has invented
the world's first skewer and is happily broiling his pterodactyl drumstick over
his own fire. Zog is creative and intelligent, the Einstein of the late Pleistocene
age. It would be nice to develop a computer model that captures Zog's creative
problem solving ability. Sadly, that task is far beyond current AI technology.
However, there is another interesting individual in the picture. The smartest of
the three Neanderthals has noticed Zog's invention. He realizes that Zog is not
scorching his hand in the traditional way and yet Zog is just as successfully
cooking his food. Our Neanderthal friend has done much more than rote learn
ing. He has appreciated something of the generality of Zog's cleverness. For
example, he probably knows that the cooking technique would work for him as
well as for Zog, also that it is not specific to Zog's drumstick but would work
equally for his friend's lizard or tomorrow's yet-uncaught wild rabbit. He per
haps realizes some of the parametric constraints on the concept. The skewer
concept could be applied to his own fire, though since the fire is larger and
hotter than Zog's, a slightly longer stick would be propitious. He probably also
understands some of the limitations of the concept: It would not work well
when applied to giant turtle eggs or a whole woolly mammoth—^the turtle eggs
would shatter and the woolly mammoth could not be lifted with the stick. Our
Neanderthal has done much more than simply store away a single uninteφreted
episode. He has, in fact, acquired a new general concept.

In spite of the fact that our Neanderthal is not as intelligent (or at least not
as creative) as the Cro-Magnon Zog, he now has a skewer concept that is quite
possibly as effective as Zog's own. Furthermore, he did not have to waste the
time or effort that Zog spent—^the sleepless nights agonizing over his creation,
the endless and tedious trial-and-error experiments. How did our Neanderthal
friend learn this useful new concept? There are three steps. First, he noticed
Zog had a better way of doing things. Second, he explained to himself why
Zog's method works using his knowledge about the world—^knowledge about
fire, sharp sticks, flesh, food, and so on. Third, he generalized the explanation
of the single observed instance into a useful, broadly-applicable problem solv
ing concept.

The Neanderthal's acquisition of the skewer concept illustrates what we
term explanation-based learning (EBL). Our ultimate goal is to formalize this
process. It is a much more modest AI goal than to build an implementable
model for Zog's creativity. Much of AI seeks to do the latter, to automatically
construct clever original solutions of difficult real-world problems. AI planning
systems do everything from scratch. The fourth time through "monkeys and
bananas" is no easier than the first time. Planning from scratch is, in general,
very difficult [Chapman, 1987] and has not met with much success. Instead,

Chapter 2 Explanation-based Learning 49

we will be content for our EBL system to gracefully acquire new concepts by
observing others who are more intelligent than the system is. We will not insist
that the system produce a maximally general concept, just a useful concept. If
our Neanderthal friend falsely believes that a skewer can only be used to roast
pterodactyl parts, the concept is still worth knowing. He should, of course, al
ways be open to the possibility of later concept refinement. We will insist,
however, that the general concept be tractable to learn and efficient to access
and use.

Is this too modest a goal? Are we over-simplifying to insure success? Will
we be left with anything worthwhile? Consider what the EBL approach does
not cover. Since EBL requires a substantial amount of world knowledge both
to construct and also to generalize the explanations, acquisition of initial world
knowledge is beyond its scope. Also, invention, Zog's process of creative con
cept formation, is out of its scope. EBL will not result in computer programs
that can invent the phonograph or electric light as Thomas Edison did. While
such creative insights are essential for our culture's technological advancement,
they are very rare. Indeed the number of tmly creative advances made by any
individual over his lifetime probably averages to less than one. There are a few
Thomas Edisons who make perhaps three or four creative advances, but most
of us are just plain folk who can appreciate and use inventions but do no sig
nificant inventing of our own. The task is modest, but its modesty is derived
from not trying to suφass average human abilities. This seems to be an entirely
reasonable sort of modesty.

Much of adult leaming seems to have characteristics that make it suscep
tible to an explanation-based leaming approach. Apprenticeship leaming is ubi
quitous in human training. After a modicum of classroom-style leaming, doc
tors, plumbers, carpenters, graduate students, farmers, and so on, all finish their
training with an extended period of close observation of an established master.
This is clearly a very large, interesting, and useful class of leaming. We are not
claiming that humans must be employing EBL in these apprenticeship domains.
In this paper we are not even claiming that humans do learn this way although
there are some recent experimental evidence for the psychological plausibility
of the approach [Ahn, Mooney, Brewer and DeJong, 1987]. We only claim that
the approach is an interesting one that may prove to be an important com
ponent in an over-all model of leaming, and that it merits further study.

Informally, then, this is the kind of leaming that we term explanation-
based. It involves determining that an example is worthy of leaming, constmct-
ing an explanation for the example (or examples), and generalizing the ex
planation into a new concept. It is my own opinion that EBL systems are used
to the best advantage when the explanation is constmcted from the observation
of the behavior of an expert. However, some EBL researchers prefer systems
that generalize their own successful problem solving actions. Others have no
preference as to where the explanations come from. But leaming from observ-.

50 DeJong

ing others has an advantage. More complex and interesting concepts can be ac
quired by relying on the intelligence and creative abilities of others. This is be
cause the computational complexity of understanding is less than that of crea
tive problem solving [Dejong, 1986b].

Explanation-based and Simiiarity-based Learning

Next, we wish to briefly compare explanation-based learning with similarity-
based leaming. The term similarity-based is originally due to Michael Le-
bowitz and has been popularized by Ryszard Michalski and others, but has not
been adopted by all researchers. Pat Langley, whose research is also in this
vein [Langley et al, 1981a; Rose and P. Langley, 1986], prefers the term
empirical learning indicating that leaming is driven primarily by experience
rather than an preexisting theory. Similarity-based leaming (SBL), or empirical
leaming, is the dominant model of leaming in both AI and psychology [Wins
ton, 1975; Quinlan, 1986; Michalski, Mozetic, Hong and Lavrac, 1986a; Ren-
dell, 1983; Stepp and Michalski, 1986; Schank, 1982; Kolodner, 1987; Medin,
Wattenmaker and Michalski, 1987]. It has to do with discovering a combina
tion of features that best classifies the regularities in a set of examples. The re
sulting generalization over the examples is the new concept. The hallmarks of
SBL are (1) the use of many examples and (2) the need for very little domain
knowledge. It is, in these ways, the antithesis of EBL. In SBL, concepts
emerge from the consideration of many positive (and often also negative) in
stances of the concept. The classification is often, but not always, provided by
a teacher. The quality of the resulting concept is dependent on the number of
examples and also on how representative the training examples are of the con
cept's actual space.

To illustrate the differences between EBL and SBL we will consider ac
quiring the concept in Figure 2.

Figure 2 A cup.

Chapter 2 Explanation-based Learning 51

What is the object in Figure 2? It is a cup. But suppose we are not familiar
with cups. A similarity-based method of acquiring the concept would be to
look at a number of examples of a cup, trying to formulate what it is that they
have in common. A teacher, or some other mechanism, must be used to class
ify world objects into cups and non-cups. Suppose our teacher has produced
the labeled objects of Figure 3. The ones on the left are classified as cups and
the ones on the right are not cups. The objects (both positive and negative ex
amples) are presented to the SBL system as a conjunction of features. The first
positive example is cylindrical and red, has a round handle and a flat bottom; it
weighs 5 ounces, and belongs to Herman. The second one is conical and
brown, has a fashionable art-deco handle and a flat bottom; it weighs 6.3
ounces and is the property of Mary. The third one is shown in Figure 3.

An SBL system, after examining many positive and negative examples,
will construct a general description which ideally is satisfied by all of the posi
tive examples and none of the negative examples. Often, many different de
scriptions will be consistent with the known examples. Figure 4 shows two
different concept descriptions represented as areas in a two-dimensional feature
space. Each accounts equally well for the example instances. Positive examples
are represented by *+'; negative examples are represented by Each object

CUPS
NOT

CUPS

O

Figure 3 Positive and negative examples.

52 DeJong

is represented as the conjunction of just two feature values. Feature A may be
the object's color, and feature Β its weight. This is, of course, a trivial repre
sentation scheme; in it a brick and a golden retriever puppy are identical ob
jects. In actuality, there would be many, many features and the space would
have as many dimensions. Six dimensions were used in the discussion of
coffee cups above (shape of body, shape of handle, shape of bottom, weight,
and owner). This is also too few. A feature space must be rich enough to sup
port the distinctions necessary for the concept.

A concept description specifies an area in the feature space. Three concept
descriptions are shown in Figure 4, each of which successfully includes all of
the positive examples and excludes the negative examples. The areas are repre
sented by the contours of their boundaries.

Notice that we are allowing disjunctive concepts—concept 1 is composed
of two disjoint areas. Many other concept descriptors can be formed that
successfully separate the '+ 's from ' - ' s . Once a concept description is selected,
previously unclassified objects are classified by whether or not they fall inside
the concept's area. Obviously, an SBL concept description may be wrong. The
next negative example supplied by the teacher may not fall within the descrip
tor's area, or the next positive example may not be included in the area. Either
way, the very next instance supplied by the teacher may require adjustment of
the concept descriptor.

With enough training instances, an SBL system may come to believe that
the shape of the handle is not so important, but all the things that are cups must
have handles. The color and owner are completely irrelevant. However, all
cups are light weight (say less than 10 ounces), and all must have flat bottoms.

Feature Β

— Concept 1

— Concept 2

Feature A

Figure 4 Two alternative concept boundaries.

Chapter 2 Explanation-based Learning 53

There are many different SBL algorithms, each with its own strengths and
weaknesses. Some perform incremental leaming in which an existing concept
may be adjusted to account for a few new examples without reviewing all of
the past positive and negative examples. In others, new examples must be
added to the original set of positive and negative examples after which the
leaming algorithm is again run on the augmented training set. Some systems
eliminate the need for a teacher by looking for "well formed" clusters of object
instances. "Well formed" means that each instance is more similar (using some
metric) to instances in its own cluster than it is to any instance in different
clusters. Another variation is whether or not the leaming system can tolerate
noise. Suppose a teacher occasionally misclassifies objects, or that the repre
sentation of an object may be incorrect (e.g., an object which is actually blue is
represented as having "red" as the value of the color feature). In the presence
of noise, the best concept description may not be one that correctly classifies
all of the positive and negative examples. Rather, it may be the description that
maximizes the distance (in some metric) between most of the positive ex
amples and most of the negative examples.

One should not minimize the importance of these variations. When com
pared with an EBL system, the differences between SBL systems may appear
small. But, it is a mistake to lump them together. Research careers are built
upon these differences. Having said that, we will now lump all of the SBL sys
tems together, noting that they (1) rely on many examples and (2) make mini
mal use of background knowledge. Notice that having a large number of ex
amples improves the confidence we may have in the system's concept descrip
tion, provided, of course, that the examples are more or less evenly distributed
throughout the feature space (no large areas are devoid of classified objects). If
the feature space were totally labeled, that is, if the teacher exhaustively
classified every possible object, then there would be a uniquely correct concept
area, and all acceptable concept descriptions would be notational variants of
each other. Notice also that no semantic properties of the features need be used
to construct the concept description. The adjustments to the concept's descrip
tion, when presented with a newly classified example, can be specified entirely
in terms of changing the area covered. It matters little what the new area corre
sponds to in the real world. Parenthetically we should note that many re
searchers in SBL are incoφorating more background knowledge into their sys
tems [Stepp and Michalski, 1986]. However, the amount of background knowl
edge is relatively small and always optional; the lack of background knowledge
does not preclude the formation of concept description.

A major advantage of SBL is that it can be done in almost any domain,
even one in which there is little or no understood domain theory. A disadvan
tage is that the system must be given many, many examples, and even then
generalizations formed may reflect coincidences in the examples rather than

54 DeJong

systematic tmths. For example, one system (IPP [Lebowitz, 1980]) advanced
the generalization that terrorist bombings in El Salvador do not kill people.

How is explanation-based leaming different? Consider the same problem
of leaming a cup. This is an example that is based on an example of Mitchell's
[Mitchell, Keller and Kedar-Cabelli, 1986], which he based on an example
from Winston [Winston et al., 1983].

First, we need a domain theory from which explanations can be built. This
is shown in Figure 5a. We have chosen first order predicate calculus as a
formalism for the domain theory. This is not required; other representation sys
tems would work as well.

Second, EBL requires a functional specification of the desired concept,
shown in Figure 5b. This has been called a non-operational goal definition
[Mitchell, Keller and Kedar-Cabelli, 1986]. However, it should not be viewed
as giving the leaming system a definition of the goal concept (which sounds
suspiciously like cheating). Rather it is better to think of it as an effective pro
cedure with which to recognize when an object has the desired functionality.
For example, we may specify to the system the goal of designing a Star Trek
transporter mechanism. We may have no idea of how to build one ourselves
and, indeed, the mechanism may be impossible. Nonetheless, we may function
ally specify its attributes: A transporter is a device that makes people disappear
from one location and appear somewhere else. Such a specification is surely
not cheating and yet provides a success criterion. In our "cup" example, we de
fine a cup to be anything one can drink from. This is too broad (it includes the
concept of a "glass"), but it will suffice for pedagogical purposes.

Thus, in EBL, concepts are individuated by their functionalities. Any ob
ject with the specified functionality is necessarily an instance of the concept.
Incidentally, functionality is not to be inteφreted in any kind of "action-like"
way. This notion of functionality has only to do with the role played in the
domain. The implications of individuating concepts in this way is can be sur-

1) V x ((Liftable (x) & O p e n (x) & S t a b l e (x) & Liquid-container (x))
=> Drinkable-from (x)]

2) V x H y ((Weight (X.LIGHT) & H a s - p a r t (χ , y) & Isa(y.HANDLE))

=> Liftable (x)l

3) V x 3y ((Has-part (x.y) & Isa(y,CONCAVITY); => Open(x)J

4) V x 3y I(Has-part (x.y) & I8a(y,CONCAVITY) & Orientation(y,UPWARD))
=> Liquid-container (x)]

5) V x 3y ((Has-part (x.y) & Isa(y.FLAT-BOTTOM)) => Stable (x)l
Figure 5A The Domain Theory

C u p (x) <=> Drinkable-from (x)

Figure 5B The Functional Specification

Figure 5 The functional specification.

Chapter 2 Explanation-based Learning 55

prisingly subtle. It enforces a kind of abstract homogeneity among instances of
a concept for which there is no obvious analog in SBL.

Third, the EBL system must observe an instance of the desired concept, in
this case, OBJI whose semantic network representation is shown in Figure 6.
In fact, OBJl is just the name given to this collection of properties, OBJI has a
concavity (CON 12), it's a red color, Herman is its owner, it has a handle
(HAN31), etc.

It is the case that OBJI is a cup. This can be proved using our domain
theory. The proof is given in Figure 7. Such a proof is called an explanation. It
is a kind of data dependency support graph of the "cupness" of OBJI . EBL
does not require that the explanation be constructed in any specific way. It may
be done by a resolution theorem prover internal to the leaming sysjtem, by
some backward-chaining natural deduction mechanism, or the explanation itself
may simply be input to the system.

The explanation, once constructed, can itself drive the generalization
process. Not all of the attributes of OBJI are used in the explanation. These
features, such as "color" and "owner," could have other values without com
promising the veracity of the explanation. The explanation makes explicit
which features of OBJI are necessary for its "cupness" and which are ir
relevant. The remaining features directly contribute to the cupness of OBJI.
However, such features of a training example, while sufficient to satisfy the
functional goal, may not be necessary. Some may represent particular points
along a continuum of satisfactory values. Others represent a particular resolu
tion of a set of mutual constraints. But, perhaps, other resolutions are also
possible. By examining the explanation stmcture of the particular training ex
ample in the light of the system's domain knowledge, some of the variability
may be discovered. The result can be a new concept that is much more general
than the observed instance.

U P W A R D

Orientation

Figure 6 0BJ1 , a positive example.

56 DeJong

Cup(OBJl)

I
Drinkable-from(OBJl)

Liftable(OBJl) Open(OBJl) Liquid-container(OBJl) Stable{OBJl)

Isa(HAN31,HANDLE)

Weight(0*Jl.LIGHT)

Has-part(OBJl.HAN31)

Isa(BOT?.FLAT-BOTTOM)

Has-part(OBJl.B0T7)

Orientation(C0NC12,UPWARD)

Is a(CONG12,CONGAVIΤΥ)

Figure 7 Proof that 0BJ1 is a cup.

Types of Generalization

Before examining the types of generalization that we will expect from explana
tion-based leaming systems, it is important to clarify what is meant by the term
"generalization." In EBL we will use the term in a slightly different fashion
than it is used in similarity-based leaming. The difference is subtle, but it has
caused past communication problems. Being precise will help shed light on the
issues of over-generalization and leaming at the knowledge level [Dietterich,
1986] which will be discussed briefly in the conclusion. It is important to make
the difference in terminology explicit.

In SBL, one concept specification is a generalization of an instance if the
instance is contained in the extension of the concept. The Venn diagram in
Figure 8a shows an instance (represented as a *+') along with several generali
zations.

SBL generalization is a purely syntactic notion. It is best viewed as a can
didate specification for the concept. Michalski [1983] has provided a taxonomy
of syntactic generalizations. There is no guarantee that such a generalization
will be useful or even semantically well-formed when interpreted in the real
worid. Rather, desired properties such as expected utility and semantic well-

Chapter 2 Explanation-based Learning 57

formedness are dependent on features of the training set as a whole (e.g., how
representative it is of the actual concept). Since generalizing a particular in
stance is performed without regard to semantic considerations, the resulting
generalization may be an over-generalization of the desired concept. By con
trast, the generalization process in EBL has semantic as well as syntactic com
ponents. Figure 8b shows the relationships involved in an EBL generalization.
A qualitatively new sort of boundary is present: the solid line represents the ex
tent, in feature space, of the functional goal concept as supported by the
domain theory. This concept boundary may be defined by goal regression
[Waldinger, 1977; Nilsson, 1980]. Its shape can be very complex, even encom
passing several disjoint areas. Its determination is intractable in all but the sim
plest of domains. Instead, EBL relies on efficient generalization techniques
which may undergeneralize but which do not cross the tme boundary. In
Figure 8b the instance point is generalized via EBL to the area enclosed by the
dashed triangular boundary. Two sides and a portion of the third side of the
EBL boundary (represented by coincident dashed and solid lines) are shared
with the tme concept boundary. This reflects concept limits that the functional
goal specification imposes on the explanation. Another portion, represented as
a single dashed line, reflects limits imposed by the explanation's stmcture.
Thus, in EBL, the generalization process itself guarantees that the generaliza
tion specifies a (possibly improper) subset of the concept's feature-space area.
It is less susceptible to over-generalization. Over-generalization is unavoidable
only when the domain theory itself results in fuzzy concept boundaries. SBL
does not make this commitment in the generalization process, and over-gener
alization is much more common, even desirable. However, it requires a large
training set of examples to justify the semantic correctness of the ultimate
generalization.

Figure 8a Two syntactic generalizations of an instance.

> True Boundery

- — E B I Boundry

Figure 8b The true boundary of the concept illustrated by the instance and an
EBL-generated boundary.

58 DeJong

It might have been desirable to use the term consistently, especially since
it is so central to leaming. But perhaps not. The meaning of the term "generali
zation" has already evolved; Soloway used it in a rather different SBL fashion
ten years ago [Soloway, 1978]. Most SBL researchers have not so much ex
cluded a semantic facet of the term as simply never included one, and, when
discussing a concept's limits in transformed spaces (as in constmctive induc
tion [Rendell, 1985]), "generalization" is used freely to refer to volumes in
more abstract spaces.

In EBL circles, attributing a semantic facet to the term "generalization"
was consummated by Mitchell, Keller and Kedar-Cabelli [1986]. This should
not be thought of as a redefinition, but rather a natural evolution in the term to
reflect simultaneous changes in syntactic feaUire space and in the semantic
functional space. In any case, we will use the term "generalization" in this
sense. If the reader objects he should do an internal RPLACA throughout the
paper of "generalization" with "valid generalization" or "useful generalization."

Irrelevant Feature Ellmhation

The features that are not used to support the conclusion of cupness for OBJI
(e.g., "color" and "owner") can be removed. The result is a generalization of
the specific training example. We will call this kind of generalization irrelevant
feature elimination. In the cup domain, the amount of generalization provided
to OBJl is rather modest. In rich domains, this is a powerful method that, in
large part, solves the feature selection problem faced by similarity-based and
empirical leaming methods. Furthermore, in problem solving domains, it re
sults in the elimination of unnecessary operators, which means that the leaming
system can itself perform a measure of optimization, as well as generalization,
of the observed training example.

Iderttlty Ellmlr^atlon

The second generalization type, identity elimination, removes unnecessary de
pendence on particular objects, OBJI has a handle, HAN31. We can see by the
explanation that without a handle this particular proof of OBJI'S cupness would
not be valid. It is not important, however, that OBJI must have handle HAN31.
Any particular handle would work as well; if OBJI had handle HAN32 instead,
it would be just as liftable and just as much of a cup. Thus, we can parameter
ize specific components occurring in the explanation, OBJI will become ?x
and HAN31 will become ?Y. But this goes too far. The relations that appear in
the explanation must be maintained. For example. Handle (?Y) and Has-
part (?x, ?Y) must be tme. With our particular training instance, this relation
ship is enforced by reality, OBJI in fact does have handle HAN31 as a part.

Chapter 2 Explanation-based Learning 59

Once the particular objects are replaced with variables, the EBL system must
insure that only mutually consistent objects be allowed to bind to the variables.
It can do this by simply asserting, as constraint requirements among the varia
bles, those relations that appear in the explanation. This kind of generalization
is called identity elimination since it is not the identity of the particular real
world item HAN31 that is important for "cupness" but only HAN31'S property
by virtue of the fact that it is a handle and is attached to the object of interest.

Identity elimination works because of generalities already built into the
domain theory. These preexisting generalities are exploited to the advantage of
acquiring new concepts. Such preexisting generalities are essential for EBL.
This is not a requirement about theoretical functionality or the adequacy with
which our domain theory captures the world, but rather about how the domain
theory is written. A different domain theory might support all of the same con
clusions as the domain theory in Figure 5, but prohibit an EBL acquisition of a
broad "cup" concept. Consider the domain theory like the one in Figure 5 but
with mle 2 replaced with the mies given in Figure 9.

Using this domain theory OBJI is still liftable but not by virtue of the fact
that it has a handle that incidentally happens to be HAN31 but rather directly
because HAN31 is part of OBJI . Explanation-based generalization about the
handles of cups is very limited in this domain theory, even though the theory
adequately supports a proof of the training instance: the cupness of OBJI.
Clearly, we would prefer to avoid domain theories such as this. Ideally the role
that an object may play in the domain theory is entirely determined by its prop
erties—never by its identity. Philosophically this has some interesting ramifica
tions, but it is imcontroversial, at least so far, in AI. It may be termed the prin
ciple of no "function in form" [Anderson and Thompson, 1987a] and is often
implicitly followed by AI researchers. Adherence to this principle helps to im
prove the generative power of the domain theory as well as allowing EBL; a
domain theory designed with this principle can often support the same set of
inferences using fewer mies. The principle is also very important for the next
type of generalization, operationality pmning.

2A) V x 3y I(Weight(X.LIGHT) & Ha8-part (x,HAN31)) => L i f t a b l e (x)]

2B) V x Sy I(Weight (x .LIGHT) & Ha8-part (x.HAN32)) => L i f t a b l e (x)]

2C) V x Hy I(Weight (x,LIGHT) & Has-part (x.HAN33)) => Liftable (x)l

2D) V x 3y [(Weight(X.LIGHT) & Ha8-part (x.HAN34)) => L i f t a b l e (x)]

Figure 9 Alternative domain rules for liftability.

60 DeJong

Operationailty Pruning

The third component of generalization based on explanations we will term
operationality pruning. It eliminates easily reconstructable sub-explanation
from the explanation. We will call any constituent of the explanation oper
ational (after Mostow [1983]) if its truth can easily be verified. Parenthetically,
we should note that this is a rather informal definition and that "operationality"
can be a slippery issue, but for now we will pretend that it is well defined. The
leaves of a well-formed explanation must all be operational, but some internal
constituents may be operational as well. The particular sub-explanation
supporting an operational intemal constituent should be dropped from the con
cept definition. Such sub-explanations can be filled in as needed. This can lead
to greater generality because the particular sub-explanation used in the training
instance may be arbitrary: A number of satisfactory alternative sub-explana
tions might also have been used. Once the specific constituent's support is
pmned, the concept is no longer constrained to the specific sub-explanation.

To illustrate this, consider a slight modification of the "cup" example.
Suppose it were the case that the predicate "liftable" were operational. This
does not necessarily mean that liftable is a feature that can be immediately ob
served (like "color"), but only that the truth value of "liftable" can be easily
determined for most objects of interest. In the case of OBJI , "liftable" is tme
because OBJI has a handle. Suppose there are a few (say half a dozen) very
easy ways to prove "liftable." Further, suppose that there are a relatively few
and easy ways to prove "not liftable." It might be that if an object does not
satisfy one of the half-dozen easy proofs, it is certainly not liftable. Then the
predicate "liftable" itself is operational. There is no reason to keep a trace of
the particular proof, liftable-via-a-handle, as part of the concept definition for
"cup." To determine the "cupness" of something, it is almost as easy for the
system to remanufacture the liftable-via-a-handle proof as to verify an already-
expanded version. Greater concept generality is achieved by means of a handle.

Structural Generalization

The fourth type of generalization we will call structural generalization. By this
we mean a generalization that alters the intemal stmcture of the explanation it
self This is the most difficult and the most interesting of the generalization
types, and merits a sub-taxonomy. The previous three generalization types, ir
relevant feature elimination, identity elimination, and operationality pmning, do
not alter the structure of the explanation for the training example, except per
haps to remove nodes. Structural generalization includes rearranging, trans
forming, and adding components to the explanation. We will briefly discuss
three important sub-types of structural generalization: disjunctive augmentation,
temporal generalization, and number generalization.

Chapter 2 Explanation-based Learning 61

ZARF

Figure 10 Alternative method for achieving stability. Zarf with round bottomed
cup.

Disjunctive Augmentation Disjunctive augmentation involves adding al
ternative options to an explanation constituent. If, as part of the domain theory,
the system knows a different but acceptable method of supporting a constitu
ent, that alternative is specified along with the method used in the example. For
example, consider the "cup" domain theory with the additional concept of a
"zarf," which is a chalice-like holder for small round-bottomed objects (see
Figure 10).

The domain theory includes a different method for achieving stability. The
example cup, OBJI , is stable because it has a flat bottom, but stability might
have been achieved in another way. If the domain theory included the possi
bility of employing a "zarf* to achieve stability, then the generalized oper
ational concept should include a disjunct at the stability constituent. Note that
this is very different from operationality pmning. stable (?X) itself is not
operational, but isa (?X,FLATBOTTOM) and isa(?x,ZARF) are. Of course, if
the original constituent support is a specialization of one of the alternative

62 DeJong

methods, then the original constituent may be dropped altogether without loss
of generality.

It may seem that allowing disjunctive augmentation opens a rather nasty
can of worms. It is possible, indeed likely, that in any interesting explanation
there are augmentations possible which are fraught with many subtle con
straints and result in only minor improvements in the concept's generality. Dis
covering them and processing them is expensive, and their benefit is small.
Indeed this is tme of most forms of stmctural generalization. Does this call into
question the validity or the desirability of performing such generalizations? Not
at all. An important point to remember for stmctural generalization, which ap
plies to all of EBL, is that the resulting concept need not be fully general to be
useful. Any generalization is better than none. There is a tmism called the
80/20 mle: one gets 80% of the work done with 20% of the effort, and the re
maining 20% of the work requires 80% of the effort. The mle is usually cited
as a caution against extrapolating the performance characteristics of prototype
systems. However, in EBL it works to our advantage. Getting 80% of the
generalization with 20% of the work is a great bargain. We can afford to be
content with less-than-totally-general concepts; there is nothing magical about
generalizing any particular concept to its utmost limits. A problem solving area
not covered by one concept will likely be covered by another, and if not, the
system's overall performance is still improved due to efficiency gains in the
problem solving areas that are covered.

Temporal Generalization Temporal generalization applies particularly to
planning. A plan is a sequence of operators that achieve a goal. The training
example demonstrates how a goal is achieved by a particular sequence of oper
ators. It is possible that a different sequence of the same operators would work
as well. The example's explanation explicitly specifies required dependency
orderings among states and operators. The timing of some operators may be ar
bitrary; other operator sub-sequences may require a particular ordering but
allow other sub-sequences to be interleaved, and so on. The general problem
solving concept should allow for variations in operator orderings.

Mooney [1988] has specified an algorithm to perform temporal generaliza
tion for STRIPS-type operators. This can be quite an involved and expensive
process. Things get much worse when considering a more general specification
of operators. Non-instantaneous processes allow simultaneous and overlapping
changes in the world (as is common in qualitative reasoning [Forbus, 1984; de
Kleer, 1979; Kuipers, 1984]). Full temporal generalization under such real-
worid conditions is not completely understood. One possibility might be to
deny the apparently special status of "time." Time might be represented expli-
cidy as one more aspect of the domain model (e.g., [Allen, 1983; Dean,
1983]). Then temporal generalization might be adequately subsumed by the
other EBL generalization types.

Chapter 2 Explanation-based Learning 63

As with disjunctive augmentation, discovering all possible temporal order-
ings is not necessary. Any temporal variability aids in the generality of the
concept.

Number Generalization Number generalization refers to the recognition
that a particular sub-explanation can be replicated. For example, suppose we
wish to teach a system, which knows about inunediate support and stability,
how to build a tower of blocks. A training example is given in which three red
blocks are stacked. With the generalization types described so far, the resulting
concept will be limited to building three-block towers. The system will recog
nize that the particular blocks used in the example are not required, that the
blocks need not be the same color, etc. The system will realize the requirement
that the lower blocks be flat on top, that they be relatively incompressible, and
so on, as dictated by the domain knowledge and explanation. However, the
new concept will not apply to building towers with four blocks. Another train
ing example of stacking four blocks will be required, and yet another for five
blocks, and so on. Clearly, this is inadequate. The system should itself realize
that the particular techniques for building three-block towers also apply to
stacking four or more blocks.

Number generalization is difficult because the parameter being generalized
(in our example, the number of blocks) is not explicitly represented anywhere
in the explanation. Rather the "threeness" of the tower is implicitly coded in
the topology of the explanation itself. There are three sub-explanations proving
the resulting stability after a block is grasped and moved. The three sub-ex
planations are not identical; the blocks are different, their initial and final loca
tions are different, etc. Number generalization cmcially involves a repre
sentation transformation of the explanation into a form in which "sets" or
"loops" are included in the theory's ontology. Several systems [Prieditis, 1986;
Shavlik, 1988; Cohen, 1987] have advanced directions to investigate number
generalization.

It is interesting to note that not all cases in which number generalization is
theoretically supportable should result in number-generalized concepts. Con
sider rotating the tires on an automobile. Even though the procedure readily
generalizes to automobiles with 5, 6, or 7 tires (and such automobiles are logi
cally possible), there is no particular advantage in complicating the ROTATE-
Ή R E problem solving concept to include them.

Formalisms for Explanation-based Learning

The first attempt at formalizing EBL is due to O'Rorke [1987]. He formalized
EBL as the posting and propagating of constraints through a network. The sys
tem that was implemented to demonstrate the formalism's feasibility, named

64 DeJong

ΜΑ, required the assertion of retractable equality relations. This was per
formed by a McAllester-style TMS [McAllester, 1982]. Only a limited form of
stmctural generalization was performed. While theoretically pleasing, the
formalism proved too unwieldy to direcdy support implementations.

More recently there have been two major formalizations of the EBL gener
alization process. These are the EBG algorithm of Mitchell, Keller and Kedar-
Cabelli [1986] and the EGGS algorithm of Mooney and Bennett [1986]. Both
advance a domain-independent generalization process. They produce similar
(perhaps identical) generalizations of an explanation. However, neither is a full
solution to the problem of formalizing explanation-based leaming.

We will first consider the EBG algorithm. Generalization is performed by
regressing the goal concept through the example's explanation stmcture. Goal
regression [Waldinger, 1977] of a formula through a mle computes the neces
sary and sufficient conditions under which the mle can be used to infer the
formula. That is, for a given mle and a desired formula it yields the weakest
constraints that must be met by the antecedents of the mle to insure that the
consequent unifies with the desired formula. The goal regression of EBG is
similar to the goal regression algorithm of Waldinger except for two important
differences. First, the algorithm is expanded to regress a formula through ex
planations (proof stmcmres) instead of single mleS. Second, disjunctive possi
bilities are ignored; this is equivalent to representing only a sufficient condition
for inferring the formula rather than necessary and sufficient conditions. In par
ticular, the sufficient conditions chosen correspond to the example's explana
tion stmcture.

Extending goal regression to an explanation stmcture complicates the
standard goal-regression algorithm. The simplest use of goal regression would
be to start at the final consequent of the explanation. Since the explanation
succeeded, this formula, which is the final consequent, must be an instance of
the goal concept. Instead of the final consequent, the general (functional and
non-operational) goal concept itself might be used as the formula to regress
across the last inference mle. The resulting formula can then be regressed
across the penultimate inference mle(s), and so on until the leaves of the ex
planation are reached.

There are two problems with the simple algorithm. First, once a mle is
selected for a goal regression step, only the portion of the goal concept sup
ported by the rest of the explanation should be regressed through the mle.
Since the example's explanation itself may not support the full generality of
the goal concept, regressing the general goal concept via strict back-propaga
tion may result in weakest preconditions which are in fact too general. A sec
ond complication is due to the fact that explanations are tree stmctured. Tree
stmctured explanations result from implication mies with conjunctive antece
dents. An example of a conjunctive mle is the mle for inferring "liftable" in
the cup domain theory of Figure 5. Goal regression is a local algorithm. The

Chapter 2 Explanation-based Learning 65

problem with tree stmctures is that mutually inconsistent constraints may be
imposed on a variable by different sub-explanation branches.

The EBG solution is a two-stage propagation algorithm. First, forward
propagation is done from the leaves up to the final consequent. This results in a
general formula that is fully supported by the particular explanation structure.
The resulting formula (which may be more specific than the original goal con
cept) is then back-propagated through the explanation stmcture to produce the
weakest operational preconditions.

The other formalism for generalization is called EGGS (for Explanation
Generalization using Global Substitutions). It requires that an explanation be
made up of constituents (called units) and that units are connected by unifica
tions. A domain theory of implication mies and propositions (as in Figure 5),
fits this requirement: A unit is a proposition or implication that is connected
into an explanation stmcture by unifying propositions and consequents with an
tecedents.

Some of the unifications in the explanation are specific to the example;
others are required by the interaction of domain theory units. EGGS maintains
separate specific and general unification binding lists. The specific list records
all unifications in the explanation. The general list records only those unifica
tions that are imposed among the domain theory units; no unifications to at
tributes of the particular example are made. Thus, the general list reflects the
most general version of the explanation proof. Applying the general substitu
tion list to the input goal concept yields the functional specification of the
achievable goal concept—which, as discussed earlier, may be a specialization
of the input goal concept. Applying the general substitution to the leaves of the
explanation (excluding formulas representing features of the training instance),
produces the weakest operational features required of an object to be an in
stance of the new concept.

In EGGS the order of unification is unimportant since the unification algo
rithm itself correctly propagates global effects of each unification. Furthermore,
the general unification substitution list may be constmcted simultaneously with
the specific list while the explanation is constructed. Thus, the general concept
may be available immediately upon explanation. This means that within-trial
leaming is possible; a new concept may be acquired as the result of the con-
stmction of a sub-explanation tíiat may be useful in constmcting another sub-
explanation.

There are many similarities between the two algorithms. Both are rea
sonably efficient; both rely heavily on unification. Provided the domain model
is cast in terms of first order predicate calculus implication mies so that goal
regression is well defined, they appear to compute identical solutions. It has
not yet been proved, but is strongly suspected, that the algorithms are, in a
sense, notational variants. The difficulty in proving this is due to the very
different way unification is used. EBG asserts more unifications than EGGS,

66 DeJong

but the EGGS unifications tend to be more complex. Order of unification is
important for EBG but not for EGGS.

What the Formalisms Miss

Formalizing EBL is one of the great challenges for researchers in machine
leaming. The two formalisms of EBG and EGGS are excellent first steps, but
they are only first steps; neither is close to a full answer. Both perform ir
relevant feature elimination and identity elimination well, but their approaches
to operationality pmning are unsatisfactory. Furthermore, neither even attempts
disjunctive augmentation, temporal generalization, or number generalization.

To perform operationality pmning, both build on an incomplete characteri
zation of operationality. Informally, a constituent of an explanation is oper
ational if its achievability is easily judged. If it is easy to achieve, the precise
method of achievement need not be selected until the time of achievement. No
prior problem solving effort need be spent on its achievement. This is an ap
pealing concept, but like so many other appealing concepts, it is not rigorously
defined. While both formalisms drop the explanation's support of "operational"
constituents, their methods for determining operationality are too narrow.

In EBG, operationality is determined by an α priori classification of predi
cates. EGGS does not commit itself to any particular method of judging oper
ationality, but in practice, EGGS systems assign operationality on the basis of
an a priori classification of units. In both cases, operationality is treated as a
context-free notion; operationality is assigned to a unit without consideration
for the relation of the unit to other units in the explanation, or to a predicate
without consideration for its arguments. This works well for directly observ
able or static properties. Consider the predicates Color and isa in a simple
system. These can be classified as operational because the tmth value of
Color (?x,?Y) and isa(?x,?Y) are always easy to determine regardless of
what ?x or ?Y are bound to. For Color, the system looks at the object; for
Isa it looks up the object in its memory. Unfortunately, most important predi
cates/units are not operational by this definition. Consider the predicate
Possess. It is operational, in the informal sense, for some of its arguments but
not all. The expected ease of determining the tmth value depends cmcially on
what is being possessed and by whom. The possession of a driver's license
may well be considered operational for adults and for grade school children; al
most all adults have one and almost no grade school children have one. The
formalisms of EBG and EGGS cannot take advantage of this very compelling
generality. Possess is operational when the object is a driver's license, but
only when person is not in the ambiguous high school years. As another ex
ample, consider the problem of determining the operationality of Provable. In

Chapter 2 Explanation-based Learning 67

particular, compare Provable (''2+2=4") and Provable C'Fermat's last
theorem"). Suppose the first expression arises in a concept that somehow
needs the number ' 4 ' , which is achieved in the training instance as the sum of
2 and 2. Even though the proof is trivial, given a few easy axioms about addi
tion, it cannot be judged as operational by EBG or EGGS because with
another argument (Fermat's last theorem) its tmth value is not easy to deter
mine. It does not help that we are guaranteed that such difficult arguments will
not show up when attempting to additively produce 4 from two integers. The
expanded proof must remain as part of the concept definition, explicidy deriv
ing 4 from 2+2 and not from 3+1 or -6+10, etc.

Neither EGGS nor EBG attempts to formalize any form of stmctural
generalization (disjunctive augmentation, temporal generalization, or number
generalization).

The History of EBL

The roots of EBL can be traced back a long way, at least long as judged by AI
standards. There is some question whether Waterman's poker player system
[Waterman, 1970] should be included. It had three leaming methods. One,
which he called analytic can be viewed as explanation-based. Unfortunately, it
was the least successful of the three, and probably cost more than it benefited
the system.

The first tmly explanation-based research is the MACROPS leaming work
done in the STRIPS system [Fikes and Nilsson, 1971]. It worked in a simple
robot world and stored generalized versions of successful plans. The resulting
general problem solving concept was stored in an interesting data stmcture
called a Triangle Table. The Triangle Table specified all of the preconditions
that needed to be tested in the current world state to insure that an entire
sequence of actions would succeed.

In an historical context, it was a very impressive system. It included a no
tion of operationality by transforming all the preconditions of a plan's com
ponent operators into a form directly testable in one of a set of possible initial
states. It also introduced as a central concept the notion of chunked knowledge
structures. This notion was to be reinvented several years later as frames,
scripts, and schemata [Chafe, 1975; Minsky, 1975, Schank and Abelson,
1977]. Automatic acquisition of chunked knowledge stmctures would not re-
emerge for even longer [Rosenbloom, 1983; DeJong, 1981; Mitchell, Keller
and Kedar-Cabelli, 1986].

Lest we find ourselves too enraptured we should examine a few shortcom
ings of the research. While clearly ahead of its time, it also had many faults. It
only performed identity elimination generalization; it did no operationality

68 DeJong

pruning or structural generalization. The overall system behaved as if it could
perform irrelevant feature elimination, but this generalization was not reflected
in the Triangle Table data stmcture. Rather, a clever indexing hack (of
questionable efficiency) allowed the system to skip over irrelevant operators at
execution time. Additionally, the domain was so simple as to preclude address
ing many important issues. Only a handful of simple operators were allowed.
Finally, the research was never formalized. It is important to realize that to for
malize research one need not adopt any particular language or representation
scheme. Indeed, STRIPS and MACROPS were deeply and effectively com
mitted to predicate calculus. But this is not enough. To formalize research
means to separate the science of the model from the implementation of the sys
tem. Theoretical claims must be clear and explicit and not tied up with ir
relevant programming details. This was never achieved or, indeed, attempted
for MACROPS.

The next system of interest is Sussman's HACKER [Sussman, 1973].
HACKER leamed to improve its planning skills in a simple blocks world
domain. One of its forms of leaming was explanation-based in nature and
called the subroutinization process. It relied on a trace of the execution of the
patched program kept by a simulator. The trace served the role of an explana
tion during generalization. Generalization consisted of variablizing constants
while taking any dependencies into account.

Eliot Soloway's baseball system [Soloway, 1978] induced many of the
mies of baseball from conceptual representations of players' action. The sys
tem was primarily similarity-based but had a strong explanation-based com
ponent. The program was given initial background knowledge about competi
tion and games in general. This formed the system's domain theory. Input
game sequences were embellished and inteφreted using the background knowl
edge. The result was then generalized, also using the background knowledge,
to form hypotheses for the underiying mies of the game. Other game sequences
were then examined to confirm the generalizations.

Mostow devised a model which also made use of background knowledge
[Mostow, 1981]. The system worked in the domain of the card game "hearts."
Not one for half-way measures. Jack did away with the training examples alto
gether. The system operationalized advice without necessarily seeing any in
stances of the concept. A teacher provided good but non-operational advice
such as "avoid taking points." The system then "operationalized" tíiis advice
into usable mies like "don't lead with high cards."

Finally, there were the first EBL systems of the modem era: Mitchell's
LEX2 [Mitchell, Utgoff and Baneiji, 1983b], Bemard Silver's LP [Silver,
1984], and my own work in acquiring schemata for natural language pro
cessing [Dejong, 1981]. Independently, all three researchers hit upon the idea
of substimting a knowledge-based examination of a single instance for the
large or carefully tailored training sets needed by other machine leaming sys-

Chapter 2 Explanation-based Learning 69

terns (e.g., [Michalski, Mozetic, Hong and Lavrac, 1986a; Quinlan, 1986;
Mitchell, Utgoff and Banerji, 1983b; Winston, 1975]. The exciting discovery of
each other's work occurred at the 1983 International Machine Leaming Work
shop. These three systems were only tentative first steps. My work was ad hoc.
In LEX2 Mitchell did not realize the advantage of forming or generalizing new
knowledge-chunked concepts, and Silver's LP often queried the user to input
the correct generalization direcüy. But basically, we were on the right track.

Since then there has been an explosion of explanation-based leaming re
search. As can be seen in Figure 11, there are significantly more EBL systems
every year.

W H E N W H A T W H O W H E R E

1 9 7 0
1 9 7 2

1 9 7 3
1 9 7 8

1 9 8 1
1 9 8 2

1983

1 9 8 4

1 9 8 5

1 9 8 6

P O K E R
S T R I P S /

M A C R O P S
H A C K E R
B A S E B A L L *

K I D N A P *
C R I T T E R
L E X 2
A N A L O G Y
C L A U D A G G Y *
H A N D I C A P P E R
LP
G A M E S *
MA
P E T

A D E P T
A R M S
C H E F
G E N E S I S
LEAP
O C C A M
P D A
P H Y S I C S - 1 0 1
S H I F T *
A C E S
C O N S T E L L A T I O N
E B G
E B L - L T *
E B L - S O A R
E G G S
FERMI
M O R R I S
R E - A N A L Y Z E *
R E F I N E *
U N I M E M
W Y L

Waterman
Fikes et al

Sussman
Soloway

neJong
Kelly &

Steinberg
Mitchell
Winston O'Rorke Salzberg Silver
Minton O'Rorke Porter & Kibler
Rajamoney Segre Hammond Mooney Mitche' et a Pazzan:
Redar^Cabelli Shavlik Εliman
Pazzani Lathrop & Kirk*^ Mitchell et al O'Rorke Rosenbloom & Laird Mooney &

Bennett Cheng & Carbonell Minton Hall Doyle Lebowitz Flann &
Dietterich

Stanford
SRI

MIT
University of Massachusetts/ Amherst
University of
Rutgers
Rutgers

Illinois/Urbana

ΜΓ Un Ya
Un;

versity of Illinois/Urbana
versity of Edinburgh

Carnegie Mellon University University of Illinois/Urbana University of California/ Irvine
University of Illinois/Urbana University of Illinois/Urbana Yale
University of Illinois/Urbana Rutgers
University of California/ Los Angles
Rutgers
University of Illinois/Urbana
The Aerospace Corporation MIT/Gould*^ ^
Rutgers
University of Illinois/Urbana Xerox PARC/Stanford
University of Illinois/Urbana
Carnegie Mellon University
Carnegie Mellon University
MIT MIT Columbia Oregon State University

* Denotes invented names for un-named systems. For hybrid systms, year indicates when an EBL component was first reported.

Figure 11 Explanation-based learning systems.

70 DeJong

Continuing Researcti Issues

There are some important areas for future EBL research. In this section we list
and briefly discuss a few.

The whole notion of operationality is a cloudy one. It is cleariy a central
concept for EBL but, in general, operationality judgements would seem to be
context sensitive. A particular generalized structure (say a plan) may be oper
ational in one state of the world but not in another. This is a strong statement
that is possibly suφrising and probably unfortunate. Note that "operationality"
is quite different than "applicability." Obviously, a plan may be applicable in
some worid states but not others. Operationality is a bit more abstract. A con
cept is operational if, given a world state, the applicability judgment of that
concept is easy. If we persist in our current notion of operationality (which is
unquestionably sensitive to the state of the world), and if EBL continues to de
fine the border of a new concept based on operationality, then it follows that
the concept's definition changes in different world states. This is odd, at best.

Formalization is another area in need of work. There is an interesting ob
stacle to formalizing structural generalization. To formalize a model means to
separate the theoretical claims from its incidental details. Ideally, we want a
"structural generalization" module into which we may plug domain theories.
Then to implement an EBL system in a new domain, we need only supply the
domain. The rest of the system remains unchanged. The easy road to formali
zation is to provide a domain-free specification. Sadly, this is not possible for
structural generalization. Structural generalization depends on aspects of the
domain itself. This is not to say that a domain-independent specification is im
possible, however. It only means that the generalization algorithm must know
crucial characteristics of the domain, and that the domain implementation must
follow this discipline so that relevant domain characteristics are coded expli
citly. Part of the formalization of structural generalization is to provide a tax
onomy of domain characteristics upon which generalizations depend. Thus,
formalizing structural generalization requires a fair amount of progress in
knowledge representation.

EBL does not pretend to be a complete answer to the problem of machine
learning. Much work remains to be done on combining EBL ideas with ideas
from other learning paradigms such as similarity-based learning [Quinlan,
1986; Stepp and Michalski, 1986], empirical learning [Langley, Bradshaw and
Simon, 1981a; Rose and Langley, 1986], analogy [Falkenhainer, Forbus and
Gentner, 1986; Centner, 1983; Anderson and Thompson, 1987a; Carbonell,
1985], and connectionism [Rumelhart, Hinton and Williams, 1986; Hinton and
Sejnowski, 1986; Anderson, 1987b]. Hybrid systems can range from applying
EBL ideas in other areas (e.g., Kedar-Cabelli's work on EBL and analogy
[Kedar-Cabelli, 1985]), to constructing unified learning systems composed of

Chapter 2 Explanation-based Learning 71

identifiable modules (e.g., Kodratoff's DISCIPLE system [Kodratoff and
Tecuci, 1987]).

Of particular importance is combining EBL and SBL. There has been
some work in this area already [Pazzani, 1985; Pazzani, Dyer and Flowers,
1987; Lebowitz, 1986; Flann and Dietterich, 1986; Danyluk, 1987]. There are
two obvious combinations. EBL can be done first, followed by SBL, or they
can be reversed. Interestingly, they both make sense. Using EBL first allows it
to perform the task of feature selection. Feature selection is a notoriously diffi
cult problem for SBL. Another way of looking at the arrangement with EBL
first is that SBL then performs its induction in a kind of "explanation" space
instead of the original feature space. Using SBL first can greatly focus the job
of constructing an explanation. It is useful in domains where the domain theory
is uncertain, where explanations are difficult to construct, or where many
spurious EBL concepts may be constructed. SBL first detects significant pat
terns in the examples; EBL is then only run on these SBL-filtered candidates.
Other more integrated approaches may be even more productive.

Are there other less obvious future directions for EBL research? Yes, of
course. My favorite way to find them is to pick a real-world domain and pose
the question: "Why won't current EBL solutions work here?" Most often, EBL
will not work, and analyzing why yields large inadequacies in the current re
search.

Consider again our prehistoric friend acquiring the skewer concept. He
could not have constructed an air-tight proof of why Zog's skewer worked. To
begin with, he has only a mediocre theory for combustion and radiant energy.
The caloric theory of heat, so central to explaining why cooking works, will
not surface for thousands of years. His "explanation" is very different from a
logical proof. His first attempt at building his own skewer may well fail. The
stick may be too short or too dry. Does this mean he should give up, that Zog's
solution is somehow unavailable to him? Certainly not. He must be able to an
alyze the failure and refine his skewer concept accordingly. The notion of con
cept refinement must play a large part in almost all real-world domains. It is
unrealistic to expect a computer system to get things right the first time, since
people seldom do. Such behavior is beyond any formalization of EBL, al
though there has been some initial work in this direction [Hammond, 1987;
Chien, 1987; Bennett, 1987].

This is just one view of the ugly domain problem: Domains are character
ized by theories that are necessarily incomplete, incorrect, or inconsistent. Most
real-world domains cannot be captured by clean, first-order rules. Furthermore,
humans work incredibly well with incomplete, incorrect, and inconsistent
views of the worid. This is probably a strength and not a failing. A quantum
physicist does not consider the Schrödinger wave of his cup when pouring
coffee. Even though he has a more accurate formalism than the rest of us, he
chooses (correctly) not to use it. Furthermore, most interesting domains that

72 DeJong

support clean formalizations (like chess, go, or robotics kinematics and dynam
ics) are intractable. In principle everything can be solved in these domains, but
in reality anything worth doing is too complex to achieve. Humans often deal
with such complexity by introducing fuzzy terms like "weak queen side" and
"exposed king," thus transforming an intractable domain into an incomplete or
inconsistent one.

The notion of an explanation must be broadened to include much more
than just proofs in first order predicate calculus. Almost all real-world prob
lems involve gradual changes that persist over time. Furthermore, it is seldom
possible to specify all of an operator's preconditions or effects. Operators are
never instantaneous. World situations are never fully known. Actions may
overlap. A single agent assumption is seldom tenable, and even simple objects
defy definition. Philosophers have long wrestled with the problem of defining
everyday concepts such as "chair" and "game."

Richer formalisms (such as those offered by qualitative reasoning [Forbus,
1984; de Kleer, 1979; Kuipers, 1984], must be examined. Formalizing EBL in
these contexts will be far more difficult than in the idealized paradigms of situ
ational calculus or STRIPS-type operators.

Extending the domain theory is another important avenue of future re
search. This is another facet of the incomplete/incorrect theory problem. EBL
is very sensitive to the particular domain mies used in an explanation. The ini
tial implementer of an EBL system cannot correctly anticipate all of the con
cepts that the system will leam. Yet without this knowledge, he cannot be cer
tain that his domain theory will adequately support the acquisition of all the
desired concepts. The system must itself detect and remedy inadequacies in its
domain theory. There has been some important initial EBL work on this topic
[Rajamoney, 1986]. Additionally, a unified system might be able to apply some
of the current SBL, empirical, or discovery (e.g., [Lenat, 1983]) techniques to
the problem of refining its domain theory.

More work must be done on determining when an EBL generalization
should be made. The current formalisms begin to address "how" a generaliza
tion can be performed, but have nothing to say about whether overall system
performance will improve or degenerate from the leaming experience. Minton
[1985] has pointed out the problem of unconstrained acquisition of concepts.
System performance can be degraded by spending inordinate amounts of time
evaluating complex applicability tests of irrelevant concepts. The obvious solu
tions are to be selective in leaming concepts and to simplify the applicability
tests. Segre [1987] has proposed that concepts only be retained if they satisfy a
leaming criterion. In particular, his system generalizes and retains only that
portion of a new experience that includes the explanation of subgoals inter
acting in a novel way. One of the interesting methods of simplifying applicabil
ity tests for new concepts has been proposed by Keller [1987]. He suggests re
taining a set of test problems for each concept. The test problems are best if

Chapter 2 Explanation-based Learning 73

they are representative of the problems the system will face. Applicability con
ditions (and concepts themselves) are syntactically simplified while monitoring
performance on the test sets. Simplification is performed until a concept satis
fies some extemally imposed criteria of speed and accuracy on its test set.

Finally, there is work to be done on a cognitive science front. The classical
approach to concept acquisition in psychology involves only artificial concepts.
For example, cards, each with two or three geometrical objects of different
colors, are presented to the subject. A concept is fabricated by the experimenter
to describe some but not all cards. For example, "a star or a circle of any color
along with any other blue shape." The subject has "learned" the concept when
he can classify the cards correctly. Isolating the study of concept formation
from any intmsion of a subject's background knowledge was originally seen as
an advantage. However, in recent years psychologists have questioned these
semantic-free paradigms as ecologically unsound [Murphy and Medin, 1985].
There is some evidence that EBL is psychologically valid [Ahn, Mooney,
Brewer and DeJong, 1987]. Furthermore, the SOAR system [Laird, Rosen
bloom and Newell, 1986], which has a strong EBL flavor, is primarily moti
vated by psychological considerations.

Conclusions

Where might EBL systems be used? The one obvious and compelling applica
tion is in "expert" systems. A major obstacle in the road to more competent ex
pert systems is the problem faced by the knowledge engineer of extracting in
formation from the task expert. The expert is quite capable of superior per
formance of the task but cannot accurately introspect on his own algorithmic
mies. This has been termed the knowledge-acquisition bottleneck, and it causes
endless trouble and expense to the knowledge engineer. EBL might be used to
observe the experts problem solving thus eliminating the need for the expert's
inaccurate introspections. Interestingly, EBL does not require any special be
havior of the expert. To return to the prehistoric skewer for a moment, the EBL
Neanderthal acquires the new concept through non-intmsive observation of the
Cro-Magnon expert. Zog is not required to verbalize about his invention or
help the Neanderthal's explanation process or even provide any hints about the
representational features for the new concept. He simply carries on with his
own unimpeded problem solving behavior while the Neanderthal watches.
EBL, therefore, may offer a solution to the knowledge-acquisition bottleneck
faced by expert systems.

Since EBL involves reasoning from the specific to the general it is a form
of induction, but it also has a strong deductive flavor. The deductive com
ponent is from the application of a system's background knowledge or domain

74 DeJong

theory. Creating explanations can be viewed as problem solving or theorem
proving.

Reliance on background knowledge restricts the EBL approach to domains
in which such knowledge exists. Without a theory of the domain, explanations
are not possible, nor is explanation-based generalization.

EBL is not an alternative to SBL. Rather the two are complementary, each
possessing strengths and weaknesses. SBL approaches can learn in areas where
EBL cannot (e.g., where little background knowledge exists). Conversely, EBL
is not hamstrung by the feature selection problem in rich spaces that forces
SBL systems to adopt strong learning biases [Utgoff, 1986].

Initially, EBL may appear not to support knowledge-level learning. Knowl
edge level is a term coined by Newell [1981] and formalized by Dietterich
[1986] referring to the deductive closure of the knowledge in an AI system.
Since explanations are constructed from the system's original domain theory
and since the generalization process is guided by the domain theory, it would
seem that any EBL-acquired concept must already be implicitly contained in
the domain theory, albeit in an intractable and unusable form. Thus, there is no
change at the knowledge level, and hence no learning at the knowledge level.
This is true if applied to the narrow EBL formulations of EGGS and EBG.
However, it does not apply to broader formulations. In particular, the ADEPT
system of Rajamoney [1986] is designed to alter the components of its domain
theory. The work on approximations [Bennett, 1987] also yields a system that
changes at the knowledge level. Finally, Dietterich's system defines the knowl
edge level in terms of first-order inference closure on monotonic theories. It is
not clear what the knowledge-level learning claims have to say about non-mon-
otonic systems (e.g., [Chien, 1987; Hirsch, 1987]).

EBL is a burgeoning research area. Every new AI conference brings excit
ing advances. EBL has attracted some of the very finest young AI Ph.Ds, but it
cries out for more. Research to date has only scratched the surface, and in this
limited space we have only sampled the surface scratches of existing research.
Explanation-based learning is an exciting, fresh, and promising new approach
in machine learning. I believe it will play an increasingly important role both
in AI research and in AI applications systems. Of course, my own view is
somewhat biased, but I hope that some of my excitement has been captured
here.

Acknowledgments

I wish to thank the members of the Illinois Explanation-based Learning Group
and the Office of Naval Research for support under grant N-(XX)14-86-K0309.

Chapter 2 Explanation-based Learning 75

References

Ahn, W., R. J. Mooney, W. F. Brewer and G. F. DeJong. 1987. Schema Ac
quisition from One Example: Psychological Evidence for Explanation-based
Leaming. Proceedings of the Ninth Annual Conference of the Cognitive
Science Society, Seattle, WA. pp. 50-57. Also appears as Technical Report
UILU-ENG-87-2231, Coordinated Science Laboratory, University of Illinois
at Urbana-Champaign.

Allen, J. F. 1983. Maintaining Knowledge about Temporal Intervals. Com
munications of the Association for Computing Machinery 26(11):832-843.

Anderson J. R. and R. Thompson. 1987a. Use of Analogy in a Production Sys
tem Architecture. In Similarity and Analogical Reasoning S. Vosniadou and
A. Ortony, ed. Cambridge University Press, Cambridge, England.

Anderson, C. W. 1987b. Strategy Leaming with Multilayer Connectionist Rep
resentations. Proceedings of the 1987 International Machine Learning
Workshop, Irvine, CA. pp. 103-114.

Bennett, S. W. 1987. Approximation in Mathematical Domains. Proceedings of
the Tenth International Joint Conference on Artificial Intelligence. Milan,
Italy, pp. 239-241. Also appears as Technical Report UILU-ENG-87-2238,
AI Research Group, Coordinated Science Laboratory, University of Illinois
at Urbana-Champaign.

Carbonell, J. G. 1985. Derivational Analogy: A Theory of Reconstructive Prob
lem Solving and Expertise Acquisition. Submitted paper. Department of
Computer Science, Carnegie-Mellon University, Pittsburgh, PA.

Chafe, W. 1975. Some Thoughts on Schemata. Theoretical Issues in Natural
Language Processing 1:89-91.

Chapman, D. 1987. Planning for Conjunctive Goals. Artificial Intelligence
32(3):333-378.

Chamiak, E. 1977. MS. MALAPROP, A Language Comprehension System.
Proceedings of the Fifth International Joint Conference on Artificial Intel
ligence. Cambridge, MA.

Chien, S. A. 1987. Simplifications in Temporal Persistence: An Approach to
the Intractable Domain Theory Problem in Explanation-based Learning.
M.S. Thesis, Department of Computer Science, University of Illinois, Ur
bana, IL. Also appears as UILU-ENG-87-2255. AI Research Group, Coordi
nated Science Laboratory, University of Illinois at Urbana-Champaign.

Cohen, W. W. 1987. A Technique for Generalizing Number in Explanation-
based Learning. ML-TR-19, Department of Computer Science, Rutgers Uni
versity, New Brunswick, NJ.

Danyluk, A. P. 1987. The Use of Explanations for Similarity-based Leaming.
Proceedings of the Tenth International Joint Conference on Artificial Intel
ligence, Milan, Italy, pp. 274-276.

76 DeJong

DeJong, G. F. 1981. Generalizations Based on Explanations. Proceedings of
the Seventh International Joint Conference on Artificial Intelligence. Van
couver, B.C., Canada, pp. 67-70. Also appears as Working Paper 30, AI
Research Group, Coordinated Science Laboratory, University of Illinois at
Urbana-Champaign.

DeJong, G. F. and R. J. Mooney. 1986a. Explanation-based Leaming: An Al
ternative View. Machine Learning 1(2): 145-176. Also appears as Technical
Report UILU-ENG-86'-2208. AI Research Group, Coordinated Science
Laboratory, University of Illinois at Urbana-Champaign.

DeJong, G. 1986b. An Approach to Leaming from Observation. In Machine
Learning: An Artificial Intelligence Approach, Vol. II. R. S. Michalski, J.
G. Carbonell and T. M. Mitchell, ed. Morgan Kaufmann, San Mateo, CA.
pp. 571-590.

de Kleer, J. 1979. Causal and Teleological Reasoning in Circuit Recognition
Technical Report 529, Ph.D. Thesis, MIT AI Lab, Cambridge, MA.

Dean, T. 1983. Time Map Maintenance. Technical Report 289, Yale Univer
sity, New Haven, CT.

Dietterich, T. G. 1986. Leaming at the Knowledge Level. Machine Learning
1(3):287-316.

Falkenhainer, B., K. Forbus and D. Gentner. 1986. The Stmcture-Mapping En
gine. Proceedings of the National Conference on Artificial Intelligence.
Philadelphia, PA pp. 272-277.

Fikes, R. E. and N. J. Nilsson. 1971. STRIPS: A New Approach to the Appli
cation of Theorem Proving to Problem Solving. Artificial Intelligence
2(3/4):189-208.

Fikes, R. E., P. E. Hart and N. J. Nilsson. 1972. Leaming and Executing
Generalized Robot Plans. Artificial Intelligence 3(4):251-288.

Rann, Ν. S. and T. G. Dietterich. 1986. Selecting Appropriate Representations
for Leaming from Examples. Proceedings of the National Conference on
Artificial Intelligence. Philadelphia. PA. pp. 460-466.

Forbus, K. D. 1984. Qualitative Process Theory. Artificial Intelligence 24:85-
168.

Gentner, D. 1983. Stmcture-Mapping: A Theoretical Framework for Analogy.
Cognitive Science 7:155-170.

Hammond, K. J. 1987. Leaming and Reusing Explanations. Proceedings of the
1987 International Machine Learning Workshop. Irvine, CA. pp. 141-147.

Hinten, G. E. and T. J. Sejnowski. 1986. Leaming and Releaming in
Boltzmann Machines. In Parallel Distributed Processing. Vol. I D. E.
Rumelhart and J. L. McClelland, ed. MIT Press, Cambridge, MA. pp. 282-
317.

Hirsch, Η. 1987. Explanation-based Generalization in a Logic-Programming
Environment. Proceedings of the Tenth International Joint Conference on
Artificial Intelligence. Milan, Italy, pp. 221-227.

Chapter 2 Explanation-based Learning 77

Kedar-Cabelli, S. 1985. Purpose-Directed Analogy. Proceedings of the Seventh
Annual Conference of the Cognitive Science Society. Irvine, CA. pp. 150-
159.

Keller, R. M, 1987. The Role of Explicit Contextual Knowledge in Learning
Concepts to Improve Performance. Ph.D. Thesis. Department of Computer
Science, Rutgers University, New Bmnswick. Also appears as Machine
Leaming Technical Report #7, Laboratory for Computer Science Research,
Rutgers University.

Kodratoff, Y. and G. Tecuci. 1987. Disciple-1: Interactive Apprentice System
in Weak Theory Fields. Proceedings of the Tenth International Joint Con
ference on Artificial Intelligence. Milan, Italy, pp. 271-273.

Kolodner, J. L. 1987. Extending Problem Solver Capabilities Through Case-
based Inference. Proceedings of the 1987 International Machine Learning
Workshop. Irvine, CA. pp. 167-178.

Kuipers, B. 1984. Commonsense Reasoning About Causality: Deriving Be
havior from Stmcture. Artificial Intelligence 24:169-204.

Laird, J., P. Rosenbloom and A. Newell. 1986. Chunking in Soar: The Anat
omy of a General Leaming Mechanism. Machine Learning 1(1):11-46.

Langley, P., G. L. Bradshaw and H. A. Simon. 1981a. BACON.5: The Dis
covery of Conservation Laws. Proceedings of the Seventh International
Joint Conference on Artificial Intelligence. Vancouver, B.C., Canada, pp.
121-126.

Langley, P. 1981b. Data-Driven Discovery of Physical Laws. Cognitive
Science 5(l):31-54.

Lebowitz, M. 1980. Generalization and Memory in an Integrated Understand
ing System. Technical Report 186, Ph.D Thesis. Department of Computer
Science, Yale University, New Haven, CT.

Lebowitz, M. 1986. Integrated Leaming: Controlling Explanation. Cognitive
Science 10(2):219-240.

Lenat, D. B. 1983. The Role of Heuristics in Leaming by Discovery: Three
Case Studies. In Machine Learning: An Artificial Intelligence Approach. R.
S. Michalski, J. G. Carbonell and T. M. Mitchell ed. Morgan Kaufmann
Publishers. San Mateo, CA. pp. 243-306.

McAllester, D. A. 1982. Reasoning Utility Package User's Manual, Version
One, Memo 667. MIT AI Lab, Cambridge, MA.

Medin, D. L., W. D. Wattenmaker and R. S. Michalski. 1987. Constraints and
Preferences in Inductive Leaming: An Experimental Study of Human and
Machine Performance. Cognitive Science ll(3):299-239.

Michalski, R. S. 1983. A Theory and Methodology of Inductive Leaming. In
Machine Learning: An Artificial Intelligence Approach. R. S. Michalski, J.
G. Carbonell, T. M. Mitchell ed. Morgan Kaufmann Publishers. San Mateo,
CA. pp. 83-134.

78 DeJong

Michalski, R, S., I. Mozetic, J. Hong and N. Lavrac. 1986a. The Multi-Puφose
Incremental Leaming System AQ15 and its Testing Application in Three
Medical Domains. Proceedings of the National Conference on Artificial In
telligence. Philadelphia, PA. pp. 1041-1047.

Michalski. R. S., I. Mozetic, J. Hong and N. Lavrac. 1986b. The AQ15 Induc
tive Leaming System: An Overview and Experiments. Proceedings of the
International Meeting on Advances in Learning. Les Arcs, Switzerland

Minsky, M. L. 1975. A Framework for Representing Knowledge. In The Psy
chology of Computer Vision. P. H. Winston ed. McGraw-Hill, New York,
NY. pp. 211-277.

Minton, S. N. 1985. Selectively Generalizing Plans for Problem-Solving. Pro
ceedings of the Ninth International Joint Conference on Artificial Intel
ligence. Los Angeles, CA. pp. 596-599.

Mitchell, T. 1983a. Leaming and Problem Solving. Proceedings of the Eighth
International Joint Conference on Artificial Intelligence. Karlsmhe, West
Germany, pp. 1139-1151.

Mitchell, T. M., P. E. Utgoff and R. Banerji. 1983b. Leaming by Experimenta
tion: Acquiring and Refining Problem-solving Heuristics. In Machine
Learning: An Artificial Intelligence Approach. R. S. Michalski, J. G. Car
bonell, T. M. Mitchell, ed. Morgan Kaufmann Publishers. San Mateo, CA.
pp. 163-190.

Mitchell, T. M., S. Mahadevan and L. I. Steinberg. 1985. LEAP: A Leaming
Apprentice for VLSI Design. Proceedings of the Ninth International Joint
Conference on Artificial Intelligence. Los Angeles, CA. pp. 573-580.

Mitchell, T. M., R. Keller and S. Kedar-Cabelli. 1986. Explanation-based
Generalization: A Unifying View. Machine Learning l(l) :47-80.

Mooney, R. J. and S. W. Bennett. 1986. A Domain Independent Explanation-
based Generalizer. Proceedings of the National Conference on Artificial In
telligence. Philadelphia, PA. pp. 551-555. Also appears as Technical Report
UILU-ENG-86-2216, AI Research Group. Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign.

Mooney, R. J. 1988. A General Explanation-based Learning Mechanism and
its Application to Narrative Understanding, Ph.D. Thesis, Department of
Computer Science, University of Illinois. Urbana, IL. Also appears as
UILU-ENG-87-2269, AI Research Group, Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign.

Mostow, J. 1981. Mechanical Transformation of Task Heuristics into Oper
ational Procedures, Ph.D. Thesis, Department of Computer Science, Car
negie-Mellon University, Pittsburgh, PA.

Mostow, D. J. 1983. Machine Transformation of Advice into a Heuristic
Search Procedure. In Machine Learning: An Artificial Intelligence Ap
proach. R. S. Michalski, J. G. Carbonell, T. M. Mitchell, ed., Morgan Kauf
mann Publishers. San Mateo, CA. pp. 367-404.

Chapter 2 Explanation-based Learning 79

Muφhy, G. L. and D. L. Medin. 1985. The Role of Theories in Conceptual
Coherence. Psychological Review 92(3):289-316.

Newell, A. 1981. The Knowledge Level. Artificial Intelligence Magazine 2 : 1 -
20.

Nilsson, N. J. 1980. Principles of Artificial Intelligence. Morgan Kaufmann
Publishers. San Mateo, CA.

O'Rorke, P. V. 1987. Explanation-based Learning Via Constraint Posting and
Propagation, Ph.D. Thesis, Department of Computer Science, University of
Illinois, Urbana, IL. Also appears as UILU-ENG-87-2239, AI Research
Group, Coordinated Science Laboratory, University of Illinois at Urbana-
Champaign.

Pazzani, M. J. 1985. Explanation and Generalization Based Memory. Proceed
ings of the Seventh Annual Conference of the Cognitive Science Society. Ir
vine, CA. pp. 323-328.

Pazzani, M., M. Dyer and M. Rowers. 1987. Using Prior Learning to Facilitate
the Learning of New Causal Theories. Proceedings of the Tenth Inter
national Joint Conference on Artificial Intelligence. Milan, Italy, pp. 277 -
279.

Prieditis, A. E. 1986. Discovery of Algorithms from Weak Methods. Proceed
ings of the International Meeting on Advances in Learning. Les Arcs, Switz
erland, pp. 37-52.

Quinlan, J. R. 1986. Induction of Decision Trees. Machine Learning 1(1):81-
106.

Rajamoney, S. A. 1986. Automated Design of Experiments for Refining Theo
ries. M.S. Thesis, Department of Computer Science. University of Illinois,
Urbana, IL. Also appears as Technical Report UILU-ENG-86-2213, AI Re
search Group, Coordinated Science Laboratory. University of Illinois at Ur-
bana-Champaign.

Rendell, L. 1983. A New Basis for State-Space Learning Systems and a
Successful Implementation. Artificial Intelligence 20(4):203-226.

Rendell, L. 1985. Substantial Constructive Induction using Layered Informa
tion Compression: Tractable Feature Formation in Search. Proceedings of
the Ninth International Joint Conference on Artificial Intelligence. Los An
geles, CA. pp. 650-658.

Rose, D. and P. Langley. 1986. STAHL: Belief Revision in Scientific Dis
covery. Proceedings of the National Conference on Artificial Intelligence,
Philadelphia, PA. pp. 528-532.

Rosenbloom, P. S. 1983. The Chunking of Goal Hierarchies: A Model of Prac
tice and Stimulus-Response Compatibility. Ph.D. Thesis, Department of
Computer Science, Carnegie-Mellon University, Pittsburgh, PA.

Rumelhart, D. E., G. E. Hinton and J. R. Williams. 1986. Learning Internal
Representations by Error Propagation. In Parallel Distributed Processing.

80 DeJong

Vol. I. D. Ε. Rumelhart and J. L. McClelland, ed. MIT Press, Cambridge,
MA. pp. 318-362.

Schank, R. C. and R. P. Abelson. 1977. Scripts, Plans, Goals and Understand
ing: An Inquiry into Human Knowledge Structures. Lawrence Erlbaum and
Associates, Hillsdale, NJ.

Schank, R. C. 1982. Dynamic Memory. Cambridge University Press, Cam
bridge, England.

Schank, R. C. 1986. Explanation Patterns: Understanding Mechanically and
Creatively. Lawrence Erlbaum and Associates, Hillsdale, NJ.

Segre, A. M. 1987. Explanation-based Learning of Generalized Robot As
sembly Tasks. Ph.D. Thesis, Department of Electrical and Computer En
gineering, University of Illinois, Urbana, IL. Also appears as UILU-ENG-
87-2208, AI Research Group, Coordinated Science Laboratory, University
of Illinois at Urbana-Champaign.

Shavlik, J. W. 1988. Generalizing the Structure of Explanations in Explana
tion-based Learning. Ph.D. Thesis, Department of Computer Science, Uni
versity of Illinois, Urbana, IL. Also appears as UILU-ENG-87-2276, AI Re
search Group, Coordinated Science Laboratory, University of Illinois at Ur
bana-Champaign.

Silver, B. 1984. Using Meta-level Inference to Constrain Search and to Learn
Strategies in Equation Solving. Ph.D. Thesis. Department of Artificial Intel
ligence, University of Edinburgh.

Soloway, E. 1978. Learning = Interpretation + Generalization: A Case Study
in Knowledge-Directed Learning. Ph.D. Thesis, University of Massa
chusetts. Amherst, MA. Also appears as COINS Technical Report 78-13.

Stepp, R. E. and R. S. Michalski. 1986. Conceptual Clustering: Inventing Goal-
Oriented Classifications of Stmctured Objects. In Machine Learning: An Ar
tificial Intelligence Approach, Vol IL R. S. Michalski, J. G. Carbonell and
T. M. Mitchell, ed. Morgan Kaufmann, San Mateo, CA. pp. 471-498.

Sussman, G. J. 1973. A Computational Model of Skill Acquisition. Technical
Report 297, MIT AI Lab, Cambridge, MA.

Utgoff, P. E. 1986. Shift of Bias for Inductive Concept Leaming. In Machine
Learning: An Artificial Intelligence Approach, Vol. II. R. S. Michalski, J. G.
Carbonell and T. M. Mitchell, ed. Morgan Kaufmann, San Mateo, CA. pp.
107-148.

Waldinger, R. 1977. Achieving Several Goals Simultaneously. In Machine In
telligence 8. E. Elcock and D. Michie, ed. Ellis Horwood Limited, London.

Waterman, D. A. 1970. Generalization Leaming Techniques for Automating
the Leaming of Heuristics. Artificial Intelligence 1(2): 121-170.

Wilensky, R. W. 1978. Understanding Goal-based Stories. Technical Report
140, Ph.D. Thesis, Department of Computer Science, Yale University, New
Haven, CT.

Chapter 2 Explanation-based Learning 81

Winston, P. H. 1975. Leaming Stmctural Descriptions from Examples. In The
Psychology of Computer Vision. P. H. Winston, ed. McGraw-Hill, New
York, NY. pp. 157-210.

Winston, P. H., T. O. Binford, B. Katz and M. Lowry. 1983. Leaming Physical
Descriptions from Functional Definitions, Examples, and Precedents. Pro
ceedings of the National Conference on Artificial Intelligence. Washington,
D.C. pp. 433-439.

Chapter

3

Knowledge-based Natural
Language Understanding
Wendy G. Lehnert
Department of Computer and Information Science
University of Massachusetts
Amherst, Massachusetts

1 Introduction

This overview is organized within an historical framework, although time limi
tations have forced me to invent a version of history that is necessarily in
complete. The title of the talk was given to me by the AAAI Program Com
mittee, which wisely restricted the scope of my task by including the descriptor
"knowledge-based." This mercifully allowed me to ignore a large body of work
that focuses exclusively on the syntactic structures of natural language. Even
so, the body of work that can accurately be described as "knowledge-based
natural language understanding" is large, and difficult to cover in the space
available. To maintain continuity, I have utilized the recurring theme of weak
methods vs. strong methods. This foundational theme helped me pare down my
view of history and serves as my only defense against otherwise unforgivable
omissions in the overview. Even so, it was difficult to pick and choose from
the coφus of potentially relevant research, and the usual disclaimers about in
telligible brevity at the cost of comprehensive coverage must be piously in
voked to ward off inevitable accusations of ignorance, prejudice, and other sins
associated with warped thinking.

83

84 Lehnert

I 'm going to use a lot of examples to illustrate key concepts, interleaving
the examples with a chronological survey of the literature. We'll periodically
try to rise above the trees to see the forest, and search for threads of strong
methods and weak methods throughout. We'll see how strong methods came to
dominate the field for a period of time, only to be followed by the pendulum's
swing toward weak methods, where we seem to be today.

If we go back to the beginning of time, we go back about 15 years. I
would date 1972 as a convenient starting point for knowledge-based natural
language processing. There were two very important pieces of work that sur
faced around 1972. First, Terry Winograd published his Ph.D. dissertation
under the tide Understanding Natural Language [Winograd, 1972]. At the
same time, Eugene Chamiak completed his Ph.D. dissertation on a model of
children's story comprehension [Chamiak, 1972]. Both of these theses came
out of MIT—in fact, Chamiak and Winograd were office-mates at MIT.

Despite the physical proximity of the authors at the time, these two views
of natural language processing couldn't be more different. Let me read you an
exceφt from a recently published retrospective by Terry Winograd. In his own
words, he sums it up as follows:

Fifteen years ago, a program named SHRDLU demonstrated that a com
puter could carry on a simple conversation about a blocks world in written
English. Its success led to claims that the natural language problem had
been solved and predictions that within a short time conversations with
computers would be just like those with people.

... With years of hindsight and experience, we now understand better why
the early optimism was unrealistic. Language, like many human capabili
ties, is far more intricate and subtle than it appears on first inspection
[Winograd, 1987].

That's Terry Winograd speaking in 1987. To understand the significance
of his cautionary hindsight, we must first understand that there was tremendous
excitement over SHRDLU when it was initially publicized in the early 70s.
There was much less excitement over Chamiak's relatively unknown thesis, al
though we do find people referencing it even now. Philosopher Hubert Drey
fus, a well-known critic of AI, says the following about Chamiak:

... by 1970, AI had tumed into a flourishing research program, thanks to a
series of microworld successes, such as Winograd's SHRDLU, Evan's
Analogy Problem Program and Winston's program which leamed concepts
from examples.

... Then rather suddenly, the field ran into unexpected trouble. It started, as
far as I can tell, with the failure of Chamiak's attempts to program chil-

Chapter 3 Natural Language Understanding 85

dren's story understanding. It turned out to be a much harder problem than
one expected to formulate a theory of common sense. It was not, as
Minksy had hoped, just a question of cataloging a few hundred thousand
facts [Dreyfus, 1987].

To sum up, Winograd was dealing with a view of language that was very
optimistic and designed to convince the world that natural language processing
was a viable research problem. Chamiak was taking a somewhat more unpopu
lar but realistic stand in looking at the really hard problems we would eventu
ally have to tackle if we were to deal with language in any tmly general sense.
To digress for a moment, I would like to mention something ironic about
Winograd and Chamiak. While Chamiak was clearly the pessimistic foil to
Winograd's optimist, it is amusing to note that Chamiak remains extremely ac
tive and productive in the field of natural language processing, whereas Wino
grad has ceased to make contributions to AI, opting instead to investigate the
philosophical implications of hermeneutics [Winograd and Flores, 1986].

We will look at Chamiak's diesis just long enough to note the general em
phasis in that research. Here's a quotation from the dissertation abstract:

An earlier version of the model described in this thesis was computer im
plemented and handled two story fragments, about a hundred sentences.
The problems involved in going from natural language to internal repre
sentation were not considered, so the program does not accept English, but
an input language similar to the internal representation is used [Chamiak,
1972].

To be blunt, Chamiak's program never analyzed sentences. In some sense,
Chamiak's thesis was not a thesis about language analysis at all, although I
view it as a milestone thesis for knowledge-based language understanding.
Chamiak was looking at a set of problems that are not specific to sentence
analysis per se, but which nevertheless are key to understanding natural lan
guage. Chamiak was concemed with the problem of inference. That concem
evolved into a driving motivation for much of the research on knowledge-
based natural language processing we've seen over the last 15 years.

It is useful to contrast the two veins of research that were more or less in
itiated by Chamiak and Winograd. There is problem-driven research and there
is technology-driven research. I'll characterize problem-driven research as
basic research designed for the long haul: Given the difficulties inherent in un
derstanding language, what techniques might be of use to us in surmounting
these difficulties? Technology-driven research is the research of near-term ap
plications: Given the current state-of-the-art, what applications are appropriate
for the existing technologies?

SHRDLU was a wonderful example of technology-driven research. The
blocks world lent itself to techniques that were available at the time. But

86 Lehnert

SHRDLU was just a prototype designed to inspire further work. The contem
porary offspring of that inspiration are found today in database query inter
faces. We have a technology-driven research program on natural language in
terfaces that works (more or less), but is successful primarily because it does
not need to deal with natural language in its full generality.

To appreciate the problems of natural language in general, we have to un
derstand what is meant by the inference problem in natural language—the
problem that made Chamiak such a pessimist about life outside the blocks
world. Let's take an example of a short narrative to illustrate the problem:

When the balloon touched the light bulb, it broke. This caused the baby to
cry. Mary gave John a dirty look and picked up the baby. John shmgged
and picked up the balloon.

This is a typical example of narrative text. We can analyze it in terms of
its information content by distinguishing explicit information from implicit in
formation. We are explicitly told about seven events in this story and one ex
plicit causal relationship signaled by the verb "caused." But implicitly, there's
more information. There are at least six implicit events and states that are pre
sent in the paragraph, eight implicit causal relationships, and six implicit goal
states or emotional states (see Figure 1).

For example, probably the balloon was inflated. Probably the balloon ex
ploded when it broke. There is an ambiguity associated with the pronoun when
we are told "it broke." Was it the balloon that broke or the light bulb that
broke? Most readers have no trouble understanding that the balloon broke.
Furthermore, we might conjecture that the light bulb was on and it was the heat
from the light bulb that broke the balloon. These are all plausible common-
sense inferences people are able to make—but they are only assumptions, and
assumptions that could be wrong. We will define an inference to be an assump
tion that could be wrong. Technically speaking, this type of inference is known
as defeasible inference, but for the remainder of this talk we'll just call them
inferences.

Chamiak's interest in children's stories was centered on the problem of in
ference generation. Children are capable of highly sophisticated inferences, a
fact which makes children's stories extremely complicated for computers. Al
though the language in children's stories may be relatively simple in terms of
syntax and vocabulary, the underlying processes of inference required to under
stand a typical children's story are not so easy to characterize. The basic prob
lem has to do with knowledge about die worid. Children have a great deal of
knowledge, although the magnitude of this underlying knowledge base is
largely unappreciated by people who have never tried to get a computer to
operate with comparable facility.

Chapter 3 Natural Language Understanding 87

T h e b a l l o o n was o r i g i n a l l y i n f l a t ed .
T h e b a l l o o n b r o k e (not the l i g h t b u l b)
T h e l i g h t b u l b was hot .
T h e l i g h t b u l b w a s o n .
T h e heat c a u s e d the b a l l o o n the b r e a k .
T h e b a l l o o n e x p l o d e d .
T h e e x p l o s i o n made a l oud n o i s e .
T h e b a b y w a s s c a r e d .

* T h e l o u d n o i s e s c a r e d the b a b y .
* T h e b a b y c r i e d b e c a u s e it w a s s c a r e d .
® M a r y i s mad at J o h n .

M a r y c o m m u n i c a t e d h e r a n g e r to J o h n .
® M a r y p i c k e d u p the b a b y to comfo r t i t .
® J o h n i s no t o v e r l y c o n c e r n e d
® J o h n w i l l t h r o w the b a l l o o n a w a y .
* J o h n w a s r e s p o n s i b l e fo r the b a l l o o n b r e a k i n g .
* J o h n w a s r e s p o n s i b l e fo r the b a b y c r y i n g .

M a r y i s mad at J o h n for m a k i n g the b a b y c r y .

* c a u s a l c o n n e c t i o n s
® goa l s t a t e s / e m o t i o n a l s ta tes

Figure 1 Inferences from the Balloon Story

The general problem of inference generation inspired a lot of work in the
mid-to-late 70s devoted to identifying knowledge structures that could spawn
inferences. During this period, we saw progress that I would characterize as
work in strong methods for natural language processing. By this I mean to say
that there was a strong preoccupation with specific knowledge structures and
knowledge-specific mechanisms of inference generation. I will briefly outline
the major contributions of that period since the work was highly influential, not
only within the AI community, but within cognitive psychology as well. Even
tually, we will get around to looking at problems of sentence analysis per se.

88 Lehnert

2 Knowledge Structures

The first knowledge structure that was proposed as a powerful device for infer
ence generation was the script [Schank and Abelson, 1977]. Scripts have
trickled down into the introductory textbooks on AI, but for those who are not
familiar with the concept, Γ11 mn through it very briefly.

Scripts are designed to encode stereotypic event sequences. This is mun
dane knowledge about some standard scenario for which a common linguistic
community shares knowledge. So, for example, we all have knowledge about
going to the movies. And if I say to you, "I went to a movie last night," you
are capable of generating a lot of inferences about what I did last night that go
far beyond the explicit information content of that sentence. You understand
that I must have had money to buy a ticket and the ticket was purchased at the
theatre. I may have had to wait in line for a bit before I could go into the
theatre, but once inside I could have bought popcorn, candy, or ice cream. I ex
changed the ticket with an usher who gave me a stub back

You have all these little facts about going to the movies. These are all as
sumptions that could be wrong. But for the most part, these are the assump
tions you have to make. And if we want to create computers that can under
stand language, we have to worry about creating systems that generate these
inferences as well. This is the implicit information content underiying lan
guage.

A system called SAM was first implemented in 1975, which was given
simple narratives and then tried to generate inferences appropriate for those
stories on the basis of scripts [CuUingford, 1978]. SAM stood for "Script Ap-
plier Mechanism." The architecture of SAM was fairly simple. There was a
parser that mapped sentences into an internal memory representation, in this
case. Conceptual Dependency [Schank, 1975]. Then the acmal script applier
mechanism accessed the appropriate scriptal knowledge stmcture and tried to
fill in any missing implicit events in a causal chain representation. "I went to a
movie last night" would be expanded into a very long causal chain repre
sentation containing all the implicit events associated with knowledge about
movies.

SAM was a prototype program designed to demonstrate the utility of one
particular knowledge stmcture. That knowledge stmcture became somewhat
controversial in terms of its generality. Where do scripts work? Where don't
they work? Are they appropriate for generating all the inferences we need?

If we go back to our balloon story, we could, for example, hypothesize the
existence of a balloon script. Here is our stereotypic event knowledge about
balloons: They start out in an uninflated state. They get inflated in one of two
stereotypic manners, they get tied, and then they die a natural death in one of
three ways (see Figure 2).

Chapter 3 Natural Language Understanding 89

THE BALLOON SCRIPT

blow-up balloon
by mouth

pump-up balloon
with helium*

tie balloon

balloon
whithers

away

balloon
explodes balloon

flies
away*

Figure 2 The Balloon Script

This is event-oriented knowledge about balloons. If we wanted to under
stand our little story about the light bulb and the balloon using 1975 tech
nology, we would simply match the explicit input against the events described
in the balloon script, and infer that the balloon was inflated and tied before it
broke. While these are undeniably nice inferences to have, we wouldn't know
anything about why the balloon broke or why it was reasonable for it to break.
Indeed, if our "light bulb script" included breakage as one of the stereotypic
ways that light bulbs come to an end, there would be no way of knowing
which referent (for "it") was broken on the basis of these scripts alone.

At the time that scripts were being proposed by Roger Schank at Yale,
Schank also understood that scripts were not the solution to all of the problems

90 Lehnen

of knowledge-based inference generation. He proposed other knowledge struc
tures as well. For example, there was knowledge about plans and goals.

If I told you I hired someone to clean my house, you could make a number
of inferences about exactly what that entailed. I had to find someone who
would be willing to clean the house, I had to approach this person, ask them to
clean my house, there was probably some negotiation over payment, and so on
and so forth. All of these inferences are very general in the sense that they
would apply to anyone I might hire to do a periodic task for me, such as mow
my grass or do my shopping for me. Any number of tasks that keep popping
up over and over again could be handled in the same manner. So these infer
ences appear to originate from a more general understanding of plans and
goals. In this case, we have a problem of goal subsumption (finding a solution
to a recurring goal), and a solution in terms of agency (locating an agent who
will do the work for me). So plans and goals involve a level of abstraction that
goes beyond scripts, but which still allows us to characterize stereotypic situa
tions [Wilensky, 1978].

A well-known book came out in 1977 that put down in writing all of the
ideas that were floating around Yale at that time [Schank and Abelson, 1977].
This was a book about knowledge structures, more specifically, scripts, plans,
and goals, among other things. It was a seminal piece of work insofar as it
generated, by my count, ten Ph.D. theses in AI (there were probably a com
parable number of Ph.D.s in psychology as well). So there was a tremendous
amount of work along these lines in the mid and late 70s, and that work
created a foundation for the more recent research to which we now turn.

First, we'll look at two different directions that took off after that initial
foundation in knowledge structuring was first laid. In so doing, we'll see
different knowledge structures: (1) plot units [Lehnert, 1981], and (2) thematic
abstraction units [Dyer, 1983b], both of which were designed to produce sum
maries for narratives.

In both systems, we assume that multiple levels of memory representation
are being generated in response to the input text. Sentences are translated into
Conceptual Dependency, and inferences are generated via script application
and the analysis of plans and goals. In the case of plot units, additional levels
of abstraction are required to produce an affect state map, and finally a plot
unit graph. The plot unit graph rests on top of all these "lower" levels of
memory representation, which act, in turn, as conceptual scaffolding for the
narrative sunmiarization task.

In the tradition initiated by Chamiak's thesis, most experiments mn on
plot units require hand-coded memory representations at the lower levels in
order to see anything of interest at the level of a plot unit graph. Granting that,
there is a program called PUGG (the Plot Unit Graph Generator) that generates
memory representations of the sort found in Figure 3.

Chapter 3 Natural Language Understanding 91

JUDAS-AUTHORmES

74W- PERSEVERANCE

AUTHORTTIES-POTENTATE

JUDAS-DISCIPLES
ENTHUSIAST

Figure 3 The New Testament in a Plot Unit Graph

92 Lehnert

This is a plot unit graph generated in response to Arnold Toynbee's synop
sis of the New Testament [Alker et al., 1985]. Note that this graph could never
be generated automatically from the source text of the New Testament, given
the current state of the art. Just the hand coding of the knowledge structures
would necessitate sacrificing an entire generation of graduate students in an
orgy of exploitation normally unheard of outside the biological sciences.

Each node in this graph represents an instantiated plot unit where plot
units describe things like competition between two characters, or one
character's successful resolution of a problem situation. Arcs are created be
tween nodes when two plot units depend on a shared component from the af
fect state map. In this way, the plot unit graph provides a picture of the con
ceptual connectivity across the narrative. Ideally, this graph will allow us to
identify the salient and most central concepts by looking at the topological fea
tures of the graph. For example, the cut points in this graph are very important
plot units for our story. The three major cut points for the main body of this
plot unit graph point to the following events from the New Testament:

(7) Jesus called on the people to support him.

(47) The authorities arrested Jesus.

(89) The authorities crucified Jesus.

If we wanted to produce a truly minimalist synopsis of the New Testa
ment, we are perhaps on the right track here, although we do not have the ex
planatory power to tie these three events together into a truly self-contained
blurb about Jesus.

We could elaborate on this skeleton a bit by invoking a minimal path algo
rithm to connect our three cut points. These produce the following event-sum
mary:

(7) Jesus makes an appeal to the masses for support.

(9) The government wants to maintain authority over the masses.

(10) Jesus causes a scandal.

(18) Jesus takes the law into his own hands to avenge God.

(47) The authorities arrest Jesus.

(89) Jesus is crucified.

(92) Jesus' death is a triumph.

(93) Jesus is worshipped.

I am told that this is, in fact, a Marxist inteφretation of the New Testa
ment.

Chapter 3 Natural Language Understanding 93

Let us now reUim to the other line of work on narrative summarization
that relied on scripts, plans, and goals. As we saw with plot units, it is possible
to produce narrative summaries based on event descriptions alone, as long as
you can identify the central events of the story. But there are other kinds of
summaries that operate on a more abstract level of understanding. Fables are
famous for the adages associated with them, and the ability to associate an ap
propriate adage with a novel narrative is considered a hallmark of mature intel
ligence (understanding the meaning of proverbs is a task used by the Stanford
Binet IQ test as a standard for measuring adult intelligence).

Research on thematic abstraction units addressed this aspect of narrative
summarization [Dyer, 1983a]. Dyer claimed that adages are properly associated
with abstractions at the level of plans and goals. Each thematic abstraction unit
describes a pattem of plan-oriented behavior, and if all the required com
ponents of the pattem are met, the specific adage associated with that thematic
abstraction unit will apply.

So, for example, a close call, which would perhaps be described by the
adage, "A miss by an inch is as good as a mile," could be recognized via the
following thematic abstraction unit:

(1) X experiences a major preservation goal, G.

(2) G was created in response to an event not intended by X.

(3) G is a fleeting goal so no recovery plan is required.

Note that a close call can be easily transformed into a regrettable mistake
(don't cry over spilt milk) if G is not characterized as a fleeting goal and a re
covery plan therefore becomes appropriate.

It is interesting to note that a plot unit analysis can be performed without
the benefit of thematic abstraction units, and thematic abstraction units can be
recognized without any of the effort associated with affect state maps and plot
unit graphs. These two approaches to narrative summarization are fully inde
pendent of one another and simply reflect different types of sununarization
tasks. As far as the computational models are concemed, skills with one task
do not predict seemingly associated skills in the other.

Plot units and thematic abstraction units both emerged from a large re
search effort centered around a system named BORIS [Lehnert et al., 1983].
BORIS attempted to integrate a large number of knowledge stmctures in a
single system, addressing the architectural problems posed by multiple knowl
edge stmctures. The BORIS system, completed in 1982, marks the end of the
knowledge stmcturing era. For the most part, people stopped proposing new
knowledge stmctures at about that time, and interests shifted into other areas.

To understand why, we need only look at the diagram in Figure 4 (taken
from [Dyer, 1983a]).

94 Lehnert

ΙΡΤ • Interpersonal Theme
IPHJNIT « Interpersonal Action
RT = Role The«

REL « Relationship
nop • Merory Organization Packtt
TAU « TheMtic Abstraction Unit

ACE · Affect as a Consequence of Empathy

Figure 4 The Knowledge Dependency Graph for BORIS

BORIS attempted to integrate no less than 22 different knowledge struc
tures, each responsible for generating its own class of inferences encoded with
stmcturally-specific knowledge representations, and using its own stmcture-
specific inference mechanism. Figure 4 tells us what lines of communication
were open between the various knowledge stmctures. Each node of the graph
represents a generic knowledge stmcture, and each arc tells us when one
knowledge stmcture was allowed to talk to another one. Rather than having all
possible pairwise channels of communication open, we limit communication

Chapter 3 Natural Language Understanding 95

between knowledge structures and impose some order on the potential chaos
that would otherwise break loose.

Unfortunately, the rich diversity of the knowledge structures requires
unique forms of communication between sanctioned pairs of knowledge struc
tures. No two arcs in this diagram are quite the same in terms of the type of in
formation being requested or the methods of computation required to produce a
response. Not only are there inference processes specific to each knowledge
structure, but the communications between pairs of knowledge structures are
pairwise specific.

However impressive BORIS may have been as a tour de force in knowl
edge-based natural language understanding, the word "elegant" has never
graced any noun phrase describing the flow of control in BORIS. "Ad hoc"
was rather closer to the truth, and the difficulties of continuing on in this vein
were apparent to all. Suffice it to say, no one ever attempted to re-implement
the BORIS system after Dyer completed his noteworthy thesis based on the
system, and no one associated with the original BORIS system went on to pro
duce a son of BORIS. The complexity of the architecture, the fragile scaffold
ing needed to make it all hang together, and the methodologically difficult bus
iness of engineering mundane knowledge for natural language were all over
whelming. Although Dyer has never been accused of being a pessimist, his the
sis, published 10 years after Chamiak's, was another milestone destined to
send the faint-hearted elsewhere in search of smoother sailing.

I think a lot of people realized the implications of BORIS in 1982. Al
though there was no way to walk away from the need for knowledge, the
growing commitment to knowledge-based natural language processing gradu
ally shifted into a wistful longing for processes operating over uniform knowl
edge representations, inference mechanisms that transcend individual knowl
edge stmctures, and elegant control mechanisms that can be explained within
the confines of a single page. Of course, there were always people in the field
who felt compelled by these aesthetic criteria: Winograd was involved in the
development of KRL [Bobrow and Winograd, 1977], and even Chamiak once
described himself as a methodological "scmffy" with a "neat" stmggling to get
out.^

1 See [Abelson, 1981] for the official explanation of "scruffy" and "neat" as technical terms refer
ring to methodological styles.

96 Lehnert

3 Marker Passing

The excitement associated with PROLOG in the early 1980s, and the more re
cent fever surrounding connectionism, have both exerted a predictable pull
over researchers in knowledge-based natural language processing who felt a
need to swing the pendulum back a bit from the strong methods associated
with wildly propagating knowledge structures. At this time we seem to be
swinging back in the direction of weak methods, with a clear question to be an
swered: Does the commitment to knowledge-based techniques necessarily force
us into a technology dominated by strong methods? Ten years ago the answer
was maybe. Today we seem to be saying maybe not.

In keeping with this general trend, we are seeing new work on homo
geneous inference generation. The roots for this do go back, so we should take
a little time to give credit where credit is due. Probably the earliest reference is
Quillian, who first promoted the idea of intersection search in a computational
framework. This was followed up by Rieger's thesis work, for which Rieger
was honored by being asked to give the Computers and Thought Lecture at the
1975 IJCAI. Let me talk a little bit about all of that so we can appreciate the
significance of more contemporary contributions to homogeneous inference.

The idea of an intersection search is fairly simple. Quillian is generally
credited with the earliest description of an intersection search algorithm [Quil
lian, 1968], but we'll introduce the idea in the context of Rieger's thesis be
cause Rieger's work is more on-target with respect to inference generation
[Rieger, 1974].

Suppose we have a meaning representation for sentence SI , and a meaning
representation for a second sentence, S2. These two representations serve as
input to Rieger's program, MEMORY. Each meaning representation then
generates a first generation of immediate inferences, which will each recur
sively spawn a second generation of inferences, then a third generation, "and
so forth and upward and onward" (gee whizz! [Geisel, 1950]). In theory, we
can produce inferences arbitrarily far away from the original input sentences.

In an intersection search, this recursive generation of inferences halts when
we find a path of inferences connecting the two input generators. If MEMORY
can find a path of inferences that starts at SI and concludes at S2, then we
have a good candidate for a causal chain between the two sentences. That is,
we have a string of causally connected events and states that take us from one
sentence to the next. So we might understand, for example, if the balloon
touches the lightbulb (SI) and the balloon subsequently breaks (S7), then there
is a causal chain going from (SI) the balloon coming into contact with the
lightbulb, to (S2) the balloon coming into contact with a light bulb that is
turned on, to (S3) the balloon coming into contact with a light bulb that is
turned on and hot, to (S4) the balloon coming into contact with a hot object, to
(S5) the balloon being in contact with a hot object, to (S6) the balloon explod-

Chapter 3 Natural Language Understanding 97

ing as a resuh of contact with a hot object, to (S7) the balloon breaking. Note
that S2 and S3 would each be generated from SI , while S4, S5, and S6 would
be generated from S7. If an intersection can be established between S3 and S4,
we will have a causal chain analysis of the two sentences.^

When Rieger employed intersection search for inference generation back
in the early 70s, he was not working in a knowledge-based framework. Con-
sequendy, there was no knowledge in MEMORY—certainly nothing we would
recognize today as a declarative knowledge stmcture. Rather, Rieger had 16 in
ference "molecules" that were responsible for the propagation of inferences un
derlying the intersection search. If there was any knowledge in MEMORY at
all, it had to be buried inside the lisp code that realized these 16 inference
classes. But in fact, most of the inferences that MEMORY generated were
based on simple manipulations of Conceptual Dependency event and state de
scriptions, and none of those manipulations were dependent on stmctures out
side of the search space being generated during the intersection search. Despite
its name, MEMORY had no long-term memory, and the expanding circles of
inference it generated were essentially pulled out of thin air (or at least 16 thin
inference molecules).

If Rieger's thesis looks weak from the perspective of knowledge-based
systems, we must remember that he intended to make a contribution regarding
search. Indeed, he had an elegant idea concerning the relationship between in
ference generation and causal chain constmction: The constmction of a causal
chain was a search problem and the undirected generation of inferences created
the search space in which to operate. Both components were nicely addressed
within the simple framework of an intersection search. This emphasis on the
algorithm for search created a model about control, and the beauty of
MEMORY'S control was its simplicity and homogeneous generality.

Rieger's work is important for us because it illustrates a weak method for
inference generation based on a simple mechanism of great generality. We
should also note that Roger Schank was Rieger's thesis advisor, and Schank
has said that his work on scripts was strongly motivated by what he perceived
to be the fatal flaw in Rieger's MEMORY: a lack of knowledge. In Schank's
view, the real problems were inside those inference molecules (or whatever
mechanisms were needed to generate inferences). The key problem must be to
understand the organization of knowledge needed to create inferences.
MEMORY was appealing, but sadly predicated on the wrong framework for
the problem of inference generation. If inference generation is essentially a
problem of search, then MEMORY should give us some answers worth

2 In fact, Rieger's meaning representation language (Conceptual Dependency) was not well suited
for this particular example, and MEMORY probably couldn't have found this causal chain, but
we're just trying to illustrate the general idea.

98 Lehnert

pondering. But if inference generation is better characterized as a problem of
knowledge application, then MEMORY must fall very short of the mark. If
Rieger made a mistake, it was in asking the wrong question more than in find
ing the wrong answer.

Now we can move the clock up to 1987 and look at a program called
FAUSTUS, which identifies seven classes of inference and activates selected
concepts throughout a potentially large search space in an effort to identify
useful inferences [Norvig, 1987]. At first glance, this may look like a reincar
nation of Rieger, but we need to look a little closer. First we note that the
simple intersection search has been replaced by a more sophisticated marker
passing algorithm. The new algorithm looks like a step in the right direction (it
narrows the potential search space), yet we still have homogeneous control for
inference generation. How is this possible?

It seems that FAUSTUS benefited from all the work that followed and su
perseded Rieger without sacrificing the weak method of homogeneous control.
FAUSTUS utilizes extensive amounts of knowledge, yet the intelligent
manipulation of that knowledge is handled by a marker passing algorithm that
can be described in terms of a simple grammar. FAUSTUS has a fixed
memory which is rich in knowledge, but it is stmctured very carefully using a
knowledge representation language called KODIAK [Wilensky 1986]. When
activation passes from one concept to another, it must conform to a legal path
"shape" specified by the grammar in the marker passing algorithm. When inde
pendent markers collide at a shared node, the resulting path of activated nodes
provides useful inferences about the original input items. The idea of the inter
section search is still there—it's just harder to generate false positives (bogus
intersections).

The best way I can give you a feel for FAUSTUS is by looking at an ex
ample. The following example was manufactured for this talk and is un
doubtedly all wrong as far as the details of KODIAK and Norvig's actual algo
rithm are concemed, but we'll settle for ballpark accuracy to get the main idea
across.

Let's go back to our overworked text about the balloon and the light bulb.
The first sentence was, "When the balloon touched the light bulb, it broke."
We have a reference to a light bulb, a reference to a balloon, and physical con
tact between the two of them. That's explicit in the sentence. We also know
something broke, but die pronoun leaves us up in the air as to exactly what
broke. It could have been the light bulb or it could have been the balloon. We
would like to be able to disambiguate the pronoun and infer a plausible causal
relationship between the two events described. Figure 5 shows us what a mean
ing representation for the input sentence might look like before any inferences
are made.

Chapter 3 Natural Language Understanding 99

I N P U T :

obj?

prior state

causal
relation,

post event
/ obj?

(^^^^^rea

Figure 5 When the Balloon Touched the Light Bulb, it Broke

Now let's look at some knowledge we should have available to us. We
have knowledge about breaking that tells us all the different ways things can
break. For example, we can understand that one way things break is by explod
ing. An exploding event is a further specification or "concretion" of a breaking
event, and this further specification is only valid under certain circumstances.
Using KODIAK, we can create inheritance hierarchies that encode structured
inheritance via role-play links. As we will see, this notion of structured inheri
tance will help us make some important inferences about what broke and ex
actly what the breaking event describes.

We have a hierarchy of entailed event concepts going from breaking down
to exploding, with role-play links telling us how these structures are inherited.
These hierarchies bottom out with very specific event descriptions: specific, for
example, at the level of a balloon exploding (see Figure 6). And we understand
that there's a constraint on the balloon exploding event that the object of any
such event must be a balloon. This is not a constraint available to us at the
higher levels, where we may only be constrained by the specification of ail in
flatable object, or even more generally, a physical object.

A hierarchy with these richly constrained specifications allows us to
generate concretion inferences that help us see beyond the explicit meanings
available to us from the source text. For example, if we are told that a balloon
broke, we should be able to infer the constraints operating at low levels of
greater specificity in order to understand that if the object of a breaking event
was a balloon, then it may be safe to assume that the balloon exploded.

100 Lehnert

broken object

loded object

(i n f l a t e d S / ^ P
balloon) ^'^-e object
e x p l o d i n g /

inflated
balloon

Figure 6 Inheritances for Exploding Balloons

Concretion inferences are one of the inference types handled by FAUS-
TUS, but the simple inheritance mechanism described above cannot resolve
complicated ambiguities of the type present when we have to understand what
it was that broke in the first place. In our original text, we have to decide be
tween a balloon breaking or a light bulb breaking. It is nice to know that the
balloon would break by exploding, whereas the light bulb would break by shat
tering (see Figure 7), but we still have to decide which object we think we're
dealing with.

Chapter 3 Natural Language Understanding 101

broken object

shattered
object

1-b-s object

Figure 7 Inheritances for Shattering Light Bulbs

If we really want to resolve the reference, we have to drag in more knowl
edge. So let's assume we have knowledge about balloons (see Figure 8).

This is somewhat reminiscent of the balloon script we discussed earlier.
We understand that one of the things that can happen to an inflated balloon is
that it might come into contact with a hot object, in which case we can make a
pretty fair prediction about a causal relationship with a balloon exploding
event. The preconditions for this balloon exploding event can be obtained from
the light bulb if we understand that a light bulb can be a hot light bulb, and
that hot light bulbs are further speciflcations under tumed-on light bulbs. With

102 Lehnert

KNOWLEDGE:

o b j e c t ^ ^ o b j j _ ^ ' ^ ^ ^ ^ ^ ^ ^ ^ o b j j ^ ^ ,^^^^^^^.

prior
s u t e

Cc a u s a l >k
r e l a t i o i i /

post
event

i n f l a t e d
b a l l o o n
e x p l o d i n g

Figure 8 Knowledge About Balloons

appropriate inheritance inferences (including the fact that a touching event is a
further specification for physical contact, and the fact that an inflated balloon is
a further specification for a balloon), we might manage to fill out a causal
chain if all the pieces are available to us in memory and the paths of relevant
inference are recognized by the marker passing grammar.

As this example shows, FAUSTUS attempts to marry extensive knowledge
access to a homogeneous control structure realized in terms of marker passing.
The approach represents an appealing synthesis of two seemingly contradictory
directions: the weak methods of homogeneous control and the strong methods
associated with large amounts of knowledge. However, it is difficult to say
what happened to the strong methods associated with traditional knowledge
structures when we encoded our knowledge base in KODIAK. Can a marker
passing algorithm achieve the computational power of a script applier mecha-

Chapter 3 Natural Language Understanding 103

nism? Can generic concepts be instantiated and utihzed by multiple referents
without getting confused? What if our story references two balloons and we
have to keep distinct concretions straight? These are questions about the
possible limits of marker passing algorithms. The homogeneous control is
great, but is it powerful enough for our needs? These are questions we need to
answer about marker passing as a weak method for inference generation.

4 Syntax and Semantics

We've been talking a lot about inference generation, but it would be a mistake
to assume that's all there is to knowledge-based natural language processing. In
fact, homogeneous control for inferences really goes hand in hand with homo
geneous control for other problems. For example, we are also seeing a trend
toward homogeneous control for the integration of syntax and semantics, a
problem that is very important for models of sentence analysis. Let's see how
some people have worked to bring homogeneous control back down to the
level of sentence analysis.

What do you usually see when you look at a textbook on AI with a section
devoted to natural language processing? There's a good chance you'll see a
flow-of-control diagram that looks something like tho one shown in Figure 9.

Here we see that the problem of sentence analysis has been divided into
specific modules. We have syntactic knowledge—^knowledge about grammar—
that is important in analyzing the stmcture of a sentence. We also have seman
tic knowledge, which is where concept frames are defined and various con
straints operate to control the slot fillers for those frames. And we often see a
reference to pragmatic knowledge, which is where all the common sense rea
soning needed for inference generation resides. Pragmatics is also where
knowledge about discourse is stored. Generally speaking, pragmatic knowledge
is defined to be anything we need which wasn't already covered by syntax and
semantics.

The flow of control that we see here is serial control. This is a nice modu
lar idea about language analysis that lays out the pieces clearly and simply.
Unfortunately, systems built along these lines just don't work very well. Serial
control is used for some database interfaces, but it doesn't work for continuous
narrative text at all.

To see why not, let's look at a couple of sentences (see Figure 10). The
sentences I 'm interested in are, "John took her flowers" and "A stranger took
her money." These two sentences are syntactically identical, and they are syn
tactically ambiguous as well. "Her flowers" could be a single noun phrase, or it
could be an indirect object followed by a direct object. Similarly, "her money"
could be a single noun phrase, or it could be an indirect object followed by a
direct object.

104 Lehnen

I n p u t s e n t e n c e

syntactic analysis

GRAMMAR

parse t r ee

semantic analysis

seman t i c representa t ion

pragmatic analysis

???

inferences

Figure 9 Serial Flow of Control

Chapter 3 Natural Language Understanding 105

Mary was in the hospital.

John took her flowers.

(J o h n took f l o w e r s t o M a r y)

Mary was walking through Central Park.

A stranger took her money.

(A s t r a n g e r took m o n e y f r o m M a r y)

Figure 10 Context Effects for Sentence Analysis

When Mary is in the hospital, we understand, without effort or conscious
thought, that John brought flowers to Mary. The sentence contains an indirect
object and a direct object. But when Mary is in Central Park, we see a single
noun phrase operating as a direct object. Somehow we fail to consider the ab
surd possibilities of John taking flowers away from Mary in the hospital, or
even sillier, the possibility that a stranger could walk up to Mary in Central
Park and hand her money.

Apart from the syntactic ambiguities confronting us, we also have a lexical
ambiguity associated with the verb "to take." In the hospital this verb means
"to bring," while in Central Park we understand it to mean "to take away."
This is a strictly semantic ambiguity that forces us to choose between compet
ing word senses.

So we have two interesting ambiguities operating here. We have a syntac
tic ambiguity that needs to be resolved, and the semantic ambiguity associated

106 Lehnert

with multiple word senses. Both ambiguities must be resolved in order to ar
rive at appropriate interpretations for the sentences.

How do we do it? Well, first we note that there are useful relationships be
tween syntax and semantics. When "take" is used to mean "bring," it predicts a
different set of syntactic constituents than when "take" is used to mean "take
away." When you take something away from someone, you can't have an in
direct object. This means that a resolution of the semantic ambiguity will auto
matically take care of the syntactic ambiguity as a natural side effect. Once we
know what the verb means, we'll know how to parse the sentence syntactically.
We'll return to the problem of knowing what the verb means in a minute.

In the meantime, notice that we're already in trouble using our serial archi
tecture. This architecture assumes that all the syntactic decisions are made
before we even look at the semantics of the sentence. The dependency is run
ning the wrong way. If we stick with this architecture, we'll have to allow the
syntax module to operate nondeterministically, handing multiple parse trees
over to semantics in the hope that semantics can decide which one is appro
priate.

This is, in fact, exactly what a lot of language processing systems do. In
the "syntax-first" tradition, whole sentences are analyzed syntactically, and
multiple parse trees are passed on for further analysis, making the job of
semantic analysis a job of sorting through all the parse trees. When sentences
contain prepositional phrases, reduced relative clauses, and other sources of
rich syntactic ambiguity, the number of syntactic parse trees available to us can
easily run into the hundreds.

Most researchers in knowledge-based natural language processing reject
the syntax-first approach to sentence analysis and strive to integrate syntax and
semantics in a more natural and effective manner. But once we open the door
to integrated models of sentence analysis, we must necessarily ask whether the
problem is restricted only to syntax and semantics. After all, just how do we
decide what word sense for "took" is the appropriate one?

It seems that the answer to this question must be obtained by using a lot of
knowledge about the world. Although you may not have thought about it, you
make an inference when you hear "Mary was in the hospital." Probably, Mary
was a patient in the hospital (note that this could be wrong). It follows that
Mary was probably sick or injured. And there's a tradition in our culture about
people who are sick or injured. Friends and relatives usually send something to
cheer up the invalid: Cards and flowers are traditional items. All of this is use
ful in disambiguating the proper word sense in "John took her flowers." Given
the strong context surrounding the sentence, we might reasonably expect to be
dealing with a bringing event as soon as we hear "John took"

On the other hand, we also have knowledge about Central Park. We all
have a strong association between Central Park and muggers, we know what a
mugging is, what the goals of a mugger are, and we know that pedestrians in

Chapter 3 Natural Language Understanding 107

Central Park are at risk. All of this is available to most adult Americans be
cause it's a part of our shared culture. And this is the knowledge that helps us
to understand the appropriate word sense for the verb when we hear "A
stranger took ..." in the context of pedestrians and Central Park.

If we define pragmatic knowledge to be the basis for inference generation,
then we have to integrate not just semantics with syntax, but semantics and
pragmatics with syntax as well. For this reason, many people believe that the
line between semantics and pragmatics is not well-motivated: There is no good
basis for distinguishing semantic knowledge from pragmatic knowledge if you
are going to work within an integrated framework for sentence analysis.

People who are interested in this integration problem are interested in
ideas for control. How are we going to integrate the top-down processes, which
are knowledge-based, with low-level bottom-up processes, which are not
knowledge-based? Although there are many answers to this question based on
co-routines and message passing, it has been difficult to find solutions that are
truly elegant and readily adaptable if your grammar changes or your theory of
semantics begins to shift.

However, two interesting approaches to this problem have surfaced very
recently, and I 'd like to give you a rough feeling for those solutions. I am not
convinced that anyone has a good solution to the pragmatic context effects
we've been looking at in Figure 10, but we can at least see progress at the
level of syntax and semantics with hopeful hand waving aimed at pragmatic in
teractions.

In the first case, structured inheritance is being pushed as a key mecha
nism for integrated sentence analysis. This approach argues that the key to the
problem lies in the correct design and organization of our knowledge base. For
example, a selling event can be characterized in terms of two transfer events,
where the object of one transfer is money and the object of the other transfer is
merchandise. The sources and recipients for these two transfer events constrain
one another by exchanging roles, and at a very high level of abstraction, each
of these transfer events are instances of some very vague event which corre
sponds to the primitive ATRANS in Conceptual Dependency. Figure 11 shows
how all of this knowledge about selling might be represented using KODIAK.

In KODIAK diagrams we use a bit of shorthand that is important to under
stand. Whenever you see a named link like the actor link in Figure 12, that's
actually a shorthand notation for structured inheritance via a role-play link. It 's
very cumbersome to work with the fully expanded notation all the time, so the
shorthand notation is useful, but we must remember that this shorthand implies
a structured inheritance that is not explicit in the diagram.

What we're trying to do here is create a very systematic and highly con
strained style of knowledge representation through which we inherit a lot of
implicit structure as needed. Let's try to look at some examples of this in ac
tion.

108 Lehnert

S t r u c t u r e d I n h e r i t a n c e

complex-event

D

commercial-trans

rt, sub-€veni\
recipient

customer
sourci

merchant

object object

merchandise

a-transfer-event

merch-transfer

source tender-transfer

¿

iject

tender

Figure 11 Representing the Verb "To Sell"

Selling is interesting because it's two transactions, and both of those trans
actions are transfers. We have some very high level of generality, a transfer of
an object from one person to another, or from one entity to another. And in one
case, the transfer is a merchandise transfer, so we have an object of barter
being moved from one person to another. In the other case, moving in the op
posite direction is a transfer of tender: Money is changing hands. If we're very
careful with our representation, we can understand how these two transfers re
late to one another. They are not isolated transfers. Rather, they are connected
through a series of links that identify specific roles, such as customer, mer
chant, merchandise, tender. Whenever there's a selling event, we implicitly
know that four roles must be present, whether we can instantiate them with ref
erents or not.

Chapter 3 Natural Language Understanding 109

Structured Inheritance

action

selling

actor

seller

O R
selling

seller

Figure 12 Implicit Roll-Play Links

While this network is designed to represent semantic information, the idea
of stmctured inheritance networks has been applied to traditionally linguistic
(syntactic) knowledge as well [Jacobs, 1987a]. It is possible to take knowledge
about grammar, the mies for recognizing legitimate sentence stmcture, and en
code that knowledge in a KODIAK network utilizing stmctured inheritance.
Once this is done, we have our linguistic knowledge together with the semantic
knowledge within a single representational framework (see Figure 13).

Concretion mechanisms (or any other marker passing algorithm) that
worked for inference generation can now be applied to syntactic stmctures as
well since the underlying data stmctures are indistinguishable. Whether all
such mechanisms generalize to useful applications is another question, but at
least we are now in a position to ask.

110 Lehnert

Putt ing it Together
Conceptual Structures Linguistic Structures

transfer-event

2 .
destination

a-transfer-6vent

destination

recipient

merch-transfer
VIEW

REF

phys-transfer

— Ϊ —

m s g - t r a n s f e r

prep-ob]

vertMndlr
relation

Indlr-obj

sellling
REE

lex-sell

comm-transfer
VJEW

telling comm-transfer telling
REE

lex-tell

Figure 13 Integrating Syntax and Semantics

Although we are concentrating here on techniques for sentence analysis, it
is interesting to note that the integrated KODIAK stmctures we've been dis
cussing are used for both sentence analysis and sentence generation [Jacobs,
1987b].

Chapter 3 Natural Language Understanding 111

Although Jacobs is probably the first researcher to investigate highly inte
grated methods for syntactic/semantic processing from the two perspectives of
analysis and generation, he was not the first to work with a uniform repre
sentational framework for sentence analysis. The earlier Word Expert Parsing
effort [Small, 1980] deserves to be mentioned along with related work on lexi
cal access [Cottrell and Small, 1983] which focused on the problem of word
sense ambiguity.

A very different approach to the problem of integrating syntax and seman
tics can be found in an effort that was strongly influenced by Cottrell and
Small's earlier work. Waltz and Pollack [1985] picked up where Cottrell and
Small left off, and tried to generalize connectionist techniques into higher
levels of sentence analysis. While we have seen a lot of exciting work by con-
nectionists on sentence analysis within the last year or two (see for example,
[McClelland and Kawamoto, 1986]), I 've chosen to talk about Waltz and Pol
lack because the techniques they use are much more accessible to an AI
audience without an introductory tutorial on connectionism.

Waltz and Pollack work with large, knowledge-rich networks in their sys
tem, but these networks are not as carefully stmctured as the KODIAK net
works we saw before. Indeed, one of the weaknesses of this system is its lack
of inheritance in any form. There are no theoretical claims about knowledge
representation here either: One could invent a node for any sort of frame with
additional nodes for any kind of role or slot constraint imaginable.

The key idea here is spreading activation and network relaxation. But now
the activation is analog activation, which means that nodes are given numerical
values to indicate how much activation is present at any given time. Relaxation
is the process of systematically adjusting activation levels within the network
until the network assumes a stable state. A stronger connectionist flavor is ob
tained by the use of lateral inhibition to expedite the stabilization of competing
nodes where activation levels are expected to be mutually exclusive. If we ap
pear to have walked off some sort of cliff in terms of your familiarity with
these terms, that's probably because this is a numerical algorithm and not the
sort of thing we normally associate with "mainstream" symbolic AI.

Consider, for example, an eating node, which has arcs leading out to role
nodes that represent things like agents and objects (see Figure 14). When we
understand the sentence "Mary ate spaghetti with Sue," we want to see the net
work stabilize with a high level of activation on this eating node as well as the
appropriate slot-filling nodes. It is important to settle on a high level of activa
tion for the co-agent node lest we inteφret Sue to be a co-object (like
meatballs) or instmment (like fork) for the eating event. If all goes well,
semantic constraints within the network will push the relaxation process in the
right direction, and inappropriate pathways in the network will die off for lack
of sufficient activation.

112 Lehnert

Figure 14 Eating Spaghetti with Massive Parallelism

If ever there was an algorithm to illustrate homogeneous control, numeri
cal relaxation must be it. This idea can be applied to networks of nodes repre
senting anything you want. We can have different nodes for different word
senses, other nodes for semantic features, and even nodes for traditional syn
tactic constituents. Plug in a grammar by wiring the nodes correctiy, and you
can produce syntactic parse trees as a side effect of network relaxation (see
Figure 15).

Chapter 3 Natural Language Understanding 113

S o-o S

Figure 15 Adding Syntactic Constraints

Within this framework we integrate semantic constraints and syntactic con
straints in a massively parallel architecture that can readily compute a global
assessment of the simation after each word of the sentence is received. Pre
ferred word senses and syntactic preferences may shift around as we move
through the sentence, making it possible to mn interesting experiments by
taking "snapshots" of the network as we move through a sentence. Activation
levels from a syntactic constituent may inhibit or support a specific semantic
inteφretation, and semantic preferences can flow back toward the nodes decid
ing about syntax.

114 Lehnert

This provides us with a very nice framework for investigating a lot of
problems, and in particular, garden path processing phenomena are especially
well suited for analog spreading activation models. Of course, all of the prob
lems we have with marker passing algorithms apply here as well: E.g., what
happens if two different referents activate the same sections of the network? In
fact, the interference effects associated with analog activation are even worse
than with marker passing algorithms because we have to make sure that nodes
"die out" within a reasonable period of time by tweaking the numeric algo
rithm. In a marker passing framework, a node can be told to die after a fixed
number of words have been parsed or after a specific marker like a clause
boundary is encountered. In the symbolic paradigm it is at least easier to un
derstand why a node is turned on or off. In the analog paradigm, the status of
each node is dependent on the status of every other node in the network,
making the whole business rather inscrutable.

Now that we've seen how syntax and semantics might be intertwined
under homogeneous control, let's return to the issue of pragmatics and how
processes of inference might be interleaved with processes of sentence analy
sis. As I said earlier, I don't think a lot of progress has been made in this area.
Waltz and Pollack have designated a subset of their nodes as "context nodes,"
but it is difficult to evaluate the utility of that idea in the absence of a system
atic methodology for building large, massively parallel networks. Probably the
best I can do is show you some more places where "high-level" knowledge
must be allowed to influence "low-level" decisions about syntax. One of the
places where this appears to happen involves analogies and the role of analogi
cal thinking in natural language.

5 Analogical Reasoning and Language

Her hair was like lamb's wool, her teeth were like pearls.

We're supposed to understand from this that her hair was soft and her teeth
were white. We're not supposed to conclude that her hair was white and her
teeth were hard. One discovers that the mapping of a sentence onto appropriate
analogical features is not such a simple business. Perhaps her hair was smelly
and her teeth were very round?

Analogical reasoning is a major problem in natural language communica
tion, and we don't have to reach for poetry to find instances of it. In fact, it's
much more conunon than you might imagine. Sometimes we see it explicitly.

Chapter 3 Natural Language Understanding 115

in the example above. The word "like" warns us that we may be talking about
an analogy and we'd better get the mapping right. But analogies can also
operate more subtly.

For example, idioms often rely on analogies of one sort or another. I can
pick up an article in the newspaper and read about a conflict in the Middle
East: "Despite the fact that the two factions had been fighting for 20 years,
they finally agreed to bury the hatchet." This is a standard idiom. Everyone un
derstands what is meant by it. Or we can go back to Mary in the hospital.
Maybe after John took her flowers, she took a turn for the worse and kicked
the bucket. Another idiom. In fact, there were two idioms in there. Nobody I
know can take a turn for the inferior.

For a long time, no one in AI had much to say about idioms. They were
just conventionalized and fossilized expressions in the language—a, part of the
phrasal lexicon that had to be learned case by case. But if you look at it with
analogy in mind, there are some very interesting phenomena associated with
idioms. To be precise, there appear to be some rules that govern the syntactic
flexibility of idioms, and those rules are based on analogical reasoning
processes.

First, we must understand that some idioms are more fossilized than
others. The burying of the hatchet can be passivized: "After the peace talks, the
hatchet was buried." The kicking of the bucket cannot be passivized: "After a
long illness, the bucket was kicked by Mary." That's just not an option. One of
these idioms can tolerate a syntactic transformation while the other can't.

In a recent Ph.D. thesis we find a claim about this [Zemik, 1987]. The key
question is whether or not a given idiom can be explained via analogical rea
soning. If an idiom can be explained, then it will be syntactically flexible. If it
can't be explained, then it will be brittle. Let's look at this in a little more
detail.

In the case of the hatchet, we have associations and we have knowledge.
You always have to have knowledge in order to have an analogy. And the
knowledge that's relevant here is knowledge about war. One can imagine a war
script, where we have stereotypic events. You have some initial conflict, you
gather your troops, you attack, you defend, you win, lose, draw, you establish
an agreement, and you bring your troops home. Somehow, we have to get from
burying the hatchet, which is a very specific literal event, to the withdrawal of
armed troops. If we can make that connection, then the hatchet operates as an
instrument of aggression (just as the armed troops are a symbol of aggression),
and burying the hatchet translates into a deliberate disarmament, a halt to ag
gression.

How do you make those connections? This is a very difficult problem for
knowledge representation and memory organization. We could call it a concre
tion problem, but that doesn't solve anything. Is there an abstract event that
dominates both troop withdrawals and hatchet burials in some massive inheri-

116 Lehnert

tance hierarchy? If we go up the abstraction hierarchy too far, all events will
map to all other events (because they're all dominated by some very general
event node way up at the top).

Concretion by itself is probably too powerful a mechanism in die sense
that it could be used to make sense out of idioms no one ever heard of. If bury
ing a hatchet is a further specification of weapon burial, then burying a rifle
should be recognized just as easily as burying the hatchet. Somehow we lost
track of the fact that one of these is an idiom and the other is not. What distin
guishes the one from the other is an instance (real or plausibly constmctable)
where someone actually buried a hatchet following a conflict. Perhaps we all
remember a story about the pilgrims and the Indians from our 4th grade history
lessons. It's at least conceivable that an Indian might have buried a hatchet in a
war ritual. To bury a rifle is to impose an event from a ritually rich culture on
an object from a culture largely lacking in symbolic rituals. The mismatch
arouses cognitive inconsistency and seems disturbing.

Ignoring the very difficult problems associated with analogical reasoning,
we can hypothesize that some such processes take place. Or at least they take
place for the idioms that can be explained. If we had to explain "burying the
hatchet" to a child, we would probably describe a scenario where a hatchet got
buried to symbolize the end of physical aggressions. But what would you do if
someone asked you to explain "kicking the bucket?" Most people explain this
one by saying ifs just an expression (don't bother me kid). There is no
analogical mapping that gives us a plausible explanation for why death is as
sociated with kicking a bucket. Most of us do not know of any such explana
tions and can't constmct a plausible one even if we try.

So why should any of this matter to a syntactic transformation? The fact
that some idioms are syntactically flexible while others are not suggests that
the processes associated with the two types of idioms are very different. An ex
plainable idiom is understood at a deep concepmal level... the idiom maps into
a conceptual stmcture retrieved by analogical reasoning. An inexplicable idiom
is understood (she kicked the bucket => she died) but not explained by analogi
cal mappings.

When an explanation is available, all of the language processing power
available for the targeted conceptual stmcmres can be applied. The explanatory
concept underneath the idiom can be expressed using a variety of syntactic
stmctures, and this makes the idiom receptive to syntactic transformations.
When no explanation is available, there is no underlying concept associated
with the idiom, and so there is no language processing capability that applies.
Brittle idioms lack the conceptual scaffolding required to loosen them up.

Before we leave the topic of analogical reasoning, I want to give you some
more examples of its utility for natural language. One way that analogical rea
soning creeps in is via metaphor. Metaphors are abundant in natural language,
and so pervasive we don't even notice them most of the time. For example, it

Chapter 3 Natural Language Understanding 117

is common to assume that technical literature is characterized by very dry and
literal language. If there is one place where metaphors might not intmde, it
must be when people discuss technical or scientific concepts.

Suφrisingly, technical descriptions are often very rich in metaphors. Con
sider, for example, the language we commonly use when talking about comput
ers:

You can get into the editor by...

I ran it through spell to...

The editor died when...

If you have a language processing system that assumes only living things
can die, you're going to have a lot of trouble with a sentence like "The editor
died on me" [Wilensky, Arens and Chin, 1984].

Oliver North has given us a beautiful example of how intimately interde
pendent language and analogical reasoning can be. If you were listening to the
Congressional hearings, you heard Col. North explain a misunderstanding he
had about the term "delete" in the context of electronic mail. He thought that
when you pushed the delete button, the mail really went away.

I suspect that this faulty interpretation of deletion was the direct result of
an analogical mapping to a bad analogy. Given the rest of his testimony before
the Congressional hearing, it seems quite likely that Col. North mapped the de
lete command in his mail system to the on button of a paper shredding ma
chine. When you tum on the shredding machine, things really do go away. Un
fortunately, shredding machines are not very good models for what happens to
electronic mail. If Col. North had ever worked with icon-infested software of
the sort found on personal computers, he might have mapped the delete com
mand to a wastepaper basket, and been more concemed about the security of
his deleted documents for the same reason that one should worry about waste-
paper baskets.

I do not mean to disparage Col. North or his memory organization. This
kind of misunderstanding happens to all of us and it's especially dangerous
when a word appears to be so simple. How do people usually explain some
thing like a delete command? When you say delete, the message will go away.
When you delete a message you throw it out. Deleting a message destroys the
message. None of these explanations are quite correct but how many of us re
ally want technically correct explanations? Natural language communications
are generally very effective in trading off accuracy for brevity. But every so
often the trade-off slips up and mistakes result. What's amazing is how we all
get by as well as we do.

118 Lehnert

6 Episodic and Semantic Memory

Let me close on a topic that is in keeping with our theme of homogeneity. In
addition to homogeneous control, we can talk about homogeneous memory.
There's some very interesting work that I think is just beginning to get off the
ground. The one example that I'll draw from in order to illustrate what I 'm
talking about is some recent work done at Yale [Riesbeck and Martin, 1986].

Traditionally, people who talk about memory make a distinction between
semantic memory and episodic memory. To understand this distinction, let's
think about how we might go about answering a simple question. Suppose I
ask you, "Does a penguin have skin?" If you have a semantic memory availa
ble to you that involves penguins, you will understand that a penguin is a type
of bird, and as a bird, it has specific features, one of which is skin. If you have
any kind of retrieval algorithm available for answering questions, you will
traverse links of this sort in order to confirm that penguins do indeed have
skin.

Now suppose I ask a very similar question. What about a chicken? "Does
a chicken have skin?" Now, if you have semantic memory, you're going to an
swer the question much the same way you answered it for penguins. You
won't have associations available to you about Antarctica, but you'll find
chickens, you'll find birds, you'll find features for birds, and you'll find skin.
Just like before. This is the semantic view of memory.

However, a number of people believe something else goes on, that perhaps
semantic memory can sometimes be short-circuited by something much scruff
ier called episodic memory. Episodic memory has to do with personal first
hand experience with the world. For example, dinner last night is a good ex
ample of episodic knowledge. If dinner last night happened to be fried chicken
and you really like the skin on fried chicken, you might have a much faster
path for answering the question about chicken skin than the one available
through semantic memory (see Figure 16).

Traditionally, semantic knowledge and episodic knowledge have always
been thought to be in competition with one another: These are two distinct
views of memory and there really isn't room in this world for both of them to
coexist peaceably [Tulving, 1972].

But very recently we've begun to see some work that seems to blur the
semantic/episodic barrier and cross lines between the two without any trouble
at all. We've already seen some of this with FAUSTUS. What sort of a node is
the node that represents balloons exploding? An exploding balloon sounds
pretty episodic. Yet two steps up the hierarchy we'll see general nodes for ex
plosions and breaking events. Nodes like that are commonly found in semantic
networks. If we examine the memory structures engineered for FAUSTUS, it
seems that the task of inference generation needs both types of memory and
would be badly impaired if forced to function without one or the other.

Chapter 3 Natural Language Understanding 119

S e m a n t i c M e m o r y v s . E i) isod i (; M e m o i y

D o e s a p e n g u i n h a v e s k i n ?

on-top-of

f e a t h e r s V ^ c ' s k i n

D o e s a c h i c k e n h a v e s k i n ?

{ K e n t u c k y F r i e d J ^ \ ü n t o p o f
\̂ -^ecret - ifigreaieni >1 C h i c k e n y ^ * ^ « ^ , - " ^ ^ — ^ - - ^ ^

1 1 h e r b s & s p i c e s ^

Figure 16 Semantic Memory vs. Episodic Memory

120 Lehnert

Now let's get back to Riesbeck and Martin to see how the semantic/epi
sodic issue relates to sentence analysis. Before describing their system, DMAP
(Direct Memory Access Parsing), Riesbeck makes an interesting claim about
language analysis at the level of sentence comprehension. He points out that
there are really two distinct views about what it means to analyze a sentence.
In one perspective, we think of a sentence as mapping into existing concepts in
memory. That is, you really only understand this sentence because you have
knowledge in memory that allowed you to make sense out of it. Then when
you understand the sentence, the very act of understanding the sentence oper
ates to reinforce or modify existing stmctures in memory. This view of sen
tence analysis might not sound terribly controversial, until you realize that vir
tually every sentence analyzer ever implemented operates under different prem
ises.

In most models of sentence analysis, sentences do not map direcdy into
memory. They create meaning representations, and these meaning repre
sentations may be influenced by some form of memory, but the act of sentence
analysis rarely has any side effects that alter memory as the target meaning
representation is being produced. The processes that analyze a sentence are
normally segregated from the processes that alter memory (if indeed, any
process is capable of altering memory).

Riesbeck characterizes the traditional framework as the "build-and-store"
approach to sentence analysis. He calls the non-traditional framework the "rec-
ognize-and-record" style of sentence analysis. He then goes on to argue that it
would be much to our advantage to investigate recognize-and-record models of
parsing as a wholly new style of parsing that lends itself more naturally to a
tmly memory-intensive view of language.

In fairness, we should point out that the Waltz and Pollack parser falls
somewhere in between build-and-store and recognize-and-record. Their analy
zer produces a pattern of activation over its entire memory. Indeed, it may be
very difficult to inteφret this pattem of activation should anyone ever need to
know what a particular sentence means. So Pollack and Waltz are certainly not
consistent with the build-and-store paradigm. On the other hand, the changes
made to memory as a result of sentence analysis are completely transient and
wiped out each time a new sentence is processed. So this is not exactiy con
sistent with the recognize-and-record idea either. Yet the connectionist enter
prise in general is clearly operating within the recognize-and-record paradigm
if we look at the leaming algorithms that adjust weights and modify the net
work each time a new sentence is processed. The radical view that Riesbeck
advocates is really only radical within symbolic AI circles. Connectionists
would feel quite at home with it.

To see how Riesbeck and Martin try to realize a recognize-and-record
model using symbolic techniques, let's look at one of their example sentences.
Here is a picmre of DMAP's memory (see Figure 17).

Chapter 3 Natural Language Understanding 121

(actor.MTRANS-wor(l.object)

MTRANS-event

Actor

(name) actor

object

Human

lEconomistl
Opinion

Mental
Object

object
Economic
Argument

lEconomistl
Prediction

tmie

Economist

First 1 Milton last Last
Name JNames Name

first
("Milton")

actor

actor

Friedman's
Interest Rates

Prediction

(time, event)

Prediction

Milton
Friedman

("Friedman")

Time

(variable |behavior)

Future

behavior

("will")

Interest
Rates Up

Behavior

Interest
Rates

variable >J
behavior Up Down

("interest","rates") ("rise")

Figure 17 Understanding Milton Friedman

122 Lehnert

DMAP has some knowledge about newspaper articles taken from news
papers. The sentence we are now trying to understand is, "Interest rates will
rise as an inevitable consequence of the monetary explosion." This is a quote
from Milton Friedman in the New York Times. Figure 17 shows us the portion
of DMAP's memory which is important for understanding "(Milton Friedman
says) interest rates will rise"

At the highest level of memory, we can characterize this sentence as a
transfer of information. Somebody said something. This is a highly abstract
characterization of the input sentence. As we move down to a more specific
representation, we further understand the sentence to be an opinion by an
economist. Even more specifically, a prediction by an economist. And more
specifically again, a prediction by Milton Friedman about interest rates.

Looking at Figure 17, we can see an inheritance hierarchy that gives us all
the further specifications needed to represent the input at various levels of ab
straction. If we start at the top node for a communication event, filling in the
details becomes something like a concretion problem. Of course, memory will
only look like this if DMAP has already seen other stories about Milton Fried
man making predictions about interest rates. Given such knowledge, the act of
mapping our new input sentence into memory becomes an act of recognition: I
see now... this is another interest rate prediction by Milton Friedman. DMAP
shows how a sentence analyzer can work with memory in order to situate the
content of a sentence within an existing framework for memory. The algorithm
is a marker passing algorithm, and DMAP shows us what sentence analysis
might look like within a memory-rich recognize-and-record paradigm.

Let's take one more look at the nodes in this tree stmcture (see Figure 17).
Although the root node for a communication event looks very generic and
therefore semantic, nodes further down the tree stmcture look more and more
episodic. We have a node for all the names we know with the first name Mil
ton. We have a node for economic predictions by Milton Friedman. This is
completely episodic.

At some point, we've crossed the line and moved from nice, clean, seman
tic knowledge down to scmffy, first-hand experience knowledge of Milton
Friedman and what he's said in the past. In fact, the marker passing algorithm
in DMAP was designed with two kinds of memory organization in mind: ab
straction hierarchies and packaging hierarchies [Schank, 1982]. The abstraction
hierarchy is the traditional is-a hierarchy we see in semantic networks, and the
packaging hierarchy handles stereotypic chronologies of the sort we first saw
with scripts—this is clearly episodic knowledge.

So an interesting line gets crossed in DMAP, and there are important im
plications when you cross that line. One of the implications has to do with
knowledge acquisition. If you are willing to cross that line and benefit from the
advantages associated with it, then you necessarily have to worry about knowl
edge acquisition. Because every time you understand a sentence, you should

Chapter 3 Natural Language Understanding 123

add another instance of something to your knowledge framework. The tenth
time you read about Milton Friedman predicting interest rates will rise, you
should feel that the concept is somehow more familiar than it was the second
time around. You are automatically in the leaming business at that point. Ear
lier work on generalization and dynanuc memory organization comes to mind
[Lebowitz, 1983]. But this is a not a standard perspective on sentence analysis.
Most researchers in natural language processing and even knowledge-based
natural language processing would not claim to be working on leaming or
knowledge acquisition. So this is a really a radical view of language being pro
moted here.

7 Conclusions

That brings us to our wrap-up. I've tried to point out some trends over the last
15 years. It is possible to associate the trends with roughly five year cycles
starting in 1972.

The first cycle (1972-77) was characterized by a preoccupation with
strong methods addressing specific knowledge stmctures and processes of in
ference associated with specific knowledge stmctures. Ph.D. theses by
Chamiak and Rieger motivated much of this work, and Schank organized a
large research group at Yale to identify knowledge stmctures for natural lan
guage processing.

The second cycle (1977-82) was characterized by a gradual appreciation
for the implications of language processing based on strong methods alone.
Dyer's thesis gave us a taste of the price we would have to pay in terms of sys
tem complexity if die strong methods continued to propagate without other
kinds of processing techniques. At the same time, powerful ideas based on the
earlier impetus toward strong methods were being pushed hard and refined in a
number of computer implementations. Jaime Carbonell, Richard CuUingford,
Gerald DeJong, Michael Dyer, Richard Granger, Janet Kolodner, James Mee-
han, Mallory Selfridge, Robert Wilensky, and I, all finished theses at Yale
during this period. The pendulum was poised to swing back from there.

The third cycle (1982-87) fueled a renewed interest in weak methods—
techniques for homogeneous inference generation, homogeneous memory or
ganization, and broad processing techniques of great generality. Marker passing
algorithms enjoyed a lot of attention during this period and progress by con-
nectionists was greeted with cautious enthusiasm. Spreading activation became
a conmion theme in a lot of the original research of this period. James Kendler,
Graeme Hirst, Paul Jacobs, Peter Norvig, and Jordan Pollack, all completed
theses consistent with the Zeitgeist of this cycle. Work by Gary Cottrell and
Steve Small, which was completed before 1982, received recognition during
this period for having surfaced "before its time."

124 Lehnert

So where are we going in the next five years? It 's always safer to wait for
20-20 hindsight, but I 'm willing to stick my neck out and imagine a future that
would at least not suφrise me.

• I expect to see a push toward knowledge acquisition as an active concern
in knowledge-based natural language.

The symbolic community will grapple with the questions raised by con-
nectionist research: What are the essential issues in the symbolic/subsym-
bolic paradigm struggle? Should we all see the light and become con-
nectionists? Should the connectionists see the light and forsake connection
ism? Given the unlikelihood of those two scenarios, how will the two
communities come to view each other and the relationship between their
distinctive research paradigms?

• Somewhere in the midst of all this, theoretical progress might be made on
the episodic/semantic distinction. More and more people will find it con
venient to acknowledge the utility of both memory types and design algo
rithms that move freely between them. This will be viewed either in terms
of an integration of two distinct memory types, or a demonstration that the
original distinction cannot be supported by computational models (it was a
bad idea in the first place).

• Finally, we may see some serious efforts aimed at evaluating our models
and understanding the qualitatively different contributions that are being
made by different research styles. The neat/scruffy dichotomy may give
way to some other, more timely wedge, as more and more people find it
difficult to pigeonhole themselves as card-carrying neats or free-spirited
scruffies. Those who never liked this distinction in the first place will hold
a workshop and bum all reprints that contain the keywords "neat" or
"scruffy."

In closing I'll leave you with two of my favorite quotes. The first one is
by Thomas Edison. Thomas Edison was bom too early to be an AI person, but
I think he would have been a good one if persistence counts for anything. He
had a lot of trouble finding the right filament for the light bulb, and he tried a
lot of filaments before he found a workable one. Whenever I see the following
quote I like to mentally transport Edison into 1987 and place him in an NSF
office where he's trying to convince a program manager to fund his research.
Exasperated and impatient with the obvious difficulty of his situation, he says:

"I 've tried everything. I have not failed. I've just found 10,000 ways that
won't work."

I think anyone who's been in AI for more than ten years can probably re
late to that scenario, but this is a rather pessimistic perspective on the state of
the art, so I don't really want to leave you on that note. It makes the whole

Chapter 3 Natural Language Understanding 125

business sound like a simple bmte-force search, and I think we're all at least a
little smarter than that.

Here's a happier observation from Francis Bacon that seems closer to the
tme spirit of AI:

"Tmth emerges more readily from error than from confusion."

Questions and Answers

(Q) I wonder if you might have seen the little note on USENET from Donald
Norman about artificial intelligence as a science. Whether you have or
not, let me ask the question. What, in your opinion, controls the
development of this research from the point of view of both evidential
support and falsification? I ask it because you didn't say anything about it.

(A) Well, I think there's a lot of soul searching that goes on in AI on this
point, particularly within the machine leaming community. Language
researchers are perhaps less preoccupied with such concems because it is
very hard to design convincing experiments for processes of this
complexity. However, one good collection of psychological experiments
inspired by the knowledge stmcturing work at Yale is [Galambos et al.,
1986].

I think a big part of our enteφrise can be reasonably characterized as
trying to understand the problem before we can presume to find
solutions. For example, Rieger thought the inference problem was
primarily a control issue. Schank says it 's primarily an issue about
knowledge and memory organization.

I think we understand a good deal more about language now than we did
15 years ago, but whether we're leaming what we leam by practicing a
normal science is another issue. Personally speaking, I don't really care if
we're practicing science as long as we can say we're leaming something.

How about an easy question?

(Q) I'll give you a technical question I have about the last point of your talk...
where you describe the recent work by Riesbeck as an effort combining
episodic memory with semantic memory. You said that would create a
problem for knowledge acquisition. It seems to me that if you could store
the sentences you understand in the same representation that you are
using to parse them, then tiiat would be a big windfall for knowledge
acquisition, because once you parse it, you have it available as part of
your episodic memory for use later on. So the impression I get is just the
opposite of what you said. Can you clarify that?

126 Lehnert

(A) You have to be careful about exactly what it is you think you should
learn. If you're interested in psychological validity, there's a lot of
evidence that people are very bad at remembering sentences verbatim in
long-term recall or recognition. Even so, the content of those same
sentences can be recalled. This suggests that our episodic memory
structures operate with some system of knowledge representation that is
not dependent on sentences per se.

When we say that DMAP can "understand" a sentence better if it 's seen
the sentence before, we should keep in mind that DMAP will also
understand a paraphrase of that sentence with equal advantage because
the memory which facilitates understanding is based on a canonical form
for meaning representation: All semantically invariant paraphrases are
collapsed into a single meaning representation. So DMAP can't be
expected to learn anything about syntax or the processes needed to handle
syntactic information as long as its memory can't record distinctions
specific to syntax.

It is very difficult to say how the leaming associated with episodic
domain knowledge relates to the problem of leaming how to analyze
sentences. Going back to psychological validity, children acquire the
basics of sentence analysis very early on. By the time a child enters
school, she's basically working on vocabulary acquisition and an
increasing tolerance for syntactic complexity—the hard part of language
acquisition is over and what remains is a lot of expansion within existing
stmctures. This suggests that the mechanisms associated with adult
language processing are probably not very plastic or sensitive to specific
sentences on a case-by-case basis. It might therefore make sense to
separate the two types of leaming as distinct and separable problems (as
DMAP does). Of course, there are plenty of connectionists who would
disagree with me about this.

(Q) You spent some time talking about how one could use the same
knowledge representation stmctures for representing the concept in the
sentence and concepts of just verb and noun through grammatical terms,
but I guess I missed something along the way. What power does that give
you, what's the advantage of doing that?

(A) Ah. Well, the idea is that we should get away from that one slide I
showed you from Dyer's thesis, where the 22 different knowledge
stmctures interact with one another in very arbitrary and idiosyncratic
ways. If we could find knowledge representation techniques and memory
organization techniques that allow us to bring in all kinds of different
knowledge stmctures under the same representational umbrella, then we
could develop algorithms that manipulate that information in a uniform

Chapter 3 Natural Language Understanding 127

manner. So it's a question of finding uniform processing theories as
opposed to allowing the whole enteφrise to break down into 1,001
interacting experts who each speak different languages and talk about
different things.

I should also point out that I 'm only trying to identify some trends in our
research. Time will tell whether or not this trend is justified. Maybe
reality will ultimately reveal herself to be 1,001 different experts and
we'll just have to develop appropriate techniques for dealing with that
kind of complexity.

(Q) So in the case of Waltz and Pollack, we've really got sentences being
parsed using only spreading activation? Some form of connectionism?

(A) In the case of Waltz and Pollack, that's exactly what we've got. In the
case of Jacobs, who was working with KODIAK, we see another form of
spreading activation called marker passing, which operates a lot like
relaxation except it's just not numerical relaxation. In both the numeric
and non-numeric approaches, a simple algorithm is iteratively applied to
nodes in the network until a stable state is reached. A lot of people are
playing around with marker passing these days, including Chamiak.

(Q) And do those parsing algorithms duplicate the same phenomena that
something like the Marcus parser does... garden path phenomena?

(A) Pollack and Waltz were very interested in garden path sentence
processing and they have examples that simulate effects exhibited by
human subjects.

(Q) Could you speak briefly about the current interaction between
psycholinguistics and computer science in language understanding,
because it seems like some of these models come from insights from
psycholinguistics, but you didn't mention that.

(A) I think if you concentrate on the knowledge-based aspects of language
processing, you find influence coming in from a number of places. For
example, the Zemik work on frozen idioms and analogical mappings was,
I suspect, heavily influenced, or at least inspired, by the work of George
Lakoff.

Much of psycholinguistics, however, restricts its domain of inquiry to
syntactic phenomena without appropriate concem for interactions
between syntax and other knowledge stmctures. To the extent that this is
tme, many of the results we see from those experiments are not very
illuminating for people working on knowledge-based natural language.
Indeed, most of us argue rather vehemently against the segregation of
syntactic processing.

128 Lehnert

(Q) No, but the psycholinguists do experiment on memory, and they're
interested in memory, they're interested in semantic memory, they're
interested in cross-cultural effects of understanding. I was just wondering
if there are any active relationships between these bodies of research.

(A) There are scattered instances of influence. For example, Eugene Chamiak
was strongly influenced by the experiments of David Swinney in the late
70s. Experiments by Robert Milne are important for people working on
lexical access. I 'm not sure how much there is in terms of active
collaboration, but it is always important to keep the channels of
communication open.

(Q) I've noticed that the entire description stayed within the verbal domain,
and I'm wondering if that reflects a supposition about how people really
think. Or is that just a starting point that we might have to move away
from at some later time?

(A) What do you mean by "verbal" domain?

(Q) Well, for instance, when you said, "Does a penguin have skin?" I
immediately saw a picture of a penguin. As a matter of fact, it was
superimposed on a map like an old Disney movie. Then I saw a few
feathers removed and then I saw skin underneath. I didn't say, "Is this a
bird?" There was no classiflcadon like that going on.

(A) Right. There are two things to say about that. First, a warning, and then
an answer. It's a little dangerous to place a lot of credibility in your
subjective experience of what happens when you answer questions or
understand sentences. If we're conscious of anything, that's just the tip of
the iceberg. In fact, we can't even say if it's a real piece of the iceberg or
some completely misleading side effect caused by the iceberg. So that's
the waming.

Having said that, I think there's a very serious question about whether or
not the knowledge stmctures underiying language are in fact the same
knowledge stmctures underlying visual information processing. If they
aren't, then we should worry about which aspects of common sense
reasoning would be better served by which stmctures.

And as far as I can tell, there's precious little interaction between
high-level vision researchers and knowledge-based language researchers.
This is too bad. Surely we both have needs related to spatial reasoning,
although those concems are probably much more central to vision
processing than language processing.

There's been a certain amount of philosophical posturing around this
question. Pylyshyn and Jackendoff come to mind. But it seems silly to

Chapter 3 Natural Language Understanding 129

jump to any conclusions given how little we really know about the whole
business. I can't even say the jury is still out since the matter hasn't
really come to trial.

Acknowledgments

This research was supported by DARPA contract #N00014-87-K-0238.

References

Abelson, R., 1981. Constraint, Construal, and Cognitive Science. Proceedings
of the Third Annual Conference of the Cognitive Science Society, Berkeley,
CA.

Alker, H. R., Jr., Lehnert, W. G., and Schneider, D. K., 1985. Two Reinter-
pretations of Toynbee's JESUS: Explorations in Computational Hermeneu-
tics. In Artificial Intelligence and Text-Understanding: Plot Units and Sum
marization Procedures, Quaderni di Ricerca Lingüistica, Grazieila Tonfoni,
ed.

Bobrow, D.G., and Winograd, T., 1977. An Overview of KRL-0, a knowledge
representation language. In Cognitive Science l(l) :3-46.

Chamiak, E., 1972. Toward A Model of Children's Story Comprehension, Mas
sachusetts Institute of Technology Artificial Intelligence Laboratory, Cam
bridge, MA. AI TR-266.

Cottrell, G.W. and Small, S.L., 1983. A Connectionist Scheme for Modeling
Word Sense Disambiguation. Cognition and Brain Theory 6(1).

Cullingford, R., 1978. Script Application: Computer Understanding of News
paper Stories. Yale University, Department of Computer Science, Research
Report #116. Dissertation.

Dreyfus H., 1987. Artificial Intelligence: Where Are We? ABACUS 4(3):13. A
collection of interviews edited by Bobrow, D.G. and Hayes, P.J.

Dyer, M., 1983a. In-Depth Understanding. MIT Press. Cambridge, MA.
Dyer, M., 1983b. The Role of Affect in Narratives. Cognitive Science 7 :211-

242.
Galambos, J., Abelson, R., and Black, J., 1986. Knowledge Structures. La

wrence Erlbaum Assoc., Hillsdale, NJ.
Geisel, Τ., 1950. / / / Ran the Zoo. Random House, New York.
Jacobs, P., 1987a. A Knowledge Framework for Natural Language Analysis.

Proceedings of the Tenth International Joint Conference on Artificial Intel
ligence. Milan, Italy. 675-678.

130 Lehnert

Jacobs, P., 1987b. Knowledge-Intensive Natural Language Generation. In Arti
ficial Intelligence 33(3).

Lebowitz, M., 1983. Memory Based Parsing. Artificial Intelligence 2l(4):363-
404.

Lehnert, W.G., 1981. Plot Units and Narrative Summarization. Cognitive
Science 5(4).

Lehnert, W.G., Dyer, M., Johnson, P. Yang, C. and Harley, S., 1983. BORIS—
An Experiment in In-Depth Understanding of Narratives. Artificial Intel
ligence, 20:15-62.

McClelland, J., and Kawamoto, Α., 1986. Mechanisms of Sentence Processing:
Assigning Roles to Constituents. In Parallel Distributed Processing: Ex
plorations in the Microstructures of Cognition—2. Rumelhart and McClel
land, ed. Bradford Books.

Norvig, P., 1987. Unified Theory of Inference for Text Understanding, Depart
ment of Computer Science, University of Califomia, Berkeley. Dissertation.

Quillian, M.R., 1968. Semantic Memory. In Semantic Information Processing,
Marvin Minsky, ed. MIT Press, Cambridge, MA.

Rieger, C , 1974. Conceptual Memory: A Theory and Computer Program for
Processing the Meaning Content of Natural Language Utterances. Depart
ment of Computer Science, Stanford, Univ. Memo AIM-233, Stan-CS-74-
419. Disseration.

Riesbeck, C. and Martin, C , 1986. Direct Memory Access Parsing. In Ex
perience, Memory and Reasoning, Riesbeck, C. and Kolodner, J., ed. La
wrence Erlbaum, Hillsdale, NJ.

Schank, R., 1982. Dynamic Memory: A Theory of Reminding and Learning in
Computers and People. Cambridge University Press.

Schank, R., 1975. Conceptual Information Processing. American Elsevier,
New York.

Schank, R. and Abelson, R., 1977. Scripts, Plans, Goals, and Understanding.
Lawrence Erlbaum, Hillsdale, NJ.

Small, S., 1980. Word Expert Parsing: A Theory of Distributed Word-Based
Natural Language Understanding. Department of Computer Science, Uni
versity of Maryland, TR-954. Dissertation.

Tulving, E., 1972. Episodic and Semantic Memory. In Organization of
Memory. Tulving and Donaldson, ed. Academic Press, New York.

Waltz, D. and Pollack, J., 1985. Massively Parallel Parsing: A Strongly Inter
active Model of Natural Language Inteφretation. Cognitive Science 9(1).

Wilensky, R., 1986. Knowledge Representation—A Critique, A Proposal. In
Experience, Memory, and Reasoning. Kolodner, J. and Riesbeck, C , ed. La
wrence Erlbaum Assoc.

Wilensky, R., 1978. Understanding Goal-Based Stories. Department of Com
puter Science, Yale University Research Report #140. Dissertation.

Chapter 3 Natural Language Understanding 131

Wilensky, R., Arens, Y., and Chin, D., 1984. Talking to UNIX in English: An
Overview of UC. Communications of the Association for Computing
Machinery.

Winograd T., 1987. Natural Language: The Continuing Challenge. AI Expert
2(5):7-8.

Winograd T., 1972. Understanding Natural Language. Academic Press, New
York.

Winograd T., and Flores, F., 1986. Understanding Computers and Cognition.
Ablex Publishing ΰ ο φ . , Norwood, NJ.

Zemik, U., 1987. Strategies in Language Acquisition: Learning Phrases from
Examples in Context. UCLA-AI-87-1. Dissertation.

Chapter

4

Natural-Language Interfaces
C. Raymond Perrault and Barbara J. Grosz
SRI International
and Center for the Study of Language and Information
Menio Park, California

Ann. Rev. Comput. Sei. 1986. 1.-47-82
Copyright © 1986 by Annual Reviews Inc. All rights reserved

1 Introduction

Since the early 1960s when support decreased for machine translation, much of
the research on natural-language processing (NLP) in North America has been
motivated by its potential use for communicating with software systems.^ Nat
ural-language systems have been developed to extract information from
databases, to control (simulated) robots [Winograd, 1972], to interact with
graphic systems [Brachman et al., 1979], to specify simulation problems
[Heidorn, 1976], and to communicate with systems embodying expertise in
some task or problem area [Bobrow, 1977; A. Robinson, 1981].

In this article we focus on interfaces to database management systems
(DBMS).^ We use the term natural-language interface (or NLI) to refer to such
interfaces, unless otherwise specified. In addition to being among the earliest
interface systems developed, interfaces to databases account for most of the
NLIs implemented to date and they are the subject of a substantial literature.
Although some work has been done on the use of natural language to update

1 Notable exceptions include the story-understanding programs of Schank and his colleagues
[Chamiak, 1973; Schank, 1975].
2 We do not discuss commercial systems even though they are becoming increasingly available
[Bates and Bobrow, 1983; Johnson, 1985]; the first was ROBOT/INTELLECT [Harris, 1977].

133

134 Perrault and Grosz

databases [Davidson and Kaplan, 1983] and on generating appropriate re
sponses, most of the work on NLIs has been concemed with inteφreting quer
ies, and we will restrict ourselves to this problem area.

Besides discussing the main system architectures used in NLIs, we also
sketch the body of techniques developed for them. In doing so, we distinguish
between the task of an interface (the various functions of the underlying soft
ware system, such as answering questions, updating a database, or moving a
robot) and its domain (the set of objects, properties, and relations denoted by
the utterances it must inteφret—e.g., employees and managers).

Natural language (NL) is but one of the methods available for human-ma
chine interaction, but the reasons for its attractiveness are obvious:

• It provides an immediate vocabulary for talking about the contents of the
database.

• It provides a means of accessing information in the database independentiy
of its stmcture and encodings.

• It shields the user from the formal access language of the underlying sys
tem.

• It is available with a minimum of training to both novice and occasional
user.

Although form-filling and menu-based techniques [Tennant et al., 1983]
are appropriate to simple software systems whose stmcture is easily leamed
(and whose only user may be its designer), we conjecture that NL becomes
more desirable as the following become tme:

The organization of the underlying information and procedures becomes
more complex, so that the information necessary to process one query may
be distributed widely throughout the system.
The encoding of the information becomes more remote from everyday
concepts, perhaps for the sake of retrieval efficiency.

• The problems the user wishes to solve become so complex that even writ
ing a correct program in a formal query language may be difficult.

For example, the English query, "Who owns the fastest submarine," trans
lates into over 20 lines of code [Hendrix et al., 1978] in the query language
DATALANGUAGE. Even when compared to the more abstract relational query
languages, NL is more concise. For instance. Warren and Pereira [1982] pro
vide the following QUEL [Stonebraker et al., 1976] equivalent for the query
"How many countries are there in each continent?"

Chapter 4 Natural-Language Interfaces 135

range of C is countries
range of Cont is continents
range of I is inclusions
retrieve (Cont.name, count(C.name
where C.name = I .inside and I .outside = Cont.name))

As indeed they must, NLIs allow the same information to be requested in
a variety of ways. For example, the following queries might all be used to ask
a database to determine which manufacturers were known to have shipped
equipment to Mexico:

Who sent equipment to Mexico?

Who sent Mexico equipment?

Mexico received equipment from which manufacturers?

Equipment was sent to Mexico by whom?

The function of an NLI is to translate utterances in NL to expressions of a
more immediately inteφretable form, such as the formal query language (QL)
of a DBMS. In this regard the NLI is much like a programming-language (PL)
compiler although differing from it in some important respects. The syntax of a
PL is much simpler and the language is intentionally free of both syntactic and
semantic ambiguities. PLs and their compilers assume certain primitive data
types (e.g., numbers, strings). Although programs written in these PLs may be
about other types of objects (e.g., employees, salaries), the syntax, the seman
tics, and the compiler of the PL are not sensitive to these types; the program
mer must explicitly provide an ending for them into the data types provided by
the PL. NLIs, on the other hand, are inherently sensitive to the types of objects
in the domain. Thus, whereas with PLs the programmer must encode the ob
jects in the datatypes of the PL, with NL the decoding burden is on the inter
face designer.

To simplify the discussion, we assume throughout that the underlying DBs
are relational [Codd, 1970], and that the query language is relational calculus
[Codd, 1972]. The relation between other DB models and the relational model
is well understood [UUman, 1982]; at worst they can be accommodated by
building translators to them from relational calculus.

In the following section, we introduce a small database as the basis for the
examples in this paper and we examine some of the more important problems
of inteφretation that an NLI must be designed to handle. We discuss the main
sources of information available for the inteφretation of utterances and outline
the general features of the architecture of three classes of NLIs. We then offer
a more detailed description of various NLI constituents, which shows how the

136 Perrault and Grosz

sources of information are used by different systems to solve the various prob
lems of inteφretation. We conclude with a brief review of current research is
sues in NLP and their importance for more sophisticated interfaces to software
systems.

2 An Overview of the Probiems

The flexibility and succinctness of NL for querying DBs are achieved at the
cost of problems in determining the inteφretation of a query.^

Several of these problems, which we illustrate briefly here, have received
interesting general treatments within the context of NLIs. For puφoses of il
lustration, we consider a simple database containing information about em
ployees and divisions in an organization. The information about an employee
includes name, salary, division, and whether or not the employee was exempt
from overtime pay. The information concerning a division includes its
manager, its revenue, and its product.

The syntactic structure of a sentence is often ambiguous. For example, in
the request, "Give me all the employees in a division making more than
$50,000," it is unclear whether the modifying phrase "making more than
$50,000" is meant to apply to employees or divisions. This may be termed the
modifier attachment problem. In some cases, however, certain possibilities can
be filtered out on semantic grounds. For example, while in general, "making
shoes" in the query "Give me all the employees in a division making shoes"
could modify either "employees" or "division," in a domain constrained by the
information in our sample database, only divisions make shoes, not employees;
thus the query in this specific case is unambiguous.

NL sentences with determiners—words such as "the," "each," and
"what"—can have several readings, unlike the well-formed formulas of quan
tified logic. For example the query "What employee earns more than every di
vision manager?" might be either a request to name the one employee whose
salary exceeds that of any division manager or a request to name for each
manager some employee who earns more than that manager. The relative scop
ing of the quantifiers corresponding to the different determiners depends on a
number of factors, including the form of the utterance, the particular deter
miner, and the context of use. Various solutions to this problem, which is re
ferred to as the quantifier scoping problem, are presented below.

The nominal compound problem is illustrated by the phrase "sales divi
sion" in the query "Who manages the sales division?" Such noun-noun combi-

3 Succinctness is certainly not a characteristic of all uses of NLP; for example, it is not a property
of NL when used for the direct specification of low-level programs.

Chapter 4 Natural-Language Interfaces 137

nations occur frequently in natural language. The syntax itself gives no clue as
to the relationship between "sales" and "division." This kind of construction
can be used to express arbitrary relationships (as illustrated by combinations
like "wine glass," "oil pump," and "pump oil") and can be extended to longer
concatenations of nouns "national park ranger station equipment procurement
form"). The syntax does not even determine the direction of the modifier rela
tionship (editors' attempts to encourage helpful hyphenation notwithstanding).
For example, "Stanford Research Institute" formerly referred to a research in
stitute associated with Stanford University, whereas "Computer Research Insti
tute" would likely refer to an institute organized to conduct computer research.
This problem is one of several related to modification discussed below.

The inteφretation of a query may depend, in a number of different ways,
on previous queries and their inteφretations. Of these forms of dependency, el
liptical utterances and certain uses of pronouns are prevalent in database query
ing.

Elliptical queries often arise because users are interested in obtaining simi
lar information about different objects. After making a full request, they may
ask for additional information with a single word or phrase. For example.
Query 1, below, can be followed by either of the elliptical queries, 2a or 2b,
which should then be inteφreted as 3a or 3b, respectively.

1. Who is the manager of the automobile division?

2a. of aircraft?

2b. the secretary?

3a. Who is the manager of the aircraft division?

3b. Who is the secretary of the automobile division?

In these two examples, the "expanded" query is like the original one with
but a single word (a different word in each case) replaced. The kind of expan
sion required may be much more complex, however. For example, a simple
constituent may have to be replaced with a more complex one, as in Queries 4
and 5 below; or different parts of the original query may require replacement
as in Queries 6 and 7.

4. What is Benson's salary?

5a. the sales division manager's?

5b. the highest revenue division's manager's?

6. What is the salary and title of the highest paid nonexempt employee?

7. Division of the lowest paid?

138 Perrault and Grosz

Note that Query 7 might be interpreted as either:

8a. What is the salary and division of the lowest paid nonexempt employee?

8b. What is the division of the lowest paid nonexempt employee?

Pronouns and other referring expressions provide one means of referring
repeatedly to the same entities. For example, "they" in Query 9b must be re
solved to refer to employees who earn more than the sales division manager.

9a. Can you tell me which employees eam more than the sales division
manager?

9b. How much do they eam?

3 Constraints on Interpretation

In computational linguistics, as well as linguistics more generally, there is sub
stantial disagreement (and no small amount of confusion) as to what inteφreta-
tion actually is. Agreement has yet to be reached on answers to two fundamen
tal questions:

What receives inteφretation? The alternatives include sentences, sentences
in context, sequences of sentences, and dialogues.

What is its object? Here alternatives include tmth-values (especially for
declarative sentences), answers (for questions), procedures for giving an
swers, or even the mental state the speaker must be in to make his utter
ance.

Within the restricted realm of interfaces to DBs, it is generally taken to be
sentences and, occasionally, sequences of sentences that receive inteφretations.
The inteφΓetation given to a query is taken to be a complex predicate; this
predicate is satisfied by all the tuples of objects that are answers to the ques
tion. To allow for the possibility of ambiguity, we will take inteφretation to be
a relation between sentences and these complex predicates. For the inteφreta-
tion relation to be specified, the following must be provided:

• A number of information sources,^ each consisting of a class of objects
and constraints on those objects. Thus, the syntactic information source

4 These are often called knowledge sources, but we prefer to reserve the term knowledge for
other uses, as it suggests that the information is true; this is a connotation we wish to avoid.

Chapter 4 Natural-Language Interfaces 139

might have words, phrases, and features as objects, and syntactic rules as
constraints.

• Constraints that hold across information sources—expressing, for example,
the relation between parse trees and their associated senses, or between
sets of words (from the moφhology) and sentences (from the syntax).

The NLI designer must also decide how the various objects and constraints
will be represented, and how inteφΓetations or, more accurately, their repre
sentations will be computed. One confusion that abounds in much of the com
putational-linguistics literature is the identification of inteφretations with repre
sentations (i.e., inteφretations are taken to be representations).

Although it is desirable for the overall theoretical account to be as modular
as possible, computational efficiency may (and often does) suggest architec
tures where the various sources of information interact significantly. The kinds
of information that are considered depend upon the kinds of tasks being per
formed by the NLI and the linguistic proficiency that is being sought. The
standard information sources include moφhology, syntax, the lexicon, illocu-
tionary and discourse information, and encyclopedic information about the
domain.

The objects of moφhology are words, their roots, inflections, and deriva
tions. Inflections in English include markers for number (to distinguish the sin
gular "employee" from the plural "employees"), gender (to distinguish the
masculine "him" from the feminine "her"), and case (to distinguish the nomi
native "who" from the accusative "whom"). Derivational moφhology accounts
for relationships among words of different syntactic classes, such as "inflate,"
"inflation," "inflationary," and "disinflate." Many NLIs include some treatment
of inflectional moφhology to minimize the size of the lexicon. Winograd
[1983] provides a simple procedure. A more sophisticated computational treat
ment based on finite-state transducers is presented by Koskenniemi [1983].

The objects of syntax are words, phrases, and features. Of particular con
cern are phrase types (to distinguish noun phrases, prepositional phrases, and
verb phrases), constraints on phrase structure (for example, that a prepositional
phrase such as "in the auto division" consists of the preposition "in" and the
noun phrase "the auto division"), and various phenomena collectively labelled
as long-distance dependencies. These include constraints on complements (such
as that John is the person doing the pleasing in "John is eager to please" but is
the one who is pleased in "John is easy to please"). We include a brief review
of various syntactic issues below; Winograd [1983] provides an excellent
detailed treatment.

The illocutionary source is concerned with the actions (e.g., assertions,
questions, requests) that can be performed using language, and with the indica
tors of those actions. In written language, the principal indicator is sentence

140 Perrault and Grosz

mood—whether a sentence is indicative, interrogative or imperative. In spoken
language, intonation is also important.

The discourse source specifies how the context established by sequences
of utterances interacts with inteφretation. It includes constraints on the struc
ture of the sequence that are provided by linguistic expressions, as well as con
straints on the inteφretation of particular phrases that derive from the form and
content of previous utterances.

The encyclopedia^ contains constraints derived from the "real world"; it
specifies its objects, relations, the structure of events, and the content of mental
states. Of particular importance to NLIs is the domain model, that part of the
encyclopedia describing the domain of the DB. The encyclopedia also encodes
(a) restrictions on what word senses can modify or be modified by what others
(e.g., that the adjective "solvent" can apply when "bank" denotes a financial in
stitution but not when it denotes the side of a water course), and (b) sortal re
strictions indicating that in "John paid Mary" the syntactic object "Mary" is the
recipient of the payment, while in "John paid 5 dollars" the syntactic object "5
dollars" is the amount of the payment.

NLIs, unlike general linguistic theories, also need information about the
software system to which they are interfaced. We simply call this database in
formation.

Constraints are also necessary to relate information across information
sources. The first set of these is the lexicon, which specifies relations between
words and their senses (e.g., that the word "bank" has at least the two senses
mentioned above). Also important are those constraints stating how to derive
the inteφretations of various syntactic constructions from those of their constit
uents. In some cases, these constraints relate parse (sub)trees with inteφreta-
tions, while in others syntactic and semantic rules are linked.

Solutions to the inteφretation problems mentioned in the previous section
must typically make use of several information sources. The referent of a pro
noun, for example, is constrained by syntactic, lexical, encyclopedic, and dis
course information.

We have so far avoided the term semantics. In accordance with common
practice in the field, we will use semantics in three ways, generally leaving it
to the context to distinguish uses. By the model-theoretic semantics of an utter
ance we mean its inteφretation, subject to the constraints of the information
sources. We also refer loosely to the lexicon, encyclopedia, and illocutionary
sources as semantic sources, or simply semantics. Finally, the process of find
ing a representation for what we call here the inteφretation of an utterance is
generally called semantic inteφretation.

5 This is often called real-world or commonsense knowledge.

Chapter 4 Natural-Language Interfaces 141

Most of the current attempts to develop a model-theoretic semantics for
NL, roughly parallel to that given to artificial languages, are inspired by the
work of Montague [1973]. Although Montague's inteφretations could at least
in principle be assigned directly to sentences, his formulation did make use of
an unambiguous intermediate formal language—the language of intensional
logic. In the computational framework such intermediate languages, or logical
forms, are common. Moore [1981] examines various problematic NL constmc-
tions (e.g., adverbs, tense, quantification, and questions) and suggests ways of
encoding them in a higher-order predicate calculus with intensional operators.
Encoding of information in semantic sources lies at the very heart of artificial
intelligence (AI) research. The articles in Hobbs and Moore [1985] discuss a
number of such encoding problems, from the perspective of first-order logic
and its extensions.

The use of logical languages for representation and of formal deduction as
the means to draw inferences, as well as the desirability of a model-theoretic
semantics for NL (and for the representations constmcted in the process of in-
teφreting utterances), are still controversial. Most studies in NL processing
until the late 1970s, and many current efforts as well, stress the computational
aspects of determining an inteφretation rather than semantic issues [Schank,
1975; Wilks, 1975; Hirst, 1983; Palmer, 1983]. Much of this research empha
sizes the role of implicatures based on stereotypical and salient information.

4 System Architectures

The various architectures in NLI systems reflect different choices of what in
formation is to be applied (and thus what inteφretation problems to attempt)
and in what manner. After sketching the three main architectures, we discuss
their differences and how these affect the range of natural language they can
handle.

All systems must build at least one intemal representation of a query, that
is, an expression in QL. Some systems add an explicit, purely syntactic repre
sentation: One of the earliest and best known of these is Woods's LUNAR
[Woods et al., 1972], described briefly in the following section. Semantic
grammar systems, further discussed in the next section, also produce only a
single intermediate representation, which in this case encodes constraints from
several information sources. Finally, many systems produce a separate repre
sentation of the meaning of the query in terms of the concepts of the domain of
the DB, independently of the DB stmcture.

We use the term intermediate representation language (or IRL) to refer in
general to the languages in which these representations are expressed; the par
ticular names of IRLs in individual systems (that is, meaning representation

142 Perrault and Grosz

language, logical form) are used only when discussing the particular properties
of those systems.^

4.1 L U N A R

The LUNAR system [Woods et al., 1972], based on earlier work by Woods
[1967], pioneered many of the techniques that still underlie most NLIs. De
signed as an interface to a two-file database containing information about
chemical analyses of the Apollo-11 moon rocks and references to the literature
on those analyses, LUNAR has three components: a parser, a semantic inter
pretation routine, and a query inteφreter. The parser uses an augmented transi
tion network grammar (discussed in more detail in the section on syntax) to
produce parse trees in the form suggested by Chomsky [1965]. The grammar is
a domain-independent grammar of English, which, through subsequent
development as part of several systems, has become one of the most extensive
computer-based English grammars ever constmcted.

Semantic inteφretation mies are used to map parse trees to QL expres
sions. Generally triggered by the head of a constituent (verbs for sentences,
nouns for noun phrases), the mies obtain inteφretations of the dependent and
modifying constituents; they then combine these into the inteφretation of the
whole. Thus, there will be a set of semantic inteφretation mies for each noun
and verb in the sublanguage covered by the NLI.

DET Ν y ^^....'--'''^^T^
WHR ROCKS CONTAIN AND NP NP

I I
CHROMITE ULVOSPINEL

(FOR EVERY X7 (SEO VOLCANICS)
(AND (CONTAIN X7 (NPR* X9 "SPINEL))

(CONTAIN X7 (NPR* Χ10 'CHROMITE)));
(PRINTOUT X7))

Figure 1 Parse tree and QL query from LUNAR.

6 The optimization of the generated queries is not discussed in this paper. Whether or not IRLs
are used does not affect the question of whether, but only of when and in what manner optimiza
tion can be done.

Chapter 4 Natural-Language Interfaces 143

The target of the semantic interpretation is an expression in a model first-
order quantified language; this expression can be evaluated directly against the
database to retum a set of records. The vocabulary of the QL includes all the
relations encoded directly in the DB, plus a number of derived relations. The
only constraint on derived relations is that it should be possible to associate
with each of them its own retrieval function, expressed in terms of the basic re
lations of the DB.

Figure 1 shows both the parse tree and the resulting QL query produced by
LUNAR for the sentence "Which rocks contain chromite and ulvospinel?"
LUNAR's parses are not surface stmctures, so in this query, the question-deter
miner noun phrase "which rocks" is taken to be the logical subject of the sen
tence and the analysis is analogous to that of "which rocks such that they con
tain chromite and ulvospinel exist?" The QL query includes two database-
query specific constmcts: SEQ, a general-purpose enumeration function that
assumes its argument is a (precomputed) list, and PRINTOUT.

After LUNAR, architectures of natural language processors (NLPs) diverged
in two directions: Systems were constmcted in which either (a) syntactic, lexi
cal, encyclopedic, and database information was encoded in one set of mies, or
(b) the different information sources were kept quite separate. We examine
each of these in tum.

4.2 SemantlC'Grammar-Based Systems
The principal characteristic of a semantic grammar [Burton and Brown, 1979]
is that it intentionally collapses distinctions among information sources. NLIs
that incoφorate semantic grammars vary somewhat in the details, but all class
ify words and phrases under a combination of syntactic, lexical, illocutionary,
and database information. Exemplars of different approaches are PLANES
[Waltz, 1978], LADDER [Hendrix et al., 1978], and REL [Thompson and Thom
pson, 1975]. The grammar mies incorporate categories that are oriented around
a particular domain and task.^

For example, a semantic grammar for the domain of university life might
contain the categories smdent, instmctor, and course times; one for the domain
of ships could include ships, officers, and ship locations. In contrast, typical
categories of syntactic grammars are sentence and noun phrase. A semantic
grammar for the task of database querying would have a category to cover the
presentation of answers; this category might include various interrogatives
(e.g., "what is") as well as certain imperatives (e.g., "show me"). In contrast, a
semantic grammar for an experimental setting might include a category that

7 As there is nothing especially semantic about these grammars, the term aggregate grammar
might be less confusing.

144 Perrault and Grosz

covered references to hypothetical situations (e.g., "if . . "what if . .
"suppose that . . .*'). Associated with each "syntactic" rule in the semantic
grammar is a rule for combining the results of the inteφretations of the sub-
constituents into an inteφretation of the constituent being analyzed.

As an example, we can consider a simple semantic grammar for handling
queries about our sample database. To handle the query "Who manages the au
tomobile division?" the grammar would include rules like the following:^

Grammar Fragment

<SENTENCE> <PRESENT> <ATTRIBUTE> <DIVISION>

(db(subst(genvar 'DIVISION ATTRIBUTE')))

<PRESENT> -> who (is) / what (are) / show (me)

<ATTRIBUTE> <ATTRNAME>

'return ATTRNAME.*'

<DIVISION> the <DIVNAME> division

for each * in DIV file with DIV'NAME*= 'DIVNAME' '

Lexicon Fragment

manages: <ATTRNAME>

'manages'

automobile: <DIVNAME>

'auto'

Figure 2 shows the "syntactic analysis" and the inteφretation for the above
query. Each node of the tree is associated with an inteφretation for the subtree
below it; for example, the node labelled <ATTRNAME> would (from the lexi
cal information) get the inteφretation 'division,' and the node <ATTRIBUTE>
would (from the third rule) get the inteφretation 'RETURN MANAGER.X'.

Unlike the nodes in the parse tree produced by LUNAR , the nodes in this
parse tree are not labelled with general syntactic categories. However, as in
LUNAR (and to an even greater extent in some cases), the inteφretation here as
signed to a query is essentially a piece of code that states how to retrieve the
answer to the query.

8 The grammar rules and lexical categories are in roman type, the associated interpretation is in
italics.

Chapter 4 Natural-Language Interfaces 145

As is evident from this example, a semantic grammar is both domain-and
task-dependent; a different grammar must be constructed for each application.
The LIFER system [Hendrix, 1977], on which LADDER was built, supplies a set
of tools for building semantic-granmiar-based NLIs. Although LIFER provides
general capabilities for handling ellipsis and paraphrase (the first is done by the
parser and hence works for all LiFER-defined granunars; paraphrases are
handled by automatically modifying the language definition), it too requires a
new granmiar for each different application domain and task.

4.3 IRL Systems
IRL systems (CHAT-80 [Warren and Pereira, 1982], IRUS [Bates and Bobrow,
1983], PHLIQAI [Scha, 1976; Landsbergen, 1976], TEAM [Grosz et al., 1986;
Ginsparg, 1983]) construct at least three separate representations of a query: a
parse tree, an IRL formula, and a QL q u e r y E a c h system separates the rules
stating syntactic constraints from those that specify lexical, semantic, ency
clopedic, and discourse constraints. Typically the objects, predicates, and rela
tions of the encyclopedia furnish the IRL's basic vocabulary, and the repre
sentations used for encyclopedic constraints are quite close to those used for
the QL. Encyclopedic constraints include at least taxonomic information (types
and subtypes) and constraints on the arguments of predicates and relations.

<SENTENCE>

<PRESENT> < ATTRIBUTE >

WHO MANAGES THE AUTOMOBILE DIVISION

DB (FOR EACH X IN DIV FILE WITH DIV-NAME X =

RETURN MANAGER.X)

'AUTO

Figure 2 Parse tree and QL query from a semantic grammar.

9 From this perspective, the PLANES system is a hybrid; it uses a semantic grammar but actually
builds an intermediate representation of the "meaning" of the query from which it constructs the
QL query. Because its IRL, like its grammar, is designed specifically for the task it undertakes
(i.e., it comprises a collection of special-purpose "frames"), we have included it with the other
semantic-grammar systems.

146 Perrault and Grosz

The differences between the IRL and other architectures can be clarified
by an example. For the query "Which countries contain a volcano and a non-
volcanic peak?" an IRL system^^ would produce a parse tree like the one in
Figure 3 by using such grammar mies as the following:

SWHQ WHNP PREDICATE
VP VPT NP
NP DETP NOMHEAD
NP NPSERIES CONJ NP

The parse, like LUNAR'S, is based on a general grammar of English.
(However, it is a surface-stmcture, not a deep-stmcture, analysis, reflecting a
change in underlying syntactic theory.) For example, the conjunction "a vol
cano and a nonvolcanic peak" is treated as a conjunction of noun phrases, as
was the conjunction "chromite and ulvospinel" in the LUNAR example. ->
<DIVISION> and <DIVISION>.

The IRL representation of the interpretation of the query [in this case logi
cal form) is shown in Figure 4 along with the QL [in this case an expression in
SODA [Moore, 1979]. The IRL representation is a complex predicate composed
of general predicates in the domain; it makes no reference to the actual
database stmctures or any retrieval process. Only the QL representation reflects
the database and the querying task. Although there are fragments of the LUNAR
QL that resemble the logical form (e.g., the representation of the meaning of
the conjoined NPs), the overall representations are different in kind.

4.4 Comparing Architectures
The different architectures provide for different ways of handling various inter
pretation problems. We leave until the next section discussion of the particular
ways they do so. There are five major overall differences among the architec
tures.

First, the information sources that contribute to the ίnteφretatíon of a
query by the system are different. Many systems, for example, make little (or
only ad hoc) use of moφhological, illocutíonary, or discourse constraints. In
one way or another, however, they all utilize syntactic, lexical, and database
constraints.

10 We will use an example produced by the TEAM system; the actual structures produced by
other IRL systems would, of course, differ in detail.
11 In semantic-grammar-based systems, conjunction, if treated at all, is specialized for aggregate
categories containing rules such as <DIVISION

Chapter 4 Natural-Language Interfaces 147

WHDET

WHICH -S COUNTRY CONTAIN A VOLCANO AND A NONVOLCANIC PEAK

Figure 3 Parse tree from IRL system.

Second, there are different ways of combining the information sources into
sets of rules. The semantic-grammar systems combine all sources into one set
of rules. LUNAR distinguishes syntactic rules from the rest. IRL systems also
separate database information and provide general constraints for mapping be
tween syntactic constructions and their interpretations.

Third, the application of separate sets of rules may be sequential or inter
leaved. Although most systems apply the rules sequentially, IRUS uses the
capabilities of the RUS parser [Bobrow and Webber, 1980] to interleave syntac
tic and semantic constraints; the interleaving is accomplished with cascaded
ATNS [Woods, 1980]. Interleaving is done in Colmerauer's Prolog-based sys
tem [Colmerauer, 1979] and was also used in several speech-understanding
systems [Lesser et al., 1975; Walker, 1978].

Fourth, the range of queries the systems can process at different stages is
different. In semantic-granrunar-based systems, any query that can be parsed
can be translated into QL. In contrast, LUNAR and IRL systems can syntacti
cally analyze some sentences for which they cannot construct a semantic inter
pretation. The range of concepts covered also differs. In semantic-grammar-
based systems, only those queries that can be translated in QL can be inter
preted at all. In contrast, in IRL systems, the concepts (i.e., objects, properties,
relations) in the domain model provide the basic vocabulary for the IRL. A

148 Perrault and Grosz

mapping from these concepts to DB structures provides the basis for translating
IRL expressions (which are in terms of the concepts of the domain model) into
QL expressions. With this sort of approach it is possible to supply interpreta
tions of queries for which there is no QL representation (e.g., because the DB
covers the domain only partially).

The IRL systems all take this type of approach; the actual coverage they
offer, however, depends on how their domain models are defined. For example,
the PHLiQAi, IRUS, and CHAT-80 domain models are provided completely inde
pendently of the DB (they are essentially "hand-built" by the system design
ers); it is therefore quite possible for them to construct IRL representations of
queries for which there is no QL representation. In contrast, the TEAM system,
which automates the process of adapting an NLI to a new domain and DB,
constructs its domain model mechanically from information supplied about the
DB; this restricts the concepts to those that can be generated from the DB con
cepts through relational calculus.

Finally, the architectures differ with respect to how easy it is to adapt an
interface to a new domain or DB. As remarked previously, a semantic-gram
mar-based system requires extensive revision to be adapted to a new domain or
task. Because all constraints are encoded in the grammar, the grammar itself
must be rewritten or at least extensively revised. In contrast, adapting an IRL
system to a new database requires little, if any, change in the syntax rules. In
some systems (mus, Ginsparg's, PHLIQAI), modification of the semantic rules
is required. In others (TEAM, CHAT-80), the semantic rules do not change; only
the domain model and lexicon do.

(QUERY (WHC0UNTRY1
(C0UNTRYC0UNTRY1)
(SOME PEAK-V0L3

(PEAK-VOLPEAK-VOL3)
(S0MEPEAK4

(AND (PEAK PEAK4)
(N0NV0LCANICPEAK4))

(AND (CONTAIN C0UNTRY1 PEAK-V0L3)
(CONTAIN C0UNTRY1 PEAK4))))))

((IN # : $ 1 PEAK)
((#:S1 PEAK-VOL) EQ Y)
(IN # :$2 PEAK)

((#:$2 PEAK-COUNTRY) EQ 0^:$1 PEAK-COUNTRY))
((# .$2 PEAK-VOL) EQN)
(? (# :$1 PEAK-NAME))
(? (# :$2 PEAK-NAME))
(? (# : $ 1 PEAK-COUNTRY)))

Figure 4 IRL and QL representations from IRL system.

Chapter 4 Natural-Language Interfaces 149

5 Methods

A number of techniques have been developed for encoding and applying the
information sources needed to determine the inteφretation of a query. In this
section, we examine various methods used to handle the inteφretation prob
lems discussed earlier. We have chosen to focus on techniques sufficiently
general for a wide range of natural-language-processing applications. As a re
sult, certain problem areas are covered in more detail than others. This unequal
treatment reflects, in part, a difference in the state of the art in the various
areas of NLP. The usefulness of any specific method depends to some degree
on a system's architecture; where it is relevant and not obvious, we will remark
on the applicability of a method to different architectures.

5.1 Syntactic Models
With very few exceptions, phrase-stmcture grammars have provided the basis
for the syntactic components of NLIs. Most of these granunars, in fact, are
context-free (CF), with the possible addition of extra conditions on the sub-
constituents. The languages generated even by the extended grammars are, al
most certainly, CF. In fact, the only solid arguments contending that NLs are
not weakly CF are quite recent ([Shieber, 1985] for Swiss-German and [Culy,
1985] for Banbara). Both involve constmctions not treated by grammars in ex
isting NLIs. As with programming languages, non-CF grammars may be used
to make the description of CF languages easier, especially when some con
straints (subject-verb agreement, subject and object control) must be applied to
nonadjacent nodes in the parse tree. Perrault [1984] surveys the known formal
properties of some of the more conunon syntactic formalisms. Slocum [1981]
compares the performance (on several hundred sentences) of various parsing
strategies.

The first substantial extension of CF grammars widely used in NLP was
the augmented transition network grammar (ATNG) of Woods [1970]. The
ATNG is a two-step generalization of the Finite-State Automation (FSA) [Hop-
croft and UUman, 1979]. The FSA has a finite set of states; transitions among
them are allowed when certain symbols appear in die input. One of the states is
distinguished as the start state, one or more as final states. The input string is
accepted if it leads to a sequence of acceptable transitions from the start state
to a final state. The languages recognized by FSAs are the finite-state, or Type
3 languages. Recursive transition networks (RTNs) generalize FSAs by allow
ing a transition between two states to be taken via a recursive jump to a start
state. RTNs recognize exactiy the class of CF languages. Finally, the ATNG
adds to the RTN a finite set of registers and actions that can set registers to
words observed in the input, their corresponding lexical entries, or to some

150 Perrault and Grosz

function of the contents of other registers; a recursive call to the network can
pass values back to its calling level, which can in turn assign tíiat value to a
register. Transitions can be made conditional on register contents, ATNGS
generate all recursively enumerable sets.

Because grammars for all but the smallest subsets of NLs are ambiguous,
the LR(k) techniques often used for parsing PLs are generally not applicable to
NLs. In their place, a number of parsing algorithms have been developed.

ATNGs are naturally implemented in recursive top-down parsers; in fact,
in the early literature on the subject, grammars and parsers were hardly distin
guishable from one another. The register assignment mechanism makes it diffi
cult to conceive of using the grammar in other than a top-down left-to-right
parsing scheme.

Much effort was devoted to efficient implementation of top-down ATN
parsers. In the early implementations, the grammar and the lexicon were en
coded as LISP data stmctures and interpreted by the parser. Burton and Woods
[1976] then showed how to compile the parser and the grammar into a large
LISP program and then, through the LIS? compiler, into machine language.
Compilation improved parsing performance by an order of magnitude.

However, pure top-down parsers suffer from some well-known problems.
First, they cannot handle left-recursive constmctions (as in "John's father's
brother's book"), and second, their backtracking regimes may be very ineffi
cient. The left-recursion problem can be solved by converting the grammar to a
weakly-equivalent right-recursive one, but at the cost of complicating the
process of deriving the inteφretation.

The backtracking problem has been addressed in two quite different ways.
The first has been through extensions of bottom-up [Younger, 1967 and Barley,
1970] parsing strategies to non-CF grammars. These methods include use of
the well-formed substring table [Kuno and Oettinger, 1962; Wolf and Woods,
1980] and charts [Kay, 1980].

The second, and more radical, line is based on Marcus's determinism hy
pothesis. Marcus [1980] claims that English (and possibly other NLs) can be
parsed by a mechanism that operates "strictiy deterministically," in that:

All syntactic stmctures created by the parser operating on an input string
are permanent and must be included in the output produced for that input.
The intemal state of the mechanism is constrained so that it cannot encode
temporary syntactic stmctures.

Marcus designed a parser satisfying these conditions (along witii a small gram
mar for it) that captures interesting generalizations related to such phenomena
as passives, imperatives, and yes/no questions. He also suggests a simple ex-

Chapter 4 Natural-Language Interfaces 151

planation for so-called garden path sentences, such as "The horse raced past
the bam fell" and "Have the students who failed the exam take the supplemen
tal" (closely related to "Have the students who failed the exam taken the sup
plemental?"). These sentences are perfectly grammatical, but their analysis by
humans seems to require conscious backtracking. The determinism hypothesis
is not without problems (for example, it depends essentially on an integration
of syntactic and semantic analysis that remains to be demonstrated convinc
ingly; moreover, no large deterministic grammar has yet been written).
However, Marcus's work has influenced the design of some ATN parsers that
now utilize look-ahead to reduce backtracking [Bobrow and Webber, 1980].
Recently Marcus et al., [1983] suggest representing syntactic analyses as logi
cal formulas over the domain of syntactic nodes, in which the disjunction of
the possible attachments can be stated, or in which no attachments are stated at
all, save those that preserve the left-to-right order of constituents in the sen
tence.

Another problem with ATNs was Üiat the dependence of the grammar on
left-to-right processing made it very difficult to use the same grammar with
different control regimes. For example, if subject-verb agreement was to be
tested by having the parser assign to an ATN register the number of the subject
noun phrase, so that this register could then be tested upon encountering the
main verb, this procedure would fail if the parser encountered the verb before
the subject. In doing research on speech-understanding systems, Paxton [1978]
and Wolf and Woods [1980] investigated parsing "middle-out," that is, starting
from the highly stressed parts of the sentence, and constructed parsers that
were not order-dependent. In a different vein, some workers on language
generation [Kay, 1979; Appelt, 1983] have argued that it is desirable to be able
to make decisions about syntactic constituents independentiy of the order in
which they are to appear in the utterance. It is not possible to do this, however,
with an order-dependent ATN.

Although the need for order independence is still controversial (see [Wolf
and Woods, 1980] for speech recognition and McDonald [1983] for language
generation), several proposals to achieve it have been made, relying on unifica
tion of graphs as the main operation in parsing. One of the earliest proposals in
this direction was Kay's functional-unification grammar (FUG) [Kay, 1985]. In
several of these formalisms, grammatical rules are represented as formulas in
first-order logic, or more accurately, in its Horn clause subset. In these logic
grammars (under various guises known as metamoφhosis grammars [Colmer
auer, 1978], definite-clause granmiars [Pereira and Warren, 1980], extraposi
tion grammars [Pereira, 1981], modular granwnars [McCord, 1985], and
others), predicates are defined to be true of strings meeting certain conditions,
such as NPs. Nonlocal syntactic constraints and semantic constraints can be
imposed by allowing the predicates to take on extra arguments, enabling infor
mation to be propagated across the analysis. Subject-verb agreement provides a

152 Perrault and Grosz

very simple example. Consider the following very simple grammar, expressed
as first-order sentences. According to the conventions of PROLOG, identifiers
starting with an upper-case letter are variables and all free variables are as
sumed to be universally quantified. The indices I, J, and Κ take integer values
denoting positions between words in a sentence.

s(I,J,Number) <— np(I,K,Number) and vp(K+1,J,Number)
vp(I,K,Number) <- ν(I,K,Number)
np (I,K,Number) <- occurs(I,I + l,the) and η(I + l,K,Number)
n(I,I+l,Number) <~ occurs(I,I+l,X) and lex(X,n,Number)
V (I, I + l, Number) <r- occurs (I, I + l, X) and lex (X, v. Number)

If the lexicon contains the assertions

lex(fish, n, singular)
lex(fish, n, plural)
lex(fish, V , singular)
lex(swim, v, plural)
lex(swims, v, singular)

then the sentence "the fish swims" can be recognized as generated by the
grammar by asserting

occurs(1,2 the) and occurs(2,3,fish)
and occurs(3,4 swims)

and then proving that

(exists Number) s (1,4,Number).

The heart of logic grammars is their use of unification to test the compati
bility of information and to propagate constraints. Although definite-clause
grammars, for example, provide all the necessary expressive power within Pro
log, this power is achieved at the cost of a certain lack of perspicuity. As a re
sult, the constraining predicates have as many arguments as there are "pieces
of information" that they control or that must be propagated through them.
These arguments are all specified positionally; in the example above, the first
two arguments denote the delimiting positions in the input string, while the
third denotes the number feature of the subject and verb. This can easily lead
to very long lists of arguments whose management is difficult.

Chapter 4 Natural-Language Interfaces 153

In the last few years, several more perspicuous unification-based syntactic
formalisms have been developed that derive their inspiration from both the lin
guistic and computational traditions. From pure linguistics have come lexical-
functional granunar [Kaplan and Bresnan, 1982] and generalized phrase-stmc
ture grammar [Gazdar et al., 1985], which are full syntactic theories, including
formalisms for representing mies and derivations and general constraints on the
use of these formalisms. Coming from the computational perspective, the al
ready mentioned FUG of Kay and PATR-Π [Shieber, 1984] are formalisms only,
without theoretical conunitment.^^ The semantics of the formalisms has been
studied with the tools of denotational semantics [Scott, 1982] by Pereira and
Shieber [1984], Kay has investigated the use of FUG for both generation and
recognition.

Writing the extensive granunars needed by useful NLIs is still a difficult
task that is normally performed only in research centers with substantial re
sources. Some examples are the LUNAR grammar, revised through several pro
jects at Boh, Beranek and Newman and now part of the IRUS system [Bates
and Bobrow, 1983], the DL\GRAM grammar [J. Robinson, 1982], first
developed at SRI as part of the SRI Speech-Understanding Project [Walker,
1978] and now included in the TEAM system, and the granunar of the Linguis
tic String Project [Sager, 1981].

Most "practical" grammar-writing exercises result in very liberal gram
mars that will accept sentences native speakers would not consider granunati-
cal. There are three reasons for this. First, since grammars are devices that per
mit (rather than proscribe) membership in a language, it is often easier to write
a small number of very general mies than a large number of specific ones. Sec
ond, it may be easier to exclude uninteφretable sentences on nonsyntactic
grounds. Finally, one might want to allow certain nonstandard sentences (e.g.,
telegraphic speech) to be treated as if they were grammatical [Weischedel and
Sondheimer, 1983], if there is reason to believe that users would want to ex
press themselves that way. The main practical drawback in such a liberal posi
tion is that, by proliferating parses, it becomes mudi more difficult to select
one that is semantically acceptable.

No discussion of syntactic models would be complete without mention of
the transformational grammars (TG) introduced by Chomsky [1965]. They
have provided the framework for much of the theoretical work on syntax since
the 1960s. A TG has two main constituents: a base grammar, usually a phrase-
stmcture granunar, and a set of transformations. The base grammar generates a
class of trees, to which the transformations are applied to rearrange, copy, and
delete constituents. The sentences of the language are the yield strings of the
trees that result from all possible applications of the transformations to all

12 This is also the case with ATNGs and definite-clause grammars.

154 Perrault and Grosz

possible base trees. The details of the number and power of the transformations
have changed considerably since their introduction in 1957, but, in some early
versions of the theory, a passive sentence and its corresponding active sentence
were transformationally related.

It therefore seemed plausible that one could build a parser that would take
a sentence, construct a surface structure, and apply to it the transformations in
reverse to obtain a base tree representing the inteφretation of the sentence.
This technique was first tried in a system built at MITRE [Zwicky et al., 1965]
and then in the REQUEST and TQA systems built by Petrick, Plath, and Damerau
at IBM [Damerau, 1981; Petrick, 1973]. One of the problems with the ap
proach is that the inverse transformations can be applied only to the surface
trees, even though the TG does not, in general, characterize those trees in any
computable manner. The aforementioned systems dealt with this problem by
handcrafting surface grammars. The TQA system is exceptional in that it is one
of the very few to have been put to substantial use by bona fide users while it
was undergoing development.

5.2 Semantic Interpretation
We turn now to semantic inteφretation, the process of translating syntactic
analyses into IRL.^^ The translation involves establishing three kinds of corre
spondences:

• Between the words of an NL and expressions in the IRL.

Between various constituents of an NL phrase (e.g., head, subject, object,
modifier) and the constituents of the expressions to which they correspond
in the IRL (e.g., argument of a predicate, value of a field).
Between the scope of determiners and other operators of an NL expression
and the scope of the quantifiers to which they correspond in the IRL.

Vocabulary Correspondences The first issue in semantic inteφretation is
the correspondence between words of the language and concepts in IRL. Some
common nouns in English (such as "man" in "John is a man") correspond to
one-place predicates in IRL, others (such as "manager" in "John is the manager
of the sales department") correspond to relations. Verbs correspond to predi
cates (as in "John sleeps") or to relations (as in "John manages the sales de
partment"). Some adjectives (such as "exempt" in our fragment) can be inter-

13 Some systems, including those using semantic granmiars and several built by Schank and his
colleagues [Schank, 1975; Lehnert and Shwartz, 1983], never construct an explicit representation
of the syntactic analysis but go directly from NL to IRL.

Chapter 4 Natural-Language Interfaces 155

preted as one-place predicates, although this solution is generally inadequate:
Adjectives such as "tall" must be inteφreted differently, so that "tall men" and
"tall babies" do not refer to things that are independently tall and men, or tall
and babies. "Former senators" and "alleged thieves" are certainly not senators
and possibly not thieves. In systems in which the IRL is first-order logic, the
presence of these adjectives may affect the inteφretation of the nouns they
modify; when this occurs, the lexical-assignment problem interacts with the
modifier-attachment problem. In LUNAR, for example, "analyses" and "modal
analyses" are translated by two unrelated predicates. Prepositions correspond in
some instances to relations (as in "What employees are in the sales depart
ment?"), while in others they are markers of the case of arguments of other
predicates (as in "Did Bill go to Boston?"). Their inteφretation varies accord
ing to the situation of use; Herskovits [1986] provides an excellent discussion
of locative prepositions (e.g., "on," "near," "beside") as well as a theoretical
framework for handling them.

Modification and Attachment There are various ways in which the mean
ings of constituents of a phrase can combine to determine, at least to some ex
tent, the meaning of the entire phrase. Two special kinds of problems arise in
computing these combinations:

The surface form may not determine a unique association among the ele
ments in a phrase; this happens, for example, with the attachment of prep
ositional phrases.

Even when the association of constituents is clear, it may not be obvious
exacdy how the meanings combine; this may occur with combinations of
adjectives and nouns, or with two nouns.

Proposed solutions to the attachment problem fall into three classes:

• The syntactic component makes direct use of lexical and encyclopedic
constraints and produces only attachments that satisfy all of them simul
taneously.

• The syntactic component produces stmctures corresponding to all possible
attachments, which are then filtered by other constraints.

• The syntactic component proposes one attachment only, representing all
the alternatives, and the semantic inteφretation component is allowed to
move the attached phrase so as to satisfy the other constraints as well.

Semantic grammar systems adopt the first approach. Some logic granwnar
systems [Colmerauer, 1979; Dahl, 1981] do likewise; these keep the syntactic
categories separate, but have a single set of mies that constmcts syntactic and

156 Perrault and Grosz

IRL representations simultaneously. The second approach has the simplest or
ganization and is used in many large systems such as LUNAR and TEAM . The
third is used by CHAT-80. The last two approaches use case frames [Bruce,
1975; Fillmore, 1977] to encode the relations between verbs, their syntactic
cases, restrictions on the types of the fillers of the cases, the target language
predicate, and the correspondence between the syntactic case fillers and the ar
guments of the target predicate. Reviews in Woods [1978] and Pereira [1983]
contain excellent discussions of these topics.

The selection of IRL predicates to correspond to NL words has a consider
able effect on the resolution of attachment problems. For example, the verb
"have" can be used to express a have-as-part relationship ("A car has an en
gine"), an ownership relationship ("Susie has a Porsche"), and a have-as-prop-
erty relationship ("Jack has red hair"), among others. This variety is also found
with prepositions ("John is in the sales department," "John is in Europe"),
genitives ("Joe's finger," "Joe's mother," "Joe's house," "Joe's friend"), and
nominal compounds ("American ship," "American car," "American cooking").

Although different kinds of surface forms give rise to these semantic prob
lems, their treatment is similar in two ways. First, the resolution of the inde-
finiteness requires a search for the most reasonable relationship that can hold
between two concepts. In the case of nominal compounds and genitives, these
are the immediate constituents of the phrase ("Joe" and "finger," "American"
and "car"), whereas for verbs ("have" and "be") and prepositions (e.g., "em
ployees in sales") the two concepts that are being related are structurally more
distant from each other. Second, the larger context of the discourse may make
possible inteφretations that would not arise in isolation. For example, although
the phrase "Boston flights" would not ordinarily be taken to refer to flights that
are only passing through Boston, in the two-query sequence "Which flights
from London to St. Louis enter the U.S. through Boston or Philadelphia? What
times do the Boston flights leave?" the phrase receives precisely this inteφreta-
tion.

Syntactic constraints determine which pairs of concepts need to be related
for all of these constructs except nominal compounds that include more than
two nouns, but they do not further constrain the particular relationship. Be
cause the relationship that may hold between the two concepts may be arbi
trarily complex, some proposals for handling noun-noun relations in general
[Hobbs, 1980] depend on sophisticated inferential capabilities and a complex
model of the domain. Several techniques have been developed for handling a
narrow range of such expressions under the assumption that users will not
create new constructions (e.g., using the phrase "toilet paper submarine" to
refer to a recently mentioned submarine that needs a resupply of toilet paper).
Isabelle [1984] surveys the nominal compound problem. Finin [1985] presents
a set of rules for handling those nominal compounds that can be resolved in
terms of case relationships or type hierarchies. The TEAM system includes a

Chapter 4 Natural-Language Interfaces 157

limited treatment for nominal compounds as well as several other related prob
lems that uses relationships derived straightforwardly from the database stmc
ture.

Scoping The third set of inteφretation questions involves determination of
the relative scope in the target language of quantifiers corresponding to such
NL determiners as "a," "the," "each," and "most" as well as to such operators
as negation, tense, modals, and superlatives ("most," "oldest"). Viewed syntac
tically, the determiners occur in noun phrases, within the scope of verbs, but in
first-order representations die quantifiers must be given wider scope than the
predicates. Syntactically again, determiners can occur within one another's
scope, as in "each manager of some division," or in parallel, as in "each
manager manages some division." Operators can occur at the noun-phrase
level, such as in superlatives and in the negation in "none," or at the sentence
level, such as in tense, modals, and sentential negation.

Even within noun phrases there may be changes in relative scope between
the syntactic representation and the IRL: The inteφretation of "Some employee
of each manager is exempt" is that, for each manger, some employee of that
manager is exempt. However, there are syntactic limits to how far up a quanti
fier can migrate: For example, no quantifier can move out of a relative clause,
so that "Who is die manager who manages every employee?" cannot mean
"For each employee, who is his manager?"

Aside from such syntactic constraints, all other relative scopings of the
quantifiers are possible in certain circumstances, although some heuristics are
useful for ranking the plausibility of the inteφretations. Two can be mentioned.
One simply gives preference to relative scopings, while preserving the left-to-
right order of the corresponding determiners in the sentence. Thus, "Every
manager manages some employee" would be read preferably as "For every
manager m there is some employee e such that m manages e." Similarly, the
preferred inteφretation of "Some employee is managed by every manager"
gives "some" wider scope than "every." Another heuristic, suggested by Hin-
tikka [1974] and used by Hendrix [1978], associates with each determiner not
only a corresponding quantifier but also a "strength." Inteφretations in which
stronger quantifiers outscope weaker ones are preferred. Thus "each" is
stronger than "all," "any," and "some," so that in "Some manager manages
each employee" there is a different manager for each employee, while in
"Some manager manages every employee," either inteφretation is possible,
since "some" and "every" have similar strengths.

Presuppositions also affect scope. For example, in "What is the salary of
all employees?" die determiner "all" probably should be given wider scope
than "the," simply because it is unlikely tíiat all employees would be receiving
the same salary; the latter inteφretation would violate the presupposition that
the question has an answer. Although some computational work on presupposi-

158 Perrault and Grosz

tion has been done [Weischedel, 1979; S. J. Kaplan, 1982], it does not deal
with scoping.

Woods [1978] proposed a compositional method for semantic inteφreta-
tion in which phrases are assigned inteφretations consisting of two constitu
ents: a quantifier and a matrix proposition. The composition rules for a constit
uent combine the inteφretations of the subconstituents by combining the
matrix elements, nesting the quantifiers among themselves, or wrapping them
around the matrices. This framework has been the basis for most scoping
schemes since then. It has also been arrived at independently by theoretical lin
guists [Cooper, 1979]. Woods's rules in LUNAR produce only one scoping,
which is obtained by pushing quantifiers up the parse tree past their weaker
counteφarts until they reach a "hard" boundary, such as the top of a relative
clause or a conjunction. Arbitration between quantifiers of similar strength is
done on the basis of the left-to-right heuristic. A similar strategy is used in
CHAT-80. TEAM applies a generate-and-test algorithm, in which all scopings that
are not disallowed by syntactic constraints are produced; these are ranked by a
set of heuristics. This framework allows better use of the quantifier strength
heuristics.

In practice, the treatment of quantifier scoping in semantic-grammar sys
tems is very limited; they could use LUNAR-style rules, but tend not to. Lacking
an intermediate representation, they have no way of applying more global
scoping strategies.

5.3 Discourse-Level Interpretation
Users of an NLI are typically interested in getting information from a database
to solve some problem. It is rare that a single piece of information is all that is
required; even when such is the case, the user may not be able to request it in a
single query. Although no NLI contains a sophisticated or general model of the
query dialogue, most incoφorate some capabilities for handling a limited range
of these discourse-related expressions. Special attention has been paid to some
kinds of referring expressions (pronouns) as well as to certain constrained uses
of elliptical phrases. In this section, we describe the basic techniques used in
NLIs and provide a brief overview of the techniques currently being investi
gated by researchers concerned with more general applications of NLP.

r/ie Interpretation of Referring Expressions There are two kinds of re
ferring expressions prevalent in database queries: pronouns (especially, "it" and
"they," but also "he" and "she") and definite descriptions ("the shoe depart
ment," "the U.S. peak"). To handle such expressions in a comprehensive man
ner requires a general model of the discourse context that takes into account
the structure of the overall discourse and the purposes behind it [Grosz and
Sidner, 1986; Litman, 1985]; in addition, the model must take into account the

Chapter 4 Natural-Language Interfaces 159

features of the immediate discourse context of neighboring utterances [Sidner,
1983; Grosz et al., 1983] as well as the stmcture and inteφretation of an in
dividual utterance [Webber, 1980; Heim, 1982]. Each of these aspects of dis
course context constitutes an active area of investigation in NLP.

The techniques used in NLIs are aimed not at providing a general solution
but at covering the most conmion uses of pronouns in database querying. Typi
cally, the inteφretation of pronouns is based on a "history list," which contains
a record of the most recent preceding queries (i.e., some given number of
these). The list distinguishes those expressions in each query that either intro
duce something new into the discourse or refer to something already intro
duced (these usually correspond to noun phrases), along with their inteφreta-
tions and positions in the parse. When a pronoun is encountered, a search is
made through the list (starting with the most recent entries) to find an expres
sion or inteφretation (depending on the type of system) that matches the pro
noun (the same number and gender) and is compatible with the inteφretation
of the query.

For example, following the query "What is the division of the highest paid
secretary?" the history list would include both "division of the highest paid
secretary" and "highest paid secretary" (perhaps along with other information
about each phrase). In inteφreting the subsequent query "How many em
ployees does it have?" the pronoun "it" is taken to refer to the same thing as
"the division of the highest paid secretary" because divisions have employees
and secretaries normally do not.

In semantic-granmiar systems there are usually special mies that explicitiy
mention pronouns. For example, the following pair of mies might be used to
provide an inteφretation of the query "What is its revenue?" following the
query "What department has the smallest number of employees?"

<SENTENCE> what is <DEPT-POSSESSIVE> <ATTRIBUTE>
<DEPT-POSSESSIVE> its

When a pronoun is encountered in a particular constmction, one of these mies
is matched. This triggers a search through the history list for an expression that
matches a particular category; the category searched for depends on . the
matched mle.

LUNAR also allows for references to objects dependent on other quan
tified objects, as in "What is the silicon content of each volcanic sample? What
is its magnesium content?" The most general treatment of pronouns in IRL sys
tems takes into account the syntactic stmcture of preceding queries to give a
preference ordering on candidates and omit certain of these on the basis of syn
tactic constraints [Hobbs, 1978]. Various aspects of the pronoun resolution

160 Perrault and Grosz

problem have been treated more generally in NLP research; Hirst [1981] pro
vides a good overview.

Because an adequate treatment of definite descriptions requires a model of
discourse context, NLIs typically ignore the referring properties of such de
scriptions and take their inteφretation to be all objects matching the descrip
tion. In essence, these systems assume either a particular context in which there
is only one object that matches a certain description or they assume that all
items fitting that description are equally relevant. They ignore the difference
between definitely and indefinitely determined noun phrases (e.g., "The G.M.
employees" and "G.M. employees" are treated identically). Although this may
be fine for an isolated query, it can lead to incorrect responses in context. For
example, in isolation the query "Who manages the G.M. employees?" might be
a request for a list of the managers of all G.M. employees; on the other hand,
in a context in which the user has just asked for the names of all employees
earning more than $30,000, it may be a request solely for the managers of
those G.M. employees earning more than $30,000.

Ellipsis The term ellipsis refers to the omission of certain elements from
what would ordinarily constitute the full syntactically correct form of a phrase.
The inteφretation of an elliptical phrase depends on recovering the missing in
formation from the context in which the phrase is used. The treatment of ellip
sis in NLIs has been restricted to the use of elliptical queries like those given
in the beginning of this paper.

Two different approaches to ellipsis have been taken. One is to encode el
liptical phrases directly in the grammar; the other is to modify the parser. The
second approach not only allows broader coverage but also is more easily
adaptable to new domains and databases.

The encoding of elliptical fragments directly in the grammar has been
done both for IRL systems [Walker, 1978] and for semantic-grammar systems
[Burton and Brown, 1979]. In each case special grammar rules provide for in
complete phrases to be used in certain circumstances. For example, a syntactic
grammar might include a rule like

S ^ NP

to allow a single noun phrase to be used in place of a complete sentence.
Likewise a semantic grammar might include a rule such as

query <division>

Such rules would cover a sequence like

Who are the secretaries in the sales department?
The research department?

Chapter 4 Natural-Language Interfaces 161

The inteφΓetation rules or processes attached to these fragment mies constmct
an inteφretation of the fragment and then search through the history of pre
vious interactions (in some cases, only die preceding query is considered; this
is often correct) to find an inteφretatíon into which this piece can fit; the
match is determined on the basis of a number of constraints, typically includ
ing lexical and encyclopedic ones.

A more general solution is provided by modifying the parser. This has
been done for semantic-granunar NLIs that are based on a top-down parse
using an ATN [Hendrix, 1977], but not for NLIs with more general grammars.
The resulting parser remains efficient for the semantic grammars because of
the additional semantic and pragmatic information encoded direcdy in them.

5.4 Semantic Coverage
One of the most important questions in NLIs is the relation between the ex
pressivity of NL, IRL, and QL. IRLs are less expressive Üian NLs, if only be
cause their basic vocabularies (predicates and constants) are restricted to
specific domains and tasks. They may, however, be more expressive than QLs
in that they may admit logical concepts that are beyond the deductive abilities
of the DBMS that inteφret die QLs. The logical form of die TEAM system, for
example, allows for modal operators (such as tense) and higher-order functions
(such as maximum, count, and average) that lie beyond the deductive abilities
of relational calculus, although their addition still leaves the QL decidable. This
extra expressivity, often obtainable at little cost, makes it possible eventually
for parts of the NLI to be used with software systems of greater deductive
power.

There may be NL queries for which no corresponding QL representations
exist. However, we claim that for any query that can be put to a DBMS in QL,
there should be a corresponding query in NL that the NLI can translate into QL
to generate the same answer. We call this the accessibility requirement. It is
the analogue in NLIs of die Turing equivalence between a high-order program
ming language and the language into which it is compiled.

In the remainder of this section we show that NLIs in general do not meet
the accessibility requirement. In the following section, we illustrate ways of re
gaining accessibility.

The translation from IRL to QL is usually done according to what we will
call the rewrite method: Atomic elements of the IRL representation language
are rewritten into possibly complex expressions of QL. Thus, for example, IRL
atoms may be mapped into expressions in QL diat contain references to various
parts of the DB (files, fields, values, etc.) and operations upon them. In re
lational algebra, the set of such operations would include union, projection, and
join—often enhanced by the so-called aggregate functions, such as maximum.

162 Perrault and Grosz

minimum, average, and count. In logic-based systems, the operators are those
of first-order logic.

Any NL query representable in QL has an answer in the DB, as all re
lational-calculus queries are decidable. There are, however, NL (or IRL) quer
ies to which there exist answers in the DB, but which have no corresponding
QL queries, at least none constructible under the rewrite method assumption.
For example, the Navy Blue File, for which the LADDER system was written,
contained a SHIP file in which a Boolean field DOB (for doctor-on-board) re
corded whether or not a ship carried any doctors. The database contained no
other mention of doctors, or of persons being on board ships. Thus, the IRL
concepts doctor and on-board-of cannot be expressed separately as relational-
calculus expressions in this database. As a result, the query "Is there a doctor
on board the Fox?" can be interpreted only if the phrase "a doctor on board"
(or its IRL equivalent) can be rewritten directly into a reference to the database
field DOB.^"^

Introducing special translations for fixed phrases does not "̂̂ n general. For
example, the query "Is there a doctor within 500 miles of the Fox?" can be an
swered from the information in the Blue File, but it can be inteφreted only by
introducing translations for doctor and on-board-of separately.

The problem is not that the information is lacking in the database; that
would explain why the query "How many doctors are on the Fox?" could not
be answered. Neither is it only that the database does not represent certain ob
jects, properties, and relationships directly (e.g., the Blue File does not expli-
cidy represent doctors or indicate who is on what vessel), and that it is not
possible, by means of relational algebra, to construct from the existing relations
one that does represent these explicitly (doctors, for example). The problem is
inherent in the assumption of the rewrite method that atoms of the IRL map to
expressions in the QL; hence, this method does not provide a way to take ex
pressions in IRL to atoms in QL. The deductive method described in the fol
lowing section is one solution.

6 Future Directions

Thus far, we have focused our attention on natural-language interfaces to
DBMS. More broadly, in the context of natural-language processing, it is im
portant to consider what issues need to be addressed to provide capabilities for

14 A similar problem arises in a database in which every person is related directly to his or her
grandfather, e.g., in the single relation GRANDFATHER (YOUNG, OLD). The query "Who is the
father of the father of John?" has an answer in the DB, but "father" is not expressible as a function
of GRANDFATHER.

Chapter 4 Natural-Language Interfaces 163

users to communicate in natural language with a wider range of software. Two
major obstacles stand in the way.

Providing general procedures for bridging the gap between the concepts
that can be expressed in natural language and the underlying software sys
tems.

• Providing general mechanisms to allow the user and the computer system
to cooperate in solving the user's problem by engaging in a dialogue.

One strategy for overcoming the first obstacle is suggested by a solution to
the problem inherent in the use of the rewrite method, i.e., certain queries that
can be made in QL cannot be asked in NL. Instead of placing the semantic
burden on the QL, as most existing systems do, this strategy places it on the
IRL.

The ability to sustain interaction requires a different perspective as to the
function of the interface. It must be considered not merely as a translator of
sentences of one language into those of another, but rather as a recognizer of
the user's intentions and as a collaborator in bringing about their satisfaction.

6.1 Putting Query Languages In their Place
A solution to the doctor-on-board problem is readily available if two conditions
are met: (a) first-order logic (FOL) is taken as the IRL, and (b) all the informa
tion in the database is encoded in IRL. The second condition can be relaxed, as
we will do shortly. Under these assumptions, it is now possible to define the
relations encoded in the DB directiy in terms of the domain concepts in IRL,
rather than vice versa. If the contents of the DB are now converted into ground
literals in IRL, the answer retrieval process can be implemented as deduction
in IRL. In the ship DB, this means including an axiom that defines the DOB
field from the DB in IRL:

DOB(χ) -> 3d ship(χ) λ doctor(d) λ on-board(d,χ)

where ship, doctor, and on-board are predicates of IRL. The query "Is there a
doctor on board the Fox?" would be represented in IRL by

3d X 3ship(x) Λ doctor(d) λ on-board(d,χ) λ χ = Fox

which is tme if DOB(Fox) is tme. Similarly, "Is there a doctor within 500
miles of the Fox?" would be represented in IRL by

3d, dloc, sloe, s, dist doctor(d) λ location(d,dloc)
location(s,sloe) λ s = Fox
distance(dlock, sloe, dist) λ dist < 500 miles.

164 Perrault and Grosz

Obtaining the correct answer now depends on having axioms such as

on-board(d,x) λ location(d, dloc) λ location(s, sloe) ->
dloc = sloe.

We will call this second view of the language-to-DB correspondence the de
ductive method.

Now, in a sense, the deductive method is an unacceptable solution to the
answer retrieval problem, because it does not use the DBMS as an inference
engine—^all deduction is done directíy in IRL. Konolige [1981] presents a bet
ter solution in which a QL query is actually constructed, but deduction rather
than rewriting is used. The language in which deduction is performed contains
IRL, but it also includes as terms the syntactic constructs of QL. Axioms are
provided that express the relationships between the relations of IRL and the
terms of QL.

Konolige's solution suggests a picture of the relation between an NLI and
its underiying software that is rather different from the one suggested by
analogy to programming-language compilers. The NLI must be able to draw
inferences on its own, independently of whatever "black boxes" it may be con
nected to. Some of these boxes may themselves be specialized inference ma
chines (DMSs are clear examples of this), but their operations and semantics
must be subordinate to those of NL.

6.2 Participating In a Dialogue

Although superficially it may appear that users of NLIs are merely asking
questions, at a deeper level they are almost always engaged in a problem-solv
ing activity that requires them to obtain information from the DB. The view
that interactive sessions with NLIs are instances of cooperative problem-solv
ing behavior offers a more useful perspective not only on interaction with a
database in particular but on human-machine interaction in general. From this
perspective, a user is seen as interacting with a system to effect a certain
change in the world. The user might intend to accomplish this directíy by get
ting the system to do something, or indirectíy by getting the system to com
municate some fact. Utterances are actions that change the world and provide
information about the mental state of the utterer—most notably, about certain
of his or her beliefs and intentions [Austin, 1962; Searle, 1969].

When language use is examined from this perspective, discourses (i.e., ex
tended sequences of utterances), not individual utterances, are the natural unit
of analysis; what the user intends to do and not what he has said is ultimately
what matters. This point of view may make a difference even for some simple
database query applications (the need to take this view can be inferred some-

Chapter 4 Natural-Language Interfaces 165

what from the range of constructions that most NLIs attempt to handle and that
go beyond simple questions), but it is vitally important from the standpoint of
providing NL interaction with a broader range of software systems (e.g., deci
sion support systems). This point is nicely illustrated by the following short
dialogue segment:

1. U: I need to know which divisions eamed less than $500,000 in 1985.

2. S: The automobile division.

3. U: Consider its performance over the last five years.

4. Can you show me a histogram by month?

Although Utterance 1 is superficially a statement about U 's mental state, it
is intended as a request for some information. If it were merely a report on U's
mental state, a response acknowledging that (e.g., "OK. I understand.") would
suffice, but such a reply is clearly unreasonable. Utterance 3 demonstrates that,
even in a simple query-like context, the system's responses are an important
part of the dialogue. The "its" is used to refer to the automobile division, a sin
gular entity; Utterance 1 contains only a plural noun phrase and, if Utterance 2
were ignored, it would seem that there was no compatible prior phrase supply
ing a referent. Furthermore, the considering to be done depends on both Utter
ances 1 and 2. Utterance 3 is not about the domain of discourse, nor is it even
a query, but rather about the discourse per se: It establishes a particular focus
of attention for the discourse, namely, the performance of the automobile divi
sion over the last five years. Utterance 4 can be treated properly only by taking
the context of the preceding utterances into account. What we have here is a
request for a histogram of the monthly performance of the automobile division
over the last five years. Finally, Utterance 4 is a request for a particular action
to be taken; although ostensibly it asks for a "yes" or "no" response, neither of
these would be adequate in and of itself; the "yes" requires that the system
supply the histogram and the "no" obligates it to explain why it cannot do so.

Several areas of active research are concemed with devising methods for
supporting NL communication on a broader basis. Some of this research is
direcdy concemed with natural language; natural language provides both a set
of particular problems to be addressed and a set of constraints on the thepries
being developed. Odier research involves more general study of theories and
models of purposeful action but is nonetheless very relevant to work in NL.
Activities in the following areas are of particular interest.

1. The connection between language and action: recognizing what a user
intends (to do or have done) from what he says, as well as generating
utterances that satisfy various intentions [Cohen and Perrault, 1979; Allen

166 Perrault and Grosz

and Perrault, 1980; Cohen and Levesque, 1985; Litman, 1985; Appelt,
1985].

2. The connection between the intentions of individual utterances and the
overall puφose of a discourse [Hobbs and Evans, 1980; Grosz and
Sidner, 1986].

3. Interactions among beliefs, desires, intentions, actions, and plans
[Nilsson, 1980; Moore, 1985; Bratman, 1984; Konolige, 1984; Fagin and
Halpem, 1985].

These issues are of interest to a broad range of intellectual communities:
theoretical computer science (because of their relevance to distributed comput
ing systems), artificial intelligence (with its long-standing interest in machine
reasoning and planning), the philosophy of mind (especially practical reason
ing), and the philosophy of language (in which speech acts and reference are of
central concems). There continues to be much more to the understanding of
language than language.

Acknowledgments

Preparation of this paper was supported by the Defense Advanced Research
Projects Agency under Contract N00039-84-K-0078 with the Naval Electronic
Systems Command. We thank Martha Pollack and Jane Robinson for com
ments on earlier drafts.

References

Allen, J., Perrault, C. R., 1980, Analyzing intention in utterances. Artificial In
telligence 15:143-78.

Appelt, D. E., 1983. TELEGRAM: a grammar formalism for language plan
ning. In Proceedings of the 8th International Joint Conference on Artificial
Intelligence. IJCAI, Karlsmhe, pp. 595-99.

Appelt, D., 1985. Planning English referring expressions. Artificial Intelligence
26(10):l-33.

Austin, J. L., 1962. How to Do Things with Words. London: Oxford University
Press.

Bates, M., Bobrow, R. J., 1983. A transportable natural language interface. In
Proceedings of the 6th Annual International SIGIR Conference on Research
and Development in Information Retrieval. ACM.

Bobrow, D., the PARC understander group, 1977. GUS-1, a frame driven
dialog system. Artificial Intelligence 8(2): 155-73.

Chapter 4 Natural-Language Interfaces 167

Bobrow, R. J., Webber, B. L., 1980. Knowledge representation for syntac
tic/semantic processing. In Proceedings of the 1st Annual Natl. Conference
on Artificial Intelligence. AAAI pp. 316-23.

Brachman, R. J., Bobrow, R. J., Cohen, P. R., Klovstad, J. W., Webber, B. L.,
Woods, W. Α., 1979. Research in Natural Language Understanding—An
nual Report. Tech. Rep. 4274, Bolt Beranek And Newman Inc., Cambridge,
Mass.

Bratman, M., 1984. Two faces of intention. Philos. Rev. 93(3) :375^05.
Bruce, B. C , 1975. Case systems for natural language. Artificial Intelligence

6(4) :327^0.
Burton, R. R., Brown, J. S., 1979. Toward a natural language capability for

computer-aided instruction. In Procedures for Instructional Systems
Development. Ed. H. O'Neil, New York: Academic Press, pp. 273-313.

Burton, R. R., Woods, W. Α., 1976. A compiling system for augmented transi
tion networks. In Proceedings of the 6th International Conference on Com
putational Linguistics. COLINO. Ottawa.

Chamiak, E., 1973. Jack and Jane in search of a theory of knowledge. In Pro
ceedings of the 3rd International Joint Conference on Artificial Intelligence.
IJCAI, Stanford, Calif., pp. 337-43.

Chomsky, N., 1965. Aspects of the Theory of Syntax. Cambridge, MIT Press.
Codd, E. P., 1970. A relational model for large shared data banks. Communica

tions of ACM 13(6):377-87.
Codd, E. P., 1972. Relational completeness of data base sublanguages. In Data

Base Systems. Ed. R. Rustin, Englewood Cliffs, NJ: Prentice-Hall. pp. 6 5 -
98.

Cohen, P. R., Levesque, H. J., 1985. Speech acts and rationality. In Proceed
ings of the 23rd Annual Meeting. ACL, Chicago, pp. 49-60.

Cohen, P. R., Perrault, C. R., 1979. Elements of a plan-based theory of speech
acts. Cognitive Science 3:177-212.

Colmerauer, Α., 1978. Metamorphosis grammars. In Natural Language Com
munication with Computers. Ed. L. Bole, New York: Springer-Verlag, pp.
133-90.

Colmerauer, Α., 1979. Un sous-ensemble interessant du Francais. RAIRO
13(4):309-36.

Cooper, R., 1979. Variable binding and relative clauses. In Formal Semantics
and Pragmatics for Natural language. Ed. F. Guenthner, S. J. Schmidt, The
Netherlands: Reidel, Dordrecht, pp. 131-70.

Culy, C. D., 1985. The complexity of the vocabulary of Banbara. Linguist.
Philos. 8:345-51.

Dahl, v., 1981. Translating Spanish into logic through logic. American Journal
of Computational Linguistics 7(3): 149-64.

Damerau, F. J., 1981. Operating statistics for the transformational question an
swering system. American Journal of Computational Linguistics 7(l):30-42.

168 Perrault and Grosz

Davidson, J., Kaplan, S. J., 1983. Natural langauge access to databases: inter
preting update requests. American Journal of Computational Linguistics
9(2):57-68.

Earley, J., 1970. An efficient context-free parsing algorithm. Communications
of ACM 13(2):94-102.

Fagin, R., Halpem, J. Y., 1985. Belief, awareness, and limited reasoning. In
Proceedings of the 9th International Joint Conference on Artificial Intel
ligence. IJCAI. Los Angeles, pp. 480-90.

Fillmore, C. J., 1977. The case for case reopened. In Grammatical Relations.
Ed. P. Cole, J. M. Sadock, New York: Academic Press, pp. 59-81 .

Finin, T. W., 1985. Constraining the interpretation of nominal compounds in a
limited context. In Analyzing Language in Restricted Domains. Ed. R.
Grishman, R. Kittredge. Hillsdale, NJ: Erlbaum.

Gazdar, G., Klein, E., Pullum, G. K., Sag, I., 1985. Generalized Phrase Struc
ture Grammar. Oxford: Blackwell.

Ginsparg, J., 1983. A robust portable natural language database interface. In
Proceedings of the Conference on Applied Natural Language. ACL, pp. 2 5 -
30.

Grosz, B. J., Joshi, A. K., Weinstein, S., 1983. Providing a unified account of
definite noun phrases in discourse. In Proceedings of the 21st Annual Meet
ing. ACL. Cambridge, Mass., pp. 44-50.

Grosz, B. J., Sidner, C. L., 1986. The structures of discourse structure. Com
putational Linguistics 12: In press.

Grosz, B. J., Appelt, D. E., Martin, P., Pereira, F., 1986. TEAM: An experi
ment in the design of transportable natural-language interfaces. Artificial In
telligence. In press.

Harris, L. R., 1977. User-oriented data base query with the Robot natural lan
guage query system. International Journal of Man-Machine Studies 9:697-
713.

Heidorn, G. E., 1976. Automatic programming through natural language dial
ogue: a survey. IBM Journal of Research and Development 20(4):302-13.

Heim, I., 1982. The Semantics of Definite and Indefinite Noun Phrases. Ph.D.
thesis. Univ. Mass., Amherst.

Hendrix, G. G., 1977. Human engineering for applied natural language pro
cessing. In Proceedings of the 5th International Joint Conference on Artifi
cial Artificial Intelligence. IJCAI. Cambridge, Mass., pp. 183-91.

Hendrix, G., Sacerdoti, E., Sagalowicz, D., Slocum, J., 1978. Developing a nat
ural language interface to complex data. ACM Transactions on Database
Systems 3(2):I05-47.

Hendrix, G. G., 1978. Semantic aspects of translation. See Walker, 1978, pp.
193-226.

Herskovits, Α., 1986. Space and the Prepositions in English. London/New
York: Cambridge Univ. Press. In press.

Chapter 4 Natural-Language Interfaces 169

Hintikka, J. K. K., 1974. Quantifiers vs. quantification theory. Linguist. Inq.
5:153-77.

Hirst, G., 1981. Lecture Notes in Computer Science, Vol. 119: Anaphora in
Natural Language Understanding. New York: Springer-Verlag.

Hirst, G., 1983. Semantic Interpretation Against Ambiguity. Ph.D. thesis.
Brown Univ., Providence, RL

Hobbs, J., 1978. Resolving pronoun references. Lingua 44:311-38.
Hobbs., J. R., 1980. Selective inferencing. In Proceedings of the 3rd Biennial

Conference on ofCSCSL Victoria, B.C., pp. 101-22.
Hobbs, J., Evans, D., 1980. Conversation as planned behavior. Cognitive

Science 4(4):349-77.
Hobbs, J. R., Moore, R. C , 1985. Formal Theories of the Commonsense

World. Norwood, NJ: Ablex.
Hopcroft, J. E., UUman, J., 1979. Introduction to Automata Theory, Languages

and Computation. Reading, Mass.: Addison-Wesley.
Isabelle, P., 1984. Another look at nominal compounds. In Proceedings of the

10th International Conference on Computational Linguistics. COLING.
Stanford, Calif., pp. 509-16.

Johnson, T., 1985. Natural Language Computing: The Commercial Applica
tions. London: Ovum.

Kaplan, R., Bresnan, J., 1982. Lexical-functional grammar: a formal system for
grammatical representation. In The Menial Representation of Grammatical
Relations. Ed. J. Bresnan, Cambridge, Mass.: MIT Press, pp. 173-281.

Kaplan, S. J., 1982. Cooperative responses from a portable natural language
query system. Artificial Intelligence 19(29): 165-88.

Kay, M., 1979. Functional grammar. In Proceedings of the Berkeley Linguistics
Society 5:142-58.

Kay, M., 1980. Algorithm schemata and data stmctures in syntactic processing.
Nobel Symposium on Text Processing. Gothenburg, Sweden.

Kay, M., 1985. Parsing in functional unification grammar. In Natural Lan
guage Parsing. Ed. D. R. Dowty, L. Karttunen, A; Zwicky, London: Cam
bridge University Press., pp. 251-78.

Konolige, K., 1981. The Database as Model: a Metatheoretic Approach.
Menlo Park, Calif.: SRI Intemational.

Konolige, K., 1984. A Deduction Model of Belief and its Logics. Ph.D. thesis.
Stanford Univ., Calif.

Koskenniemi, K., 1983. Two-level Model for Morphological Analysis. Ph.D.
thesis. Univ. Helsinki.

Kuno, S., Oettinger, Α., 1962. Multiple padi syntactic analyzer. Information
Process. 62:306-12.

Landsbergen, S. P. J., 1976. Syntax and formal semantics of English in
PHLIQAI. See Burton and Woods, 1976.

170 Perrault and Grosz

Lehnert, W. G., Shwartz, S. P., 1983. EXPLORER: a natural language pro
cessing system for oil exploration. See Ginsparg 1983, pp. 69-72.

Lesser, V. R., Fennell, R. D., Erman, L. D., Eddy, D. R. 1975. Organization of
the HEARSAY II Speech Understanding System. IEEE Transactions on
Acoustics, Speech, and Signal Processing 23(1):11-24.

Litman, D. J., 1985. Plan Recognition and Discourse Analysis: An Integrated
Approach for Understanding Dialogues. Ph.D. thesis. University of Ro
chester, New York.

Marcus, M. P., 1980. A Theory of Syntactic Recognition for Natural Language.
Cambridge, Mass.: MIT Press.

Marcus, M. P., Hindle, D., Fleck, M. M., 1983. D-Theory: talking about talk
ing about trees. See Grosz et al., 1983, pp. 129-136.

McCord, M. C , 1985. Modular logic grammars. In Proceedings of the 23rd
Annual Meeting. ACL, Chicago, pp. 104-17.

McDonald, D., 1983. Description directed control. Comput. Math. 9(1):111-30.
Montague, R., 1973. The proper treatment of quantification in ordinary Eng

lish. In Approaches to Natural Language: In Proceedings of the 1970 Stan
ford Workshop on Grammar and Semantics. Ed. J. K. K. Hintikka, J.
Moravcsik, P. Suppes., The Netheriands: Reidel, Dordrecht, pp. 221-42.

Moore, R. C , 1979. Handling Complex Queries in a Distributed Database.
Menlo Park, Califomia: SRI International.

Moore, R., 1981. Problems in logical form. In Proceedings of the 19th Annual
Meeting. ACL, Stanford, Califomia, pp. 117-24.

Moore, R. C , 1985. A formal theory of knowledge and action. In Formal
Theories of the Commonsense Word. Ed. J. R. Hobbs, R. C. Moore, Nor
wood, NJ: Ablex. pp. 319-58.

Nilsson, N. J., 1980. Principles of Artificial Intelligence. Morgan Kaufmann
Publishers, San Mateo, Califomia.

Palmer, M. S., 1983. Inference-driven semantic analysis. In Proceedings of the
4th National Conference on Artificial Intelligence. AAAI Washington, pp.
310-313.

Paxton, W. H., 1978. A framework for speech understanding. See Walker,
1978, pp. 17-120.

Pereira, F. C. N., Warren, D., 1980. Definite clause grammars for language
analysis. Artificial Intelligence 13:231-78.

Pereira, F. C. N., 1981. Extraposition grammars. American Journal of Comput
ational Linguistics 7(4):243-56.

Pereira, F. C. N., 1983. Logic for Natural Language Analysis. Ph.D. thesis.
University of Edinburgh.

Pereira, F. C. N., Shieber, S. M., 1984. The semantics of grammar formalisms
seen as computer languages. See Isabelle, 1984, pp. 123-29.

Perrault, C. R., 1984. On the mathematical properties of linguistic theories.
Computational Linguistics 10:165-76.

Chapter 4 Natural-Language Interfaces 171

Petrick, S. J., 1973. Transformational analysis. In Natural Language Pro
cessing. Ed. R. Rustin, New York: Algorithmics Press, pp. 27-41 .

Robinson, A. E., 1981. Determining verb phrase referents in dialog. American
Journal of Computational Linguistics 7(1):1-16.

Robinson, J. J., 1982. DIAGRAM: a grammar for dialogues. Communications
ö/ACAf 25(l):27-47.

Sager, N., 1981. Natural Language Information Processing. Reading, Mass:
Addison-Wesley.

Scha, R. J. H., 1976. Semantic types in PHLIQAI. See Burton and Woods,
1976.

Schank, R. € . , 1975. Conceptual Information Processing. New York: Ameri
can Elsevier.

Scott, D., 1982. Domains for denotational semantics. In Proceedings of the
ICALP-82, International Conference on Autom. Language Program,.
Heidelberg.

Searle, J. R., 1969. Speech Acts: An Essay in the Philosophy of Language.
London: Cambridge University Press.

Shieber, S. M., 1984. The design of a computer language for linguistic infor
mation. See Isabelle, 1984, pp. 362-66.

Shieber, S. M., 1985. Evidence against the context-freeness of natural lan
guage. Linguist. Philos. 8:333-43.

Sidner, C , 1983. Focusing in the comprehension of definite anaphora. In Com
putational Models of Discourse. Ed. M. Brady, R. Berwick, Cambridge,
MIT Press, pp. 267-330.

Slocum, J., 1981. A practical comparison of parsing strategies. See Moore,
1981, pp. 1-6.

Stonebraker, M., Wong, E., Kreps, P., Held, G., 1976. The design and im
plementation of INGRES. ACM Transactions on Database Systems
1(3): 189-222.

Tennant, H. R., Ross, K. M., Saenz, R. M., Thompson, C. W., Miller, J. R.,
1983. Menu-based natural langauge understanding. See Grosz et al., 1983,
pp. 151-58.

Thompson, F. B., Thompson, B. H., 1975. Practical natural language pro
cessing: The REL system prototype. In Advances in Computers. Ed. M. Ru-
binoff, M. C. Yovits, New York: Academic Press, pp. 109-68.

Ullman, J. D., 1982. Principles of Database Systems. Rockville, Md.: Com
puter Science Press.

Walker, D., 1978. Understanding Spoken Language. New York: Elsevier.
Waltz, D. L., 1978. An English language question answering system for a large

relational database. Communications of ACM 21(7):526-39.
Warren, D. H. D., Pereira, F. C. N., 1982. An efficient easily adaptable system

for inteφreting natural language queries. American Journal of Comput
ational Linguistics 8(3-4): 110-22.

172 Perrault and Grosz

Webber, Β. L., 1980. A Computational Approach to Discourse Anaphora, New
York: Garland.

Weischedel, R. M., 1979. A new semantic computation while parsing: presup
position and entailment. In Presupposition, Ed. C. K. Oh, D. A. Dinneen,
New York: Academic Press, pp. 155-82.

Weischedel, R. M., Sondheimer, N. K., 1983. Meta-rules as a basis for pro
cessing ill-formed input. American Journal of Computational Linguistics
9(3-4): 161-77.

Wilks, Y., 1975. An intelligent analyzer and understander of English. Com
munications of ACM 18(5):264-74.

Winograd, T., 1972. Understanding Natural Language. New York: Academic
Press.

Winograd, T., 1983. Language as a Cognitive Process Vol, I: Syntax, Reading,
Mass., Addison-Wesley.

Wolf, J. J., Woods, W. Α., 1980. The HWIM speech understanding system. In
Trends in Speech Recognition, Ed. W. A. Lea, Englewood Cliffs: Prentice-
Hall, pp. 1-24.

Woods, W. Α., 1967. Semantics for a Question Answering System, Harvard
University Computer Lab.

Woods, W. Α., 1970. Transition network grammars for natural language analy
sis. Communications of ACM 13(10):591-606.

Woods, W. Α., Kaplan, R. M., Nashwebber, B. L., 1972. The Lunar Sciences
Natural Language Information System: Final Report, BBN Rep. 2378, Bolt
Beranek and Newman Inc., Cambridge, Mass.

Woods, W. Α., 1978. Semantics and quantification in natural language question
answering. In Advances in Computers, Ed. M. Yovits, New York: Academic
Press, pp. 1-87.

Woods, W. Α., 1980. Cascaded ATN grammars. American Journal of Comput
ational Linguistics 6(1): 1-15.

Younger, D. H., 1967. Recognition and parsing of context-free languages in
time n3. Information and Control 14:189-208.

Zwicky, A. M., Friedman, J., Hall, B. C , Walker, D. E. 1965. The MITRE
syntactic analysis procedure for transformational grammars. In Proceedings
of the Fall Joint Computer Conference. AFIPS, pp. 317-26.

Chapter

5

Reasoning About Plans and
Actions
Michael P. Georgeff
SRI International
Arltificial Intelligence Center and
Center for the Study of Language and Information
Menlo Park, California

1 Introduction

Humans spend a great deal of time deciding and reasoning about actions, some
with much deliberation and some without any forethought. They may have
numerous desires that diey wish fulfdled, some more strongly than others. It is
often necessary to accommodate conflicting desires, to choose among them,
and to reason about how best to accomplish those that are chosen. This choice,
and the means chosen to realize these ends, will depend upon currendy held
beliefs about present and future simations, and upon any commitments or in
tentions that may have been decided upon earlier. Often it will be necessary to
obtain more information about the tasks to be performed, either prior to choos
ing a plan of action or during its execution. Furthermore, our knowledge of the
world itself is frequentiy incomplete, making it necessary for us to have some
means of forming reasonable assumptions about the possible occurrence of
other events or the behaviors of other agents.

All this has to be accomplished in a complex and dynamic world popu
lated witii many odier agents. The agent planning or deciding upon possible

173

174 Georgeff

courses of action can choose from an enormous repertoire of actions, and these
in tum can influence the world in exceedingly complicated ways. Moreover,
because of the presence of other agents and processes, the environment is sub
ject to continuous change—even as the planner deliberates on how best to
achieve its goals.

2 The Representation of Actions and Events

2.1 Models Of states and Events
To tackle the kind of problems mentioned above, we first have to understand
clearly what entities we are to reason about. The traditional approach has been
to consider that, at any given moment, the world is in one of a potentially in
finite number of states or situations, A world state may be viewed as a snap
shot of the world at a given instant of time.

The world can change its state only by the occurrence of an event or ac
tion. In this view, events can be modelled simply as state transitions (or, more
generally, as certain sequences of state transitions). For example, in Figure 1,
the occurrence of the event ei results in the world changing from state Si to
state 52, and event ei takes us then to state ft. An event type is a set of event
instances, representing all possible occurrences of the event in all possible sit
uations. Thus, the event type "Put block A on top of block B " corresponds to
all possible occurrences of the putting of block A upon B.

In domains in which there is no concurrent activity, it is only necessary to
consider the initial and final states of any given event, as nothing can happen
during the event to change its outcome. Consequentiy, an event (strictiy, an
event type) can be modeled as a set of pairs of initial and final states. If, in ad
dition, we limit ourselves to deterministic events, this relation between initial
and final states will be functional; that is, the initial state in which an event oc
curs will uniquely determine the resulting final state.

An action is a special kind of event, namely, one that is performed by
some agent, usually in some intentional way. For example, a tree's shedding of
its leaves is an event but not an action; John's mnning around a track is an ac
tion [in which John is the agent]. Philosophers make much of this distinction
between actions and events, primarily because they are interested in activities
that an agent decides upon, rather than those events that are not caused by the
agent (such as leaves falling from a tree) or that involve the agent in some un
intentional way (such as tripping over a mg) [Davis, 1979]. For our puφoses,
however, we can treat these terms synonymously.

We also want to be able to say that certain properties hold of worid states.
For example, in some given state, it might be that a specified block is on top of

Chapter 5 Reasoning About Plans and Actions 175

some other block, or that its color is red. But what kind of entities are such
properties? For example, consider the property of redness. In a static world, we
might model this property as a set of individuals (or objects), namely, those
that are red. However, in dynamic worlds, the individuals that are red can vary
from state to state; we therefore cannot model redness in this way.

One way to handle this problem is to introduce the notion of a fluent
[McCarthy and Hayes, 1969], which is a function defined on world states. Es
sentially, a given fluent corresponds to some property of world states, and its
value in a given state is the value of that property in that state. For example,
the property of redness could be represented by a fluent whose value in a given
state is the set of individuals that are red in that state.

S T A T E S A N D E V E N T S

World States S

Event Instances e

Figure 1

176 Georgeff

Fluents come in a variety of types. A fluent whose value in a given state is
either true or false is usually called a propositional fluent. For example, the
property of it being raining could be represented by a propositional fluent that
has the value true in those states in which it is raining and the value/a/^e when
it is not raining [Dowty, Wall and Peters, 1981].

2.2 The Situation Calculus
Of course, in any interesting domain, it is infeasible to specify explicitly the
functions and relations representing events and fluents. We therefore need
some calculus or formal language for describing and reasoning about them.

McCarthy [McCarthy and Hayes, 1969] proposed a logic of situations
(states) that has become the classical approach to this problem. In the variant
we describe here, the logical terms of the calculus are used to denote the states,
events, and fluents of the problem domain. For example, the event term
puton(A, B) could be used to denote the action in which block A is placed on
top of block B. Similarly, the fluent term on(A, B) could designate the fluent
representing the proposition that A is on top of B,

The predicates in this situation calculus are used primarily to make state
ments about the values of fluents in particular states. For propositional fluents,
we shall use the expression holds(f, s) to mean that the fluent / has value true
in state s. For example, holds(on(A, B), s) will be true if the fluent denoted by
on(A, B) has value true in state s; that is, if block A is on top of Β in s.

We must also be able to specify the state transitions associated with any
particular event in the problem domain. We shall do this by use of an occurs
predicate, and write occurs(e, s\, S 2) to mean that the performance of event e
begins in state s\ and ends in state ^ 2 . (The more usual way to do this is to in
troduce the term result(e, s) to designate the state resulting from the perform
ance of event e in state 5 , but this approach is not as expressive as the one I am
proposing.) For example, occurs(puton(A, B), s\, S 2) denotes the fact that the
action puton(Ay B)h initiated in state s\ and terminates in state si. We can also
use the occurs predicate to characterize those states that are reachable from
some given state.

The well-formed formulas of this situation calculus may also contain the
usual logical connectives and quantifiers. With this machinery, we can now ex
press general assertions about the effects of actions and events when carried
out in particular situations. For example, we can express the result of putting
block A on top of block Β as follows:

V5/, S2 . holds(clear(A) a clear(B), si) a occurs(puton(A, B), si, S2) 3
holds(on(A, B), S2)

Chapters Reasoning About Plans and Actions 177

This statement is intended to mean that if blocks Λ and 5 are initially
clear, then after the action puton(A, B) has been performed, block A will be on
topofiB.

One problem with the above approach is die apparentiy large number of
axioms needed to describe what properties are unaffected by events. For ex
ample, if block Β were known to be red prior to our placing block A on it, we
would not be able to conclude, on the basis of the previous axiom alone, that
block Β would still be red afterward. To do so, we require an additional axiom
stating that the movement of block A does not change the color of block B:

V^7, S2 . holds(color(B, red), si) a occurs(puton(A, B), si, s2) 3
holds(color(B, red), S2)

In fact, we would have to provide similar axioms for every property of the
domain left unaffected by the action. These are called frame axioms; being
forced to specify them is conunonly known as the frame problem [Hayes,
1973].

Various other logical formalisms have been developed for representing and
reasoning about dynamic domains. The most common are the modal logics,
which avoid the explicit use of terms representing world state. One type of
modal logic, called temporal logic, introduces various temporal operators for
describing properties of world histories [Prior, 1967]. Process logics are
anodier kind of modal logic in which explicit mention of state is avoided
[Nishimura, 1980]. These logics are based on the same model of the world as
described above, but introduce programs (or plans) as additional entities in the
domain (see Section 3.1). Dynamic logics can be viewed as a special class of
process logics that are concemed solely with the input-output behavior of pro
grams [Harel, 1979]. While these various logics may vary in their expressive
power, all suffer from the frame problem.

2.3 The STRIPS Representation
The STRIPS representation of actions, originally proposed by Fikes and Nils-
son [1971], is one of the most widely used altematives to the situation calculus.
It was introduced to overcome what were seen primarily as computational dif
ficulties in using the situation calculus to constmct plans. The major problem
was to avoid (1) the specification of a potentially large number of frame ax
ioms, and (2) the necessity of having the planner consider these axioms in de
termining the properties that hold at each point in the plan.

In the STRIPS representation, a world state is represented by a set of logi
cal formulas, the conjunction of which is intended to describe the given state.
Actions or events are represented by so-called operators. An operator consists
of a precondition, an add list, and a delete list. Given a description of a world
state s, the precondition of an operator is a logical formula that specifies

178 Georgeff

whether or not the corresponding action can be performed in s, and the add and
delete lists specify how to obtain a representation of the world state resulting
from the performance of the action in s. In particular, the add list specifies the
set of formulas that are true in the resulting state and must therefore be added
to the set of formulas representing 5 , while the delete list specifies the set of
formulas that may no longer be true and must therefore be deleted from the de
scription of s. This scheme for determining the descriptions of successive states
is called the STRIPS rule.

For example, the following STRIPS operator can be taken to represent the
action that moves block A from location zero to location 1.

Precondition: loc(A, 0) λ clear(A)
Add list: {loc(A, 1)}
Delete list: {loc(A, 0)}

Let's say that some world is described by the formulas {loc{A, 0),
clear(A), red(A).] Given this set of formulas, it is possible (trivially in this
case) to prove that the precondition holds, so that the operator is then con
sidered applicable to this world description. The description of the worid re
sulting from application of this operator is [lociA, 1), clear(A\ red(A)].

Although the operators in STRIPS are intended to describe actions that
transform worid states into other worid states, they actually define syntactic
transformations on descriptions of world states. STRIPS should thus be viewed
as a form of logic and the STRIPS rule as a rule of inference within this logic.
Given this perspective, it is necessary to specify the conditions under which the
STRIPS rule is sound. That is, for each operator and its associated action, the
formulas generated by application of the operator should indeed be true in the
state resulting ft-om the performance of the action. Surprisingly, only very re-
centiy has anyone attempted to provide such a semantics, though the impor
tance of doing so has long been recognized.

The problem is that soundness is not possible to achieve if the STRIPS
rule is allowed to apply to arbitrary formulas. For example, suppose in the case
above I add to the description of the initial world state the formula:

loc(A. 0) A loc(A, 0)

This is somewhat redundant, but from a logical point of view it is still a fine
description of the initial state. The problem is that, when the STRIPS operator
is now applied, this formula will not be deleted from the description of the
successor state (because it does not appear in the delete list of the operator),
yet of course it should be deleted.

Lifschitz [1987] was the first to describe a way of defining the kind of
formulas allowable in world descriptions, and to prove soundness for such a
system. In particular, soundness is guaranteed if, for every operator and its as
sociated action: (1) Every allowable formula that appears in the operator's add

Chapters Reasoning About Plans and Actions 179

list is satisfied in the state resulting from the performance of the action, and (2)
Every allowable formula that is satisfied in the state in which the action is in
itiated, and that does not belong to the operator's delete list, is satisfied in the
resulting state. The latter condition is commonly known as the STRIPS assump
tion.

The STRIPS representation thus avoids the specification of frame axioms
that state what properties are left unchanged by the occurrence of actions.
Furthermore, the lack of frame axioms allows a planner to better focus its
search effort. On the other hand, STRIPS is not nearly as expressive as the sit
uation calculus [Waldinger, 1977]. In particular, the STRIPS representation
compels us to include in an operator's delete list all allowable formulas that
could possibly be affected by the action, even if the tmth value of some of
these could be deduced from other axioms. For example, even if we were
given an axiom stating that when Fred dies he stops breathing, an operator rep
resenting the fatal shooting of Fred would nonetheless have to include in its de
lete list both effects of the shooting.

To overcome this difficulty, it is tempting to modify the STRIPS mle so
that formulas that can be proved false in the resulting state need not be in
cluded in an operator's delete list. This leads to the extended STRIPS assump
tion, which states that any formula that is satisfied in the initiating state and
does not belong to the delete list will be satisfied in the resulting state, unless it
is inconsistent to assume so. Unfortunately, no one has yet provided an ade
quate semantics for such an approach [Reiter, 1980].

Yet another variant representation is described by Pednault [1986]. Each
action is represented by an operator that describes how performance of the ac
tion affects the relations, functions, and constants of the problem domain. As
with the STRIPS representation, the state variable is suppressed and frame ax
ioms need not be supplied. For a restricted but commonly occurring class of
actions, the representation appears as expressive as the situation calculus.

3 Plan Synthesis

Plan synthesis concems the constmction of some plan of action for one or
more agents to achieve some specified goal or goals, given the constraints of
the worid in which tiiese agents are operating. In its most general form, it is
necessary to take into account the various degrees to which the agents desire
that their goals be fulfilled, the various risks involved, and the limitations to
further reasoning arising from the real-time constraints of the environment.
However, we shall begin by considering the simpler problem in which an
agent's goals are consistent and all of the same utility. We shall disregard rea
soning about the consequences of plan failure and we shall not concem our
selves with real-time issues. (In philosophy, this kind of planning is commonly

180 Georgeff

called means-ends reasoning, and is considered to be just one of the many
components comprising rational activity [Bratman, forthcoming; Davidson,
1980; Davis, 1979].)

3.1 General Deductive Approaches
Given a formulation of actions and world states as described in Section 2, the
simplest approach to planning is to prove—^by means of some automatic or in
teractive theorem-proving system—^the existence of a sequence of actions that
will achieve the goal condition. More precisely, suppose that we have some
goal ψ that we want to achieve and tiiat the initial state satisfies some condi
tion φ. Then the tiieorem to be proved is:

Vi , holds{i^, s) Z) 3z . holds(\\f, z) λ reachable{z, s)

That is, we are required to prove that there exists a state z, reachable from s, in
which the goal ψ holds, given diat φ holds in the initial state 5 .

Green [1969] was the first to implement this idea. As he observed,
however, it is essential to have the theorem prover provide the right kind of
constmctive proof For example, consider being faced with a choice of two
doors, behind one of which is a ferocious lion and die other a young maiden.
In trying to maximize your lifespan, a theorem prover may well suggest that
you simply open the door behind which lies the young maiden. Unfortunately,
you may only be able to ascertain the maiden's location after opening the
door—^too late for you but of little concem to the planning system. This diffi
culty arises because the sequence of actions constmcted by the planner can be
conditional on properties of future states; that is, on properties that the agent
executing the plan is not in a position to determine.

Manna and Waldinger [1987] consider many such problems and show how
they can be solved. Unfortunately, while planners based on general deductive
mechanisms are extremely elegant, no one has yet managed to produce one
that can solve any interesting world problem within acceptable time limits.

3.2 Planning as Search
Instead of using some general deductive method, one can try searching for an
appropriate plan in the space of all possible plans. There are two common
ways of viewing plan search techniques. One is to perceive the process as
searching through a space of world states, with the transitions between states
corresponding to the actions performable by the agent. Another view is that the
search takes place through a space of partial plans, in which each node in the
search space corresponds to a partially completed plan. The latter view is the
more general, as the first can be seen as a special case in which the partial plan

Chapter 5 Reasoning About Plans and Actions 181

is extended by adding a primitive plan element to either end of the current par
tial plan.

Thus, we can characterize most approaches to the planning problem as fol
lows. Each node in the search space corresponds to some possibly partial plan
of action to achieve the given goal. The search space is expanded by further
elaborating some component of the plan formed so far. The plan space can be
searched with a variety of techniques, both classical and heuristic [Nilsson,
1980; Tate, 1984].

Before we consider specific planning techniques, let us introduce some
new terminology. Let us assume that, for some action a, if we initiate α in a
state in which φ holds, ψ is guaranteed to hold at the completion of execution.
If ψ is the strongest condition for which we can prove that this holds, we shall
call ψ the strongest provable postcondition of a with respect to φ. We can sim
ilarly define the weakest provable precondition of a with respect to ψ to be the
weakest condition φ that guarantees that ψ will hold if a is initiated in a state
in which φ holds.

Now consider how we could find a sequence of actions ρ to achieve a goal
ψ, starting from an initial world in which φ holds. Let's write exec(p, ψ, φ) to
mean that ρ satisfies diis property. We now have that, for any primitive action
a, exec(p, ψ, φ) will hold if:

1 . ρ = NO-OP and ^s . holds{if, s) z> holds(y^, s).

2. ρ = a;qy where q satisfies exec(q, γ, ψ) and γ is the strongest provable
postcondition of a. (I am here using the symbol ; to denote sequencing of
actions.)

3. ρ = q;a, where q satisfies exec(q, φ, γ) and γ is the weakest provable pre
condition of a and ψ.

4. ρ = ^i;a;q2, where, for some γι and γζ, a satisfies exec(a, γι, γζ), q\
satisfies execiqu φ, γι) , and qi satisfies exec(q2, yi, ψ).

Case (1) simply says that, if the goal condition is already satisfied, we
need not plan anymore, i.e., the empty action (NO-OP) will do. Now consider
case (2). Let's say that we are guaranteed that, if we execute some action a in
a state in which φ holds, γ will be true in the resulting state. Thus, if the plan
begins with the element a, the rest of the plan must take us from a state in
which γ is true to one in which ψ is true. We can take γ to be any condition
that is guaranteed to hold after the execution of a but, to spare ourselves from
planning for situations that cannot possibly occur, it is best to take γ to be the
strongest of these conditions. Thus, case (2) amounts simply to forward-chain
ing from the initial state and is usually called progression. Case (3) is similar
to case (2), except that we chain backward from the goal. It is usually called

182 Georgeff

regression; the condition γ is often called the regressed goal. Case (4) is tanta
mount to choosing a primitive plan element somewhere in the middle of the
plan, then trying to patch the plan at either end. In fact, case (4) is a generali
zation of cases (2) and (3).

It is straightforward to construct a simple planner that uses these rules to
build a plan. The planner simply applies rules (2), (3), or (4) recursively until,
finally, rule (1) can be applied. Clearly, whether or not a solution is obtained
will depend on the choice of rules and the choice of primitive plan elements at
each step. The algorithm works for any plan or action representation, requiring
only that we be able to determine action postconditions and preconditions, as
described above. For example, GPS [Newell and Simon, 1963] and STRIPS
[Fikes and Nilsson, 1971] use STRIPS-like action representations and rules (1)
and (4), whereas Rosenschein [1981] employs dynamic logic to describe the ef
fects of actions and uses rules (1), (2), and (3).

Unfortunately, this approach is too inefficient to be useful for most real-
world planning problems. Thus, for the last 15 years or so, researchers in plan
ning have attempted to make this process more efficient. One approach is to
avoid fully instantiating the actions in the plan being formed (that is, to leave
some of the parameters of the action free) until one is forced to make a com
mitment. Another approach is to allow the ordering of the actions to remain
partial until sufficient information is available to make a wise choice (such
planners are usually called nonlinear planners). Some planners form plans at
one abstraction level, and only after that plan is complete do they consider
elaborating it at lower levels of abstraction. The SIPE system, developed by
Dave Wilkins at SRI, incorporates many of these ideas and is perhaps the most
advanced of these planners [Wilkins, 1985].

However, it is often very hard to find practical real-world problems for
which these planners are useful. What are the reasons for this? I believe there
are two. First, the world modelled by these planners is assumed to be static,
both during planning and during plan execution. They do not allow for the oc
currence of events external to the planning agent, or the existence of other
processes. Unfortunately, there are not many interesting applications where this
assumption holds. Second, in those cases that are relatively static, there often
exist special-puφose planners that can solve the problem more efficiently by
taking account of the particular features of the problem domain for which they
are designed. For example, specialized techniques have been developed for
path planning in the presence of obstacles—^these are far superior in perform
ance to the general ρuφose planners I have discussed above (e.g., see the work
of Gouzenes [1984] and Brooks [1983, 1985a]).

In the remainder of this paper, I want to look at two areas of planning that
I believe are particularly rich in research problems and for which I believe
there are a very large number of important applications. The first is what is

Chapter 5 Reasoning About Plans and Actions 183

commonly called multiagent planning, and the second involves the design of
planning systems that are embedded in a dynamically changing environment.

4 Multiagent Domains

Most real worlds involve dynamic processes beyond the control of an agent.
Furthermore, they may be populated with other agents—some cooperative,
some adversarial, and others who are simply disinterested. The planners we
have been considering are not applicable in such domains. These planners can
not reason about actions that the agent has no control over and that, moreover,
may or may not occur concurrently with what the agent is doing. There is no
way to express nonperformance of an action, let alone to reason about it.

We therefore need to develop models of actions and plans that are differ
ent from those we have previously considered. We need theories of what it
means for one action to interfere with another. Many interactions are harmful,
leading to unforeseen consequences or deadlock. Some are beneficial, even es
sential (such as lifting an object by simultaneously applying pressure from both
sides). We should be able to state the result of the concurrence of two events
or actions. We need to consider cooperative planning, planning in the presence
of adversaries, and how to form contingency plans. In addition, we shall re
quire systems capable of reasoning about the beliefs and intentions of other
agents and how to conmiunicate effectively both to exchange information and
to coordinate plans of action. Furthermore, these systems will sometimes need
to infer the beliefs, goals, and intentions of other agents from observation of
their behaviors.

4.1 Action Representations
Multiagent domains are those having the potential for concurrent activity
among multiple agents or other dynamic processes. The entities introduced in
earlier sections—world states, fluents, actions, events, and plans—can also
form the basis for reasoning in these domains. However, most of the simplify
ing assumptions made for handling single-agent domains cannot be usefully
employed here. In particular, it is not possible to consider every action as a
transition relation from an initial to a final state, as the effects of performing
actions concurrently depends on what happens during the actions [Georgeff,
1983; Pelavin and Allen, 1986]. For example, in a production line making
various industrial components, it is important to know what machines are used
during each activity so that potential resource conflicts can be identified.

In addition, we need more powerful and expressive formalisms for repre
senting and reasoning about sequences of states, or so-called world histories.

184 Georgeff

For example, we should be able to express environmental conditions such as
"The bank will stay open until 3pm" and "If it rains ovemight, it will be icy
next moming." Similarly, we have to be able to reason about a great variety of
goals, including goals of maintenance and goals satisfying various ordering
constraints [Pelavin and Allen, 1986].

It is also important that the representation of events can model the simul
taneous occurrence of events. One of the main reasons for doing so is simply
that it is often the most natural way to describe some activities. For example,
when two people are lifting a table together, it is very convenient to be able to
describe the lifting of both ends of the table as occurring simultaneously.
Furthermore, it is difficult to see how one could easily describe causal connec
tions between processes without such a notion (and I will have more to say
about this later). For example, consider two machines that are connected to one
another in some way. Let's imagine that each machine has a lever, and that
these levers are directiy coupled together. Thus, the movement of one lever
will direcdy cause a corresponding movement of the other. It would be diffi
cult to describe this mechanism in a suitably simple way without the notion of
simultaneity.

However, reasoning about the effects of actions is then much more com
plex, as the properties that are tme of the world after the performance of an ac
tion will depend not only on what was tme before the action was initiated but
also on what events are occurring simultaneously with the given action. For ex
ample, consider the axioms regarding the action puton(A, B) that I gave earlier.
The axiom conceming the fact that block A will be atop block Β in the state re
sulting from performance of die action will clearly still hold. But none of the
axioms conceming those properties that previously remained invariant
throughout the action will hold if simultaneous actions are allowed! For ex
ample, the axiom conceming redness cannot be stated because it may be that,
in some cases, someone throws a can of blue paint over block Β just as I am
putting block A atop it.

I believe that the solution to this problem rests on using the notion of inde
pendence to describe the region of influence of events and actions. This tums
out to be critical for reasoning about the persistence of world properties and
other issues that arise in multiagent domains. Indeed, what makes planning
useful for survival is the fact that we can stmcture the world in a way that
keeps most properties and events independent of one another, thus allowing us
to reason about die future without complete knowledge of all the events that
could possibly be occurring.

McDermott [1982] provides a somewhat different formalism for describing
multiagent domains, although the underlying model of actions and events is es
sentially as described above. Allen and Pelavin [Allen, 1984; Pelavin and
Allen, 1986] introduce yet another formalism based on a variation of this
model of actions and events. The major difference is that fluents are viewed as

Chapter 5 Reasoning About Plans and Actions 185

functions on intervals of states, rather than as functions on states. Thus, in this
formalism, holds(raining, i) would mean that it is raining over the interval of
time /, which might be, for example, some particular time period on some
specific day. The aim is that, by using intervals rather than states, we obtain a
more natural and possibly more tractable language for describing and reasoning
about multiagent domains. However, I think too much can be made of the
difference between the state-based and interval-based approaches—^both reduce
one to the other, and the differences in expressive power or naturalness appear
to me to be small.

Yet another approach is suggested by Lansky [1987], who considers events
as primitive and defines state derivatively in terms of event sequences. Proper
ties that hold of world states are then restricted to being temporal properties of
event sequences. For example, one might identify the property "waiting for
service" with the condition that an event of type "request" has occurred and
has not been followed by an event of type "serve." Lansky uses a temporal
logic for expressing general facts about world histories and, in part, for reason
ing about them also.

If we are interested in constructing plans of action, one of the more impor
tant considerations is whether or not the actions constituting such plans are
indeed performable. In single-agent planning, this question is quite easily
handled by means of explicitly specifying preconditions that guarantee action
performability. However, it is much more complex in multiagent domains.

The source of the problem in multiagent planning is that it is not possible
to state simple preconditions for each individual action, the satisfaction of
which would ensure its performability. In multiagent domains, whether or not
an action can be performed will depend not only on the fulfillment of such pre
conditions, but also on which events or actions may (or are required to) occur
simultaneously with the given action: It is, after all, of little use to form a plan
that calls for the simultaneous or concurrent performance of actions that are in
herently precluded from coexisting.

This problem is far more crucial than it may first appear. In particular, we
are not concerned merely with issues of deadlock avoidance. In planning and
other forms of practical reasoning, the failure of an action does not necessarily
mean that the agent or device performing the action will thereafter be unable to
proceed. Rather, such failure is usually taken to mean that the desired or in
tended effects of the action have not been achieved. Thus, though true dead
lock may occur quite rarely, actions often fail to produce their intended effects
because of interference with other, often unanticipated events.

Moreover, much of human planning revolves around the coordination of
plans of action. Some of this is concerned with synchronizing the activities of
agents so that tasks involving more than one agent can be carried out success
fully. Such synchronization can be accomplished by specifying explicitly what
temporal relations should hold among the activities of the various agents—

186 Georgeff

[Lansky, 1985; Stuart, 1985] the more difficult problem is to identify interac
tions among potentially conflicting actions. Indeed, the recognition of possible
plan conflicts is considered by some philosophers to be at the heart of rational
behavior [Bratman, forthcoming].

4.2 Causality and Process
One problem I have not yet addressed is the apparent complexity of the axioms
that describe the effects of actions. For example, while it might seem rea
sonable to state that the location of block Β is independent of the movement of
block Λ, this is simply untme, as everyone knows, in most interesting worlds.
Whether or not the location of Β is independent of the movement of A will de
pend on a host of conditions, such as whether Β is in front of Λ, on top of A,
atop A but tied to a door, and so on.

One way to solve this problem is by introducing a notion of causality
(some philosophers, to avoid such a loaded term, prefer to use "generation" in
stead) [Allen, 1984; Georgeff, 1987; Lansky, 1987; McDermott, 1982; Sho-
ham, 1986]. Two kinds of causality suggest themselves: one in which an event
causes the simultaneous occurrence of another event; the other in which an
event causes the occurrence of a subsequent event. We could denote these two
causal relations by introducing two new predicates, causess((fy eu ei) and
causesni^, eu ei) , say, where φ is the condition under which event e\ causes
event ei. These two kinds of causality are sufficient to describe the behavior of
any procedure, process, or device that is based on discrete (rather than continu
ous) events.

Of course, we need to specify how causally related actions affect one
another. The axiom expressing the effects of simultaneous causation can be
written

5 2 , φ, eL €2 . causess(i^, ej, ei) Λ holds(((>, si) a occurs(ei, si, S2) 3
occurs(e2, si, S2)

This simply specifies that, if condition φ holds at the moment event e\ is
initiated, and if event e2 is causally related to ei under these conditions, then e2
will occur simultaneously with the occurrence of e\, A similar axiom can be
given for subsequent causation.

With such axioms, we are now in a position to write down the causal laws
of the problem domain. For example, we might have a causal law to express
tiie fact that, whenever a block χ is moved, any block on top of χ and not
somehow restrained (e.g., by a string tied to a door) will also move. We could
write this as

y x,y,\. causess((on(y, jcj Λ -1 restrained(y)), move(x,l), (move(y, \)))

Chapters Reasoning About Plans and Actions 187

While the introduction of causality can help simplify the descriptions of
actions and events, we are still left with the problem of specifying the inde
pendence and causal relationships among events. Indeed, it would appear that
the combinatorial difficulties in expressing all the required independence and
causality axioms are no less formidable than those presented by the original
frame problem.

One way to reduce the combinatorics of the problem is by introducing the
notion of process. This notion can be used to specify the way in which groups
or conglomerates of events depend on one another and the way in which they
can interact with the external world. To do this, the problem domain is con
sidered to be composed of a number of processes, and the events and fluents of
the domains are classified as being either internal or external with respect to
these processes [Georgeff, 1987; Lansky, 1987]. We then require that there be
no direct causal relationship between internal and external events, so that the
only way the internal events of a given process can influence external events
(or vice versa) is through indirect causation by an event that belongs to neither
category (Figure 2). Within the framework of concurrency theory, these inter
mediary events (more accurately, event types) are often called ports. Processes
thus impose causal boundaries and independence properties on a problem
domain, and can thereby substantially reduce combinatorial complexity [Geor
geff, 1987; Lansky, 1987].

In this way I believe much of the difficulty surrounding the frame problem
can be overcome. To make the point more strongly, consider the state of oper
ating systems practice fifteen years ago, prior to the widespread use of the no
tion of process. In those days, the designer of an operating system had to con
sider, for every single program that the system might execute, whether or not
such execution could interfere with the control state of other programs and thus
affect their computation. But as soon as the formal notion of process was intro
duced—along the lines I sketched out above—the problem went away. I expect
the same would happen in AI if we paid more attention to some of the con
cepts of operating systems theory and concurrent progranruning.

Of course, for the kind of problems we are concemed with, exploiting
these ideas will not be easy. The identifiability of processes depends strongly
on the problem domain. In standard progranuning systems (at least those that
are well structured), processes can be used to represent scope rules and are
fairly easy to specify. In complex physical systems, it is often the case that
many of the properties of one subsystem will be independent of the majority of
actions performed by other subsystems; thus these subsystems naturally corre
spond to processes as defined here. Lansky and Fogelsong [1987] give other
examples in which processes are readily specified. In other situations, such
specification might be more complicated. Moreover, in many real-world situa
tions, dependence will vary as the spheres of influence and the potential for in
teraction change over time [Hayes, 1985].

188 Georgeff

PROCESS

INTERNAL EVENTS INTERNAL EVENTS

Figure 2

4.3 Multiagent Plaríníng

Despite the variety of formalisms developed for reasoning about multiagent
domains, relatively few planning systems have been fully implemented. Allen
and Koomen [1983] describe a simple planner, based on a restricted form of
interval logic [Allen, 1984]. While this technique is effective for relatively
simple problems, it is not obvious that the approach would be useful in more
complex domains.

Another issue concems how separate plans can be combined in a way that
avoids interference among the agents executing die plans. In such a setting, one
could imagine a number of agents each forming their own plans and then, after
communicating their intentions (plans) to one another or a centralized sched
uler, modifying these to avoid interference. To solve this problem, it is neces
sary to ascertain, from descriptions of the actions occurring in the individual
plans, which actions could interfere with one another and in what manner
[Georgeff, 1984]. After diis has been determined, a coordinated plan that pre
cludes such interference must then be constmcted. This plan can be formed by
inserting appropriate synchronization actions (interagent communications) into
the original plans to ensure that only interference-free orderings will be al
lowed [Georgeff, 1983]. Stuart [1985] formalized this approach and imple-

Chapter 5 Reasoning About Plans and Actions 189

mented a synchronizer based on techniques developed by Manna and Wolper
[1981].

Lansky and Fogelsong [1987] have developed a multiagent planner that
exploits causal independencies. Unlike the approaches described above, con
straints between events have to be specified explicitíy. However, the system
accommodates a wide class of plan synchronization constraints. Also, the
process of plan synchronization is not limited to a strategy of planning to sepa
rately achieve each component task and then combining the results. Instead, a
more general, adaptable strategy is used that can bounce back and forth be
tween local (i.e., single-agent) and global (multiagent) contexts, adding events
where necessary for purposes of synchronization. Planning loci can be com
posed hierarchically or even overlap.

5 Embedded Systems

Of course, the ability to plan and reason about actions and plans is not much
help unless the agent doing the planning can survive in the world in which it is
embedded. This brings us to perhaps the most important and also most ne
glected area of planning research—^the design of systems that are actually sit
uated in the world and that must operate effectively given the real-time con
straints of their environment.

5.1 Execution Monitoring Systems
Most existing architectures for embedded planning systems consist of a plan
constructor and a plan executor. As a rule, the plan constructor plans an entire
course of action before commencing execution of the plan [Pikes and Nilsson,
1971; Vere, 1983; Wilkins, 1985]. The plan itself is usually composed of
primitive actions—^that is, actions that are directly performable by the system.
The rationale for this approach, of course, is to ensure that the planned
sequence of actions will actually achieve the prescribed goal. As the plan is ex
ecuted, the system performs the primitive actions in the plan by calling various
low-level routines. Usually, execution is monitored to ensure that these routines
achieve the desired effects; if they do not, the system may return control to the
plan constructor so that it can modify the existing plan appropriately.

Various techniques have been developed for monitoring the execution of
plans and replanning upon noticing potential plan failure [Pikes and Nilsson,
1971; Wilkins, 1985]. The basis for most of these approaches is to retain with
the plan an explicit description of the conditions that are required to hold for
correct plan execution. Throughout execution, these conditions are periodically
checked. If any condition is discovered to be unexpectedly false, a replanning

190 Georgeff

module is invoked. This module uses various plan modificadon operators to
change the plan, or returns to some earlier stage in the plan formation process
and attempts to reconstmct the plan given the changed conditions.

However, in real-world domains, much of the information about how best
to achieve a given goal is acquired during plan execution. For example, in
planning to get from home to the aiφort, the particular sequence of actions
performed depends on information acquired on the way—such as which tumoff
to take, which lane to get into, when to slow down and speed up, and so on. In
such situations, one cannot use a system that plans in full down to the lowest
level of detail. Of course, one might simply use a traditional planner at the
higher levels of planning, but that avoids the issue—that is, how do we plan
with incomplete information, how do we plan to gather information, and how
do we elaborate our plans as we acquire this information.

5.2 Reactive Systems

Real-time constraints pose yet further problems for traditionally stmctured sys
tems. First, the planning techniques typically used by these systems are very
time consuming. While this may be acceptable in some situations, it is not
suited to domains where replanning is frequentiy necessary and where system
viability depends on readiness to act. In real-world domains, unanticipated
events are the norm rather than the exception, necessitating frequent replan
ning.

A second drawback of traditional planning systems is that they usually
provide no mechanisms for responding to new situations or goals during plan
execution, let alone during plan formation. Indeed, the very survival of an au
tonomous system may depend on its ability to react quickly to new situations
and to modify its goals and intentions accordingly. These systems should be
able to reason about their current intentions, changing and modifying these in
the light of their possibly changing beliefs and goals. While many existing
planners have replanning capabilities, none have yet accommodated modifica
tions to the system's underiying set of goal priorities.

A number of systems developed for the control of robots have a high de
gree of reactivity [Albus, 1981; Albus, Anthony, and Nagel, 1981]. Even
SHAKE Y [Nilsson, 1984] utilized reactive procedures (ILAs) to realize the
primitive actions of the high-level planner (STRIPS), and this idea is pursued
further in some recent work by Nilsson [1985]. Another approach is advocated
by Brooks [1985], who proposes decomposition of the problem into task-
achieving units in which distinct behaviors of the robot are realized separately,
each making use of the robot's sensors, effectors, and reasoning capabilities as
needed. This is in contrast to the traditional approach in which the system is
stmctured according to functional capabilities, resulting in separate, self-con
tained modules for performing such tasks as perception, planning, and task ex-

Chapter 5 Reasoning About Plans and Actions 191

ecution. Kaelbling [1987] proposes an interesting hybrid architecture based on
similar ideas.

Such architectures could lead to more viable and robust systems than the
traditionally stmctured systems. Yet most of this work has not addressed the is
sues of general problem solving and commonsense reasoning; the work is in
stead almost exclusively devoted to problems of navigation and execution of
low-level actions. It remains to extend or integrate these techniques with sys
tems that have the ability to completely change goal priorities, to modify,
defer, or abandon current plans, and to reason about what is best to do in light
of the current situation.

5.3 Rational Agents
Another promising approach to providing the kind of high-level goal-directed
reasoning capabilities, together with the reactivity, required for survival in the
real world, is to consider planning systems as rational agents that are endowed
with the psychological attitudes of belief, desire, and intention. The problem
that dien arises is specifying the properties we expect of diese attitudes, the
ways they interrelate, and the ways they determine rational behavior in a sit
uated agent.

Amy Lansky and I have been largely concemed with means-ends reason
ing in dynamic environments, and with the way partial plans affect practical
reasoning and govem future behavior [Georgeff and Lansky, 1986; 1987]. We
have developed a highly reactive system, called a Procedural Reasoning Sys
tem (PRS), to which is attributed attitudes of belief, desire, and intention
(Figure 3). Because these attitudes are explicitiy represented, they can be
manipulated and reasoned about, resulting in complex goal-directed and reflec
tive behaviors. The system consists of a data base containing current beliefs or
facts about the world, a set of current goals or desires to be realized, a set of
procedures or plans describing how certain sequences of actions and tests may
be performed to achieve given goals or to react to particular situations, and an
interpreter or reasoning mechanism for manipulating these components. At any
moment, the system also has a process stack, containing all currentiy active
plans, which can be viewed as the system's current intentions for achieving its
goals or reacting to some observed situation.

The set of plans includes not only procedural knowledge about a specific
domain, but also metalevel plans—^that is, information about the manipulation
of the beliefs, desires, and intentions of the system itself. For example, a typi
cal metalevel plan would supply a mediod for choosing among multiple rele
vant plans, for achieving a conjunction of goals, or for deciding how much
more planning or reasoning can be undertaken, given the real-time constraints
of the problem domain.

192 Georgeff

B D I A R C H I T E C T U R E

DATA
INPUT

SYSTEM
INTERFACES

MONITOR

BELIEFS
(Database)

PLANS
(Procedures)

REASONER
(Interpreter)

DESIRES
(Tasks)

INTENTIONS
(Agenda)

DATA
O U T P U T

SENSORS

ENVIRONMENT

EFFECTORS

Μ COMMAND
^ G E N E R A T O R

Figure 3

The system operates by first forming a partial overall plan, then figuring
out near-term means, executing any actions that are immediately applicable,
further expanding the near-term plan, executing further, and so on. At any
time, the plans the system intends to execute (i.e., the selected plans) are struc
turally partial—that is, while certain general goals have been decided upon,
specific questions about the means to attain these ends are left open for future
reasoning.

While the above work attempts to show how means-ends reasoning may
be accomplished by systems situated in real-world environments, little research
has been done in providing theories of decision making that are appropriate to
resource-bounded agents. Researchers in philosophy, as well as decision
theory, have long been concerned with the question of how a rational agent
weighs alternative courses of action [Jeffrey, 1983]. This work has largely as
sumed, either explicitly or implicitly, idealized agents with unbounded compu
tational resources. In reality, however, agents do not have arbitrarily long to
decide how to act, for the world is changing around them while they deliberate.
If deliberation continues for too long, the very beliefs and desires upon which
deliberation is based, as well as the real circumstances of the action, may
change. Dean [1987] discusses some methods whereby a planning system can

Chapters Reasoning About Plans and Actions 193

recognize the difficulty of the problems it is attempting to solve and, depending
on the time it has to consider the matter and what it stands to gain or lose, pro
duce solutions that are reasonable given the circumstances.

Systems that are situated in worlds populated with other agents also have
to be able to reason about the behaviors and capabilities of these other systems.
This requires complex reasoning about inteφrocess communication [Appelt,
1985; Cohen and Levesque, 1985], and the ability to infer the beliefs, goals,
and intentions of agents from observations of their behavior [Pollack, 1986;
1987]. The challenge remains, however, to design situated planning systems
capable of even the simplest kinds of rational behavior.

Acknowledgments

The views expressed here owe much to the insight and understanding of the re
searchers at SRI and CSLI. I wish to thank particularly Michael Bratman,
David Israel, Amy Lansky, Nils Nilsson, Leslie Pack-Kaelbling, Martha Pol
lack, Stan Rosenschein, Richard Waldinger, and Dave Wilkins.

The writing of this paper has been made possible by a gift from the Sys
tem Development Foundation, by the Office of Naval Research under Contract
N00014-85-C-0251, and by the National Aeronautics and Space Administra
tion, Ames Research Center, under Contract NAS2-12521.

References

Albus, J. S., 1981. Brains, Behavior, and Robotics. McGraw-Hill. Peter
borough, New Hampshire.

Albus, J. S., A. J. Anthony, and R. N. Nagel., 1981. Theory and practice of
hierarchical control. In Proceedings of the Twenty-Third IEEE Computer
Society International Conference.

Allen, J. F., 1984. Towards a general theory of action and time. Artificial Intel
ligence. 23:\23-\54.

Allen, J. F. and J. A. Koomen., 1983. Planning using a temporal worid model.
In Proceedings of the Eighth International Joint Conference on Artificial In
telligence. 741-747. Karlsruhe, West Germany.

Appeh, D. E., 1985. Planning English referring expressions. Artificial Intel
ligence. 26:1-34.

Bratman, M. Forthcoming. Intention, Plans, and Practical Reason. Harvard
University Press. Cambridge, Massachusetts.

Brooks, R. Α., 1983. Planning collision-free motions for pick-and-place opera
tions. International Journal of Robotics Research. 2(4): 19-40.

194 Georgeff

Brooks, R. Α., 1985. A Robust Layered Control System for a Mobile Robot.
Technical Report 864. Artificial Intelligence Laboratory. Massachusetts In
stitute of Technology. Cambridge, Massachusetts.

Brooks, R. Α., 1985. Visual map making for a mobile robot. In Proceedings of
IEEE Conference on Robotics and Automation. St. Louis, Missouri.

Cohen, P. R. and H. J. Levesque., 1985. Speech acts and the recognition of
shared plans. In Proceedings of the Twenty-Third Conference of the Asso
ciation for Computational Linguistics. 49-59. Stanford, Califomia.

Davidson, D., 1980. Actions and Events. Clarendon Press. Oxford, England.
Davis, L. H., 1979. Theory of Action. Foundations of Philosophy Series. Pren

tice-Hall. Englewood Cliffs, New Jersey.
Dean, T., 1987. Intractability and time-dependent planning. In Reasoning about

Actions and Plans: Proceedings of the 1986 Workshop. 245-266. Morgan
Kaufmann Publishers. San Mateo, Califomia.

Dowty, D. R., R. E. Wall, and S. Peters., 1981. Introduction to Montague
Semantics. Synthese Language Library. D. Reidel Publishing Company.
Boston, Massachusetts.

Fikes, R. E. and N. J. Nilsson., 1971. STRIPS: a new approach to the applica
tion of theorem proving to problem solving. Artificial Intelligence. 2:189-
208.

Georgeff, M. P., 1983. Communication and interaction in multiagent planning.
In Proceedings of the Third National Conference on Artificial Intelligence.
125-129. Washington, D. C.

Georgeff, M. P., 1984. A theory of action for multiagent planning. In Proceed
ings of the Fourth National Conference on Artificial Intelligence. 121-125.
Austin, Texas.

Georgeff, M. P. and A. L. Lansky., 1986. A System for Reasoning in Dynamic
Domains: Fault Diagnosis on the Space Shuttle. Technical Note 375. Artifi
cial Intelligence Center, SRI International. Menlo Park, Califomia.

Georgeff, M. P., 1987. Actions, processes, and causality. In Reasoning about
Actions and Plans: Proceedings of the 1986 Workshop. 99-122. Morgan
Kaufmann Publishers. San Mateo, Califomia.

Georgeff, M. P. and A. L. Lansky., 1987. Reactive reasoning and planning: an
experiment with a mobile robot. In Proceedings of the Sixth National Con
ference on Artificial Intelligence. Seattie, Washington.

Gouzenes, L., 1984. Strategies for solving collision-free trajectories problems
for mobile and manipulator robots. The International Journal of Robotics
Research. 3(4):51-65.

Green, C. C , 1969. Application of theorem proving to problem solving. In
Proceedings of the First International Joint Conference on Artificial Intel
ligence. 219-239. Washington, D. C.

Harel, D., 1979. First Order Dynamic Logic. Lecture Notes in Computer
Science. 68. Springer-Vertag. New York, New York.

Chapter 5 Reasoning About Plans and Actions 195

Hayes, P. J., 1973. The frame problem and related problems in artificial intel
ligence. In Elithom A. and D. Jones, editors. Artificial and Human Thinking.
45-59. Jossey-Bass. San Francisco, Califomia.

Hayes, P. J., 1985. The second naive physics manifesto. In Readings in Knowl
edge Representation. 467-485. Morgan Kaufmann Publishers. San Mateo,
Califomia.

Jeffrey, R., 1983. The Logic of Decision. University of Chicago Press. Chi
cago, Illinois.

Kaelbling, L. P., 1987. An architecture for intelligent reactive systems. In Rea
soning about Actions and Plans: Proceedings of the 1986 Workshop. 3 9 5 -
410. Morgan Kaufmann Publishers. San Mateo, Califomia.

Lansky, A. L., 1987. A representation of parallel activity based on events,
stmcture, and causality. In Reasoning about Actions and Plans: Proceedings
of the 1986 Workshop. 123-159. Morgan Kaufmann Publishers. San Mateo,
Califomia.

Lansky, A. L. and D. S. Fogelsong., 1987. Localized representation and plan
ning methods for parallel domains. In Proceedings of the Sixth National
Conference on Artificial Intelligence. Seattle, Washington.

Lifschitz, v . , 1987. On the semantics of STRIPS. In Reasoning about Actions
and Plans: Proceedings of the 1986 Workshop. Morgan Kaufmann Publish
ers. San Mateo, Califomia.

Manna, Z. and R. J. Waldinger., 1987. A theory of plans. In Reasoning about
Actions and Plans: Proceedings of the 1986 Workshop. Morgan Kaufmann
Publishers. San Mateo, Califomia,

Manna, Z. and P. Wolper., 1981. Synthesis of Communicating Processes from
Temporal Logic Specifications. Technical Report STAN-CS-81-872. Com
puter Science Etepartment, Stanford University. Stanford, Califomia.

McCarthy, J. and P. J. Hayes., 1969. Some philosophical problems from the
standpoint of artificial intelligence. Machine Intelligence. 4:463-502.

McDermott, D., 1982. A temporal logic for reasoning about processes and
plans. Cognitive Science. 6:101-155.

Newell, A. and H. A. Simon., 1963. GPS, a program that simulates human
thought. In E. A. Feigenbaum and J. Feldman, editors. Computers and
Thought. 279-293. McGraw-Hill, New York.

Nilsson, N. J., 1980. Principles of Artificial Intelligence. Morgan Kaufmann
Publishers. San Mateo, Califomia.

Nilsson, N. J., 1984. Shakey the Robot. Technical Note 323. Artificial Intel
ligence Center, SRI Intemational. Menlo Park, Califomia.

Nilsson, N. J., 1985. Triangle Tables: A Proposal for a Robot Programming
Language. Technical Note 347. Artificial Intelligence Center, SRI Inter
national. Menlo Park, Califomia.

Nishimura, H., 1980. Descriptively complete process logic. Acta Informática.
14:359-369.

196 Georgeff

Pednault, Ε. P. D., 1986. Toward a Mathematical Theory of Plan Synthesis.
Ph.D. thesis. Department of Electrical Engineering, Stanford University.
Stanford, California.

Pelavin, R. and J. F. Allen., 1986. A formal logic of plans in a temporally rich
domain. Proceedings of the IEEE. Special Issue on Knowledge Representa
tion. 74:1364-1382.

Pollack, M. E., 1986. Inferring Domain Plans in Question Answering. Ph.D.
thesis. Computer Science Department, University of Pennsylvania. Pitts
burgh, Pennsylvania.

Pollack, M. E., 1987. A model of plan inference that distinguishes between the
beliefs of actors and observers. In Reasoning about Actions and Plans: Pro
ceedings of the 1986 Workshop. 279-295. Morgan Kaufmann Publishers.
San Mateo, Califomia.

Prior, A. N., 1967. Past, Present and Future. Clarendon Press. Oxford, Eng
land.

Reiter, R., 1980. A logic for defauh reasoning. Artificial Intelligence. 13:81-
132.

Rosenschein, S. J., 1981. Plan synthesis: a logical perspective. In Proceedings
of the Seventh International Joint Conference on Artificial Intelligence. 3 3 1 -
337. Vancouver, British Columbia.

Shoham, Y., 1986. Chronological ignorance: time, nonmonotonicity, necessity
and causal theories. In Proceedings of the Fifth National Conference on Ar
tificial Intelligence. 389-393. Philadelphia, Pennsylvania.

Stuart, C. J., 1985. Synchronization of Multiagent Plans Using a Temporal
Logic Theorem Prover. Technical Note 350. Artificial Intelligence Center,
SRI International. Menlo Park, Califomia.

Tate, Α., 1984. Planning in Expert Systems. D. A. I. Research Paper 221. Uni
versity of Edinburgh.

Vere, S., 1983. Planning in time: windows and durations for activities and
goals. IEEE Transactions on Pattern Analysis arui Machine Intelligence.
5(3):246-267.

Waldinger, R., 1977. Achieving several goals simultaneously. Machine Intel
ligence. 8:94-136.

Wilkins, D. E., 1985. Recovering from execution errors in SIPE. Comput
ational Intelligence. 1:33-45.

Chapter

6

Search: A Survey of Recent
Results
Richard E. Korf
Computer Science Department
University of California, Los Angeles

1 Introduction
This chapter surveys the literature of search in AI, with a focus on recent re
sults in the field. The best reference for the state-of-the-art as of 1984 is Judea
Pearl's book Heuristics [Pearl, 1984] A more recent survey of the field is an
article in the Annual Review of Computer Science [Pearl and Korf, 1987].

Search has a long and distinguished history in artificial intelligence. The
earliest AI programs were search programs. The reason behind this is that
higher-level problem solving was the first aspect of intelligence to receive the
attention of AI researchers. Problems such as theorem proving and playing
chess were thought to embody the essence of intelligence. Problems such as vi
sion and natural language didn't seem very difficult at first since young child
ren could solve them. Paradoxically, we now have a situation where in certain
domains, such as chess or symbolic mathematics, the best computer programs
perform comparably to human experts, yet in areas such as language and vi
sion, the best programs can't even reproduce the behavior of two-year-old
children. This paradox becomes less suφrising when we observe that problems
such as vision have been attacked by evolution and natural selection over mil
lions of years, while games such as chess are relatively recent inventions and
performance in that domain doesn't convey any particular survival value.

197

198 Korf

1.1 Early History
The literature of heuristic search starts with an article by Claude Shannon, en
titled "Programming a Computer for Playing Chess" [Shannon, 1950]. Even
though he didn't actually implement a computer program, he laid out most of
the theory of heuristic search for two-player games.

One of the earliest AI programs was the Logic Theorist of Newell and
Simon [Newell et al, 1963]. The Logic Theorist proved theorems in proposi-
tional calculus using heuristic search.

Another very early effort, in the late 50s, was Samuel's pioneering pro
gram that played checkers as well as the best humans [Samuel, 1963]. What
was especially notable about Samuel's program was that it was one of the first
machine leaming programs. It automatically improved its play with experience.

Other heuristic search programs prior to 1960 include Gelernter's
geometry theorem proving machine [Gelemter, 1963], Slagle's symbolic inte
gration program [Slagle, 1963], and Tonge's assembly-line balancing proce
dure [Tonge, 1963].

Thus, search is as old as AI, with the original efforts in artificial intel
ligence aimed at higher-level reasoning and problem solving [Newell, 1969]. It
was thought at one point that expert performance would emerge from very
general problem solving algorithms, the so-called weak methods. That view has
shifted somewhat to focus on more knowledge-intensive efforts, but it 's still
the case that one of the important goals of AI is to develop and analyze general
problem solving paradigms. Heuristic search is still one of the most successful.

1.2 Problem Types
The classic problems that have been attacked by search algorithms fall into
three general classes: path-finding problems, two-player games, and constraint-
satisfaction problems.

Canonical examples of pathfinding problems include puzzles such as the
Eight Puzzle and Rubik's Cube, and the Traveling Salesman Problem. These
are called pathfinding problems because the task is to find a sequence of opera
tions that map an initial state to a goal state. Theorem proving is another ex
ample of a pathfinding problem, since the task is to find a sequence of primi
tive deductions that map the given state of knowledge of the problem to the
statement to be proven.

Another class of search problems is two-player games. While chess,
checkers, and othello have received the most attention by AI researchers,
others including backgammon and go have been studied.

Constraint satisfaction is the third category of search problems, and forms
a third parallel thread of the search enteφrise. The classic example of a con
straint-satisfaction problem is the Eight Queens Problem. The task is to place

Chapter 6 Search: A Survey of Recent Results 199

eight queens on a chessboard, such that no two queens are attacking each other
along the same row, column, or diagonal. Another example is map coloring,
where the task is to color the regions of a map with a minimum number of
colors so that no two adjacent regions have the same color.

Research in all three of these areas has proceeded in parallel but somewhat
independently, even though there are strong similarities among them. One of
the open research problems is to unify all three areas into a single theory of
heuristic search. We are closest to this goal with respect to path-finding prob
lems and two-player games, and steps toward unifying these two will be dis
cussed later.

This represents a top-level view of heuristic search. We will discuss path-
finding algorithms in some depth, and treat two-player games and constraint
satisfaction problems in less detail. This is less an indication of the relative im
portance of the areas than a reflection of the interests and expertise of this
author. In any case, many of the same concepts that emerge from path-finding
algorithms also surface in two-player games and constraint-satisfaction algo
rithms as well, and need not be revisited in each domain.

1.3 Problem Spaces
Why is search considered such a fundamental notion in AI? The reason is the
problem space hypothesis, due to Allen Newell and Herbert Simon [1972]. The
strong version of the hypothesis [Newell, 1980] says that all goal-oriented
symbolic activity occurs in a problem space. The claim is that search in a prob
lem space is a completely general model of intelligence. The General Problem
Solver [Newell and Simon, 1963] was an early implementation of the theory,
and the latest instantiation is the SOAR system [Laird et al., 1987], which
completely embraces the problem space model, and seriously pursues the idea
that everything that we think of as exhibiting intelligence can be cast as search
in a problem space.

A problem space consists of two components: a set of states and a collec
tion of operators. The states of the problem are configurations of the world or
of the problem to be solved. The operators are the actions that map one state of
the world to another state.

In addition to a problem space, a problem instance is a particular problem
to be solved. A problem instance can be viewed as a problem space together
with two additional components, an initial state that one starts out in, and a set
of goal states or desired configurations of the world.

To be more precise, there are actually two different ways of characterizing
a goal state. One is to explicitly give the goal state. For example, in a problem
such as Rubik's Cube, the goal state is explicitly specified as that particular
state in which every side of the puzzle shows only a single color. Another way
of describing the goal state is to give a test for the solution. For example, in

200 Korf

the Eight Queens Problem, the goal state isn't given explicitly, since there
wouldn't be any problem if it was. Rather, a test or criteria for determining if
one has reached the goal is given, namely that eight queens be on the board
such that no two are attacking each other. Thus, all that is really needed is a
test for a goal state, with an explicit goal state being a special case of such a
test.

The task, in the pathfinding model, is to find a sequence of operations that
maps the initial state to the goal state. The notion of search comes from the
fact that in general there is more than one operator that can be applied to a
given state. In order to find a solution, a systematic trial and error procedure is
applied until a goal is reached.

If it were the case that from any given state there was exactly one operator
to apply, then the problem would be quite easy. At any given state, one would
simply determine which operator to apply, apply that operator, and continue
until the problem was solved. A "search" in which exactly one operator is ap
plicable to each state, is often called an algorithm. One can view search tech
niques as extending from brute-force techniques, where there is no information
as to which operator to apply, to deterministic algorithms, in which there is
sufficient knowledge of the problem to determine exactly what operator to
apply to each state.

One normally doesn't think of sorting a list of numbers, for example, as a
search problem. It does, however, exist in a problem space. The states are the
different possible permutations of the list, the initial state is the current permu
tation of the elements, and the goal state is the sorted permutation. The opera
tors might be to swap two elements, for example. What distinguishes this prob
lem from traditional search problems is that we have enough knowledge of the
problem that we know exactly which operator to apply at each stage to get to a
solution. This knowledge is typically expressed as a deterministic algorithm for
sorting.

While the problem space is a fairly general model, it will be illustrative to
instantiate it with several examples. The first is the problem of road navigation,
where the task is to plan a route to drive from one point to another on a net
work of roads. The states are the different locations one could be in. The
primitive operators are sections of road between two adjacent intersections. A
primitive operator is an operator that, when applied, doesn't admit any interme
diate states from which other operators can be applied. Given that definition of
a primitive operator, then a section of road between two adjacent intersections
becomes a primitive, since we're not allowed to get off between intersections
or drive on the sidewalk.

The initial state in such a problem is where we start out, and the goal state
is where we want to end up. The reason that the problem is interesting is that
for most intersections, there's more than one road to take. The problem is to
find the right sequence of roads to get from the initial state to the goal state.

Chapter 6 Search: A Survey of Recent Results 201

1.4 Search Trees
The standard abstraction of a problem space is a search graph. The nodes of
the graph represent the states, and the edges of the graph represent the opera
tors. A search tree is a special case of a search graph. The difference is that in
general a graph may have cycles whereas a tree has no cycles. Most problems
that we're actually interested in will have a graph stmcture, such as the net
work of roads in an area. Any graph, however, can be modelled by a tree, at
the cost of introducing some duplicate nodes. When a cycle is encountered,
two paths lead to the same state, but in the tree representation, that state will be
represented by two different nodes diat are different instances of the same data
stmcture. Thus, any graph can be represented as a tree, with a consequent in
crease in die number of nodes. It 's a reasonable simplification if there are few
cycles in die graph or if they're fairly long. It 's unreasonable if there are a very
large number of fairly small cycles. The advantage of the tree stmcture over a
general graph is that the absence of cycles simplifies many of the search algo
rithms.

Two important parameters of a search graph are called the branching fac
tor and the depth. The reason they're important is that the performance of most
search algorithms is characterized in terms of these parameters.

The branching factor is essentially the number of choices available at a
given node. The branching factor of a node is the number of operators that can
be applied to diat node to yield a new state. Typically, die operator used to
generate the given state is excluded, even if it 's invertible. In other words, we
look at the number of new states that can be generated from a particular node.
In general, we're interested in an average branching factor computed by aver
aging die branching factors of all the nodes in the graph.

The other parameter of interest is the depth of the solution. The depth is
the length of the shortest solution path, in terms of number of operator applica
tions. Taken togedier, the branching factor and the depdi characterize the diffi
culty of performing a search in a particular problem space.

Figure 1 is an example of a search tree. This is a classic problem called
the Eight Puzzle. The puzzle is a 3 χ 3 frame of movable square tiles, with one
empty position called the blank. The legal operators are: to move a tile which
is horizontally or vertically adjacent to the blank position into that position.
The task is to rearrange die tiles from some given initial configuration to a par
ticular goal configuration.

In the figure, we find nodes with branching factors of four, two, and one.
The average branching factor for diis problem tums out to be the square root of
three, or about 1.7. If one of die nodes in die bottom row of the figure were the
goal state, then the depth of solution for this problem instance would be three
moves.

202 Korf

1 2 3
8 4
7 6 5

1 1̂
8 2 4
7 6 5

/ / \
\

1 3 1 3
8 2 4 8 2 4
7 6 5 7 6 5

8 1 3 1 3 4
2 4 8 2

7 6 5 7 6 5

1 2 3
8 4
7 6 5

1 2
8 4 3
7 6 5

1 2
8 4 3
7 6 5

1 2 3
8 4 5
7 6

1 2 3
8 4 5
7 6

1 2 3
8 6 4
7 5

/ \ / Λ / Λ / \

1 2 3
8 6 4

7 5

1 2 3
6 4

8 7 5

/ \

1 2 3
8 6 4
7 5

1 2 3
8 6
7 5 4

1 2 3
8 4

7 6 5

2 3
1 8 4
7 6 5

2 3
1 8 4
7 6 5

1 2 3
7 8 4

6 5

1 2 3
7 8 4
6 5

F/£fur9 1 Eight Puzzle Search Tree

John Gaschnig [1979] called the Eight Puzzle the Drosophila or fruit fly of
search in AI. The reason is that this toy problem serves as a useful experimen
tal test bed for research on search algorithms. The features of this problem that
make it suitable for such a role are that it is extremely simple to represent and
manipulate, yet no efficient algorithms are known for finding optimal solutions.
In fact, the generalization of the problem to arbitrary sizes was recently shown
to be NP-complete [Ramer and Warmuth, 1986]. There do, however, exist
heuristic evaluation functions that dramatically improve search efficiency in
this problem.

1.5 Search Efficiency
The efficiency of algorithms is the central concem in heuristic search. The rea
son is that search is a completely general problem-solving algorithm. Any
problem that can be formulated in a problem space can be solved by a search
algorithm. Given claims for generality of problem spaces, then search becomes
a very general mechanism for intelligence. What limits the applicability of

Chapter 6 Search: A Survey of Recent Results 203

heuristic search is the efficiency with which it can be performed. Thus, the
central issue in search research, including single-agent problems, two-player
games, and constraint satisfaction, is efficiency. The efficiency of search algo
rithms is typically measured along three dimensions: the cost of the solution
generated, the time required for the search, and the memory required for the
search.

If all of the edges or operators of the problem space have the same cost,
then solution cost is characterized by the length of the solution path. More
generally, however, operators may have different costs. For example, different
sections of road may have different lengths or require differing amounts of
time or fuel to traverse. In that case, all die relevant costs are lumped into a
single parameter for each operator, depending on some utility function. The
cost of a solution, then, becomes the sum of the edge costs along the corre
sponding path. An optimal solution is one whose cost is less than or equal to
the cost of all possible solutions to a given problem instance.

Two other important measures of efficiency are the amount of time the al
gorithm takes to find the solution, and the amount of memory required to
successfully execute the algorithm. The cost of the solution should not be con
fused with the time required for search. Even though they may be measured in
the same units, in one case we're looking at the amount of time to plan a solu
tion, whereas in the other case we are concemed with the cost of actually ex
ecuting that solution.

1.6 The Knowledge Dimension

As mentioned above, the original goal of AI was to develop completely general
problem-solving algorithms that would apply across a wide spectmm of
domains. What has been discovered in almost every area of AI, however, is
that in order to achieve better performance, one often needs more domain-
specific knowledge. This gives rise to a spectmm of algorithms along what can
be called the knowledge dimension. This spectmm ranges from very general
and hence knowledge-poor algorithms to very specific but knowledge-rich
methods. It amounts to the familiar trade-off between generality and power.

Search algorithms tend to be found near the general and knowledge-poor
end of the spectmm. Even so, different search algorithms differ in their posi
tion on this spectmm. Three convenient points to discuss, in increasing order of
knowledge, are the bmte-force searches, the heuristic searches, and various ab
straction techniques.

A bmte-force search algorithm can be characterized as an algorithm that
uses no knowledge about the problem other than the problem space itself In
other words, the set of states, the set of operators, the initial state, and a test for
the goal state. As one would expect, these are very general but very inefficient
algorithms.

204 Korf

The next point in the knowledge dimension includes heuristic search algo
rithms. The notion of heuristic search is to add a small amount of additional
domain-specific information. That information, called a heuristic evaluation
function, estimates the likelihood of success or the distance to the goal. These
functions will be discussed in more detail below.

Many problem-solving techniques, such as subgoaling, macro-operators,
and abstraction, can be viewed as search algorithms. What distinguishes them
from more typical heuristic search algorithms is that other sources of knowl
edge are brought to bear. This also will be discussed in more detail.

2 Brute-Force Searches

We begin by looking at the brute-force search algorithms. A brute-force search
algorithm uses no knowledge other than a set of states, a set of operators, an
initial state, and a test for a goal. The classic algorithms are breadth-first
search, and depth-first search. We'll also discuss uniform-cost search and
depth-first iterative-deepening. Finally, we'll consider bidirectional search. In
the descriptions of the algorithms, the term generate means to create the data
structure corresponding to a particular node, whereas the term expand means to
generate all the children of a node.

2.1 Breadth-First Search
Figure 2 shows a search tree along with the order in which the nodes would be
generated by a breadth-first search. Breadth-first search explores the tree one
level at a time, generating all the nodes at a given depth before generating any
nodes at a greater depth.

Figure 2 Breadth-First Search

Chapter 6 Search: A Survey of Recent Results 205

What is the performance of breadth-first search? It should be clear that
once the algorithm generates a goal node, the length of the path from the initial
state to the goal node will be as short as possible. In this sense, breadth-first
search finds an optimal solution.

In order to determine the running time, or time complexity, of the algo
rithm, let b be the branching factor and d the solution depth. The running time
of the algorithm is proportional to the number of nodes generated, since each
node can be generated in a fixed constant amount of time. The number of
nodes at depth dis b^. The number of nodes one level up is two levels up
is b^"^, and so on. The limit of the sum of these terms as d goes to infinity
asymptotically approaches since all the smaller terms grow vanishingly
small in relation to the dominant term. We say that the asymptotic time com
plexity is of order ft^, or 0(b^).

The drawback of breadth-first search is its memory requirement. To run
this algorithm requires 0(b^) memory. The reason is that the space is propor
tional to the number of nodes saved, and in order to generate the next level of
the tree, the entire previous level of the tree must be stored in memory. In
practice, an implementation of breadth-first search on a typical computer usu
ally exhausts the available memory quite quickly. This is due to the ratio of
processor speed to the amount of memory on standard computer configura
tions. Computer designer Gene Amdahl is credited with coining what has been
termed "Amdahl's law": For every million instructions per second (MIP) of
processor speed, one needs approximately a million bytes of memory. This
rough guideline balances the processing speed and memory capacity of a com
puter system. It is also a fairly good empirical generalization, in that if one ex
amines a fairly wide range of machines, one finds for every MIP of processor
speed about a megabyte of memory. Let's assume that a new state can be
generated in a single instruction, and that it takes a byte of memory to store a
state. Under these assumptions, memory is exhausted in one second. If we
modify those numbers a little, then perhaps we run out of memory in ten sec
onds or a minute. In practice, however, breadth-first search tends to run out of
space before we run out of patience.

2.2 Uniform-Cost Search
In the above discussion, we assumed that all edges had the same cost. If that is
not the case, then breadth-first search can be generalized to uniform-cost
search. Instead of expanding nodes in order of their depth from the root, uni
form-cost search generates nodes in order of their total cost from the root.
Thus, at each step the next node expanded is the one whose total cost from the
root is lowest. If all edge costs are the same, then uniform-cost search degener
ates to breadth-first search, and hence its performance is entirely analogous to
that of breadth-first search. This algorithm is also known in the computer

206 Korf

science community as Dijkstra's single-source shortest-path algorithm on a
graph [Dijkstra, 1971]. It also suffers the same memory constraint as breadth-
first search.

2.3 Depth-First Search
An algorithm that remedies the memory limits of breadth-first and uniform-
cost search is depth-first search. Figure 3 shows the order in which nodes
would be generated by a depth-first search. While breadth-first search always
expands next the first unexpanded node generated, depth-first search always
generates next a child of the last node to be generated. Both algorithms can be
implemented using a list of unexpanded nodes, with the only difference being
that managing the list as a first-in first-out queue produces breadth-first search
whereas treating the list as a last-in first-out stack produces depth-first search.

The advantage of depth-first search is that its space requirement is propor
tional to the depth of the search. The reason is that the algorithm only needs to
store a stack of the nodes on the path from the root to the current node. Thus,
the memory is only linear in the search depth, as opposed to exponential for
breadth-first search. The time complexity of depth-first search is still 0{b^),
since it generates the same set of nodes as breadth-first search, but simply in a
different order.

The problem with depth-first search is that if the search tree doesn't have a
natural termination, such as the Eight Puzzle tree, for example, then the algo
rithm may never terminate. It will proceed down the first branch forever, un
less a solution happens to lie along that branch. In order to guarantee termina
tion on infinite trees, an arbitrary cutoff depth must be imposed, beyond which
the search will not extend.

Figures Depth-First Search

Chapter 6 Search: A Survey of Recent Results 207

The question is how to choose that cutoff depth. Ideally, the cutoff depth c
should equal the solution depth d, so that the solution will be found without ex
pending any additional effort. The difficulty is that the solution depth is almost
never known in advance of actually solving the problem. In fact, for problems
that are too large to be searched exhaustively, the worst case optimal solution
lengths are unknown. For example, in the Eight Puzzle, an exhaustive search of
the entire state space shows that no two states are more than 31 moves apart.
For a slightiy larger problem, such as the 4 χ 4 Fifteen Puzzle, the maximum
distance between a pair of states is unknown, since an exhaustive search of the
entire space is not feasible.

Given that the solution depth is not known a priori, a cutoff depth c must
be chosen. If c is less than d, the algorithm terminates without finding a solu
tion. If c is greater than d, then the first solution found may not be an optimal
one. This can be remedied by completing the search to the depth of the last so
lution found, and returning the best solution. In that case, however, a very large
price in mnning time may be paid relative to breadth-first search, since the
time complexity grows exponentially with search depth.

2.4 Depth-First Iterative-Deepening
Depth-first iterative-deepening (DFID) [Korf, 1985b] is a bmte-force search al
gorithm that resolves these problems. The intuition behind the algorithm is to
dynamically set the cutoff depth c. At first, c is set to a very small value, and
then incrementally increased until the solution is found.

1,4,11

Figure 4 Depth-First Iterative-Deepening

208 Korf

DFID first appears in the literature in a description of the Northwestern
Chess 4.5 program of Slate and Aticin [1977]. In a two-player game, a move
must be made after a certain amount of time, and moves based on incomplete
searches are very unreliable. The problem is how to set the search horizon so
that the search will complete just as a move must be made. Since that's very
difficult to do. Chess 4.5 first searched to a shallow horizon. If more time re
mained after that, the entire search was remn with a horizon of one move
deeper. These iterations continued until time ran out, at which point the move
recommended by die last completed search was made. The application of DFID
to single-agent problems was discovered independentiy by several researchers
[Stickel and Tyson, 1985; Kori^, 1985b].

The algorithm consists of a sequence of depth-first searches. The first it
eration has a depth cutoff of one. If the solution is found, the algorithm termi
nates. Otherwise, die depth cutoff is increased by one and a complete depth-
first search to the new depth is performed, ignoring the results of the previous
search. While this seems a bit wasteful, we'll see below that it has a minimal
impact on performance. The iterations continue, increasing the cutoff depth by
one each time until the solution is found. Figure 4 shows the order in which
nodes would be generated by a depdi-first iterative-deepening search. Note that
many nodes are generated by more than one iteration.

The first diing to observe about DFID is diat the solution lengths it pro
duces are optimal. One way to see diis is diat die order in which this algoridim
generates new nodes is the same order as that of breadth-first search. In other
words, with each iteration, another level of the tree is generated for the first
time. Thus, once a solution is found, it's a shortest solution. If all edge costs
are the same, this translates to an optimal solution. If the edge costs differ then
DFID must be modified by replacing depth increments with cost increments.
This modification will be discussed further in the context of heuristic search.

Since at any given point DFID is performing a depth-first search, it only
maintains a stack of nodes. Furthermore, since the algorithm terminates when it
finds a solution at depth d, the stack will never grow deeper than d. Thus, the
memory required by DFID is linear in the solution depth d.

The remaining issue is the search time. On the surface it seems to be a
very wasteful algoridim, since a large number of nodes are regenerated in each
iteration. In fact, all the nodes except those at die final search frontier are
generated more than once. This doesn't affect the asymptotic performance,
however, because in an exponentially growing tree, most of the nodes are on
the bottom level. Thus die extra work in the shallower levels doesn't affect the
asymptotic complexity. Even with a branching factor of two, the number of
nodes in the bottom level is one greater than all the nodes higher in the tree.
With larger branching factors, die ratio is much higher.

One way of seeing that the asymptotic time complexity of DFID is 0(b^)
is that the final iteration has an asymptotic complexity of Οφ^) since it 's a

Chapter 6 Search: A Survey of Recent Results 209

depth-first search to depth d. The next to last iteration has a time complexity of
0(b^~^) since it 's a depth-first search to depth d - 1 , and similarly for the re
maining iterations. Summing each of these terms results in an overall asymp
totic time complexity of 0(b^) for DFID.

We can also prove that this algorithm is the best one can do under the as
sumptions of brute-force search. The precise statement of the theorem is that
DFID is asymptotically optimal in time and space over all brute-force shortest
path algorithms on a tree. Without going into all the details [Korf, 1985b],
here's a sketch of the proof. The fact that it doesn't use any additional knowl
edge and finds an optimal solution qualifies it as a brute-force shortest path al
gorithm.

The time it takes is 0(b\ How do we know that there isn't some other al
gorithm that is guaranteed to find an optimal solution and takes less time?
Well, assume that there is such an algorithm. Since it takes less than b^ time,
this hypothetical algorithm must examine less than b^ nodes. Then there must
be at least one node at depth d in the tree that the algorithm doesn't exanune.
What we do is construct a problem in which the only solution is that one node
that our algorithm misses, and hence it won't find the solution to that problem.
Thus, our algorithm fails on at least one problem, disqualifying it from con
sideration. Therefore, any algorithm must take b^ time.

The memory required by DFID is 0(d), Again, how do we know that there
isn't some algorithm that solves the same problem but uses less memory?
From the above argument, we know that any algorithm for this problem has to
take b^ time. A simple result from complexity theory says that any algorithm
that takes f(n) time must use at least log fin) space [Hopcroft and Ullman,
1979]. The reason is that in order to táktfin) time and then terminate without
looping, the algorithm must be able to store fin) distinct machine states, which
requires log fin) bits of storage. Since any algorithm for our problem must take
b^ time, then it must use log b^ or d space.

2.5 Backward Chaining

Since DFID is the best one can do without additional constraints on the prob
lem, it's time to start adding such constraints. The first step in that direction
leads to backward chaining. The idea of backward chaining is that instead of
searching forward from the initial state to the goal state, one can search back
ward from the goal state until the initial state is reached. What's required to do
backward chaining is an explicit goal state. One can't perform backward chain
ing on a problem such as the Eight Queens Problem, since we don't have an
explicit goal state to work backward from. All we have is a test for the goal.
Similarly, one can't do backward chaining on chess since there are a very large
number of goal states or checkmate positions.

210 Korf

Given an explicit goal state, as in the Eight Puzzle for example, one can
perform backward chaining. For problems such as the Eight Puzzle, in which
forward and backward branching factors are the same, the search is equally
efficient in either direction, hence it doesn't matter which direction one
searches.

Other problems, however, have different forward and backward branching
factors. Given a graph where the backward branching factor is less than the
forward branching factor, then backward chaining is a good idea. The reason is
that the solution depth is the same in either case, but the complexity of the
search is a function of the branching factor and the solution depth.

An example where this occurs is the problem of theorem proving. In
theorem proving, forward chaining amounts to starting with what's given in a
particular problem, along with the axioms of the system, and seeing what can
be deduced by the application of a single rule of inference. In general, there's a
very large number of things that can be proved in one step from a given state
ment of a problem, most of them irrelevant to the particular problem at hand.

Backward chaining, on the other hand, corresponds to taking the statement
that is to be proved, and determining what will allow us to conclude that state
ment in a single inference step. In theorem proving, backward chaining is al
most always used in preference to forward chaining. The reason is that, in
general, there are relatively few things that will imply a given statement in a
single inference. Thus the backward branching factor is less than the forward
branching factor, and backward chaining is more efficient.

2.6 Bidirectional Search
Even if the forward and backward branching factors are the same, one can
combine forward chaining and backward chaining to produce bidirectional
search. The study of bidirectional search was pioneered by Ira Pohl [1971].

The idea is to search forward from the initial state and backward from the
goal state until the search frontiers meet in the middle. In principle, the two
searches occur simultaneously, but in practice the algorithm timeshares be
tween the two searches.

Bidirectional search still guarantees an optimal solution. By the time that
each search reaches a depth of half the optimal solution, the frontiers will con
tain the end points of all paths of that depth, including two paths that together
form an optimal solution. Tliey will have a single node in common and the al
gorithm will return an optimal solution.

The time complexity of bidirectional search is significanüy less than that
of unidirectional search, however. Since two searches are performed to half the
solution depth, the time is 0{2b^\ which is 0(b^). Thus, bidirectional
search cuts the exponent of the search time in half, a very significant savings.

Chapter 6 Search: A Survey of Recent Results 211

The cost of that improvement, however, is memory. To implement a bi
directional search, at least one of the search frontiers must be stored in memory
in order to know when a match has been found with the other search frontier.
While the naive implementation stores them both, one can store only one and
perform a depth-first search in the other direction. The memory required to
store one of the frontiers is 0(b^^).

Interestingly, multiplying the time and the space requirements of bi
directional search results in 0(b\ which is the time requirement of uni
directional search. Thus, one way to think about bidirectional search is that it
provides a multiplicative space-time trade-off. For problems and machines in
which sufficient memory is available, bidirectional search reduces the amount
of time drastically. The limiting factor, however, is memory, as is the case with
breadth-first search. In both cases, the time and space complexities are equal,
typically resulting in memory being exhausted before time.

2.7 Combinatorial Explosion
The problem with all bmte-force search algorithms is that their time complexi
ties grow exponentially with problem size. This is called combinatorial explo
sion, and its effect is that the size of problems that can be solved with these
techniques is quite limited. For example, the Rubik's Cube problem space con
tains approximately 4 χ 10^^ nodes. If we want to solve this problem with
bmte-force search, even if we assume that we can manipulate a computer
model of the puzzle at a rate of a million twists per second, on the average it
would take almost a million years. Even worse, the complete chess tree is esti
mated to have about 10^^^ nodes in it. Even relatively small problems, such as
the Fifteen Puzzle, generate search spaces that are large enough, ten trillion
nodes in this case, to render bmte-force search techniques completely impracti
cal.

3 Heuristic Search

The standard AI technique for coping with combinatorial explosion is to add
more knowledge to reduce the complexity. Heuristic search adds a small
amount of knowledge to a problem space. Suφrisingly, a small amount of
knowledge often has a fairly dramatic effect on the efficiency of a search algo
rithm.

The term heuristic search has two somewhat different meanings in the AI
literamre: a general meaning, and a more specialized technical meaning. In a
general sense, the term heuristic is often used for any advice or mle of thumb
that is often effective, but isn't guaranteed to work in every case. For example.

212 Korf

to drive from one point to another, a good heuristic is to select roads that go in
the direction of the goal. While diis is certainly a good general rule, it often
must be violated due to various constraints. Much of artificial intelligence can
be characterized as a collection of heuristic techniques of one sort or another.

3.1 Heuristic Evaluation Functions
In the heuristic search literature, however, the term heuristic has a more
specialized technical meaning. In this context, a heuristic is a function that
takes a state as an argument and retums a number that is an estimate of the
merit of that state widi respect to the goal. In the case of a single-agent prob
lem, a heuristic is a function that retums an estimate of the cost of reaching the
goal from a given state. In a two-player game, it is loosely inteφreted as the
relative strength of a position for one player or the other.

For example, in the road navigation problem, a standard heuristic evalua
tion function is the Euclidean or airline distance from a given state to the goal,
which is an estimate of die distance to the goal in die road network. The reason
it's only an estimate is that the road network prevents the problem solver from
travelling direcdy as the crow flies. Euclidean distance does provide a rea
sonable estimate, however, and can be computed very efficientiy. Given the χ
and y coordinates of the given state and the goal state, the Euclidean distance
can be computed in constant time.

The important properties of a heuristic evaluation function are that it pro
vide a reasonable estimate of the merit of a node, and that it be inexpensive to
compute. One could compute the actual value of a node by solving the entire
problem, but that would be prohibitively expensive. A key empirical result of
heuristic search is that the trade-off of computational complexity versus ac
curacy of heuristic functions is very favorable. That is, giving up a small
amount of accuracy often dramatically reduces the complexity of computing an
estimate.

An example of a heuristic evaluation function for the Eight Puzzle is Man
hattan distance. Manhattan distance is computed by determining, for each in
dividual tile in die puzzle, how many grid units that tile is away from its goal
position, and summing those values over all tiles.

An important property that both of these evaluation functions share is that
they never overestimate actual distance. Airline distance never overestimates
the road network distance between two points, since the shortest path between
a pair of points is a straight line. Similarly, Manhattan distance never overesti
mates the actual number of moves necessary to solve an instance of the Eight
Puzzle, since every tile must be moved as many times as its distance in grid
units from its final position.

Another type of heuristic evaluation function is an estimate of the prob
ability that a node will lead to a solution. In a situation where one has both an

Chapter 6 Search: A Survey of Recent Results 213

estimate of the probability of success and an estimate of the cost required to
achieve it, Simon and Kadane [1975] have shown how to combine the two into
a single evaluation function. Specifically, nodes should be ordered by the ratio
of their probability of success to the cost of realizing it.

An important emphical result is that a wide range of different problem
domains naturally give rise to heuristic evaluation functions. In other words,
one can often find functions that are inexpensive to compute and give reliable
estimates of the relative merits of different states. The main research issue is
the design of algorithms that effectively use such functions to reduce the time
complexity of search.

3.2 A* Algorithm
The classical algorithm for single-agent heuristic search is called A* [Hart et
al., 1968]. The algorithm makes use of a heuristic evaluation function, labelled
h(n). If η is a node, then h(n) returns the heuristic estimate of the cost of reach
ing the goal fi-om node n. In addition, g(n) is the actual cost incurred in going
from the initial state to node Λ. The figure of merit that A* uses for a node,
f(n), is the sum of these values, or f(n) = g(n) + h(n). In other words, the merit
of a node is the sum of the cost incurred in reaching that node from the initial
state plus the estimate of the remaining cost to reach the goal from that node.
The reason for this particular combination is that it represents the estimate of
the total cost of a solution path from the initial state to a goal state that is con
strained to go through node n,

A* is a best-first search algorithm. It maintains an OPEN list of unex-
panded nodes, sorted by cost, which contains only the initial state at first. At
each cycle of the algorithm, a node on OPEN whose cost, fin), is lowest is
chosen for expansion and removed from OPEN. It is expanded by generating
each of its children, evaluating them according to the cost function, and insert
ing the children into the OPEN list. This continues until a goal state is chosen
for expansion.

An important and well-known result is that if the heuristic function never
overestimates actual cost, then when A* terminates it will have found an opti
mal path to the goal [Hart et al., 1968]. For example, if A* is used on the road
navigation problem with Euclidean distance for the evaluation function, since
Euclidean distance never overestimates road distance, then it will find a short
est route from the initial state to the goal. What 's suφrising about this result is
that even though it makes use of inexact information, it still finds optimal solu
tions.

A more recent result [Dechter and Pearl, 1985] concerns the optimality of
A* in terms of time to find a solution as opposed to the cost of executing the
solution. Informally, it says that A* is the fastest algorithm for finding optimal
solutions, for a given non-overestimating heuristic function. What this means is

214 Korf

that the A* cost function,/("/zj = g(n) h(n), is the best way of combining the
heuristic information with the other information available.

The drawback of A is the same as that of breadth-first search, namely its
memory requirement. In every cycle of the algorithm, a new node is expanded,
and its b children are added to the OPEN list, where b is the branching factor.
Thus every cycle of the algorithm increases the size of the OPEN list by b-l
nodes. The space complexity of A*, or of any other best-first search, is asymp
totically the same as its time complexity. As mentioned previously, this causes
memory to be exhausted rather quickly on typical computer configurations.

3.3 IteratlveOeepening-A*

How do we get around this space limitation without sacrificing solution opti-
mality or time complexity? The trick is to employ the same idea we used
before for breadth-first search, namely iterative-deepening. The algorithm,
called iterative-deepening-A* (IDA*) is similar to depth-first iterative-deepen
ing, with the difference being the cutoff criterion [Korf, 1985b].. In the brute-
force case, a path is cutoff when its depth exceeds a threshold c. In the heuris
tic case, a path is cutoff when its total cost,/fAi; = g(n) + h(n), exceeds a cost
threshold.

IDA* starts with an initial threshold equal to the heuristic estimate of the
distance from the initial state to the goal. Each iteration of the algorithm is a
pure depth-first search, cutting off a branch when its f(n) value exceeds the
threshold. If a solution is expanded, the algorithm terminates. Otherwise, the
threshold is increased to the minimum / value that exceeded the previous thre
shold, and another complete depth-first search is started from scratch. This
continues until a solution is found within the cost threshold.

As in the case of A*, if the heuristic never overestimates actual cost, then
IDA* will find an optimal solution. The virtue of IDA* is that its space com
plexity is linear in the solution depth instead of exponential. The reason is that
at any point, the algorithm is executing a depth-first search, which requires
only linear space. Furthermore, by the same argument used above for depth-
first iterative-deepening, the space complexity of IDA* is asymptotically opti
mal. For example, while A* requires far too much space to solve typical in
stances of the Fifteen Puzzle on current machines, IDA* can effectively solve
this problem.

Finally, as was the case with depth-first iterative-deepening, IDA* is
asymptotically no slower than A*. In the last iteration, the one that finds a so
lution, IDA* does the same amount of work as A*. In previous iterations, it
does extra work that is wasted. But again, as long as the tree grows exponen
tially, most of die work goes into the final iteration. One can prove that under
these conditions, IDA* generates asymptotically the same number of nodes as
A*.

Chapter 6 Search: A Survey of Recent Results 215

A suφrising empirical result is that, even though IDA generates more
nodes than A*, it actually runs faster in practice than A'^. The reason is that
IDA* incurs less overhead per node. In addition, IDA* is easier to implement
than A* since it is a depth-first search instead of a best-first search.

Combining the results on the time optimality of A* with the asymptotic
time equivalence of IDA* allows us to conclude that, for a given non-overesti
mating heuristic function, IDA* is asymptotically optimal in time and space
over all algorithms that are guaranteed to find shortest paths on an exponential
tree.

One caveat that should be mentioned is that these results are for exponen
tially growing trees. If a problem space is not a tree, nor closely approximated
by a tree, but rather contains many short cycles, then IDA* and DFID mn into
the same problem as any depth-first search algoriöun. In particular, a depth-
first search must explore all paths to a given node. Given a graph with a large
number of cycles, there may be a large number of paths to any given node.
Strictiy speaking, therefore, our results for IDA* and DFID only apply on an
exponential tree. In practice, however, as long as cycles in the problem space
are relatively few and relatively long, then these algorithms are still effective.

3.4 Running Time of Heuristic Search
The reason that A* and IDA* are useful is that by using the information in the
heuristic evaluation function, they are able to find solutions by examining a
much smaller number of nodes than a bmte-force search would. As a result,
heuristic searches mn much faster tíian bmte-force algorithms and are able to
solve larger problems within practical time constraints. This raises the obvious
question of how much faster heuristic search is than bmte-force search. The
short answer is that the speed of the algorithm is a function of the accuracy of
the heuristic function. The more accurate the heuristic function, the faster the
algorithm. The problem really is to characterize the relationship between heur
istic accuracy and time complexity.

The problem of trying to quantitatively characterize this relationship is one
that has received a great deal of attention by Pearl [1984] and others. An easy
and instmctive way of approaching this is to examine various limiting cases.
For example, if the heuristic evaluation function is exact, then A* mns in linear
time. It goes straight to the solution, expanding only those nodes on an optimal
path. Conversely, given a useless heuristic evaluation function, such as one that
estimates zero everywhere, then A* degenerates to uniform-cost search, which
has exponential complexity.

In between these two extremes are two other simple cases. If the heuristic
function has constant absolute error, meaning that it never underestimates by
more than a constant amount regardless of the magnitude of the estimate, then
the mnning time of A* is linear in the solution depth [Gaschnig, 1979]. A more

216 Korf

realistic assumption, however, is constant relative error, which means that the
error is a fixed percentage of the quantity being estimated. In that case, the
mnning time of A* is exponential [Pohl, 1970].

In general, the time complexity of A is an exponential function of the
error. If the error is constant, then a base raised to a constant exponent is still a
constant. If the error is linear, as is the case with constant relative error, then a
base raised to a linear exponent is an exponential function.

The difference is that, even though the complexity may be exponential, the
base of the exponent will be significantiy reduced by an accurate heuristic
function. This means that one can solve larger problems with heuristic search
than with bmte-force search. For example, on current computers, bmte-force
search is sufficientiy powerful to solve the Eight Puzzle in a reasonable amount
of time, but not its larger relative die Fifteen Puzzle. Widi a heuristic function
such as Manhattan distance, the Fifteen Puzzle can be solved with IDA* in rea
sonable time on current machines. On the other hand, even though the heuristic
allows somewhat larger problems to be solved, it doesn't allow the optimal so
lution of significantiy larger problems, because of the limitation of exponential
complexity. For example, IDA* with the Manhattan distance heuristic function
is not powerful enough to find optimal solutions to the 5 x 5 Twenty-Four
Puzzle.

Summarizing then, the good news is that IDA* is the best we can do for a
given heuristic function. The bad news is that it often isn't good enough. The
problem is that optimal heuristic searches don't actually defeat exponential
complexity, but merely delay its effects.

4 Abstraction

In order to reduce exponential problems to polynomial complexity, we need to
add more knowledge. Examples of die kinds of knowledge that can be utilized
include subgoals, macro-operators, and abstract problem spaces [Korf, 1987].
We will briefly mention subgoals and macro-operators, and then discuss ab
straction in more detail.

One caveat is that in using any of these techniques, we almost always
sacrifice solution optimality. All of these methods involve solving a problem in
multiple steps, and even if the individual steps are locally optimal, there is no
guarantee that their combination will be globally optimal. One way of viewing
this is that the loss of solution optimality is an unavoidable cost of reducing
complexity.

The idea of subgoaling is that instead of solving a problem direcdy, we
break the problem down into a sequence of subgoals, solve the subgoals one at
a time, and then merge the solutions to the subgoals into a solution to the

Chapter 6 Search: A Survey of Recent Results 217

original problem. Subgoaling is used to solve almost every complex problem
and dramatically reduces the time required to fínd a solution.

A macro-operator is a sequence of primitive operators that are stored and
applied as if they were a single operator [Korf, 1985a]. A good example of
their use is in road navigation. When one first moves into a new area, a search
must be performed, either on a map or on the roads directly, to find a good
driving route between home and work. After living in an area for a while,
however, this search need not be repeated for every trip. Rather, one stores the
route and repeats it from memory. The route may involve a fairly complex
sequence of turns and utilize many different roads, but it is stored and executed
as if it were a single operator. The result is to improve the efficiency of solving
this task. As one becomes more familiar with an area, a large number of these
different macro-operators are leamed and stored, allowing navigation with al
most no search.

4.1 Single Level Of Abstraction
The idea of abstraction is that given a complex problem, one should at first ig
nore the low-level details of the problem and concentrate on the essential fea
tures, and then fill in the details later. Again, road navigation provides an ex
cellent example. Consider the problem of finding a driving route between an
address in Los Angeles and an address in New York. Given the size and den
sity of the U.S. road network, brute-force or even heuristic search would re
quire a significant amount of time to solve this problem. But we can do it quite
quickly by hand. What we do first is consult a map of the Interstate Highway
System. Since this is a much sparser problem space, we very quickly find a
route in the Interstate System ft-om the L.A. area to the N.Y. area. This leaves
two subproblems to be solved. One is to find a route from the starting address
in L.A., and the second is to find a route from the interstate in N.Y. to the
destination address. These problems are also relatively easy since the distance
that must be covered in each case is quite small. Thus, by ignoring the detail of
all the roads in the country and first focusing only on the Interstate System,
and then solving the relatively small problems of getting to and from the inter
state, the overall complexity of the problem is greatly reduced. In this example,
the Interstate Highway System serves as a more abstract problem space than
the complete road network.

The idea of abstraction is well known. It is described in George Polya's
book How to Solve it [Polya, 1945], a veritable fountain of ideas about problem
solving. One of the first AI programs to make use of it was Earl Sacerdoti*s
NOAH system [Sacerdoti, 1974]. He found empirically that in robot problem
solving, abstraction produces a large reduction in problem complexity.

How much does abstraction improve search performance in general? We'll
answer this question by comparing it to brute-force search. In a brute-force

218 Korf

search we don't have any knowledge to distinguish one state from another,
other than the goal state, so all we can do is blindly examine one state after
another until we stumble upon the goal. In the worst case, we'll have to look at
all the states in the space, and in the average case we'll have to examine half
of them. Thus the complexity of bmte-force search is linear in the number of
states in the problem space, which is usually an exponential function of the
problem size.

The performance of a search using an abstract problem space depends on
the density of the abstract space relative to the original problem space. By per
formance we mean the time required to find a solution, rather than the cost of
executing that solution. What makes this problem interesting is that the two
boundary conditions of density are equivalent to bmte-force search. At one end
of the spectmm is an abstract space that is so sparse that in the limit it doesn't
exist at all, and hence the search must occur in the original space. At the other
extreme is an abstract space that is so dense that it becomes equal to the origi
nal space. In tiiat case as well one is stuck with searching in the original prob
lem space. If abstraction is to help at all, there must be an optimal level of
detail in between these two extremes.

One can prove that the optimal level of detail is for the number of states in
the abstract space to be the square root of the number of states in the base
space [Mackworth, 1977]. The effect of such an optimal abstraction is to re
duce the mnning time to find a solution from linear in the number of states, to
on the order of the square root of the number of states in the problem space.

4.2 Multiple Hierarchical Levels of Abstraction
Since one application of abstraction reduces the complexity of a search, will
multiple applications reduce it even more? The idea is that given an abstract
problem space, we could create yet a more abstract problem space on top of it.
For example, in the road navigation problem, instead of having just a single
level of abstraction tiiat is the interstate highways, there are multiple hierarchi
cal levels of abstraction, such as the interstate highways, tiie federal highways,
state highways, county roads, municipal streets, etc. To solve a problem, we
start with the base space and successively work our way up the abstraction
hierarchy, and then work our way back down again into the base space.

Witii multiple hierarchical levels of abstraction, one can ask what is the
optimal number of levels, what should the ratios of successive levels be, and
what is Uie performance of tfie resulting problem solving. The answer is that an
optimal abstraction hierarchy has log η levels where η is the number of states
in tiie original space. Furtiiermore, in an optimal hierarchy the ratios of die
number of states between successive levels is a constant. Finally, the mnning
time of problem solving in such an optimal abstraction hierarchy is reduced

Chapter 6 Search: A Survey of Recent Results 219

from hnear in the number of states to logarithmic in the number of states
[Korf, 1987].

What's interesting about this result is that if the number of states is an ex
ponential function of problem size, then using multiple hierarchical levels of
abstraction actually defeats the combinatorial explosion, reducing the complex
ity as a function of problem size from exponential to polynomial. On further
examination, it 's not very suφrising. The really complicated problems we
solve, such as designing very complex circuits or writing very large computer
programs, suffer from this exponential complexity if looked at naively. What
we do in practice is use abstraction. For example, in progranmiing, we build up
multiple levels of subroutines, procedures, and high level language constructs.
This allows us to solve such problems in time that is close to linear in the
length of the program. As Simon points out in "The Architecture of Complex
ity," almost every artifact we encounter, either man-made or in nature, that is
of sufficient complexity is hierarchically structured [Simon, 1981].

5 Two-Player Games

The second major application of heuristic search is two-player games. One of
the original challenges of AI, which in fact predates AI by a few years, was to
build a program that could play chess at the level of the best human players.
Certainly a chess grand master exhibits at least some aspects of intelligent be
havior, and hence a computer program playing at the same level would as well
[Turing, 1950].

From the perspective of AI research, chess has some nice properties. First,
it is a well-structured domain. There is a small, discrete board. There are a
small number of different pieces. There is a small set of well-specified rules.
Secondly, chess is a game of perfect information. Unlike most card games or
games of chance, both chess players have all the information there is about a
position. In spite of these nice properties, chess is a very difficult game to
master. People spend their entire lives studying this game and still don't
achieve the levels that they aspire to. This makes it a nearly ideal domain for
studying certain aspects of intelligence.

5.1 MInlmax Search

The standard algorithm for two-player games is called minimax search with
static evaluation [Shannon, 1950]. The algorithm searches forward to some
fixed depth in the game tree, limited by the amount of computation available
per move. At this search horizon, a heuristic static evaluation function is ap
plied to the frontier nodes. In this case, a heuristic evaluation is a function that

220 Korf

takes a board position and returns a number that indicates how favorable that
position is to one player or the other. For example, a very simple heuristic
evaluator for chess would count the total number of pieces on the board for
one player, appropriately weighted by their relative strength, and subtract the
weighted sum of the opponent's pieces. Thus, large positive values would
correspond to strong positions for one player whereas large negative values
would represent advantageous situations for the opponent.

Unfortunately, while a heuristic function is well defined in a single-agent
problem as an estimate of the cost of reaching a goal, there is no generally
agreed upon precise formulation of the meaning of a heuristic function in a
two-player game [Abramson and Korf, 1987].

Given the static evaluations of the frontier nodes, values for the interior
nodes in the tree are computed according to the minimax mle. The player for
whom large positive values are advantageous is called MAX, and conversely
the opponent is referred to as MIN. The value of a node where it is MAX's
turn to move is the maximum of the values of its children, while the value of a
node where MIN is to move is the minimum of the values of its children.
Thus, at altemate levels of the tree, the minimum and the maximum values of
the children are backed up. This continues until the values of the immediate
children of the current position are computed, at which point one move to tfie
child with the maximum or minimum value is made, depending on whose turn
it is to move.

The idea of minimax search comes from classical game theory, where it is
assumed that the game tree is small enough to be exhaustively searched, and
hence the values at the terminal nodes are assumed to be exact payoffs [Von
Neuman and Morgenstem, 1944]. Claude Shannon adapted this idea to very
large trees by introducing a fixed search horizon and a heuristic static evalua
tion function [Shannon, 1950]. Later we'll discuss some of the ramifications of
this seemingly innocent modification.

5.2 Alpha-Beta Pruning

One of the most elegant ideas in all of heuristic search is the alpha-beta pmn
ing algorithm. While it is not entirely clear who invented it. Pearl credits John
McCarthy for coming up with the original idea [Pearl, 1984]. It first appeared
in print in an MIT tech report by Hart and Edwards [1963]. The notion is that
an exact minimax search can be performed without examining all the nodes at
the search frontier.

Figure 5 shows an example of alpha-beta pmning. The square nodes repre
sent moves for the maximizer while the circular nodes are moves for the min-
imizer. The search proceeds depth-first to minimize the memory requirement,
and only evaluates a node when necessary. After statically evaluating nodes d
and e to 6 and 5, respectively, we back up their maximum value, 6, as the

Chapter 6 Search: A Survey of Recent Results 221

value of node c. After statically evaluating node ^ as 8, we know that the
backed up value of node / must be greater than or equal to 8, since it is the
maximum of 8 and the unknown value of node w. The value of node b must be
6 then, because it is the minimum of 6 and a value that must be greater than or
equal to 8. Since we have exacdy determined the value of node ft, we do not
need to evaluate or even generate node w. This is called an alpha cutoff. Simi
larly, after statically evaluating nodes j and it to 2 and 1, the backed-up value
of node / is their maximum or 2. This tells us that the backed-up value of node
h must be less than or equal to 2, since it is the minimum of 2 and the un
known value of node jc. Since the value of node a is the maximum of 6 and a
value that must be less than or equal to 2, it must be 6, and hence we have
evaluated the root of the tree without generating or evaluating nodes x, y, or z.
This is called a beta cutoff.

Since alpha-beta pmning allows us to perform a minimax search while
evaluating fewer nodes, its effect is to allow us to search deeper with the same
amount of computation. This raises the question of how much deeper, or how
much does alpha-beta improve performance? This problem has been carefully
studied by a number of researchers and finally solved by Pearl [Knuth and
Moore, 1975; Pearl, 1982]. The best way to characterize the efficiency of a
pruning algorithm is in terms of its effective branching factor. The effective
branching factor is the root of the number of frontier nodes that must be
evaluated in a search to depth d.

The efficiency of alpha-beta pmning depends on the order of the node
values at the search frontier. For any set of frontier node values, there exists
some ordering of the values such that alpha-beta will not perform any cutoffs
at all. In that case, all frontier nodes must be evaluated and the effective
branching factor is ft, die bmte-force branching factor.

d 6 e 5 g 8 w

Figure 5 Alpha-Beta Pruning

222 Korf

On the other hand, there is an optimal or perfect ordering in which every
possible cutoff is realized. In that case, the effective branching factor is re
duced from b to b^^^, which is the square root of the brute-force branching fac
tor. Another way of viewing the perfect ordering case is that for the same
amount of computation, one can search twice as deep with alpha-beta pruning
as without. Since the search tree grows exponentially with depth, doubling the
search horizon is quite a dramatic improvement.

In between worst-possible ordering and perfect ordering is random order
ing, which is the average case. Under random ordering of the frontier nodes,
alpha-beta pruning reduces the effective branching factor to approximately ft^^"^.
This means that one can search 4/3 as deep with alpha-beta, yielding a 33%
improvement in search depth.

5.3 Node Ordering, Quiescence, and Iterative-Deepening
In practice, however, the effective branching factor of alpha-beta is closer to
b^^ due to node ordering. The idea of node ordering is that instead of generat
ing the nodes of the tree strictíy left-to-right, the order in which paths are ex
plored can be based on static evaluations of the interior nodes in the tree. In
other words, the children of MAX nodes can be expanded in decreasing order
of their static values while the children of MIN nodes would be expanded in
increasing order of their static values.

Two other important ideas are quiescence and iterative-deepening. The
idea of quiescence is that the static evaluator should not be applied to positions
whose values are unstable, such as those occurring in the middle of a piece
trade. In those positions, a small secondary search is conducted until the static
evaluation becomes more stable.

Iterative-deepening is used to solve the problem of how to set the search
horizon, as previously mentioned [Slate and Atkin, 1977]. In a toumament
game, there is a limit on the amount of time allowed per move. Unfortunately,
it is very difficult to accurately predict how long it will take to perform a
complete search to a given depth. If one picks too shallow a depth, then time
which could be used to improve the move choice is wasted. Alternatively, if
the search depth is too deep, time will run out in the middle of a search, and a
move based on an incomplete search is likely to be very unreliable. The solu
tion is to perform a series of complete searches to successively increasing
depths. When time runs out, the move recommended by the last completed
search is made.

Iterative-deepening and node ordering can be combined as follows. Instead
of ordering interior nodes based on their static values, the frontier values from
the previous iteration of the search can be used to order the nodes in the next
iteration. This produces much better ordering than the static values alone.

Chapter 6 Search: A Survey of Recent Results 223

Virtually all performance chess programs in existence today use full-width,
fixed-depdi alpha-beta minimax search with node ordering, quiescence, and it
erative-deepening.

5.4 Special Purpose Hardware
Another interesting development in the area of two-player games is the advent
of special purpose hardware. This trend was started by Condon and Thompson
at Bell Laboratories when they built the Belle machine [Condon and Thom
pson, 1982]. Up until that time, most entries in computer chess tournaments
were general-purpose digital computers that were programmed to play chess.
Condon and Thompson built a special-puφose machine that could only play
chess. The advantage of this scheme is to be able to highly optimize the ma
chine for chess with the result that it could search deeper than even very
powerful general-purpose machines. In general, the deeper the search, the bet
ter the quality of play. What limits the search depth is the efficiency of the
primitive operations of move generation and evaluation. By embedding these
functions directíy in hardware, they run much faster.

A more recent entrant in this category is Hitech, built by Hans Berliner
and Carl Ebeling at Carnegie-Mellon University [Ebeling, 1987]. What 's no
table about Hitech is its use of a special purpose parallel architecture for play
ing chess, consisting of 64 processors arranged in an 8 χ 8 array to match the
chess board. Hitech can generate and evaluate over 200,000 nodes per second.

6 ReahTime Single-Agent Search

If one examines the history of research in single-agent problems and two-
player games, one finds two parallel but distinctíy different paths. In two-
player games, the standard assumption is that it is completely impractical to
search all the way to the end of the game. The effect of diis is that research has
focused on how to make the best decisions with a fixed amount of computa
tion, with no serious thought devoted to making optimal decisions. In addition,
tournament games require that individual moves be made within tight time
constraints.

Conversely, in single-agent problems, researchers have long focused on find
ing optimal solutions. The challenge has been to increase the size of problems
that can be solved optimally within practical computational limits. For example,
the advent of iterative-deepening-A* increased the size of sliding tile puzzles
for which optimal solutions could be found from 3 χ 3 to 4 χ 4.

224 Korf

6.1 Limitations of A* and IDA*
One result of this preoccupation with optimal solutions is that search algo
rithms for single-agent problems, such as A* and IDA*, suffer from two fun
damental limitadons. One is that, even with the best heuristics available in
practice, these algorithms take exponential time to mn. The second problem is
that to use these algorithms to solve a problem, the algorithm must be mn to
completion in a simulation mode before the first move can actually be made.
The reason is that to guarantee an optimal solution, one can't be sure of even
the first move until the entire solution is found and shown to be at least as
good as any other possible solution.

Given this characterization, an obvious research direction is to look at
single-agent problems under the ground mies of two-player games, namely
limited search horizon and execution of moves based on incomplete informa
tion. The first assumption can be satisfied by picking a problem large enough
that practical computational constraints prohibit the search from extending
from an initial state to the goal node, such as, for example, the 5 χ 5 Twenty-
Four Puzzle. Altematively, or in addition, there may be informational limits on
the problem solver. For example, in the problem of autonomous navigation of a
mobile robot, there is a limit on the range of data that can be gathered by the
vision or other sensors of the robot. This suggests a literal inteφretation of die
term search horizon. In addition to limited information or computation, we as
sume that actions in the real world must actually be executed based on in
complete information. For example, the mobile robot must actually move in
order to extend its search horizon in die chosen direction.

6.2 Mlnlmln Lookahead Search
The research problem is to develop decision-making algorithms for a single
problem-solving agent under such real-time constraints. The obvious approach
is to try to adapt the algorithms for two-player games that were designed to
solve a similar problem. This gives rise to a special case of minimax search
called minimin search [Korf, to appear]. The idea is to search forward from die
current state to a fixed depth determined by the informational or computational
resources available. At the search horizon, the A* heuristic evaluation function
fW = g(n) h(n) is applied to the frontier nodes. Since only a single agent is
making all the moves, the value of each interior node in the tree is recursively
computed as the minimum of the values of its children. Finally, a single move
is made in the direction of the immediate child of the current state with the
minimum value. The reason for only making a single move instead of going
direcdy to the frontier node with the minimum value is that since the values
are based on fallible heuristic information, we should follow a strategy of least
commitment. Further search from the new current state may indicate different
choices for subsequent moves than originally anticipated.

Chapter 6 Search: A Survey of Recent Results 225

6.3 Alpha Pruning
There exists an algorithm, called alpha pruning by analogy to alpha-beta prun
ing, that allows us to perform minimin search without evaluating all the nodes
within the search horizon [Korf, to appear]. It is based on the heuristic function
being a metric. A metric is a function that satisfies a set of properties that we
normally associate with distance functions. In particular, a function h of two
arguments is a metric if and only if (1) h(x, x) = 0, (2) h(x, y) = h(y, x), and
(3) h(x, y) + h(y, z) < h(x, z). By adding the goal state as a second argument
to A, we get a function of two arguments. Most naturally occurring heuristic
functions, such as Euclidean distance and Manhattan distance, are metrics since
they satisfy our intuitive and formal definitions of distance functions. If A is a
metric, then the cost function / = ^ + A is guaranteed to be monotonically non-
decreasing along any path away from the initial state. Given a monotonic cost
function, we can apply a technique known as branch-and-bound to significantiy
prune the search space.

The algorithm is as follows: Let α be the minimum cost of all frontier
nodes encountered so far. Initially, α will be set to the cost of the first frontier
node. In the course of the search, evaluate all interior nodes and whenever the
cost of a node equals or exceeds a, abandon that path, pruning all nodes below
it. The justification for this is that since the cost function can't decrease, all the
frontier nodes below that node must have cost greater than or equal to the
given node, and hence will not be less than the frontier node responsible for
the current value of a. Finally, whenever a frontier node is encountered with a
cost less than a, the value of α is reset to this new minimum.

The performance improvement of alpha pruning is quite dramatic, even
when compared to alpha-beta pruning. In some cases, alpha pruning extends
the achievable search horizon by a factor of five relative to brute-force search,
with the same amount of computation [Korf, to appear].

Minimin lookahead search with alpha pruning is an algorithm for evaluat
ing the immediate children of the current node. As such, the algorithm is run in
a simulation or planning mode until the best child is identified, at which point
the chosen move is executed in the real worid. For simplicity of exposition, we
can view the heuristic function combined with lookahead search and alpha
pruning as simply a more accurate, but computationally more expensive heuris
tic function. In fact, it provides an entire spectrum of heuristic functions differ
ing in accuracy and cost, depending on the search horizon.

6.4 Real'Tlme-A*
Since minimin with alpha pruning only recommends a single move, the next
question is how to determine the sequence of moves to be executed. The ob
vious approach of simply repeating the algorithm for each move won't work

226 Korf

since it falls into infinite loops and doesn't benefit from the information
gathered in previous lookahead searches. In addition, since the heuristic infor
mation is fallible, on occasion we may want to backtrack and undo the pre
vious move. The question of how to allow intelligent backtracking while pre
venting infinite loops is the problem addressed next.

The principle of rationality is that backtracking should occur when the
estimated cost of continuing the current path exceeds the cost of going back to
a previous state plus the estimated cost of reaching the goal from there. One
way to implement this policy would be to modify A* so that the g value of
every node is relative to the current position of the problem solver rather than
the initial state. Unfortunately, this requires updating the g values of every
node on the OPEN list with every move, and maintaining a path to every
OPEN node from the current state. The following algorithm, called real-time-
A* (RTA*), produces the same behavior using only local information and con
trol, and hence requires only constant time per move [Korf, to appear].

For each move, the / = g + A value of each neighbor of the current state is
determined, and the problem solver moves to the state with the minimum
value. The second bes t /va lue , which is the best value among the remaining al-
tematives, is stored with the previous state. This represents the h value of the
previous state from the perspective of the new current state. This is repeated
until a goal is reached. To determine the h value of a neighboring state, if it
has previously been visited, then the stored value is used, and otherwise the
heuristic evaluator is called. Note that the heuristic evaluator may employ min-
imin lookahead search with alpha pmning in addition to the heuristic function
itself.

One can prove that in a finite problem space in which there exists a path
to a goal from every state, RTA* is guaranteed eventually to find a solution, re
gardless of the initial heuristic values [Korf, to appear]. Of course, the speed
with which a solution is found depends on the accuracy of the heuristic values.
The algorithm, however, can be used effectively even in the absence of a heur
istic function, for example, by setting A to zero for every node initially. Over
the course of the problem-solving trial the algoritiim learns more accurate h
values.

7 Constraint-Satisfaction Problems

In addition to single-agent path-finding problems and two-player games, the
third major application of heuristic search is constraint-satisfaction problems.
The Eight Queens Problem mentioned previously is a classic example. More
realistic examples include job shop scheduling, graph coloring, and applica
tions in tmth maintenance systems.

Chapter 6 Search: A Survey of Recent Results 227

Constraint satisfaction problems are modelled as follows: There is a set of
variables, a set of values, and a set of constraints on the values that the varia
bles can be assigned. A unary constraint on a variable specifies a subset of all
possible values that can be assigned to that variable. A binary constraint be
tween two variables specifies which possible combinations of assignments to
the pair of variables would satisfy the constraint. For example, in a map or
graph-coloring problem, the variables would represent regions or nodes, and
the values would represent colors. The constraints are binary constraints on
each pair of adjacent regions or nodes that prohibit them from being assigned
the same color.

7.1 Brute-Force Backtracking
The brute-force approach to constraint satisfaction is called backtracking. One
selects an order for the variables, and an order for the values, and starts assign
ing values to the variables one at a time. Each assignment is made so that all
constraints involving any of the variables that have already been assigned
values are satisfied. The reason for this is that once a constraint i^violated, no
assignment to the remaining variables can possibly resatisfy that constraint.
Once a variable is reached which has no remaining legal assignments, then the
last variable that was assigned is reassigned to the next legal value. The algo
rithm continues until either a complete, consistent assignment is found result
ing in success, or all possible assignments are shown to violate some con
straint, resulting in failure.

The key property that makes this algorithm effective is that the constraints
can be applied to partial assignments of variables, and that if a constraint is
violated in a partial assignment, no complete extension of that partial assign
ment can satisfy the constraint. This makes backtracking much more efficient
than trying all possible complete assignments. Backtracking is a brute-force
depth-first search combined with a goal test that is applied to partial candidate
solutions.

7.2 Inteiiigent Backtracking
Most of the interesting research in this area goes by the name of intelligent or
heuristic backtracking. A short survey of the different techniques employed in
cludes variable ordering, value ordering, going back to the source of failure,
and constraint recording, including arc and path consistency.

The order in which variables are instantiated can have a large effect on
the efficiency of backtracking. The idea of variable ordering is to choose an
order that is likely to cause the least backtracking [Freuder, 1982; Purdom,
1983]. For example, one simple heuristic is to first instantiate the most tightly

228 Korf

constrained variables, or to order the variables in increasing order of the num
ber of possible values that can be assigned to them.

Similarly, the order in which the values of a given variable are chosen can
significantly affect the efficiency of backtracking. The technique of value
ordering is to choose the sequence of values for each variable that is likely to
minimize backtracking [Dechter and Pearl, 1987a; Haralick and Elliott, 1980].
In general, one would like to order the values from most likely to succeed to
least likely to succeed, in order to minimize the time required to find a
complete solution.

An important idea that goes by a number of names, including dependency-
directed backtracking, is that instead of simply undoing the last decision made,
the decision that actually caused the failure should be modified [Gaschnig,
1979]. For example, consider a three-variable problem where the variables are
instantiated in the order jc, y, z. Assume that values have been chosen for both
X and y, but that all possible values for ζ conflict with the value chosen for JC.
In pure backtracking, the value chosen for y would be changed, and then all the
possible values for ζ would be tested again, to no avail. A better strategy in this
case is to go back to the source of the failure and change the value of x, before
trying different values for y.

In a constraint-satisfaction problem, some constraints are explicitiy
specified, and others are implied by the explicit constraints. Some implicit con
straints may be discovered in the course of the backtracking search. The idea
of constraint recording is that once these implicit constraints are discovered
they should be saved explicitiy so that they don't have to be repeatedly redis
covered. Constraint recording can occur during the backtrack search, or alter
natively the problem can be preprocessed to record as many constraints as
possible before beginning the search.

A simple example of constraint recording in a preprocessing phase is
called arc consistency [Freuder, 1982; Mackworth, 1977; Montanari, 1974].
For each pair of variables χ and y that are related by a binary constraint, we re
move from the domain of χ any values that do not have at least one corre
sponding legal counteφart in y and vice versa. In general, several iterations
may be required to achieve complete arc consistency. Path consistency is a
generalization of arc consistency where instead of considering pairs of varia
bles, we examine triples of related variables, for example. The effect of per
forming arc or path consistency before backtracking is that the resulting search
space can be dramatically reduced. In some cases, this preprocessing of the
constraints can eliminate the need for search entirely.

7.3 Network-Based Heuristics
Another powerful set of techniques for constraint-satisfaction problems is
grouped under the term network-based heuristics [Dechter and Pearl, 1987a].

Chapter 6 Search: A Survey of Recent Results 229

Given a binary constraint-satisfaction problem, a corresponding constraint
graph can be constructed as follows: Each variable is represented by a node
and each constraint between a pair of variables is represented by an edge be
tween the corresponding nodes. Higher-order constraints give rise to hyper-
graphs.

Network-based heuristics depend upon the structure of the resulting con
straint graph. For example, if the graph is a tree, the problem can be solved in
polynomial time Freuder, 1982]. One simply starts with the leaf variables, re
moves those values that do not have a consistent value in the parent variable,
and repeats this process for each level of the tree. After a single complete pass
over the tree, any choice of values from the remaining domains is guaranteed
to be a solution. Only if some variable has no remaining values is the problem
unsolvable.

If the constraint graph is not a tree, but contains only a small number of
cycles, then the cycle-cutset method may be effective [Dechter and Pearl,
1987b]. The idea is to identify a small set of nodes that taken together would
break every cycle in the graph if they were removed. Then the values of these
variables are instantiated using a backtracking algorithm. For each instantiation
of the cutset variables, the above technique for solving the resulting tree-struc
tured graph is applied. The cycle-cutset method is exponential in the size of the
cycle-cutset, as opposed to the complete graph, and hence is likely to be effec
tive in a sparse graph.

8 Major Open Problems

Major open problems and new research directions in heuristic search include
three general categories: parallel search algorithms, automatic learning of heur
istic evaluation functions, and alternatives to full-width minimax search.

8.1 Parallel Search Algorithms

Since search is fundamentally constrained by its efficiency, an obvious ques
tion is how to effectively use parallel processing. There are basically three ap
proaches to parallelizing a search algorithm. The first is to parallelize the
primitive operations of node generation and evaluation. This is the approach
taken by the Hitech machine [Ebeling, 1987]. Unfortunately, this approach is
inherently domain specific. Some problems may be easy to parallelize this way
and others may not, but the techniques applied will be specific to the particular
application. Furthermore, the available parallelism is strictly limited by the
domain. For example, it's difficult to see how Hitech processors could take
advantage of more than 64 processors to speed up the machine any further.

230 Korf

A second approach is called parallel window search and was pioneered by
Gerard Baudet [1978]. He parallelized alpha-beta minimax search by giving
each processor the entire tree to search but different bounds for alpha and beta.
The entire possible range for the minimax value was broken up into different
windows bounded by different values of alpha and beta and distributed to
different processors. All but one of the processors would retum with the result
that the minimax value was not within its window, and one would retum the
actual minimax value within its range. The virme of the algorithm is that the
successful processor would find the value more quickly by starting with a nar
row range of alpha and beta and hence pmning many more branches than if it
started with alpha and beta equal to negative and positive infinity. Unfor
tunately, this algorithm is limited in practice to a speedup of no more than five
or six, regardless of the number of processors used. The reason is that even if a
processor is given values of alpha and beta that equal the tme minimax value,
it still takes considerable time to verify that that is indeed the case.

The third approach is perhaps the most obvious, and that is to decompose
the search tree so that different parts of the tree are searched by different pro
cessors. This provides potentially unlimited parallelism. The major challenge is
load balancing. Since real search trees and particularly those pmned by heuris
tic techniques tend to be very irregular, there must be some mechanism to dy
namically reallocate work to idle processors [Finkel and Manber, 1987; Rao et
al., 1987; Ferguson and Korf, 1988].

A more challenging problem is to parallelize branch-and-bound searches
such as alpha-beta or alpha pmning. The essential difficulty is that the work
done by one processor may be wasted if its nodes are subsequendy pmned by
bounds obtained elsewhere in the tree. Effectively parallelizing alpha-beta
pmning is a longstanding open problem [Finkel and Fishbum, 1982; Vom-
berger, 1987; Ferguson and Korf, 1988].

8.2 Leaming Heuristic Evaluation Functions
Another very important open problem that has been around for quite a while is
how to automatically leam heuristic evaluation functions.

Research on this problem started in the late 1950s with Arthur Samuel's
checkers program [Samuel, 1963]. What was unique about that program was
that it automatically leamed to improve its performance by changing its evalua
tion function. This is the classic example of what is now called parameter
learning. For purposes of exposition, let's consider chess, and assume that a
program is told that a set of relevant features upon which to base a static eval
uation is the numbers of different types of pieces. The leaming task then is to
figure out what the relative weights of those pieces ought to be, or the coeffi
cients of a polynomial material evaluation function. The basic idea that Samuel
originated and that has recendy been improved by others [Christensen and

Chapter 6 Search: A Survey of Recent Results 231

Korf, 1986] is that if the evaluation function were correct, then the static eval
uation of a board should be equal to the backed-up minimax value from a
lookahead search. This reduces the problem to finding a set of coefficients that
is nearly invariant under lookahead search.

A more challenging problem is how to discover the features in the first
place. Judea Pearl [1984] has suggested a rather compelling approach to this
problem, based on some ideas of John Gaschnig [1979]. The claim is that heur
istics are derived from simplified or relaxed problems. More specifically, the
exact solution cost for a relaxed version of a problem is often a good heuristic
evaluation function for the original problem. For example, consider the task of
finding a good heuristic function for the road navigation problem. What makes
this problem difficult is the constraint that one must travel along the given
roads. If we remove this constraint and allow direct cross-country travel as in a
helicopter, die resulting problem is very simple and can be solved by travelling
in a straight line from the initial state to the goal state. The exact solution cost
for any instance of this simplified problem is just the Euclidean distance. This
suggests how Euclidean distance might be arrived at as a heuristic function for
the original road navigation problem. As another example, if we remove the
constraint on tfie Eight Puzzle that a tile can only be moved into tfie blank
position, and allow tiles to be slid over one another, then the exact solution
cost to this simplified problem is simply Manhattan distance.

While this theory provides a convincing explanation of the origin and na
ture of heuristic functions for single-agent problems, the challenge is to auto
mate the process of going from an original problem to an effective heuristic
function for that problem. This requires overcoming a number of difficulties
and is still an open problem.

8.3 Alternatives to FulhWIdth Minimax Search
The final item on the list of open problems is alternatives to full-width mini
max search. In Shannon's original paper [Shannon, 1950], he described two
types of strategies tfiat he labelled Type A and Type B. Type A is fixed-depth
full-width search, with no pmning, since he didn't anticipate alpha-beta. When
combined witfi alpha-beta pmning, tfiis is the algorithm used by all current per
formance programs. Type Β strategies included the use of additional heuristics
to pmne parts of the tree and search some lines of play more deeply than
others. This is also called selective search.

The best current chess machines play better than 99% of all rated human
players [Berliner and Ebeling, 1988]. In other games, such as Otfiello, comput
ers play as well as the best humans [Rosenbloom, 1982]. However, when one
realizes that tfiese machines are looking at millions of positions per move,
while human players only examine tens of positions, it becomes clear tfiat
humans must be doing something the machines are not. If one constrained

232 Korf

machines to only examine tens of positions, they would perfomi quite misera
bly. The difference is that humans use a very selective search to rapidly pmne
poor lines of play while exploring promising lines relatively deeply. Both
David McAllester [to appear] and Ron Rivest [1986] have recendy proposed
interesting selective search algorithms. Unfortunately, the integration of selec
tive search algorithms into successful performance programs has resisted most
efforts to date. This is likely to become an important research area in the near
future.

The other aspect of this problem is the minimax mle itself. Minimax has
long been the accepted way of backing up heuristic evaluations. It was origi
nally invented by Von Neuman and Morgenstem in the 1940s in the context of
game theory [Von Neuman and Morgenstem, 1944]. In classical game theory,
it is assumed that the search can proceed all the way to the end of the game in
which case the values at the search horizon are exact payoffs. In that case,
minimax is provably the correct way to back up values. Shannon's contribution
was to recognize that this could not be done in a game like chess and to intro
duce the notion of a heuristic static evaluation function at the search frontier.
Then, for lack of anything better, he suggested using minimax to back-up the
heuristic values. Unfortunately, minimax is not justifiable as a backup mle
when the values are inexact.

As an example of this, consider a maximizer node with two children. As
sume that the values of the two children are independent random variables that
are uniformly distributed between zero and one. The best heuristic estimate of
the values of the nodes would be their expected value which is one-half Mini
max would back-up the maximum of the two expected values and retum one-
half as the backed-up estimate of die value of the maximizer node. However,
the expected value of the maximum of two independent random variables uni
formly distributed between zero and one is not one-half but two-thirds. The
error is that we want the estimate of the maximum but we computed the maxi
mum of the estimates instead.

As we continue to minimax values further up the tree, the error only in
creases, until the signal all but disappears in the noise due to minimaxing. The
result is that for certain analytic games with uniform branching factor, uniform
depth, and independent leaf values, occasionally searching deeper in the tree
leads to poorer play relative to shallower search. This phenomenon is called
pathology and was independentiy discover by Nau [1982] and Beal [1980]. The
dilemma is that for real games such as chess and checkers, it is almost always
the case that searching deeper improves play. This raises the question of which
assumptions in the analytic model are not valid for real games. The answer is
all of them, since removing any one of the above assumptions (uniform depth,
uniform branching factor, or independence of sibling nodes) causes pathology
to disappear [Nau, 1982; Pearl, 1983].

Chapter 6 Search: A Survey of Recent Results 233

Nevertheless, the search for a better back-up rule than minimax continues.
For example, when independence of sibling nodes is a reasonable assumption,
and the heuristic function is inteφreted as a probability of winning, then back
ing up heuristic values by multiplying them is often more effective than mini
max [Nau et al., 1986]. Non-minimax rules have yet to find their way into per
formance chess programs, however.

9 Conclusion

In conclusion, search is a very general problem-solving technique. For any
problem that can be represented as a problem space, search techniques can be
used to solve it. The price of this generality is exponential complexity, with the
result that many problems of practical interest are solvable in principle with
search, but the limitations of computational capacity prevent them from being
solved in practice. In order to reduce the complexity, more domain-specific
knowledge must be added. The research challenge is to develop and analyze al
gorithms to acquire and use such knowledge. While this is true of heuristic
search, it is also true of most work in artificial intelligence in general. What
distinguishes work in search is an emphasis on domain-independent algorithms,
even though the knowledge may be domain-specific, and a focus on analytical
and quantitative performance results.

References

Abramson, B. and Korf, R. E., 1987. A model of two-player evaluation func
tions. In Proceedings of the National Conference on Artificial Intelligence
(ΑΛΑΙ-87), pp. 90-94, Seattle, Washington. San Mateo: Morgan Kaufmann.

Bandet, G., 1978. The Design and Analysis of Algorithms for Asynchronous
Multiprocessors. Ph.D. dissertation. Dept. of Computer Science, Carnegie
Mellon University, Pittsburgh, Pennsylvania.

Beal, D., 1980. An analysis of minimax. In Advances in Computer Chess 2, M.
R. B. Clarke, ed., pp. 103-109. Edinburgh: Edinburgh University Press.

Berliner, H. and Ebeling, C , 1988. Pattern knowledge and search: The suprem
architecture. Technical Report CMU-CS-109. Dept. of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania.

Christensen, J. and Korf, R. E., 1986. A unified theory of heuristic evaluation
functions and its application to leaming. In Proceedings of the Fifth
National Conference on Artificial Intelligence (AAAI-86), Philadelphia,
Pennsylvania. San Mateo: Morgan Kaufmann.

234 Korf

Condon, J. H. and Thompson, K., 1982. Belle chess hardware. Advances in
Computer Chess i . Pergamon Press.

Dechter, R. and Pearl, J., 1985. Generalized best-first search strategies and the
optimality of A*. Journal of the Association for Computing Machinery
32(3):505-536.

Dechter, R. and Pearl, J., 1987a. Network-based heurestics for constraint-satis
faction problems. Artificial Intelligence 34(1): 1-38.

Dechter, R. and Pearl, J., 1987b. The cycle-cutset method for improving search
performance in AI applications. In Proc. 3rd IEEE Conf on AI Applic, pp.
224-230, Orlando, Florida.

Dijkstra, E. W., 1971. A note on two problems in connection with graphs.
Numerische Mathematik 1:269-271.

Ebeling, Carl, 1987. All The Right Moves, Cambridge, Mass.: MIT Press.
Ferguson, C. and Korf, R. E., 1988. Distributed tree search and its application

to alpha-beta pmning. In Proceedings of the National Conference on Artifi
cial Intelligence (AAAI-88), St. Paul, Minnesota. San Mateo: Morgan Kauf
mann.

Finkel, R. and Fishbum, J., 1982. Parallelism in alpha-beta search. Artificial
Intelligence 19(1).

Finkel, R. and Manber, U., 1987. A distributed implementation of backtrack
ing. ACM Transactions on Programming Languages and Systems 9(2).

Freuder, E.C., 1982. A sufficient condition for backtrack-free research. Assoc.
Comput. Mach 29(l):24-32.

Gaschnig, J., 1979. Performance Measurement and Analysis of Certain Search
Algorithms. Ph.D. dissertation. Dept. of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania.

Gerlemter, H., 1963. Realization of a geometry-theorem proving machine.
Computers and Thought, E. Feigenbaum and J. Feldman, ed. New York:
McGraw-Hill.

Haralick, R. M. and Elliot, G. L., 1980. Increasing tree search efficiency for
constraint satisfaction problems. Artificial Intelligence 14:263-313

Hart, T. P. and Edwards, D. J., 1963. The alpha-beta heuristic. M.I.T. Artificial
Intelligence Project Memo. Massachusetts Instimte of Technology, Cam
bridge, Massachusetts.

Hart, T. P., Nilsson, N. J., and Raphael B., 1968. A formal basis for the heuris
tic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics SSC-4,2:100-107.

Hopcroft, J. E. and Ullman, J. D., 1979. Introduction to Automata Theory, Lan
guages, and Computation, Reading: Addison-Wesley.

Knuth, D. E. and Moore, R. E., 1975. An analysis of alpha-beta pmning. Artifi
cial Intelligence 6(4):293-326

Korf, R. E., 1985a. A weak metfiod for leaming. Artificial Intelligence
26(l):35-77.

Chapter 6 Search: A Survey of Recent Results 235

Korf, R. E., 1985b. Depth-first iterative deepening: An optimal admissible tree
search. Artificial Intelligence, 27(1):97-109.

Korf, R. E., 1987. Planning as search: A quantitative approach. Artificial Intel
ligence.

Korf, R. E., In press. Real-time heuristic search. Artificial Intelligence.
Laird, J. E., Newell, Α., and Rosenbloom, P. S., 1987. SOAR: An architecture

for general intelligence. Artificial Intelligence 33(1): 1-64.
Mackworth, A. K., 1977. Consistency in networks of relations. Artificial Intel

ligence S(l):99-m.
McAUester, D. Α., In press. A new procedure for growing min-max trees. Arti

ficial Intelligence.
Montanari, U., 1974. Networks of constraints: Fundamental properties and ap

plications to picture processing. Inform. Sei. 7:95-132.
Nau, D.S., 1982. An investigation of the causes of pathology in games. Artifi

cial Intelligence 19:257-278.
Nau, D., Purdom, P., and Tzeng, C , 1986. An evaluation of two alternatives to

minimax. Uncertainty in Artificial Intelligence, L. N. Kanal and J. F. Lem-
mer, ed. Amsterdam: Elsevier Science Publishers.

Newell, Α., 1969. Heuristic programming: Ill-structured problems. In Progress
in Operations Research III, J. Aronofsky, ed. pp. 360-414. New York:
Wiley.

Newell, Α., 1980. Reasoning, problem solving and decision processes: The
problem space as a fundamental category. Attention and Performance VIII,
R. Nickerson, ed. Hillsdale: Erlbaum.

Newell, A. and Simon, H. Α., 1963. GPS, a program that simulates human
thought. Computers and Thought, E. Feigenbaum and J. Feldman, ed. New
York: McGraw-Hill.

Newell, A. and Simon, H. Α., 1972. Human Problem Solving. Englewood
Cliffs, New Jersey: Prentice-Hall,

Newell, Α., Simon, H. Α., and Shaw, J. C , 1963. Empirical explorations with
the logic theory machine: A case study in heuristics. Computers and
Thought, E. Feigenbaum and J. Feldman, ed. New York: McGraw-Hill.

Pearl, J., 1982. The solution for the branching factor of the alpha-beta pruning
algorithm and its optimality. Commun. of the Assoc. of Comput. Mach.
25(8):559-564.

Pearl, J., 1983. On the nature of pathology in game searching. Artificial Intel
ligence 20(4) :427^53.

Pearl, J., 1984. Heuristics. Reading: Addison-Wesley.
Pearl, J. and Korf, R. E., 1987. Search techniques. Annual Review of Computer

Science. 2 . . Palo Alto, California: Annual Reviews Inc.
Pohl, I., 1970. First results on the effect of error in heuristics search. In Ma

chine Intelligence 5, B. Meitzer and D. Michie, ed. pp. 219-236. New York:
American Elsevier.

236 Korf

Pohl, I., 1971. Bi-directional search. In Machine Intelligence 6, B. Meitzer and
D. Michie, ed. pp. 127-140. New York: American Elsevier.

Polya, G., 1945. How to Solve It. Princeton: Princeton University Press.
Purdom, P.W., 1983. Search rearrangement backtracking and polynomial aver

age time. Artificial Intelligence 21(1,2): 117-133.
Rao, V. Nageshwara, Kumar, V., and Ramesh, K., 1987. A parallel implemen

tation of iterative-deepening. In Proceedings of the National Conference on
Artificial Intelligence (AAAI-87), pp. 133-138. Seattle, Washington. San
Mateo: Morgan Kaufmann.

Ratner, D. and Warmuth, M., 1986. Finding a shortest solution for the NxN ex
tension of the 15-puzzle is intractable. In Proceedings of the Fifth National
Conference on Artificial Intelligence (AAAI-86), Philadelphia, Pennsylvania.
San Mateo: Morgan Kaufmann.

River, R.L., submitted 1986. Game tree searching by min/max approximation.
Artificial Intelligence.

Rosenbloom, P.S., 1982. A World-Championship-Level Othello Program. Arti
ficial Intelligence 19:279-320.

Sarcerdoti, E.D., 1974. Planning in a hierarchy of abstraction spaces. Artificial
Intelligence 5:115-135.

Samuel, A.L., 1963. Some studies in machine leaming using the game of
checkers. Computers and Thought, E. Feigenbaum and J. Feldman, ed. New
York: McGraw-Hill.

Shannon, C.E., 1950. Programming a computer for playing chess. Philosophi
cal Magazine 41:256-275.

Simon, H. Α., 1981. The architecture of complexity. The Sciences of the Artifi
cial, 2nd edition. Cambridge, Mass.: M.I.T. Press.

Simon, H. A. and Kadane, J. B., 1975. Optimal problem-solving search: All-or-
none solutions. Artificial Intelligence 6(3):235-247.

Slagle, J. R., 1963. A heuristic program that solves symbolic integration prob
lems in freshman calculus. Computers and Thought, E. Feigenbaum and J.
Feldman, ed. New York: McGraw-Hill.

Slate, D. J. and Atkin, L. R., 1977. CHESS 4.5—the Northwestern University
chess program. Chess Skill in Man and Machine, P.W. Prey, ed. New York:
Springer-Verlag.

Stickel, M. E. and Tyson, W. M., 1985. An analysis of consecutively bounded
depth-first search with applications in automated deduction. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI-85),
Los Angeles, Califomia. San Mateo: Morgan Kaufmann.

Tonge, F. M., 1963. A summary of a heuristic line balancing procedure. Com
puters and Thought, E. Feigenbaum and J. Feldman, ed. New York:
McGraw-Hill.

Chapter 6 Search: A Survey of Recent Results 237

Turing, A. M., 1950. Computing machinery and intelligence. Mind 59:433-
460. Also in Computers and Thought, E. Feigenbaum and J. Feldman, ed.
New York: McGraw-Hill, 1963.

Von Neuman, J. and Morgenstern, O., 1944. Theory of Games and Economic
Behavior. Princeton: Princeton University Press.

Vomberger, O., 1987. Parallel alpha-beta versus parallel SSS*. In Proceedings
of the IFIP Conference on Distributed Processing, Amsterdam.

Waltz, D., 1975. Understanding line drawings of scenes with shadows. Psy
chology of Computer Vision, P. H. Winston, ed. New York: McGraw-Hill.

Chapter

7

Qualitative Physics: Pasty
Presenty and Future
Kenneth D. Forbus
Qualitative Reasoning Group
Department of Computer Science
University of Illinois at Urbana, Champaign

1 Introduction
Qualitative physics is concemed with representing and reasoning about the
physical world. The goal of qualitative physics is to capture both the conmion-
sense knowledge of the person on the street and the tacit knowledge underlying
die quantitative knowledge used by engineers and scientists. The area is now a
little over ten years old, which, at least measured in the span of AI, is a long
time. So it makes sense to step back and try to systematize the work in the
field and describe the current state of the art.

Γ11 start by describing what qualitative physics is, why one should be
doing it, and where it came from. Then I'll sketch the current state of the art,
at least the part that is now fairly stable. Then I'll describe what I think lies
around the comer, including some pointers to recent work and some interac
tions between qualitative physics and other fields. Finally, I'll describe some
open problems, each of which will probably require quite a few inspired Ph.D.
theses to crack.

Qualitative physics is growing rapidly, and thus any survey is likely to be
come quickly dated. For example, several problems which were described as
virgin territory when this material was presented at AAAI-86 have now been at

239

240 Forbus

least partially explored. Nevertheless, I think the general framewoik for under
standing the area diat was presented then remains sound, and so I have re
mained faithful to that organization.

2 Why Qualitative Ptiysics?

Consider what we need to know about the physical world to make coffee. We
know that to pour coffee from the pot into a cup requires having the cup under
the spout of the kettle, and that if we pour too much in, there will be a mess on
the floor. We know all this without knowing the myriad equations and numeri
cal parameters required by traditional physics to model this situation.

Suppose we were going to build a household robot that, among other du
ties, made coffee. We might start by using traditional physics to model the sit
uation. Immediately several problems arise. There are few formal axiomatic
theories of physics. The formal aspects of physics, the equations, do not by
themselves describe when they are applicable. What, for example, is the equa
tion for the cup? There isn't one, per se, but rather various aspects of the cup
potentially participate in several different equations describing "what happens"
in the world. Many everyday physical phenomena, such as boiling, are not
easily described by a single equation. And even when equations exist, people
who know nothing about them can often reason fluentiy about the phenomena.
So equations cannot be necessary for performing such reasoning.

But suppose for a moment that we had such a set of equations. Could we
use them? Realistic equations rarely permit closed-form, analytic solutions.
Even when they do, the high computational complexity of symbolic algebraic
means it's not the sort of computation you want going on inside a robot en
gaged in real-time activity. An altemate route is numerical simulation. By
plugging in numerical values, we could generate a very precise description of
what will happen. But such simulations require immense computational re
sources. Worse yet, it assumes the existence of a complete set of accurate
values for all input parameters. Typically we just don't have such accurate in
formation, thus forcing us to search a space of parameters corresponding to the
ranges the various input parameters may take. This increases the amount of
computation even more, making numerical simulation infeasible.

Even if numerical simulation were technologically feasible, by say shirt-
pocket supercomputers, or by allowing rough approximations, it still would be
insufficient for our robot. First, we still need to inteφret the output of the
simulation. A list of numerical state parameters is not the most perspicuous
representation of an event. Second, any mn of a numerical simulator provides a
specific set of predictions about what the system being simulated will do. This
will suffice for some tasks, but not for all. Often we want to characterize the
possibilities that might occur, with some guarantee of completeness. For in-

Chapter 7 Qualitative Physics 241

stance, a fauh-tree analysis of a power plant that captured only a small fraction
of the failure modes of the system would be inappropriate. With numerical
simulations it is often hard to tell when one has captured all of the possible be
haviors.^ In many situations one needs a rapid and rough estimate of what is
possible, rather than a very precise prediction based on many unsupported as
sumptions. A robot pouring coffee should be cognizant of the possibility of
overflow, and not spend its time calculating just how big the resulting puddle
might be.

These problems are not specific to making coffee; they hold more gener
ally whenever one tries to reason about the physical world. To summarize,
these problems are:

1. The modeling problem: How does one map from real-world objects to the
abstractions of one's physics?

2. The resolution problem: Carrying out numerical simulations requires
more detail than is often available. Reasoning techniques that can exploit
low resolution, partial information are required for commonsense
reasoning.

3. The narrowness problem: Traditional simulation provides precise answers
given a particular set of assumptions. Many reasoning problems require
knowing alternative possibilities, rather than a single projection.

At first these problems may seem suφrising. Physics, one of the crowning
successes of the scientific method, has been carried on for hundreds of years.
But consider: Physicists already have conmionsense theories of the world.
Their goal is to create models capable of more precise explanations. With few
exceptions, the focus of formalization lies with building new models that have
significantiy better predictive and explanatory power than our implicit com
monsense models. Qualitative physics arises from the need to share our intui
tions about the physical worid with our machines.

There are many potential applications of qualitative physics. As argued
elsewhere [Centner and Stevens, 1983; de Kleer and Brown, 1984; de Kleer,
1984], the tacit knowledge of engineers and scientists rests on this shared
framework. If we are to build programs that capture this expertise, we must un
derstand the foundation qualitative physics provides. We will return to this
point after briefly sununarizing the essence of qualitative physics.

1 It is said that if the angular increment in the simulation of the aerodynamic properties of the
Boston John Hancock building had been halved, the fact that the building's windows would tend
to pop out in high winds could have been predicted. Instead, it was discovered empirically.

242 Forbus

2.1 The Essence

The key to qualitative physics is to find ways to represent continuous proper
ties of the world by discrete systems of symbols. One can always quantize
something continuous, but not all quantizations are equally useful. One way to
state the idea is the relevance principle: The distinctions made by a quantiza
tion must be relevant to the kind of reasoning performed [Forbus, 1984b].

The idea is simple, but few quantizations satisfy it. Rounding to fewer sig
nificant digits, replacing numbers by arbitrary intervals, using simple symbolic
groups like TALL, VERY TALL, and fiizzy logic do not satisfy it. Signs generally
do, since different things tend to happen when signs change (balls fly up and
then down, different kinds of things can happen if the level of coffee in a cup
is rising versus falling). Inequalities do, since processes tend to start and stop
when inequalities change (heat flows occur when there is a temperature differ
ence, boiling occurs when the liquid's temperature reaches its boiling point).

Good quantizations allow more abstract descriptions of state, which in tum
make possible more concise descriptions of behavior. If our state parameters
are elements of % there are potentially an infinite number of states. Replacing
state parameters by floating-point numbers makes the number of potential
states finite, but still numbering in the billions for many systems. In the quanti
zations of qualitative physics there may be as few as a dozen, or a hundred, or
in some cases thousands. Each state in a qualitative physics typically corre
sponds to many states in a traditional description, each distinguished by having
tiie same "meaningful behavior pattem" occurring in them.

Abstraction is a two-edged sword. While these abstract state descriptions
succinctiy capmre possible behaviors, they tend not to prescribe exactiy which
behavior will occur. By themselves they typically cannot, for we have thrown
away just that information required to settle such questions. Thus qualitative
simulations tend to be ambiguous. Often such answers suffice, e.g., if a house
hold robot cannot imagine any way for the house to bum down as a con
sequence of its plan to cook supper, then its plan is reasonably safe. However,
if a house fire is a possibility, more knowledge must be invoked. The ability of
qualitative physics to represent this ambiguity explicitly is beneficial, since it
provides a signal to indicate when more detailed knowledge is required.

A central goal of qualitative physics is to achieve a degree of systematic
coverage and uniformity far in excess of today's knowledge-based systems. In
today's expert systems, knowledge is encoded about a particular domain for a
particular purpose. Instead of continuing to build such systems, qualitative
physics strives to create wide-coverage, multi-purpose domain models. By
wide-coverage, we mean that there is some large but precisely characterizable
set of systems tiiat can be described by tfie domain model. It is assumed that
every model for a specific system is built by instantiating appropriate elements
of the domain vocabulary in appropriate ways. This will reduce the amount of

Chapter 7 Qualitative Physics 243

hand-crafting required for new programs and will hopefully lead to "off the
she l f knowledge bases.

By multi-purpose, we mean that a domain model (or a model for a specific
situation) can be used for more than one inferential task. Characterizing these
styles of reasoning is another goal of qualitative physics. These styles of rea
soning include qualitative simulation, interpreting measurements, planning,
comparative analysis, and others. Developing domain-independent characteriza
tions of these styles will hopefully lead to generic algorithms that can be used
as modules in a variety of larger systems.

2.2 Potential Applications
To turn robots loose in unconstrained environments, we must teach them quali
tative physics. Often we must enlist physical processes to carry out our plans.
For example, if I want to make coffee in the moming, I need to use the stove
to make boiling water. This requires filling the kettie, putting the pot on the
stove, tuming the stove on, and waiting for it to boil. One could imagine writ
ing a littie expert system to do this. It wouldn't take many IF-THEN rules to
express this particular procedure. However, if you lived in my house you
would prefer a robot to be reasoning from first principles. My stove is a little
unusual: The surface that contains the bumers retracts into the wall, under the
oven. When tiie stove is retracted, the bumers are directly under the electrical
wiring for the oven. Having been designed in the 50's, it has no safety cutoff
switch. Tuming the bumer on when the stove is retracted, or retracting the
stove when the bumer is still hot, is likely to bum the house down. It is doubt
ful tíiat the designer of the IF-THEN mies could have taken my stove into ac
count, so I would be very nervous about tuming such a machine loose in my
house. And houses are fairly stereotyped; consider such machines loose in a
constmction site. Clearly, such robots will need some form of qualitative
physics

But qualitative physics has many other potential applications as well. The
subject matter of many expert systems includes aspects concemed with the
physical world, particularly in the sciences and engineering. Diagnosis and de
sign are two obvious examples. As remarked above, qualitative physics identi
fies the "tacit knowledge" that engineers and scientists use to ground the
formalisms they leam in school and on the job.

Consider for example tiie problem of building an intelligent tutoring sys
tem for propulsion systems. Figure 1 shows a simplified layout of a Navy pro
pulsion system. Distilled water is fed into the boiler, heated by oil-fired
bumers, and tumed to steam. The system operates at very high temperature and
pressure (950° F, 12(X) psi) to increase the amount of energy transferred per
pound of steam. The steam is heated in the superheater, to impart even more
energy. (By the time it leaves the superheater in a shipboard system, it is

244 Forbus

travelling faster than the speed of sound.) Here is a hard problem that instruc
tors routinely ask about this situation: Suppose the feedwater temperature in
creases, as might occur when travelling in a warmer part of the ocean. What
happens to the temperature at the superheater outlet?

This is a complicated situation, and most of us haven't had a lot of ex
perience with it, so it hardly qualifies as commonsense physics. Yet qualitative
reasoning suffices to answer it. In fact, qualitative reasoning is crucial: While a
few numerical values have been provided, many critical ones have not, includ
ing how much the feedwater temperamre rises! Here is the solution, according
to instructors at the Navy Surface Warfare Officer's school in Newport, Rhode
Island. The water coming into the boiler is now hotter. The boiling will occur
at the same temperature, so this means that the amount of heat that must be
added to get a piece of water to boil is reduced. This means the water will boil
sooner, which means the rate of steam production increases. Assuming a con
stant load, this means the steam spends less time in the superheater. Since the
amount of heat transferred to the steam in the superheater is a function of the
time it spends in the superheater, and the starting temperature of the steam is
the same, less heat is transferred. Thus the steam temperature at the super
heater outlet falls when the feedwater temperature rises.

The ability to make these subtle, yet human-like, deductions makes quali
tative physics an excellent candidate for a knowledge component in intelligent
tutoring systems [Forbus and Stevens, 1981; Forbus, 1984a] and plant moni
tors. For example. Figure 2 shows an explanation generated by one of my pro
grams a long time ago, as part of the STEAMER system. The valve shown is a
spring-loaded reducing valve, and it converts 1200 psi steam to 12 psi steam at
constant pressure, for a wide range of loads. The important thing to notice is
that the terms of the explanation are those which are easily understood by
human students and operators. No numerical values were used to generate
these conclusions—just a very simple qualitative physics.^

Qualitative physics also has many potential applications in other aspects of
engineering [Forbus, 1987b]. Consider a really smart mechanical design as
sistant that could generate a description of possible behaviors before detailed
parameters were chosen. Suppose the desired behavior exists in the space of
behaviors predicted by a qualitative simulation. Then the design effort proceeds
by choosing parameters to force the desired behavior, and not the alternatives,
to occur. If the desired behavior is not even possible, then it is clear that the
design must be changed, even without more details. It does not take detailed

2 The physics used was the early de Kleer and Brown physics, which provided only perturbation
analysis, not full dynamical reasoning. The limitations of this approach inspired my own qualita
tive process theory (and their confluences theory).

Chapter 7 Qualitative Physics 245

Outlet

Inlet
Tout = 950 F
Pout« 1200 p.s.í.

Figure 1. The SWOS Problem. Given that the temperature of the feedwater is
increasing, what is the temperature at the superheater outlet? Instructors at the
Navy Surface Warfare Officer's School say this is one of the hardest problems
students are given, yet It can be answered with purely qualitative reasoning.

Figure 2. Qualitative physics can be used in intelligent tutoring systems

246 Forbus

numerical simulation to ascertain, for example, that a pendulum is not a good
oscillator to use in a wristwatch.

3 The Past

We will not attempt a complete historical survey or time line of qualitative
physics. Instead, we will describe three early efforts, the "pre-history" of the
area, diat provide a background for making later work easier to understand.

Qualitative physics arose from attempts to build programs that could solve
textbook physics and madi problems. The earliest systems (STUDENT [Bobrow,
1968], CARPS [Chamiak, 1968], M E C H O [Bundy et al., 1979], ISSAC [Novak,
1976]) attempted to capture die full breadth of the problem, from parsing die
initial problem description in natural language to generating diagrams. These
programs could solve a variety of problems, but it was quickly discovered that
the equations (explicit or implicit) were insufficient to solve most problems.
Consider Figure 3 from the description of Chamiak's CARPS program. To set
up the equations properly required interpreting the phrase "approaching the
dock," which here means the distance along die top of die water.

The easy answer, of course, is that more knowledge is needed. But what
kind? de Kleer was the first person to characterize the relevant kind of knowl
edge. His work on die N E W T O N program marked the beginning of qualitative
physics. N E W T O N was designed to solve problems conceming a single point
mass sliding on a surface (see Figure 3).

A BARGE WHOSE DECK IS 10 FT BELOW THE LEVEL OF A DOCK IS BEING DRAWN IN
BY MEANS OF A CABLE ATTACHED TO THE DECK AND PASSING THROUGH A RING
ON THE DOCK. WHEN THE BARGE IS 24 FT FROM AND APPROACHING THE DOCK AT
3/4 FT/SEC HOW FAST IS THE CABLE BEING PULLED IN?

Make a sketch of this situation for yourself Most all people will draw

3/4 FT/SEC V ^ I > 10 FT

24 FT

Clearly when we say APPROACHING THE DOCK we mean at the level of the boat.
Once again information of gravity would lead to this result.

Figure 3 Commonsense knowledge is needed to solve textbook problems.
In extending STUDENTS techniques to handle calculus problems, Charniak
found that more world knowledge was needed to propedy inteφret these
problems.

Chapter 7 Qualitative Physics 247

Figure 4 An example from NEWTON, de Kleer's NEWTON used a combination
of qualitative and algebraic techniques to reason about a point mass moving on
a surface.

When faced with a problem, NEWTON would begin by creating an envi-
sionment, an explicit representation of all the different possible behaviors of
die system. Figure 5 shows the envisionment for the problem in Figure 3.
There are two things to note about this envisionment. First, in standard simula
tions diere is a unique next state. In a qualitative simulation there can be more
than one next state, due to the lack of resolution in the qualitative description.
Second, the envisionment alone suffices to answer many questions about this
domain. For example, if asked whether or not the mass could fly off segment
SI going to the right, NEWTON could answer "no," because no description
matching tiiat behavior can be found in the envisionment. To paraphrase de
Kleer, an intelligent problem solver has to be able to answer stupid questions,
and preferably with less work than it takes to answer subtie questions.

To answer more subtie questions, NEWTON performed algebraic manipula
tion. Consider the problem of determining conditions that will prevent the cart
from flying off when it enters the right side of the track. There is a qualitative
ambiguity in what happens after state s i , one branch corresponding to the cart
flying off and die other branch to the cart sliding back. NEWTON used this qual
itative ambiguity to index into a knowledge base of equations, which was then
manipulated to derive an appropriate inequality.

The next event in die prehistory of qualitative physics was the Pat Hayes'
Naive Physics Manifesto [Hayes, 1985]. This paper achieved wide informal
circulation in 1978, and had a major impact. In particular, Hayes' notion of
histories is central to qualitative physics. Figure 6 illustrates a fragment of the
history for a liquid being poured from a container onto a table top. The basic
idea of histories is that events should be represented as spatially bounded, but
temporally extended, pieces of space-time. It is assumed that histories which
do not intersect do not interact.

248 Forbus

FALL

ENVISIONMENT

Figure 5. An Envisionment for a NEWTON problem.

Mere Contain Emptying

Time

Vertical

\ Horizontal

Figure 6 An example of Hayes' notion of histories.

Wet

Chapter? Qualitative Physics 249

Histories were designed to solve several problems with the situation cal
culus, especially the Frame Problem. Situation calculus provides no spatial
boundaries for an event. In fact, the situation calculus describes what happens
between events of some kind (such as the actions taken by an imaginary robot),
not what happens during those events. This leads to several well-known prob
lems, such as being forced to change situations whenever anything happens
anywhere in the entire universe of discourse. There are two advantages to his
tories. Their being temporally extended means it is easier to talk about what is
happening during some action (assuming appropriate temporal representations).
Their being spatially bounded means that descriptions can be evolved locally,
thus eliminating the requirement of global simulation (see [Hayes, 1979; For
bus, 1984b; Williams, 1986] for details).

While several aspects of Hayes' naive physics enterprise have been
adopted enthusiastically in the qualitative physics enteφrise, several have not.
For instance, Hayes argued that implementation was an "unnecessary distrac
tion." In qualitative physics, testing ideas via computer implementation is
viewed as essential. As our models grow more complex, carrying out proofs by
hand is burdensome. With abstruse mathematical constructs it is easy to main
tain rigor, but with conmionsense matters it is all too tempting to relax one's
vigilance. Carefully written programs are superb bookkeepers, keeping one's
theories honest. Furthermore, as discussed below, there are several styles of
reasoning that use such knowledge. Identifying these problems and developing
computational techniques to solve them is a worthwhile endeavor in its own
right.

The third piece of prehistory is my FROB program [Forbus, 1980, 1981a]
which reasoned about motion through free space, de Kleer's "roller-coaster"
world was essentially one-dimensional, with the simulation halting whenever
the cart left the surface. FROB worked with a true two-dimensional world, rea
soning about balls bouncing around on surfaces (see Figure 7). The user could
specify a scenario by drawing a diagram to specify the surfaces and introduce
balls. The more information the user provides, the more FROB refines its de
scriptions. For example, FROB used a constraint language to determine, in con
junction with the diagram, the consequences of any numerical parameters pro
vided. In addition to carrying out numerical analyses, FROB could answer ques
tions like "where will this ball end up eventually?" and "can these two balls
collide?" In all cases, FROB used minimal information to answer the question.

FROB 's spatial reasoning worked by calculating a qualitative vocabulary of
places from the surfaces in the diagram. Combined with symbolic descriptions
of activity (such as FLY and COLLIDE) and velocity (e.g., (LEFT UP)) , these
places provided the ft-amework for qualitative spatial analysis. Consider the
problem of determining whether or not the two balls in Figure 8 will collide.
To collide, two balls must be in the same place at the same time. If all we
know is that both balls are going to the left, then they might collide, since the

250 Forbus

union of the places they might be overlap. But if we also assume that FRED
never gets to S3l, then a collision is ruled out, since the two balls can never be
in the same place.

- > > 'Motion-Summary-for bl)

FOR G0364
THE BALL WILL EVENTUALLY STOP
IT IS TRAPPED INSIDE (WELLO)
AND WILL STOP FLYING AT ONE OF (SEGMENT 11)
NIL

Figure 7 FROB reasoned about motion through space.

Chapter 7 Qualitative Physics 251

S50 S40 S40

"FRED"

S17 SRI S31 SR2 S44 SR3 S18

"GEORGE"

S13 S41 30

S12 SR6 S10

Metric Diagram
Si l

- > >(collide? fred george)
(POSSIBLE AT SEGMENT SOSEGEMNT 17 SEGMENT 13SREGI0N)
- > ><cannot-be-at fred segment 31)
(SEGMENT 31)
UPDATING ASSUMPTIONS FOR (> > INITIAL-STATE FRED)
CHECKING PATH OF MOTION AGAINST ASSUMPTIONS
->(collide? fred george)
NO
- > >(what-is (> >state initial-state fred)
(> >STATE INITIAL-STATE FRED) = (FLY (SREGI0N3) (LEFT))
NIL
- > >(what-is (> >state initial-state george))
(>>STATE INITIAL-STATE GEORGE) = (FLY (SREGION) (LEFT))
NIL

Figure 8 Collision problem.

252 Forbus

FROB advanced the state of the art in several ways. First, it demonstrated
that Hayes' notion of histories was indeed useful. There was perhaps more
numerical information in FROB ' s histories than in Hayes' original conception,
but they are histories nonetheless. Second, FROB was based on a theory of spa
tial reasoning that divided the problem into two parts, using a diagrammatic
representation to provide quick answers to a class of geometric questions, and
a qualitative description of places computed from the diagram. Third, it dem
onstrated that qualitative ambiguities could be resolved by numerical calcula
tion, just as N E W T O N demonstrated that symbolic algebra could resolve them.
And finally, the notion of envisionments was generalized from the trees used in
N E W T O N to full graphs. This allows many properties of the behavior, such as
final states and oscillations, to be characterized by properties of the envision-
ment graph (e.g., end states and cycles) rather than by explicit nodes as in
NEWTON.

At this point we draw our pre-historic retrospective to a close. N E W T O N
and FROB were organized around using a combination of qualitative and quanti
tative techniques to solve particular classes of problems. It became clear
around this time that simply understanding the nature of qualitative repre
sentation was a full-time effort, and that a domain-independent, general qualita
tive physics could exist. Research effort turned to finding such a physics—or,
more correctly, understanding the space of such systems of physics—and we
now turn to this exploration.

4 The State of the Art

Work in qualitative physics may be roughly divided into three areas: qualita
tive dynamics, qualitative kinematics, and styles of reasoning. In traditional
physics,

Dynamics deals with the causes of motion, as opposed to kinematics,
which deals with its geometric description, and to statics, which deals with
the conditions for the lack of motion [Considine, 1983].

Dynamics is used generically to describe the study of forces on systems
(e.g., fluid dynamics), and typically includes statics. Hence qualitative dynam
ics is concemed with what causes systems to change over time, ignoring
geometry except as a source of boundary conditions.

Qualitative kinematics is concemed with the spatial reasoning required by
commonsense physics. Not all commonsense spatial reasoning is qualitative
kinematics—counterexamples include navigation, spatial planning, and control
ling arm motions. Carrying the distinction between dynamics and kinematics

Chapter 7 Qualitative Physics 253

into qualitative physics is not an arbitrary choice, as we will argue in Section
4.2.

Styles of reasoning, of course, concem how to exploit the knowledge of
qualitative physics. There is no direct analog in traditional physics, except inso
far as physicists and educators have attempted to formalize their problem-solv
ing methods in order to teach them more readily. But studying styles of reason
ing is cmcial for qualitative physics, since representation without reasoning is
an idle exercise.

4.1 Qualitative Dynamics

Qualitative dynamics studies how physical systems change. It addresses the
problem of how to represent differential equations qualitatively, and how to or
ganize such knowledge in a usable form. We begin by surveying qualitative
representations for numbers and time-varying differential equations. Ontologi-
cal issues are discussed next, since providing a formalism for organizing
knowledge is a central job of qualitative physics. Finally we take a brief look
at two other issues, tiie role of continuity and how such equations are given
causal interpretations, since these topics are often misunderstood.

But before we start: A variety of notations have been used in qualitative
physics. While terminology differences can be bewildering to the uninitiated,
and standardization has been suggested ([Bobrow, 1984], p. 5), it is doubtful
that the situation will improve soon. In fact, two facts suggest that stand
ardization is not an urgent issue. First, there is already significant overlap. Sec
ond, the lack of a single standardized notation has not seemed to retard pro
gress in traditional mathematics, in which there are still over six different nota
tions for derivatives, despite its being hundreds of years older dian qualitative
physics. We will sometimes point out variations, but will not attempt a
complete concordance.

4.1.1 Numbers Three representations for number have proven useful so far
in qualitative physics: signSy inequalities, and orders of magnitude. We de
scribe each in turn.

Signs Reducing numbers to signs is the simplest qualitative representation for
number [de Kleer, 1979b, 1984b; Williams, 1984]. For example, we might say
that the level of water in a container is - 1 , 0, or 1, depending on whether or
not the level is lower, the same as, or higher than a desired height. If the com
parison is chosen carefully, we can satisfy our desiderata of capturing relevant
distinctions while not introducing irrelevant ones.

Signs of derivatives form a natural indicator of change [Forbus, 1981b; de
Kleer, 1984b; Williams, 1984]. We will use the notation of qualitative process
(QP) theory and denote the sign of the derivative of a quantity Q by Ds[Q]. If

254 Forbus

the sign of the derivative is - 1 , then the quantity is decreasing, if 0 then it is
constant, and if 1 then it is increasing. Since change is intuitively important,
and the direction of change determines what boundary conditions might
change, signs carry critical information about derivatives.

The earliest use of signs in qualitative physics was de Kleer's QUAL pro
gram [de Kleer, 1979a], where signs were inteφreted as die difference between
an original equilibrium value and the new equilibrium value reached as the re
sult of a perturbation (the incremental qualitative value (IQ) inteφretation).
The semantics of this representation were slightiy problematic: For example, it
was not clear what die IQ value should be if the system went through several
behavioral states before settling into an equilibrium value.

The major advantage of the sign representation is simplicity. We are
taught the method of substitution very early in mathematics, and sign values
provide a concrete object that may be "plugged in" to qualitative equations of
whatever form. However, signs alone are often not enough. Consider the prob
lem of figuring out what might happen if we have three tanks F, G, and Η with
pipes hooked up between them. Given some initial level of water in each, we
tum on all the valves in the pipes between them. To determine how the water
would flow requires comparing the pressures in the tanks that are linked to
gether.

A sign value encodes a comparison of a magnitude with a single reference
value. Suppose tank G is connected by pipes to both F and H. Clearly no sign
representation of pressure will suffice for the pressure in G, since we must
compare the pressure with two reference values, the pressures in F and G. The
fact that these reference values are diemselves changing is yet another compli
cation. It seems counterintuitive to say that the value of pressure in G is chang
ing simply because the pressure in F is changing.

One representational "trick" sometimes suggested to work around these
problems, albeit unnaturally, is to rewrite a quantity as a constellation of signed
quantities. For example, a given quantity Q might be represented by new quan
tities ß i . . . on, one for each comparison Q is involved in. This does violence
to the notion of quantity. Furthermore, it makes the number of pseudo-quanti
ties needed to describe a quantity vary widi the situation, rather than widi the
type of object. The next section describes a more natural representation for
such circumstances.

Inequalities Comparing the value of a quantity with several other parameters
is a common occurrence in physics. For example, to determine the phase of a
piece of stuff, one determines die relationship of its temperature to die boiling
temperature and freezing temperature of that substance for die appropriate con
ditions (such as pressure). Worse yet, the parameters diat it makes sense to
compare a value with can change as conditions change. For example, if we dis-

Chapter 7 Qualitative Physics 255

cover a leak in tank G in the previous example, we should also consider the re
lationship between the pressure at the leak and the surroundings.

These considerations suggest collecting a set of inequalities to describe a
quantity. This set of inequalities is called its quantity space [Forbus, 1981b].
Inequalities makes sense for several reasons. First, they provide a means to
partition numerical values, and thus express boundary conditions for behavior.
For example, when two objects in thermal contact are at different temperatures,
there will be a heat flow from the object with higher temperature to the object
with lower temperature. Second, a quantity can participate in any number of in
equalities, thus providing the variable resolution we desire. Third, if numbers
are combined by addition, inequality information often suffices to determine
the sign of the outcome. If, for instance, there is flow into a tank and flow out,
the relative magnitudes of the flows determine whether the level of the tank is
rising or falling.

Here is a simple quantity space that describes the temperature of water W
in a pot on the stove.

Τ stove
Tfreeze Tw

A Simple quantity space. The significant relationships involving the temperature
of a piece of water (Tw) can be expressed as inequalities. Here, the
temperature is above freezing (Tfreeze) and less than the temperature of the
stove and its boiling temperature.

The arrows represent inequalities, with the quantity at the head of the
arrow being greater than the quantity at the tail of the arrow. Thus W is
warmer than freezing, and cooler than both its boiling temperature and the
temperature of the stove. Importantly, quantity spaces need not be complete—
notice that in this diagram we do not know the relationship between the
temperature of the stove and the boiling point of W, The ability to represent
this ambiguity allows us to accumulate partial information, and detect when
more information is required.

What should a number be compared to? One source of quantity space ele
ments are parameters representing domain-specific boundary conditions. An
example of such limit points are the boiling temperature of a substance or the
fracture stress of a material [Forbus, 1981b]. Some comparisons are required
due to the specifics of a situation, such as a comparison between the rate of
flow into and out of a container. We will adopt the terminology of [Kuipers,
1986] and refer to the elements of a quantity space generically as landmark
values for the quantity, whether or not they are limit points.

256 Forbus

Landmarks versus limit points Two distinct semantics have been used for
landmark values in the literature. The distinction has often been misunderstood,
via a type/token confusion, and we undertake to clarify it here. We call a de
scription temporally generic if it refers to a class of temporal behaviors, rather
than just a single behavior. A description of a single behavior we will call tem
porally specific. The script of a play is a temporally generic description, while
a videotape of its performance is temporally specific. Limit points are tem
porally generic, as are comparisons between rates, since there are classes of sit
uations where liquids boil and flows occur. The value of the boiling tempera
ture at 3 PM is temporally specific—we are referring to a single situation, and
hence a single specific value.

Most systems of qualitative physics use only temporally generic land
marks. But temporally specific landmarks can be critical for many reasoning
tasks: For example, it may be crucial for a doctor to compare a patient's
cholesterol level today with the specific cholesterol level last week, not just
with some generic "safe" value. Kuipers* QSIM generates such temporally
specific landmarks. These landmarks do not correspond to "discovering" new
limit points, as originally claimed. Rather, they are the equivalent of a qualita
tive "strip chart" tiiat describes a specific behavior of a system. QSiM tiius pro
vides an automatic naming facility to support reasoning about temporally
specific values.

Although temporally specific landmarks are essential for some inferences,
they introduce a new level of computational complexity. Consider for example
a decaying oscillation, such as a ball bouncing up and down, each time rising
only some fraction of the height it reached before. Each height is a new land
mark value. Thus an infinite behavior can sometimes lead to an infinite number
of landmark values (see Section 4.3.2).

The quantity space is now a standard feature of qualitative physics
[Kuipers, 1984, 1986; Simmons, 1983; Weld, 1986]. It addresses the resolution
problem by providing the ability to incrementally accumulate information
about a number, thus simplifying the modeling task. However, manipulating
sets of statements describing a value is more complicated than treating values
as atomic objects, as the sign representation allows. Quantity space implemen
tations require efficient application of the laws of transitivity, typically ob
tained by separate inferential mechanisms [Forbus, 1984c; Simmons, 1983;
Forbus, 1988].

Several useful variations of the quantity space have been developed. For
instance, Kuipers requires quantity spaces to be totally ordered [Kuipers,
1984], which simplifies the representation into a collection of intervals. Sim
mons [1986] augments inequalities with numerical intervals, thus providing a
simple way to integrate empirical bounds.

Chapter 7 Qualitative Physics 257

Orders of magnitude Sometimes saying that N\ is greater than N2 is not
enough: One may need to say that N\ is so large compared to N2 that N2 may
be ignored. For instance, the effect of evaporation on the level of a lake may
be ignored if the dam holding it has burst. In everyday life, engineers rely on
the ability to distinguish a value that is significandy out of range from a nor
mal variation. One way to represent such information is to extend the range of
comparative relationships to include orders of magnitude. Three such repre
sentations, FOG [Raiman, 1986], 0[M3 [Mavrovouniotis and Stephanopolous,
1987], and Davis' infinitesimal theory [Davis, 1987] have been developed in
qualitative physics. We begin with FOG and 0 [M] since they share intended use,
and then describe Davis' system.

FOG introduces three new relationships, in addition to the traditional order
relations. They are:

Λ << ^ : Λ is negligible compared to B.
Λ = Β : Λ is very close to B,
Λ ~ Β : Λ is the same order of magnitude as B,

Raiman has developed a consistent formalization that captures the intuitive
meaning of these statements, using infinitesimals as a model. The effect of
these relationships is to stratify values into equivalence classes, thus providing
the means to say that values are very different. For example, in the DEDALE di
agnosis system [Dauge et al., 1987], this vocabulary is used to describe the
typical relationships between values in component models.

The 0 [M] is based on assigning labels to ranges of ratios. For example, the
relationship

A-<B (read A is slightiy smaller than B)

is tme exactiy when

\B\ < ^^^'^

where e is a domain-specific parameter. This mapping simplifies the laws of
the system and potentially allows a variety of quantitative information to be
easily incorporated. 0 [M] also uses physical units to reduce inferential complex
ity; only parameters of the same units may be compared.

The definition of orders-of-magnitude relations in 0 [M] in terms of ranges
simplifies the mapping from numerical values, a problem for which FOG pro
vides littie guidance. However it also allows a large but finite number of negligi
ble values to add up to something that is significant, which violates the intuitions

258 Forbus

underlying such reasoning. This cannot happen in FOG . The relative advantages
of the two systems remain to be explored.

Davis [1987] describes another formalism for orders-of-magnitude which,
like FOG, is based on infinitesimals. He reconstructs a qualitative calculus to in
clude infinitesimal values for both numbers and as durations of intervals. Thus
he can talk about changes taking infinite (or very short) time.

4.1.2 Equations Equations are the hallmark of physics. Just as qualitative
physics restricts the accuracy to which numerical values are known, the notions
of equations developed in qualitative physics are also typically weaker. These
weaker constraints can better capture partial knowledge and simplify inference,
thus addressing the resolution problem.

Arithmetic operations Every system of qualitative physics includes at least
addition and subtraction. Multiplication is often introduced as well. While the
operations are familiar, the effects of weakening the values they are performed
on has profound consequences. First, ambiguities can arise, even with complete
initial information. If one only knows that A is greater than zero and Β is less
than zero, for instance, then the sign of A + 5 cannot be determined. In this
case knowing the relative magnitudes of A and Β can provide the answer, but
in general, algebraic inequalities are required. But since most qualitative values
do not form a field, algebraic manipulations must be performed with care.

In [de Kleer and Brown, 1984], equations involving sign values are called
confluences. Confluences are solved by propagation of constraints, using
generate and test when unresolvable simultaneities occur. Under certain condi
tions, Dormoy has shown that sets of confluences can be solved by a variant of
Gaussian elimination [Dormoy and Raimen, 1987]. Confluences have also been
used with the FOG formalism, where the comparison is made between the ac
tual value of a parameter and its nominal value [Dauge et al., 1987].

Monotonic functions One of the weakest statements that can be made about
the relationship between two quantities is that when one increases, the other
tends to increase. This level of knowledge is captured by monotonic functions,
which are used as a primitive in several systems of qualitative physics and
mathematics. Monotonic functions provide a means of approximating compli
cated or unknown functions with minimal commitment.

If y = f(x) then fix) is increasing monotonic if whenever χ increases, y in
creases, fix) is decreasing monotonic if whenever χ increases, y decreases.
Often there is no reason to name the function involved, so various notations for
anonymous functions have been developed. For example, Kuipers [1984, 1986]
uses Af*"(jc, y) to denote an increasing monotonic connection between χ and y,
and M~(x, y) to denote a decreasing function.

QP theory allows the partial specification of monotonic functions through
qualitative proportionalities. Formally, y aQ+ χ indicates y = fi, . x,. . ,),

Chapter 7 Qualitative Physics 259

where / i s some function which is increasing monotonic in its dependence on jc.
Similarly, y OQf χ indicates that the function involved is decreasing monotonic
in X. To determine the complete specification of functional dependence in any
particular situation requires a closed-world assumption."^

The advantage of qualitative proportionalities is composability; the knowl
edge of a function can be decomposed and distributed appropriately through a
representation, to be assembled as needed by the reasoning system. For ex
ample, parameters may be selectively ignored (such as the effect of pipe re
sistance on the rate of liquid flow, if the fluid is moving very slowly) by "tum-
ing off' the description diat contributes them to the function. Qualitative pro
portionalities can also be used to express intermediate hypotheses in a leaming
system. For example, ABACUS [Falkenhainer, 1985] searches for them as the
first step in finding equations to describe numerical data. The disadvantage is
that ambiguities arising from them cannot be settled by just inequality informa
tion. Consider for instance

C aQ+ Λ A COQ-B A Os[A] = Os[B] = 1

No additional sign or inequality information suffices to determine Ds[C], un
like subtraction or multiplication.

We have found it useful to allow two other kinds of information to be
specified about monotonic functions. First, correspondences are introduced to
propagate inequality information. Intuitively, a correspondence fixes a point on
the curve relating two (or more) parameters. For instance, when a spring is at
its rest length it exerts no force. Suppose the force is O Q - its length (i.e.,
stretching it produces a force that tends to make it retum to its rest length).
These two facts together allow us to deduce that if we push a spring to be
shorter dian its rest length, we will cause it to exert a positive force (i.e., push
against us). A detailed discussion of correspondences can be found in [Forbus,
1984b; Kuipers, 1986]. Second, functions can be named, so that inequality in
formation can be propagated across distinct individuals [Forbus, 1984b]. For
example, the function that determines the pressure of a contained liquid in
terms of its level is the same for all containers, and hence information about
differences in level can be mapped into differences in pressure.

Of course, many functions required in modeling the physical world are not
monotonic. Such functions can be represented by decomposing them into mon
otonic segments. Providing a framework for explicitiy describing the assump
tions underiying this decomposition is one of the roles played by ontology in
qualitative physics.

3 A language for framing more complete hypotheses about functional dependence is described in
[Forbus, 1984b], Section 5.3.

260 Forbus

4.1.3 Ontology Ontological choices a r e central to qualitative physics. Along
with space a n d time, ontology provides the organizational stmcture for every
thing else. Continuous properties are properties of something, and equations
hold as a result of that. Usually developing the appropriate ontology is the
most difficult part of formalizing a domain.

If we are to build a complete qualitative physics, one that covers the
breadth and depth of our commonsense knowledge of the physical world, we
must discover and utilize common abstractions. Generating an ad hoc model
for each scenario is impractical and unreliable. Two such ontological abstrac
tions, devices and processes, have been widely used in qualitative physics. We
describe them here, after briefly reviewing a simple precursor.

4.1.4 Qualitative State Vectors The qualitative state vector ontology was
the earliest used in qualitative physics. It was the ontology used in both NEW
TON [de Kleer, 1975, 1979a], and FROB [Forbus, 1980, 1981a]. The idea is to
decompose system behavior into segments, each described by a list of symbols
This symbolic state vector contains two types of elements:

1. A quantization of the traditional state variables.

2. A symbolic description of the type of activity.

In traditional physics, we might state informally what kind of system we
are reasoning about (say, a ball bouncing on a surface), describe the initial
values for the state parameters, and state what equations will be used to de
scribe the different things a ball can do (i.e., fly through space and collide with
surfaces). In the corresponding qualitative description, we would quantize posi
tion into symbolic places, velocities into symbolic directions, and add a symbol
for the type of behavior. For example, we might say a ball is in REGIONO,
going (L E F T U P) , and F L Y i n g (see Figure 9).

^ 1 I . (FLY RECI0H3 (LEFT UP))
2 . (COLLIDE S i l (RIGHT OOUN)
3. (STOP S13 MIL)
4 . (CONTINUE S49 (U P))

Figure 9 An example of qualitative state vectors.

Chapter 7 Qualitative Physics 261

The need for the first class of constituent is obvious, since some repre
sentation of state variables is needed to capture the behavior. The second type
explicitly describes that which is left implicit in the traditional representations.
Roughly, the symbolic description of activity should change whenever the
quantitative equations traditionally used to describe the behavior will change.
Since we do not have equations, we must provide instead a set of qualitative
simulation rules. These rules take a state and produce the set of states which
can occur next. As mentioned previously, more than one state may be possible
due to the coarse grain of the representation. The particular content of the rules
is highly domain-specific, but typically a small set of rules suffices for each
class of behavior. (Hayes' conception of reasoning with histories by "gluing
them togetiier" fits within this framework as well.)

The qualitative state vector representation has three useful properties. First,
it is quite natural. The notion of state is central in any account of physics,
traditional or qualitative. Second, it is very compact. Each state can be suc-
cinctiy described by a short list of symbols, and hence envisioning is very
cheap. Third, it provides an easy means to combine dynamic and kinematic
representations, something which is more difficult with the other ontologies.

The difficulty with this ontology is that it lacks composability. To describe
a complex system directiy is often too difficult. Instead, one decomposes it into
smaller parts, models each of those parts and the relationships between them,
and then combines these models into a model of the whole system. The advan
tages of such modular approaches are well known; the pieces can often be re
used to describe yet more systems. But we have placed little constraint on the
actual contents of states and simulation laws, and so we have no methodology
for combining them.

For example, suppose we wish to combine the states in NEWTON and FROB.
Each simulation stops when it reaches conditions that make the other appro
priate, so one might imagine using the union of their simulation laws to more
fully describe the behavior of a point mass. But not all combinations are so
simple. If we glue the point mass onto a stick that is attached to a pivot (thus
creating a pendulum), both sets of laws are simply wrong. Each new condition
we add requires reorganizing our vectors and simulation laws in some ad hoc
fashion.

Hayes' axioms for liquids do not escape this problem, either. First, Hayes
himself points out there are many cases where his theory cannot make predic
tions (such as pouring water into a leaky cup). Second, adding new phenom
ena, such as solutions, would require wholesale reorganization of the theory.
No theory is completely composable, of course. What we seek is an organizing
principle, a methodology that simplifies combination as much as possible. Pat
terns of history combinations (or, equivalentiy, tables of qualitative simulation
laws) are not constrained enough.

262 Forbus

In traditional physics, composability is arranged by sharing parameters.
The equations for distinct parts are combined by identity of names in some
cases, and by new equations describing the relationship between the parts in
others. Qualitative versions of such theories thus require both a qualitative rep
resentation of equations, and an organizing stmcture to place them in. This
generative power is exacdy what is required to provide composability. The
other two ontologies exploit this idea.

4.1.5 The Device Ontology System dynamics [Shearer et al., 1971] is an
engineering methodology which provides a common set of abstractions that
encompass a variety of domains, including many electrical, thermal, mechani
cal, and acoustical systems. This modeling paradigm has been widely used in
qualitative physics as well, the principle advocates being de Kleer and Brown
[de Kleer, 1979b; de Kleer and Brown, 1984; de Kleer, 1984a] and Williams
[1984]. These theories replace the quantitative equations of system dynamics
with qualitative equations, and have developed new inference techniques for
using these descriptions.

The basic idea is to view a system as constmcted from a collection of dev
ices, such as transistors and resistors. The behavior of a device is specified by
intemal laws, often decomposed into distinct states or operating regions. Each
device has some number of ports, and all interaction between devices occurs
through these ports. To model a particular system, one builds a network of
devices. The device network is then analyzed by using the combined equations
from the devices and interconnections, either by constraint propagation or sym
bolic relaxation.

Consider, for example, the bipolar transistor common emitter amplifier in
Figure 10. The catalog of domain devices will include descriptions of transis
tors and resistors, and descriptions of what parameters are shared when termi
nals are connected together. A typical conclusion (but not the only kind) that
can be reached with this description is how die circuit might respond to a
change in input. This reasoning is accomplished by "perturbing" a declared
input parameter, and using the laws associated with devices and interconnec
tions to propagate effects through the system. For instance, suppose the input
voltage increased. This will cause the base-emitter current to increase, which
(due to the way transistors work) will cause the collector-emitter current to in
crease. This in tum will cause the collector voltage to drop, which will in tum
cause the output voltage to go down.

This example has been deliberately simplified; detailed descriptions can
easily be found in the literature (see [de Kleer and Brown, 1984; Williams,
1984]). However, it illustrates two important properties of this ontology. First,
once a model is created, most inferential work occurs by local propagation
within the model. Such antecedent reasoning is easy to control and can be
made to work very efficientiy. Second, we have assumed that flow of informa-

Chapter? Qualitative Physics 263

tion in the model of the system directly mirrors flow of causality in the world.
The ramifications of this assumption are discussed in Section 4.1.7.

One additional complexity that bears mention is that devices can have
states, corresponding to different modes of a device. For example, a valve may
be OPEN, CLOSED, or PARTIALLY-OPEN. Each device state is characterized by
a different set of laws (see Figure 11). The state of a device is invariably predi
cated on the (qualitative) value of a numerical parameter.

The device ontology has three advantages. First, the fixed network to
pology provides a substrate for efficient computations. All references within
laws are strictíy local, and hence resolving them is straightforward. This sim
plifies implementation. Second, composability is maintained by having all in
formation transferred through local connections. Given a correct catalog of
device models and interconnections, one could in principle model an arbitrarily
complex system by connecting together the corresponding device models.

The third advantage is that system dynamics is a widely used traditional
engineering methodology. Consequentiy, there are generally accepted standards
for structural descriptions (i.e., schematics) and standard quantitative models
for many domains which can be used as a starting point for creating qualitative
models. The translation of such quantitative to qualitative models is not trivial,
since new device states may have to be introduced (see [de Kleer and Brown,
1984] for details). However, most of the ontology can be inherited from system
dynamics intact, thus simplifying the modeler's task and providing greater con
fidence in tiie result.

However, there are two serious disadvantages to this ontology. First, the
device ontology provides no guidance for the construction of the network
model itself This is not a problem in some domains, such as electronics, where
the mapping from objects and relationships in the world is straightforward. In
manufacturing electronic components, great care is taken to ensure that the
physical objects perform much like their idealizations, within reasonable limits.
But for most domains tíiis aspect of the modeling process is problematic.

Consider, for example, the block shown in Figure 12(a). If the block is sit
ting on a table and we push it, then we probably want to model it as an ideal
ized mass. But if we push it while it is resting against a wall, then we will
probably want to model it as an idealized spring (albeit very stiff). If we im
merse the block in water and push on it, then we will probably model it as an
idealized damper. Thus we see that the same physical object can be modeled
by three distinct abstract devices, depending on the conditions in the system.

The advice given in system dynamics texts is to figure out how the object
behaves, and then select the right device model. This advice is fine for human
engineers, since their goal is to produce quantitative analyses and they pre
sumably already have some idea of the system's qualitative behavior. But the
goal of qualitative physics is to produce precisely those qualitative descriptions
of behavior, and hence we are left in the position of needing the answer before

264 Forbus

V|N •

O +Vcc

α VouT

Figure 10 An example of the device ontology.

State Condition

OPEN: [A = Ama\] [Ρ] = 0 dP = 0
PARTIALLY-OPEN: [0 < Λ < Amax] [Ρ] = IQ]
CLOSED: μ = 0] [β] = 0 3 β = 0

Figure 11A device model for a valve. This simple model of a valve is drawn
from Confluences. A refers to the area of the valve, relative to some maximum
area Amax. Ρ refers to the pressure across the valve, while Q refers to the flow
rate of gas through the valve.

A c t s like a
m a s s

A c t s Uke a
s p r i n g

A c t s like a
d a m p e r

Figure 12 System dynamics doesn't capture modeling assumptions

Chapter 7 Qualitative Physics 265

we can compute it. Consequently, the standard device ontology fails to
completely address the modeling problem, since it does not formalize the criti
cal task of model creation.

The second disadvantage is that, in many cases, the device ontology is un
natural. Consider the situations in Figure 13. We can consider the water in the
pot on the stove (Figure 13(a)) to be an object. If the water boils, this object
will decrease in size until it vanishes. It is hard to think of this system as a col
lection of devices, since the reasoning requires "clipping" a device out of the
network when the water vanishes. Such changes in the network topology lie
outside the device formalism. Similarly, the bouncing ball in Figure 13(b) il
lustrates that what an object interacts with can change drastically. It is difficult
to see any elegant representation for this system in the device ontology.

o o
o o

Figure 13 System dynamics cannot model many interesting systems.

4.1.6 Processes Informally, people often describe changes in the physical
world in terms of processes. Examples include motion, liquid flow, heat flow,
boiling, bending, compressing, and expanding. This notion has been formalized
in qualitative physics as an ontological commitment. Consider a cup under a
faucet. If the faucet is turned on, there will be a process of liquid flow occur
ring from the faucet, through the fluid path formed by the space above the cup,
to the cup itself This liquid flow is not a property of either the cup, the faucet,
the water, or the space above the cup. It is a new type of entity, with properties
of its own, such as the rate of water flow.

In this ontology, processes like liquid flow provide the notion of mecha
nism for physical situations. All changes, ultimately, are assumed to be caused
directiy or indirectíy by physical processes. A model of a domain includes a
description of the kinds of objects there are, the kinds of relationships that hold
between them, and the kinds of processes that can occur. To describe a specific
situation, models for each of the parts and relationships are asserted. Impor
tantly, the modeler does not directiy specify what processes are possible in
each situation. Instead, the process specifications in the domain model state the
conditions under which they can occur, and the inference system uses these
specifications to automatically generate descriptions of the possible processes.

266 Forbus

This notion of process was introduced by qualitative process (QP) theory
[Forbus, 1981b, 1984b], and has been used in various forms by several re
searchers in qualitative physics, including Simmons [1983], Weld [1986], Mo
hammed and Simmons [1986], and Schmölze [1986]. Some of these theories
describe the effects of processes continuously over time (such as QP theory),
while others describe processes discretely by the net effect they have over an
interval of time [Simmons, 1983; Weld, 1986]. (The earliest attempts to for
malize physical processes in AI preceded qualitative physics. Hendrix [1973]
described processes as STRIPS-like operators augmented with equations for
use in planning. Brown, Burton, and Zdybel [1973] represented processes as
finite-state automata, for instmctional puφoses. Neitiier representation used
qualitative information, in the current technical sense of the term.)

Figure 14 illustrates a simple model of liquid flow expressed in QP theory.
The individuals specification provides a form of quantification. An instance of
a process is said to exist for every combination of objects in a scenario that
matches the individual specifications. The preconditions and quantity condi
tions together determine when the process is active. Roughly, quantity condi
tions can be inequalities and whether or not other processes are active, and pre
conditions are extemal conditions. Aligned, for example, means that all
valves in the path are open. A QP model can predict that pressures will change,
but not that a sailor may walk by and close a valve.

The relations field describes what holds when the process is active. This
field can declare local quantities and constraints, as well as information rele
vant to extemal representations (such as appearances). Here, the local quantity
flow-rate is introduced and is declared to be equal to the difference in pres
sures. Together with preconditions, die relations field provides a means of in
terfacing QP theory to other representations.

The direct effects of a process are specified by the influences field. Every
process must have at least one direct influence, and only processes can have
direct influences. Direct influences, noted by / + and / - , specify the derivative
of their first argument. Here, the amount of liquid in the source will tend to
decrease, and the amount of liquid in the source will tend to increase. Like
qualitative proportionalities, direct influences must be composed to compute
the total derivative by making closed-world assumptions. But unlike qualitative
proportionalities, where no commitment is made to the method of combination,
direct influences are additive. So if we knew that in fact some other process
were influencing the amount at the destination (an instance of liquid flow
corresponding to a leak, say), then by knowing the relative flow rates we could
predict how the amount of water in the destination will actually change. (This
solves the problem with Hayes' leaky cup, mentioned earlier.)

The process ontology has several advantages. First, the notion of process is
intuitively appealing for many domains. Objects can come into existence and
vanish, for example, something that is not allowed in the device ontology. Sec-

Chapter 7 Qualitative Physics 267

ond, processes provide a simple notion of causality by imposing a distinction
between independent variables (those which are directiy affected by processes)
and dependent variables (those which are affected as a consequence of the in
dependent variables changing). The next section examines this issue in detail.

The third advantage of the process ontology is diat it allows explicit repre
sentation of modeling conditions and assumptions, via the individuals and pre
conditions fields. This means the program can take on more of the modeling
burden. Instead of demanding a complete initial description, a program using
the process ontology can "fill in" the user-supplied description of a particular
situation with the kinds of processes that can occur. Potentially, this flexibility
provides considerable power. For example, the class-wide assumptions de
scribed informally in [de Kleer and Brown, 1984] can be formally expressed
by combinations of individuals and preconditions specifications in QP theory.

Of course, nothing comes for free—the process ontology also has some
disadvantages. First, in some domains (like electronics) the distinction between
dependent and independent parameters changes according to the kind of analy
sis being performed. Process descriptions are very hard to write for such cases.
Second, the process ontology requhes more inference, and die manipulation of
quantified descriptions, to set up the model. This complicates the design of
programs using the process ontology, and often results in longer run times.
And third, the process ontology has not been formally explored as much as the
device ontology. There is no process-oriented equivalent engineering formalism
to system dynamics, no off-the-shelf models to adapt.

Process Liquid-Flow(?src ?sub ?d$t ?path)
Individuals: ?src a container

?dst a container
?sub a substance
?pdth a fluid-path,

Connects(?path.?src,?dst)
Preconditions: Aligned(?path)
Quantity Conditions: A|Pressure(C-S(?sub.liquid,?src))]

>AiPressure(?dst)]
Relations: Quantity(f low-rate)

flow-rate = Pressure(C-S(?sub,lqiuid,?src))
- {ressire)?dst)

Influences: I + (Amount-of-in(?sub.liquid.?dst),Aiflow-rate])
l-(Amount-of-in(?sub,liquid.?src)Aiflow-rate])

Figure 14 A description of liquid flow.

268 Forbus

4.1.7 Other Issues A common misconception is that the different theories
described in the literature are merely notational variants for "the" qualitative
physics, or that eventually only one theory will be proven to be "right." Such a
view ignores the rich variety of the phenomena we are trying to model (from
the patchy, incomplete theories constructed on the fly by the person on the
street to the integrated, broad theories formulated explicitly by world-class en
gineers and scientists) and the range of potential applications we are addressing
(from student modeling in intelligent tutoring systems to monitoring process
plants to scientific discovery).

As the earlier sections indicate, there are a variety of choices for repre
sentations of quantity, equation, and ontology. Different combinations of these
choices correspond to different systems of qualitative physics. I claim the best
way to view research in qualitative physics is to think of it as describing this
space of possible theories and their properties. By understanding the alterna
tives and trade-offs, we can select the best combination of choices for particu
lar purposes.

The next two issues apply this viewpoint to two controversial issues in the
current state of the art: continuity and causality.

Continuity Continuity is a formal way of enforcing tiie intuition that things
change smoothly. A simple consequence of continuity, respected by all systems
of qualitative physics, is that, in changing, a quantity must pass through all in
termediate values. That is, if A < Β ai time t\ then it cannot be the case that at
some later time t2 tiiat A > Β holds, unless there was some time 13 between η
and t2 such that A = B.

This law has consequences for computing state transitions, since changing
inequality relations (or just comparisons with zero, in the case of sign repre
sentations) herald state transitions. If X > Y and DIX] < D[Y], for instance,
then the relation between X and Y could change to =. Similarly, if X = Y and
the same relationship held between their derivatives, then the relationship
would change to <.

The details of computing state transitions are the same for all the existing
theories, with one exception—^how long these transitions will take. The second
kind of transition, changes from equality, everyone agrees will occur in an in
stant. The first kind of transition, in every theory right now but QP, always
takes an interval of time. In QP theory it takes an interval of time if the differ
ence is finite, but only an instant if the difference is infinitesimal.

Invoking infinitesimals is an unusual step. The motivation is to capture the
commonsense intuition that "if you kick something only for a moment, you can
kick it back quickly," a kind of symmetry in duration. If you influence a quan
tity away from equality for only an instant, one should be able to push it back
in an instant. In my first implementation of QP theory, GIZMO, this model
caused cycles of behavior whose states only lasted for an instant (called stut-

Chapter 7 Qualitative Physics 269

ter). These cycles could then be merged into single states, expressing a chang
ing equilibrium [Forbus, 1984b]. Unfortunately, in at least some of the ex
amples studied the instant-instant transitions were violating continuity on
derivatives, and a more accurate implementation (QPE) fails to show stutter. At
this point it is not clear whether or not stutter will always be ruled out by such
constraints,"^ and whether or not it will appear in "natural" models.

The more general question is, are infinitesimal models useful? Or should
we simply adopt classical continuity universally? There are two arguments for
continuing to pursue alternatives to classical continuity. The first is that in
finitesimal models are proving their worth in other areas of qualitative physics
(see Section 4.1.1 and [Weld, 1987]). The second is that classical continuity
alone is inadequate to model the full range of phenomena in qualitative phys
ics. Impulses, for instance, are part of every engineer's vocabulary. Yet they
violate classical continuity, by allowing instantaneous transitions to equality.
Other similar phenomena have been explored recently by Nishida and Doshita
[1987]. Continuity, while significantly tamed through the efforts of a few
hundred years of mathematics and physics, still has some unexplored territory.

Causality By any account, causality remains unruly, even after a long history
of investigation. A recent public exchange between de Kleer and Brown and
Iwasaki and Simon in the AI Joumal unfortunately may have shed more heat
than light on the matter. At the risk of unleashing yet more rhetoric, I will at
tempt to clarify the issues here.

The necessary framework to understand these issues appears in [Forbus
and Gentner, 1986b], where Dedre Gentner and I analyze the various notions
of causal reasoning about quantities used in qualitative physics. The goal of
that analysis is to isolate some distinctions that may be useful in understanding
human reasoning. Roughly, these distinctions are: the temporal aspects relating
cause and effect (the measurement scenario), whether or not the ontology con
tains an explicit class of mechanisms or not, and whether or not the primitives
for describing equations include presuppositions about the direction of effect
(directed versus non-directed primitives). The second two factors will be the
most relevant for this discussion.

We assume that some notion of mechanism underlies all causal reasoning
(see [Forbus and Gentner, 1986a]). However, accounts differ in their construal
of what mechanisms are. In explicit-mechanism theories, the notion of mecha
nism is tied to particular ontological classes. For example, in QP theory,
processes are the mechanism; they are the source of all changes. In implicit-
mechanism theories, such as de Kleer and Brown's confluence theory, the no
tion of mechanism arises from the interactions of the system's parts. They

4 Cycles of length 2 are forbidden, but longer sequences look plausible.

270 Forbus

assume that flow of infomiation in the model of the system directly mirrors
"flow of causality" in die world. To see the differences, consider a liquid flow
between two containers. In QP theory all changes would be caused by an in
stance of the 1 i quid-flow process. In a confluence model the changes would
arise from the interaction of the constitutive equations.

The difference between directed and non-directed primitives can be il
lustrated again by comparing QP tiieory and Confluence tiieory. The influences
used in QP tiieory (and others) to represent equations are directed primitives.
Influences include qualitative proportionalities and direct influences (i+ and i -)
needed to specify derivative relationships. We might represent the relationship
between level and pressure in a contained liquid wc as:

pressure(WC) αρ+ level(WC)

indicating tiiat a change in level could cause a change in pressure, but not the
reverse. In Confluences (and others), the primitives are non-directed since they
do not carry a presupposition of causality. Thus we might say

pressure(WC) = level(WC)

but would be equally willing to say a change in pressure causes a change in
level as the reverse. Notice that, at least in this case, there is a clear, intuitive
direction.

Any causal analysis must determine which way the primitives in its repre
sentation are to be used. In tiieories witii explicit mechanisms, what is an inde
pendent parameter is determined by what the mechanism directiy affects. In
QP theory, for instance, the causal directedness hypothesis [Forbus, 1984b] ex
presses causality:

Changes in physical situations which are perceived as causal are due to
our interpretation of them as corresponding either to direct changes caused
by processes or propagation of those direct effects through functional de
pendencies.

A process directiy affects something by supplying its derivative. (Since it can
supply a derivative of 0, tiie same notion suffices to impose causality on static
situations.)

By contrast, in theories with implicit mechanisms, some other means of
specifying independent parameters must be found. For example, the confluence
model critically relies on an input perturbation for causal analysis. The choice
of input parameter provides significant constraint on the direction of propaga
tion (which is inteφreted as the direction of causation) in the system. This con
straint is not quite sufficient, since it is necessary to annotate some parameters
as independent, to prevent inappropriate causal deductions ([de Kleer and
Brown, 1984], page 73).

Chapter 7 Qualitative Physics 271

Now we are in a position to understand the causal ordering proposal of
Iwasaki and Simon [1986]: They propose to use directed primitives, similar to
qualitative proportionalities, but without associating a sign of effect (i.e., OLQ ,
but not OLQ+ or OLQ-). The exogenous variables of the system are used as the in
dependent variables. Given these independent parameters, the technique of
causal ordering will produce a graph of dependencies by manipulating the
quantitative equations describing die system. To get die direction of change im
posed by each connection, they propose to use the method of comparative stat
ics, which uses quantitative information to produce a sensitivity analysis. The
end result will be much die same as the graph of influences that holds for the
corresponding situation in a QP model. The possibility of incorrect causal argu
ments seems to be avoided by detecting when the system of equations is under-
determined: It is exacdy in such cases that an assumption must be made, and
an extemal knowledge source (such as the user) can determine which assump
tion will lead to correct arguments.

Whether or not causal ordering is useful in analyzing a particular example
depends on the availability of two things: a set of quantitative equations and
knowledge about which variables are exogenous. For many circumstances
equations are available, but for many simple circumstances (such as boiling)
tiiey aren't. Often the available equations are too complicated to use: A high-
accuracy differential equation model of a coal-fired power plant, for instance,
can be dozens of pages long. Basing die notion of causal independence on exo
genous parameters limits causal ordering to creating models of specific systems
in specific modes of behavior. The limitation to specific systems comes from
the fact that what is exogenous often changes when a system becomes part of a
larger system. Thus we cannot carry our analysis of, say, a heat exchanger, in
tact to the analysis of a larger system including it. The limitation to specific
modes of behavior comes from the fact that the equations describing a system
or object can change drastically (phase changes in fluids and turbulent versus
non-turbulent flow are two examples).

While causal ordering satisfies several intuitions about commonsense rea
soning, it also violates two others. First, since it requires quantitative equations,
it cannot explain how commonsense physics comes about—after all, people
reason causally about quantities long before they can do symbolic algebra. Sec
ond, it also does not assign causality in feedback systems ("a chicken and egg
problem," [Iwasaki and Simon, 1986]), although such descriptions are common
in informal descriptions of how systems work.

5 There is no obvious reason why it couldn't; in classical simulation paradigms such "loops" in
the equations are broken by delay elements (i.e., integration operators), and similar techniques can
be used in qualitative equations (e.g., the QP theory notion of direct influence).

272 Forbus

I believe that, while the techniques Iwasaki and Simon describe seem to
have only limited usefulness as simulation tools, they could be quite valuable
in the context of knowledge acquisition. Consider the problem of acquiring
knowledge from textbooks. Two kinds of knowledge must be encoded. The
formal aspects, the equations, must be transformed into qualitative laws. The
informal aspects, the contents of the text, must be transformed into the organi
zational structure (typically ontological) that tells when these laws are appro
priate and useful. Causal ordering and comparative statics may be useful tech
niques in translating the explicit, formal knowledge of a domain. By combining
these techniques with a system that can induce representations for the implicit
knowledge, we might be able to develop tools to semiautomatically acquire
qualitative models by interacting with human experts.

4.2 Qualitative Kinematics

There has been significant progress in qualitative dynamics. Several repre
sentations for ontology, number, and equations have been explored, a number
of successful programs developed to test these ideas, and there are high expec
tations of future progress. Unfortunately, the same cannot be said for qualita
tive kinematics. This section explores why, and describes some progress made
since the original survey talk upon which this essay is based.

To begin with, we must refine what we mean by qualitative kinematics.
We exclude problems like navigation, manipulator-level planning, and layout
design simply because they overlap to a greater degree with robotics and en
gineering problem solving than with qualitative physics per se. By qualitative
kinematics I mean the spatial reasoning aspects of qualitative physics. Ex
amples include reasoning about motion, the geometry of fluid flow, the shape
of charge distributions, and so forth. Most efforts have focused on the simplest
of these, reasoning about motion. And recendy, significant progress has been
made on reasoning about mechanisms, in the classical sense—gears, transmis
sions, mechanical clocks, and the like.

I mentioned before that the dividing line between "prehistory" and the pre
sent in qualitative physics lay in the decision to explore purely qualitative rep
resentations. This tactic was reasonably successful in qualitative dynamics. I
claim this hasn't happened in spatial reasoning because it cannot be done. We
conjecture that there is no purely qualitative kinematics (the poverty conjecture
[Forbus et al., 1987]).

This idea takes some explaining. Consider FROB. It did some fairly sophis
ticated spatial reasoning, including understanding collisions and the notion of
being trapped in gravity wells. But to arrive at this understanding took a metric
diagram, which contained a significant amount of quantitative information.

Chapter 7 Qualitative Physics 273

Thus FROB itself is not purely qualitative.^ But in fact purely qualitative repre
sentations suffice for a surprising number of inferences about dynamics. Sadly,
it just doesn't seem to be the case for qualitative kmematics.

The poverty conjecture is based on three arguments. First, no one to date
has developed a purely qualitative kinematics. For example, I've spent years
trying to develop one, and I've talked to a number of other people who have as
well, with little success.

Naturally, this is a weak argument. Negation by failure is rarely safe scien
tifically, and part of my motivation for making this conjecture is the hope that
someone will succeed in proving me wrong! But the second argument makes
me skeptical. Much of the power of qualitative dynamics comes about ft-om
partial orders. Time, as Allen [1984] showed, can be nicely modeled in terms
of temporal relations where transitivity provides significant constraint. In
equalities, while individually weak descriptions, combine via transitivity to
yield often powerful conclusions. But these are both one-dimensional prob
lems. There is a result in dimension theory which states that partial orders
don't work for higher dimensions. Try it yourself: Create a vocabulary of spa
tial relationships between 2D figures like Allen's relationships for time, such as
EQUAL, INSIDE, ABUT, OVERLAP, and SO forth. You'll find the only entries in a
transitivity table for such relationships that provide significant constraint are
those which impose a partial order (in this case, EQUAL and INSIDE) . With the
others (e.g., ABUT, OVERLAP) , just about anything is possible.

While stronger, this second argument still does not clinch the matter. After
all, there might be some other powerful idea, some new formalism that will
provide the "right" quantization for shape and space independent of an initial
quantitative description.^ But the third argument is that we have no reason to
think that such a formalism necessarily exists, because people appear to per
form poorly at spatial reasoning without the "moral equivalent" of a diagram.
There is a large literature on the psychology of visual imagery, and while it
must be interpreted with care, it seems to indicate that some kind of quantita
tive information plays an important role in human spatial reasoning. In addition
to imagery, people resort to sketches, models, looking at the object itself, and
so forth—in short, we hamess our perceptual apparatus in service of spatial
reasoning.

This apparent reliance on perceptual apparatus motivated FROB'S metric di
agram, and we believe that this model can be extended productively into a
general model for qualitative kinematics (the MD/PV model [Forbus et al..

6 If quantitative dynamics worked that way, there would be no qualitative simulators per se. In
stead, we would always have to provide numerical simulation routines and lots of numerical para
meters to get any predictions. (Or use symbolic algebra—as mentioned earlier, not every symbolic
description is qualitative, and this is a good example.)
7 As shown previously, useful qualitative descriptions for space can be computed from quantita
tive ones— b̂ut the goal in this argument is to avoid using a metric diagram altogether.

274 Forbus

1987]). By this account, spatial reasoning requires at least two representations.
The first is a metric diagram, which includes quantitative information and can
answer geometric questions by some form of calculation or measurement. The
metric diagram attempts to describe the functionality of the visual system in
human spatial reasoning. One operation that can be done with a metric diagram
is computing a place vocabulary, which quantizes space by some relevance cri
teria. Figure 15 shows how this model was instantiated in FROB.

History

Metric Diagram

Solid Regions

Figure 15 FROB illustrated the MD/PV model of spatial reasoning. This picture
illustrates what is "under the hood" in FROB. The metric diagram provides a
means of communicating with the user, a means of answering quantitative
spatial queries, and a substrate for computing a qualitative description of
space. The first step in computing this place vocabulary is to ascertain the solid
regions, where free space isn't. Next, it breaks up the free space into regions,
in a way that simplifies the description of possible motions. These regions plus
symbolic descriptions of their connectivity form FROB's place vocabulary.

Chapter 7 Qualitative Physics 275

It seems that all spatial reasoning projects to date fit the MD/PV model
fairly well. For example, the (earlier) natural language understanding program
by Waltz and Boggess [1979] used a metric diagram in constmcting models of
sentences like "A fly is on the table." Geoff Hinton [1979] developed an ele
gant theory of imagery that used a mixture of propositional and numerical rep
resentations to explain phenomena that simpler theories based on array repre
sentations cannot explain. In reasoning about geological processes, Sinunons
[1983] compared quantitative calculations with a diagram to check the correct
ness of qualitatively plausible histories. Stanfill [1983] used symbolic descrip
tions witii numerical parameters to reason about simple pistons and bearings.
Davis [1987] argues tiiat purely qualitative representations are "too weak" to
support reasoning about motion involving solid objects.

4.2.1 Reasoning About Mechanisms There has been renewed interest in
spatial reasoning recentiy, particularly in understanding mechanisms. Gelsey
[1987] uses a constmctive solid geometry CAD description as his metric dia
gram, and computes motion envelopes to recognize kinematic pairs. The place
vocabulary in his system consists of regions that involve interactions between
parts. Joskowicz [1987] has proposed to analyze single interactions in a mecha
nism by recognition, describing kinematic pairs by patterns in configuration
space. (Configuration space was first used in robotics for motion planning
problems, see [Lozano-Perez, 1983]).

In our own CLOCK project, Faltings [1986, 1987a, 1987b] has developed a
general theory of place vocabularies for mechanisms. Faltings observes that the
important distinctions for quantizing shape must come from pairs of objects,
rather than objects in isolation, since it is their interaction that determines
whether or not a pair of objects will move together or bind. In mechanisms,
each part has only one degree of freedom, so a configuration space for a pair
of objects is two-dimensional. The place vocabulary for an entire mechanism
(such as a clock) is the combination of the place vocabularies for the pairs of
parts. Faltings also observes tiiat symbolic algebra can be used to parameterize
place vocabularies, tfius increasing the potential for tfieir use in mechanical de
sign. Faltings's theory has been tested by an implementation on a wide range
of examples, including gears, ratchets, escapements, and the complete set of
kinematic pairs for a mechanical clock [Faltings, 1987b].

Of course, Faltings's theory only solves half of the problem: It describes
what contact relationships are possible, and what might be reached if move
ment occurs in a particular direction. To integrate this information with a quali
tative dynamics requires imposing reference frames in order to describe forces
and motions. Nielsen, in his part of the CLOCK project, has developed a tiieory
of qualitative vectors and reference frames. Such vectors are used for repre
senting contact directions, forces, velocities, and otiier parameters. He has used
these techniques in a qualitative tiieory of rigid-body statics [Nielsen, 1987],

276 Forbus

which can determine what directions an object is free to move in as well as
what movement will occur. This theory has been implemented and has success
fully answered questions about the stability of Blocks World structures, in ad
dition to gears and escapements.

4.3 Styles of Reasoning
The purpose of representation is reasoning. This section describes some of the
styles of reasoning that have been explored in qualitative physics to date. Be
cause there has been confusion about the relationship between envisioning and
other forms of qualitative simulation, this issue is discussed in detail. I will ig
nore diagnosis, since an adequate treatment is well beyond the scope of this
survey.

4.3.1 Qualitative Simulation The result of a standard numerical simulation
is a list of state vectors, each vector representing the system being simulated at
some particular Δί. Qualitative simulations differ from numerical simulations in
two respects. First, time is individuated by tiie occurrence of interesting events,
rather than some regular, fixed increment. Second, the reduced precision of
qualitative representations often requires branching to represent alternate
possible futures.

It is important to note that some qualitative simulators do not produce
specific histories at all! This is a subtle point that is often misunderstood. A
history describes a specific behavior of an object. While a history is (at least
potentially) infinite, it typically consists of only a finite number of distinguish
able episodes. Referring back to Section 4.1.1, we say that two episodes are
distinguishable exactiy when they differ in some limit point (i.e., temporally
generic landmark). The implication is that each episode can be described as an
occurrence of one of a finite set of abstract qualitative states. This assumes
there are a finite number of properties, and a finite number of values for each
property, and hence only a finite number of combinations of these properties.
Similarly, for any finite collection of objects we can define qualitative states
that describe consistent collections of every possible distinguishable episode
for each object.

Qualitative states can be defined without recourse to histories. In fact, the
notion of qualitative state was developed earlier than histories, as Section 3 in
dicates. The graph formed by the collection of all qualitative states of a system
and the transitions between them is called an envisionment. The notion of envi-
sionment is due to de Kleer [1975]. The process of constructing an envision-
ment, envisioning, was the first method of qualitative simulation. Roughly,

Chapter 7 Qualitative Physics 277

each history corresponds to some path through the envisionment, but the con
verse is not tme, as we will see shortly.

A further distinction between envisioners is whether they start from a
given initial state or from all possible states. The former are said to produce
attainable envisionments, the latter total envisionments. Total envisionments
are usually larger than attainable envisionments, but are more useful for certain
tasks. A number of envisioners of each type have been built for different theo
ries. N E W T O N [de Kleer, 1975] and FROB [Forbus, 1980] both produced attain
able envisionments for different kinds of motion problems, QUAL [de Kleer,
1979b] produced attainable envisionments for electronics, while ENVISION pro
duced total envisionments for system-dynamics-like models (see Section 4.1.5)
For qualitative process (QP) theory, GIZMO [Forbus, 1984c] produced attainable
envisionments, while QPE [Forbus, 1988] produces total envisionments.

Several programs produce histories direcdy. FROB , for instance, used a
constraint-based numerical simulation to generate histories. In several impor
tant applications, histories are specified as part of the description of a problem,
as in integrated circuit fabrication [Mohanuned and Simmons, 1986] or hy
pothesized on the basis of otiier knowledge [Simmons, 1983]. Kuipers's QSIM
system, of course, generates histories directiy.

4.3.2 Envisioning Versus History Generation The relationship between
envisionments and histories is more subde than first suspected, and is still
being explored. Some aspects are clear; for instance. Tve defined a logic of oc
currence [Forbus, 1987a] diat specifies how a history may be related to an en
visionment so that general behavioral constraints (such as assuming classes of
behavior must or may not occur) can be enforced. Sometimes there have been
simple terminological confusions, such as de Kleer and Brown [1984] calling
their qualitative states "episodes," Kuipers [1986] calling his account of history
generation a "deeper semantics" for envisioning, or Collins and Forbus [1987]
calling their M C envisioning a history. Other aspects, however, are genuinely
problematic and have become fertile areas of research.

In a correct envisionment, every possible history can be expressed as a
path. Various properties of the graph correspond to important behavioral dis
tinctions. For example, states with no transitions from them represent final
states for the system, and cycles correspond to oscillations.

Originally, de Kleer [de Kleer and Brown, 1984; de Kleer, 1984a] claimed
that, just as every history corresponds to a path through the envisionment, so
every path through the envisionment must correspond to a physically realizable
history. Kuipers [1986] shows this is incorrect. The counterexample he uses is
shown in Figure 16 (this envisionment was generated with QPE [Forbus,
1988]). The parameter Ζ is a function of position, and should be compared
with Ζ but is otiierwise unconstrained. By declaring the comparison between

278 Forbus

Ζ and Ζ ' as interesting, we will cause a state transition to occur whenever the
relationship between them changes. There are other transitions that will occur
due to the way motion and acceleration are modeled (see [Forbus, 1984c] for
details).

To generate a history from an envisionment, begin by selecting a start
state. That state forms what occurs at the first episode in the history, the dura
tion of the episode being the duration of the corresponding qualitative state
(i.e., either an interval or instant). If there are no transitions from the chosen
state, then that episode is the end of the history. If there are, select one of the
transitions as representing what actually occurs. Then continue as before,
starting from the state resulting from the transition.

Carrying out this procedure on the envisionment of Figure 16 reveals a
variety of possible histories. For example, the sequence of states Si, S4, S7,
Sio, Si3, S16, Si9, S22 corresponds to a legal history, as does S3, SO, S9, S12,
Si5, S18, S21, S24. Other legal histories correspond to variations of these where
Ζ changes in its relationship to Ζ ' within the range of variation for X. For ex
ample, the sequence S3, SO, Sg, Sio, S13, S16, S20 ,S24 corresponds to the case
where Ζ equals Ζ ' when X equals zero.

All of the histories mentioned so far are legitimate. But consider again the
transitions from, say, S6. Each time around the cycle, one of these transitions
must be chosen. In the algorithm specified, which corresponds to the original
de Kleer claim, each such choice is independent. Thus we are free to choose
another transition the next time we reach SO, which will give us an illegitimate
history. The problem can arise even on a single cycle; the sequence 53, SO, Sg,
Sio, Si3, S16, Si7, S18 ,S2i, S24 is inconsistent because the SO, Sg ,Sio sub
sequence assumes Ζ = Ζ ' when X = ZERO , while the S16, S17, Sis, S21 is
based on the assumption that Ζ reaches Ζ 'D before X reaches ZERO . The
choices are not in fact independent, and treating them as such can lead to in
correct predictions.

In this simple case, the solution seems clear: Each choice of transition im
plies additional information about the functional relationship between X and Z.
For example, assuming that die transition from 56 to 58 occurs "fixes" a point
on the (implicit) graph defining their relationship: in particular, Ζ = Ζ ' when X
= ZERO . (Assuming that one of the other transitions occurs requires introducing
a new constant related either to X or to Z, but the principle is the same.) These
constraints must then be respected in successive choices. For example, choos
ing the transition from 5i2 to 5 i i forces the later transition of 5i6 to 5i7.
However, it is not straightforward to generalize this technique to all situations.

To summarize: With no information, we can get incorrect predictions. If
we had a fully specified correct quantitative model, there would be no ambigu
ity and hence we would always get correct histories. The open research ques
tion right now is, just how much information, and in what form, suffices to
generate histories correctly from envisionments?

Chapter 7 Qualitative Physics 279

x=o

F/0iire 76 Generating histories from envisionments can be difficult. An
envisionment for a modified spring-block oscillator is shown below. The
modification consists of an extra parameter Z, which is a function of Xand is
compared with an arbitrary constant Z\ Each row is labelled with a picture
indicating the general position and velocity of the block in the states of that
row. Each column indicates the relationship Ζ has with Z ' in those states.
Arrows denote locally consistent transitions between states. Circles indicate
states that last over an interval, while squares indicate states lasting only for an
instant.

280 Forbus

This problem arises even without envisionments; direct history generation
must also take into account constraints imposed by earlier choices. In QSIM, for
example, new named values can be introduced at every step of the computa
tion, corresponding to die value a quantity takes on in a particular episode of
the history (more on this below). Since the algorithm can introduce a new
value between any two adjacent previous values, the number of possible epi
sodes can (and does) grow exponentially without bound. This means that QSIM
also produces incorrect histories. Several pmning techniques to weed out incor
rect histories have been investigated, including problem-specific constraints
[Lee et al., 1987], algebraic manipulation [Kuipers and Chiu, 1987], and quan
titative knowledge [Chiu, 1987], but so far these results have been mixed. (For
instance, Stmss [1987] points out several limitations of qualitative mathemat
ics, such as sensitivity to the form of equations, which indicate that algebraic
manipulation of qualitative equations is often unsafe.)

Both envisionment and direct history generation have their role to play in
the arsenal of qualitative physics. The notion of envisionment is a superb
theoretical tool, providing a simple way to think about classes of behaviors.
Envisioning is a good methodological tool for qualitative model development,
since it exercises domain theories in obscure cases that the model builder might
otherwise ignore. But envisioning is unlikely to be the desired solution for
quick on-line computation: After all, it corresponds to explicitiy generating the
entire problem space for some class of problems! In such cases history genera
tion, perhaps combined with heuristics, seems to make sense. The space/time
trade-offs in qualitative simulation have only begun to be explored. One can
imagine compiling envisionments "offline," for example, or the envisionment
of a system at a high level of abstraction being used to guide direct history
generation at a lower level.

4.3.3 Recognition Engineers are good at explaining how things work.
Often, this occurs by recognition "Oh, it 's a proportional-action controller"—
they redescribe the system in terms drawn from SL functional vocabulary. This
functional vocabulary appears to help organize their knowledge for several pur
poses. In diagnosis, symptoms might be computed by comparing current be
havior against the standard behavior stored widi the functional description. In
design, a functional vocabulary provides an intermediate goal that constrains
the search space. The designer might decide what combination of functional
blocks would achieve her purpose, and then figure out how to implement this
functionality with the available components. Capturing this ability to map from
structure to function was an early focus of qualitative physics.

The most successful work in this area is still that of de Kleer [1979b,
1984a], who originally pointed out the problem as well. His dieory is that to
perform recognition, engineers first figure out how the system behaves, and
then use that description of behavior to "retrieve" into a functional vocabulary.

Chapter 7 Qualitative Physics 281

A transistor circuit that behaves in a particular manner, for instance, might be
recognizable to an engineer as a "common-emitter amplifier." One elegant
aspect of de Kleer's work was how he constrained the result of qualitative
simulation. The simulation proceeded by determining how the system would
respond to "poking" its input. He noted that any sensible engineer wouldn't in
clude parts that didn't help the circuit perform its function. Thus, any inter
pretation of the circuit's behavior that did not include every component could
be ruled out on teleological grounds. In almost all of the electronic circuits he
examined, this principle sufficed to rule out all but one inteφretation.

While this work was one of the early successes of qualitative physics, little
has been done by way of follow-up. What is needed is the formalization of rich
functional vocabularies, and this problem has received little attention. Recent
work by Chandreskaran [Sembugamoorthy and Chandrasekaran, 1984] and
Doyle [1986] can be viewed in this light.

4.3.4 Measurement Interpretation Ideally, we would like our programs
to gather their own data about the world. A program that works in a power
plant, for instance, should have the ability to "read the gauges" to find out
what is happening inside the plant. This is the problem of measurement inter
pretation. My ATM! theory [Forbus, 1986a, 1987c] describes how to inteφret
measurements taken over a span of time in terms of qualitative states. This
theory is very general, requiring only domain-specific procedures for perform
ing an initial signal/symbol translation and that an envisionment (potentially)
exists. An implementation has been demonstrated that works on multiple on
tologies (i.e., both QP models and FROB models). However, at this writing it
has only been tested on simulated data without gaps, and does not specify con
trol strategies for handling noisy data.

Yet a different kind of measurement inteφretation was studied by Sim
mons in the GORDius program [Simmons, 1983]. The specific problem he
addressed was evaluating whether or not a hypothesized sequence of geological
events could account for the strata at a particular place. Knowing how the
sequence came about is important economically, since some sequences will re
sult in oil as a byproduct and others won't. A map built up out of well
measurements represents the final state of this behavior. The program accumu
lated constraints on the size and shapes of maps that could result from the pro
posed history, and checked the actual map to see if it was consistent with these
constraints.

5 The Frontier

The previous sections examined where qualitative physics came from, and
where it is now. I have tried to paint a coherent picture of the state of the art.

282 Forbus

indicating the alternatives that have been explored and where substantial pro
gress has been made. But no survey is complete without looking at the boun
daries: areas which right now are relatively unexplored, and are thus fertile
ground for new investigations.

5.1 The Near Future
Γ11 begin by describing some areas tiiat are likely to see rapid progress. It
would suφrise me to not see significant advances in these areas in the next
three years or so.

5.1.1 Improved Domain Models A central activity of qualitative physics
is developing a variety of models for physical phenomena and engineered sys
tems. However, building good domain models is very difficult, and even with
good tools takes much longer than one would expect. Nevertheless, the next
few years should see significant advances in the kinds of physical phenomena
that we can represent. For example, initial forays into reasoning about granu
larity and composition [Bunt 1985; Schmölze, 1986; Raulefs, 1987] may pro
vide tools for reasoning about nonrigid objects. I suspect that progress in mod
eling powders and clays will require developing more sophisticated geometric
representations to describe deformations, sheer, stress planes, and the other
constructs of materials science. In modeling fluids, we still do not have a good
theory of mixtures that describes exactiy how different stuffs affect each other
inside a container. An especially fertile ground is chemistry, which is interest
ing both industrially and intellectually, since it requires integrating discrete
structures and geometry with reasoning about continuous systems.

5.1.2 Implementations I expect that implementations will steadily improve
in performance and storage economy—we haven't been building qualitative
simulators for very long, after all, and are still discovering the right techniques.
This trend, combined with the rising tide of improvements in computer tech
nology, suggests that the range of problems we can tackle will continue to ex
pand.

As we understand styles of reasoning better, the kinds of programs used in
qualitative physics will become more diverse as well. Problems like design, for
instance, require a detailed accounting of how different properties of the com
ponents and their interconnections relate to properties of the behavior pro
duced. Keeping track of these justifications, especially in the presence of feed
back, is a difficult problem. Williams's [1986] temporal constraint propagator
TCP is tiie first system tiiat does this correctiy. Widespread application of these
techniques should improve the sophistication possible in qualitative analyses.

One of the advantages of envisioning is that it postpones worrying about
control issues. Alas, such issues cannot be put off forever. Solving problems by

Chapter 7 Qualitative Physics 283

explicitly generating the entire search space simply is not a viable long-range
alternative. Notice that history generation, per se, is not the answer— these ap
proaches are already plagued with control problems, since they can lead to in
finite descriptions of behavior. (In fact, a resource limit is often imposed for
control purposes.) An attractive alternative is to generate generic qualitative
states by heuristic search, applying the standard AI techniques to minimize ef
fort. This subset of the envisionment can then be used as a framework for con
strained generation of temporally specific landmarks, if needed.

Of course, this is just one alternative. Another idea is to decompose a
complex system (such as a power plant) into a collection of semi-independent
pieces, produce envisionments for each of the pieces, and glue them together as
needed to provide a description of the whole plant. A few theoretical ideas
have been proposed for such decompositions (e.g., the notion of p-component
in [Forbus, 1984b]), but the bulk of the work remains to be done.

Another control issue that must be faced concems domain models which
are potentially infinite. Consider this simple model: An object consists of a set
of parts, each of which is itself an object. This simple recursive stmcture will
kill every existing qualitative simulator in which it can be stated (it cannot
even be stated in most), and hence such models have been avoided. However,
such descriptions are sufficientiy useful tiiat techniques for controlling their in
stantiation should be explored.

5.1.3 Ontological Shifts It is unlikely that we have exhausted tiie space of
ontological choices. Furtiiermore, not much is known about the relationship be
tween various ontologies. For example, aside from a few mies of thumb, we
cannot precisely characterize when to use a device-centered ontology instead of
a process-centered ontology.

In examining human reasoning, it seems ontological shifts occur in the
course of solving a single problem. Recall the SWOS problem from Section
2.2. Most people implicitiy use two distinct ways of looking at fluids to solve
this problem. To establish directions of flow and the fact of boiling required
looking at "the stuffs" in different parts of the system—^the water in the boiler
is turning into steam, the lower pressure in the load means there will be a flow
of steam from die boiler tiirough tiie superheater, and so on. To figure out how
tiie temperamre actually changed, however, required thinking of a little piece
of smff travelling through the system.

Early on, Hayes [1985] identified these ideas as the contained liquid on
tology and piece of stuff ontology, respectively. Most qualitative physics work
has used the contained liquid ontology. Recentiy John Collins and I developed
a specialization of the piece of stuff ontology, the molecular collection on
tology, to capmre the kind of reasoning engineers do about thermodynamic cy
cles. The idea is to define a little piece of smff, MC, which is large enough to

284 Forbus

have macroscopic properties yet small enough never to split up when tra
versing a fluid system.

How is an M C envisionment generated? Since qualitative representations
are not detailed enough to provide local gradients, what M C does is computed
from an envisionment generated using a contained stuff ontology. We suspect
this is exactiy the kind of ontological shift occurring in examples like the
SWOS problem.^

Even considering fluids, many ontological questions remain open. For ex
ample, what other specializations of Hayes' piece of stuff ontology are useful?
Spatially extended pieces of stuff appear essential to modeling mixing and
weather pattems—how are they to be individuated and combined? I am sure
that as we attempt to build more sophisticated domain models, we will uncover
many new ontological issues, many of them revolving around spatial reasoning.

5.1.4 Hypothesizer One particularly interesting potential application is a
kind of monitoring task, using a module I call a hypothesizer.^ The goal is to
merge measurement inteφretation with explanation in order to improve plant
operations and fault management.

Suppose you have someone controlling a large, complicated system, such
as a production line in a chemical plant, and some condition arises that must be
dealt with. Operators in such circumstances will often seize upon the first
theory they generate about what is going on, and stick with it even in the face
of contradictory data. Imagine a program that could critique an operator's
theory. Such a program, if done properly, could have two benefits. First, it
would force the operator to be explicit about his theory of what is wrong. Sec
ond, the program could compare the consequences of the dieory widi measure
ments, point out discrepancies, and suggest further experiments and modifica
tions. Besides being used for diagnosis, it would not suφrise me if this kind of
module became one of the first applications of qualitative physics. Providing
human-understandable explanations is die forte of qualitative physics, after all.

5.1.5 Planning Realistic planning requires knowing what the physical world
will do, with and without the planner's actions. How can we best use qualita
tive physics in planning?

One way is to transform die domain model into something the planner can
use. Hogge's domain compiler [Hogge 1987a, 1987b] takes as input a QP
domain model, and produces mies suitable for a temporal planner. (The plan
ner derives from [Allen and Koomen, 1983], adding inference mies and odier
extensions—see [Hogge, 1987c] for details.) Given a description of liquid

8 Techniques for comparative analysis in [Weld, 1987] provide another piece of the puzzle. It is
not known at this writing if together these techniques are sufficient to solve the SWOS problem.
9 Mike Williams of IntelliCorp calls it a "Doubting Thomas" system.

Chapter 7 Qualitative Physics 285

flow, for instance, the domain compiler produces an inference rule describing
what it takes to cause a liquid flow to happen. When these rules are added to
other inference rules and a specification of the actions an agent may take, the
planner can create plans which involve processes as intermediaries, such as
filling a kettle by moving it under a faucet and tuming it on.

While elegant, this approach requires more research to live up to its pro
mise. The large descriptions produced by the domain compiler, and the com
plex inferences required (especially transitivity), tend to choke the temporal
planner. Compiling can also produce oversimplified models. For instance, the
rules implicidy assume that any influence they impose on a quantity will actu
ally succeed in changing that quantity. Thus a planner using these rules might
assume that it can prevent an ocean liner from sinking by bailing with a
teaspoon. Such limitations do not appear impossible to overcome, and no doubt
there are other valuable approaches to be explored as well.

There is also a second kind of planning problem that I think ultimately is
going to be extremely important, yet has received little attention to date—^the
problem of procedure generation. When you design a new engineering system,
you don't just design the object, you have to develop procedures for operating
it, for maintaining it, for diagnosing problems with it. If we are trying to get
our computers to help us design complex systems, we need to find ways to
have them generate such procedures automatically. If the design system knew
the kinds of actions the system operators can take and their limitations, its out
put could include not just the blueprint, but the operations manual, the main
tenance manual, and the diagnosis manual (or expert systems that provided the
same service). Furthermore, safe operation could be posted as an explicit con
straint on the design of the plant.

5.1.6 Connections with Traditional Physics Understanding the kind of
reasoning scientists and engineers do was the original motivation for qualitative
physics. To fully capture what they are doing, we must extend qualitative phys
ics in the direction of traditional physics. This section describes two exciting
recent efforts in this area.

In traditional physics, a set of equations can be solved analytically or by
simulation to derive the behavior of a system. Similarly, qualitative equations
are typically derived from an ontology in order to generate behavior via quali
tative simulation (either envisioning or history generation, see above). Sacks
[1985] has developed an analytic technique that generates qualitative descrip
tions from traditional equations. His initial QMR system could solve a variety of
systems, including models of a dampened oscillator and heat dissipation. One
limitation of this approach is that most interesting equations do not have ana
lytic solutions. Sacks's [1987] solution is to decompose more complex systems
into piecewise linear approximations, use QMR on each piece, and reconstruct
the global solution from the local solutions.

286 Forbus

Yip [1987] has a complementary approach to a similar problem. Phase
portraits are a geometric technique traditionally used in mathematics to de
scribe complex dynamics. Yip has created a vocabulary of qualitative descrip
tions of phase space that formalizes the intuitions mathematicians bring to bear
in understanding such portraits. Given a numerical simulation of a non-linear
system, he uses this vocabulary to inteφret the particular behavior, and make
predictions about what the otiier parts of phase space must be like. Ultimately,
these predictions will form the basis of additional numerical experiments.

Williams [1988] has developed an elegant formalism that combines quali
tative and quantitative algebra. Potentially, this theory could greatiy extend the
range of qualitative reasoning.

5.1.7 Learning Creating a complete qualitative physics is a herculean task;
it will become much easier if our machines can help. Several workers are tack
ling different aspects of this problem. Langley, Simon, Bradshaw, and Zytkow
[1987] have studied various aspects of scientific discovery of physical laws. So
far, their work has focused on equational and discrete symbolic (as opposed to
qualitative) models. Kokar [1987] describes a methodology for determining
limit points using dimensional analysis. Falkenhainer's ABACUS [Falkenhainer,
1985] program uses qualitative proportionalities as an intermediate repre
sentation in inducing equations from numerical data. Mozetic [1987] describes
how hierarchy can be exploited in automatically acquiring qualitative models,
demonstrating his techniques with a model of the heart. Rajamoney and De-
Jong [1987] have tackled the problem of debugging qualitative tiieories, pro
viding a theoretical classification of bug types, including strategies for detect
ing and fixing them.

At Illinois we are taking two different approaches to understanding leam
ing in physical domains. The first is psychological; Dedre Gentner and I are
combining QP theory and her Structure-Mapping tfieory of analogy [Genmer,
1983, 1987, 1988] in an attempt to account for experiential leaming in physical
domains [Forbus and Centner, 1986a]. We suspect tiie kinds of representation
and reasoning explored by qualitative physics to date actually appear rather late
in human leaming, with two other stages postulated for both computational rea
sons and to explain certain psychological findings. Right now we are exploring
these ideas through both cognitive simulation (using SME , a cognitive simula
tion of Centner's analogy theory [Falkenhainer et al., 1986, 1988]) and psy
chological experiments.

The other approach, the Automated Physicist project, is being carried out
in collaboration with Jerry DeJong. The idea is to build a series of machine
leaming systems that leam by experimentation and observation and by solving
textbook problems. The dream behind the AP project is to build a sort of
"Sheriock Holmes" of physics—it it begins by sitting back in its armchair and
trying to explain reported behavior in tfie physical worid. If it can explain a re-

Chapter 7 Qualitative Physics 287

port no leaming takes place. But if it cannot, then it tries to fix its model. Our
ultimate goal is to have a program which designs and builds its own experi
mental apparatus, analyzes real data, and so forth.

The first such programs are due to Falkenhainer and Rajamoney. Falken-
hainer's PHINEAS program has demonstrated how QP models can be leamed
with his theory of verification-based analogical learning [Falkenhainer, 1987].
Given a new behavior, PHINEAS attempts to use its current domain model to ex
plain die behavior. If it cannot, PHINEAS accesses a database of previously ob
served behaviors with associated explanations. An imj)ortant aspect of PHINEAS
is that it performs analogical matching on the behaviors first, to guide the
transfer of a QP model from an understood domain to explain the new one.
The new model is tested to see if it can explain the observations. Often, the
model has to be "fixed up" in various ways. Rajamoney's ADEPT system pro
vides exacdy the right functionality, since it has the ability to generate potential
improvements and the conceptual specifications of experiments required to de
cide between them. The two programs have been successfully linked and tested
on several examples [Falkenhainer and Rajamoney, 1988].

5.2 Open Problems
I would like to finish with a set of open problems. While we will make signifi
cant progress on these problems in the near term, they are sufficientiy deep and
tough not to yield to short assaults. I suspect each of them will take a few
generations of Ph.D. theses to solve.

5.2.1 Spatial Quantities There are no doubt other representations lying be
tween the poverty of signs and the richness of 91 that remain to be discovered.
And no doubt there will be advances in qualitative representations for time-
varying differential equations as well. But the real frontier is now partial differ
ential equations, especially quantities that vary by space instead of time.
Formalizing these spatial quantities will allow us to describe a vastiy wider
range of phenomena than at present. These phenomena include the flow over
an aiφlane wing, the distribution of electric fields due to a distribution of
charges, and the stresses on different parts of a bridge.

I suspect tfie problem decomposes into two parts. The first is the formali
zation of partial derivatives in general. While this part may have many techni
cal obstacles, it seems likely that the current theories can be gracefully ex
tended in this direction. The second problem appears to me to be much harder:
the problem of choosing the appropriate axes and frames of reference to
simplify computations and produce perspicuous results.

5.2.2 What Kinds Of Numbers Are There? itmigine what we know
about the space of representations for number. Let sign values be at the top and

288 Forbus

elements of 9Í be at the bottom, so that increased height corresponds to in
creased degree of absü-action. Inequalities are high in this structure, almost up
to sign values. Floating point numbers and other simple truncations of 91 lie
toward the bottom. You may choose for yourself where to put the order of
magnitude formalisms that have been developed recently. The question is, what
else is in there? How many different representations for number remain to be
developed, and what do they look like?

It would not suφrise me if several more useful representations of number
were developed. Some, like fuzzy numbers [D'Ambrosio, 1987], will be im
ported from other branches of AI and mathematics. A better understanding of
the tradeoffs and systems that integrate several types of numerical reasoning
(like [Simmons, 1986]) are necessary.

5.2.3 What Kinds of Functions Are There? A related question is, what
sort of functions are there? Traditional physics relies heavily on the analytic
functions, i.e., combinations of +, - , *, polynomials, trigonometric functions,
and so on. These lie at the most precise end of an abstraction continuum. At
the other end are qualitative proportionalities, where a closed world assumption
is required to even determine what parameters affect a given quantity. How
many representations for functions remain to be developed?

I suspect the answer is very few, much fewer than for numbers. Functions
and algebras have been well explored by mathematicians for a long time, and
while we may harvest a few new things from their efforts, I doubt there will be
much because the class of analytic functions is so large. But it is an empirical
question.

5.2.4 Large-Scaie Organization of Quaiitative Modeis Almost all of
the models we have built to date are quite simple (on the order of 300 or so
axiom-equivalents) compared to the scope of human commonsense or expert
knowledge of the physical world. Building such a massive knowledge base will
be impossible on an ad hoc basis. Ontology provides one source of organizing
principles, but there are no doubt others.

Hierarchy plays an important role in organizing many other AI knowledge
bases, and it is likely to do so in qualitative physics as well. Making qualitative
simulations work with multiple levels of detail is an important problem (see
[Weld, 1986; Kuipers, 1987] for some initial forays).

At least two other organizational ideas appear necessary as well. First, we
need to formalize the idea of structural abstractions, the conceptual objects
used in our representations, as distinct from their real-worid counteφarts. This
separation is needed in order to provide an input language for systems that is
reasonably independent of the theoretical conunitments of a particular model. It
is seductive to consider a transistor as identical to our model of it, and as long

Chapter 7 Qualitative Physics 289

as we limit our analysis to a particular frequency range this conflation does
little harm. But more sophisticated reasoning about circuits, and any considera
tion of almost any other engineering domain (e.g., fluid systems, thermal sys
tems, motion) requires more work to map from a relatively neutral description
of die physical system to die kind of model used for a particular level of analy
sis.

The second organizational tool is a language of simplifying assumptions.
Rather than build distinct models for different purposes, we should instead use
explicit assumptions to tum off and on different parts of a model. For instance,
in reasoning about thermodynamic cycles one often invokes a "steady-state as
sumption^—^the amount of fluid in each part of the system remains constant,
despite flows. Human engineers constantiy use assumptions like this to drasti
cally reduce the number of possible states, making analysis of complex systems
more feasible. Our models will have to be designed in a way that allows our
programs to do the same. We have recendy developed some conventions for
representing such assumptions in QP theory, and tested diem on a large multi-
grain, multiple perspective model of a Navy propulsion plant [Falkenhainer and
Forbus, 1988]. These conventions are a solid first step, but much research re
mains.

As qualitative physics becomes ready for widespread application, we will
face the same kinds of validation issues now confronting other kinds of expert
systems. Most engineering disciplines have validation procedures in place, and
standards on the quality of model that must be used for a particular level of
safety desired. We will have to fit qualitative models into such schemes, some
how.

5.2.5 Integration with Vision and Robotics Vision and robotics are, in
principle, closely tied to qualitative physics. Qualitative physics can tell a robot
where somediing might go if it is dropped, and what it has to do in order to
boil water. As mentioned in the introduction, some form of qualitative physics
will be needed by robots that work in unconstrained environments (although in
general the useful representations may be more like protohistories and the
causal corpus [Forbus and Gentner, 1986a] than like die current state of the
art). But qualitative physics also needs vision and robotics. The poverty conjec
ture suggests that advances in spatial reasoning and vision will help drive qual
itative kinematics. For instance, UUman's theory of visual routines [Ullman,
1985] can be viewed as a theory of human metric diagrams. Knowing what the
visual system computes can suggest what primitives are likely to be useful, and
conversely, knowing the computational requirements of qualitative kinematics
may in tum suggest what spatial descriptions people might be computing. Eric
Saud [1987] has in fact proposed an "information rich spatial representation,"
using the various representations postulated for human vision to support spatial
reasoning.

290 Forbus

5.2.6 A Complete Qualitative Pliysics Today qualitative dynamics and
kinematics are typically pursued in isolation. Integrating them is crucial to
building a complete qualitative physics. A full understanding of an internal
combustion engine, for instance, cannot be gleaned witfiout understanding how
physical processes and geometry interact. Efforts like the CLOCK project are a
step, but just a first step, in this direction.

And, finally, of course, there is the ultimate goal. The holy grail of qualita
tive physics is a complete set of models, spanning the space of all the physical
domains people know, able to characterize human models from the person on
the street up to the best experts, capable of supporting efficient application pro
grams, and so forth. Like traditional physics, we will probably never get there.
But we will certainly leam interesting things on the way.

Acknowledgments

I would like to thank Johan de Kleer, Dedre Gentner, Paul Nielsen, John Col
lins, Brian Falkenhainer, and Ernie Davis for useful comments and discussions.
Support for this work has come from the Office of Naval Research (Contract
No. N00014-85-K-0225, Contract No. N00014-85-K-0559), and the National
Aeronautics and Space Administration (Contract No. NASA-NAG-9137).

References

Allen, J., 1984. Towards a general model of action and time. Artificial Intel
ligence 23(2).

Allen, J. and Koomen, J., 1983. Planning using a temporal world model. In
Proceedings of IJCAI-83, Karlsruhe, West Germany. San Mateo: Morgan
Kaufmann Publishers.

Bobrow, D., 1968. Natural language input for a computer problem-solving sys
tem. Semantic Information Processing, M. Minsky, ed. Cambridge, Mass.:
MIT Press.

Bobrow, D., ed., 1984. Qualitative Reasoning About Physical Systems. Cam
bridge, Mass.: MIT Press.

Brown, J., Burton, R. and Zdybel, F., 1973. A model-driven question-answer
ing system for mixed-initiative computer-assisted instruction. IEEE Trans
actions on Systems, Man, and Cybernetics, SMC-3(2).

Bundy, Α., Byrd, L. Luger, G., Mellish, C , Milne, R. and Palmer, M., 1979.
MECHO: A program to solve mechanics problems. Working Paper 50, De
partment of Artificial Intelligence, Edinburgh University.

Chapter 7 Qualitative Physics 291

Bunt, H.C., 1985. The formal representation of quasi-continuous concepts.
Formal Theories of the Commonsense World, R. Hobbs and R. Moore, ed.
Norwood, N.J.: Ablex Publishing Corporation.

Chamiak, E., 1968. CARPS, a program which solves calculus word problems.
Technical Report MAC-TR-51, Project MAC, MIT.

Chiu, C , 1987. Qualitative physics based on exact physical principles. Paper
presented at die First Qualitative Physics Workshop, Urbana, Illinois.

Collins, J. and Forbus, K., 1987. Reasoning about fluids via molecular collec
tions. In Proceedings ofAAAI-87, Seattle, Washington. San Mateo: Morgan
Kaufmann Publishers.

Considine, D. M. ed., 1983. Van Nostrand's Scientific Encyclopedia, Sixth Edi
tion. New York: Van Nostrand Reinhold.

D'Ambrosio, B., 1987. Extending the mathematics in qualitative process
theory. In Proceedings of AAAI-87, Seatde, Washington. San Mateo: Mor
gan Kaufmann Publishers.

Dauge, P., Raiman, O. and Deves, P., 1987. Troubleshooting: When modeling
is the trouble. In Proceedings ofAAAI-87, Seattle, Washington. San Mateo:
Morgan Kaufmann Publishers.

Davis, E., 1986. A logical framework for solid object physics. New York Uni
versity Computer Science Department Technical Report No. 245. To appear
in International Journal of AI in Engineering, 1988.

Davis, E., 1987. Order of magnitude reasoning in qualitative differential equa
tions. New York University Computer Science Department Technical Re
port No. 312.

Davis, E., 1988. In press.
de Kleer, J., 1975. Qualitative and quantitative knowledge in classical mechan

ics. Technical Report No. 352, MIT AI Lab, Cambridge, Mass.
de Kleer, J., 1979a. The origin and resolution of ambiguities in causal argu

ments. In Proceedings of IJCAI-79, Tokyo, Japan. San Mateo: Morgan
Kaufmann Publishers.

de Kleer, J., 1979b. Causal and teleological reasoning in circuit recognition.
MIT AI Lab Technical Report No. 529.

de Kleer, J., 1984a. How circuits work. Artificial Intelligence 24.
de Kleer, J., 1984b. Choices without backtracking. In Proceedings of AAAI'84,

Austin, Texas. San Mateo: Morgan Kaufmann Publishers.
de Kleer, J., 1986. An assumption-based tmth maintenance system. Artificial

Intelligence 28.
de Kleer, J. and Brown, J., 1984. A qualitative physics based on confluences.

Artificial Intelligence 24.
de Kleer, J. and Williams, B., 1986. Reasoning about multiple faults. In Pro

ceedings of AAAI-86, Philadelphia, Pennsylvania. San Mateo: Morgan Kauf
mann Publishers.

292 Forbus

Dormoy, J. and Raiman, O., 1987. Assembling a device. Paper presented at the
First Qualitative Physics Workshop, Urbana, Illinois.

Doyle, R., 1986. Constructing and refining causal explanations from an incon
sistent domain theory. In Proceedings of AAAI-86, Philadelphia, Pennsyl
vania. San Mateo: Morgan Kaufmann Publishers.

Falkenhainer, B., 1985. Proportionality graphs, units analysis, and domain con
straints: Improving the power and efficiency of the scientific discovery
process. In Proceedings of IJCAI-85, Los Angeles, Califomia. San Mateo:
Morgan Kaufmann Publishers.

Falkenhainer, B., 1987. An examination of the third state in the analogy
process: Verification-based analogical leaming. In Proceedings ofIJCAI-87,
Milan, Italy. San Mateo: Morgan Kaufmann Publishers.

Falkenhainer, B., 1988. In press.
Falkenhainer, B. and Forbus, K., 1988. Setting up large-scale qualitative mod

els. In Proceedings of AAAI-88, St. Paul, Minnesota. San Mateo: Morgan
Kaufmann Publishers.

Falkenhainer, B., Forbus, K. and Gentner, D., 1986. The structure-mapping en
gine. In Proceedings of AAAI-86, Philadelphia, Pennsylvania. San Mateo:
Morgan Kaufmann Publishers.

Falkenhainer, B., Forbus, K. and Gentner, D., 1987. The structure-mapping en
gine: Algorithm and examples. University of Illinois at Urbana-Champaign,
Department of Computer Science Technical Report No. UIUCDCS-R-87-
1361. To appear in Artificial Intelligence, 1988.

Falkenhainer, B. and Rajamoney, S., 1988. The interdependencies of theory
formation, revision, and experimentation. In Proceedings of the Fifth Inter
national Conference on Machine Learning, Ann Arbor, Michigan. San
Mateo: Morgan Kaufmann Publishers.

Faltings, B., 1986. A theory of qualitative kinematics in mechanisms. Univer
sity of Illinois at Urbana-Champaign, Department of Computer Science
Technical Report No. UIUCDCS-R-86-1274.

Faltings, B., 1987a. Qualitative place vocabularies for mechanisms in configu
ration space. University of Illinois at Urbana-Champaign, Department of
Computer Science Technical Report No. UIUCDCS-R-87-1360.

Faltings, B., 1987b. Qualitative kinematics in mechanisms. In Proceedings of
IJCAI-87, Milan, Italy. San Mateo: Morgan Kaufmann Publishers.

Forbus, K., 1980. Spatial and qualitative aspects of reasoning about motion. In
Proceedings of AAAI-80, Palo Alto, Califomia. San Mateo: Morgan Kauf
mann Publishers.

Forbus, K., 1981a. A study of qualitative and geometric knowledge in reason
ing about motion. MIT AI Lab Technical Report No. 615.

Forbus, K., 1981b. Qualitative reasoning about physical processes. In Proceed
ings of IJCAI-81, Vancouver, B.C. San Mateo: Morgan Kaufmann Publish
ers.

Chapter 7 Qualitative Physics 293

Forbus, K., 1984a. An interactive laboratory for teaching control system con
cepts. Bolt Beranek and Newman Technical Report No. 5511.

Forbus, K., 1984b. Qualitative process theory. Artificial Intelligence 24.
Forbus, K., 1984c. Qualitative process theory. MIT AI Lab Technical Report

No. 789.
Forbus, K., 1985. The problem of existence. In Proceedings of the Cognitive

Science Society. Hillsdale: Lawrence Erlbaum.
Forbus, K., 1986a. Inteφretíng measurements of physical systems. In Proceed

ings of AAAl-86, Philadelphia, Pennsylvania. San Mateo: Morgan Kaufmann
Publishers.

Forbus, K., 1986b. The qualitative process engine. Technical Report No. UI-
UCDCS-R-86-1288. Also to appear. International Journal of AI in En
gineering, 1988.

Forbus, K., 1987a. The logic of occurrence. In Proceedings of IJCAI-87,
Milan, Italy. San Mateo: Morgan Kaufmann Publishers.

Forbus, K., 1987b. Intelligent computer-aided engineering. In Proceedings of
the AAAI Workshop on AI in Process Engineering, Columbia University,
New York. To appear in AI Magazine, Fall 1988.

Forbus, K., 1987c. Inteφreting observations of physical systems. IEEE Trans
actions on Systems, Man, and Cybernetics SMC-17(3).

Forbus, K. 1988. In press.
Forbus, K. and Gentner, D., 1986a. Leaming physical domains: Towards a

theoretical framework. Machine Learning: An Artificial Intelligence Ap
proach, Volume II, R. Michalski, J. Carbonell, and T. Mitchell, ed. San
Mateo: Morgan Kaufmann Publishers.

Forbus, K. and Gentner, D., 1986b. Causal reasoning about quantities. In Pro
ceedings of the Eighth Annual Conference of the Cognitive Science Society,
Amherst, Mass. Hillsdale: Lawrence Erlbaum.

Forbus, K., Nielsen, P. and Faltings, B., 1987. Qualitative kinematics: A
framework. In Proceedings of IJCAI-87, Milan, Italy. San Mateo: Morgan
Kaufmann Publishers.

Forbus, K. and Stevens, Α., 1981. Using qualitative simulation to generate ex
planations. Bolt Beranek and Newman Technical Report No. 4490. Also in
Proceedings of the Third Annual Meeting of the Cognitive Science Society.
Hillsdale: Lawrence Erlbaum.

Gelsey, Α., 1987. Automated reasoning about machine geometry and kinemat
ics. Proceedings of the Third IEEE Conference on AI Applications, Orlando,
Florida.

Gentner, D., 1983. Structure-mapping: A theoretical framework for analogy.
Cognitive Science 7(2).

Gentner, D., 1987. Historical shifts in the use of analogy in science. University
of Illinois Department of Computer Science Technical Report No. UI-
UCDCS-R-87-1389.

294 Forbus

Gentner, D., 1988. Mechanisms of analogical leaming. To appear in Vosni-
adou, S. and Ortony, A. ed.. Similarity and Analogical Reasoning. London:
Cambridge University Press.

Gentner, D. and Stevens, A. ed., 1983. Mental Models. Hillsdale: Lawrence
Erlbaum.

Hayes, P., 1979. The naive physics manifesto. Expert Systems in the Micro
electronic Age, D. Michie, ed. Edingburgh: Edinburgh University Press.

Hayes, P., 1985. Naive physics 1: Ontology for liquids. Formal Theories of the
Commonsense World, R. Hobbs and R. Moore, ed. Norwood: Ablex Pub
lishing.

Hendrix, G., 1973. Modeling simultaneous actions and continuous processes.
Artificial Intelligence 4.

Hinton, G., 1979. Some demonstrations of the effects of stmctural descriptions
in mental imagery. Cognitive Science 3(3).

Hogge, J., 1987a. Compiling plan operators from domains expressed in qualita
tive process theory. In Proceedings of AAAI-87, Seattle, Washington. San
Mateo: Morgan Kaufmann Publishers.

Hogge, J., 1987b. The compilation of planning operators from qualitative
process theory models. Technical Report No. UIUCDCS-R-87-1368.

Hogge, J., 1987c. TPLAN: A temporal interval-based planner with novel exten
sions. Technical Report No. UIUCDCS-R-87-1367.

Hollan, J., Hutchins, E., and Weitzman, L., 1984. STEAMER: An interactive
inspectable simulation-based training system. AI Magazine.

Iwasaki, I. and Simon, H., 1986. Causality in device behavior. Artificial Intel
ligence 29.

James, G., and James, R., 1968. Mathematics Dictionary. New York: D. Van
Nostrand Company.

Joskowicz, L., 1987. Shape and function in mechanical devices. In Proceedings
of AAAI-87, Seattle, Washington. San Mateo: Morgan Kaufmann Publishers.

Kokar, M., 1987. Critical hypersurfaces and the quantity space. In Proceedings
of AAAI-87, Seattle, Washington. San Mateo: Morgan Kaufmann Publishers.

Kuipers, B., 1984. Common sense causality: Deriving behavior from stmcture.
Artificial Intelligence 24.

Kuipers, B., 1986. Qualitative simulation. Artificial Intelligence 29.
Kuipers, B., 1987. Abstraction by time-scale in qualitative simulation. In Pro

ceedings of AAAI-87, Seattle, Washington. San Mateo: Morgan Kaufmann
Publishers.

Kuipers, B. and Chiu, C , 1987. Taming intractable branching in qualitative
simulation. In Proceedings of IJCAI-87, Milan, Italy. San Mateo: Morgan
Kaufmann Publishers.

Langley, P., Simon, H., Bradshaw, G. and Zydcow, J., 1987. Scientific Dis
covery: Computational Explorations of the Creative Processes. Cambridge,
Mass.: The MIT Press.

Chapter 7 Qualitative Physics 295

Lee, W. W., Chiu, C. and Kuipers, B. J., 1987. Developments towards con
straining qualitative simulation. University of Texas at Austin Artificial In
telligence Laboratory Technical Report No. AI TR87-44.

Lozano-Perez, T., 1983. Spatial planning: A configuration space approach,
IEEE Transactions on Computers C-32.

Mavrovouniotis, M. and Stephanopolous, G., 1987. Reasoning with orders of
magnitude and approximate relations. In Proceedings of AAAl-Sl, Seattle,
Washington. San Mateo: Morgan Kaufmann Publishers.

Mohammed, J. and Simmons, R., 1986. Qualitative simulation of semiconduc
tor fabrication. In Proceedings of AAAI-86, Philadelphia, Pennsylvania. San
Mateo: Morgan Kaufmann Publishers.

Mozetic, I., 1987. The role of abstractions in leaming qualitative models. In
Proceedings of the Fourth International Workshop on Machine Learning, Ir
vine, Califomia. San Mateo: Morgan Kaufmann Publishers.

Nielsen, P., 1987. The qualitative statics of rigid bodies. University of Illinois
at Urbana-Champaign, Department of Computer Science Technical Report
No. UIUCDCS-R-87-1354.

Nishida, T. and Doshita, S., 1987. Reasoning about discontinuous change. In
Proceedings of AAAI-87, Seattle, Washington. San Mateo: Morgan Kauf
mann Publishers.

Novak, G., 1976. Computer Understanding of Physics Problems Stated in Nat
ural Language, Ph.D. thesis. Department of Computer Science, University
of Texas at Austin.

Raiman, O., 1986. Order of magnitude reasoning. In Proceedings of AAAI-86,
Philadelphia, Pennsylvania. San Mateo: Morgan Kaufmann Publishers.

Rajamoney, S. and DeJong, G., 1987. The classification, detection, and hand
ling of imperfect tiieory problems. In Proceedings ofIJCAI-87, Milan, Italy.
San Mateo: Morgan Kaufmann Publishers.

Raulefs, P., 1987. A representation framework for continuous dynamic sys
tems. In Proceedings of IJCAI-87, Milan, Italy. San Mateo: Morgan Kauf
mann Publishers.

Sacks, E., 1985. Qualitative mathematical reasoning. In Proceedings of IJCAI-
85 , Los Angeles, Califomia. San Mateo: Morgan Kaufmann Publishers.

Sacks, E., 1987. Piecewise linear reasoning. In Proceedings of AAAI-87, Seat
tle, Washington. San Mateo: Morgan Kaufmann Publishers.

Saud, Ε., 1987. Presentation at the First Qualitative Physics Workshop, Ur
bana, Illinois.

Schmölze, J., 1986. Physics for robots. In Proceedings of AAAI-86, Philadel
phia, Pennsylvania. San Mateo: Morgan Kaufmann Publishers.

Sembugamoorthy, V. and Chandrasekaran, B., 1984. Functional representation
of devices and compilation of diagnostic problem-solving systems. Techni
cal paper, AI Group, Ohio State University.

296 Forbus

Shearer, J., Murphy, Α., and Richardson, H., 1971. Introduction to System Dy
namics, Reading: Addison-Wesley.

Simmons, R., 1983. Representing and reasoning about change in geologic in-
teφretation. MIT Artificial Intelligence Lab Technical Report No. 749.

Simmons, R., 1986. Commonsense arithmetic reasoning. In Proceedings of
AAAI-86, Philadelphia, Pennsylvania. San Mateo: Morgan Kaufmann Pub
lishers.

Stanfill, C , 1983. The decomposition of a large domain: Reasoning about ma
chines. In Proceedings of AAAI-83, Washington, D.C. San Mateo: Morgan
Kaufmann Publishers.

Struss, Peter 1987. The limitations of qualitative mathematics. Paper presented
at the First Qualitative Physics Workshop, Urbana, Illinois.

Ullman, S., 1985. Visual routines. Visual Cognition, S. Pinker, ed. Cambridge,
Mass.: MIT Press.

Waltz, D. and Boggess, L., 1979. Visual analog representations for natural lan
guage understanding. In Proceedings of IJCAI-79, Tokyo, Japan. San
Mateo: Morgan Kaufmann Publishers.

Weld, D., 1986. The use of aggregation in qualitative simulation. Artificial In
telligence 30(1).

Weld, D., 1987. Comparative analysis. In Proceedings of IJCAI-87, Milan,
Italy. San Mateo: Morgan Kaufmann Publishers.

Weld, D., 1988a. Exaggeration. In Proceedings of AAAI-88, St. Paul, Minne
sota. San Mateo: Morgan Kaufmann Publishers.

Weld, D., 1988b. Theories of Comparative Analysis, M.I.T. Ph.D. thesis. May.
Williams, B., 1984. Qualitative analysis of MOS circuits. Artificial Intelligence

24.
Williams, B., 1986. Doing time: Putting qualitative reasoning on firmer

ground. In Proceedings of AAAI-86, Philadelphia, Pennsylvania. San Mateo:
Morgan Kaufmann Publishers.

Wilhams, Β., 1988. In press.
Yip, K., 1987. Extracting qualitative dynamics from numerical experiments. In

Proceedings of AAAI-87, Seattle, Washington. San Mateo: Morgan Kauf
mann Publishers.

Chapter

8

Model-based Reasoning:
Troubleshooting
Randall Davis
Walter Hamscher
Artificial Intelligence Laboratory

Massachusetts Institute of Technology

1 Introduction

To determine why something has stopped working, it's useful to know how it
was supposed to work in the first place. That simple observation underlies
some of the considerable interest generated in recent years on the topic of
model-based reasoning, particularly its application to diagnosis and trouble
shooting. This chapter surveys the current state of the art, reviewing areas that
are well understood and exploring areas that present challenging research top
ics. We begin by describing the nature of the task, exploring what is given and
what we're trying to produce. Since, as will become clear, there are considera
ble advantages to reasoning from a model of structure and behavior, we need
representations for both; we review the set of techniques in current use and ex
amine their strengths and weaknesses.

A considerable part of the chapter is then devoted to how those repre
sentations are used to do model-based diagnosis. We view the fundamental par
adigm as the interaction of prediction and observation, and explore it by ex
amining its three fundamental subproblems: generating hypotheses by reason
ing from a symptom to a collection of components whose misbehavior may
plausibly have caused that symptom; testing each hypothesis to see whether it
can account for all available observations of device behavior; then discriminat-

297

298 Davis and Hamscher

ing among those that survive testing. In any real system these three are likely
to be intertwined for reasons of efficiency. We treat them independentiy to
simplify the presentation and because our goal is a knowledge-level analysis—
an understanding of what reasoning capabilities arise from the varieties of
knowledge available to the program.

The presentation is stmctured as a sequence of increasingly elaborate ex
amples, starting with the simplest approach and adding successively more
knowledge, producing successively more constraints that can be brought to
bear. This is useful both as a way of simplifying the presentation and as a way
of making another of the major points of this chapter: While a wide range of
apparentiy diverse model-based systems have been built for diagnosis and trou
bleshooting, they can all be seen as exploring variations on the basic paradigm
outlined here. Their diversity lies primarily in the varying amounts of and
kinds of knowledge they bring to bear at each stage of the process.

Our survey of this familiar territory leads to a second major conclusion of
the chapter: Diagnostic reasoning from a tractable model is largely well under
stood. That is, given a model of stmcture and behavior of tolerable complexity,
we know how to use it in a variety of ways to produce a diagnosis. Part of the
evidence for this is the number of different applications of that same paradigm
in a variety of domains.

There is, by contrast, a rich supply of open research issues in the modeling
process itself. While to some degree we know how do model-based reasoning,
we don't know how to model complex behavior, how to create models, and
how to select the "right" one for the task at hand. The last major section of the
chapter deals with these topics, exploring the kind of difficulties that arise and
using them to outiine some important research problems.

2 The Basic Taslc

The basic paradigm of model-based reasoning for diagnosis can best be under
stood as the interaction of observation and prediction (Figure 1). In one hand
we have the actual device, typically some physical artifact whose behavior we
can observe. In die other hand we have a model of diat device that can make
predictions about its intended behavior. Observation indicates what the device
is actually doing, prediction indicates what it 's supposed to do. The interesting
event is any difference between these two, a difference termed a discrepancy.

A fundamental presumption behind model-based diagnosis is the notion
that if the model is correct, all the discrepancies between observation and pre
diction arise from (and can be traced back to) defects in the device. Simply
put, if the model is right, the device must be broken, and the discrepancies are
clues to the character and location of the faults. This is a useful view of the
process that will carry us through the first two-thirds of the chapter.

Chapter 8 Model-based Reasoning: Troubleshooting 299

We will eventually see, however, that it is also a simplified view: The as
sumption that the model is correct is in fact necessarily wrong in all cases. It is
wrong in ways that are sometimes quite obvious and sometimes quite subtíe.
Simply put, a model is a model precisely because it is not the device itself and
hence must in many ways be only an approximation. There will always be
things about die device that die model does not capture.

The good news is that the things the model fails to capture may have no
pragmatic consequence. A schematic for a digital circuit will not indicate the
color, smell, or coefficient of friction of the plastic used to package the chips,
but this typically doesn't matter. In theory die model is always incomplete, and
hence incorrect, in some respects, but it is a demonstration of the power and
utility of engineering approximations that models are often pragmatically good
enough.

The less good news comes in situations where the approximation is not
good enough. In that case we need to ask the more difficult question of how to
do model-based reasoning in the face of an incorrect model. What can be done
when both the model and the artifact may have defects? We turn to this later in
the chapter.

Turning back to the basic problem, the task can be specified slightiy more
precisely by saying that we are given:

• Observations of the device, typically measurements at its inputs and out
puts (because these are often easiest to obtain; in fact measurements at any
point will do and are handled identically).

• A description of the device's intemal stmcmre, typically a listing of its
components and their interconnection.

A description of the behavior of each component.

The task is tiien to determine which of the components could have failed
in a way that accounts for all of the discrepancies observed. Figure 2, for ex
ample, shows a device made from three multipliers and two adders. We know
the values at the five inputs; the value at output F was predicted to be 12 and
observed to be 10 (observations are noted in square brackets). The value at G
is predicted to be 12 and has not yet been measured. The overall task is to use
knowledge about the stmcmre and behavior of the components to determine
which ones could have produced the discrepancy at F , a process explored in
detail in Section 6.

This approach to troubleshooting has been called by a variety of names in
addition to model-based, including "reasoning from first principles" because it
is based on a few basic principles about causality, and "deep reasoning," an un-
formnate term intended to distinguish it from the associational mies typically
used in mle-based expert systems.

300 Davis and Hamscher

ACTUAL ^ OBSERVED PREDICTED ^ MODEL
DEVICE observations'' BEHAVIOR BEHAVIOR predictions

DISCREPANCY

Figure 1 Diagnosis a s the Interaction of Observation and Prediction.

Numerous model-based reasoners have been built, exploring a variety of
problem domains. The illustrative sample given in Table 1 indicates the growth
of interest in the area. Some of the earliest work dates from the mid-1970s,
with a considerable growth of interest in the mid-1980s. Much of it has been
directed to electronic circuits, both analog and digital, but there have also been
applications to problems in neurophysiology, hydraulic systems, and other
domains. In the remainder of this chapter we use digital circuits as a motivat
ing example, largely because they are a familiar and important application that
offers a range of examples from simple to quite complex.

Table 1 Sample Model-Based Troubleshooting Systems

INTER [de Kleer, 1976]
WATSON [Brown, 1976]
ABEL [Patil et al., 1981]
SOPfflE [Brown et al., 1982]
HT [Davis et al., 1982]
LOCALIZE [First et al., 1982]
IDS [Pan, 1984]
DART [Genesereth, 1984]
LES/LOX [Scarl et al., 1985]
GDE [de Kleer and Williams, 1987]
DEDALE [Dague et al., 1987]

Chapter 8 Model-based Reasoning: Troubleshooting 301

A = 3

B = 3

C=2 Η

D=2 -

MULT-1

MULT-2

ADD-1

E = 3 MULT-3

ADD-2

F=12
F=10

G=12

Figure 2 A Common Example.

The temi model has been used widely to refer to a range of different
things and is somewhat underdetermined. It is thus useful to review briefly
some of the different kinds of models that have been used, to get a sense of the
character of the information that models have supplied. As noted, the models
used in this chapter contain information about the structure and correct be
havior of the components in the device. Work in [Patil et al., 1981] describes a
medical diagnosis system that used models of behavior without structure, mod
els that indicated how one physiological event in the body could lead to
another (e.g., low blood serum pH causes increased respiration, which causes
decreased CO2 concentration). Traditional circuit diagnosis has often relied on
fault models, descriptions of the varieties of component misbehaviors typically
encountered. Finally, work in [Pan, 1984] has attacked the problem of depend
ent failures by building models that capture the behavior of a component when
it receives out-of-range inputs and itself begins to malfunction as a result. All
of these are varieties of models, so a system built around any one of them

302 Davis and Hamscher

could be temied model-based. Widiin die scope of this chapter we are con
cemed primarily with models of stmcture and correct behavior.

3 Altemate Approaches

Since a number of different approaches to diagnosis have been explored over
the years, it is useful to consider altematives to the model-based approach both
as a way of setting it in context and as a way of establishing the appropriate
circumstances for its use.

One traditional approach has been to use diagnostics, the test programs
traditionally used on electronic devices at the end of die manufacturing line, to
ensure that die device is capable of doing everydiing it's supposed to do. A
second technique is to build a "fault dictionary" by using simulation and a list
of die kind of faults anticipated. The idea here is to simulate the device be
havior for every one of the ways in which each individual component can mis
behave. Each simulation generates a description of how the entire device would
behave if a specific component were broken in a specific way. The overall re
sult is a list of fault/symptom pairs. The list is then inverted so that it is orga
nized by symptom, providing a dictionary that indexes from observed symp
tom—^the surface misbehavior—to one or more underlying faults capable of
causing that misbehavior.

Third, we can build programs to do diagnosis by capturing the experience
of experts, in the fashion widely used to build mle-based systems that employ
empirical associations. Finally, decision trees are a long-standing approach to
capturing diagnostic knowledge and offer a way of organizing a set of ques
tions that leads methodically through the process of zeroing in on the faulty
component.

Given the diversity of approaches to the problem, why and when does it
make sense to use the model-based approach? One way to answer the question
is to compare it against the altematives.

3.1 Compared to Diagnostics
One problem widi traditional diagnostics is that they are misnamed: Diagnos
tics don't do diagnosis, they do verification. As noted, their job is to ensure
that a newly manufactured device will in fact do everything it 's supposed to
do. There is no misbehavior to diagnose, because diere hasn't been any be
havior yet. The fundamental task of verification is to exercise all die intended
behaviors and make sure that diey are all tiiere. That's a different problem.

Model-based diagnosis, on the other hand, is both diagnostic and symptom-
directed: It starts with the observed misbehavior and works back toward the

Chapter 8 Model-based Reasoning: Troubleshooting 303

underlying components that might be broken. As will become clear, whenever
the behavior of a device is reasonably complicated, it 's much easier to work
from a specific symptom back to an underlying fault than to go exhaustively
through all the expected behaviors until we find one that's aberrant.

3.2 Fault Dictionaries and Diagnostics: Prespeclfled Fault Models
As we explore in more detail later, the model-based approach also covers a
wider class of faults than both fault dictionaries and traditional diagnostics, be
cause both of those require a fixed, preselected class of relatively simple fault
models. For fault dictionaries the task is to select a set broad enough to be use
ful in practice, yet simple enough that the simulation task is tractable. Writers
of diagnostics typically have to settle on a small, fixed class of faults in order
to create diagnostics that have acceptable coverage (the percent of possible
faults actually detected), resolution (how precisely a detected fault can be lo
calized), and efficiency. In the world of digital electronics the most common
choices are the faults known as stuck-at-1 (a node in the circuit always exhibits
the value 1) and stuck-at-0, largely because these are easily modeled, simu
lated, analyzed, and turn out to provide good coverage of other types of faults.

Whatever the faults chosen, the important point is that the fault dictionary
creator or diagnostic writer must preselect a set of things that can go wrong
and work from just tfiose possibilities. As will become clear, tfie model-based
approach takes a different view, defining a fault as "anything other than the in
tended behavior"; one consequence of this view is die ability to cover a wider
class of possible misbehaviors.

Fault models do offer two useful abilities. First, as we explore in Section
6.3.1, they can provide an extra degree of specificity to the diagnosis. Where
the model-based approach defines a fault by exclusion (anytfiing other tiian ex
pected behavior), fault models suggest specific misbehaviors that can aid in
making the predictions necessary to design further tests.

Second, even though the set of pre-enumerated faults used may be small, it
may be adequate for the task at hand. In digital circuits, for example, a large
fraction of all faults can be detected (but not diagnosed) by checking just for
stuck-ats. Hence two simple fault models turn out to be sufficient for determin
ing that something is wrong (satisfying the verification task); determining the
identity and location of the error (diagnosis), however, is more difficult.

3.3 Compared to Rule-Based Systems
Traditional rule-based systems have been built by accumulating the experience
of expert troubleshooters in the form of empirical associations, rules that as
sociate symptoms with underlying faults and that base those associations on

304 Davis and Hamscher

experience with the device, rather than knowledge of structure or behavior. The
problem here is the strong device dependence—a new rule set is required for
every new device—and the time required to accumulate those rules. To the ex
tent that the knowledge is an encapsulation of experience, a sizable body of ex
perience may be necessary before the patterns emerge.

The issue becomes especially important in dealing with electronic devices,
where the design cycle is getting short enough to be comparable to the time re
quired to accumulate a new set of rules. This presents the difficult situation in
which the device may be on its way to obsolescence by the time enough ex
perience with it has accumulated to deal with the difficult faults.

The model-based approach is, by contrast, strongly device independent,
works from an information source (the design) typically available when the
device is first manufactured, and is far more likely to provide methodical
coverage. Given a design description for a device, work can begin on diagnos
ing the device right away. Given a new design description for a different de
vice, work can start on that one just as quickly.

The model-based approach can be less costly to use, because the model
needed is often supplied by the description used to design and build the device
in the first place. The increasing use of computer-aided design and manufactur
ing also means that those models are increasingly available as explicit descrip
tions in electronic form, rather than implicit in the head of the designer, or
sketched informally on a scattered collection of paper.

The model-based approach is more likely to provide methodical coverage
because the model-building process supplies a way of systematically enumerat
ing the required knowledge. Systems built from empirical associations capture
whatever experience has been encountered to date and offer far less guidance
about what may be missing. As a result it is also more difficult to determine
the coverage of such a system.

Finally, it may be claimed that rules need not be just empirical associa
tions, they can also be written to take advantage of knowledge about device
structure and behavior. But that's just the point: The relevant knowledge con
cerns structure and behavior. Given that, we ought next to ask what repre
sentations are well suited to capturing that information, and what repre
sentations offer us leverage in thinking about that knowledge. Rules, whether
as empirical associations or viewed simply as if/then statements, offer us little
or no help in thinking about or representing structure and behavior, or in using
such descriptions to do diagnosis. Most fundamentally, they do not even lead
us to think in such terms.

In slightly more general terms, the primary question is not whether some
existing representation can in some fashion be made to do the task. The pri
mary question is, what is the relevant knowledge?; and second, what does that
content suggest about appropriate form? We consider such representations in
Section 5.

Chapter 8 Model-based Reasoning: Troubleshooting 305

3.4 Compared to Decision Trees
Decision trees provide a simple and efficient way to write down the sequence
of tests and conclusions needed to guide a diagnosis. But the same simplicity
and efficiency that is their strength is also an important weakness: They are a
way of writing down the "answer" (a diagnostic strategy), but offer no indica
tion of the knowledge used to create that answer. One consequence is a lack of
transparency (the tree provides no indication why the diagnosis is what it is)
and difficulty in updating (a small change to the device may mean a major re-
stmcturing of the tree). Like rule-based systems they are also device specific
and must be recreated anew for each new device.

3.5 When Not to Use the Model-based Approach
Comparing the model-based approach to its alternatives provides some indica
tion of its strengths and indications for its use. When does it make sense not to
use this approach? The answer can be bracketed by examining problems that
are too hard and problems that are too easy to be worth trying this way.

Problems that are too difficult are those involving subtie and complicated
interactions in the device, interactions whose outcome is too hard to predict
with current modeling technology. Consider, for example, a model of a com
puter that has been found through experience to have unreliable power sup
plies. The lack of reliability may arise from a sizable collection of interacting
factors, like the heating and insulation patterns, air flow, electric and thermal
properties of die materials used to build the power supplies, and so on. Predict
ing such behavior from the design description would very likely be pragmati
cally impossible, yet summarizing and using it once it has been noticed is quite
easy ("if one of these machmes is behaving erratically, it 's likely to be the
power supply"). We are in effect recognizing here that in some cases it 's far
easier to "let nature do the experiment," watch the outcome, and capture the
experience in the form of mies, than it would be to predict the result from first
principles.

Fumre advances in modeling and prediction will extend these limits, but
tiie point remains that, given sufficient complexity, it is easier to let nature do
the experiment. Reality is sometimes the cheapest simulator.

Problems that are too easy are those in which the device is so simple that
we can model its behavior exhaustively and for which the set of faults to be
considered is well enough known and well enough understood to be reliably
pre-enumerated. In that case it may make sense simply to do exhaustive
enumeration and create a fault dictionary.

We can tiius approach tiie issue of when to use the model-based approach
from two dimensions. First, the stmcture and behavior of the device should be
reasonably well known and simple enough to model, but complex enough that

306 Davis and Hamscher

exhaustive simulation is infeasible. Second, die set of possible faults should be
difficult to reliably enumerate in advance.

4 Organization and Vocabuiary

The discussion in this chapter uses several basic ideas as organizing principles.
First, we view diagnosis in terms of the three stages of hypothesis generation,
test, and discrimination. Second, we note that different amounts of knowledge
can be brought to bear at each of these stages, producing more or less powerful
approaches. Third, the range of programs that can be created by considering
different amounts of knowledge at each stage maps out a space of possible pro
gram architectures. Finally, and perhaps most interestingly, we claim that this
space of architectures captures the current set of programs that have been ex
plored. That is, we can describe all the current model-based systems by charac
terizing them according to die amount and kind of knowledge they use at each
of these three stages.

A number of basic vocabulary terms will facilitate later discussion. By
"device" or "system," we mean the entire artifact, e.g., the entire device in
Figure 2. By "component" we mean any one piece of it, in this case any of the
adders or multipliers. (We may choose to represent wires as components as
well; this is an issue of modeling choice discussed later.) By "stmcture" we
mean the way things are interconnected, while "behavior" refers to what any
one of these components is supposed to do. We use "discrepancy" to mean any
of the differences between the behavior the device is supposed to exhibit (e.g.,
F = 12, predicted by die model) and what it is actually doing (F = 10, deter
mined by observation). By "suspect" we mean any component identified in hy
pothesis generation as able to account for a discrepancy (e.g., MULT-1 can ac
count for the discrepancy at F) . Finally, by "candidate" we mean a component
whose malfunction is consistent with all observations (i.e., a suspect that has
survived hypothesis testing). When dealing with multiple faults, a candidate
may consist of more than one component.

5 Describing Structure and Betiavior

While a number of apparentiy different approaches to representing stmcture
have been explored, there are several common themes that appear to be widely
viewed as good ideas.

• Stmcture representation should be hierarchical.

Chapter 8 Model-based Reasoning: Troubleshooting 307

Inside any of the boxes in Figure 2, for instance, there are more boxes and
wires; look inside those and there are more of the same, until we arrive finally
at primitive components. A hierarchical description permits hierarchical diag
nosis: Work at die highest level initially until specific candidates have been
isolated, then explore inside only those components, since there is no need to
examine the substructure of components that are not candidates.

• Structure representation should be object centered and isomorphic to the
organization of the device.

By "object centered" we mean that there are data objects corresponding to
each of the components in the device; attached to each object is a description
of its behavior. The representation should be isomoφhic in the sense that the
topology of interconnections between the objects should match the interconnec
tions in the device. Hence the object associated with MULT-2, for instance, is
connected in the LISP sense to the objects for ADD-I and ADD-2.

One useful consequence of doing this is that it provides a single, unified
representation that is both runnable and examinable. It is runnable in the sense
that it can be used directiy for simulation: If we supply values for the inputs to
MULT-i, for instance, tiie object corresponding to it will discover tiiat it has
enough information to predict its output. It will do so, placing the result at its
output, where the information will travel via the connections to die next com
ponent in line, which may now continue the process.

The same representation is examinable in the sense that it can be inspected
to answer questions about device structure. Because it is in part a graph, ques
tions about connectivity can be answered simply by traversing the repre
sentation.

• Behavior can be represented by a set of expressions that capture the inter
relationships among the values on the terminals of the device.

The behavior of an adder, for example, can be captured with three expres
sions (Figure 3), indicating that:

If we know tfie values at A and B, the value at C is Λ + θ (the solid arrow
in Figure 3).

• If we know the values at C and Λ, the value at θ is C - A (the dashed
arrow).

If we know tfie values at C and B, the value at Λ is C - Β (the dotted
arrow).

308 Davis and Hamscher

Interestingly diese expressions capture both die causal behavior of the dev
ice (the bold arrow), as well as other things we can infer about the device (the
other two arrows). The first of these indicates how it works, the other two are
useful inferences we can make about what must have been at an input, given
observations at other terminals. As we'll see, both kinds of information play an
important role in supporting diagnosis.

While die expressions here are written in algebraic form, the important
thing is the knowledge content, not form. Work in [Genesereth, 1984], for ex
ample, has explored the use of predicate calculus as a representation for both
behavior and structure.

C-B ·

Figure 3 The Behavior Description of an Adder.

Chapter 8 Model-based Reasoning: Troubleshooting 309

6 Three Fundamental Tasks

We consider next die three fundamental tasks of diagnosis and examine how
each has been attacked in the model-based approach, using a variety of differ
ent kinds and amounts of knowledge. We consider each in turn, starting with
the common simplifying assumption that there is only a single point of failure;
as the discussion proceeds we show how some of the techniques can be ex
tended to cover multiple points of failure.

• Hypothesis generation: Given one discrepancy, which of the components
in die device might have produced it?

Hypothesis testing: Given a collection of components implicated during
hypothesis generation, which of them could have failed so as to account
for all available observations of behavior?

Hypotiiesis discrimination: When, as is almost inevitable, more than one
hypothesis survives the testing phase, what additional information should
be gathered to discriminate among them?

As noted, for the sake of presentation each of these is discussed inde
pendentiy, even though in most implementations they are interleaved for the
sake of efficiency. While interleaving offers useful improvements in speed, it
produces no fundamental changes to the paradigm.

6.1 Hypothesis Generation

The fundamental task here is, given a discrepancy, determine which com
ponents might have misbehaved in a way tiiat can produce that discrepancy.
Classical AI wisdom tells us tiiat a good generator should be complete (i.e.,
capable of producing all the plausible hypotheses); non-redundant (i.e., capable
of generating each hypothesis only once); and informed (i.e., able to produce
few hypotheses that ultimately prove to be incorrect).

In the spirit of proceeding incrementally we consider a sequence of gener
ators from the simplest and least informed, through successively smarter ver
sions that bring additional kinds of knowledge to bear.

The simplest generator, guaranteed to be complete, is one that simply ex
haustively enumerates the components in the device. For the device in Figure
2, for instance, tfie generator simply produces each of the five components one
by one. This is trivially complete and not particularly intelligent.

We can improve on this with a succession of observations. For example:

To be a suspect, a component must have been connected to a discrepancy.

That is, to plausibly explain a discrepancy, the suspect must have in some
fashion been involved in it, have contributed to it. Our second generator takes

310 Davis and Hamscher

advantage of the insight by traversing the structure description, working from a
discrepancy (e.g., at F in Figure 2) to find all components connected to it. In
the current case this provides no improvement, since the connections (wires)
leading from F reach every component.

We next observe that:

• Devices often have distinguishable inputs and outputs.

This is clearly true for our adders and multipliers (Figure 4) and can be
used to constrain the components considered: We need only consider com
ponents that are upstream of the discrepancy. In the current example this re
duces the set of suspects to ADD-1, MULT-I , and MULT-2.

We can be a bit smarter yet, by observing that:

• Not every input to a device influences the output; there is no need to fol
low irrelevant inputs upstream.

The easiest example of this is an OR gate whose inputs are produced by
two independent collections of components further upstream (Figure 5). Given
inputs of 1 and 0, the model for the gate makes the obvious prediction at C. If
the actual device is observed to be producing 0 there, three possibilities arise.
First, the OR gate itself may be broken. Second, the gate may be working but
input Λ is 0 rather than 1 and the problem lies further upstream in that direc
tion, so we should continue tracing that way.

A = 3

B = 3

C = 2 Η

D = 2

E = 3

MULT-1

MULT-2

MULT-3

ADD-1

ADD-2

F = 1 2

F = 1 0

G = 1 2

Figure 4 Taking Advantage of Direction of Information Flow.

Chapter 8 Model-based Reasoning: Troubleshooting 311

Figure 5 Not Every Input Influences the Output.

The diird possibility, however, is problematic: It is contradictory to believe
that the OR gate is working but that the problem lies further upstream of B. No
matter what's going on upstream of B, if the OR gate is working, that is not
going to account for the observed behavior. As a result we need not consider
any components upstream of this point. More generally, the hypothesis gener
ator can use knowledge about component behavior to determine which inputs
are irrelevant and avoid tracing back through those.

Finally, we can observe that

• Information from more than one discrepancy can be used to further con
strain suspect generation.

When there is more than one discrepancy, we can generate a set of sus
pects for each, then (assuming a single point of failure) intersect them, possibly
reducing the number of suspects generated. Consider Figure 6, as an example.
Tracing back from the discrepancy at F yields ADD-I, MULT-1, and MULT-2 as
candidates; tracing from G yields ADD-2, MULT-1 and MULT-2. Assuming a
single point of failure, die suspects lie in the intersection of these two sets.

This scheme is easily elaborated to deal with multiple points of failure by
recognizing that the generalization of intersection in this case is set covering:
We are trying to find a subset of components that accounts for (covers) all the
discrepancies. To deal with the situation in Figure 6, for instance, we might
select MULT-1 from the first discrepancy and ADD-2 from the second, yielding
a hypothesized pair of faults that covers all the discrepancies.

6.1.1 Machinery One brief diversion into mechanism will make clear how
to do this kind of reasoning easily and efficientiy. The basic insight is to have
the simulator record "reasons" as well as values. When the simulator predicts 1
at C, for instance, it records both that value and the expression ftOm the be
havior model for the component diat produced die value (Figure 7). In diis case
the simulator would indicate that the value at C is 1 and the reason is El.

312 Davis and Hamscher

A = 3

B = 3

C = 2 Η

D = 2

E = 3

MULT-1

MULT-2

MULT-3

ADD-1

ADD-2

F = 1 2
•[F=10]

G = 1 2

G=10l

Figure 6 Polybox with Discrepancy at Fand G.

value: 1
reason: E l

E l : I f A = l t h e n C = l
Ε2: If B = l then C = l
Ε3: If A = 0 and B=0 then C = 0

Figure 7 Recording Reasons as Well as Values.

Chapter 8 Model-based Reasoning: Troubleshooting 313

This simple mechanism offers an easy way to detennine which inputs to a
component were relevant to its output, further constraining the search for hy
potheses. All we need do is inspect the simulation record to detennine what ex
pression was used to predict a value, dien inspect that expression to detennine
which inputs it used. In Figure 7, for example, expression El uses only Λ,
hence we need never consider hypotheses upstream of B,

This is a somewhat simplified but essentially correct view of the machin
ery in most model-based simulators in use today. The general notion is to have
the simulator keep track of dependency records that indicate what information
was used to determine each new value; generating candidates can then be done
simply by tracing back through the dependencies.

A slightly more elaborate example will demonstrate why this technique
can be very useful. Figure 8 shows a collection of gates with arrows indicating
the records the simulator has kept as it made its predictions. Given a discrep
ancy at the output, the task of generating a complete, nonredundant and con
strained set of hypotiieses becomes simply a process of following the trail of
electronic bread crumbs back along the reasons. Part of the overall insight here
is that by using a reasonably sophisticated simulator—one tiiat propagates rea
sons as well as values—^the hypothesis generation task becomes relatively
simple and straightforward (SOPHIE [Brown et al., 1982] provided one of tiie
earliest examples of tiiis approach).

Figure 8a Dependency Traces Left by the Simulator.

1 Alternatively we could simply rccoid which inputs were used. The scheme given is slighüy more
general, since the reasons can be useful m other ways, e.g., as a basis for explanation, and the in
puts can be determined from them.

314 Davis and Hamscher

1 -
1 -RH 0

Figure 8b Candidates Selected by Tracing Back through the Dependency
Traces.

6.2 Hypothesis Testing: A Simpie Technique
In the second basic task of diagnosis—^hypothesis testing—^the goal is to test
each suspect to see if it can account for all the observations made about the
device. One simple approach is to use fault-model simulation on the suspects
produced by the generator (as for example in [Brown et al., 1982] and [Pan,
1984]). We enumerate all the ways each specified component can malfunction,
then simulate the behavior of the entire device on the original set of inputs
under the assumption that the candidate is malfunctioning in the way specified.
If the overall predicted behavior is inconsistent with the observations, the hy
pothesis can be discarded; hypotheses accounting correctly for the observations
pass the test and are retained. The result is a set of hypotíieses specifying how
each suspect may be malfunctioning.

One interesting additional inference can be made if we believe that the
pre-enumerated list of misbehaviors is complete: If none of the misbehaviors
hypothesized for a component matches the observations, that component must
be working correctiy in the current situation and can be exonerated. It may or
may not be working perfectiy in all circumstances, but it is not causing the cur
rent set of discrepancies and we will have to look for the fault elsewhere.

If the misbehavior list is not believed complete, the component cannot be
exonerated, since it may be misbehaving in some as yet unknown fashion. In
this situation we may end up with two categories of suspects: those for which a
hypothesized misbehavior matches the observations and those that may be fail
ing in an unknown way. In that case it may make sense to treat the fu-st cate
gory as more likely, falling back on the second only as necessary.

6.3 Hypothesis Testing: More Advanced Techniques
Three other slightiy more advanced techniques use knowledge about device be
havior to generate and test hypothesized candidates, yet do not require a pre-
enumerated set of misbehaviors.

Chapter 8 Model-based Reasoning: Troubleshooting 315

6.3.1 Constraint Suspension Constraint suspension [Davis, 1984] tests
whether a suspect is consistent with all the observed behaviors of the device.
The basic idea is to model the behavior of each component as a set of con
straints, and test suspects by determining whether it's consistent to believe that
only die suspect is malfunctioning. That is, given tiie known inputs and ob
served outputs, is it consistent to believe that all components other than the
suspect are working correctiy?

Consider the standard circuit as an example, in a situation in which the in
puts are as shown in Figure 9 and where values at both outputs have been
measured, yielding a discrepancy at F and the predicted value at G. The be
havior of each component is modeled as a set of constraints of the sort shown
previously in Figure 3; Figure 9 shows the entire device with the constraint
network sketched in.

This network and set of values is clearly inconsistent. That is, given this
set of constraints, if the values shown were inserted at the inputs and outputs,
some constraint would soon encounter an inconsistency, i.e., attempt to fire and
record a value at a node where there was already a different value recorded.
Since constraints can propagate either from inputs to outputs or from outputs to
inputs, the inconsistency might occur anywhere in the network (at the outputs,
the inputs, or an interior node). The important point is tfiat the network would
report an inconsistency somewhere.

A = 3

B = 3

C = 2 Η
D = 2

E = 3

F = 1 0

G = 1 2

Figure 9 The Constraint Network View of the Device.

316 Davis and Hamscher

The traditional approach to handling inconsistencies in constraint networks
is to find a value to retract. Here, however, we are sure of the values (the in
puts sent in and the outputs measured); we are, however, unsure of the com
ponent behaviors. Constraint suspension thus takes the dual view: Rather than
looking for a value to retract, it considers which constraint to retract to remove
the inconsistency.

To put this back in hypothesis testing terms, recall the basic question
stated above: Given the available observations, is it consistent to believe that
all components odier than die suspect are working correctiy? "Working cor-
rectiy" means the component is behaving as the model predicts; this is simu
lated by having the corresponding constraint "tumed on." To say something is
a suspect, by contrast, is to indicate that we don't know what it 's doing, what
its behavior is. In that case the most conservative stance is to retract all as
sumptions about its behavior. This is simulated by suspending its constraint,
i.e., removing it from the network temporarily. Figure 10 shows the situation
when testing the hypothesis that MULT-1 may be at fault.

A=3

[F=10

G = 1 2

Flgun 10 The Network with the Constraint for MULT-I Suspended.

Chapter 8 Model-based Reasoning: Troubleshooting 317

Hypothesis testing is thus accomplished by suspending the constraint for
the suspect, leaving in place the constraints for everything else, then putting in
die observed values and allowing the (reduced) constraint network to run to
quiescence. If it does so without encountering an inconsistency, we get two in
teresting pieces of information. First, we know that die current suspect is in
fact consistent with all the observations, i.e., there is some behavior for it that
can account for all the observations. Second, die constraints often propagate
values to the terminals of the suspect, supplying information about how it must
be misbehaving. For example, the constraint network in Figure 10 will eventu
ally determine that MULT-1 is a consistent candidate that could be multiplying
2 and 3 to produce 4. This ability to infer component symptoms is clearly de
pendent on the ability to propagate "backward," in tiiis case inferring the upper
input of ADD-i from its output and lower input.

If the network is still inconsistent even with the suspect's constraint sus
pended, the current hypothesis can be rejected, exonerating the suspect: There
is no set of assignments to the terminals of the suspect consistent witii tiie ob
served values and the constraints currentiy in effect. This occurs when testing
MULT-2, one of the three suspects produced by hypothesis generation for the
situation in Figure 9. With only the constraint for MULT-2 suspended, there is
no set of assignments to its terminals that is consistent with the inputs and out
puts observed. It can thus be rejected.

There are several interesting properties of this technique. First, as noted, it
not only indicates whether or not something is a consistent candidate, it can
often specify the symptoms at the terminals of that component.

Second, the power of hypothesis testing and its ability to infer symptoms
are dependent on the power of the propagation machinery. Current constraint
systems are "local" in the sense that they propagate values through one com
ponent at a time, at each step solving one equation in one unknown. This style
of propagation can stall when it encounters situations requiring more sophisti
cated algebra (e.g., solving two equations in two unknowns). Such situations
are relatively common in domains with nondirectional components and can
arise in domains with directional components in structures that have reconver-
gent fanout (i.e., a signal that branches and tiien rejoins at the inputs to a com
ponent).

The complexity of the algebra required depends on both the vocabulary
used in the behavior language and the interconnection topology of the devices;
it can quickly grow quite difficult. Some research has attacked tfie problem by
propagating symbolic expressions rather than numbers (e.g., [Sussman and
Steele, 1980]); exhaustive enumeration has also been explored where ranges
are finite. If propagation does stall, the system will judge the candidate con
sistent because no contradiction was derived, even though there may in fact be
one. Other work, relying on direct symbolic manipulation of expressions (e.g..

318 Davis and Hamscher

[Genesereth, 1984], [Scarl et al., 1985]), encounters similar problems where
symbolic solution methods are not complete.

Some candidates accepted as a result of stalled propagation are valid; in
those cases there is no adverse consequence. Even when an invalid candidate is
accepted, however, die only consequence is that die candidate set is larger dian
it should have been. The diagnosis is thus somewhat less precise, but at least
no valid candidate is overlooked.

Third, where many traditional techniques require specifying how a com
ponent can fail, the reasoning above simply withdraws any commitment to how
it might be behaving. That is an interesting property of model-based reasoning
in general, not just the constraint suspension approach: Something is mal
functioning if it's not doing what it's supposed to, no matter what else it may
be doing. As a result there is no need to prespecify how die component might
fail; a fault is any behavior that doesn't match expectations.

It is in that sense that the model-based approach, using a model of correct
behavior, covers a broader class of faults tiian traditional techniques tiiat re
quire prespecified fault models. Note for instance, that the device in Figure 10
may be misbehaving because the wrong kind of chip was inserted into the
socket where the multiplier was supposed to go. In that case there is no simple
model for the misbehavior and no plausible way to diagnose it in the traditional
fashion. Yet the model-based approach handles this case because it need only
observe that the component isn't doing what it's supposed to do.

The fault model approach falls short in this case because its models com
bine both physical and logical plausibility. The model-based approach by con
trast deals only with logical plausibility, asking simply whether there is any set
of values the component might display that can account for all the observa
tions. The technique, by design, does not ask whether that set of values is in
fact physically plausible.

As a result it can suggest candidates that, while logically plausible, are in
fact physically unrealizable, requiring a second pass to filter them out. This
can, however, be an advantage because physical plausibility is technology
specific. A broken wire, for instance, can manifest differently depending on the
technology; in TTL logic, for instance, it will appear as a high. Embodying this
knowledge separately can both ease the initial constmction task and reduce the
difficulty of applying model-based reasoning to a new domain.

The traditional use of fault models can also be seen as trading off breadth
for specificity: By committing to a pre-specified set of set of possible failures,
we can gain in return greater specificity in the diagnosis. In die case of MULT-
1, for instance, the model (of correct behavior) approach can say only that die
component is multiplying 2 and 3 to get 4, while the fault model approach
might indicate as one possibility that the 2-bit of the output is stuck at 0 (mm-
ing 6 into 4).

Chapter 8 Model-based Reasoning: Troubleshooting 319

The model-based approach thus supplies a behavioral description of the
misbehavior for this specific case, and, by design, says nothing about what the
malfunctioning component would do with any other inputs. This permits it to
cover a broad variety of possible failures. The fault model approach, on the
other hand, precommits to a specific set of malfunction mechanisms and as a
result can be more specific about what is wrong and can provide die basis for
predictions of misbehavior for other inputs (e.g., if the 2-bit is stuck at 0,
MULT-1 should produce 0 when given inputs of 2 and 1). The trade-off availa
ble thus asks whether we are willing to prespecify die faults and believe that
the list is complete enough; if so, fault models might offer useful power.

Finally, we have so far been dealing with the single point of failure as
sumption. Multiple points of failure are trivial to check using constraint sus
pension: To check for a pair of failures, for instance, suspend the two corre
sponding constraints, dien proceed as before. Generating multiple fault hy
potheses efficientiy, however, is somewhat more difficult; no simple extension
of constraint suspension offers much leverage on this inherentiy exponential
problem. This issue will resurface when we explore GDE [de Kleer and Willi
ams, 1987] below.

6.3.2 Combining Generation and Test The two systems—DART
[Genesereth, 1984] and GDE [de Kleer and Williams, 1987]—integrate hy
pothesis generation and testing sufficiendy that when viewed in terms of
generate and test they are best considered systems in which all of the testing
knowledge has been integrated into the hypothesis generator.

6.3.2.1 DART The DART system illustrates die use of predicate calculus as
a mechanism for model-based reasoning, with structure and behavior repre
sented as axioms. The connection of MULT-1 to ADD-I , for instance, would be
represented as

CONN(OUT(1,MULT-1) , IN(1,ADD-1))

indicating that the first (only) output of MULT-1 is connected to the first input
of ADD-i. Part of the behavior description of an adder would be

IF ADDER(a) AND VAL(IN(1,a),x) AND VAL(IN(2,a),y)
THEN VAL(OUT(1,a),x+y)

indicating that, if a is an adder with inputs χ and y, its output will be x+y.
DART views diagnosis as a form of constrained theory formation. Starting

widi a set of observations of device misbehavior, die goal is to produce a de
scription of its (faulty) structure. Given only the observations, the task would

320 Davis and Hamscher

be the same as designing a device that exhibited the observed behavior. The
design description is used to constrain the process by forcing the system to
consider only propositions from the design description or tiieir negation. A di
agnosis in DART is thus a deduced proposition like

(OR (NOT(MULTIPLIER MULT-1)) (NOT(ADDER ADD-1)))

indicating which component might be misbehaving.
To arrive at these deductions the system uses a technique called resolution

residue, a variation on resolution that works as a direct proof procedure (rather
than a refutation method), guided by a number of strategies like unit preference
for reducing the number of useless deductions. Details of the process can be
found in [Genesereth, 1984]; at die knowledge level the deductions work much
like the dependency tracing mechanism reviewed earlier, except in this case de
pendencies are deduced as needed (via the behavior descriptions) rather than
automatically recorded when doing simulation. DART also uses the same reso
lution residue mechanism for test generation, providing a certain economy of
machinery.

Among the limitations in this approach are the occasional difficulties in
expression logic can present. The single point of failure assumption in
[Genesereth, 1984], for example, requires five distinct axioms for a five com
ponent device, each stating that if one is broken the other four must be work
ing. Further work in [Ginsberg, 1986] has demonstrated that reasoning from
counterfactuals can produce a notion of minimal faults, at some increase in the
complexity of the modeling and inference task.

One of the advantages of logic as a representation and reasoning mecha
nism is the potential for demonstrating the completeness of the inference pro
cedure. While this can be useful, it does not imply that the resulting diagnostic
process is complete. There are at least two sources of difficulty. First, as noted
in [de Kleer and Williams, 1987], completeness of the inference procedure
does not imply completeness of the prediction machinery. As one example, be
havior descriptions for analog devices can involve higher-order differential
equations; producing exact values for predictions in such devices means solv
ing solutions of such equations, yet no general purpose technique exists.

Second, all of the inference, i.e., all of die candidate generation, is done
with respect to die device model supplied, and completeness of the inference
machinery is quite distinct from the completeness of the model. Simple ex
amples of the problem arise when axioms are accidentally omitted; more subtie
instances arise because, as we argue below, die model is necessarily in
complete. Thus while it can be useful to demonstrate completeness of the infer
ence machinery widi respect to die model, completeness of the diagnostic
process is a distinct issue. Indeed, we argue below that the bulk of the work
and difficuh problems are in die modeling.

Chapter 8 Model-based Reasoning: Troubleshooting 321

6.3.2.2 GDE The GDE system [de Kleer and Williams, 1987] provides a
single mechanism for generating both single and multiple fault hypotheses, and
presents a carefully constructed strategy for measurement selection. At this
point we deal witfi a few of the ideas for hypothesis generation, illustrating the
basic notions with a few simple examples; we return to the issue of measure
ment selection when discussing hypothesis discrimination in Section 6.5.1. A
detailed picture and additional examples of GDE can be found in [de Kleer and
Williams, 1987].

One important enabling technology for GDE is the use of an assumption-
based truth maintenance system (ATMS), i.e., one that propagates both values
and assumptions. The reasoning begins much like that done previously, with
some difference in tiie record keeping. In Figure 11, for example, if we assume
that M U L T - l is working, we can use its behavior description to predict the
value at X, then record both the value and the set of underlying assumptions (in
parentheses). Values tiiat have been measured (in this case inputs and outputs)
have no assumptions, indicated by the null set.

A particularly interesting event occurs when there are two contradictory
predictions for the same point in the circuit, as in Figure 12, which shows the
next step in the reasoning. The value at X is also predicted to be 4, this time
using die (measured) value at F , the prediction at K, and the assumption tiiat
ADD-i is working. Note tiiat assumptions accumulate: The prediction X = 4
carries all the assumptions it relies on.

A=3 0

B=3 0

C=2 0 _ |

E=3 0

X=6 (MULT-1)

MULT-2

F=10 0

Y=6 (MULT-2)

FIgun 11 Values and Records Produced by an Assumption-Based TMS.

322 Davis and Hamscher

A=3 0

B=3 0

X = 6 (MULT-1)
X = 4 (MULT-2 ADD-1)

MULT-2

F=10 0
Y = 6 (MULT-2)

Figure 12 One More Step in the Propagation.

This is interesting because of the inference that can now be made: If all
three assumptions so far were tme, (i.e., MULT-1 and MULT-2 and ADD-I were
all working), there is an unavoidable contradiction—^two different values at X.
Taking the obvious step, we tum that around, inferring that one of the three as
sumptions must be wrong (i.e., one of the three components is not working
correctiy).

This is the process of constmcting "conflicts": Whenever there are two
different predictions for the same place in the circuit, collect all (i.e., take the
union) of the assumptions underlying the conflicting predictions. The resulting
conflict indicates that at least one of the components in it must be malfunction
ing.

Continuing the propagation process in Figure 12 eventually yields a second
conflict as well:

Cl: (MULT-1 MULT-2 ADD-1)
C2: (MULT-1 MULT-3 ADD-2 ADD-1)

The second step in GDE is to generate a set of candidates that deals with
all of the conflicts, MULT-1, for example, is a candidate because it can account
for both Cl (one of (MULT-1 MULT-2 ADD-1) must be broken), and C2 (one of
(MULT-l MULT-3 ADD-2 ADD-i) is broken.) Since a single component is

Chapter 8 Model-based Reasoning: Troubleshooting 323

capable of accounting for all the conflicts, one of the hypotheses in this case
happens to be a single point of failure, ADD-1 is a similar hypothesis; single
point of failure hypotheses are produced by intersecting the conflicts.

Accounting for conflicts can be viewed more generally in mathematical
terms as set covering: We want a collection of components that covers all the
conflicts. Singleton covers like (MULT-1) produce single point of failure hy
potheses; multiple point of failure hypotheses are generated by larger set
covers like (MULT-2 ADD-2), which take MULT-2 from the first conflict and
ADD-2 from the second.

This process is fairiy intuitive, but it can be expensive—computing set
covers is in the worst case exponential. One way to reduce the potential impact
of this complexity is to use the notion of minimality in both conflicts and hy
potheses. The basic intuition is the same in both cases: Any superset of a con
flict is also a conflict; any superset of a hypothesis is also a hypothesis. GDE
uses this to reduce the amount of work it does by generating and maintaining
only minimal conflicts (i.e., no subset of one is also a conflict) and minimal
hypotheses (i.e., no subset of one also covers all the conflicts). By doing this,
the system need never examine any non-minimal conflict or hypothesis, saving
a substantial amount of work. While the fundamental exponential character of
the problem has not changed, the effect has been reduced, enabling the system
to handle problems larger than might otherwise have been possible.

The candidate generation part of GDE thus offers an efficient and intuitive
mechanism for generating both single and multiple fault hypotheses in a uni
fied approach. The system also offers a degree of mechanism (and hence
domain) independence, because the diagnostic process in GDE is separated
from the machinery used to predict behavior (the ATMS).

6.4 Hypothesis Testing via Corroborations

It is useful to discuss briefly the notion of corroborations, the situation in
which a measured value matches (corroborates) the prediction at that point.
Using corroborations to do hypothesis testing is potentially useful, but must be
approached with caution. The basic intuition is seductive: Having seen that any
component involved in a discrepancy is a suspect, there is unfortunately a great
temptation to construct an overly simplistic dual principle—any component in
volved in a corroboration must be innocent.

Figure 13 illustrates the difficulty in an example that has a discrepancy at
F but a corroboration at G, where die observed value matches the predicted
value. Straightforward topological tracing back from F yields the usual candi
dates (ADD-1, MULT-1, MULT-2). We are now, however, tempted to say that
since the measurement at G matches the prediction, all components involved in
that corroboration (i.e., MULT-2, MULT-3, and ADD-2) can be exonerated.

324 Davis and Hamscher

A=3

B=3

C=2 Η
D = 2

E = 3

MULT-1

MULT-2

ADD-1
F = 1 2

• (F- lOl

MULT-3

ADD-2
G = 1 2

m

[G=12

Figure 13 The Standard Example with a Corroboration at 6.

The seductive part is that it works in this case and some others, leading at
times to unjustified optimism that it is valid in general. The difficulty is il
lustrated by the simple counterexample in Figure 14, in which ADD-2 has been
replaced by a component that computes the maximum of its inputs. Once again
there is a conflict at F and a corroboration at G, yet this time the exoneration is
incorrect: MULT-2 might in fact be broken, producing 4 as its output.

In general the problem is fault masking, the situation in which a device re
ceives incorrect inputs, yet produces die output that would have been expected
with the correct inputs, masking further effects of die fault. Consider MAX-I
for instance: If it receives incorrect inputs of 6 and 4, it still produces the ex
pected output, 6, that would have resulted from the correct inputs (6 and 6).

Fault masking can arise in several ways. Any component that can be in
sensitive to one of its inputs (e.g., MAX-1) can mask a fault on that input even
when working correctiy. Multiple points of failure can produce the problem,
when one broken component outputs an incorrect value, but a second broken
component further downstream masks some of the effects by producing the ex
pected value despite the incorrect input. Finally, even with a single point of
failure, the phenomenon of reconvergent fanout can produce fault masking.

Chapter 8 Model-based Reasoning: Troubleshooting 325

A=3

B - 3

C - 2 Η

D = 2

E = 3

MULT-l

MULT-2

ADD-1

MULT-3

MAX-1

F = 1 2
'IF=10]

G = 6

G = 6

Figure 14 Counterexample Showing that Corroboration Is Not Valid in General.

In Figure 15, for example, component Β computes the square of its input,
component c computes 16 - 5JC, and ADD-1 is an adder. Component A is sup
posed to produce 3, which should eventually result in ADD-I producing 10. If
A instead incorrectly produces 2, B, working correctly, will produce 4, while c,
also working correctiy, produces 6. The final output at the adder is then the ex
pected 10, despite the single fault present in the circuit. If the signal from A
fans out to other places, its error would be manifest elsewhere, yet if we
naively trace back from tiie corroboration at ADD-I we would incorrectiy ex
onerate A.

Figure 15 Reconvergent Fanout Can Produce Fault Masking.

326 Davis and Hamscher

One important reason to be wary about corroborations is thus the number
and subdety of the phenomena that can cause fault masking and invalidate cor
roborations as a heuristic.

A second reason is the asymmetry in the consequences of mistakes in hy
pothesis generation and in hypothesis testing. If the hypothesis generator is
overzealous, we may have more hypotheses to test than are logically necessary,
but the system will, at worst, be less efficient than it should have been. Over-
zealous exoneration, on the other hand, can cause the system to arrive at the
wrong answer by mling out a valid candidate. As a result, it may be plausible
if desired to be aggressive with respect to hypothesis generation, but in general
it is useful to be more cautious about hypothesis testing.

6.5 Hypothesis Discrimination
Having examined generation and testing, we next consider hypothesis discrimi
nation, where the fundamental problem is how to distinguish among the hy
potheses, when, as is almost inevitable, more than one survives testing. Distin
guishing among competing hypotheses involves gathering new information
about the behavior of the device, either by (i) making additional observations
(probing), or (ii) changing the inputs and making observations in that new sit
uation (testing). In both cases the goal is to gain the most information at the
least cost.

6.5.1 Probing In considering probing strategies we proceed as before in
steps from the most elementary approach to successively more sophisticated
techniques. The simplest approach is to use only stmctural information to
generate the set of all possible probe locations and pick any place that has not
been measured previously. Refinements to this include (i) using knowledge
about component behavior, (ii) using knowledge about expected failure rates,
and (iii) trying to find the measurement that will lead to the shortest sequence
of probes.

6.5.1.1 Using Structure and Behavior Perhaps the most straightforward
and widely used approach is the guided probe. The fundamental idea is to start
at the discrepancy and follow it upstream to a component that has an incorrect
output but whose inputs are correct. If the component receives valid informa
tion but produces a bad result, it must be the culprit. Given the discrepancy in
Figure 16 at F , for instance, we probe A and Ζ next, since if these are observed
to have their predicted values, MAX-1 must be broken. If Ζ has any value other
than 5, we probe upstream at both Β and Y to see if they are 1 and 4 respec
tively, and so forth until we find the culprit.

Chapter 8 Model-based Reasoning: Troubleshooting 327

6.5Λ.2 More Sophisticated Use of Behavior Note that it was not in
fact necessary to probe at A, since a discrepancy there alone could not have
produced the observed value 3 at F, The guided probe technique can be ex
tended to use information about component behavior to reduce the probes
needed; Breuer, for example, shows how it can be applied to Boolean digital
circuits. The reasoning involved is similar to that described earlier for using
behavioral information to constrain hypothesis generation.

The guided probe approach is appealing in its simplicity and intuitive clar
ity. It is also, however, a linear time search, which, with even a little clever
ness, can be turned into a much more efficient binary search. In the current ex
ample, for instance, simply examining the topology of the device makes clear
that y is a more effective probe. If the value there is bad, half the components
are exonerated—^all those downstream from it. In general the "half split" probe
point can be found by considering for each probe point the value that would be
predicted there given each suspect; the favored probe is the one tiiat splits the
set of current suspects. Figure 17 shows that Y is the best probe: Y will be 2 if
M U L T - l or M i N - l are broken, and 4 if ADD-I or MAX-I are broken; either out
come thus rules out half the suspects. Ideally, the process of cutting the search
space in half can be continued at each step, producing the traditional binary
search, with its potential increase in speed from linear in the number of sus
pects to be discriminated, to logarithmic. The maximal advantage arises in
cases like this with a linear cascade of components, with somewhat less (but
still useful) improvement in other cases.

^.5ΛΛ Using Failure Probabilities The example above is particularly
easy because one probe is clearly more informative tfian the others. In more re
alistic cases several places may be equally informative. If, for instance, we
apply our methods so far to tfie example in Figure 18, X and F turn out to be
equally informative.

. F = 5

[F=31

D=2

E=2

Figure 16 Guided Probe Example.

328 Davis and Hamscher

B = l

C = 8

D=2

E=2
MULT-l

MIN-1

max-1: 4
add-1: 4
min-1: 4

mult-1: 2

F=3

Y max-1: 4

add-1: 4

min-1: 2

mult-1: 2

max-1: 5
add-1: 3
min-1: 3

mult-1: 3

Figure 17 Half Split Strategy Example.

A = 3

B = 3

MULT-1

MULT-1: 4
ADD-1: 6

MULT-2: 6

MULT-2
MULT-1: 6

ADD-1: 6
MULT-2: 4

F = 1 2
[F=10]

Figure 18 Two Equally Informative Probes.

In the event that MULT-1 and MULT-2 happen to be implemented using
different chips that have different reliability histories, it would make sense to
"play the odds" by probing at the place that has the greatest chance of having
an incorrect value. If MULT-2, for instance, has a much higher a priori likeli
hood of failure than MULT-1, it would be more efficient in the long mn to try
probing at Y first.

Chapter 8 Model-based Reasoning: Troubleshooting 329

While this example uses failure probabilities to help select among probe
points that are indistinguishable using value predictions, the two are inde
pendent sources of information. We can in general combine information from
predictions (about how discriminating a probe can be) with information from
failure probabilities (about how likely it is that probe will encounter an incor
rect value), to yield a measure of how informative a particular probe is likely
to be.

6.5Λ Λ Selecting Optimal Probes We have dius far used information
about predictions and failure probabilities to look only one measurement ahead.
The analysis in the previous section, for instance, considered what single
measurement looked best. A more powerful strategy would determine what
sequence of measurements was likely to be the most effective, since, as with
any search problem, the best path is not always clear from a one-step looka-
head.

One obvious approach is exhaustive lookahead: The current predictions in
dicate the potential places to probe first, we can then make new predictions
based on the possible outcome of each of those probes, use that information to
determine the set of possible places to probe second, make new predictions
based on those, and so on, continuing until the sequence of hypothesized
measurements would identify a unique fault. This is a classic decision tree
analysis and as always die difficulty is the size of the search space.

As with any search problem, the challenge is to find a way of estimating
the value of a patii without having to explore it to the end. The GDE system
takes an information theoretic approach, using the notion of minimum entropy
as the basis for its evaluation function (see [de Kleer and Williams, 1987] for
details). Part of the difficulty in applying this idea lies in determining the prob
ability that a particular measurement will have a particular value when not
every candidate predicts a value at diat point. GDE develops a careful approxi
mation and uses it to select a measurement that is, under a reasonable set of as
sumptions, optimal in the sense that it minimizes the expected total number of
probes.

This approach is well suited to GDE because the assumption-based TMS
that it uses maintains a substantial body of context information that includes
the values predicted at each point in the device. Hence littie additional machin
ery is needed to generate and keep track of the required information.

6.5.2 Testing Testing is the second basic technique for hypotiiesis discrimi
nation. Here die fundamental idea is to select a new set of inputs to the device
that will help reduce the suspect set by providing additional information about
the behavior of the device. To remain valid, a suspect has to account for both
the original symptoms and the behavior observed in response to the new inputs.

330 Davis and Hamscher

inputs. As with probing, the difficult task is selecting a set of inputs diat is par
ticularly informative.

If the set of tests that can be presented to the device is fixed in advance,
the problem of selecting an informative test is essentially equivalent to probe
selection. For each test, each suspect (ideally) predicts a certain outcome,
hence the best test is the one which splits the set of suspects in half.

If, on the other hand, the set of possible tests is unknown or pragmatically
infinite, it is necessary to generate an appropriate test. A simple, suboptimal
technique will serve to illustrate the basic idea and difficulties: Design a test
for each suspect in tum, that is, find a set of inputs that will give two different
outputs depending on die condition of that one component. This will serve to
determine whether the fault is in the current suspect or among those remaining.

As an example, assume that AND-gate AND-I in Figure 19 is suspected of
malfunctioning, in particular of taking in Is and sending out 0. We want a set
of inputs that will indicate whether that is really how the component is behav
ing.

To do that we need to get a 1 to both inputs to the gate, then ensure that
its output is routed out to where it can be measured. The intuition is straight
forward: Work backward from the inputs of AND-I then forward from the out
put. We can get a 1 on the upper input by ensuring that OR-i outputs a 1; this
in tum can be ensured if the input to inverter il at Λ is 0. The value at Β then
does not matter. Similar reasoning fi-om die lower input of AND-1 yields 0 at
C. Then in order to ensure that the output of AND-I can be measured accu
rately at the device output, we need a 1 at £ , the lower input to AND-2. With
that input vector it appears that the value at F will determine unambiguously
whether AND-1 is malfunctioning in the manner noted.

1 AND-1
i - ^ 0 MiD^ 0

Ε - ·

D —

Figure 19 An Example of Test Generation.

Chapter 8 Model-based Reasoning: Troubleshooting 331

This style of reasoning is the essence of test generation as traditionally
practiced. While the approach is appealing in its intuitive clarity and simplicity,
it has important limitations. For our purposes, the most significant limitation is
its insensitivity to tiie presence of otiier suspects in tiie device and the resulting
insufficient specificity. What if, in the current example, i l and I3 also happen
to be suspects? The test vector selected will generate a value at F that depends
on the state of more than one suspect: If the value is incorrect any of the three
components may be to blame.

Stated in this fashion the difficulty immediately suggests one plausible
remedy: When routing signals through die device, whenever possible route the
signal only through known good components (components that are not sus
pects). Using this strategy the test generation process would select I2 and I4
to provide the inputs to the OR gates, and end up producing a test that was
completely specific, that is, dependent on die condition of only one suspect,
A N D - l . Work in [Shirley and Davis, 1983] describes a system that reasons in
this fashion and that produces tests that are as informative and specific as
possible.

A second substantial problem in testing arises in circuits with reconvergent
fanout. If, for example, the lower input of AND-2 had been attached to input D
(rather than having its own input E), the value at D would have entered into
two different goals: establishing the lower input to AND-2 and routing the out
put through AND-2. It is thus a problem of planning in the face of interacting
conjunctive subgoals, often resulting in backtracking and potentially involving
a considerable amount of search, since test generation is in the worst case NP-
complete.

6.5.3 Cost Considerations Underlying the preceding analysis are a num
ber of assumptions about the relative costs of probing, test application, and
computation, where the "cost" of an action is typically taken to mean the
amount of time it takes to perform.

Analysis aimed at selection of optimal probes is useful only when com
putation is reasonably cheap compared to the probes themselves. There would,
for example, be little point in waiting for a ten-minute computation to deter
mine the optimal probe if all of the measurements are easily made in five
minutes. In general the assumption holds tme, partly because computation
keeps getting cheaper, and gets cheaper faster than almost anything else.
Probing, by contrast, typically means some sort of physical action (hence it is
likely to be slower), and some of those actions may result in losing information
(e.g., having to move boards to get access to probe points). Hence the assump
tion is typically valid, but it is important to be explicit about it.

Similarly, generation of distinguishing tests is useful only when the re
quired computation is cheaper than probing or when probing is impossible. As
above, there is little point in waiting for a computation to constmct an

332 Davis and Hamscher

infomiative test if many measurements that would eliminate suspects could be
made in the meantime. Although this is an adequate working assumption, it is
violated occasionally because test generation can be expensive (NP-complete
for combinational digital circuits).

Finally, an assumption underlying the preceding discussion is that probes
are independent of one another and all have equal cost. This assumption is vio
lated if there is a range of technologies for probing the device, each with its
own cost, resolution, and number of resulting observations. A digital logic ana
lyzer, for example, yields detailed observations of several signals simul
taneously, but requires much more setup time tiian a simple voltmeter. Hence
the voltmeter may be preferable to the logic analyzer even if it yields less in
formation about the currently outstanding suspects. Similarly, tests may have
different setup costs—in fact they may have different setup costs depending
upon tiie order in which they are applied— with analogous consequences. The
potentially relevant literature on decision theory is too large to survey here,
nevertheless it is important to be aware that subtleties of this kind are likely to
arise in real applications.

7 Interim Conclusions

We have discussed a substantial collection of ideas and techniques that form
the current basis for model-based diagnosis and troubleshooting. A brief review
of the highlights will help set tiie stage for exploring the open research issues.

• Model-based troubleshooting is based on the comparison of observation
and prediction.

Observation indicates what the device is actually doing; prediction de
scribes the intended behavior. Discrepancies between the two provide the
starting point for diagnosis. An important part of the diagnostic ability of
model-based reasoning is provided by behavior descriptions that capture both
the causal behavior of the device (predicting outputs from inputs) and infer
ences that can be made about its behavior (determining inputs from outputs).

One of the important consequences of the model-based view is the ability
to view misbehavior as anything other than what the device is supposed to do.
We need not pre-enumerate die kinds of things tiiat might go wrong.

• Model-based troubleshooting is device independent.

Given a new device description, work can begin immediately on trouble
shooting the new device. Unlike rule-based approaches, there is no time-con-

Chapter 8 Model-based Reasoning: Troubleshooting 333

suming accumulation of experience. These systems reason instead from en
gineering principles applicable to a wide variety of devices.

• Model-based troubleshooting is symptom directed.

It reasons from the observed misbehavior toward the underlying fault. This
is particularly important for any device complex enough that the set of correct
behaviors is too large to explore exhaustively. In that case it is infeasible to mn
die device tiirough all its correct behaviors to see which one is not working; we
work instead from the information supplied by the symptom. The technique is
also familiar, in die sense that it captures some of the intuitions and reasoning
that experienced people typically use.

Model-based diagnosis can be understood as a process of hypothesis
generation, testing, and discrimination. Hypothesis generation works from a
single symptom to determine which components might have caused diat symp
tom. The key issue is providing a generator that is both complete and in
formed. We reviewed three different ways to do that, moving from the simplest
version to more sophisticated approaches.

Where hypothesis generation works from a single symptom, the goal in
hypothesis testing is to determine which candidates can account for all the ob
servations available about die behavior of the device. We examined four ap
proaches, ranging from straightforward fault simulation, to constraint suspen
sion, DART 'S use of resolution residue, and the GDE approach.

In hypothesis discrimination the fundamental issue is finding inexpensive
ways to gather additional information that will distinguish among the surviving
hypotheses. In exploring probing strategies we looked at four ideas that used
successively more information, beginning with stmcture, adding information
about behavior, a priori failure probabilities, and finally ending with a means
of estimating which probe will likely yield the shortest sequence of measure
ments. A brief review of test generation demonstrated that the traditional tech
nique is indiscriminate in its selection of components to use in constmcting a
test; considerable advantage can therefore be gained by the simple expedient of
using only known good components.

Two important elements of the analysis in this survey are the view of the
basic task as a three-step process of generate, test, and discriminate, and the
exploration of the character and amount of knowledge that can be brought to
bear at each step. Dividing the task into those three steps provides an important
form of mental hygiene, making it possible to understand each of diese fun
damentally different problems on its own terms, without being misled by the
common implementation practice of intermingling them for efficiency. Explor
ing the kinds of knowledge used at each stage offers a sound basis for compar
ing different variations and understanding how and why one may be more
powerful than another.

334 Davis and Hamscher

The combination of these two elements also maps out a sizable space of
program architectures. This is valuable because it provides a way of unifying
what might otherwise appear to be a diverse collection of systems. We claim in
fact that the model-based systems built to date fit comfortably somewhere in
diat space, i.e., all die current systems can be characterized in diis framework
according to the amount and kind of knowledge they use at each stage.

One overall consequence evident at this stage is diat model-based diagno
sis is a fairly well-understood process. Part of the evidence for this is the
character of the different programs that have been built: The variations in the
way diey work are minor in comparison widi the common core of techniques
in use. Additional evidence comes from recent success at recasting much of the
reasoning in terms of formal logic. The work in [Reiter, 1987] and [Ginsberg,
1986], for instance, provides formal definitions of and proofs for some of the
ideas presented in more intuitive form here.

All diis has two interesting consequences. First, die technology is ready for
application. A body of understanding is in place that is sufficient to attack
modest-sized but real problems. Building these applications will no doubt raise
additional interesting questions, but there is a sufficient base of knowledge
available for us to begin to use it.

Second, die technology is well enough understood that die interesting re
search agenda now consists of either developing substantial advances beyond
the techniques ouüined earlier or finding fundamentally different ways to
proceed. Interesting applications may result from constructing, tracing, and rea
soning about dependencies, but research contributions arise by exploring prob
lems for which the existing techniques are inadequate and finding ways to
make substantial advances in them.

We consider next a number of problems that may help spur such results.

8 The Research Issues

Three categories of research issues seem particularly important and promising
at diis point in die evolution of the art: device independence and domain inde
pendence, scaling up to more complex behaviors, and selecting the "right"
model. The first addresses the question of how broadly we can use the current
set of ideas. The case for device independence is easily made, since nodiing
done so far is specific to the particular device(s) examined, but are die ideas
more broadly applicable? What happens if they are applied to devices bulk
with entirely different technologies?

Numerous questions arise in considering scaling up to more complex be
haviors. At the most basic level, the question is how to represent and reason
about the behavior of more complicated devices, in particular those that have
memory and thus can present interesting dynamic behavior. A related question

Chapter 8 Model-based Reasoning: Troubleshooting 335

is the power of our predictive engines: How can we improve their performance
so that predictions can still be made when dealing with complex devices or
complex interaction topologies?

Finally, the question of selecting among models confronts a number of
very difficult problems. As will become clear, the difficulties start with ac
knowledging the apparentiy simple observation that model-based reasoning is
only as good as the models we provide to it. That will lead to an interesting
and difficult challenge—the batde between complexity and completeness,
where the desire to be complete in diagnosis seems directly contradicted by the
impossibility of dealing with an unconstrained problem.

8.1 Device Independence and Domain Independence

It appears easy to argue that the technology reviewed so far has a strong degree
of device independence—^given a new description of a different circuit, the
same reasoning process can begin inmiediately. It is not so obvious, by con
trast, what degree of domain independence these techniques exhibit. While
there has been a small amount of work done in other domains (e.g., neurophys
iology, hydraulic systems), die vast majority has been aimed at relatively
simple electronic circuits.

At tills point an intriguing experiment would be to go out on the edge and
apply this in a domain where it is not at all obvious that it will work. It would,
for instance, be fun to try tiiinking about clock repair in this fashion. Not the
modem digital kind, tiiough; the interesting challenge would be the old-fash
ioned gear, wire, and spring-driven models. What would it take to describe the
behavior and structure of such a device? Can the techniques reviewed above be
used to reason about it? The intent here is to work on a problem that strains the
state of the art, to teach us more about representing and reasoning about struc
ture and behavior.

8.2 Scaling

In considering whether and how this technology can scale up to larger devices,
it is important to recognize that there are at least two independent dimen
sions—size and complexity—and that size alone is not a particularly difficult
issue. If the basic components are simple, it is possible to work with thousands
of them without straining the current technology. One current program, for in
stance, models and diagnoses a system with a few thousand components [First
et al., 1982]. Each of them is very simple, but nothing new is required to apply
the existing ideas to this system of thousands of parts. The model entry task
may be sizable, but it is an engineering challenge, not a fundamental advance
in representation or reasoning.

336 Davis and Hamsclier

More interesting challenges arise when we start to deal widi devices with
complex behavior. As one conmionsense example, consider the behavior of a
VCR that can be progranmied to record two different broadcasts at different
times in the future. Even this relatively modest-sized finite state machine can
present apparentiy daunting problems of representing and reasoning about be
havior.

As a somewhat more immediately useful example, consider the task of de
scribing the behavior of an ALU (arithmetic/logical unit), using the behavior
representation technology available today. If that seems tractable, imagine de
scribing the behavior of a common microprocessor like the 80386. How might
we describe what that device can do in a way that makes possible examining
and reasoning about it? As long as we're at it, imagine describing the behavior
of something genuinely complex, like a disk controller.

Nor is complexity solely die province of large-scale devices. Work at the
other end of the scale has demonstrated how complex the behavior of a single
transistor can be when coarse abstractions like "switch" or "amplifier" prove to
be insufficientiy detailed [Dague et al., 1987]. Many of the same issues arise
here as well.

What might be done? One approach is to look for a new vocabulary, a
new set of abstractions designed to deal with the kinds of complexity en
countered. Imagine examining the data sheet for the 80386, making careful
note of the vocabulary in use. That data sheet is a form of existence proof:
With some degree of success it conununicates what this device is supposed to
do. The easy speculation is that its success arises in large part because it uses
the "right" set of abstractions. The more difficult part is understanding what
"right" means—what makes these abstractions effective? What is it that they
ignore, what do they emphasize, and why are those effective selections?

Complex behavior also forces the question of the adequacy of our predic
tive engines. As noted earlier, the simpler local constraint propagators stall
when encountering the need to deal with more than one equation in one un
known. Although some effort has been directed toward propagating symbolic
expressions, the resulting algebra can be quite complex. One possible approach
to the problem would be to guide the algebraic manipulations with some
knowledge of the device stmcture and behavior, similar in spirit to the observa
tion that a physicist guides his mathematics by an understanding of the prob
lem and what he is trying to establish. The question is not how to be good at
symbolic manipulation of complex expressions, so much as it is knowing what
symbolic manipulation to do to avoid the complexity in the first place.

A third set of challenges arises in dealing with devices with memory. If, as
is frequentiy the case with such devices, we know only the inputs supplied to it
initially and the final output that results some time later, hypothesis generation
and testing becomes tmly indiscriminate. Work reported in [Hamscher and
Davis, 1984], for instance, examined die task of diagnosing a sequential multi-

Chapter 8 Model-based Reasoriing: Troubleshooting 337

plier (a device that multiplies one digit at a time, shifting and adding in much
the same way die problem is done by hand). If the multiplier's behavior is
modeled using the technology reviewed above, candidate generation becomes
indiscriminate—abnost every component can account for the misbehavior. This
is not a minor consequence of current implementations; the difficulty arises
from the basic nature of die problem: If all we know is die input at die begin
ning and the output at the end, the problem is genuinely underconstrained in
much die same way diat two equations are insufficient to determine the value
of three unknowns.

This is a second place in which new abstractions may prove to be the rele
vant tool, particularly temporal abstractions. Some early work in this direction
has been done and seems promising: Hamscher [1988], for instance, demon
strates how temporal abstractions can be effective for such devices.

One other approach diat may prove effective in reasoning about complex
devices is the notion of "second principles of misbehavior." One example is
the heuristic that, in a complicated device, fault manifestations will be obvious.
To illustrate, imagine working widi a device diat includes a current generation
microprocessor, one that happens to be broken in some fashion, and consider
the consequences of that fault on the microprocessor's behavior. It is possible,
but highly unlikely, that the consequences will be subtle: It is unlikely, for in
stance, that the device will exhibit only a very small perturbation in its ex
pected behavior for only one of the instmctions in its instmction set. It is much
more likely that the fault will result in some obviously aberrant behavior every
time the device is used. One common form of that aberration is for the device
to stop producing any behavior at all, e.g., by hitting an illegal instmction and
halting.

This is one example of the second principle diat complicated devices don't
break in subde ways. It is a "principle" in the sense that it can be explained by
(and perhaps evenmally derived from) arguments about design. In this case, for
instance, the argument is diat complex designs often involve reuse of modules,
both to simplify the design and reduce cost. Reuse of modules in turn means
that any error in such a module will tend to have widespread consequences. In
a microprocessor, for instance, a single ALU may be used both for the arith
metic required for an ADD instmction and the arithmetic needed to compute
the next instmction address. Any error in that ALU will not only yield incor
rect sums (which might be overlooked), it will also introduce instmction
sequencing errors diat are unlikely to be missed.

Since these principles can be grounded in knowledge about design, they
are more than device-specific heuristics and are likely to have widespread ap
plicability. They are also an important addition to the ideas explored thus far,
because we are, as a field, a long way from being able to do such reasoning
from a purely first principles approach. Second principles of misbehavior thus

338 Davis and Hamscher

offer a way of sunmiarizing what would otherwise be a long and difficult
derivation.

One challenge we face is finding more of these principles; one obvious
place to start is with experienced troubleshooters. Whenever a model-based
system produces a diagnosis that is logical but strikes a human troubleshooter
as inappropriate, diere is the standard opportunity to find out what it is that the
experienced troubleshooter knows that is still missing from the system. Some
of that knowledge may point toward additional second principles of useful
breadth and utility.

8.3 Modeling Is the Hard Part
The third and possibly most intriguing area of research is brought into focus by
acknowledging that all model-based reasoning is only as good as the model.
This observation is in some ways obvious and in some ways fairly subtie, but
the consequences are interesting and present difficult problems.

To illustrate one version of the problem, note that all of the reasoning
techniques reviewed earlier generate predictions by propagating along the path
ways shown in the device description, then trace back from the discrepancies
along those same pathways to find suspects. The crucial point is twofold: Sus
pects are found by tracing causal pathways back from a symptom, and all of
the reasoning above accepted the device description as given, implicitiy assum
ing that the pathways supplied accurately model causality in the device. Yet
this can easily be false.

One commonplace example of this phenomenon is a bridging fault, the
event that results when a chip is being soldered in place and enough solder ac
cumulates at two adjacent pins to bridge the gap between them (Figure 20).
The result is a connection—a causal pathway—where none was intended.

Figure 20 A Solder Bridge.

Chapter 8 Model-based Reasoning: Troubleshooting 339

The possibility of faults of this sort has a particularly interesting con
sequence. Since candidates are found by tracing back along causal pathways, if
the pathways indicated by the device description are different from those in the
actual device, the tracing process will lead to the wrong components. Put
somewhat more simply, the great virtue of the model-based approach is its
ability to reason from the description of structure and behavior, yet the fatal
flaw in the model-based approach is that it reasons from die description of
structure and behavior, and that description might not capture the actual
causality in the device.

8.3.1 The Model Must Be Wrong How is it tiiat the model might not be
an accurate description of tiie causality in the device? One possibility is that
the device isn't supposed to be tiiat way. The bridge fault is one example of
this, another is an error during assembly—^the device is simply wired up incor
rectly.

A second possibility is unexpected pathways of interaction. In an elec
tronic circuit, a wire is the expected pathway of interaction; that's how com
ponents are supposed to affect one another. But there can be other, unexpected,
pathways as well: One component may heat up another, two wires carrying
high frequency signals may be so close that they affect one another via electro
magnetic radiation, and so on. The important point is that the design descrip
tion, by intent, only tells us about tiie patiiways of interaction that are supposed
to occur. In the device itself other unknown pathways may be operating. The
consequences of this are particularly evident in DART's explicit statement that
its diagnosis is restricted only to "... propositions from the design description
or their negation." Hence the only kinds of diagnoses it can even consider are
those stating that some component explicitly mentioned in the design descrip
tion is malfunctioning.

Third, the model may not match the device because in our routine practice
we explicitiy decide not to represent a particular level of detail. In a large cir
cuit, for instance, we may choose not to model every individual wire, settling
instead for a slightly more coarse-grained model in which components are
modeled as connected directiy to one another.

But most importantiy, it is in principle necessarily true that the model be
different from the device. It is the fundamental nature of all models, all repre
sentations, that is at issue here: There is no such tiling as an assumption-free
representation. Every model, every representation contains simplifying assump
tions. That's what models are, so in some ways this is perfectly obvious.

The perhaps less obvious part is the unavoidable impact this has on model-
based reasoning. As noted, the fundamental idea behind the technique is the
idea that, if the model is correct, then all the discrepancies between observation
and prediction arise from, and can be traced back along causal pathways to, de
fects in the device. But the model is, inevitably and in principle, never correct.

340 Davis and Hamscher

To be more precise, the model is never completely correct. When it is a
good enough approximation, the techniques described earlier are successful.
But the inevitability of incorrectness in theory and the pragmatic reality of it in
practice mean that this issue is real and cmcial to the robustness of the systems
we build. We need to understand botii what effect it has on the systems we
build and how to deal with it.

8.3.2 Consequence: Complexity vs. Completeness One of die most
important consequences of the phenomenon that a model is never completely
correct is an inevitable tension between complexity and completeness. To be
complete, diagnostic reasoning would have to consider all the tilings that may"
possibly go wrong, along every possible pathway of interaction. But such rea
soning would be indiscriminate, implicating every component—^tiiere would al
ways be some (perhaps convoluted) pathway by which that component might
have caused the problem. Yet if we make any simplifying assumptions, i.e.,
omit any pathway, there will be entire classes of faults that the system will
never be able to diagnose.

There is a fundamental problem here. If we make any simplifying assump
tions we mn the risk of being incomplete, because the simplifying assumption
might be the one that encompasses the actual fault. Yet without some simplify
ing assumptions the reasoning drowns in complexity.

While tills arises in a particularly inmiediate fashion here, it appears to be
a fundamental issue for problem solving in general. Any time we set out to
solve a problem, we need to make simplifying assumptions about the world in
order to get started, yet sometimes those assumptions are wrong. Thus any
techniques that can help us to select, organize, and manage the assumptions
that will be of potentially broad utility.

8.3.3 Consequence: Model Selection Is Fundamental Perhaps the
most interesting implication of this line of argument is the significance of the
problem of model selection. Since there are no assumption-free representations,
one strategy would be to assemble a collection of tiiem, each embodying a
different set of assumptions, along with a body of knowledge about how to
select carefully from among them. No one of them or any simple combination
of them provides a complete representation, but progress might be made by
selecting carefully from among them, attempting to make enough assumptions
to keep the problem tractable, yet making as few as possible to reduce the
chance of not being able to see tiie actual problem.

It is likely as well that the choice will not only have to be judicious, but
repeated and dynamic as well, changing views on the fly as understanding of
tfie problem evolves. One support for this approach is die observation that ex
perienced engineers do something like this. We need to understand what it is
they know and how they reason about model selection.

Chapter 8 Model-based Reasoning: Troubleshooting 341

The problem seems to lie at the heart of engineering problem solving: Per
haps the most basic, most important decision made in starting to solve a prob
lem is deciding "how to think about it." What is it that suggests modeling
something as an analog device, a digital device, or a hydraulic device? How do
we know what's relevant? How does die process begin? The problem seems
difficult but particularly intriguing.

Three speculations suggest possible approaches to the problem. First, we
might review the difficulties mentioned above that are encountered when using
models, and reformulate them as heuristics for model design [Hamscher, 1988].
The difficulty presented by reconvergent fanout (i.e., causing local propagation
to stall) can, for instance, be reduced to some degree by selecting module
boundaries to encapsulate die fanout. Similarly, judicious selection of module
boundaries can help reduce hidden state, the problem that makes diagnosis un-
derconstrained in die case of the sequential multiplier. A set of such heuristics
would assist in the design of models that reduce or avoid some of the problems
encountered above.

A second speculation explores the problem of deciding how to model
something by suggesting that different pathways of interaction define different
kinds of models, different representations, which can then be layered to pro
vide a sequence of successively more complex views [Davis, 1984]. A wire,
for instance, is one pathway of interaction; it defines the traditional schematic.
If heat is the relevant pathway, that defines a different representation of the
device, one in which "distance" is defined in terms of how easily one device
heats another. Electromagnetic radiation is a third pathway that defines yet
another kind of model and another distance metric.

These multiple different kinds of models are then organized from simplest
to more complex (defining "simplicity" is itself an open issue), so that the sys
tem starts by using the simplest and falls back on more complex models only
as necessary. The technique has been used to diagnose a bridging fault success
fully, demonstrating that multiple models using different representations and
different definitions of distance can be used to reduce complexity without per
manently losing completeness [Davis, 1984].

A diird speculation begins with the observation that every model is defined
by a set of simplifying assumptions. We might collect die set of all the simpli
fying assumptions routinely made and consider die space of models that are
generated by it. For example. Figure 21 shows three different models of a
NAND gate, beginning with the traditional transistor level model at the bottom.

Assuming that power can be ignored, then abstracting away from the
specific subcomponents to the roles they play, produces the intermediate level
representation in the middle. Two furdier simplifying assumptions—^diat cur
rent can be ignored and that all the subcomponents can be encompassed by a
single box—yield the traditional representation at the top. Hence these two
pairs of assumptions yield two successively simpler models of the device.

342 Davis and Hamscher

Compose Structure
Ignore Current

PU

SW

PD

Abstract Roles
Ignore Power

Figure 21 A Simple Hierarchy of Models.

But these are not the only models those assumptions can generate. The
simple trick of changing the'order in which the assumptions are made produces
an entire lattice of different models (Figure 22).

Chapter 8 Model-based Reasoning: Troubleshooting 343

/ 1
V , l -
v , i -

V,l

\
Compose Structure
Ignore Current

Ignore
Power

Abstract Roles
Ignore Power

Compose Structur^^ ^

H I

\ ^ / t

sw

Abstract Roles

Figure 22 A More Complex Hierarchy of Models.

Some of them are admittedly rather obscure, but there are in fact (perhaps
obscure) circumstances under which every one of them will be the "right" way
to think about the device. One reason why some faults are so difficult to diag
nose may be precisely because die "right" model in diat case is a particularly
unusual set of assumptions. Even faults as commonplace as bridges illustrate
the issue: Part of the reason they are especially difficult to diagnose is that they
require examining a less familiar representation—the physical layout of the
chips. While the fault is "simple" in that representation (two adjacent pins), it
can appear on the functional diagram as a connection between two widely sep
arated points.

344 Davis and Hamscher

This is, of course, still speculation. Given tiiat the lattice in Figure 22 was
generated simply by changing the order of die assumptions, there's no particu
larly compelling reason to believe tiiat it will work well. Nor have we an
swered the second half of the question: how to select from among the models,
and how to know which to choose next when one of tiiem begins to fail. This
is only a beginning, but it may be wortii further consideration.

9 Summary

We began this survey by viewing model-based diagnostic reasoning as the in
teraction of prediction and observation, and saw that one useful consequence
was the chance to view misbehavior as anything other than what the device is
supposed to do. Model-based reasoning thus covers a broader collection of
faults than traditional approaches to diagnosis. A second virtue of the technique
is its device independence, enabling us to begin reasoning about a system as
soon as its structure and behavior description is available.

In examining how to represent structure, we noted the utility of descrip
tions that were hierarchic, object-centered, and topologically identical to the
device being modeled. In examining behavior we noted the widespread use of
constraint-like descriptions that allow both simulating the actual behavior of
the device and making inferences about what the values at inputs must have
been.

We explored diagnostic reasoning by viewing it in the three phases hy
pothesis generation, testing, and discrimination. This view allowed exploration
of each of these fundamentally different problems on its own terms, made clear
tiie common core of techniques tiiat are in use, and offered evidence for the
claim that model-based systems to date fit into the space of architectures
characterized by the amount and kind of knowledge they use at each stage. The
view also supports the claim that the process is reasonably well understood:
Building a dependency-tracing model-based reasoner is now a fairly routine
process.

Finally, we examined three major open research issues. We explored the
question of domain independence, leading to the suggestion of trying these
techniques on devices from widely different domains, to extend our ability to
describe structure and behavior. We examined die difficulties in scaling up to
devices with considerably more complex behavior, speculated about the possi
bility of finding a new vocabulary of effective abstractions, and touched on the
difficulty of producing predictions in the face of complex behavior. And we
emphasized the fundamental role and fundamental difficulty of model selection
as the central problem in both extending the reach of these programs and en
suring their robustness.

Chapter 8 Model-based Reasoning: Troubleshooting 345

Acknowledgments

Many people contributed useful suggestions aiding both the research and writ
ing of this survey, including Johan de Kleer, Mike Genesereth, Paul Resnick,
Mark Shirley, Howie Shrobe, Reid Simmons, Jeff Van Baalen, Dan Weld,
Brian Williams, and Peng Wu.

References

Brown, A. L., 1976. Qualitative knowledge, causal reasoning, and the localiza
tion of failures. Technical Report AI-TR-362, MIT Artificial Intelligence
Laboratory.

Brown, J. S., R. R. Burton, and J. de Kleer, 1982. pedagogical, natural lan
guage, and knowledge engineering techniques in SOPHIE I, II, and III. In
telligent Tutoring Systems, D. Sleeman and J. S. Brown (Eds.). New York:
Academic Press, pp. 227-282.

Dague, P., O. Raiman, and P. Deves, 1987. Troubleshooting: When modeling
is the difficulty. In Proceedings of AAAI-87, Seattle, Washington, pp. 6O0-
605. San Mateo: Morgan Kaufmann.

Davis, R., 1984. Diagnostic reasoning based on stmcture and behavior. Artifi
cial Intelligence 24(3):347-410.

Davis R., H. Shrobe, W. Hamscher, K. Wieckert, M. Shirley, and S. Polit.,
1982. Diagnosis based on stmcture and ñinction. In Proceedings of AAAI-
82, Pittsburgh, Pennsylvania, pp. 137-142. San Mateo: Morgan Kaufmann.

de Kleer, J., 1976. Local methods for localizing faults in electronic circuits.
Memo 394, MIT Artificial Intelligence Laboratory. (Out of print.)

de Kleer, J. and B. C. Williams, 1987. Diagnosing multiple faults. Artificial In
telligence 32(1):9Ί-130,

First, M. B., B. J. Weimer, S. McLinden, and R. A. Miller, 1982. LOCALIZE:
Computer-assisted localization of peripheral nervous system lesions. Com
puters and Biomedical Research 15(6):525-543.

Genesereth, M. R., 1984. The use of design descriptions in automated diagno
sis. Artificial Intelligence 24(3):411-436.

Ginsberg, M., 1986. Counterfacmals. Artificial Intelligence 30(l):35-80.
Hamscher, W., 1988. Representations for Model-based Troubleshooting. Avail

able from the author.
Hamscher, W. and R. Davis, 1984. Candidate generation for devices widi state:

an inherentiy underconstrained problem. In Proceedings of AAAI-84, Austin,
Texas, pp. 142-147. San Mateo: Morgan Kaufmann.

Hamscher, W. and R. Davis, 1987. Issues in model-based troubleshooting.
Memo 893, MIT Artificial Intelligence Laboratory.

346 Davis and Hamsclier

Pan, J., 1984. Qualitative reasoning with deep-level mechanism models for di
agnoses of mechanism failures. In Proceedings of CAIA'84, Denver,
Colorado, pp. 295-301.

Patil, R., P. Szolovits, and W. Schwartz, 1981. Causal understanding of patient
illness in medical diagnosis. In Proceedings of IJCAI-81, Vancouver, BC,
pp. 893-899. San Mateo: Morgan Kaufmann.

Reiter, R., 1987. A theory of diagnosis from first principles. Artificial Intel
ligence 32(l):57-96.

Scarl, E., J. R. Jamieson, and C. I. Delaune, 1985. A fault detection and isola
tion method applied to liquid oxygen loading for the space shuttle. In Pro
ceedings of IJCAI-85, Los Angeles, Califomia, pp. 414-416. San Mateo:
Morgan Kaufmann.

Shirley, M. H. and R. Davis, 1983. Generating distinguishing tests based on
hierarchical models and symptom information. In IEEE International Con
ference on Computer Design,

Sussman, G. J. and G. L. Steele, 1980. Constraints: A language for expressing
almost-hierarchical descriptions. Artificial Intelligence 14(1): 1^0 .

Chapter

9

Artificial Intelligence
Techniques for Diagnostic
Reasoning in Medicine
Ramesh S. Patil
Clinical Decision Making Group
Laboratory for Computer Science
Massachusetts Institute of Technology

1 Historical Perspective

As early as the mid 1950s, physicians and computer scientists recognized that
computers could assist in clinical decision making and began to analyze medi
cal diagnosis with a view to die potential role of automating decision aids for
that domain [Ladley and Lusted, 1959]. A variety of approaches were explored.
They include: the use of clinical algorithms or flowcharts that encode the
sequence of actions a good clinician would perform in the evaluation or man
agement of some common disease [Bleich, 1972], the use of large clinical
databases of previously studied groups of patients that are matched against the
findings in a current case to suggest possible actions that have proved fruitful
in similar cases in the past [Rosati et al., 1975], the use of pattern recognition
techniques to classify the findings in a case into one of several predefined
classes of diagnostic categories, and the use of probability theory and decision
analysis, that allows the physician to assess the influence of available findings
on the diagnostic likelihoods and to evaluate the merits of available alternatives
[Gorry and Bamett, 1968b; de Dombal et al., 1972]. A good review of these
early efforts can be found in [Reggia and Tuhrim, 1985].

347

348 Patil

Each of these approaches can be applied successfully to narrow and care
fully chosen medical domains. However, they suffer from serious drawbacks
when applied to a broad domain of medical diagnosis. For example, when
faced with the outbreak of a new or rare disease, clinical algorithms (flow
charts) can be deployed effectively to codify and disseminate information on
diagnosis and management. When applied to the broad domain of medicine,
however, flow-charts become so enormous as to be unmanageable. When faced
with the possibility of many diseases, the choice of an appropriate flow-chart
becomes akin to the general problem of diagnosis. Furthermore, while follow
ing the flow-chart, if some unanticipated finding is observed or if the patient
reacts unexpectedly to some therapeutic intervention, the clinician is faced with
a difficult decision. Should the flow-chart be followed, ignoring the anomalous
finding, or should some new decision procedure be adopted? To provide as
sistance in these difficult situations, it is essential that not only tfie sequence of
actions but also the rationale underlying these actions be encoded in the pro
gram.

1.1 Artificial Intelligence and Diagnostic Reasoning

Because of various limitations of the existing techniques, a group of re
searchers turned to the expert physician as a resource that might provide
detailed insights into the basic nature of clinical problem-solving and to the
field of artificial intelligence in order to translate these insights into working
programs. The field of Artificial Intelligence in Medicine (AIM) was formed
around 1970 with near-simultaneous development of research groups at four in
stitutions: Stanford University, Rutgers University, Massachusetts Institute of
Technology (in collaboration with Tufts University School of Medicine) and
University of Pittsburgh. Within approximately five years the early efforts
came to fruition with the publication of seminal papers on M Y C I N [Shortliffe,
1976], CASNET /G laucoma program [Weiss and Kulikowski, 1984], Present Ill
ness Program [Pauker et al., 1976b] and I N T E R N I S T - I program [Pople, 1975;
Miller et al., 1982]. All of these projects relied on human experts as the source
of their knowledge and in one fashion or another have tried to incoφorate the
expertise of clinicians into computer programs with the long-term goal of
creating programs that perform like experts.

The simulation of human expertise is, however, not the primary goal of the
field. Ratiier, the primary goal of this field is to develop computer programs
that perform efficientiy and competentiy, and are able to interact and explain
their reasoning and conclusions to their users (physicians) in a natural manner.
It is believed that understanding human expertise will provide the foundation
for the development of such sophisticated computer programs. Based on this
assumption, researchers in the field of AIM have attempted to form theories of
how physicians think about difficult medical problems and to implement com-

Chapter 9 Diagnostic Reasoning in Medicine 349

puter programs that use similar organizations of medical knowledge and prob
lem-solving methods. The principal methodology employed in understanding
clinical cognition has consisted of introspection on the part of physicians and
analysis of tiiinking-aloud protocols of physician performance during diagnos
tic encounters. The understanding of human cognitive processes and their im
plementation in computers is, however, a two-way street. As the existing theo
ries of clinical cognition are formalized in the form of computer programs and
certain aspects of clinical expertise are demystified, new and more subtle
aspects of human cognition are identified, and the cycle repeats.

Furthermore, as experience is gained with computer models of cognitive
processes, and their information processing characteristics are better under
stood, efficient data stmctures and algorithms are often developed to imple
ment the same behavior on computers that bear littie, if any, resemblance to
the original models. This paper traces the evolution of some of these models
and their implementations in the field of general medical diagnosis. Detailed
descriptions of most of the systems drawn upon can be found in collections of
papers edited by Szolovits [1982a], by Clancey and Shortliffe [1984], and by
Reggia and Tuhrim [1985].

1.2 The HypothetlcO'Deductlve Nature of Diagnostic Process

Early analysis of clinical problem solving suggested that diagnosis is primarily
a hypothetico-deductive process. In its simplest form such an hypothetico-de-
ductive process can be implemented in a program using three steps: (1) Based
on some initial findings, die program forms a first set of hypotheses. (2) These
hypotheses suggest tests and observations leading to further information gather
ing. (3) The set of hypotiieses is revised to account for new data.

The first programs built along such lines were extremely simple. Later
programs developed to address weaknesses of earlier efforts have employed a
wide variety of representation and reasoning techniques, ranging widely in
degrees of sophistication. A hypothesis, for example, can be simply the name
of a disease or an instance of a disease prototype with information on match
between the observations and the findings predicted by the prototype disease.
In a more sophisticated program, a hypothesis might include sets of co-occur
ring disorders whose predicted findings taken together cover the observations.
A yet more sophisticated program might attempt to form parsimonious sets of
hypotheses by taking into account knowledge of common complications and
interactions among co-occurring diseases and how they account for the ob
served findings using a causal/temporal model of disease processes. Similarly,
the strategies for gathering new information can range in complexity from
simply asking a question to confirm the leading hypothesis or differentiate
among tiie set of hypotheses, to intricate sequencing of questions (planning)
that take into consideration the expected value of information, the risks of

350 Patil

overlooking relevant data, common medical practice, and stylistic issues of in
teracting with the user.

Depending on the breadth of the program's domain and on its degree of
refinement, die number of hypotheses represented could range from a few to
many thousands. The most primitive representation of medical knowledge
simply lists findings associated with a given disease. A more sophisticated pro
gram may describe the association between diseases and findings using frames
and include the probability of occurrence of each finding, its import, and local
criteria for concluding a diagnosis. A still more sophisticated representation
may include a causal/temporal model of disease as well as a variety of ways in
which a disease may present.

In this paper we will study the evolution of computational techniques in
the area of medical diagnosis. I will present a number of systems with increas
ing capabilities and complexity with particular emphasis on the interaction be
tween knowledge-representation and reasoning strategies, and on how our un
derstanding of the nature of diagnostic expertise has changed over time. Let us
begin this process with a brief description of a sequential diagnosis program
using Bayesian probability theory.

2 Sequential Bayesian Diagnosis

A seminal paper in the sequential diagnosis was published by Gorry and Ben
nett [1968a]. This paper presented dieir work on a program for differential di
agnosis of acute renal failure (called ARF) . This program was designed to diag
nose one of 14 specific causes of acute renal failure. It differed from earlier
work in probabilistic diagnosis in its use of information dieory to actively seek
diagnostic information from its users. The differentiation among these 14
possible diagnostic outcomes was carried out using 31 clinical parameters with
approximately three to four values for each parameter (approximately 100 find
ings). The medical knowledge of the program consisted of the prior probability
of each disease and a table consisting of the conditional probabilities for find
ings in each of the 14 diseases. A fragment of the knowledge base for tiiis pro
gram is shown in Figure 1. The algorithm used by the program is shown in
Figure 2.

This program differed from its predecessors in a number of significant
ways. It was based on a sequential algorithm that provided an interactive capa
bility to the program. It was able to provide mdimentary explanation through a
what i/mechanism. For example, during die diagnosis a user could ask the pro
gram how die probabilities of different diseases would be affected by some un
known finding. Furthermore, unlike previous programs A R F took into con
sideration the cost of obtaining information and the cost of missing an impor
tant diagnosis. Finally, Gorry reports impressive success with this technique in

Chapter 9 Diagnostic Reasoning in Medicine 351

several medical application domains [Betaque and Gorry, 1971; Gorry and Bar-
nett, 1968a]. Using an average of only about seven to nine findings, the ARF
program was able to arrive at the same diagnosis as expert clinicians in each of
the thirty-three hypothetical cases on which it was initially tested [Gorry and
Bamett, 1968b].

The question dien arises—Why in spite of these successes did the team of
original researchers turn to AI techniques?

The first and most commonly cited reason for this apparent move away
from the Bayesian inference technique is its voracity for data. To overcome
this problem, the ARF program assumed that the list of diseases under con
sideration was exhaustive and mutually exclusive. Furthermore, it assumed that
findings are conditionally independent, that is, the probability of observing any
finding depended solely on the current likelihood of the disease hypotheses but
not on the knowledge of other findings. Thus, for example, using the frame
work of the ARE program it is not possible to state that the presence of nausea
increases the chances of vomiting. Even for the small medical domain of the
ARF program, approximately 750 conditional probability estimates had to be
qollected simply to permit the program to discriminate among fourteen causes
of acute renal failure. Expanding the program's medical coverage would re
quire a great deal more data. Even that, however, is likely to be insufficient be
cause diese antecedent assumptions begin to fail badly as the program's cover
age increases. Furthermore, the database of the program is conditioned on the
patient population from which it is derived. Thus, moving the program from
one region of the country or a hospital to another region with a different
patient population is likely to degrade the performance of the program.

Disease Prior
Conditionals

Disease Prior Proteinuria Disease Prior
none trace gross

FARF 0.4 0.8 0.2 0.001
ATN 0.25 0.1 0.8 0.1
AGN 0.1 0.01 0.2 0.8

OBSTR 0.1 0.7 0.3 0.001
• • • • •

Figure 1 An Example data table for the finding of Proteinuria used by the
acute renal failure (ARF) program.

352 Patil

[Step 0:] Construct a vector of probabilities for the fourteen possible
hypotheses containing their initial probabilities in the general
population of patients.

[Step 1:] Using Bayes' theorem reevaluate the hypotheses based on newly
available information:

where
η

Pi-m= ^^Pi-\{Hk)P{FIHk)

Where Pi-\(Hj) is the prior probability of hypothesis Hj before
the finding is taken into account, and Pi(Hj) is die probability
after the finding is taken into account.

[Step 2:] If any hypothesis reaches a predefined threshold probability
(e.g., 95%), report the diagnosis and stop.

[Step 3:] Identify the finding with maximum information: Consider each
as yet undetermined finding and using each possible result of its
determination, compute the resulting probability distribution and
its information measure (entropy).

η

E(Pu,.,Pn) = Σ - Pi(Hj)\og2Pi(Hj)

[Step 4:] Ask about the finding with the maximum expected information
content. Go back to Step 1.

Figure 2 Sequential Bayesian diagnosis algorithm used in the ARF program.

In spite of these difficulties, however, tiie use of Bayes' tiieorem (at least
in spirit) remains at tiie heart of most diagnostic programs, altiiough they are
almost always augmented by other heuristic techniques that will be discussed
later. Recent advances in the area of reasoning witii uncertainty in AI, such as
Bayesian networks, qualitative influence diagrams, and so on, have begun to
provide new insights that overcome many earlier criticisms and are likely to

Chapter 9 Diagnostic Reasoning in Medicine 353

lead to more principled use of incomplete probabilistic information in the fu
ture generation of A I M programs.

The second and more important problem with Bayesian technique is its
computational requirement that the entire repertoire of hypotheses known to a
program must be reevaluated each time a new finding is reported. For a small
domain this is reasonable, but in a large domain such as internal medicine,
where the number of hypotheses range into many thousands, such a process is
tantamount to thumbing diough die entire textbook of medicine for each find
ing. Such a process is computationally prohibitive. More important, however, is
the fact that it is counter to the way clinicians perform diagnosis.

Furthermore, in choosing the next finding, a program must evaluate the in
formation content of all remaining findings. The set of such findings is at least
an order of magnitude larger than the number of possible diagnoses, making
this process computationally prohibitive. Much more important, however, is the
fact that these processes are clearly counter to the way clinicians approach di
agnostic problem solving.

3 Limiting ttte Number of Active Hypottieses

Studies of clinical cognition suggest that clinicians generate only a very small
number of hypotheses (no more than five or six) at any one time during the di
agnostic process (see Figure 3). Furthermore, it has been observed that the
number of hypotheses entertained by more expert clinicians tend to be smaller
than those entertained by their less expert counteφarts. Similarly limiting the
number of hypotheses simultaneously entertained by the program at any one
time has significant advantages. Focusing the program's attention on a small
number of relevant hypotheses saves much of the effort expended in continu
ally reevaluating all possible diseases. Thus, the program can devote a larger
share of its computational resources to each of the hypotheses considered.
These resources can then be applied to more sophisticated strategies for evalu
ating individual hypothesies, forming new hypotheses, and differential diagno
sis. Furthermore, by mimicking human information processing characteristics,
the program is better able to communicate its reasoning to its users.

How can a similar reduction in the number of hypotheses under considera
tion be achieved in computer programs without sacrificing performance?

The first step in limiting die number of hypotheses consists of activating
from the database only those hypotheses for which at least some evidence has
been obtained (reported). A set of hypotheses called the active hypothesis set
can now be created and maintained by adding the set of diseases supported by
each new finding to die existing active hypothesis set.

354 Patil

What people are good at What computers are good at

o
O l

'S

Ε

Hypotheses entertained
/

/ V V V V V V V V V V / / / V V / V V / / / / / / / / / / /
by physicians

Begining of diagnosis Near end of diagnosis

Figure 3 Space of possible hypotheses during diagnostic process. Adapted
from an article by M. S. Blois [1980].

A second step, necessary to prevent the active hypothesis set from growing
continually as new findings are obtained, consists of removing from considera
tion those hypotheses that are judged to be no longer viable on the basis of the
total available information. This can be accomplished by scoring each active
hypothesis based on total available information and deactivating those hypothe
ses whose score falls below a threshold. The threshold used could be predeter
mined or determined dynamically relative to the best hypothesis in the active
set.

The activation/deactivation process described above provides the basic
mechanism for a program containing a very large set of potential hypotheses in
its knowledge-base to focus on the subset of hypotheses relevant to the sima
tion at hand. The specific technique for activation of hypotheses described
above, however, is inadequate. It does not limit the number of hypotheses to
die small numbers typically entertained by human clinicians. One source of tfiis
inadequacy is the presence of so called nonspecific findings, i.e., findings such
as weakness that can be caused by a very large number of diseases and thus
can result in the activation of a very large set of hypotiieses. One solution to

Chapter 9 Diagnostic Reasoning in Medicine 355

this problem is to allow activation of hypotheses only in response to findings
highly suggestive of a particular disease.

This strategy can be implemented in several ways. A simple approach
would divide the findings associated widi a disease into two separate groups,
the trigger findings and the non-trigger findings and use only the trigger find
ings for the purpose of activation [Pauker et al., 1976b]. Findings other than
the trigger findings would be utilized in the diagnostic process only when a
particular hypothesis has already been activated. For example, the finding of
acute chest pain will activate the hypothesis of "myocardial infarct," whereas
the complaint of occasional headaches will not trigger the hypothesis of "brain
tumor" but lend support to the hypothesis once it is activated. This approach
could be refined to include with each finding associated with a disease a num
ber, called the evoking strength, representing the degree of suggestiveness of a
finding to the disease. A disease will then be activated only when the total
evoking strength of all its findings exceeds a predetermined threshold [Miller
et al., 1982]. Unfortunately, both of these strategies are found wanting, because
a single finding or combination of independent findings often leads to the
generation of an unmanageably large set of hypotheses [Sherman, 1981].

One proposed refinement makes the triggering heuristic more specific by
the use of a cluster of related findings rather than a single finding as a trigger.
For example, the pattem of "hematuria and flank pain" suggests a much nar
rower set of hypotheses than either one alone. By varying the size of the trig
gering cluster, a range of behavior can be achieved. Generally, clusters of
two or three findings are probably die right size to achieve adequate specificity
without risking the chance of missing an important diagnosis [Sherman, 1981].

But even the use of compound triggers can fail to reduce sufficientiy the
number of hypotheses that must be considered. Often, a cluster of related find
ings, arising from a shared clinical state or syndrome, is strongly indicative of
a fairiy large number of underiying diseases, and therefore triggers them all. In
the next section we will focus on ways to exploit the source of this problem—
commonality among diseases—^to further reduce the number of hypotheses
considered by the diagnostic process.

3.1 Hierarchic Organization of Hypotheses

Cognitively it is much simpler to deal with a single disease hypothesis
embodying a large number of possibilities than to deal with each possibility in-

1 A compound trigger could, in theory, be made so large as to encompass all the findings rele
vant to a disease. This would make triggering a disease tantamount to confirming the disease hy
pothesis. This approach, however, would circumvent the hypothetico-deductive nature of the diag
nosis and fail to suppon the needs of information gathering activity.
2 Alternately, a compound trigger could be viewed as a data-driven rule which suggests the dis
ease in response to the presence of a specific pattem of findings.

356 Patil

dividually. Firstíy, because of the shared structure, we can easily identify the
commonality among the diseases. Secondly, an aggregate hypothesis can some
times be ruled out using a few observations, thus simultaneously ruling out all
the alternatives within the class. Furthermore, the aggregate may suggest a
small set of findings or a preferred method for carrying out differentiation
among altematives without the program having to commit itself to any one of
the individual diseases in that aggregate. Such an ability can be implemented
easily in a program by hierarchically organizing disease hypotheses.

Hierarchic organization of hypotheses in a program has many advantages.
First, it allows the program flexibility in controlling the number of active hy
potheses. If too many hypotheses are activated, the program can move up the
hierarchy and group the hypotheses together. If on the other hand, too few hy
potheses are activated, the program can move down die hierarchy and refine
the hypothesis to expand the set of hypotheses. Secondly, each aggregate node
in the hierarchy itself represents a frequentiy encountered differentiation prob
lem. Problem solving knowledge and heuristics specific to that differentiation
problem can now be stored with the aggregate node and retrieved efficientiy to
tailor the diagnostic process. Finally, hierarchic organization provides a sys
tematic basis for organizing a knowledge-base of hypotheses that aids not only
in reasoning by the program but also in the construction and maintenance of
the knowledge-base.

Use of hierarchic organization of disease hypotheses was first explored in
the I N T E R N I S T ! program [Miller et al., 1982]. To evaluate potential advantages
of hierarchic reasoning, a version of the I N T E R N I S T - I diagnostic algorithm was
implemented in our laboratory (at MIT) and employed using a knowledge-base
of approximately 100 birth defects. The performance of the program with and
without the use of a hierarchic database was evaluated on 32 cases. Figure 5
shows the number of hypotheses generated by the program after the presenta
tion of findings for each of the 32 cases. Suφrisingly, the figure shows that the
use of hierarchy did not have significant effect on the number of hypotheses
generated [Sherman, 1981]. There are three main reasons for the ineffective
ness of hierarchic reasoning in the I N T E R N I S T - I program.

The first reason stems from the use of a definitional inheritance hierarchy
for organizing disease hypotheses similar to those used in other fields of artifi
cial intelligence [Brachman, 1979]. Each node in the hierarchy is defined using
features that are common to all its children. Thus, for example, if the nodes
labeled Hepatitis-A, Hepatitis-B and Infectious Mononucleosis had findings F l ,
F2, F3; F l , F2, F4; and F2, F3, F4 respectively as shown in Figure 4, their
common superior. Hepatocellular Infection, would only have F2 in common.
This method of defining aggregate hypotheses is, however, inappropriate for
diagnostic knowledge, as die relation between diseases and findings is eviden
tial or associational rather dian definitional. Thus, for example, even tiiough
the finding of jaundice is present in most liver diseases, there are some liver

Chapter 9 Diagnostic Reasoning in Medicine 357

diseases that do not cause jaundice. In other words, jaundice, although common
in liver diseases, is not a necessary or definitional attribute of liver diseases.
Thus, jaundice cannot be associated with the description of liver disease. As a
result, most disease finding associations in the knowledge-base are concen
trated at or near the leaf nodes in the taxonomy, leaving most aggregate disease
descriptions widiout a sufficient number of features for adequate diagnostic
reasoning.

Liver Disease

Hepatocellular
disease

Neoplasms Cholestatic
disease

Hepatocellular
Infection

{F2}

Toxic
Hepatocellular

disease

Hepatitis-A

{F1,F2,F3}

Hepatitis-B

{F1,F2.F4)

Infectious
Mononucleosis

{F2,F3,F4}

Figure 4 A fragment of INTERNIST-I disease hierarchy.

358 Patil

40

38

36

34

32

30

28
Hypotheses 26

24
221
20
18
16
14
12

Number

of

Generated

• INTERNIST with disease hierarchy
• INTERNIST without disease hierarchy •

• · α
ICQ

Cases

Figure 5 A comparision of the number of hypotheses generated by the
INTERNIST-I algorithm implemented in the BDDS program on 32 cases using
birth defects database. Adapted from Sherman [1981]. Note: Places where the
two symbols • and · ovedap have been signified with a • .

One approach to overcoming this problem is to abandon the notion of in
heritance hierarchy. This approach is taken by the developers of the MDX pro
gram [Chandrasekaran and Mittal, 1983]. MDX organizes its knowledge as a
hierarchy of decision nodes with the leaf nodes representing ultimate diagnostic
outcomes. Each intermediate node is associated with only those features that
are heuristically useful for either confirming or mling out that node. One prob
lem with this approach is that the features to be associated with each node and,
more importantly, features of lower level nodes that are to be excluded from
consideration must be determined individually on an ad hoc basis, placing con
siderable burden on the knowledge-base designers. Another approach to over
coming this problem is to form a hierarchy of symptoms in parallel with the
hierarchy for diseases, that allows aggregate diseases to be associated with ab
stract findings as shown in Figure 6, and to use heuristic classification tech
nique described by Clancey [1985] for diagnostic reasoning. Both these tech
niques overcome the problem described above. Neither can, however, deal with
the remaining two problems described below.

Chapter 9 Diagnostic Reasoning in Medicine 359

Disease

d9

,r
δ s

Ψ

Figure 6 Heuristic-classification using disease and finding hierarchies.

A second problem stems from the fact that there is no one correct way of
organizing diseases into a single hierarchy. There are many diseases that in
volve multiple organ systems or regulatory mechanisms. These diseases share
findings with diseases widely dispersed in the hierarchy. Furthermore, because
of dieir many-faceted character, diey cannot be placed adequately in any one
branch in the hierarchy. Finally, when confronted with a case of one of these
multi-system diseases, the program is unable to focus on the appropriate hy
pothesis in exclusion of sub-components of the disease or other diseases that
cover only part of the overall presentation.

Finally, the third problem arises from the fact that hypotheses may be or
ganized hierarchically based on a number of different commonalities. In or
ganizing disease knowledge using a single hierarchy, die designer of the
knowledge base must choose one refinement for each disease from among a
number of possible refinements. This takes away the ability to choose at run
time die commonality that allows the program to operate most efficientiy for
the case at hand. For example, consider an organization (shown in Figure 7) in
which the hypothesis "kidney disease" is first refined using anatomical stmc
ture into glomemlar, tubular, and cortical kidney diseases and, then using tem
poral pattems, each of these is further refined into "acute" and "chronic," e.g.,
acute glomemlar disease and chronic glomemlar disease. Given this organiza
tion, the program can, if it chooses, suppress the temporal ambiguity between
acute and chronic glomemlar disease into a single hypothesis. When faced with
an acute disease of either glomemlar or tubular origin, however, the program is
unable to aggregate them into acute kidney disease. Of course, if the hierarchy

360 Patil

were organized first based on temporal character and then anatomy (as shown
in Figure 8), the program could easily deal with the second situation, but would
fail on the first. As a consequence of this problem inherent in the organization
of disease hypotheses in a single hierarchy, researchers have tumed to using
multiple hierarchies, making it possible for the program to choose the one
among them that is the most appropriate for the case at hand.

kidney disease

glomerular tubular vascular cortical

acute chronic acute chronic acute chronic acute chronic
Λ Λ Λ Λ Λ Λ Λ Λ

/ \ / \ / \ / \ / \ / \ / \ / \

Figure 7 A hierarchic organization for kidney diseases.

kidney disease

glomerular tubular vascular cortical glomerular tubular vascular cortical
Λ Λ Λ Λ Λ Λ Λ Λ

Figure 8 An alternate organization for kidney diseases.

Chapter 9 Diagnostic Reasoning in Medicine 361

4 Diagnostic Reasoning Using Muitipie Hierarctiies

Diseases can be organized along many dimensions: They are caused by an in
citing cause (etiology), they act on an organ (anatomy), the body mounts a
physiologic response (pathophysiology) which results in varying degrees
(severity) of dysfunctions (signs and symptoms) expressed over a period of
time, and so on. It is often possible, even desirable in the early phase of diag
nosis, to characterize a clinical problem along these dimensions without com
mitting to any one of a large number of specific disease entities that may un-
deriie a patient's illness. For example, presented with a patient with fever and
headache, it is quite reasonable to suspect that the patient's illness is of infec
tious origin. It is, however, inappropriate to consider specific hypotheses such
as meningitis without more information. Working with these dimensions in
dividually, the program can approach clinical problems from a number of
different directions. In other words, the program can choose among a number
of available viewpoints in working toward its goal—a better characterization of
the disease process. When a sufficiendy good characterization has been ob
tained, such that only a small number of specific disease entities are possible,
the program can tum its attention to discriminating among them. However, this
requires the program to combine different characterizations of the disease
processes to identify specific disease hypotheses consistent with all of them.

Combining different characterizations of diseases into a specific differen
tial diagnosis can be achieved through an intersection heuristic. If the disease
is known to be of infectious etiology and is known to affect the kidney (anat
omy), then specific diseases can be identified by intersecting the etiologic hier
archy below infectious diseases with the anatomic hierarchy below kidney dis
eases, resulting in a differential set containing infectious kidney diseases.^

The intersection heuristic works on the assumption that each aggregate hy
pothesis is providing a different characterization of the same underlying dis
ease. If the available findings identify the etiology for one component disease
and anatomy for the other, intersecting the two will result in an empty hypothe
sis set. In such a situation, the program must conclude either that the patient is
suffering from two independent problems or that the two problems are manife
stations of some larger multifaceted problem. In either case, the program must
abandon the single disease assumption and explore the possibility of multiple
disorders.

In the present section we have focused on limiting the number of hypothe
ses under consideration through a number of mechanisms such as the triggering
heuristic, which allows us to focus our attention on those hypotheses that are
relevant to the case at hand, and die grouping heuristic, which uses a hierarchy

3 Intersection can be achieved efficiently using greatest lower bound algorithm on lattices, simi
lar to the realization algorithm used in Kandor [Brachman et al., 1983].

362 Patil

to aggregate possible hypotheses into a small and manageable number of
aggregate hypotheses. Finally, we have considered the use of multiple hierar
chies and the use of intersection heuristics for dynamically combining multiple
hierarchies. With the number of active hypotheses under consideration limited
to a range similar to that used by a clinician, we now turn our attention to the
more difficult problem of dealing with the diagnosis of a patient suffering from
multiple diseases.

5 Problems In Dealing with Multiple Disorders

The most difficult problem faced by diagnostic programs is to decide whether a
patient under consideration is suffering from just one or several disorders (or
perhaps none). Most of the programs discussed above allow several diagnoses
to be made in a single case. During the process of diagnosis, however, they
focus their efforts on identifying the single most likely diagnosis. Only after
the first diagnosis is confirmed do they attempt to make the second diagnosis
based on the residual findings, and the process is repeated until either all find
ings are exhausted or the user explicitiy terminates the diagnostic process. Such
a sequential approach suffers from serious deficiencies. The program does not
consider the possibility of multiple disorders at any one time, and it is forced to
attribute all observed findings to the primary diagnosis it is trying to establish.
As a result, findings that are not in fact relevant to the primary diagnosis can
easily confound the diagnostic process.

Assuming just one disease considerably simplifies die diagnostic task, be
cause the program can assume that the hypothesis that is finally accepted must
account for all the known data. Thus each finding either favors or acts against
a hypothesis, and a finding that favors one hypothesis automatically argues
against the otfiers. Furthermore, each disease hypothesis corresponds to a dis
ease description in the program's knowledge base. Thus the process of hy
pothesis activation is equivalent to instantiating a disease description in the
knowledge base. In reality, however, patients often suffer from several dis
orders, either because they have several independent problems (e.g., an acute
infection superimposed on a chronic heart condition), or because one disease
may often induce or complicate another.

Algorithms developed to deal with multiple disorders can be divided into
two groups. The first group deals with the case of several independent prob
lems. They consider multiple disorders whose findings may overlap but do not
interact witii each other, that is, the presence of one disease does not alter the
features associated with a second concomitant disease. The second group deals
with situations when the two diseases may interact with each other giving rise
to additional findings not manifested by eitiier of the two diseases or when pre
sence of one disease may occlude some of the findings of die second disease.

Chapter 9 Diagnostic Reasoning in Medicine 363

5.1 Dealing With Multiple Disorders Whose Findings Do Not
Interact

The earliest technique for dealing with this problem, called the partitioning
heuristic, was developed and used in the I N T E R N I S T - I program. The partitioning
heuristic is based on the premise diat the symptoms associated with coexisting
diseases are set additive. This heuristic was used to separate the active diagnos
tic hypodieses into two groups. First, die competing group, containing hypothe
ses that competed with the leading hypothesis, i.e., explained only a subset of
findings explained by the leading hypothesis. Second, the complementary
group, containing hypotheses that complemented the leading hypothesis, i.e.,
explained some fínding(s) not explained by the leading contender. The program
then focused its diagnostic activities on the competing group, setting aside the
hypotheses in the complementary group for later consideration. In a study of
the I N T E R N I S T - I and P I P diagnostic algoridims by Sherman [1981], the partition
ing heuristic was found to be a key to I N T E R N I S T - I ' S superior performance over
the Present Illness Program.

The partitioning heuristic fails to deal adequately with the problem of mul
tiple disorders for two reasons. The first problem results from the program's
inability to property account for findings. In die presence of multiple disorders
it is not clear when a program can reasonably conclude that some finding has
been successfully accounted for. A finding that has already been accounted for
by a confirmed diagnosis can eidier be allowed to continue to lend support to
additional diagnoses or not. Both of these choices lead to problematic behavior.
The first leads the program to continue its diagnostic activity interminably in
pursuit of ever-more implausible combinations of diagnoses that would account
in new ways for findings that have already been accounted for adequately. The
second, on the other hand, can often prevent the program from correctiy diag
nosing a co-occurring disease that shares a significant fraction of its findings
with an already confirmed diagnosis.

A second problem results ft-om die ephemeral nature of the competing and
complementary hypotheses in I N T E R N I S T - I . During each cycle of the informa
tion gadiering process, the program reevaluates all hypotheses and re-partitions
them from scratch. The partitioning is based primarily on the leading hypothe
sis. As a result, the differentiation problem formed by the I N T E R N I S T - I program
changes radically with each change in the leading hypothesis. This problem is
particularly acute in dealing with two or more diseases whose findings overlap
appreciably, such as, urinary tract infection and pyelonephritis.

Over the last several years, a number of techniques have been developed
to deal with multiple disorders [Reggia et al., 1983; de Kleer and Williams,
1987; Reiter, 1987]. They overcome the problems resulting from the ephemeral
nature of problem formulation by directiy representing and manipulating the

364 Patil

competing hypotheses. Each competing hypothesis, also called a candidate hy
pothesis, is represented as a set of individual disease hypotheses which when
taken together explain all of the observed symptoms. Following the principle of
parsimony [de Kleer and Williams, 1987; Reiter, 1987], only minimal candi
date sets are considered during the diagnostic process. A candidate set is con
sidered minimal if no subset of the set can completely account for all observed
anomalies.

The space of possible candidate hypotheses is the power set of individual
disease hypotheses, and is thus very large. Nevertheless, programs dealing with
them can be made efficient because during the process of sequential diagnosis,
the candidate sets can be refined incrementally. That is, when presented with a
new finding, the existing minimal candidate sets can be refined efficiently to
produce new sets that take die new finding into account. Whenever a new
symptom is presented that is not explained by a candidate set, it is replaced by
one or more new minimal candidate sets, each of which contains the old candi
date plus one additional disease hypothesis accounting for the newly observed
symptom. Any new candidate tiiat is subsumed or duplicated by another is
eliminated; the remaining candidates are added to the set of new minimal can
didates.

The generalized set cover techniques have been applied widely in electron
ics and other engineering domains [Davis and Hamscher, 1988]. This technique
is particularly suited for diagnosis fi-om first principles reasoning using the
structure and function of a healthy system. Our understanding of the human
body is, however, sufficiently incomplete to allow us to deduce human physi
ology from the knowledge of human anatomy. As a result, the use of structure
and function reasoning in medicine has been limited to areas such as localiza
tion of neurological defects. Generalized set cover technique does not,
however, require reasoning from structure and function and tiius can be used
with experiential knowledge of disease-finding associations described earlier.
Furtiiermore, the generalized set cover techniques can also exploit hierarchic
organization of diseases by allowing candidate hypotheses to use aggregate dis
ease nodes as their elements [Davis, 1984]. The candidates formed using
aggregates must, however, be refined during the process of diagnosis. When
dealing with tree-structured hierarchies, such a refinement can be achieved in a
straightforward manner by applying the algorithm recursively in the limited
context of the symptoms explained by the aggregate hypothesis being refined
and the diseases subsumed by the aggregate. Special care must be taken to
guarantee that die candidates formed using aggregates are minimal, that is, no
two aggregate elements of the candidate have a common descendant.^

4 If two aggregate elements of a candidate have a common descendant then the candidate is not
minimal, as replacing the two aggregates with their common descendant would result in a better
candidate hypothesis.

Chapter 9 Diagnostic Reasoning in Medicine 365

The situation where one disease may cause or precipitate another can also
be incorporated within the generalized set cover techniques by extending die
definition of minimality of candidates. Consider, for example, two candidate
hypotheses where the elements of the first are causally related and the second
are not. Inmitívely, the first candidate is much more appealing than the second.
This notion can be captured in the principle of parsimony by minimizing the
number of causally related clusters or ultimate etiologies^ in a candidate. Note
tiiat when die elements of a candidate set are causally unrelated, this definition
reverts to the original definition of minimal candidate. A causal relation, once
established, can also be exploited during die refinement process in a manner as
illustrated by the following example.

Consider a patient with anemia and hepatobiliary involvement (liver dis
ease) in whom the anemia is caused by the hepatobiliary disease (as shown in
Figure 9). Let us assume that the program has identified a candidate set con
taining anemia and hepatobiliary involvement. The number of possible pairs of
diseases (two levels below the starting nodes shown in the two hierarchies)
ranges in the hundreds, while only two of them are consistent with causal as
sumption. If the program assumes that the two are causally related, it need con
sider only those two hypotheses that are compatible with the causal assump
tion. Figure 10 illustrates tiie process of identifying these two hypotheses by al-
temately refining the anemia and the hepatobiliary involvement nodes. Figure
11 shows the two composite hypotheses resulting from this process. Further
more, the hypotheses considered are precisely those that can occur in practice.
A program (called C A D U C E U S) that embodies a similar strategy is currently
under development at the University of Pittsburgh [Pople, 1982].

ANEMIA

NON
HEMOLYTIC

ANEMIA

HEPATOBILIARY
INVOLVEMENT

HEMOLYTIC
ANEMIA

HEPATOCELLULAR
INVOLVEMENT

BILIARY
TRACT

INVOLVEMENT

HEPATIC
VASCULAR

INVOLVEMENT

ANEMIA OF
CHRONIC
DISEASE

FIBROTIC
HEPATOCELLULAR

INVOLVEMENT

HEPATIC VEIN
INVOLVEMENT

Figure 9 Fragments from two hierarchies below anemia and hepatobiliary
disease where anemia is suspected to be caused by the hepatobiliary disease.

5 Ultimate etiologies can be defined as elements that do not have causal antecedents in the candi
date hypothesis.

366 Patil

ANEMIA HEPATOBILIARY
INVOLVEMENT

/

ANEMIA OF
CHRONIC < -
DISEASE

- HEPATOCELLULAR
" ^ INVOLVEMENT

\

/ •
/

^^ FIBROTIC
— HEPATOCELLULAR

INVOLVEMENT

BILIARY
TRACT

INVOLVEMENT

HEPATIC
VASCULAR

INVOLVEMENT

HEPATIC VEIN
INVOLVEMENT

Figure 10a

HEPATOBILIARY
INVOLVEMENT

ANEMIA OF
CHRONIC
DISEASE

/ HEPATIC
VASCULAR

INVOLVEMENT

FIBROTIC
HEPATOCELLULAR

INVOLVEMENT

HEPATIC VEIN
INVOLVEMENT

Figure 10b

Figure 10 Two possible refinements of the causal relation between anemia
and hepatobiliary disease. Circled numbers show the sequence of intermediate
refinements.

Chapter 9 Diagnostic Reasoning in Medicine 367

Composite Hypothesis

A N F M I A ^ ^^"^^^ HEPATOBILIARY
P<^^^^f<'^ INVOLVEMENT

ANEMIA OF FIBROTIC
CHRONIC < HEPATOCELLULAR
DISEASE INVOLVEMENT

HEMOLYTIC causes HEPATIC VEIN
ANEMIA ^ INVOLVEMENT

Composite Hypothesis Composite Hypothesis

flgutB 11 Two successful refinements of the hypothesis that the observed
anemia is caused by a hepatobiliary disease.

In this section we have reviewed a number of strategies for going beyond
the single disease assumption by direcdy generating and manipulating sets of
compatible hypotheses. Furthermore, we have observed that causal relation can
be used effectively in limiting die space of possible combination of hypotheses.
Throughout this section we have made the assumption that the findings of two
or more co-occurring diseases are set additive. Such an assumption can be
justified in diagnosis from stmcture and function where any deviation from the
normal behavior is considered a conflict (symptom) and no further distinction
among symptoms need be made. Significantly richer characterization of a
symptom based on its severity, temporal evolution, precipitating circumstance,
and so on, is necessary for proper diagnosis in medicine. Furthermore, because
homeostatic processes responsible for maintaining life are comprised of many
intricate feedback loops, malfunction of any organ system can potentially in
fluence die proper functioning of almost all other systems in die body. As a re
sult, interactions among co-occurring diseases are common in medicine and
must be addressed.

6 Diagnosing Muitipie interacting Diseases

To illustrate the rich character of clinical reasoning involved in the diagnosis of
interacting disorders, let us consider the case of a patient suffering from diar
rhea and vomiting who is hypovolemic, hypokalemic and has a semm pH
within the normal range. Diarrhea and vomiting both cause substantial loss of
body potassium. Thus, taken together, their effect on hypokalemia is com
pounded. On the odier hand, diarrhea results in loss of alkalis, vomiting results
in loss of body acids. Therefore, taken together they tend to offset each odier's
effect on semm acidity. For the sake of example, let us suppose that we know
about the vomiting but are not aware of the diarrhea. In such a situation, the
observed hypokalemia is too severe to be accounted for properly by the vomit
ing alone; vomiting cannot be considered a complete explanation for the ob
served severity of hypokalemia. Therefore, a program must consider vomiting
either as not responsible for hypokalemia or only partially responsible for it. If

368 Patil

vomiting is partly responsible, however, we must be able to determine the part
of hypokalemia that can be attributed to vomiting and identify the part that still
remains to be accounted for. Furthermore, when a second cause for hypoka
lemia is identified, we must be able to judge how well the two causes taken to
gether explain the observed hypokalemia.

The programs discussed above will treat this situation erroneously; they
will use die absence of anticipated alkalemia as evidence against vomiting and
lower their belief in it. They will, therefore, fail to identify the second disorder,
namely diarrhea, diat is surreptitiously masking the effects of vomiting on
serum alkalinity. Even if diarrhea were activated through some other finding,
these programs would consider the normal value of serum pH as evidence
against the hypodiesis. A program that allows a proper accounting for the find
ings will, however, attribute only a part of the hypokalemia and hypovolemia
to the vomiting and will be able to identify an as yet unknown factor compen
sating for the effects of vomiting on serum acidity. It will thus be able to hy
pothesize the presence of a second disorder that in the absence of vomiting
should lead to hypokalemia, hypovolemia, and acidosis.

To capture the richness of medical knowledge and clinical reasoning il
lustrated above, we have been developing an experimental program called
ABEL [Patil, 1981]. ABEL'S knowledge base includes descriptions of causal
mechanisms that capture the relation between the severity and duration of
cause and effect. It uses composite hypodieses that are capable of representing
multiple concomitant disorders, and it can deal with interactions among dis
eases through the use of detailed pathophysiologic models of disease processes.
Finally, ABEL combines the shallow experiential knowledge of association be
tween diseases and findings with deep pathophysiologic knowledge for effi
cient diagnostic reasoning.

6.1 Organization of Medical Knowledge In ABEL

The basic medical knowledge in ABEL consists of hierarchical representations
of anatomic, physiologic, etiologic, and temporal knowledge. A disease is
characterized in terms of its anatomic involvement, its temporal character, its
etiologic origin, and the functional derangement resulting from it. As each ele
ment of anatomic, etiologic, and pathophysiologic knowledge is organized in a
taxonomic hierarchy, the projection of a disease description along each of these
dimensions can be used to derive a unique lattice stmcture, based on the sub-
sumption relation [Brachman and Schmölze, 1985], so that a general descrip
tion of a disease or clinical state appears above more specific descriptions. The
disease descriptions are then augmented using causal relationships.

The causal knowledge in the program is organized at several levels of
detail. At the shallowest level tiiis knowledge is in terms of diseases and their
clinically observable manifestations. At the deepest level this knowledge in-

Chapter 9 Diagnostic Reasoning in Medicine 369

eludes detailed biochemical and pathophysiologic mechanisms that provide
quantitative relations among normal and abnormal physiologic parameters and
processes. Additional information is also provided to describe the connection
of knowledge at one level to that at adjacent levels.

The causal knowledge at each level of detail is organized in terms of
nodes and links. Nodes are clusters of information tiiat describe physiologic
and clinical states. Nodes are linked to one another by causal links or by links
that describe associations when underlying causal mechanisms are not clear.
Causal links may connect a node describing a disease or a clinical state to one
or more nodes tiiat describe its effects. They specify the relationship between
the severity, duration, and other relevant aspects of die cause and the effect
nodes, that is, given a cause and an effect node it is possible to compare the
two for causal consistency. Furthermore, reasoning may be carried out in the
forward or the reverse direction; a cause may be used to predict the effects or
an effect used to deduce the necessary severity and duration of a cause. Addi
tional information is also provided to permit die combining of separate effects
into a joint one when multiple causes are present or suspected.

Multi-level representation of nodes allows the knowledge base to describe
a high level node (called a composite node) in terms of a network of states and
causal relations at the next lower level (Figure 12). One of the nodes in this
causal network is designated as the focus node. The focus node identifies the
essential part of the causal structure (called die elaboration) of the node above
it. Indeed, the collection of focal nodes acts to align die causal network repre
senting the medical knowledge at different levels of detail. Nodes that do not
play a role as a focal definition of any node at a higher level are called non-
aggregable nodes. They represent the detailed aspects of the causal model in
troduced at the given level that was subsumed under other nodes with different
foci at less detailed levels of description. Finally, nodes that are not described
at the next lower level of detail are called primitive nodes. Such a situation
arises when either the pathophysiology of a given state is not available, or it is
not medically relevant.

Multi-level representation of links allows the knowledge base to describe a
high-level relation between two clinical or pathophysiologic states at the next
more detailed level using a chain of causal relations. Similar to nodes, links de
scribed in such a manner are called composite links, and links that do not con
tain such structure are called primitive links. A schematic causal relation de
scribed at multiple levels of detail is shown in Figure 13.

Causal knowledge organized as above plays two important roles in the di
agnostic reasoning processes. The causal pathways associated with links play a
key role in elaborating clinical level descriptions to the detailed pathophysio
logic level, whereas the causal network associated with a node plays a central
role in identifying clusters that can be meaningfully aggregated in developing a
coherent diagnosis.

370 Patil

Figure 12 A schematic description of the multilevel node structure in ABEL.

Figure 13 A schematic description of the multi-level link structure in ABEL.

Chapter 9 Diagnostic Reasoning in Medicine 371

6.2 Composite Hypotheses

To deal effectively with diagnoses involving multiple interacting disorders, a
program must have the capability to develop composite hypotheses that include
not only the list of individual disorders thought to be simultaneously present
but also an account of which disorder explains what finding and how the pre
sence of one disorder modifies the expression of another. Unlike individual dis
ease descriptions, that can be stored in the knowledge base and activated
directiy to form individual disease hypotiieses, the number of possible com
posite hypotheses is so large that to store them directiy in tiie knowledge base
is impractical. They must therefore be constmcted. This process of constmcting
composite hypotheses, each of which provides an altemate comprehensive ac
count of observed manifestations of the patient's ilhiess, is akin to the process
of constmcting scientific theories to explain observed phenomena [Pople, 1982;
Patil et al., 1982a,b]. Thus in a process similar to scientific theory formation,
the program's composite hypotiieses must be refined and debugged to accom
modate new data and abandoned only when significant contradictions are dis
covered.

Composite hypotheses in ABEL are described using a set of patient-specific
models (PSMs), each of which attempts to explain all the known facts about a
patient. Furthermore, each PSM is itself a multi-level stmcture, describing the
same diagnostic explanation (composite hypothesis) at varying levels of detail,
starting at the top from a clinical level summary to the detailed patiiophysi-
ology of the patient's illness. A PSM is created by instantiating portions of
ABEL'S medical knowledge. Much of die meaning of an observation depends
on the context provided by the PSM; conversely, the PSM is created by assimi
lating many observations. As the PSM is multi-level, this assimilation requires
the ability to summarize detailed pathophysiologic descriptions into concise
clinical summaries and the ability to disaggregate summaries into detailed de
scriptions. This is achieved in the program using aggregation and disaggrega
tion operators. An example of a composite hypothesis is shown in Figure 14.

A critical feamre of the PSM is its ability to determine interactions among
multiple diseases. This is achieved by a pair of operators: component summa
tion and decomposition. Efficient implementation of these operators in ABEL
depends critically on its ability to expand a high-level clinical description down
to the pathophysiologic level and vice versa. When an interaction between dis
orders is identified at the clinical level, ABEL disaggregates the relevant clinical
context to the detailed pathophysiologic level, which includes quantitative para
meters that can be added or subtracted without any special case knowledge. It
then aggregates the result back to the clinical level. The program can thus cir
cumvent the combinatorio explosion that would result if each possible interac
tion among diseases were stored individually.

372 Patil

C L I N I C AL L E V EL

, I N T E R M E D I A TE L E V EL

Figure 14 A fragment from the multi-level patient-specific model for a patient
suffering from metabolic-acidosis and hypokalemia.

Chapter 9 Diagnostic Reasoning in Medicine 373

6.3 Diagnostic Problem Solving In ABEL

A B E L takes a radically different view of diagnosis from die other programs dis
cussed above. Unlike most previous systems that view diagnosis as a process
of classifying a patient's illness into one or more disease categories, A B E L

views diagnosis as a process of constmcting a model or a theory that can ex
plain a given patient's ilhiess. The process of diagnosis in A B E L is carried out
by first constmcting a small number of PSMs that provide consistent (if partial)
inteφretations of the known facts about a patient's illness. Each of diese PSMs
is then used to constmct a possible scenario of the patient's illness by identify
ing those elements in the PSM that need further explanations, identifying addi
tional diseases (causes) that could explain them, and for each such additional
disease, identifying additional findings that would be observed if the patient in
fact had the hypothesized disease. An example scenario for the PSM shown in
Figure 15.

Having developed individual scenarios, the program tums its attention to
the process of planning its information gathering strategy. To diis end, die pro
gram compares different scenarios. It identifies key differences among the
scenarios under consideration and makes these the top-level goal for further in
vestigation. Each of these goals is then decomposed into sub-goals. This
process is repeated until each of the terminal goals can be confirmed directiy
through one or more questions. This plan is then refined and reorganized based
on other considerations, such as the cost of gathering each piece of information
and common medical practice. This plan is dien used to gather new informa
tion. Existing patient-specific models are revised on the basis of this informa
tion and the process is repeated until a working diagnosis is reached.^

In summary, A B E L goes beyond the existing medical diagnosis programs
by taking into consideration the severity and duration of each disease and by
formulating detailed models of the patient's illness. Such models allow the pro
gram to reason with the details of die disease process, to recognize how one
disease can alter the presentation of another, and to sort out component ele
ments due to each disease. This capability is achieved through the use of causal
reasoning. The results we have obtained cannot be achieved by probabilistic
techniques, A B E L ' S models (PSMs) are built using a knowledge base that en
codes die various ways in which a disorder presents and quantitative informa
tion diat captures an understanding of die severity of the illness. For the pur
poses of differential diagnosis the same knowledge base is used again to ex
pand die models beyond die known facts, playing out scenarios of what else
would be expected if, indeed, the etiology under consideration were the correct

6 A more complete description of this information gathering process is available in fPatil et al.,
1982a,b].

374 Patil

one. On the basis of these scenarios, the program identifies the critical diagnos
tic points on which to focus its questioning of the physician.

Because ABEL builds detailed causal models for each diagnosis under con
sideration, it can also explain the logical processes by which it arrived at its di
agnostic assessment. Such an explanation, in our view, is critical if the user is
to have any faith in the program's reconmiendations. Just as in the case of any
consultant, the reasonableness of the diagnostic conclusions must be assessed
by the physician seeking help. This requirement becomes especially important
as programs become larger and more complex, because they will, in all likeli
hood, make occasional mistakes. The ability to explain itself will also be criti
cal to "debugging" the program when it has made an error and to updating the
program in light of new clinical or physiologic information.

Predicted Consequences

hyperventilation

Predicted Consequences
may-cause

^ 3 · ^ edema

< ̂ may-cause

 ̂ Tnay-c:

Composite Hypothesis
(clinical level PSM)

Possible causes

SCENARIO

may-cause / ^ ^
Γ - ^ ' '
• ^ " dehydration

 ̂ ̂ may-cause

Predicted Consequences

Figure 15 Set of scenarios consistent with the PSM of Figure 14.

Chapter 9 Diagnostic Reasoning in Medicine 375

There are several key problems. The first problem with A B E L arises from
its reliance on knowledge of detailed quantitative pathophysiology. In most
areas of medicine, however, such detailed understanding of quantitative rela
tions among physiologic parameters is not available. The techniques developed
in A B E L could still be applied using more aggregate quantitative or qualitative
relations, but their effectiveness is likely to degrade rapidly. A second problem
arises due to die lack of probabilistic reasoning in A B E L , particularly in situa
tions where a unique working diagnosis cannot be established on the basis of
clinical data. The lack of an ability to estimate the relative likelihood of the al
ternative composite hypotheses tiius prevents A B E L from resolving such situa
tions and from planning the optimal course of treatment.

Finally, in designing A B E L to deal widi complex clinical situations, we
have built a program that reasons extremely carefully with all cases presented
to it, be they simple or complex. The cost incurred in running A B E L can be
justified for a complex case, but for a routine case this cost must be viewed as
excessive, smce such a straightforward case could be solved much more effi
cientiy by a program such as C A D U C E U S or I N T E R N I S T - L

Thus, we are faced with tfie challenge of developing a new program that
meets the following criteria: It can deal with a broad domain such as intemal
medicine; while it solves routine cases efficiently, it can increase die level of
its analysis as the cases become more complex, using die best available
pathophysiologic knowledge when necessary. We believe that such a challenge
can be met by synthesizing many of the techniques described in this paper with
a number of recent AI advances in the areas of reasoning with uncertainty,
temporal reasoning, qualitative reasoning, compilation of causal knowledge,
and case-based reasoning. Of course, such an exercise in synthesis will neces
sarily involve a number of modifications and reorganizations of the existing
techniques. More importantiy, it will require development of large new knowl
edge-bases of medicine, a long and arduous task that in itself is likely to chal
lenge the state-of-the-art in knowledge acquisition and acquisition techniques.

7 Where Do We stand?

We have discussed a number of techniques that have evolved over the last two
decades in the field of medical diagnosis. We have been able to capture the
clinician's expertise in being able to narrow down the scope of diagnostic hy
potheses from many tiiousands to a handful through die use of hypothesis acti
vation and hierarchic problem-reformulation heuristics. We have been able to
achieve a very high level of performance comparable to die best experts in an
alyzing complex clinical situations in some limited fields through the use of
causal knowledge. The field of Artificial Intelligence in Medicine has provided
inspiration and technology for the development of expert systems in many

376 Patil

fields outside of medicine, through exemplary projects such as MYCIN [Bu
chanan and Shortliffe, 1984], CASNET [Weiss and Kulikowski, 1984], and IN
TERNIST [Miller et al., 1982]. Why is it, dien, tíiat very few programs, if any,
are currendy in use?

First, most of the successes of the expert system technology have come in
commercial tasks such as configuring computers (RI/XCON [McDermott, 1982])
and scheduling maintenance of telephone networks (ACE [Vesonder et al.,
1983]). These successes have been possible largely because of the well-defined
character of the problem and the knowledge needed to solve the problem.
Furthermore, diese programs could be deployed gainfully even though they are
unable to perform at a near-perfect level. An occasional failure to identify an
impending problem in a telephone network or to configure a customer order
can be measured in terms of dollars lost and traded against efficiency and cost
savings achieved through the program more readily than the consequences of a
misdiagnosis in a seriously ill patient. Unrealistic expectations about die per
formance of programs in the medical field in conjunction with a lack of tech
nology for evaluating and certifying these programs has been a great impedi
ment to the utilization of the programs [Schwartz et al., 1987].

Lack of adequate inroads by information support technology (such as
patient information management systems) into the practice of medicine has
continued to keep the cost of interacting with expert computer programs unrea
sonably high. For example, most consulting programs require, at minimum, 15
to 30 minutes of interaction to provide routine clinical facts about a case.^ On
the other hand, for most complex cases requiring expert attention, a clinician in
a major medical center can obtain an expert opinion with a phone call lasting
just a few minutes.

Finally, die choice of expert consultation as the model for interaction be
tween the clinician and the program itself leads to some impediments. Such a
model tends to raise expectations about a program's performance, inspiring
fear among clinicians that if such a technology becomes commonplace it would
affect dieir job security and earning potential. To address this issue die field
has more recentiy tumed to the exploration of less threatening models for inter
action that assist a clinician in resolving difficult clinical problems by meeting
his problem-specific infonnational needs (INTERNIST/QMR [Miller et al, 1986]),
aiding in the evaluation of alternative treatment modalities (CHF [Long et al.,
1984]), and critiquing patient management plans [Miller (Perry), 1986]. These
and other similar approaches give promise of being more acceptable and thus
playing a larger role in the everyday practice of medicine.

7 Only by extracting needed information directly from patient records can a system reduce the
cost to the clinician of using these systems.

Chapter 9 Diagnostic Reasoning in Medicine 377

Acknowledgments

The author's research is supported by National Institutes of Health grants R24
RR 01320 from tiie Division of Research Resources and ROl LM 04493 from
the National Library of Medicine.

References

Betaque, Norman E. and G. Anthony Gorry, 1971. Automating judgmental
decision making for a serious medical problem. Management Science
17:B421-B434.

Bleich, Howard L., 1972. Computer-based consultation: Electrolyte and acid-
base disorders. A/M 53:285.

Blois, Marsden S., 1980. Clinical judgement and computers. New England
Journal of Medicine 303:192-197.

Brachman, Ronald J., 1979. A stmctural paradigm for representing knowledge.
Brachman, Ronald J., Richard E. Fikes, and Hector J. Levesque, 1983. Kryp

ton: A functional approach to knowledge representation. Computer
16(10):67-73.

Brachman, Ronald J. and James G. Schmölze, 1985. An overview of the kl-one
knowledge representation system. Cognitive Science 9:171-216.

Buchanan, Bmce G. and Edward H. Shortliffe, ed., 1984. Rule-Based Expert
Systems: The MYCIN Experiments of the Stanford Heuristic Programming
Project, Reading: Addison-Wesley.

Chandrasekaran, B. and S. Mittal, 1983. Conceptual representation of medical
knowledge for diagnosis by computer: MDX and related systems. Advances
in Computers, M. Yovits, ed., pp. 217-293. New York: Academic Press.

Clancey, William J., 1985. Heuristic classification. Artificial Intelligence
27:289-350.

Clancey, William J. and Edward H. Shortliffe, ed., 1984. Readings in Medical
Artificial Intelligence: The First Decade. Reading: Addison Wesley.

Davis, Randall, 1984. Diagnostic reasoning based on stmcture and behavior.
Artificial Intelligence 24:347-410.

Davis, Randall and Walter Hamscher, 1988. Model-based reasoning: Trouble
shooting. Chapter 8, this volume.

de Dombal, F. T., D. J. Leaper, J. R. Staniland, A. P. McCann, and Jane C.
Horrocks, 1972. Computer-aided diagnosis of abdominal pain. British Medi
cal Journal 2 :9-13.

de Kleer, Johan and Brian C. Williams, 1987. Diagnosing multiple faults. Arti
ficial Intelligence 32:97-130.

378 Patil

Gony, G. A. and G. O. Bamett, 1968a. Experience witíi a model of sequential
diagnosis. Computers and Biomedical Research 1:490-507.

Gorry, G. A. and G. O. Bamett, 1968b. Sequential diagnosis by computer.
Journal of the American Medical Association 205(12):849-854.

Ladley, R. S. and L. B. Lusted, 1959. Reasoning foundations of medical diag
nosis. Science 130:9-21.

Long, W. J., S. Naimi, M. G. Criscietello, S. G. Pauker, and P. Szolovits,
1984. An aid to physiological reasoning in the management of cardiovascu
lar disease. In Proceedings of the Computers in Cardiology Conference, pp.
3 - ^ . IEEE.

McDermott, J., 1982. R l ' s formative years. Artificial Intelligence Magazine
2(2):21-29.

Miller, Perry L., 1986. Expert Critiquing Systems: Practice-based Medical
Consultation by Computer. New York: Springer-Verlag.

Miller, Randolph Α., Harry E. Pople, Jr., and Jack D. Myers. 1982. INTER
NIST-I, an experimental computer-based diagnostic consultant for general
intemal medicine. New England Journal of Medicine 307:468-476.

Miller, R.A., M. A. McNeil, S. M. Challinor, F. E. Masari, Jr., and J. D.
Myers, 1986. The INTERNIST-Vquick medical reference project—status re
port. Western Journal of Medicine 145:816-822.

Patil, Ramesh S., 1981. Causal representation of patient illness for electrolyte
and acid-base diagnosis. Technical Report No. 267, Massachussetts Institute
of Technology, Laboratory for Computer Science, 545 Technology Square,
Cambridge, MA, 02139.

Patil, R. S., P. Szolovits, and W. B. Schwartz, 1982a. Information acquisition
in diagnosis. In Proceedings of the National Conference on Artificial Intel
ligence, Pittsburgh, Pennsylvania, pp. 345-348. San Mateo: Morgan Kauf
mann.

Patil, Ramesh S., Peter Szolovits, and William B. Schwartz, 1982b. Modeling
knowledge of the patient in acid-base and electrolyte disorders. Artificial
Intelligence in Medicine, Peter Szolovits, ed., pp. 187-222. Boulder: West-
view Press.

Pauker, S. G., P. Szolovits, H. Silverman, W. Swartout, and G. A. Gorry,
1976a. A computer program diat captures clinical expertise about digitalis
therapy and provides explanations of its reconunendations. In Computer
Networking in the University: Success and Potential; Proc. of the EDUCOM
Fall Conference, pp. 187-189. EDUCOM.

Pauker, Stephen G., Anthony Gorry, Jerome P. Kassirer, and William B.
Schwartz, 1976b. Towards the simulation of clinical cognition: Taking a
present illness by computer. American Journal of Medicine 60:981-996.

Pople, Harry E. Jr., 1975. The dialog model of diagnostic logic and its use in
intemal medicine. In Proceedings of the Fourth International Joint Confer
ence on Artificial Intelligence, Tibilisi, USSR, pp. 1030-1037.

Chapter 9 Diagnostic Reasoning in Medicine 379

Pople, Harry E. Jr., 1982. Heuristic methods for imposing structure on ill-struc
tured problems: The structuring of medical diagnostics. Artificial Intel
ligence in Medicine, Peter Szolovits, ed., pp. 119-190. Boulder: Westview
Press.

Reggia, James Α., Dana S. Nau, and Pearl Y. Wang, 1983. Diagnostic expert
systems based on a set covering model. International Journal of Man-Ma
chine Studies 19:437-^60.

Reggia, James and Stanley Tuhrim, ed., 1985. Computer-assisted Medical
Decision Making. New York: Springer-Verlag.

Reiter, Raymond, 1987. A theory of diagnosis from first principles. Artificial
Intelligence 32:57-96.

Rosati, R. Α., J. F. McNeer, C. F. Starmer, B. S. Mittler, J. J. Morris, and A.
G. Wallace, 1975. A new information system for medical practice. Archives
of Internal Medicine 135:1017-1024.

Schwartz, W.B., R. S. Patil, and P. Szolovits, 1987. Artificial intelligence in
medicine: Where do we stand. New England Journal of Medicine 316 :685-
688.

Sherman, Howard Bruce, 1981. A comparative study of computer-aided clini
cal diagnosis of birth defects. Technical Report No. 283, Massachussetts In
stitute of Technology, Laboratory for Computer Science, 545 Technology
Square, Cambridge, MA, 02139.

Shortliffe, Edward Hance, 1976. MYCIN: Computer-based Medical Consulta
tions. New York: American Elsevier.

Szolovits, Peter, ed., 1982a. Artificial Intelligence in Medicine. Volume 51 of
AAAS Selected Symposium Series. Boulder: Westview Press.

Vesonder, Gregg T., Salvatore J. Stolfo, John E. Zielinski, Frederick D. Miller,
and David H. Copp, 1983. Ace: An expert system for telephone cable main
tenance. In Proceedings of the Eighth International Joint Conference on Ar
tificial Intelligence, Karlsruhe, West Germany, pp. 116-121. San Mateo:
Morgan Kaufmann.

Weiss, Sholom and Casimir Kulikowski, 1984. A Practical Guide to Designing
Expert Systems. Totowa, N. J.: Rowman and AUanheld.

Chapter

10

Evidential Reasoning Under
Uncertainty
Judea Pearl
Cognitive Systems Laboratory
Computer Science Department
University of California, Los Angeles

1 Introduction

1.1 Overview

One can hardly identify a field in AI that doesn't use some sort of evidential
reasoning, namely, processes leading from evidence or clues to guesses and
conclusions under conditions of partial information. Therefore, to avoid having
to cover the entire field of AI, the topic will be limited to evidential reasoning
tasks in which the uncertainty is given a specific notation, namely, it is repre
sented explicitiy by some sort of measure or degree.

Constrained by this guideline, I will not be able to give a full account of
the heuristic approaches to evidential reasoning [Cohen, 1985; Clancey, 1985]
nor to works in truth-maintenance systems and nonmonotonic reasoning that,
essentially, address the same sort of problems. The latter are given full cover
age by odier surveys (see diis volume), and will only be touched on briefly to
point out their fundamental ties to other formalisms.

381

382 Pearl

Additionally, it will not be possible to survey everything that anyone has
said or written about uncertainty, nor would I be able to summarize the intrica
cies of powerful programs such as M Y C I N [Shortliffe, 1976], I N T E R N I S T [Miller
et al., 1982], P R O S P E C T O R [Duda et al., 1976], M E D A S [Ben-Bassat et al.,
1980], R U M [Bonissone et al., 1987], M U M [Cohen et al., 1987a] and M D X
[Chandrasakaran and Mittal, 1983] that have embodied practical solutions to
various aspects of reasoning with uncertainty. This survey focuses on a select
set of issues, trends, and principles that have emerged from these past works
and which I hope to describe in a unifying perspective and in greater depth
than a more general survey would permit. For more extensive surveys, the
reader is referred to [Thompson, 1985; Prade, 1983; Stephanou and Sage,
1987], and the works collected in [Kanal and Lemmer, 1986]. Expanded tech
nical treatments of die topics discussed in this survey can be found in [Pearl,
1988a].

The thmst of this survey is shown in Figure 1—it depicts my perception of
current approaches to evidential reasoning and is, in fact, a summary of this
discussion. I will spend the first part discussing the general needs and difficul
ties of managing uncertainty, and then talk about two diametrically opposed
approaches to the problem; one called extensionaU the other intensional. The
extensional approach, also known as production systems, mle-based systems,
or procedure-based systems, treats uncertainty as a generalized tmth value at
tached to formulas and, following the tradition of classical logic, computes the
uncertainty of any formula as a function of the uncertainties of its subformulas.
It is characterized by computationally attractive features, but is semantically
sloppy. In the intensional approach, also known as declarative or model-based
approach, uncertainty is attached to "states of affairs" or subsets of "possible
worlds." It is semantically clear but computationally clumsy. Naturally, there
have been attempts from both sides to rectify their respective deficiencies. I
will briefly discuss (Section 2) some movements from the extensional to the in
tensional, and will spend most of the time on movements with which you are
more familiar, namely, attempts to make intensional approaches computation
ally more attractive (Section 3).

In this vein, I will discuss the central role of belief networks repre
sentations, botfi tfie Bayesian type and die Dempster-Shafer type. Finally, I will
speculate (Section 4) on the middle ground toward which the two approaches
will hopefully converge in the next few years. This area, I believe, will involve
the issues of encoding context-dependent information, the formalization of rele
vance, and network decomposition techniques.

1 This terminology is due to [Perez and Jirousek, 1985].

Chapter 10 Evidential Reasoning Under Uncertainty 383

O U T L I N E

1. N E E D A N D D I F H C U L T Y O F M A N A G I N G U N C E R T A I N T Y

2 . E X T E N S I O N A L VS. I N T E N S I O N A L A P P R O A C H E S

CompuUüonally auractive
Semantically sloppy

Semantically clear
Computationally clumsy

3. R I G H T W A R D

D E V E L O P M E N T S

4. L E F T W A R D D E V E L 0 P M I : N T S

(Belief networks)

5. MEETING G R O U N D S ?

Figure 1 Outline of survey and relationships between extensional and
intensional approaches to uncertainty.

1.2 Why Bother with Uncertainty?
Reasoning about any realistic domain always requires that some simplifications
be made. By necessity, we leave many facts unknown, unsaid, or crudely sum
marized. For example, most mies used to encode knowledge and behavior have
exceptions that one cannot afford to enumerate, and the situations in which die
mies apply are usually ambiguously defined or hard to satisfy precisely in real
life. Reasoning with exceptions is like navigating through a minefield; most
steps are safe but some can be devastating. Given its location, each mine can
be avoided or diffused, but we must start our journey with a map the size of a
postcard, with no room to mark down the exact location of every mine or the
way diey are wired together. An alternative to the extremes of ignoring or
enumerating exceptions, is to summarize them, i.e., provide some warning
signs to indicate which areas of the minefield are more dangerous than others.
Such summarization is essential if we wish to find a reasonable compromise
between safety and speed of movement.

384 Pearl

1.3 Why Is It Hard?

One way of summarizing exceptions is to assign to propositions numerical
measures that combine according to uniform syntactic principles, similar to the
way truth values are combined in logic. This approach has been adopted by
first-generation expert systems, but often yields unpredictable and counterintui
tive results, examples of which will soon be demonstrated. As a matter of fact,
it is remarkable that this combination strategy went as far as it did, in view of
the fact that uncertainty measures stand for something totally different than
truth values. While truth values in logic characterize the formulas under discus
sion, uncertainty measures characterize exceptions, i.e., the invisible facts not
shown in the formulas. Accordingly, while the syntax of the formula is a per
fect guide for combining the visibles, it is close to useless when it comes to
combining the invisibles. For example, the machinery of Boolean algebra gives
us no clue as to how the exceptions to Λ -> C interact with those of Β -> C to
yield the exceptions to (A A B) C. These invisible exceptions may interact
in very intricate and clandestine ways, as a result of which we lose most of the
computationally attractive features of classical logic, e.g., modularity and mon-
otonicity.

Although in logic, too, formulas interact in intricate ways, the interactions
are visible. This enables us to calculate the impact of each new fact in stages,
by a process of derivation that resembles the propagation of a wave: We first
compute the impact of the new fact on a set of syntactically related sentences,
5i, store the results, then propagate the impact from S\ to another set of sen
tences, S2, and so on, without having to come back and redo Si. Unfortunately,
this computational scheme, so common to logical deduction, cannot be justified
under uncertainty unless one makes restrictive assumptions, that, in prob
abilistic terms, amount to conditional independence.

Another feature we lose in going from logic to shaded uncertainties is in-
crementality. What we would like to do when we have several items of evi
dence is to account for the impact of each of tiiem individually: Compute the
effect of the first item, then attend to the next, absorb its added impact, and so
on. This, too, can only be done after making restrictive assumptions of inde
pendence. Thus, it appears that uncertainty reasoning represents a hopeless case
of having to compute the impact of the entire set of past observations on the
entire set of sentences in one global step. This, of course, is an impossible task.

1.4 Three Approaches to Uncertainty

AI researchers tackling these problems can be classified into three schools,
which I will call: logicist, neo-calculist, and neo-probabilist. The logicist school
attempts to deal with uncertainty using nonnumerical techniques. The neo-cal
culist school uses numerical representations of uncertainty but, believing that

Chapter 10 Evidential Reasoning Under Uncertainty 385

probability calculus is inadequate for the task, invents entirely new calculi,
such as the Dempster-Shafer calculus, fuzzy logic, certainty factors, and so on.
Finally, the neo-probabilists remain within the traditional framework of prob
ability theory, while attempting to equip the theory with computational facili
ties needed to perform AI tasks. This taxonomy, however, is rather superficial
as it captures the notational rather than the semantical variations among the
various approaches. A more fundamental taxonomy can be drawn along the di
mensions I mentioned in the outiine, namely, the extensional vs. the intensional
approaches. For example, it is possible to use probabilities either extensionally
(e.g., in PROSPECTOR [Duda et al., 1976]) or intensionally (e.g., in M U N I N [An
dreassen et al., 1987]). Similarly, one can use the Dempster-Shafer notation
either extensionally (as in [Ginsberg, 1984]) or intensionally (as in [Lowrance
et al., 1986]).

1.5 Extensional vs. Intensional Approaches

1.5.1 The Role of Connectives Extensional systems, a typical repre
sentative of which is the certainty-factors calculus used in M Y C I N [Shortliffe,
1976], treat uncertainty as a generalized tmth value, i.e., the certainty of a
formula is defined to be a unique function of the certainties of its subformulas.
Thus, the connectives in the formula serve to select the appropriate weight-
combining function. For example, the certainty of the conjunction A A Β is
given by some function (e.g., the minimum, or the product) of the certainty
measures assigned to A and Β individually. By contrast, in intensional systems,
a typical representative of which is probability theory, certainty measures are
assigned to sets of worlds and the connectives, too, combine sets of worlds by
set theoretical operations. For example, die probability of P(A A B) is given by
the weight assigned to the intersection of two sets of worlds, those in which A
is tme and those in which Β is tme, but cannot be determined from the in
dividual probabilities P(A) and P(B),

1.5.2 What's In a rule? Rules, too, have different roles in these two sys
tems. The mies in extensional systems provide licenses for certain symbolic
activities. For example, the mle A -> B(m) may mean: If you see Λ, then you
have the license to update the certainty of J5 by a certain amount that is a func
tion of the mle strength m. The mies are inteφreted as a summary of past per
formance of the problem solver, describing the way an agent normally reacts to
problem situations or to items of evidence. In intensional systems, the mies de
note elastic constraints about the world. For example, in the Dempster-Shafer
formalism the mle A B(m) does not describe how an agent reacts to the
finding of Λ, but asserts that the set of worlds in which A and -i Β hold simul
taneously is rather unlikely and hence should be excluded with probability m.

386 Pearl

In the Bayesian formalism the rule A B(m) is inteφreted as a conditional
probability statement P(B \ A) = m asserting that among all worlds satisfying
Λ, those that also satisfy Β constitute a majority of proportion m. Although
there exists a vast difference between these two inteφretations (as will be
shown in Sections 3.2.2 and 4.1.1), they both represent summaries of factual or
empirical information; rather than summaries of past decisions.

2 Extensional Systems: Merits, Deficiencies, and
Remedies

2.1 Computational Merits

A good way to present the computational merits of extensional systems is to
examine the way rules are handled in the certainty-factors formalism [Short
liffe, 1976] and contrast it with that dictated by probability theory. Figure 2
depicts the combination functions that apply to series and parallel rules, from
which one can form a rule-network. The result is a modular procedure for de
termining the certainty factor of a conclusion, given the credibility of each rule,
and the certainty factor of the premises (i.e., the roots of the network). To
complete the calculus we also need to define combining functions for conjunc
tions and negation. However, ignoring mathematical details, the important
point to notice is that the same combination function applies uniformly to all
mies in the system, regardless of the topology of the network that surrounds
them.

Computationally speaking, this uniformity mirrors the modularity of infer
ence mies in classical logic. For example, the logical mle "If A dien has the
following procedural inteφretation: "If you see A anywhere in the knowledge
base, then, regardless of other things the knowledge base contains, and regard
less of how A was derived, you have the license to assert Β and add it to the
database." This combination of locality: "regardless of other things," and
detachment: "regardless of how it was derived," constitutes the principle of
modularity. The numerical parameters that decorate the combination functions
in Figure 2 do not alter this basic principle. The computational license provided
by the mle A B(m) reads: "If you see the certainty of A undergoing a
change 8A, then, regardless of other things the knowledge base contains, and
regardless of how 5A was triggered, you have an unqualified license to modify
the current certainty of Β by some amount, δβ, that may depend on m, 8A , and
on the current certainty of B,^

2 The observation that the rules refer to changes, rather than absolute values, was made by
[Horvitz and Heckerman, 1986].

Chapter 10 Evidential Reasoning Under Uncertainty 387

EMYCIN CERTAINTY MANAGEMENT

Rules:
• irAthenC(x)
• I fBthenCCy)
• IfCthenD(z)

ParaUel Combination
x + y - x y x ,y>0

CF(C) =\ (x + y) / (1 - min(x, y)) x, y different sign
x + y + xy x ,y<0

Series Combination

CF(D) = zmax(0,CF(C))

Conjunction, negation.

Figure 2 Functions combining certainty factors in EMYCIN—an extensional
system.

To appreciate the power of this inteφretation, let us compare it with that
given by an intensional formalism such as probability theory. Inteφreting rules
as conditional probability statements, F(B \ A) - does not provide us with a
license to do anything. Even if we are fortunate to find A true in the database,
we still cannot assert a thing about Β or P(B), because the meaning of the
statement is: If A is true, and A is the only thing that you know, then you can
attach to ^ a probability p . As soon as we have other facts, K, in the database,
the license to assert F{B) = ρ is automatically revoked, and we need to look up
F{B \ A, K) instead. Therefore, such a statement leaves one totally impotent,
unable to initiate any computational activity, unless one can verify that all the
other tilings in tiie knowledge base are irrelevant. It is for this reason that veri
fication of irrelevancy is so crucial in intensional systems.

In truth, such verifications are also crucial in extensional systems, except
that the computational convenience of the latter and their striking resemblance
to logical derivations tempts people to neglect the importance of the former.
We shall next demonstrate what semantic penalties are paid when relevance
considerations are ignored.

2.2 Semantic Deficiencies

The price tag attached to the computational advantages of extensional systems
is tfiat tiiey often yield incoherent updating, i.e., tiiey are subject to suφrises
and counter-intuitive conclusions. These surface in several ways; the most no
table are:

388 Pearl

1. difficulties in retracting conclusions,

2. improper treatment of correlated sources of evidence, and

3 . improper handling of bidirectional inferences.

We shall start with the latter.

2.2.1 The Role of Bidirectional Inferences The ability to use both pre
dictive and diagnostic information is an important component of plausible rea
soning, and improper handling of such information leads to rather strange re
sults. A common pattem of normal discourse is that of abductive reasoning: If
A implies B, then finding the tmth of Β makes A more credible [Polya, 1954].
This pattem involves reasoning both ways, from A to B, as well as from Β to
A. Moreover, it appears that people do not require two separate mies for per
forming these inferences; the first provides the license to invoke the second.
Extensional systems, on the other hand, require that the second mle be stated
explicitiy and, what is more disturbing, that the first mle be removed. Other
wise, a cycle is created where any slight evidence in favor of A would be
amplified via Β and fed back to A, quickly turning into a stronger confirmation
(of A and B), with no apparent basis. The prevailing practice in such systems
(e.g., MYCIN) is to cutoff cycles of tiiat sort, permitting only diagnostic reason
ing but no predictive inferences.

Cutting off its predictive component, prevents the system from exhibiting
another important pattem of plausible reasoning, one that we name "Explaining
away": If A implies B, and C implies B, and Β is tme, then finding that C is
tme makes A less credible. In other words, finding a second explanation to an
item of data, makes the first explanation less credible. Such interaction among
multiple causes appears in many applications. When a physician discovers evi
dence in favor of one disease, this reduces the credibility of other diseases, al
though the patient may as well be suffering from two or more disorders simul
taneously. A suspect who provides an altemative explanation for being at the
scene of the crime appears less likely to be guilty, even though the explanation
fumished does not preclude his having committed the crime.

To exhibit this sort of reasoning, a system must use bidirectional infer
ences—from evidence to hypothesis (or explanation), as well as from hypothe
sis to evidence. While it is sometimes possible to use bmte force (e.g., enumer
ating all exceptions) and restore "explaining away" without the dangers of
circular reasoning, we shall see that any system that succeeds in doing that
must compromise the principles of modularity, i.e., locality and detachment.
More precisely, every system that updates beliefs modularly at the natural mle
level and that treats all mies equally, is bound to behave contrarily in prevail
ing pattems of plausible reasoning.

Chapter 10 Evidential Reasoning Under Uncertainty 389

2.2.2 The Limits of Modularity The principle of locality attains its ulti
mate realization in die inference mies of monotonic logic. The mle "If Ρ then
Ö" means diat if Ρ is found tme, we can assert Q with no further analysis,
even if the database contains some other knowledge K. In plausible reasoning,
the luxury of ignoring the rest of the database can no longer be maintained. For
example, suppose we have a mle

R\ = "If the ground is wet, then assume it rained (with certainty c i j . "

Finding die ground wet does not permit us to raise the certainty of "rain"
because the knowledge base might contain strange items such SLS Κ = "the
sprinkler was on last night." These strange items, called defeaters, are some
times easy to discover (as in the case of K' = "the neighbor's grass is dry,"
which directly opposes "rain"), but sometimes hide cleverly behind syntactical
innocence. The neutral fact Κ = "sprinkler on" neither supports nor opposes
"rain," yet Κ manages to undercut the mle This undercutting cannot be im
plemented in an extensional system; once Ri is invoked, the increase in the
certainty of "rain" will never be retracted, because, normally, no mle exists
that directiy connects "sprinkler on" to "rain." Forcing such a connection by
proclaiming "sprinkler on" as an explicit exception to again defeats the
spirit of modularity; it forces die mle-author to pack together items of informa
tion that are only remotely related to each other, and, moreover, it loads the
mies with an unmanageably large number of exceptions.

Violation of detachment can also be demonstrated in this example. In de
ductive logic, if Κ implies Ρ and Ρ implies β , then finding Κ tme permits us to
deduce Q by simple chaining; a derived proposition (P) can trigger a mle with
the same vigor as a direcdy observed proposition. However, chaining does not
apply in plausible reasoning. The system may contain two innocent looking
mies: "If wet-ground then rain" and "If sprinkler-on then wet-ground"; you
find that the sprinkler is on and, obviously, you do not want to conclude that it
rained. On die contrary, finding that the sprinkler is on only takes away support
from "rain."

As another example, consider the relationships shown in Figure 3. Nor
mally an alarm sound alerts us to the possibility of a burglary. If somebody
calls you at the office and tells you that your alarm system is on, you would
surely msh home, even diough there could be other causes for the alarm. If you
further hear a radio announcement that there was an earthquake nearby, and if
the last false alarm you recall was triggered by an earthquake, then your cer
tainty of a burglary would diminish. Again, diis requires going both ways,
from effect to cause (radio -> earthquake), cause to effect (eardiquake -»
alarm), and then back from effect to cause (alarm burglary). However, no
tice what pattem of reasoning results from such a chain: We have a mle "If A
(alarm) then Β (burglary)," you listen to the radio, A becomes more credible.

390 Pearl

and the conclusion Β becomes less credible. Overall, we have: "If A Β and
A becomes more credible, then Β becomes less credible." This behavior is
clearly contrary to everything we expect from local belief updating.

In conclusion, we see that the difficulties that plague classical logic do not
stem from its nonnumeric, bi-value character. Equally troublesome difficulties
emerge when truth and certainty are measured on a gray scale, whether by a
point estimate, by interval bounds, or by linguistic quantifiers such as "likely"
or "credible." There seems to be a basic struggle between procedural modular
ity and semantic coherence, independent of the notational system used.

2.2.3 Correlated Evidence Extensional systems, greedily exploiting die li
censes provided by locality and detachment, respond only to the magnitudes of
the weights but not to their origins. As a result they will produce the same con
clusions regardless of whether the weights originate from identical or inde
pendent sources of information. An example due to Henrion [1986b] helps de
monstrate die problems encountered by such local strategy. Figure 4 shows
how multiple, independent sources of evidence would normally increase the
confirmation of a hypothesis (e.g., "thousands dead"), yet, upon discovering
the common origin of these sources, the confirmation should be reduced. Ex
tensional systems are too local to recognize the common origin of the informa
tion, and will update the confirmation of the hypothesis as if supported by
three independent sources.

Phone
caU

A -^B
A more credible

Β less credible

Figure 3 Making the antecedent of a rule more credible can cause the
consequent to become less credible.

Chapter 10 Evidential Reasoning Under Uncertainty 391

RADIO

REPORT

THOUSANDS

DEAD

T V
REPORT

PHONE

INTERVIEW

NEWSPAPER

REPORT

Figure 4 The Chernobyl disaster example (after Henrion) shows why rules
cannot combine locally.

2,2A Attempted Remedies and neir LiiTiitations The developers of
extensional systems have proposed and implemented powerful techniques to
remedy some of the semantic deficiencies discussed in the preceding subsec
tions. Most have focused on the issue of correlated evidence and fall into two
approaches:

1. Bounds Propagation—Since most correlations are unknown, certainty
measures are combined under two extreme assumptions; one, that the com
ponents are highly positively correlated, the other that they are negatively
correlated. This gives rise to upper and lower bounds on the combined cer
tainty, which enter as inputs to subsequent computations and produce new
bounds on the certainty of the conclusions. This approach has been imple
mented in INFERNO [Quinlan, 1983] and represents a local approximation to
Nilsson*s probabilistic logic [Nilsson, 1986].

2. User-Specified Combination Functions—Bonissone et al. [1987], in a sys
tem named R U M , has permitted the rule-author to specify the combination func
tion that should apply to the rule's components. For example, if a, b, c stand
for the weights assigned to propositions A , C respectively, in the rule

AAB-^C

392 Pearl

the user can specify which one of the following three combination functions
should be used:

Γι(α, fc) = max(0, α - I - 1)
Γ2(α, b) = ab
Τ3{α, b) = min(a, b)

These functions (called Τ norms) represent the probabilistic combinations
obtained under three extreme cases of correlation between A and B\ highly
negative, zero, and highly positive.

Cohen et al. [1987b], have proposed a more refined scheme, where, for
any pair of values, P(A) and P(B), the user is permitted to specify the value of
the resulting probability, P(C),

The difficulties with diese correlation-handling remedies are several. First,
the bounds produced by systems such as INFERNO are too wide. For example, if
we are given P{A) = ρ and P(B \ A) = q then the bounds we obtain for P(B)
are

pq<P(B)<\-p{\-q)

that, for small p , approach the unit interval [0, 1]. Second, the user-specified
approaches are plagued by the problem that pair-wise correlations are generally
not sufficient to handle the intricate dependencies that may occur among rules;
higher-order dependencies are often necessary [Bundy, 1985]. Finally, even if
one succeeds in specifying higher-order dependencies, a much more fundamen
tal limitation exists: dependencies are dynamic relationships, that are created
and destroyed as new evidence obtains. For example, the dependence between
a child's shoe size and reading ability is destroyed once we find out the child's
age. A dependency between the propositions "it rained last night" and "the
sprinkler was on" is created once we find out that the ground is wet. Thus,
whatever correlations and/or combination functions are specified at the knowl
edge-building phase, these may quickly become obsolete once the program is
put into use.

Heckerman [1986a, 1986b] delineated precisely the range of applicability
of extensional systems of the MYCIN type. He proved that any system that up
dates certainty weights in a modular and consistent fashion can be given a
probabilistic inteφretation in which the certainty update of a proposition A is
some function of the likelihood ratio

P(Evidence | A)
Κ — P(Evidence I A).

Chapter 10 Evidential Reasoning Under Uncertainty 393

In MYCIN, for example, the certainty update CF can be inteφreted to stand
for

λ + 1

Once we have a probabilistic inteφretation, it is easy to determine the set of
stmctures within which the update procedure will be semantically valid. It
turns out that a system of such mies will produce coherent updates if and only
if the mies form a directed tree, i.e., no two mies may diverge from the same
premise. This limitation explains why strange results were obtained in the bur
glary example of Figure 3. There the alarm event points to two possible ex
planations, "Burglary" and "Earthquake," giving rise to two evidential mies
diverging from the premise "Alarm," in violation of the tree restriction.

Hajek [1985] and Hajek and Valdes [1987] have developed an algebraic
theory that characterizes an even wider range of the extensional systems and
combining functions, including, for example, those based on Dempster-Shafer
intervals. The unifying properties common to all such systems is that they form
an ordered Abelian group. Again, the knowledge base must form a tree in
order that no evidence is double counted via altemative paths of reasoning.

2.3 Conclusions

Handling uncertainties is a rather tricky enteφrise. It requires a very fine
balance between our desire to use the computational permissiveness of exten
sional systems and our ability to refrain from committing semantical sins. It is
like crossing a minefield with an untrained wild horse. You can make believe
that your horse is smart and, being decorated with certainty weights, will keep
you out of trouble. However, the danger is real, and highly skilled knowledge
engineers are needed to prevent it from tuming into a disaster. The odier ex
treme is to try and work your way by foot with a semantically safe system,
such as probability theory, but then you can hardly move—every step seems to
require that you examine the entire field, afresh. We shall now examine means
for making this movement brisker.

3 Intensional Systems and Network
Representations

In intensional systems, the syntax consists of declarative statements and, hence,
mirrors world knowledge fairly nicely. For example, conditional probability

394 Pearl

statements are both empirically testable and conceptually meaningful parame
ters. Additionally, the problems of handling bidirectional inferences and corre
lated evidence do not arise; these are obtained as built-in features of one
globally coherent model. However, since the syntax does not point to any use
ful procedures, we need to constmct special mechanisms that convert the decla
rative input into query-answering routines.

A solution, or at least part of a solution, is offered by techniques based on
belief networks. The idea is to make intensional systems operational by making
relevance relationships explicit, thus curing the impotence of declarative state
ments such as P(B I A) = p . As we mentioned earlier, the reason one cannot act
on the basis of such declarations is that one must first make sure that other
tilings contained in die knowledge base are irrelevant to B, hence can be ig
nored. The trick is, therefore, to encode knowledge in such a way that the ig
norable be recognizable or, better yet, diat die nonignorable be quickly iden
tified and readily accessible. Belief networks encode relevancies as neighboring
nodes in a graph, tiius ensuring that by consulting the neighborhood you have
taken everything into account and gain a license to act; what you don't see lo
cally won't matter any way. In summary, what network representations offer is
a dynamically updated list of all currentiy valid permissions to ignore, and per
missions to ignore amount to permissions to act.

Network representations are not foreign to AI systems. Most reasoning
systems encode relevancies using intricate systems of pointers, i.e., networks of
indices that group facts into stmctures, such as frames, causal chains, and in
heritance hierarchies. These stmctures, while shunned by pure logicians, have
proven to be indispensable in practice, because they make the information re
quired to perform an inference task reside "in the vicinity" of the propositions
involved in the task. Moreover, many pattems of human reasoning can be ex
plained only by people's tendency to seriously conform to the pathways laid
out by such networks.

The special feature of the networks discussed in this survey is that they
have clear semantics. In other words, they are not auxiliary devices, contrived
to make reasoning more efficient but, rather, are an integral part of the seman
tics of the knowledge base and, to a certain degree, can even be derived from
the knowledge base.

I will first discuss the nature of these networks in two uncertainty formal
isms: probability theory, where they are called Bayesian networks, causal nets,
or influence diagrams, and the Dempster-Shafer theory, where they are referred
to as galleries [Lowrance et al., 1986], qualitative Markov networks [Shafer et
al., 1987], or constraint networks [Montanari, 1974]. In Section 4.1 I will
briefly discuss the theory of graphoids, which provides an axiomatic charac
terization of die notion of relevance and its relation to network representations.

Chapter 10 Evidential Reasoning Under Uncertainty 395

3.1 Evidential Reasoning with Bayesian Networks

3.1.1 Network Construction and the Role of Causality Defined for
mally, Bayesian networks are directed acyclic graphs in which each node rep
resents a random variable, or uncertain quantity, that can take on two or more
possible values. The arcs signify the existence of direct influences between the
linked variables, and the strengths of diese influences are quantified by forward
conditional probabilities. Informally, the structure of a Bayesian network can
be determined by a simple procedure: we assign a vertex to each variable in
the domain and draw arrows toward each vertex Xi from a select set 5i of ver
tices perceived to be "direct causes" of Xi. The strength of these direct in
fluences is then quantified by a link matrix P(xi I ^i), that represents (judgmen
tal estimates of) the conditional probabilities of the event Xi = Xu given any
value combination si of tiie parent set 5i. The ensemble of these local estimates
specifies a complete and consistent global model (i.e., a joint distribution func
tion), on the basis of which all probabilistic queries can be answered. The
overall joint distribution function on the variables Xi,. . ., Xn, is given by the
product:

P(XUX2,- . ., JCn) = Π P(ari I 5i)
i=l

So, for example, the joint distribution corresponding to the network of Figure 5
is given by:

P(h, e, r, 5, w, g) = P(h)P(e)P(r I e)P(s I h)P(d I s)P(w I s)P(g I s)

where lowercase symbols stand for any particular value (i.e., true or false) of
their corresponding variables.

To pacify the mathematicians among us, note that, conversely, the struc
ture of the network can be determined by the joint distribution function, if such
is ever available. Once we agree on a total order (e.g., temporal precedence)
for the variables involved, the set of parents Si of variable Xi is chosen from its
predecessors by the criterion that

P(xi\si) = P(xi\xi,. . .,jci-i)

In other words, knowing the parents renders all other predecessors of Xi ir
relevant relative to our belief in Xi. In principle, any choice Si satisfying this
criterion will define an adequate network, but, of course, choosing minimal sets
of parents will be more efficient, and ordering the variable chronologically
would probably result in sparser networks than otherwise.

396 Pearl

BURGLARY? ^ ^ ^ ^

EARTHQUAKE? (£

RADIO?

WILL CALL?
NEIGHBOR'S

G J TESTIMONY

PHONE
CALL

Figure 5 The Bayesian network associated with the burglary alarm story.

Figure 5 depicts the burglary alarm story of Figure 3, with two added vari
ables D and G. D describes the event that your daughter, having been suφrised
by the alarm, will try to reach you at the office. G stands for the testimony of
another neighbor relative to the alarm sound S. The transition from Figure 3 to
Figure 5 demonstrates the incremental nature of the process of constmcting the
knowledge base. Adding the facts about D only requires that one identifies the
possible causes of D (in our case, S) and estimates two parameters:

P(D I S) = How likely is it that your daughter will try to call, given
that she hears the alarm sound, and

P(D I -I = How likely is it for her to call, assuming
there is no alarm.

The addition of the link S -> G requires similar parameters, except that, if the
testimony G is available (even if it is nonpropositional, say, a lengthy conver
sation [Pearl, 1987b]), it can be sunmiarized by a single parameter; the likeli
hood ratio:

λ =
P(G\S)

P(G\-yS)

The advantage of a network representation is that it allows people to
directly express the fundamental qualitative relationship of "direct depend-

Chapter 10 Evidential Reasoning Under Uncertainty 397

ency"; die network dien displays a consistent set of many additional direct and
indirect dependencies and preserves them as a stable part of the model, inde
pendent of the numerical estimates. For example, Figure 5 displays the fact that
the radio report (R) would not change the prospects of the daughter's phone
call (D), once we verify the actual state of the alarm system (S), This fact is
conveyed via the network topology—^showing S intercepting the path between
R and D—despite the fact that it was not considered expliciüy during the con
struction of the network. It can be mferred visually from die linkages used to
put the network together and, moreover, will remain part of the model regard
less of the numerical estimates that are assigned to the links.

The directionality of the arrows is essential for displaying nontransitive de
pendencies, e.g., S depends on both Ε and Η and, yet, Ε and Η are inde
pendent; they become dependent only if 5 or any of its descendants is known.
Had the arcs been stripped of their arrows, some of these relationships would
be misrepresented. This role of identifying what information is or is not rele
vant in any given state of knowledge is an important feature of causal sche
mata. In this role, causality serves as a lubricant that modularizes experience.
By displaying a high number of legitimate irrelevancies in die domain, causal
schemata minimize the number of relationships that need to be considered
while the model is constructed. Thus, causality also operationalizes our ex
perience, because modularity authorizes a high number of licenses to perform
local inferences. The currendy prevailing practice in rule-based expert systems,
of encoding knowledge by evidential rules (i.e., if effect then cause), is defi
cient in diis respect. It normally fails to account for intercausal dependencies
(e.g., an earthquake explaining away the alarm sound), and if one ventures to
encode these interactions by direct rules, legitimate independencies are no
longer represented, such as between earthquakes and burglaries (see [Shachter
and Heckerman, 1988]).

There is a long and rich tradition of Bayesian belief networks, starting in
1921 widi a geneticist named Wright. He developed a method called path
analysis [Wright, 1934], that later on, became an established representation of
causal models in economics [Wold, 1964], sociology [Kenny, 1979; Blalock,
1971] and psychology [Duncan, 1975]. Influence diagrams represent another
component in this tradition [Howard and Matheson, 1981; Shachter, 1988].
These were developed for decision analysis and contain both event nodes and
action nodes. Recursive models is the name given to such networks by statisti
cians seeking meaningful and effective decompositions of contingency tables
[Lauritzen, 1982; Wermutíi and Lauritzen, 1983; Kiiveri et al., 1984].

The next subsection illustrates the role of networks as a representation
capable of converting declarative knowledge to answer-producing procedures.
The illustration will focus on Bayesian networks, but similar techniques have
been developed for constraint networks in the Dempster-Shafer formalism
[Shafer et al., 1987; Kong, 1986].

398 Pearl

3Λ.2 Belief Propagation by Message Passing Since a fully specified
Bayesian network constitutes a complete probabilistic model of all variables in
the domain, it contains the information necessary to answer all probabilistic
queries about these variables. Such queries include, for example, "what are the
chances of a burglary, given that the radio announced an earthquake and the
daughter did not call?" or "what is the most likely explanation for your
daughter's not having called?" Additionally, due to the relevance information
conveyed by their links, belief networks can also be used as inference engines,
i.e., the nodes can be regarded as processors and the links as communication
channels that provide the (storage locations of the) inputs and outputs as well
as the timing information necessary for sequencing the computational steps. In
other words, many of the computations can be conducted by a local and paral
lel message-passing process, with minimum extemal supervision, similar to the
derivational steps taken by extensional systems.

The advantages of this distributed, message-passing paradigm is that it
provides a natural mechanism for exploiting the independencies embodied in
sparsely constrained systems and translating them, by subtask decomposition,
into substantial reduction in complexity. Additionally, distributed propagation
is inherentiy "transparent"; namely, the intermediate steps, by virtue of their re
flecting interactions only among semantically related variables, are concep
tually meaningful. This facilitates the use of natural, object-oriented program
ming tools and helps establish confidence in the final result.

Distributed schemes for belief updating and belief revision are described
in [Pearl, 1986, 1987a]. Belief updating aims at assigning each variable a post
erior probability that correctiy accounts for the evidence at hand. The aim of
belief revision is to identify a composite set of propositions (one from each
variable) that "best" explains the evidence at hand, i.e., attains the highest post
erior probability. These involve the updating and transmittal of two types of
messages:

λ—the strength of evidential support that a variable obtains from its de
scendants, and

π—the strength of causal support that a variable obtains from its nonde-
scendants.

This separation into causal and evidential components permits the execution of
bidirectional inferences without the dangers of circular reasoning (see Section
2.2.1).

Figure 6 shows six successive stages of belief propagation through a
simple binary tree, assuming that all activities are triggered by changes in the
parameters of neighboring processors. Initially (Figure 6a), the tree is in equi
librium, representing the state of belief due to all prior information. As soon as
two nodes are activated by new information (Figure 6b), white tokens (repre
senting λ) are placed on tfieir links, directed toward tiieir parents. Activated by

Chapter 10 Evidential Reasoning Under Uncertainty 399

these tokens, the parents compute their degree of belief, and manufacture the
appropriate number of tokens for their neighbors (Figure 6c): white tokens for
their parents and black tokens (representing π) for the children. (The links
through which the absorbed tokens have entered do not receive new tokens,
thus reflecting the feature that a π-message is not affected by a λ-message
crossing the same link). The root node now receives two white tokens, one
from each of its descendants. That triggers the production of two black tokens
for top-down delivery (Figure 6d). The process continues in diis fashion until,
after six cycles, all tokens are absorbed, and die network reaches a new equi
librium, where each variable is assigned a probability measure reflecting the
new information.

The updating scheme possesses the following properties:

1. New information diffuses through the network in a single pass, i.e.,
equilibrium is reached in time proportional to the diameter of the network.

2. The primitive processors are simple, repetitive, and they require no
working memory except that used in matrix multiplication.

3. The local computations and the final belief distribution are entirely
independent of the control mechanism that activates the individual
operations. They can be activated by either data-driven or goal-driven
(e.g., requests for evidence) control strategies, by a clock, or at random.

(a) (b) (c)

(0 (e) (d)

FIguie 6 The impact of new data propagates through a tree by a
message-passing process.

400 Pearl

As soon as a node posts a token for its parent, it is ready to receive new
data, and when this occurs, a new token is posted on the link, replacing the old
one. In this fashion the network can track a changing environment and provide
coherent inteφretation of signals emanating simultaneously from multiple
sources. Having an efficient mechanism of updating and/or revising beliefs also
facilitates various control functions such as, for example, selecting the next
best test in diagnosis. This can be done by the method of "hypothesizing"; we
imagine what impact the outcome of various tests would have on some target
hypothesis, and select the test with the highest impact.

The objective of updating beliefs coherendy by purely local computations
can be fully realized if the network is singly-connected, i.e., if there is only one
undirected path between any pair of nodes. These include trees, where each
node has a single parent, as well as networks with multi-parent nodes, repre
senting events with several causal factors, as in Figure 5.

Here the π message transmitted from "Earthquake" to "Alarm" interacts
with the λ message that "Alarm" receives from "Phone call" to produce a re
duction of the evidential support (λ) the "Alarm" lends to "Burglary." This dis
tinction between causal (π) and evidential (λ) supports identifies the origin of
beliefs and permits the system to treat multiple causes differendy than multiple
symptoms; the former compete with each other, the latter support each other. It
is due to this distinction that the system obtains coherent updating via modular
computations, dispensing with the need to specify direct inhibitory connections
from one cause to another [Pearl, 1988b].

The profile of π and λ messages that load the network at any given time
also provides the information needed for generating explanations, similar to the
justification network in truth-maintenance systems. Tracing the most influential
π and λ messages back to their origins yields a skeletal subgraph from which
verbal explanations can be structured, clearly reflecting the distinction between
causal and evidential supports.

3.1.3 Coping with Loops When loops are present, as in Figure 3, the net
work is no longer singly-connected, and local propagation schemes invariably
run into trouble. Several methods have been developed that extend the propa
gation method to networks containing loops while still maintaining global co
herence relative to probability theory. The most notable are conditioning, clus
tering, and stochastic simulation.

Before describing each of these methods, one should not overlook a simple
but important approximation method called "ignore the loops," namely, propa
gate the π and λ messages according to the equations developed for a singly-
connected network. If loops are present, this strategy will cause the messages
to circulate indefinitely until their magnitude becomes insignificandy small
(this will always be the case because the conditional probabilities on the links

Chapter 10 Evidential Reasoning Under Uncertainty 401

tend to attenuate the messages). If the loops are long, ignoring them is not
going to introduce a significant error because the degree of inter-message cor
relation, created by multiple paths, diminishes widi die lengths of such paths.
At any rate, the results obtained after relaxation should be closer to the
theoretical results than those obtained by extensional updating strategies, be
cause the latter totally ignore the distinction between causal and evidential sup
ports, while the former account for it in an approximate way.

The method of conditioning involves identifying a set of variables (called
cycle cutset) that, if known with certainty, would render the network singly-
connected, instantiate these variables to some values, conduct the propagation
on the rest of the network, repeat for all possible instantiations, then combine
the results by taking their weighted average. In Figure 3, for example, we
would mn two propagation exercises, one under the assumption "Thousands
dead" = tme, die other under "Thousands dead" = false. The evidential sup
ports obtained under these two assumptions would then be combined to yield
the overall, unconditioned results.

The effectiveness of conditioning depends heavily on the topological prop
erties of the network. In general, the number of instantiations required is 2^,
where c is the size of the cycle cutset chosen for conditioning. Since each
propagation phase takes only time linear with the number of variables in the
system (n),iht overall complexity is exponential with the size of the cycle cut
set that we can identify. If the network is sparse, topological considerations can
be used to find a small cycle cutset and render the inteφretation task tractable.

A second method of sidestepping the loop problem is that of stochastic
simulation [Henrion, 1986a]. It amounts to generating a random population of
scenarios agreeing with the evidence, then answering queries on the basis of
this population. This is accomplished distributedly by having each processor
inspect the current state of its neighbors, compute the belief distribution of its
host variable, then randomly select one value from die computed distribution,
to be inspected by its neighbors in their tum [Pearl, 1987c]. Probabilities are
calculated by counting the frequency at which a proposition obtains the value
true. The advantages of tiiis method are that it is purely distributed, and that
the rate of convergence does not depend on the topology of die network. Un-
formnately, the rate of convergence deteriorates when the links convey logical
constraints, i.e., extreme probabilities [Chin and Cooper, 1987].

The third technique, and currentiy the most promising, is that of cluster
ing. It involves forming local groups of variables in such a way that the to
pology of the resulting network (treating each group as a single compound
node), is singly-connected. For example, grouping the three intermediate nodes
in Figure 3 into one compound variable will result in a three-node causal chain.
Once a clustered configuration is found, the propagation method described in
the preceding subsection is applicable with a processor assigned to each
cluster. The complexity of this scheme is exponential with the size of the

402 Pearl

largest cluster found, because the processor assigned to manage that cluster
must handle that many value combinations (e.g., eight in Figure 3).

A popular method of selecting clusters is to form join trees, i.e., trees
made up of overlapping clusters in such a way that all links are contained
within the clusters. The network of Figure 3, for example, will be decomposed
into two overlapping clusters, one comprising die top four nodes, die odier die
bottom four nodes. The merit of join tree representations have been recognized
by statisticians for over 25 years [e.g., Vorobev, 1962; Goodman, 1970; Haber-
man, 1974]. Their applications to databases are discussed in [Beeri et al., 1983
and Malvestuto, 1986] and they also have been suggested for Bayes inferences
[Lemmer, 1983] and constraint processing [Pechter and Pearl, 1987b]. A sys
tematic method of finding such clusters and a thorough analysis of the updating
scheme are described in [Lauritzen and Spiegelhalter, 1988]. The method in
volves triangularizing the network [Tarjan and Yannakakis, 1984], identifying
the maximal cliques of die triangularized (or chordal) graph, organizing the
cliques in a tree stmcture, and assigning a processor to each clique. Beliefs can
dien propagate by the message-passing mechanism described in Section 3.1.2.

The attractive feature of clustering schemes is that, once the clusters are
formed and their tree organization established, the resulting stmcture offers an
effective database that can be amortized over many evidential reasoning tasks.
A large variety of queries could be answered swiftly by unsupervised, local
and parallel processes. Therefore, if one takes seriously the paradigm that un
supervised parallelism is one capability that human leaming aspires to achieve
[Pearl, 1986], then it is quite reasonable to speculate that the clusters found for
join tree representations form die nuclei around which higher cognitive con
cepts normally evolve.

It is important to note that the difficulties associated with the presence of
loops are not unique to probabilistic formulations but are inherent to any prob
lem where globally defined solutions are produced by local computations, be it
probabilistic, deterministic, logical, numerical, or hybrids thereof. Identical
computational issues arise in Dempster-Shafer's formalism [Kong, 1986], con
straint-satisfaction problems [Dechter and Pearl, 1987a], tmth-maintenance sys
tems [Doyle, 1979], diagnostic reasoning [Geffner and Pearl, 1987a], relational
databases [Beeri et al., 1983], matrix inversion [Tarjan, 1976], and network re
liability [Amborg et al., 1987]. The importance of network representation,
though, is diat it uncovers the core of diese difficulties, and provides a unifying
abstraction that encourages the exchange of solution strategies across domains.

3.2 Dempster-Shafer Theory and Constraint Networks
Pure Bayesian theory requires die specification of a complete probabilistic
model before reasoning can commence, namely, determining for each variable
X die conditional probabilities diat govem die values of X, given dieir causal

Chapter 10 Evidential Reasoning Under Uncertainty 403

factors. When a full specification is not available, Bayes practitioners have
devised approximate mediods of completing the model. For example, if we are
given the strength of each individual cause but not the combined impact of
several causes, we assume that diey combine disjunctively, and that all excep
tions are independent [Peng and Reggia, 1986; Pearl, 1987a].

An alternative mediod of handling partially specified models is provided
by the Dempster-Shafer (D-S) dieory [Shafer, 1976]. Radier tiian completing
the model, the D-S theory sidesteps die missing specifications, and is resigned
instead to less ambitious inference tasks: computing probabilities of provability
rather tiian probabilities of trutiis. The partially specified model is idealized by
qualitative relationships of compatibility constraints, and these qualitative rela
tionships are then used as a logic for assembling proofs of various proposi
tions. Items of evidence are modeled as probabilistic modifications of the avail
able constraints, and die support they lend to a given hypotiiesis Η is defined
as the probability that a proof of Η can be assembled.

The current popularity of the D-S theory stems both from its readiness to
admit partial models and its compatibility with the classical, proof-based style
of logical inference. As such, the approach matches the syntax of deductive
databases and logic-programming languages but may inherit many of the prob
lems associated with monotonic logic, some of which will be discussed in Sec
tion 4.1.1.

3.2.1 Belief Functions as Probabilities of Provability I will introduce
the D-S theory from a rather unconventional perspective, one that I hope will
be more meaningful to AI researchers, especially tiiose versed in constraint
processing, truth-maintenance systems and logical programming. Our starting
point will be a static network of logical constraints that represents generic
knowledge about tiie world. Each constraint is a declarative statement on a
group of variables specifying what is and what is not permitted to hold in the
domain. For example die rule A ^ Β forbids the simultaneous assignment of
true to A and false to B, A collection of such constraints yields a (possibly
empty) set of extensions or solutions, i.e., assignments of values to all variables
that simultaneously satisfy all constraints.

In addition to this static network, we also have items of evidence that pro
vide direct but partial support to a select set of propositions in the system. Each
such item of evidence is modeled as a randomly fluctuating constraint, that, for
a certain fraction of the time m, imposes the value true on the propositions sup
ported by tiiat item. The larger tiie m the stronger the support. To compute tiie
overall support that several items of evidence impart to a given proposition,
say A, we subject the static network to the corresponding set of externally im
posed, randomly fluctuating constraints, assume that they act independently of
each other, and ask for the probability (or fraction of the time) that A can be
proven true. This probability defmes tiie belief function Bel(A), and similarly, a

404 Pearl

plausibility function Pl(A) = 7 - Bel(-\A) is defined by die probability that A
is not proven false.

This scheme is illustrated metaphorically in Figure 7. It shows a static net
work of variables X, F, Z, V. . . (the nodes) interacting via local constraints (the
arcs), subject to the influence of two switches that impose additional time vary
ing constraints on various regions of the network. The switches represent two
independent items of evidence, each characterized by die fraction of time spent
in each position.

To illustrate the analysis of belief functions, let us assume that the static
network represents the familiar graph-coloring problem: Each node may take
on one of three possible colors, 1, 2, or 3, but no two adjacent nodes may take
on identical colors. The position of the switches represents additional con
straints e.g., CXY: either ΧοτΥ must contain the color 1, or Cz: Ζ cannot be as
signed the color 2, and so on. The relative time that a switch spends enforcing
each of the constraints is indicated by the weight measures m\(Cx), mi(CxY),
m2(Cz), and so on. Our objective is to compute Bel(A) and Pl(A), where A
stands for the proposition V = 1, namely, variable V is assigned the color 1.

Figure 8 represents typical sets of solutions to the coloring problem under
different combinations of the switches (the actual values are fictitious).

Evidence #1

Network of
Categorical

Consiraints

Evidence #2

[Be/(V = 1) ,P/ (V = 1)1

Figure 7 Multiple evidence modeled as random switches, imposing additional
constraints on a static networî of compatibility relations.

Chapter 10 Evidential Reasoning Under Uncertainty 405

Type-1 positions
Time = α

Type-2 positions
Time = β

Type-3 positions
Time = γ

VXY
123
1 12
1 3 2

121
23 1
2 2 3

3 2 1
121

ί 2 1 3
23 1
3 3 3

V = 1 in all solutions

V = 1 and V 1 are compatible
with each position

^ 1 in all solutions

Type-4 positions
Time = δ Nil no solution

(a)

Bel (A)

α + β + γ

PliA)

α + β + γ

(b)

Figure 8 (a) Four types of constraints in the graph coloring problem and (b)
the resulting belief interval for the proposition A.V^I.

Each row represents one extension (or solution) where the entries indicate the
value assigned to the variables (colunms). The first set of solutions is charac
terized by having the value 1 assigned to V in each and every row. If the sys
tem spends a fraction α of the time in such combinations of switches, we say
that P(e 1= A) = a, namely, the proposition A:"V = 1" can be proven true with
probability oc, given the evidence e. A type-2 position is characterized by the
column of V containing Is as well as alternative values, e.g., 2 or 3. Each such

406 Pearl

position (or position combination) is compatible with both A and - i A. Simi
larly, a type-3 position permits only extensions that exclude Κ = 1, while a
type-4 position represents conflict situations; there exists no extension con
sistent with all the constraints. Bel(A) and Pl(A) are computed from the time
spent in each type of constraint combination:

Bel(A) = " a+ β + γ

α + β
Pl(A) = \-Bel(V^ υ = 1 - α + β + γ α+β + γ

These are illustrated as a belief interval in Figure 7(b).
The assumption of evidence independence, coupled with the normalization

mle above, leads to an evidence pooling procedure known as Dempster's Rule
of Combination. For any combination of the evidential constraints, we need to
examine the set of extensions permitted by that combination and decide
whether the proposition A is entailed by the set, i.e., if every extension contains
A and none contain - i A. The total time that a system spends under constraint
combinations that compel Λ, divided by the total time spent in no-conflict com
binations, yields Bel(A).

The preceding analysis can be rather complex. The graph-coloring prob
lem, even with only three colors, is known to be NP complete. Moreover, if
each item of evidence is modeled by a 2-position switch, and if we have η such
switches, then a bmte force analysis of Bel(A) would require solving 2^ graph-
coloring problems. Listing the solutions obtained under every switch combina
tion and identifying those combinations yielding e \= A seems hopeless. For
tunately, two factors help alleviate these difficulties: the sequential namre of
Dempster's mle and the ability to exploit certain topological properties of
sparse constraint networks. The former permits us to combine evidence in
crementally if we store the set of distinct solution sets produced in the past.
The latter revolves around the idea of decomposing the network into a tree of
clusters, where solutions can be obtained in linear time [Dechter and Pearl,
1987b]. The use of tree decomposition techniques for belief function computa
tions are reported in [Shafer et al., 1987] and [Kong, 1986].

3.2.2 Comparing Bayes and Dempster-Shafer Formalisms We see
tiiat die D-S tiieory differs from probability dieory in several aspects. First, it
accepts an incomplete probabilistic model where some parameters (e.g., the
prior or conditional probabilities) are missing. Second, the probabilistic infor
mation diat is available, like the strengdi of evidence, is not interpreted as
likelihood ratios but rather as random epiphenomena that impose tmtii values

Chapter 10 Evidential Reasoning Under Uncertainty 407

on various propositions for a certain fraction of the time. This model permits a
proposition and its negation to be simultaneously compatible (with the evi
dence) for a certain portion of the time, and this may permit the sum of their
beliefs to be smaller than unity. Finally, due to the incompleteness of the
model, the D-S tiieory does not pretend to provide full answers to probabilistic
queries, but rather, is resigned to providing partial answers. It estimates how
close the evidence is to forcing the truth of the hypothesis, instead of estimat
ing how close die hypothesis is to being true.

Phrased another way, the D-S theory computes the probability that some
set of hypotheses suggested by the evidence would materialize from which the
truth of A can be derived out of logical necessity. Thus, instead of the condi
tional probability P(A I e), the D-S theory computes the probability of the logi
cal entailment e 1= Λ. The entailment e \= A is not a proposition in the ordinary
sense, but a meta-level relationship between e and A, requiring a logical, ob
ject-level theory by which proofs from e to A can be assembled. In the D-S
scheme the object-level theory consists of categorical compatibility constraints,
for example, that it is incompatible for an alarm system to tum off unless
eitiier a burglary or an eartfiquake occurred (see Figure 5). It is remarkable
that, while the calculation of P(A I e), and even the probability of the material
conditional P(e z> A), require complete probabilistic models, P(e 1= A) does
not.

At tills point, it is wortiiwhile reflecting on the significance of the interval
Pl(A) - Bel(A) in tiie D-S formalism. This interval is often inteφreted to por
tray the degree of ignorance we have about probabilities, namely, the amount
of information needed in order to construct a complete probabilistic model.
Such intervals would have been a useful supplement to Bayes methods, which
always provide point probabilities and so might give one a false sense of secu
rity in the model.

Unfortunately, the D-S intervals have little to do with ignorance, nor do
tiiey represent bounds on the probabilities that would ensue once ignorance is
removed. For example, the disappearance of the interval Ρ 1(A) - Bel(A) often
vanishes when tiie model is far from being complete. The equality Bel(A) =
Pl(A) simply means that, based on the categorical abstraction captured by the
compatibility constraints, the available evidence could not simultaneously be
compatible with A and its negation -i A. It is curious to note that applying the
same inteφretation to noncategorical models yields an interval that never
vanishes because, barring extreme probabilities, a body of evidence is always
compatible with both a proposition and its negation. For example, if in the
model of Figure 5 we assume that all rules have exceptions (e.g., there is a
nonzero chance of a false alarm, a nonzero chance of a prank phone call, and
so on), then all propositions will be assigned zero belief and unit plausibility,
because none can actually be proven true. Thus, the choice of a categorical ab
straction is a crucial one.

408 Pearl

3.2.3 Relations to Truth Maintenance Systems and Incidence
Calculus The readiness of the D-S formalism to accept knowledge in the
form of logical constraints, rather than conditional probabilities, renders it close
to uncertainty management technique developed in the logicist camp of AI,
most notably tmth-maintenance systems (TMS) [Doyle, 1979] and incidence
calculus [Bundy, 1985]. These two approaches can be regarded as cousins to
the Dempster-Shafer theory because, like the latter, they are based on provabil
ity as the basic relationship connecting evidence with a conclusion.

Tmth-maintenance systems also use logical mies as their elementary units
of knowledge, and, similar to our treatment in Section 3.2.1, conclusions are
drawn by piecing together mies to form proofs. Likewise, mies may have ex
ceptions that may cause the expected conclusion of the proof to clash with ob
served facts or with other deductions. However, whereas the exceptions and/or
assumptions in the D-S theory were summarized numerically, using the evi
dence weight m, the TMS approach maintains an explicit list of the main as
sumptions and exceptions that are involved in each mle.

In the ATMS approach [de Kleer, 1986] one further maintains for each
conclusion c, a list L(c) of noru-edundant sets of assumptions called environ
ments, each of which is sufficient to support a proof of c. Thus L(c) is a
Boolean expression whose tmth signifies the existence of a proof for c. If we
are given probabilities on the assumptions that appear in L(c) and if we further
assume that diey are independent, tiien we can obtain Bel(c) by simply comput
ing the probability of L(c):

Bel(c) = P[L(c)]

Moreover, the computation can be done symbolically, which might be more
efficient than the computations method shown in Section 3.2.1. Thus, the
ATMS can be used as a symbolic engine for computing the belief functions
sought by the D-S tiieory. Steps in this direction have been taken by D'Am-
brosio [1987].

Incidence calculus [Bundy, 1985] suggests a method of computing belief
functions by logical sampling, similar in spirit to the method of stochastic
simulation [Henrion, 1986a; Pearl, 1987c]. A probabilistic model is used to
generate random samples of tmth values (bit strings) for a select set of proposi
tions representing uncertain facts. These values are presented as assumptions,
or axioms, to a theorem prover. Different sets of assumptions give rise to
different theorems and Bel(c) is given by that fraction of the time that c can be
proven. This scheme is a physical embodiment of the random switch model de
scribed in Figure 7. The random position of each switch is replaced by a ran
dom bit string assigned to the propositions impacted by the evidence.

The advantage of tiiis scheme is tiiat the theorem prover can be general
purpose (e.g.. First Order Logic), not limited to propositional constraint net-

Chapter 10 Evidential Reasoning Under Uncertainty 409

works. Moreover, the scheme is not limited to simulating independent
switches; dependencies can be simulated by having the bit strings generated by
a complete probabilistic model (e.g., a causal network) in which these depend
encies are encoded.

4 Lessons and Open Issues

4.1 Relations to Nonmonotonic Logic

4 Λ Λ Softened Logic vs. Hardened Probabilities The ills of mono
tonic logic have often been attributed to its coarse and shaφ , bi-valued
character. Indeed, when one tries to figure out why logic would not predict the
obvious fact that penguin birds do not fly, the first thing that one tends to
blame is the sharp, uncompromising stance of the rule "birds fly" toward ex
ceptions. It is natural, therefore, to assume that once we soften the constraints
of Boolean logic and allow tmdi values to be measured on a gray scale, these
problems will disappear. There have been several attempts along diis line. Rich
[1983] has proposed a likelihood-based inteφretatíon of default rules, managed
by certainty-factors calculus. Ginsberg [1984], and Baldwin [1987] have,
likewise, pursued similar aspirations using the Dempster-Shafer notion of
belief functions. While these attempts produce valuable results, revealing, for
instance, how sensitive a conclusion is to the uncertainty of its premises, the
fundamental problem of monotonicity remains unresolved. For example, re
gardless of the certainty calculus used, these analyses always yield an increase
in the belief that penguins can fly, if one adds the superfluous information that
penguins are birds and birds normally fly. Identical problems surface in the use
of incidence calculus and softened versions of trutii-maintenance systems
[D'Ambrosio, 1987].

Evidently, it is not enough to add a soft probabilistic veneer on top of a
system that is basically structured after hard monotonic logic. The problem
with monotonic logic lies not in the hardness of its truth values, but rather in
its inability to process context-dependent information. Logic does not have a
device equivalent to die conditional probability statement 'Ψ(Β \ A) is high,"
whose main function is to identify the context A where the proposition Β can
be believed, and to make sure that only legitimate changes in that context (e.g.,
going from A = penguins to A' = bird-penguins or A" = white penguins) will be
permitted without significant changes in the belief of B,

Lacking an appropriate logical device for conditionalization, die natural
tendency is to interpret die English sentence "If A then Ä" as a softened ver
sion of the material implication constraint A z> B. A useful consequence of
such softening is allaying the fears of outright contradictions. For example.

410 Pearl

while the classical inteφretation of the three rules: "penguins do not fly," "pen
guins are birds" and "birds fly," yields an unforgivable contradiction, die un
certainties attached to these rules now render them manageable. Still, they are
managed in the wrong way, because the material implication inteφretation of
if-then type mies is so fundamentally wrong that its maladies cannot be rec
tified by simply allowing exceptions in the form of shaded tmth values. The
source of the problem lies in the property of transitivity, (a b , b c) => a
-> c, that is inherent to the material-implication inteφretation.

There are occasions where mle transitivity must be totally suppressed, not
merely weakened, or else strange results will surface. One such occasion oc
curs in property inheritance, where subclass specificity should override super
class properties. Another occurs in causal reasoning where predictions should
not trigger explanations, (e.g., "sprinkler-on" predicts "wet-ground," "wet-
ground" suggests "rain," yet "sprinkler-on" should not suggest "rain"). In such
cases, softening the mies only weakens the flow of inference through the mle
chain but does not bring it to a dead halt, as it should.

Apparentiy, what is needed is a new inteφretation of "if-then" statements,
one that does not destroy the context-sensitive character of probabilistic condi-
tionalization. McCarthy [1986] remarks that circumscription indeed provides
such an inteφretation. In his words:

Since circumscription doesn't provide numerical probabilities, its prob
abilistic inteφretation involves probabilities diat are either infinitesimal,
within an infinitesimal of one, or intermediate—without any discrimina
tion among the intermediate values. The circumscriptions give conditional
probabilities. Thus we may treat the probability that a bird can't fly as an
infinitesimal. However, if the rare event occurs that the bird is a penguin,
then the conditional probability that it can fly is infinitesimal, but we may
hear of some rare condition that would allow it to fly after all.

Rather than contrive new logics and hope that they match the capabilities of
probability theory, an altemative approach would be to start with probability
theory and, if we can't get the numbers or find tiieir use inconvenient, we can
extract qualitative approximations as idealized abstractions of the latter, while
preserving its context-dependent properties. In diis way, nonmonotonic logics
should crystallize that are guaranteed to capture the context-dependent features
of nattu-al defaults [Pearl, 1988a].

4.1.2 The Logic of "Almost True" This program had in fact been in
itiated over twenty years ago by the philosopher Emest Adams [1966] who
developed a logic of conditionals based on probabilistic semantics. The sen
tence "If A tiien θ " is inteφreted to mean that the conditional probability of Β
given A is very close to 1, short of actually being 1. An adaptation of Adams'

Chapter 10 Evidential Reasoning Under Uncertainty 411

logic to default schema of the forai Bird (x) -> Fly (x), where jc is a variable, is
reported in [Geffner and Pearl, 1987b]. The resulting logic is nonmonotonic
relative to leaming new facts, in accordance with McCarthy's desiderata. For
example, leaming that Tweety is a bird would yield the conclusion that Tweety
can fly; subsequendy leaming that Tweety is also a penguin would yield the
opposite conclusion: Tweety can't fly. Further, leaming that Tweety is white
will not alter diis belief, because white is a typical color for penguins.
However, and this is where it falls short of expectations, leaming that Tweety
is clever would cause Adams' logic to retract all previously held beliefs about
Tweety's flying and answer: 'T don't know." The logic is so conservative that
it never jumps to conclusions that some new mle schema might invalidate
(e.g., that clever penguins can fly). In other words, the logic does not capture
the usual convention that, unless we are told otherwise, properties are pre
sumed 10 be irrelevant to each other."^

Attempts to enrich Adams' logic with relevance-hased features are de
scribed in [Pearl, 1987d], [Geffner and Pearl, 1987b], and [Geffner, 1988]. The
idea is to follow a default strategy similar to that of belief networks (Section
3.1); dependencies exist only if they are mentioned explicitiy or if they logi
cally follow from other explicit dependencies. However, whereas the stratified
metiiod of constmcting belief networks ensures tiiat all relevant dependencies
are already encoded in the network, this can no longer be assumed when
knowledge is presented in the form of isolated default mies and logical con
straints. A new logic is needed to tell us when one relevancy follows from
others. This issue is further discussed in the Section 4.2.

4 .1.3 The Issue of Consistency There is anotiier dimension along which
probabilistic analysis can assist current research in nonmonotonic logics. The
latter do not provide any criterion for testing whether a database comprising
default mies is internally consistent. The prevailing attitude is that once we
tolerate exceptions we might as well tolerate anything [Brachman, 1985].
However, there is a shaφ qualitative difference between exceptions and out
right contradictions. For example, the statement "red penguins can fly" can be
accepted as a description of a world in which redness deflnes an abnormal type
of penguins. However, the statements "typically birds fly" and "typically birds
do not fly" stand in outright contradiction to each other; since diere is no worid
in which the two can hold simultaneously, they will invariably lead to strange,
inconsistent conclusions. While such obvious contradictions can easily be re
moved from die database (e.g., [Touretzky, 1986]), more subtle ones might
escape detection, e.g., "birds fly," "birds are feathered animals," "feathered an
imals are birds," and "feathered animals do not fly."

3 Grosof [1986] discusses this convention in terms of a principle of maximizing conditional inde
pendencies, similar in spirit to the maximum entropy principle [Cheeseman, 1983].

412 Pearl

Adams' logic provides a criterion for detecting such inconsistencies, in the
form of three axioms diat should never be violated. In inheritance hierarchies
this criterion yields a simple graphical test [Pearl, 1987e] that is a generaliza
tion of Touretzky's: A network Ν is consistent iff for every pair of conflicting
mies p\ ^ and /72 ^ - 1 ^ , p i and p 2 are distinct and there is no cycle of
mies that embraces both p i and p 2 . For more intricate structures of default
mies the test becomes more involved.

4.2 Grapholds and the Formalization of Relevance
A central requirement in several topics of this survey has been to articulate the
conditions under which one item of information is considered relevant to
another, given what we already know, and to encode knowledge in structures
that vividly display these conditions as the knowledge undergoes changes.
Different formalisms give rise to different definitions of relevance. For ex
ample, in probability theory, relevance is identified with dependence; in con
straint-based formalisms (and in relational databases) relevance is associated
widi induced constraints—^two variables are said to be relevant to each other if
we can restrict the range of values permitted for one by constraining the other.

The essence of relevance can be identified with a stmcture common to all
these formalisms. It consists of four axioms that convey the simple idea that
when we leam an irrelevant fact, the relevance relationships of all other propo
sitions remain unaltered; any information that was irrelevant remains irrelevant
and that which was relevant remains relevant. Stmctures diat conform to these
axioms are called graphoids [Pearl and Paz, 1987]. Interestingly, both un
directed graphs and directed acyclic graphs conform to the graphoids axioms
(hence the name) if we associate the sentence "variable χ is irrelevant to varia
ble y once we know z" widi the graphical condition "every path from jc to y is
intercepted by the set of nodes corresponding to z." (A special definition of
"intercept" is required for directed graphs.)

With this perspective in mind, graphs, networks, and diagrams can be
viewed as inference engines devised for efficientiy representing and manipulat
ing relevance relationships: The topology of the network is assembled from a
list of local relevance statements (e.g., direct dependencies), this input list en
tails (using die graphoids axioms) a host of additional statements, and the func
tion of the graph is to ensure diat a substantial portion of die latter can be read
off by simple graphical criteria. Such a mapping will enable one to determine,
at any state of knowledge z, which information is relevant to die task at hand
and which can be ignored. Permissions to ignore, as we saw in Section 3.1, are
the fuel that gives intensional systems the power to act.

An important result from die theory of graphoids states that Bayesian net
works constitute a sound and complete inference mechanism relative to prob
abilistic dependencies, i.e., it identifies, in polynomial time, each and every

Chapter 10 Evidential Reasoning Under Uncertainty 413

conditional-independence relationship that logically follows from those used in
the construction of the network [Pearl and Verma, 1987; Geiger and Pearl,
1988]. Similar results hold for other types of relevance relationships, e.g., par
tial correlations and constraint-based dependencies. However, the essential re
quirement for soundness and completeness is that die network be constructed
causally, i.e., that we specify, recursively, the relationship of each variable to
its predecessors in some total order. (Once the network is constructed, the orig
inal order can be forgotten; only the partial order displayed in the network mat
ters).

One can speculate whether it is this soundness-completeness feature that
renders causal schemata so important in knowledge organization. More gener
ally, tiie precise relationship between causality as a representation of irrelevan-
cies and causality as a commitment to a particular inference strategy (e.g.,
chronological ignorance [Shoham, 1986]) is yet to be fully investigated. A
different notion of relevance has been explored by Subramanian and
Geneseretii [1987], based on logical derivability. The latter takes propositions,
rather than variables, as the atomic entities in the relevance relationships, and,
again, the connection to graphoid structures is not fully understood.

References

Adams, E., 1966. Probability and the Logic of Conditionals. In Aspects of In
ductive Logic, J. Hintikka and P. Suppes, ed. North-Holland, Amsterdam.

Andreassen, S., Woldbye, M., Falck, B., and Andersen, S. K., 1987. MUNIN—
A Causal Probabilistic Network for Inteφretation of Electromyographic
Findings. In Proceedings of the Tenth International Joint Conference on AI,
Milan, Italy, pp. 366-372.

Amborg, S., Cornell, D. G. and Proskurowski, Α., 1987. Complexity of Find
ing Embeddings in a K-Tree. SIAM Journal on Algebraic and Discrete
Methods 8(2):277-284.

Baldwin, J. F., 1987. Evidential Support Logic Programming. Fuzzy Sets and
Systems 24:1-26.

Beeri, C , Fagin, R., Maier, D., and Yannakakis, M., 1983. On the Desirability
of Acyclic Database Schemes. Journal of ACM 30:479-513.

Ben-Bassat, M., Carlson, R. W., Puri, V. K., Lipnick, E., Portigal, L. D., and
Weil, M. H., 1980. Pattern-based Interactive Diagnosis of Multiple Dis
orders: The MEDAS System. IEEE Transactions on Pattern Analysis and
Machine Intelligence PAMI-2(2): 148-160.

Blalock, H. M., 1971. Causal Models in the Social Sciences. London, Macmil-
lan.

414 Pearl

Bonissone, P. P., Gans, S. S., and Decker, K. S., 1987. RUM: A Layered Ar
chitecture for Reasoning with Uncertainty. In Proceedings of the Tenth In
ternational Joint Conference of Artificial Intelligence. Milan, Italy, pp. 8 9 1 -
898.

Brachman, R. J., 1985. I Lied About the Trees, or. Defaults and Definitions in
Knowledge Representation. AI Magazine 6(3):80-93.

Bundy, Α., 1985. Incidence Calculus: A Mechanism for Probabilistic Reason
ing. Journal of Automated Reasoning 1:263-283.

Chandrasakaran, B., and Mittal, S., 1983. Conceptual Representation of Medi
cal Knowledge for Diagnosis by Computer: MDX and Related Systems. Ad
vances in Computers 22:217-293.

Cheeseman, P., 1983. A Method of Computing Generalized Bayesian Probabil
ity Values for Expert Systems. In Proceedings of the Sixth International
Joint Conference on AI, Karlsmhe, W. Germany, pp. 198-202.

Chin, H. L. and Cooper, G. P., 1987. Stochastic Simulation of Bayesian Belief
Networks. In Proceedings of the Uncertainty in AI Workshop, Seattie,
Washington, pp. 106-113.

Clancey, W. J., 1985. Heuristic Classification. Artificial Intelligence 27(3):289-
350.

Cohen, P. R., 1985. Heuristic Reasoning about Uncertainty: An Artificial Intel
ligence Approach. Pitman, Boston.

Cohen, P., Day, D., Delisio, J., Greenberg, M., Kjeldsen, R., Suthers, D., and
Berman, P., 1987a. Management of Uncertainty in Medicine. International
Journal of Approximate Reasoning 1(1): 103-116.

Cohen, P. R., Shafer, G., and Shenoy P. P., 1987b. Modifiable Combining
Functions. In Proceedings of the Uncertainty in AI Workshop. Seattle,
Washington, pp. 10-21.

D'Ambrosio, B., 1987. Tmth Maintenance with Numeric Certainty Estimates.
In Proceedings of the 3rd Conference on AI Applications. Orlando, Florida,
244-249.

de Kleer, J., 1986. An Assumption-Based Tmth Maintenance System. Artificial
Intelligence 29:241-288.

Dechter, R., and Pearl, J., 1987a. Network-Based Heuristics for Constraint-
Satisfaction Problems. Artificial Intelligence 34(1).

Dechter, R., and Pearl, J., 1987b. Tree-Clustering Schemes for Constraint-Pro
cessing. UCLA Cognitive Systems Laboratory Technical Report 870054 (R-
92). Also in Proceedings ofAAAI-88. Minneapolis, Minnesota.

Doyle, J., 1979. A Tmth Maintenance System. Artificial Intelligence 12(3).
Duda, R. O., Hart, P. E., and Nilsson, N. J., 1976. Subjective Bayesian

Methods for Rule-Based Inference Systems. In Proceedings of the National
Computer Conference. AHPS. 45:1075-1082.

Duncan, O. D., 1975. Introduction to Structural Equation Models. New York,
Academic Press.

Chapter 10 Evidential Reasoning Under Uncertainty 415

Geffner, H., and Pearl, J., 1987a. An Improved Constraint-Propagation Algo
rithm for Diagnosis. In Proceedings of the Tenth International Joint Confer
ence on AI. Milan, Italy, pp. 1105-1 111.

Geffner, H., and Pearl, J., 1987b. A Sound Framework for Reasoning with De
faults. UCLA Cognitive Systems Laboratory Technical Report 870058 (R-
94).

Geffner, H., 1988. On die logic of defaults. In Proceedings of AAAI-88. Min
neapolis, Minn.

Geiger, D. and Pearl, J., 1988. On die logic of influence diagrams. In Proceed
ings of AAAI-88 Workshop on Uncertainty in AI. Minneapolis, Minn.

Ginsberg, M. L., 1984. Nonmonotonic Reasoning Using Dempster's Rule. In
Proceedings, 3rd National Conference on AI. AAAI-84. Austin, Texas, pp.
126-129.

Goodman., 1970. The Multivariate Analysis of Qualitative Data: Interaction
among Multiple Classifications. Jourruil of the American Statistics Associa
tion 65:226-256.

Grosof, B. N., 1986. Nonmonotonicity in Probabilistic Reasoning. In Proceed
ings of AAAI Workshop on Uncertainty in AI. Philadelphia, Pennsylvania,
pp. 91-98.

Haberman, S. J., 1974. The General Log-Linear Model. Ph.D. tiiesis. Depart
ment of Statistics, University of Chicago.

Hajek, P., 1985. Combining Functions for Certainty Degrees in Consulting
Systems. International Journal Man-Machine Studies. 22:59-65.

Hajek, P., and Valdes, J. J., 1987. Algebraic Foundations of Uncertainty Pro
cessing in Rule-Based Expert Systems. Ceskoslovenka Akademie Ved,
Matematicky Ustav.

Heckerman, D., 1986a. A Probabilistic Inteφretation for MYCIN'S Certainty
Factors. In Uncertainty in Artificial Intelligence. North-Holland, Amster
dam.

Heckerman, D., 1986b. A Rational Measure of Confirmation. Medical Com
puter Science Group. Technical Report, Memo-KSL-86-25. Stanford Uni
versity.

Henrion, M., 1986a. Propagation of Uncertainty by Logic Sampling in Bayes
Networks. Technical Report, Department of Engineering and Public Policy,
Carnegie-Mellon.

Henrion, M., 1986b. Should We Use Probability in Uncertain Inference Sys
tems? In Proceedings, Cognitive Science Society Meeting. Amherst, pp.
320-330.

Horvitz., E. J. and Heckerman, D. E., 1986. The Inconsistent Use of Measures
of Certainty in Artificial Intelligence Research. In Uncertainty in Artificial
Intelligence. Kanal, L., Lemmer J., ed. North-Holland, Amsterdam, pp. 137-
151.

416 Pearl

Howard, R. Α., and Matheson, J. E., 1981. Influence Diagrams. In Principles
and Applications of Decision Analysis. Menlo Park, Califomia: Strategic
Decisions Group.

Kanal, L. N., and Lemmer, J. F., ed., 1986. Uncertainty in Artificial Intel
ligence. North-Holland, Amsterdam.

Kenny, D. Α., 1979. Correlation and Causality. John Wiley and Sons
Kiiveri, H., Speed, T. P., and Carlin, J. B., 1984. Recursive Causal Models.

Journal of Australian Math Society 36:30-52.
Kong, Α., 1986. Multivariate Belief Functions and Graphical Models. Ph.D.

Thesis, Department of Statistics, Harvard University.
Lauritzen, S. L., 1982. Lectures on Contingency Tables. Second edition. Uni

versity of Aalborg Press, Aalborg, Denmark.
Lauritzen, S. L., and Spiegelhalter, D. J., 1988. Local Computations with Prob

abilities on Graphical Structures and their Applications to Expert Systems.
To appear in Journal of the Royal Statistics Society Bulletin. 50.

Lemmer, J., 1983. Generalised Bayesian Updating of Incompletely Specified
Distributions. Large Scale Systems 5:51-68.

Lowrance, J. D., Garvey, T. D., and Strat, T. M., 1986. A Framework for Evi
dential-Reasoning Systems. In Proceedings of the Fifth National Conference
on AI. AAAI-86, Philadelphia, Pennsylvania,, pp. 896-901.

Malvestuto, F. M., 1986. Decomposing Complex Contingency Tables to Re
duce Storage Requirements. In International Workshop on Scientific and
Statistical Database Management. R. Cubitt et al., ed. Luxembourg, pp. 6 6 -
71.

McCarthy, J., 1986. Applications of Circumscription to Formalizing Common-
Sense Knowledge. Artificial Intelligence 28(1):89-116.

Miller, R. Α., Poole, H. E., and Myers, J. P., 1982. INTERNIST-1, An Experi
mental Computer-Based Diagnostic Consultant for General Intemal Medi
cine. New England Journal of Medicine 307(8):468-470.

Montanari, U., 1974. Networks of Constraints, Fundamental Properties and Ap
plications to Picture Processing. Information Science 7:95-132.

Nilsson, N., 1986. Probabilistic Logic. Artificial Intelligence. 28(l):71-87.
Quinlan, J. R., 1983. Inferno: A Cautious Approach to Uncertain Inference.

The Computer Journal 26:255-269.
Pearl, J., 1986. Fusion, Propagation and Structuring in Belief Networks. Artifi

cial Intelligence 29(3):241-288.
Pearl, J., 1987a. Distributed Revision of Composite Beliefs. Artificial Intel

ligence 33(2): 173-215.
Pearl, J., 1987b. Bayes Decision Methods. Encyclopedia of AI. Wiley Inter-

science, New York. pp. 48-56.
Pearl, J., 1987c. Evidential Reasoning Using Stochastic Simulation of Causal

Models. Artificial Intelligence 32(2):245-258.

Chapter 10 Evidential Reasoning Under Uncertainty 417

Pearl, J., 1987d. Probabilistic Semantics for Inheritance Hierarchies with Ex
ceptions. UCLA Cognitive Systems Laboratory Technical Report 870052
(R-93). Also in [Pearl, 1988a].

Pearl, J., 1987e. Deciding Consistency in Inheritance Networks. UCLA Cogni
tive Systems Laboratory Technical Report 870053 (R-96).

Pearl, J., 1988a. Networks of Belief: Probabilistic Reasoning in Intelligent Sys
tems. Morgan Kaufmarm Publishers, San Mateo, Califomia.

Pearl, J., 1988b. Embracing Causality in Formal Reasoning. Artificial Intel
ligence 35(2):259-271.

Pearl, J., and Paz, Α., 1987. Graphoids: A Graph-Based Logic for Reasoning
about Relevance Relations. In Advances in Artificial Intelligence-II. B. Du
Boulay et al., ed. North-Holland, Amsterdam.

Pearl, J., and Verma, T., 1987. The Logic of Representing Dependencies by
Directed Graphs. In Proceedings of the AAAI Conference. Seattle, Washing
ton, pp. 374-379.

Peng, Y., and Reggia, J., 1986. Plausibility of Diagnostic Hypotheses. In Pro
ceedings of the Fifth National Conference on AI. AAAI-86. pp. 140-145.

Perez, Α., and Jirousek, R., 1985. Constmcting an Intensional Expert Systems
(INES). In Medical Decision Making. Elsevier Scientific Publishers, pp.
307-315.

Polya, G., 1954. Patterns of Plausible Inference. Princeton University Press.
Prade, H., 1983. A Synthetic View of Approximate Reasoning Techniques. In

Proceedings of the Eighth International Joint Conference of Artificial Intel
ligence. Karlsmhe, West Germany, pp. 130-136.

Rich, E., 1983. Default Reasoning as Likelihood Reasoning. In Proceedings of
the International Joint Conference of Artificial Intelligence, pp. 348-351.

Shachter, R. D. and Heckerman, D. V., 1987. A Backward View for Assess
ment. AI Magazine 8(8):55-62.

Shachter, R. D., 1988. Probabilistic Inference and Influence Diagrams. To ap
pear in Operations Research.

Shafer, G., 1976. Mathematical Theory of Evidence. Princeton University
Press.

Shafer, G., Shenoy, P. P., and Mellouli, K., 1987. Propagating Belief Functions
in Qualitative Markov Trees, working paper no. 190. To appear in Inter
national Journal of Approximate Reasoning.

Shoham, Y., 1986. Chronological Ignorance: Time, Nonmonotonicity, Neces
sity and Causal Theories. In Proceedings of AAAI-86. Philadelphia, pp. 3 8 9 -
393.

Shortliffe, E. H., 1976. Computer-Based Medical Consultation: MYCIN. El
sevier Scientific Publishers.

Stephanou, H., and Sage, Α., 1987. Perspectives on Imperfect Information Pro
cessing. IEEE Transactions on Systems, Man, and Cybernetics SMC-
17(5):78a-798.

418 Pearl

Subramanian, D., and Genesereth, M., 1987. The Relevance of Irrelevance. In
Proceedings of the Tenth International Joint Conference on Artificial Intel
ligence. Milan, Italy, pp. 416-422.

Tarjan, R. E., 1976. Graph Theory and Gaussian Elimination. In Sparse Matrix
Computations. D. J. Rose, ed. Academic Press, New York. pp. 3-22.

Tarjan, R. E., and Yannakakis, M., 1984. Simple Linear-Time Algorithms to
Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively
Reduce Acyclic Hypergraphs. SIAM Journal on Computing 13:566-579.

Thompson, T. R., 1985. Parallel Formulation of Evidential Reasoning Theories.
In Proceedings of the Eighth International Joint Conference of Artificial In
telligence. Los Angeles, Califomia. pp. 321-327.

Touretzky, D. S., 1986. The Mathematics of Inheritance Systems. Morgan
Kaufmann Publishers, San Mateo, Califomia.

Vorobev, N. N., 1962. Consistent Families of Measures and Their Extensions.
Theory of Probability and Applications. 7:147-163.

Wermuth, N., and Lauritzen, S. L., 1983. Graphical and Recursive Models for
Contingency Tables. Biometrika 70:537-552.

Wold, H., 1964. Econometric Model Building. North-Holland, Amsterdam.
Wright, S., 1921. Correlation and Causation. Journal Agricultural Research

20:557-585.
Wright, S., 1934. The Mediod of Padi Coefficients. Ann. Math. Statist. 5 : 161-

215.

Chapter

11

Temporal Reasoning in
Artificial Intelligence
Yoav Shoham
Nita Goyal
Computer Science Department

Stanford University

1 Introduction

In one way or another, every area of AI has to do with time. Medical diagnosis
systems reason about the time at which a vims infected the blood system. Dev
ice troubleshooting systems look at how long it takes a capacitor to saturate. In
automatic programming the time at which a variable becomes bound is impor
tant. In robot planning one wants to achieve one goal before another, to meet
deadlines and so on. In qualitative physics the concept of time is essential: We
speak of a bucket evenmally filling, and we talk about race conditions. In
speech-act dieory, it is really cmcial when the speaker and hearer know or
believe something. Even in domains that seem inherentiy atemporal, such as
mathematical theorem proving, meta-level reasoning about how long to con
tinue along a line of proof involves time.

One can identify several classes of tasks in AI that require reasoning about
time:

1. Prediction: Given a description of the world over some period of time,
and the set of mies goveming change, predict the world at some future
time.

4 1 9

420 Shoham and Goyal

2. Explanation: Given a description of the worid over some period of time
and the mies goveming change, produce a description of the world at
some earlier time that accounts for the world being the way it is at the
later time.

3. Planning: Given a description of some desired state of the world over
some period of time, and the mies goveming change, produce a sequence
of actions that would result in a world fitting that description.

4. Learning new rules: Given a description of the worid at different times,
produce the mies goveming change which account for the observed
regularities in the world.

These classes of tasks, though related, have given rise to by and large dis
joint fields of research. These disjoint research areas can be unified to some
extent by providing a uniform framework for temporal reasoning. The some
what mythical area of "temporal reasoning" aims to provide such a framework.

Representation of temporal information, and reasoning about such infor
mation, requires a language which can capture the concept of change over time
and can express the tmth or falsity of statements at different times. This lan
guage should not only be well-defined, but also have a clear meaning. This has
led researchers to develop temporal logics.

The passage of time is important only because changes are possible with
time. The sun moving across the sky or advances of program counters all in
volve changes with time. The concept of time would become meaningless in a
world where no changes were possible. In Sections 2 and 3 we explain two
different approaches to reasoning about change, change-based and time-based.
The change-based approach is discussed first with two representative formal
isms: situation calculus and dynamic logic. We point out some of the limita
tions of this approach. Then we introduce the time-based approach; after con
sidering the various issues involved in constmcting a temporal logic, we intro
duce a representative temporal logic with formal syntax and semantics. This
solves several of the problems with change-based logics, but some problems
such as the qualification, ramification and the frame problems still remain un
solved. A common framework to solve these problems is nonmonotonic rea
soning. We end with an overview of the problems and the advances made in
nonmonotonic temporal reasoning.

2 Change-based Approach

The change-based approach concentrates on the entities that signify a change
having taken place; that is, change-indicators. Situation calculus in AI, and dy
namic logic in theoretical computer science, are prototypes of this approach.

Chapter 11 Temporal Reasoning in AI 421

Actions in situation calculus, and programs in dynamic logic, are the basic
change-indicators.

2.1 Situation Calculus
Situation calculus was introduced by McCartiiy and Hayes in 1969 [McCarthy
and Hayes, 1981]. It views the world as a set of states or situations, each of
which is a "frozen" snapshot of the world. At different points in time, the
world can be in different states.

The world persists in one state until an action is performed that changes it
to a new state. Consider the example of starting a car. Initially the world is in
state SI where die motor is off; and the action of switching on the car,
Switchon, results in the state S2 where the motor is on. This can be expressed
in logic using the Result function, which takes an action and a state and pro
duces the state the world will be in after performing the given action in the
given state.

To see what happens across actions we have the truth operator True.

Vs True(s,Off) 3 True(Result(Switchon,s),On)
Vs True(s,Off)

Z) True(Result(Hitpedal, Result(Switchon, s)) , Move)

The first sentence says tiiat in all states in which the engine is off, if the
action of switching on die engine is performed tiien in the resulting state the
engine is on. The results of the actions can be nested as in the second sentence.
This is a basic kind of formalism which gave rise to much work, particularly
die STRIPS planner and its derivatives [Fikes and Nilsson, 1971; Fikes et al.,
1972; Sacerdoti, 1974].

2.2 Dynamic Logic
Dynamic logic, introduced by Pratt [1976], is a framework for reasoning about
programs based on modal logic (refer to [Chellas, 1980; Hughes and Cress well,
1969; Kripke, 1963] for modal logic). The idea is to integrate programs into an
assertion language by allowing programs to be modal operators. In dynamic
logic, programs are the change-indicators, which when applied to a program
state change it to anotiier program state. Propositional dynamic logic (PDL), as
defined by Fischer and Ladner [1979], has a set of atomic formulas Φα which
are propositional variables and a set of atomic programs Σο which are indivis
ible statements in a programming language. The set of programs, Σ, and the set
of formulas, Φ are inductively defined as follows.

422 Shoham and Goyal

Programs:

1. Atomic programs and θ are programs;

2. If and ¿7 are programs and ρ is a formula, then (a;b), {aub), a * , and p ?
are programs.

θ means "abort" or "blocked."
(a;b) means "execute a followed by ft."
(aub) means "nondeterministically do a or ft."
a* means "repeat a a nondeterministically chosen number of times."
p ? means "test ρ and proceed only if true."

Formulas:

1. Atomic formulas, true and false, are formulas;

2. If ρ and q are formulas and α is a program, then (p ν q), - i p , and (a}p are
formulas.

Informally, {a)p means that it is possible for the program a to terminate with
assertion ρ holding on termination. The dual notion [a]p defined as -^{α)-φ
means that ρ must hold when a terminates.

The effect of these programs is to change one program state into another.
Like the situation calculus, dynamic logic has no concept of time except that
which is implicit in the sequencing of change-indicators (actions for situation
calculus and programs for dynamic logic).

2.3 Limitations of the Change-based Approach

The change-based approach has several limitations:

1. Instantaneous actions: In the change-based systems, the actions do not
have any duration. Sentences such as "The robot should move the vase to
the table slowly so that it does not break, but move the book to the table
fast to save as much time as possible" cannot be expressed because we
cannot define die notion of performing an action slow or fast. Even
sentences such as "The robot should get to Little Nell before the train
arrives" are not directiy expressible in this framework.

2. Instantaneous arui immediate effects: The fact that the result of an action
is immediate gives rise to two problems.

Delayed effects: It is not necessary in the real world for an action to
produce an effect immediately. It could take place after a while,
during which period other actions could take place. For instance, there

Chapter 11 Temporal Reasoning in AI 423

is no way to express in the system, the sentence "30 seconds after you
press the button at die crosswalk, the pedestrian light tums to green."

• Natural death: This refers to the phenomenon in which the effects of
an action have only a certain duration, such as "When you press the
button of the hand-drying machine at the airport, it emits hot air for
30 seconds." Here the state of die world changes after 30 seconds
without any action which makes it do so. There is no mechanism for
expressing such phenomena.

3. Concurrent or overlapping actions: Simultaneous actions cannot be
expressed in die change-based formalism. For example, suppose we have
two actions, Pushright and Pushleft, referring to pushing a block to
the right or to the left. If the situation is idealized to accommodate
concurrent actions, the concurrent action {Pushright, Pushleft}
results in neither. Similarly, overlapping actions are not expressible. A
siniation like "While Robotl painted die body of die car, Robot2 finished
inspecting the transmission, and so by the time Robot2 was done the car
was ready for assembly" is not expressible.

4. Continuous processes: In change-based systems, the only notion of time
possible is the discrete view, with states corresponding to different time
points. This is sufficient for many purposes, but in the areas of naive
physics or qualitative physics we might want to say something like
"Tuming on the tap resulted in the level of water growing steadily, until
the cup overflowed." Such continuous processes are not expressible in
change-based systems.

5. The qualification problem: This is best illustrated by an example. We
have the knowledge that when nothing is wrong, the result of tuming the
ignition key of the car on is to start the engine. "Nothing is wrong"
requires a richer knowledge of the world about dead batteries, empty gas
tanks, of bananas in tailpipes and so on. This can be expressed as:

True(s,Batteryok) Λ True(S,Gas) Λ

True(s,No_bananas_in_tailpipes) Λ . . .

3 True(Result(Switchon,s),On)

As long as nothing is wrong, all this information is irrelevant, but if
something does go wrong then we need this information to find out what
has gone wrong. We would not like to drown in this long chain of
reasoning every time we start the car, yet we would like to tap this
information when necessary. In the context of predicting the future, it is
the problem of making sound predictions about die future without taking
into account everything in the past. This is called the qualification
problem.

424 Shoham and Goyal

6. The ramification problem: The problem is that the results of an action
may be very complex. For example, if you drive your car from A to B,
then as a result it is in Β and so are its tires, engines.. .

Car(x) 3 True(Result(Move(x,A,B),s), At(x,B) Λ

At(Engine(χ),Β) Λ At(Wheels(χ),Β) Λ . . .)

We would like to state that as a result of moving the car from A to B,
everything contained in the car moves to Β without having to explicitiy
state all the details as done here. This is the ramification problem.

7. The frame problem: Suppose a block is moved from A to B. The moving
action changes the location but it does not change its color or size, it does
not change the President of the United States and so on. We have to write
down this information in the form of frame axioms such as

True(s,Green(x)) 3 True(Result(Move(x,A,B),s),Green(x)).

The frame problem is the problem arising due to the complexity of
representing the things that remain unchanged as the result of an action.^

Among the seven problems listed above, the first four arise due to the
choice of the particular formalism, the change-based approach. A lot of effort
went into trying to get around these problems in dynamic logic. The best
known attempt is the process logic, introduced by Pratt a few years later [Pratt,
1979]. It is a language which enables one to say what happens while an action
is taking place. This was a minor improvement, but it did not come close to
solving all these problems. Dynamic logic is not used much nowadays, and we
predict the same fate for situation calculus in AI.

The alternative to the change-based approach is to have only one basic
kind of change, namely, the passage of time. This gives rise to the time-based
approach which is discussed in the next section.

The last three problems have a global nature and do not result from a par
ticular choice of formalism. Therefore, as we will see, the qualification, ramifi
cation and frame problems show up in the time-based approach too; the at
tempts to solve tiiem are discussed in Section 4.

1 Shoham and McDermott suggest a more general version of the frame problem, called the "ex
tended prediction" problem [Shoham and McDermott, 1988].

Chapter 11 Temporal Reasoning in AI 425

3 Time-based Approach

The time-based approach recognizes only one fundamental change, the passage
of time, which is a constant change unaffected by anything else. There is a
time stmcture, and the assertions are either tme or false at various points on
this time stmcture. To constmct a temporal logic, we have to make decisions
about this stmcture, and about tiie language used to express assertions. These
issues are discussed in the following subsections.

Philosophy has the longest tradition of developing temporal logics. The
most up-to-date survey of this work is in van Benthem's book [1983]. Previous
books include those by Prior [1967] and Rescher and Urqhuart [1971].
Theoretical computer scientists borrowed from that tradition. Pnueli [1977] was
the first to use it to reason about properties of programs. In AI, the best known
temporal logics are the ones due to Allen [1984] and McDermott [1982]. Since
these early systems, however, much work has been done by Vilain [1982],
Shoham [1987], Ladkin [1986], Haugh [1987], Reichgelt and others.

We will bring out the issues in developing temporal logics by actually con
stmcting a representative logic. This logic follows the development in [Sho
ham, 1987]. It is a crystallization and generalization of the ideas proposed by
Allen [1984] and McDermott [1982].

3.1 Representational Issues In Temporal Logics

To constmct a temporal logic, certain decisions have to be made about tem
poral representation. The first issue to resolve is over what entity we inteφret
assertions. Should this be a time point, a time interval, perhaps neither, or
maybe both? The answers to these questions have varied in philosophy,
theoretical computer science and in AI. In AI, one finds all three kinds of
formalisms: point-based, interval-based and mixed. Allen's formalism [Allen,
1984] allowed statements to be inteφreted only over time intervals. In McDer-
mott's formalism [McDermott, 1982b], there are two kinds of statements; those
inteφreted over time points are facts and others referring to intervals are
events. The simations that we are interested in require reasoning about time in
tervals and therefore we will inteφret assertions over intervals. There will be
no assertions inteφreted over time points. Instead, we will allow inteφretations
over intervals of zero duration.

The second important decision to be made is about the primitive temporal
elements in our ontology of time. The major contenders are again, points and
intervals. We can take intervals as primitives and have a calculus of intervals
in which two intervals can abut, overlap or one can be a subinterval of the
other. Such a calculus was proposed by Allen [1984]. We can also take points
as primitive objects and define intervals in terms of their endpoints. In the

426 Shoham and Goyal

Allen foraialism [Allen, 1984] intervals are the primitives, whereas in the
McDermott formalism [McDermott, 1982b] an interval is an ordered pair of
points. We will follow McDermott and have points as basic temporal objects.
An interval will be represented as a pair of its endpoints.

The third important question is whether tmth over one interval constrains
tmth over other intervals. For example, in the Allen formalism [Allen, 1984], if
a property holds over an interval, then it must hold over all subintervals. On
the odier hand, if an event holds over an interval, then it does not hold over
any overlapping interval. In philosophy, an assertion is homogeneous if the fol
lowing is tme: for any interval < Pi, P2), die assertion holds over (Pi, P2) iff
it holds over every subinterval of < PI,P2). In theoretical computer science,
an interval-based logic is local if an assertion holds over (Pl, P2) iff it holds
over Pl (or over die interval (Pl, Pl)). We shall not make any a priori asso
ciations between the truth of an assertion over an interval and its tmth over
other intervals.

The fourth decision to be made is about the stmcture of time. Some of the
issues involved here are:

Precedence: Time is usually considered to be linear, that is, a total order.
Sometimes, though, it is considered only to be a partial order. Time can
branch; it can branch only into future, or into past, or both. There are
philosophical formulations which permit circular time. Most AI formal
isms have assumed linear time, though there are some exceptions such as
McDermott's logic [McDermott, 1982b].

Discrete vs. dense: Time is discrete if between every pair of time points
there are a finite number of time points. It is dense if between every pair
of points there is another point. Discrete time has been popular in com
puter science since one has to reason mosdy about digital devices.
However, many temporal logics now view time as dense.

Complete vs. incomplete: A structure is complete if for every series of
points that is bounded from above by another point, there exists a point
that is the least upper bound of the series. This is the property that distin
guishes reals from rationals. If time is dense, is it complete too?
Bounded vs. unbounded: A stucture is unbounded if every point has a later
point or an earlier point, corresponding respectively to being unbounded in
the future or unbounded in die past.

So far we have decided that the time stmcture will have time points as the
primitive temporal entities. A time interval will be represented as a pair of time
points which are its end-points. We will allow intervals that have zero duration

Chapter 11 Temporal Reasoning in AI 427

and these will represent points. We have not committed ourselves on any other
issues at this time, diough most of the time we will view time to be linear and
dense. The assertions will be inteφreted over time intervals.

Now diat we have defined the time stmcture, we address the question of
die logical form to be used to express temporal information. We have three pri
mary options for the logical form:

1. Classical First Order Logic: We can simply include time as an argument
or two arguments to a predicate. For example, if Μ is an inteφretation
dien,

Μ 1= Color (Housel7,Red, TI, Τ2)

says diat over die interval < τ ι , Τ2), Housel7 had color Red in M. The
problem with this approach is that we have not accorded time any special
stams. We cannot say anything about the temporal aspects of an
assertion. Without any further restrictions, there is nothing to disallow
formulas widi many time arguments or none at all. For instance, diere is
nothing to disallow Color (House, Red, Cat, Mouse) as a legal formula.

2. Reified sentences: In this representation, we separate the atemporal
component of assertions from their temporal component. The atemporal
component is also called a proposition type. This can be done by using
something like a "tmth" predicate, which will take three arguments; two
time points denoting an interval and a proposition type. For example, if Μ
is an inteφretation, the expression

Μ Ν True(TI,Τ2,Color(Housel7,Red))

associates the proposition type Color (HouselT, Red) with an interval
from time Ti to Τ2. Note that True is not really a predicate, but only a
notational convenience to express this association. This approach is
prevalent in AI, and we will retum to it shortly.

3. Modal Temporal Logic: Anodier way to associate a proposition type widi
time is by taking the modal route (refer to [Chollas, 1980; Hughes and
Cress well 1969; Kripke, 1963] for modal logic). This can be done by not
mentioning time at all, but instead complicating the inteφretation of our
formulas. Here the temporality enters not in the syntax but in the
semantics. In philosophy, modal temporal logics in which time points
correspond to possible worlds, the so-called tense logics, have been
prevalent. Inteφretation of formulas in such a logic is explained below. If

428 Shoham and Goyal

in classical logic a foraiula φ is true in an inteφretation Μ (written Μ 1= φ)
or false in it, now a formula would be either true in Μ at a given point of
time τ (written M, τ Ν φ) or false diere. Each time point would dien
correspond to a possible world. The modal operator Πφ can mean "φ is
true at all future times" and Οφ can mean "φ is true at some future time."
In our red house example, we would have M , τ Ν Color (Housel?, Red).
We can have other inteφretations too for these modal operators. For
example, Πφ can also mean "φ is true at all times in the past, present and
future" and Οφ can mean "φ is true at some time in the past, present or
future." Note that we can also inteφret statements over time intervals
rather than time points. Then tiie intervals would correspond to possible
worlds. There has been a growing interest in interval-based modal
temporal logics in the recent past. Halpem and Shoham [1986] illustrate
one such approach.

The classical first-order logic does not accord any special conceptual or
notational status to time, and is thus insufficient for our puφoses. The reified
first-order logic and the temporal modal logic are closely related. In particular,
it can be shown tiiat any assertion in modal temporal logic can be transformed
into an equivalent assertion in the reified first-order logic. We will, therefore,
use the reified first-order logic. Based on the assumptions made in this subsec
tion, a sample temporal logic is constmcted in the next subsection.

3.2 A Sample Temporal Logic
We want to associate an atemporal assertion with a time interval. The most
straightforward way of doing so is to form an interval/assertion pair: each
primitive formula will be a pair (i, p), where 1 is an interval symbol and ρ is a
primitive propositional symbol. Since we treat time points rather than time in
tervals as basic, an interval symbol 1 is really a pair (ti, t2), where the ti
are the time point symbols. For notational convenience, we will replace the
formula «ti, t2),p) by the more appealing True (ti, t2,P) . The precise syn
tax and semantics for both the propositional and the first-order cases are given
below.

3.2.1 Propositional Case

Syntax Given P , a set of primitive propositions; τ , a set of time point sym
bols; V, a set of temporal variables, TV = τ u v, and ^ , a binary relation sym
bol; tiie set of well-formed formulas (wffs) is defined recursively as follows:

Chapter 11 Temporal Reasoning in AI 429

1 . If tvi € TV and t v 2 G TV , dien tvi = t v 2 and tvi ^ t v 2 are wffs.

2. If tvi G TV, t v 2 € TV and ρ e P , then True (tvi, t v 2,p) is a wff.

3. If φ ι and φι are wffs, dien so are φ ι Λ φ2 and - ιφι .

4. If φ is a wff and ν e V, dien Vv φ is a wff.

We assume the usual definition of v , 3 , s , 3 and other logical operators. We
can also use die following syntactic sugar: True (tvi, t v 2 , φ ι Λ φ2) is short
hand for True (tvi, t v 2 , φ ι) ΛTrue (tv l , tv2 ,φ2),True (tvi, t v2 , -^φ) is
shordiand for -i True (tvi, t v 2 , φ) , and so on.

Semantics An interpretation is a tuple (W,<,M), where w is a nonempty
universe of time points, < is a b i n a r ^ l a t i o n on w, Μ = (Mi,M2) is a meaning
function Ml : τ - > w and M2 : Ρ 2

(We can require that (wi, w2) e M2 (p) iff (w2, wi) e M2 (p). This
convention makes explicit die intuition that a pair of time points denotes a
single interval. Alternatively, we can omit this requirement, and simply pay
no attention to die trath value of the formulas True (ti , t2,p) such diat
Ml(tl) ltMl (t2) .)

A variable assignment is a function VA : ν w. An inteφretation
s = (w,<,(Mi,M2 >) satisfies a wff φ under the variable assignment
VA (s t= φ [VA]) given the following inductively defined conditions (in the
following, for any tv € TV, VAL (tv) is defined to be Mi (tv) if tv e τ , and
VA(tv) if tv« V):

S Ν (tvi = tV2) [VA] iff VAL (tvi) = VAL (t V 2) .
S t= (tvi :<: tV2) [VA] iff VAL (tvi) < VAL (t v 2) .
S True (tvi, tv2,p) [VA] iff < VAL (t vi) , VAL (t V2) > € M2(p).
s Ν (φ ι Λ φ2) [VA] iff s Ν φ ι [VA] and S Ν φ2 [VA] .
s Ν - ι φ [VA] iff s ί * φ [VA].
s Ν (ν ν φ) [VA] iff s Ν φ [VA '] for all VA ' tíiat agree witíi VA

everywhere except possibly on v.

An inteφretation s is a model for a wff φ if s t= φ [VA] for all variable as
signments VA. A sentence is a wff containing no free variables. Clearly, if a
sentence φ is satisfied by an inteφretation s under some variable assignment
then φ is satisfied by s under any variable assignment, and therefore s is a
model for φ. A wff is satisfiable if it has a model. A wff φ is valid (written
Ν φ) if its negation is not satisfiable.

3.2.2 First-Order Case The propositional nature of die logic presented in
the previous section restricts one to basic assertions that are "structureless": the
assertion "Housel7 is Red" collapses into a single propositional letter p, and

430 Shoham and Goyal

so on. We cannot say something about all houses. Therefore, the logic is now
generalized to a first-order one.

Syntax Given TC , a set of time point symbols; c, a set of constant symbols
that is disjoint from TC; TV , a set of temporal variables; v, a set of variables
that is disjoint from TV; TF , a set of temporal function symbols (typical ones
being the arithmetic operators); F, a set of function symbols that is disjoint
from TF ; and R, a set of relation symbols.

The set of temporal terms is defined inductively as follows:

1 . All members of TC are temporal terms.

2. All members of TV are temporal terms.

3. If trmi, . . . , triTin are temporal terms, and f G TF is an n-ary
function symbol, then f (trmi, . . ., trmn) is a temporal term.

The set of nontemporal terms is defined in exactiy the same way, with TC
replaced by c, TV replaced by ν and TF replaced by F.

The set of well-formed formulas (wffs) is defined inductively as follows:

1 . If trma and trmb are temporal terms, then trma = trmb and
trma :<: trmb are wffs.

2. If trma and trmb are temporal terms, trmi, . . ., trmn
are nontemporal terms, and r G κ an /i-ary relation symbol, then
True (trma, trmb, r (trmi, . . ., trmn)) is a wff.

3. If φι and φ2 are wffs, then so are φι Λ φ2 and - ιφι .

4. If φ is a wff and ζ 6 τν u ν is a variable, then Ν/ζφ is a wff.

Again, we assume the usual definitions of v , 3 , ξ , 3, and so on. Below are
some examples of sentences (or wffs widi no free variables):

True (Ti, T2, Color(HouselV, Red))
Bu True(T3,T4,On(u,B))
Vv(1984 V Λ V ^ 1988)

Z) True (V, V, Gender (President (USA) ,Male))
V\rL,u 3v2 (V 2 < V I + 30inin

Λ ((True(vi, vi,Solid(u))

Λ True (vi,V 2 ,Heating (u))

Z) True (v 2 , v 2 , Liquid (u))))) .

Notice that in the third example above, the term President (USA) contains
the function symbol President that depends implicitiy on time (in addition to

Chapter 11 Temporal Reasoning in AI 431

its dependence on the explicit argument). Such functions, which were called
fluents by McCarthy and Hayes [1981], will therefore be inteφreted in a way
that takes time into account. In fact, the inteφretation of all function symbols
will be time-dependent; of course, the value of die function along the time di
mension may be constant. The same applies to the inteφretation of relation
symbols. Constant symbols, on the other hand, will be inteφreted in a time-in
dependent fashion. For example, the symbol USA will denote the same object at
all times. In other words, we will assume that constant symbols are what
philosophers have called rigid designators.

The respective intended meanings of the sentences above are that
Housel7 is Red from Ti to T2, that there is something on Β from T3 to T4,
that at no time between 1984 until today has the USA had a woman president,
and that if you heat a solid object then it melts within half an hour. Next we
guarantee that these indeed are the meanings.

Semantics An interpretation is a mple 3 = (TW, <, w, TFN, FN, RL, Μ),
where TW is a nonempty universe of time points, < is a binary relation on TW, w
is a nonempty universe of individuals that is disjoint from TW, TEN is a set of
total functions in Ujt (τ ν / TW), FN is a set of total functions in Uit (w^ -> w),
RL is a set of relations over w, and Μ = (Mi, M2, M3, M4, M5) is a meaning
function as follows. Mi : τ ^ TW, M2 : c ^ w, M3 : TF TFN, M4 : TW Χ TW
X F FN, and MS : TW X TW X R -» RL. (Again, we require that M4 and M5 be
commutative in the first two arguments: that is, M4 (wi, w2, f) = M4 (w2, wi, f)
and similarly for M5. Altematively, we can ignore the tmdi value of formulas
over "reversed" interval, that is, over pairs (wi, w2) s.t. wi ̂ w2.)

A variable assignment is a function VA = (VAT, VAV), such that VAT :
VT TW and VAV : ν w. Μ and VA induce a time-independent meaning MVA
on arbitrary terms in the following way.

We first define the meaning of arbitrary temporal terms. That meaning is
the same regardless of when the terms are inteφreted: the terms 1.1.2000 and
(12:00 + I2min) each denote a single, unambiguous absolute time. The pre

cise meaning of temporal terms is as follows. If vt e ν τ , then MVA(vt) =
VAT(vt). If ct e CT, dien MVA (et) = Mi(ct). If f G TF and trm =
f (trmi, . . ., trmn) is a temporal term, then

MVA(trm) = M3(f) (MVA(trmi) , . . .,MVA(trmn)) .

The meaning of arbitrary nontemporal terms is slightiy trickier since it is
time-dependent: the meaning of President (USA) depends on the time of in-
teφretation. We therefore make die following definition. If ν € v, then for all
wi,w2 € WT, MVA(wi ,W2,v) = VAV (v). If c G C, tiien MVA(wi,w2,c) =
M2 (c). The temporal dependence of the inteφretation enters in the following

432 Shoham and Goyal

definition: if f e F and trm = f (trmí, . . .,trmn) is a nontemporal term,
then^

MVA(wi,w2,trm) = M4(wi,W2,f) (MVA(wi,W2,trmí), . .
MVA(wi,W2,trmn)) .

The inteφretation 3 and the variable assignment VA satisfy a wff φ (writ
ten 3 Ν φ [VA]) under the following inductively defined conditions.

3 1= trmi = trm2 [VA] iff MVA (trmi) = MVA(trm2).
3 t=trmi :<trm2[VA] iff MVA (trmi) < MVA(trm2).
3 N= True (trma, trmb, r (trmi, . . trmn)) [VA] iff

(MVA(MVA(trma) ,MVA(trmb) , trmi),. . .,
MVA(MVA(trma),MVA(trmb),trmn))

G Ms (MVA (trma) , MVA (trmb) ,r).
3 1= (φι Λ φ2) [VA] iff 3 Ν φι [VA] and 3 í= φ2 [VA] .
3 Ι=(-.φ)[νΑ] iff 3 >^φ[ΝΑ].
3 1= (Vz φ) [VA] iff 3 Ν φ [VA'] for all VA ' that

agree with VA everywhere except possibly on z.

The next few definitions are identical to those made in the propositional
case. An inteφretation 3 is a model for a wff φ (written 3 Ν φ) if 3 Ν φ [VA]
for all variable assignments VA . A sentence is a wff containing no free varia
bles. Again, it is clear that if a sentence φ is satisfied by an inteφretation 3
under some variable assignment then φ is satisfied by 3 under any variable as
signment, and therefore that 3 is a model for φ. A wff is satisfiable if it has a
model. A wff φ is valid (written \= φ) if its negation is not satisfiable.

3.3 Ontology: Facts, Properties, Events, and Other Animals
We now have a temporal logic that enjoys both clear syntax and precise
semantics. But all we have are temporal propositions, which associate a propo
sition type with a time interval. These temporal propositions do not have the
structure of Allen's properties, events, and processes [Allen, 1984] or McDer-
mott's facts and events [McDermott, 1982b]. We will now provide the means
for distinguishing between fact-like (or property-like) proposition types and
event-like proposition types. In fact we will be able to construct a categoriza
tion of proposition types that is richer and more flexible than the fact/event di
chotomy or the property/event/process trichotomy. For example, the assertions
"I ran more than two miles" and "I ran less tiian two miles" do not fit into
either of those two categorization schemes; they will into the following one.

2 Note that a certain problem still remains here. How would you represent the sentence "From
1776 to 1976, the president of the United States has always been a male?"

Chapter 11 Temporal Reasoning in AI 433

The way we will distinguish between different kinds of propositions is by
specifying how die tmth of the proposition over one interval is related to its
tmth over other intervals. For the propositional logic, interpret a proposition
type to mean a primitive propositional symbol. For the first-order case, inter
pret a proposition type to be a relation symbol with the appropriate number of
arguments. We have defined below a few concepts based on this principle to il
lustrate the power we have at our disposal.

• A proposition type χ is downward-hereditary (written i χ) if whenever it
holds over an interval it holds over all of its subintervals, possibly exclud
ing the two end points. Example: "The robot traveled less than two miles"
is downward-hereditary.

A proposition type JC is upward-hereditary (written Τ χ) if whenever it
holds for all proper subintervals of some nonpoint interval (except possibly
at its end points), it also holds over the nonpoint interval itself. Example:
"The robot traveled at a speed of two miles per hour" is upward-heredi
tary.

• A proposition type is liquid (written t x) if it is both upward-hereditary
and downward-hereditary. Example: "The robot's arm was in tiie GRASP
ING state" is liquid.

• A proposition type is clay-like if whenever it holds over two consecutive
intervals it holds also over their union. Example: "The robot started and
ended at the same place" and "The robot traveled an even number of
miles" are clay-like.

• A proposition type is gestalt if it never holds over two intervals one of
which properly contains the other. Example: "Exactiy six minutes passed"
is gestalt.

• A proposition type is solid if it never holds over two properly overlapping
intervals. Example: "The robot executed the NAVIGATE procedure (from
start to finish)" is solid.

4 Nonmonotonic Temporai Reasoning

We have identified seven problems with the change-based approach in the
beginning. Of these, the first four are solved by the time-based system pro
posed here. What about the rest, that is, the qualification problem, the ramifica
tion problem, and the frame problem? The answer is they are still with us. Let
us reexamine the car-starting scenario, which ought to be expressed as

True(T,T,Switchon) Λ True(T,T,Gas)
Λ True (Τ, Τ, Battery) Λ . . . Z) True (Τ + ε, Τ + ε. On).

434 Shoham and Goyal

The qualification problem still exists since we still have to specify all the
conditions for the car to start in the antecedent. Another problem is that we
cannot say anydiing about the engine after die time point τ + 6 . That is, for
ε < δ, nothing can be said about True (τ + δ , τ + δ. On) ; this is exactly the
frame problem. Much work recendy has addressed these problems using non
monotonic logics.

Nonmonotonic logics permit "jumping to conclusions," or assigning sen
tences "default tmth values," or reaching conclusions which rely in part on the
"absence of evidence to die contrary." The three best-known nonmonotonic
logics are circumscription by McCarthy [1980], default logic by Reiter [1980],
Etiierington [1983], and the modal family of logics by McDermott and Doyle
[1980], McDermott [1982a], Moore [1983], Halpem and Moses [1985],
Shoham [1987c], Levesque [1984] and odiers. We will not discuss these since
they are covered elsewhere in the book.

Since nonmonotonic logics permit "jumping to conclusions," it is natural
to expect that they will be useful for solving the qualification and frame prob
lems. For example, given the fact that the car ignition has been switched on,
one might expect such a logic to allow jumping to the conclusion that the car
starts, and retracting that statement when told that the battery is dead. Indeed,
until recendy, such wishful thinking was common. That ended with the well-
known paper by Hanks and McDermott [1987], which introduced what is now
known as the Yale shooting problem. The moral of the paper was that the
naive use of any of the standard nonmonotonic logics gave bad results in a
temporal setting. We will describe the Yale shooting problem and the proposed
solutions in brief.

The Yale shooting problem concerns a person often named Fred, and a
gun. At any time, Fred may or may not be alive and the gun may or may not
be loaded. In the initial situation Fred is alive and the gun is loaded. Also in
any situation in which the gun is loaded, firing it will kill Fred (that is, cause
Fred to cease being alive). Finally we are given a frame axiom which says that
unless an action a is abnormal in that it reverses the sentence ρ in situation s, ρ
will persist through the execution of the action. We will presumably minimize
the extension of the abnormality predicate using one of the formal approaches
to nonmonotonic reasoning.

Now suppose that in die initial situation, we wait and then fire the gun.
Our intuition says that as a result of the shooting action, Fred should die since
waiting does not change anything. Unfortunately, none of the existing nonmon
otonic logics can derive this. All of them derive the fact that either Fred is
killed as the result of die shooting action, or die waiting action causes the gun
to become unloaded. If our intention is merely to minimize abnormality, there
is no way to select between these two possibilities. As this sort of minimization
is all that is effected by any of the existing formalizations of nonmonotonic

Chapter 11 Temporal Reasoning in AI 435

logics, all of them are incapable of concluding that Fred is dead after we shoot
him.

One set of solutions suggested appealed to tiie temporal information. These
were chronological ignorance by Shoham [1987c], pointwise circumscription
by Lifschitz [1986] and the logic of persistence by Kautz [1986]. The idea is
that the set of situations can be partially ordered in time, so that we can say
that sometiiing happened later or before something else. Then we try to delay
the occurrence of abnormality to as late in die time as possible. This way the
gun cannot be unloaded during the course of the first waiting action; the only
abnormal action is tiiat of the gun being fired after the wait action and success
fully killing Fred. Unfortunately, this approach gives unintuitive answers in
some cases. Suppose we are told that if we wait twice, die gun becomes un
loaded for some reason or other. Combining this with our existing domain de
scription, we are able to conclude that one of the waiting actions must have
been abnormal, since the gun became unloaded during it. Now the approach
based on temporal ordering forces us to break this ambiguity by concluding
specifically that the gun became unloaded at the last possible moment. Intui
tively, this is not justified by tiie information available to us.

There has also been a causal approach to the solution typified by the logic
of causal minimization proposed independently by Lifschitz [1987] and Haugh
[1987]. This approach suggests modifying the domain description so as to cap
ture the notion of causality. It explicitly states that the shooting action causes
Fred to become not alive, and that no change can occur unless there is a causal
explanation for that change. There are technical difficulties with tiiis approach
too that we will not go into here.

The nonmonotonic solutions have so far been only partial. They are useful
in some respects, but not otiiers. For instance, they allow us to predict die fu
ture without drowning in details, but they do not allow us anything more com
plex. This is currentiy a very active research area and proposed solutions to the
Yale shooting problem are still pouring in.

5 Conclusion

To summarize, we introduced a distinction between the change-based and time-
based systems for representing change. We discussed some change-based sys
tems like the situation calculus and dynamic logic, pointing to the problems in
the change-based approach. Some of these problems, which were formalism-
dependent, can be solved by using the time-based approach. After consideringse-
veral altematives, a reified temporal logic with formal syntax and semantics
was constructed. This solved the formalism-dependent problems, but some
formalism-independent problems such as the qualification problem and the frame
problem, were still unsolved. We mentioned the usefulness of nonmonotonic

436 Shoham and Goyal

logics in solving diese problems. We dien briefly discussed die Yale shooting
problem and die solutions proposed to it based on nonmonotonic temporal rea
soning.

6 References

Allen, J. F., 1984. Towards a general theory of action and time. Artificial Intel
ligence 23(2): 123-154.

Chellas, B. F., 1980. Modal Logic. London: Cambridge University Press.
Etherington, D. W., 1983. Formalizing Nonmonotonic Reasoning Systems, p.

83. Computer Science Department, University of British Columbia.
Fikes, R. and N. J. Nilsson, 1971. STRIPS: A new approach to application of

theorem proving to problem solving. Artificial Intelligence 2:189-208.
Fischer, M. J. and Ladner, R. E., 1979. Propositional dynamic logic of regular

programs. Journal of the Computer Science Society 2(18):194-211.
Halpem, J. Y. and Moses, Y., 1985. A guide to the modal logics of knowledge

and belief: Preliminary draft. In Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, Los Angeles, Califomia, pp. 480-490.
San Mateo: Morgan Kaufmann.

Halpem, J.Y. and Shoham, Y., 1986. A propositional modal logic of time inter
vals. In Proceedings of the Symposium on Logic in Computer Science, Bos
ton, Mass. New York: IEEE.

Hanks, S. and McDermott, Drew V., 1987. Nonmonotonic logics and temporal
projection. Artificial Intelligence 33:379-412.

Haugh, B., 1987. Simple causal minimizations for temporal persistence and
projection. In Proceedings of the Sixth National Conference on Artificial In
telligence, Seattle, Washington, pp. 218-223. San Mateo: Morgan Kauf
mann.

Kautz, H.A., 1986. The logic of persistence. In Proceedings of the Fifth
National Conference on Artificial Intelligence, Philadelphia, Pennsylvania,
pp. 401-405. San Mateo: Morgan Kaufmann.

Lifschitz, v., 1987. Formal theories of action. In The Frame Problem in Artifi
cial Intelligence: Proceedings of the 1987 Workshop, Frank L. Brown, ed.
San Mateo: Morgan Kaufmann.

Levesque, H.J., 1984. A logic of implicit and explicit belief. In Proceedings of
the Fourth National Conference on Artificial Intelligence, Austin, Texas.
San Mateo: Morgan Kaufmann.

Moore, R.C., 1983. Semantical considerations on nonmonotonic logic. In Pro
ceedings of the Eighth International Joint Conference on Artificial Intel
ligence, Karlsmhe, West Germany, pp. 272-279. San Mateo: Morgan Kauf
mann.

Chapter 11 Temporal Reasoning in AI 437

Ladkin, P., 1986. Primitives and units for time specification. In Proceedings of
the Fifth National Conference on Artificial Intelligence, Philadelphia, Penn
sylvania, pp. 354-359. San Mateo: Morgan Kaufmann.

Ladkin, P., 1986. Time representation: A taxonomy of interval relations. In
Proceedings of the Fifth National Conference on Artificial Intelligence,
Philadelphia, Pennsylvania, pp. 360-366. San Mateo: Morgan Kaufmann.

Hughes, G. E. and Cresswell, M. J., 1969. Introduction to Modal Logic. Lon
don: Methuen.

Kripke, S. 1963. Semantical considerations on modal logic. Acta Philosophica
Fennica 16:83-94

Sacerdoti , E. D., 1984. Planning in hierarchy of abstraction spaces. Artificial
Intelligence 5:115-135

Lifschitz, v., 1986. Pointwise circumscription. In Proceedings of the Fifth
National Conference on Artificial Intelligence, Philadelphia, Pennsylvania.
San Mateo: Morgan Kaufmann.

McCarthy, J. M., 1980. Circumscription—^A form of non monotonic reasoning.
Artificial Intelligence 13:27-39.

McCarthy, J. M. and P. J. Hayes, 1981. Some philosophical problems from the
standpoint of artificial intelligence. Readings in Artificial Intelligence, pp.
431-450. San Mateo: Morgan Kaufmann.

McDermott, D. V., 1982b. A temporal logic for reasoning about processes and
plans. Cognitive Science 6:101-155.

McDermott, D. V., 1982a. 29. Nonmonotonic logic II: Nonmonotonic modal
theories. Journal of the Association for Computing Machinery 1:33-57.

McDermott, D. V. and J. Doyle 1980. Nonmonotonic logic I. Artificial Intel
ligence 13:41-72.

Pnueli, Α., 1977. A temporal logic of programs. In Proceedings 18th FOCS,
pp. 46-57. New York: IEEE.

Pratt, V. R., 1976. Semantical considerations on Floyd-Hoare logic. In Pro
ceedings I7th FOCS, pp. 109-121. New York: IEEE.

Pratt, V. R., 1979. Process logic. In Proceedings 6th POPL, pp. 93-100. New
York: ACM.

Prior, A. N., 1967. Past, Present and Future. Oxford: Clarendon Press.
Fikes, R. E., Hart, P., and Nilsson, N. J., 1972. Leaming and executing gener

alized robot plans. Artificial Intelligence 3:235-246
Reiter, R., 1980. A logic for default reasoning. Artificial Intelligence 13 :81-

132.
Rescher, N. and Urqhuart, Α., 1971. Temporal Logic. New York: Springer-

Verlag.
Shoham, Y., 1987a. Temporal logics in AI: Semantical and ontological con

siderations. Artificial Intelligence 33.

438 Shoham and Goyal

Shoham, Y., 1987b. A semantical approach to nonmonotonic logics. In Pro
ceedings IEEE Symposium on Logic in Computer Science, Ithaca, New
York. New York: IEEE.

Shoham, Y., 1987c. Reasoning about Change, Cambridge, Mass.: MIT Press.
Shoham, Y. and D. McDermott, 1988. Problems in temporal reasoning. Artifi

cial Intelligence, To appear.
van Benthem, J. F. A. K., 1983. The Logic of Time, D. Reidel.
Vilain, M. B., 1982. A system for reasoning about time. In Proceedings of the

Second National Conference on Artificial Intelligence, Pittsburgh, Pennsyl
vania, pp. 197-201. San Mateo: Morgan Kaufmann.

Chapter

12

Nonmonotonic Reasoning
Raymond Reiter^
Department of Computer Science
University of Toronto
Ontario, Canada

Ann. Rev. Comput. Sei. 1987. 2:147S6
Copyright © 1987 by Annual Reviews Inc. All rights reserved

1 Introduction

If Artificial Intelligence (AI) researchers can agree on anything, it is that an in
telligent artifact must be capable of reasoning about the world it inhabits. The
artifact must possess various forms of knowledge and beliefs about its world,
and must use this information to infer further information about that world in
order to make decisions, plan and carry out actions, respond to other agents,
and so on. The technical problem for AI is to characterize the pattems of rea
soning required of such an intelligent artifact, and to realize them computation
ally. There is a wide range of such reasoning pattems necessary for intelligent
behavior. Among these are:

• Probabilistic reasoning (e.g., [Bundy, 1985; Nilsson, 1986]), in which
probabilities are associated with different items of information. Reasoning
requires, in part, computing appropriate probabilities for inferred informa
tion, based upon die probabilities of the information used to support the in
ference.

• Fuzzy reasoning (e.g., [Zadeh, 1981]), designed to characterize vague con
cepts like "tall" or "old" and to assign degrees of vagueness to conclusions
inferred using such concepts.

1 Fellow of the Canadian Institute for Advanced Research.

439

440 Reiter

• Inductive reasoning (e.g., [Michalski, 1983]), which is concemed with de
termining plausible generalizations from a finite number of observations.

• Deductive reasoning, the concern of mathematical logic, which character
izes, among other things, the axiomatic method in mathematics.

This is far from a complete enumeration of human reasoning patterns. The
most recent addition to this list in nonmonotonic reasoning, the study of which
appears to be unique to AI. In order to convey an intuitive sense of what this is
all about, it is first necessary to consider what has come to be known in AI as
the knowledge representation problem.

Because an agent must reason about something (its knowledge, beliefs),
any consideration of the nature of reasoning requires a concomitant concern
with how the agent represents its knowledge and beliefs. The stance adopted by
AI research on nonmonotonic reasoning is in agreement with the dominant
view in AI on knowledge representation; the "knowledge content" of a reason
ing program ought to be represented by data stmctures inteφretable as logical
formulas of some kind. As Levesque [1986] puts it:

For the süiictures to represent knowledge, it must be possible to ίηΙβφΓβΙ
them propositionallyy that is, as expressions in a language with a truth
theory. We should be able to point to one of them and say what the world
would have to be like for it to be tme.

The province of nonmonotonic reasoning is the derivation of plausible (but
not infallible) conclusions from a knowledge base viewed abstracdy as a set of
formulas in a suitable logic. Any such conclusion is understood to be tentative;
it may have to be retracted after new information has been added to the knowl
edge base.

In what follows, I assume the reader is logically literate, at least with re
spect to the fundamental ideas of first-order logic (with a smattering of second-
order) and the familiar modal logic of necessity (e.g., 54 and 55).

2 Motivation

Nonmonotonic reasoning is a particular kind of plausible reasoning. Virtually
every example in AI that calls upon such reasoning fits the following pattern:

Normally, A holds.

Several paraphrases of this pattern are commonly accepted:

Typically, A is the case.

Assume A by default.

Chapter 12 Nonmonotonic Reasoning 441

The remainder of this section is devoted to a number of examples of this
pattem as it arises in various settings of special concem to AI. The ubiquity of
this pattem is remaricable. Once one learns to look for it, one discovers it vir
tually everywhere.

2.1 The Canonical Example

The standard example in AI of a nonmonotonic reasoning pattem has to do
with flying birds. The sentence "Birds fly" is not synonymous with "All birds
fly" because there are exceptions. In fact, there are overwhelmingly many ex
ceptions—ostriches, penguins, Peking ducks, tar-coated birds, fledglings, etc.,
etc.—a seemingly open-ended list. Neverdieless, if told only about a particular
bird, say Tweety, without being told anything else about it, we would be
justified in assuming that Tweety can fly, without knowing that it is not one of
the exceptional birds. In odier words, we treat Tweety as a typical or normal
bird.

We can represent die sentence "Birds fly" by instances of our patterns of
plausible reasoning:

"Normally, birds fly."

"Typically, birds fly."

"If JC is a bird, then assume by default that χ flies."

We can now see why diese are plausible reasoning patterns. We wish to
use diem to conclude diat Tweety can fly, but should we subsequendy leam in
formation to the contrary—say, that Tweety is a penguin—we would retract
our earlier conclusion and conclude instead that Tweety cannot fly. Thus ini
tially we jumped to the conclusion or made the default assumption that Tweety
can fly. This, of course, is what makes our mle patterns plausible rather than
deductive; they sanction assumptions rather than infallible conclusions.

Notice also that there is another possible paraphrase of our reasoning pat
tem. In the case of Tweety the bird we were prepared to assume that Tweety
can fly provided we knew of no information to the contrary, namely that
Tweety is a penguin or an ostrich or the Maltese Falcon o r S o one
possible reading of our pattem of plausible reasoning is:

In the absence of information to the contrary, assume A.

What is problematic here (as it is for notions like "typically" and "normally")
is defining precisely what one means by "absence of information to the contrary."
A natural reading is something like "nothing is known that is inconsistent with

442 Reiter

the desired assumption Λ." As we shall see later, this consistency-based version
of tfie pattem motivates several formal theories of nonmonotonic reasoning.
We shall also see that other intuitions are possible, leading to formalism that
apparentiy have littie to do with consistency.

2.2 Databases

In the theory of databases there is an explicit convention about the repre
sentation of negative information that appeals to a particular kind of default as
sumption. To see why negative information poses a problem, consider the
simple example of a database for an airline flight schedule representing flight
numbers and the city pairs they connect. We certainly would not want to in
clude in this database all flights and tiie city pairs they do not connect, which
clearly would be an overwhelming amount of information. For example. Air
Canada flight 103 does not connect London with Paris, or Toronto with Mon
treal, or Moose Jaw with Athens, o r There is far too much negative infor
mation to represent explicitly, and this will be tme for any realistic database.

Instead of explicitly representing such negative information, databases im
plicitly do so by appealing to the so-called closed world assumption [Reiter,
1978b], which states that all relevant positive information has been explicitiy
represented. If a positive fact is not explicitiy present in the database, its nega
tion is assumed to hold. For simple databases consisting of atomic facts only,
e.g., relational databases, tiiis approach to negative information is straightfor
ward. In the case of deductive databases, however, the closed world assump
tion (CWA) is not so easy to formulate. It is no longer sufficient that a fact not
be explicitiy present in order to conjecture its negation; the fact may be deriva
ble. So in general we need a closed world mle that, for the flight schedule ex
ample, looks something like:

I f / i s a flight and ci, C2 are cities, then in the absence of information to
die contrary, assume -i CONNECT(/; c i , C2).

Here, by "absence of information to the contrary" we mean that

CONNECT(/; CL, C2)

is not derivable using die database as premises. As we shall see below, there
are formal difficulties with this version of die CWA; but on an intuitive level
the CWA conforms to the pattem of plausible reasoning we are considering in
this section. When we consider various proposed formalization for nonmono
tonic reasoning, below, we shall return to the question of the CWA since it
plays a dominant role in many approaches.

Chapter 12 Nonmonotonic Reasoning 443

2.3 Diagnosis from First Principles

There are two basic approaches in the AI literature to diagnostic reasoning.
Under the first approach, which might be called the experiential approach,
heuristic information plays a dominant role. The corresponding systems at
tempt to codify the mies of thumb, statistical intuitions, and past experience of
human diagnosticians considered experts in some particular task domain. In
particular, the stmcture or design of the object being diagnosed is only weakly
represented, if at all. Successful diagnoses stem primarily from the codified ex
perience of the human expert being modeled rather than from detailed informa
tion about die object being diagnosed. This is the basis of so-called mle-based
approaches to diagnosis, of which the MYCIN system [Buchanan and Shortliffe,
1984] is a notable example.

Under the second approach, often called diagnosis from first principles, or
diagnosis from structure arui behavior, the only information at hand is a de
scription of some system, say a physical device or setting of interest, together
with an observation of that system's behavior. If this observation conflicts with
intended system behavior, then the diagnostic problem is to determine which
components could by malfunctioning account for the discrepancy between ob
served and correct system behavior. Since components can fail in various and
often unpredictable ways, their normal or default behaviors should be de
scribed. These descriptions fit die pattern of plausible reasoning we have been
considering. For example, an AND-gate in a digital circuit would have the de
scription:

Normally, an AND-gate's output is the Boolean and function of its in
puts.

In a medical diagnostic setting, we might want the description:

Normally, an adult human's heart rate is between 70 and 90 beats per
minute.

In diagnosis, such component descriptions are used in the following way:
We first assume that all of the system components are behaving normally. Sup
pose, however, the system behavior predicted by this assumption conflicts with
(i.e., is inconsistent with) the observed system behavior. Thus some of the
components we assume to be behaving normally must really be malfunction
ing. By retracting enough of the original assumptions about correctiy behaving
components, we can remove the inconsistency between the predicted and ob
served behavior. The retracted components yield a diagnosis. This approach to
diagnosis from first principles forms the basis for several diagnosis reasoning
systems [de Kleer and Williams, 1986; Geneseretii, 1985; Reiter, 1987]. Poole
[1986] took a somewhat different but closely related approach.

444 Reiter

2.4 Prototypes, Natural Khds, and Frames

Nonmonotonic reasoning is intimately connected to the notion of prototypes in
psychology [Rosch, 1978] and natural kinds in philosophy [Putnam, 1970]. To
see the connection, observe tiiat bodi these notions concem concepts that can
not be defined via necessary and sufficient conditions. We cannot, for example,
define the natural kind "bird" by writing somediing like

(VJC) BIRD(JC) Ξ BIPED(JC) & FEATHERED(jc) &...

because we can always imagine a bird diat lacks one or more of the defining
properties, say a one-legged bird. The best we seem capable of doing is to de
scribe one or more "typical" members of the concept, and to define the concept
as the set of individuals that do not deviate too far from the typical member(s).
This notion of a "typical" member of such a concept provides die link widi
nonmonotonic reasoning. The rest of this section elaborates on this link.

The concepts that concem us are those lacking necessary and sufficient de
fining conditions. Recall that Ν is said to be a necessary condition for a predi
cate Ρ if the following formula holds:

mP(x)z>N(x).

S is said to be a sufficient condition for Ρ if the following holds:

(yx)S(x)^P(x).

Finally, Ρ possesses a classical definition if tiiere are formulas D i , . . . , Dn tiiat
are both necessary and sufficient for Ρ—i.e., if the following holds:

(Vjc)/>(jc)=Di(jc)&...&Dn(A:).

As we have seen, commonsense concepts like "bird," "chair," "game," and
so on, are not like madiematical concepts; tiiey lack classical definitions based
on necessary and sufficient conditions. Nevertheless, by appealing to conven
tional logic together with our pattem of plausible reasoning, we can define no
tions that correspond to normal necessary and sufficient conditions. For ex
ample, we have the following "necessary conditions" for the concept "bird":

If B I R D W tiien V E R T E B R A T E (j c) .
If BIRD(jc) then normally FLY(jc).
If BIRD(jc) then assume by default BIPED(jc).
If BIRD(jc) tiien typically F E A T H E R E D (j c) .
If BIRD(jc) dien typically HAS-AS-PART(jc,beak(jc)).
and so on. (1)

Chapter 12 Nonmonotonic Reasoning 445

It is natural to define a prototypical bird as one that enjoys all of the con
sequences, including the default assumptions, of the above "necessary condi
tions": It is a beaked, bipedal, feathered vertebrate that flies, and so on.

The bird concept also possesses "sufficient conditions," some of which are
logical implications while otiier fit our pattem for default reasoning:

If SPARROWW tiien BIRD(jc).
If FLY(jc) & CHIRP(jc) tiien assume by default that BIRD(jc).
IF FLY(jc) & FEATHERED(jc) then assume by default that BIRD(jc)
and so on. (2)

It is natural, then, to take the concept of a bird to be defined by the above
"necessary and sufficient conditions."

Now the obvious problem for AI knowledge representation is this: How do
we characterize, represent, and compute with prototypes, or concepts like natu
ral kinds, where defaults assumptions play such a prominent role? In his very
influential "frames paper," Minsky [1975] proposed the notion of a frame, a
complex data stmcture meant to represent certain stereotyped information.
While Minsky's description of a frame is informal and often impressionistic,
central to his notion are the issues we have just considered: prototypes, default
assumptions, and the unsuitability of classical definitions for commonsense
concepts like natural kinds. A few quotations from Minsky ([1975], p. 212)
serve to illustrate this point.

Here is die essence of die tiieory: When one encounters a new situation
(or makes a substantial change in one's view of the present problem) one
selects from memory a substantial stmcture called a frame. This is a re
membered framework to be adapted to fit reality but changing details as
necessary... .

A frame is a data-stmcture for representing a stereotyped situation,
like being in a certain kind of living room, or going to a child's birtiiday
party... .

We can think of a frame as a network of nodes and relations. The "top
levels" of a frame are fixed, and represent things that are always tme
about the supposed situation. The lower levels have many terminals—
"slots" that must be filled by specific instances or data.. . .
Much of die phenomenological power of the tfieory hinges on tfie inclu
sion of expectation and other kinds of presumptions. A frame's terminals
are normally ah-eady filled witfi "default" assignments. Thus, a frame may
contain a great many details whose supposition is not specifically war
ranted by the situation.

446 Reiter

Frames, therefore, are representations of stereotyped information. As Hayes
[1979] points out, formally a frame has a logical status consisting of a collec
tion of "necessary and sufficient" conditions on the concept defined by the
frame. (Here, the quotation marks remind us that these conditions may be de
fault assumptions.) Thus, a frame for the concept of a bird might contain
bundle 1 above, of "necessary conditions" and bundle 2, of "sufficient condi
tions." What Minsky called the "top levels" of a frame, which represent things
always tme of the frame, are logical implications like the first formula of the
bundle 1 or 2. The lower-level terminals or slots are predicated representing
the default assumptions normally made of an instance of the frame. Thus
FLY(.) and HAS-AS-PART(.,.) are slots of our BIRD(.) frame. The arguments
of these slot predicates are the "fillers" in Minsky's description, so that if
Tweety is an instance of the bird frame, i.e., BIRD(Tweety) holds, then the
frame instance's terminals FLY(.), HAS-AS-PART(.,.), and so on, will be
filled by Tweety, so that the default assignments FLY(Tweety), and HAS-AS-
PART(Tweety, beak(Tweety)) will be assumed.

We can now see that the "necessary and sufficient" conditions defining a
frame play different roles. "Necessary conditions" are used for frame institu
tion. Given an instance, say BIRD(Tweety), of the BIRD(.) frame, we can infer
some of Tweety's other properties, many of them default values. These are the
expectations or presumptions referred to by Mirisky, the "details whose sup
position is not specifically warranted by the situation." Because some of these
default assumptions may be specifically contradicted in certain cases, e.g., in
the case of a bird that doesn't fly, not all the frame's terminals will be as
sumed. This corresponds to Minsky's assertion that "the default assumption are
attached loosely to their terminals, so that they can be easily displaced by new
items that better fit the current situation." "Sufficient conditions" are used for
frame selection or recognition. Here recognition means determination of what
kind of thing one might have in hand based upon knowledge of some of its
properties. Of what frame might this thing be an instance? For example, the
BIRD frame has as one of its sufficient conditions:

If CHIRP(jc) and FLY(jc) then assume by default BIRD(jc).

If we have in hand something that we know chiφs and flies, then we might
select and initiate the bird frame. This frame-selection or concept-recognition
process is determined by some of the concept's sufficient conditions. These are
normally taken to be criterial; chiφing and flying are taken here to be criterial
properties for BIRDness. The understanding tfiat such properties do not
guarantee the concept—it might be a flying cricket for example—is reflected in
the default character of the sufficient condition.

Chapter 12 Nonmonotonic Reasoning 447

3 The Need for a Formal Theory

Having isolated a common pattern of reasoning, namely "Typically A holds,"
or "Assume A by default," we are still left with the problem of defining what
this means. In addition, we shall need a dieory of so-called truth maintenance.
While an exploration of tmth-maintenance systems is beyond the scope of this
paper, it is important to note their intimate connection with the kinds of
plausible reasoning considered thus far. Because our reasoning pattern sanc
tions default assumptions, some of these assumptions may have to be retracted
in the light of new information. But these retracted assumptions might them
selves have supported other conclusion, which therefore also ought to be re
tracted, and so on. It is die job of truth-maintenance system, in the style of
Doyle's [1979], to manage this retraction process. One reason that tmth-main
tenance systems are as complex as they are is that default conclusions are nor
mally based on two things: (a) the presence, either explicit or inferred, of cer
tain information (e.g., die presence of the fact that Tweety is a bird), and (b)
die absence of certain information, either explicit or inferred (e.g., die absence
of -I FLY(Tweety)). A trath-maintenance system must maintain a dependency
record with each inferred fact indicating its justification in terms of both the
presence and absence of information. This will obviously complicate bodi the
system's bookkeeping and its process of belief revision whenever the knowl
edge base is modified.

One reason a formal account is required for default-reasoning is that the
inferences diey sanction can be complicated [Reiter and Criscuolo, 1983]. For
example, two default assumptions can conflict, as the following example
shows:

The typical Quaker is a pacifist.

The typical Republican is not a pacifist.

Suppose Dick is both a Quaker and a Republican. Then he inherits contra
dictory default assumptions, so that intuitively neidier should be ascribed to
him.

A second example illustrates that typically is not necessarily transitive, in
the sense that "Typical As are Cs" need not follow from both "Typical As are
5 s " and "Typical Bs are Cs." For if typicality were transitive, dien from

"Typical high-school dropouts are adults"

and

"Typical adults are employed"

448 Reiter

we could conclude the intuitively incorrect

"Typical high-school dropouts are employed."

As a final example of the complexities of reasoning about typicality, con
sider inheritance hierarchies, which form the backbone of almost all semantic
networks and knowledge-representation languages. The classes in any such
hierarchy are organized into a taxonomy via ISA links. These classes normally
also have attributes. Now, suppose one wants to find out whether an individual
in class C has attribute A. To do this, simply search from the node C up the
hierarchy via ISA links to find if there is a higher node with attribute A . If so,
then the individual inherits this attribute. Unfortunately, this simple graphical
processing fails when exceptions to attributes are allowed in the hierarchy. In a
nice example of this, provided by Fahlman et al., [1981], we have an exception
to an exception to an exception:

A mollusc typically is a shell-bearer.

A cephalopod ISA mollusc except it typically is not a shell-bearer.

A nautilus ISA cephalopod except it typically is a shell-bearer.

A naked nautilus ISA nautilus except it typically is not a shell-bearer.

Here, the class mollusc has a default attribute shell-bearer. The class
cephalopod has a default attribute non-shell-bearer, and so on. Now, suppose
all we know of Fred is that he is a nautilus. Fred gets the default attribute
shell-bearer by virtue of being a nautilus. But Fred is also a cephalopod via an
ISA link, so at the same time he gets to be a non-shell-bearer by default. To
deal with this kind of problem, most implementations adopt a shortest-path
heuristic. A concept inherits the attribute nearest it in the hierarchy. Unfor
tunately, this can be shown to fail [Reiter and Criscuolo, 1983], so other cri
teria are necessary. Any formal theory of default reasoning must allow us to
sort out inheritance problems like diis.

4 Classical Logic Is Inadequate

There are two arguments against classical logic for formalizing the reasoning
patters we have been considering. The first simply notes that even if we could
enumerate all exceptions to flight with an axiom of the form

(VJC) BIRD(JC) & ^ EMU(jc) & ^ DEAD(jc) & . . . 3 FLY(jc)

Chapter 12 Nonmonotonic Reasoning 449

we still could not derive FLY(Tweety) from BIRD(Tweety) alone. This is so
since we are not given that Tweety is not an emu, or dead, and so on. The an
tecedent of the implicadon cannot be derived, in which case there is no way of
deriving the consequent of the implication.

The second argument against classical logic is the so-called monotonicity
argument Classical logics share a common property of being monotonic. This
means that whenever Γ is a set of sentences in such a logic and w is a sen
tence, then 71= w implies Τ u Nl= wfor any set Ν of sentences. In other words,
new information Ν preserves old conclusions^.

Now suppose default reasoning could be represented in some classical
logic, and Τ are axioms entailing that Tweety flies—i.e., 71= FLY(Tweety). If
later we leam that Tweety is an ostrich, we want the enlarged axiom set not to
entail that Tweety flies, i.e., we want

Τ u {OSTRICH(Tweety)}I^FLY(Tweety).

But this is impossible in a classical logic. So whatever the logical mechanism
that formalizes default reasoning, it must be nonmonotonic; its conclusions
must be retractable or defeasible.

5 Procedural Nonmonotoniclty in AI

AI researchers have routinely been implementing nonmonotonic reasoning sys
tems for some time, usually without consciously focussing on the underlying
reasoning patterns on which their programs rely. Typically these patterns are
implemented using the so-called negation-as-failure mechanism, which occurs
as an explicit operator in AI programming languages like PROLOG, or in mle-
based systems. In PROLOG, for example, the goal not G succeeds iff G finitely
fails. Since failing on G amounts to failing to find a proof of G using the PRO
LOG program as axioms, the not operator implements finite nonprovability.
From this observation we can see that PROLOG'S negation is a nonmonotonic
operator. If G is nonprovable from some axioms, it needn't remain nonprova-
ble from an enlarged axiom set.

Procedural negation is almost always identified with real—i.e., logical—
negation. The way procedural negation is actually used in AI programs
amounts to invoking the mle of inference "From failure of G, infer G." This
is really the closed world assumption, which we encountered earlier in the con
text of representing negative information in databases. Partly because is a non
monotonic operator, procedural negation can often be used to implement other
forms of default reasoning. The following example, a PROLOG program for rea
soning about flying birds, illustrates this.

450 Reiter

fly (Χ) 4- bird (Χ) & not ab (Χ),

bird (Χ) <- emu (Χ) .

bird (Χ) <- canary (Χ) .

ab (Χ) f- emu (Χ) ,

emu (fred).

canary (tweety).

Goal: not fly (fred) succeeds.

Goal: fly (tweety) succeeds.

Notice that the first rule uses a predicate ab, standing for abnormal. So this
mle says that X flies if X is not an abnormal bird, in other words if X is a nor
mal bird. The fourth mle describes a circumstances under which somediing is
abnormal, namely when it is an emu. This device of the ab predicate for repre
senting defaults is due to McCarthy, who introduced it in conjunction with his
circumscription formalism for nonmonotonic reasoning. We shall see it again
in Section 6.3.1, where circumscription is described. Continuing with the cur
rent example, we see that by identifying procedural negation witii real negation
we can derive that the emu fred doesn't fly, while the bird tweety does.

For a nontrivial, formally precise application of procedural negation for
reasoning about time and events see Kowalski and Sergot [1986].

6 Some Formalizations of Nonmonotonic
Reasoning

The need for nonmonotonic reasoning in AI had been recognized long before
formal theories were proposed. In support of his argument against logic in AI,
Minsky invoked the nonmonotonic nature of commonsense reasoning in one
version of his 1975 "frames" paper (reprinted in [Haugland, 1981]). Partial
formalization for such reasoning were proposed by McCarthy and Hayes
[1969], Sandewall [1972], and Hayes [1973]. Several knowledge-representation
languages, most notably KRL [Bobrow and Winograd, 1977], specifically pro
vided for default reasoning. Hayes [1979] emphasized the central role of de
faults in Minsky's notion of a frame and in KRL in particular. Reiter [1978a]
described various settings in AI where default reasoning is prominent.

The rest of this section is devoted to a critical examination of several
formalization of nonmonotonic inferences.

Chapter 12 Nonmonotonic Reasoning 451

6.1 The Closed World Assumption
As we remarked earUer, the closed world assumption (CWA) arises most
prominendy in the theory of databases, where it is assumed that all of the rele
vant positive information has been specified. Any positive fact not so specified
is assumed false. In the case of deductive databases it is natural to understand
that a positive fact has been specified if it is entailed by the database, and that
any fact not so entailed is taken to be false. This is the intuition behind Reiter's
[1978b] formalization of the CWA. Let D B be a first-order database (i.e., any
first-order theory). Reiter defines the closure of D B by

C L O S U R E (D B) = D B u {-. P(t) I D B I P(i) where Ρ is an n-ary
predicate symbol of D B and t is an n-tuple
of ground terms formed using the function symbols
of D B } . ^

In other words, the implicit negative information of a database sanctioned by
the CWA are those negative ground literals whose (positive) ground atoms are
not entailed by the database. Under the CWA, queries are evaluated with re
spect to C L O S U R E (D B) , rather dian D B itself

There are several problems with this view of the CWA. The most obvious
is tiiat the database closure might be inconsistent, as would be the case for

OB = {PvQ},

[In the case of Hom databases, Reiter [1978b] shows that closure preserves the
consistency of D B .] Even for nondeductive relational databases consisting only
of ground atoms, Reiter's notion yields incorrect results in the presence of so-
called null values. A null value is a constant symbol meant to denote an ex
isting individual whose identity is unknown. For example, if SUPPLIES(5, p)
denotes that supplier s supplies part p, then the following is a simple database
D B , where ω is meant to denote a null value:

SUPPLIES(Acme, p\) SUPPLIES(Sears, pi) SUPPLIES(ro, p\)

So we know that some supplier, possibly the same as Acme or Sears, possibly
not, supplies p i . Since D B I ^ SUPPLIES(ω, p2), Reiter's CWA sanctions -i
SUPPLIES(ω, pi) which, coupled with SUPPLIES(Sears, pi) entail ω ^ Sears.
But this violates the intended inteφretation of the null value as a totally un
known supplier; we have inferred something about ω, namely that it is not
Sears.

2 In this paper [Reiter, 1978b] the database is taken to be function-free, so that t is an n-tuple of
constant symbols; but this restriction is unnecessary in general.

452 Reiter

A different formalization of the CWA was proposed by Clark [1 9 7 8] in
connection with his attempt to provide a formal semantics for negation in PRO
LOG . Clark begins with the observation that PROLOG clauses, being of the form
α =) P(i), provide sufficient but not necessary conditions on the predicate P.
Such clauses are said to be about P. Clark's intuition is that the CWA is the
assumption that these sufficient conditions are also necessary. In other words,
the implicit information in a PROLOG database sanctioned by the CWA consists
of the necessary conditions on all of the predicated of the database. Clark pro
vides a simple effective procedure for transforming a set of clauses defining
sufficient conditions on a predicate Ρ into a single formula representing its nec
essary conditions. We illustrate this procedure with the following example:

Pia, b) (3)

P(a, c) (4)

(Vw, V, w) Q(u, V) & /?(v, w) 3 P(g(u\ w) (5)

(Vw)ß(w,/(w)) (6)

Clauses 3-5 are the only ones in the database about P. These are logically
equivalent, respectively, to

(VJC, y)x = aS¿y = bz^ P(x, y)

(VJC, y)jc = α & y = C =) P(x, y)

(VJC, y)((3M, v, w)x = g(u) & y = w & - · ß(w, ν) & /?(v, w)
& P(u, w)) 3 P(x, y),

and these three clauses are in turn logically equivalent to

(VJC, y)[(jc = a& y = b)v(x = a& y = c)v ((3m, V, W)X = g(u) &
y = w & ^ ß(w, V) & /?(v, w) & P(w, w))] 3 P(jc, y). (7)

This is a single formula representing all the sufficient conditions on Ρ given by
the original database. Similarly, clause 6 is logically equivalent to

(VJC, y)((3u)x = u&y =f(u)) 3 Q(x, y), (8)

and this represents ß ' s sufficient conditions. Finally, we must determine /?'s
sufficient conditions. No clause of die database is about /?, so we take /?'s
sufficient conditions to be

(VJC, y) false 3 R{x, y). (9)

Chapter 12 Nonmonotonic Reasoning 453

Fomiulas 7, 8 and 9 are logically equivalent to the original database and repre
sent that database's sufficient conditions on, respectively, the predicates P, β ,
and R. To determine the implicit information about the predicates P, β , and R
sanctioned by Clark's CWA, assume diat these sufficient conditions are also
necessary—^i.e., simply reverse the implications of formulas 7, 8, and 9. The
resulting completed database represents die closure of the original database ac
cording to Clark. For the example at hand, the completed database is:

(Vjc, y)P(x, y) = [(x = a&y = b)v(x = a&y = c)v ((3w, v, w)x = g{u)
& y = w & -1 β(Μ, ν) & /?(v, w) & P(u, w))]

(V;c, y)ß(jc, y) ^ i3u)x = u&y^fiu)

(VJC, y)R(x, y) = false.

On Clark's view of the CWA, queries are evaluated with respect to die
completed databases, rather than the original database.

As intuitively appealing as Clark's notion is, it suffers from a number of
problems. To begin, it lacks generality. It is defined only for PROLOG-like
databases and hence is restricted to universally quantified formulas. Moreover,
each clause must be about some predicate, so for example - i P, which cannot
be constmed as being about P , cannot be accommodated. The approach is also
sensitive to the syntactic form of the database clauses. Thus - · Ρ z) β is about
β , while its logically equivalent form -i β z) Ρ is about P. In particular, as
Shepherdson [1984] observes, die completed database corresponding to

- i P =) P i s P s - , P ,

which is inconsistent.

6.2 Consistency-based Approaches
Some of the early attempts at formalizing nonmonotonic reasoning ground this
notion in logical consistency. They interpret the pattem "In the absence of in
formation to the contrary, assume A" as something like "If A can be con-
sistentiy assumed, then assume it."

6.2.1 Nonmonotonic Logic McDermott and Doyle's nonmonotonic logic
[1980] appeals to a modal operator Μ in conjunction witii the language of first-
order logic. MA is intended to mean "A is consistent," so the flying birds ex
ample translates in their logic to

(VJC) BIRD(JC) & Μ FLY(jc) 3 FLY(jc).

454 Reiter

The technical problem is to make precise this notion of consistency, since we
want consistency with respect to the entire knowledge base. But this means that
a formula involving the Μ operator is in part referring to itself since as a
formula it is part of the very knowledge base with respect to which it is claim
ing consistency. McDermott and Doyle capture this self-referential property by
a fixed-point constmction, and they define the theorems of a nonmonotonic
knowledge base to be the intersection of all its fixed points. Specifically, if A is
a nonmonotonic theory, then Γ is a fixed point of A if

T=TKAKJ {Mw\-^w^ T})?

The intuition behind this definition is to capture the notion that if -i w is not
derivable, then Mw (whose intended meaning is "w is consistent") is.

As a simple example, consider the nonmonotonic theory A = {E ά MC 3
D, F ά MD 3 C, £ , £ Ζ) F } . The first formula says that if Ε is the case

and if C is consistent then conclude -i D, so we do conclude -i D. Now -i D
prevents D being consistent in the second formula, so this blocks concluding -i
C using the second formula. Thus one fixed point is obtained by adding -i D to
A. Similarly, adding -i C to A gives a second fixed point. Thus, A has two
fixed points:

Th(AKj {-.D})
Th(Au{^C}).

The theorems of A are therefore the intersection of these two fixed points.
This formalism turns out to have several problems. Because of the con

sistency requirement, neither the fixed points nor the theorems are recursively
enumerable. A proof theory is known only for the propositional case. There are
also serious difficulties witii the semantics, the Μ operator fails to adequately
capture the intuitive concept of consistency. For example, the nonmonotonic
theory (MC, -i C} is consistent.

In response to this latter difficulty, McDermott [1982a] attempted to
develop several stronger versions of the logic based on the entailment relation
of various standard modal logics (Γ, 54, and 55) instead of, as in the 1980 ver
sion, first-order logic. Unfortunately, these attempts turned out either to be too
weak to adequately characterize the Μ operator (in the case of Τ and 54), or to
"collapse" the logic to (monotonic) 55 when 55's entailment relation was used.

6.2.2 Default Logic The other most prominent consistency-based approach
to nonmonotonic reasoning is Reiter's [1980] default logic. It differs from the

3 Here Th denotes closure under first-order logical consequence.

Chapter 12 Nonmonotonic Reasoning 455

nonmonotonic logic of McDemiott and Doyle in that default statements are
formally treated as mies of inference, not as formulas in a theory. The flying
birds default is represented by the mle of inference (actually a mle schema be
cause of the variable jc)

BIRD(jc): FLY(jc)
FLY(jc)

This may be read as

If X is bird and it can be consistendy assumed to fly, then you can infer
that X flies.

More generally, mle Schemas of die following form are permitted:

a (x) : ß(x)
γ(χ)

which can be read as:

If a(x) holds and β(χ) can be consistendy assumed, then you can infer
γ(χ).

The approach is to begin with a set of first-order sentences. These are
things known to be tme of die world. This knowledge is normally incomplete;
we are not omniscient, so there are gaps in our world knowledge. Default mies
act as mappings from this incomplete theory to a more complete extension of
the theory. They partly fill in the gaps widi plausible conclusions. So if such an
incomplete first-order theory contains BIRD(Tweety), and if FLY(Tweety) is
consistent with the theory, dien by the above default schema for flying birds
we can extend this theory by adding FLY(Tweety) to it.

As in McDermott and Doyle's approach, the extensions are defined by a
fixed-point constmction. For simplicity, we consider only closed default mies,
namely mies of die form α : ß/y for first-order sentences a , β, and γ. A default
theory is a pair (D, W) where D is a set of closed default rules and a set of
first-order sentences. For any set of first-order sentences 5, define Γ(5) to be
die smallest set satisfying the following three properties:

1. i^cr (5) .

2. r(S) is closed under first-order logical consequence.

3. If α : ß/y is a default mle of D and α e Γ(5) and - · β ^ 5, then γ € Γ(5).

Then Ε is defined to be an extension of die default theory (D, W) iff Γ(Ε) = £,
i.e., iff £ is a fixed point of the operator Γ.

456 Reiter

The following example corresponds closely to that used to illustrate
McDermott and Doyle's logic.

W={E,Ez>F}

Defaults: EyC FjD

Here £ and £ =) F are the two things we know about a world W. The first
default can be invoked since C is consistent with so we infer -nD. -iD pre
vents the second default from applying, so no further inferences are possible.
This yields an extension Th(W u {-iD}). A second (and only other) extension
Th(W u C }) is obtained similarly.

As we have just seen, multiple extensions are possible. The perspective
adopted on these [Reiter, 1980] is that any such extension is a possible belief
set for an agent, although one could, as do McDermott and Doyle, insist that an
agent's beliefs are defined by the intersection of all extensions.

One advantage of default logic is that there is a "proof theory" in the case
that all default mies are normal, namely, of the form

a (x) : ß(x)
ß(x)

for arbitrary first-order formulas α and β with free variables x. This tums out
to be an extremely common default pattem; all of the examples of Section 2
conform to it. The sense in which normal defaults have a "proof theory" is the
following: Given a set of first-order sentences W, a set of normal defaults D,
and a first-order sentence β, then β is in some extension of W wrt the defaults
D iff the "proof theory" sanctions this. The quotation marks indicate that in
general the consistency condition prevents the default mies from being effec
tively computable. So one problem with default logic is that its extensions are
not recursively enumerable. Another is that as yet there is no consensus on its
semantics (see [Etherington, 1987; Sandewall, 1985; Shoham, 1986]).
Moreover, because the defaults are represented as inference mies rather than
object language formulas as in McDermott and Doyle [1980], defaults cannot
be reasoned about within the logic. For example, from "Normally canaries are
yellow" and "Yellow things are never green" we cannot conclude "Normally
canaries are never green." Notice that whether McDermott and Doyle's non
monotonic logic can support such reasoning is debatable. From

(VJC) C A N A R Y (J C) & Μ YELLOW(jc) 3 YELLOW(jc)
(VJC) YELLOW(jc) 3 ^GREEN(jc)

Chapter 12 Nonmonotonic Reasoning 457

we can indeed infer

(VJC) C A N A R Y (J C) & Μ YELLOW(x)3 GREEN(jc) .

However, it is unclear whedier this last formula can legitimately be inteφreted
to mean "Normally canaries are not green."

Despite these shortcomings of default logic, analyses using the logic have
been applied to several settings in A I : inheritance hierarchies with exceptions,
as described in Section 3 [Etiierington and Reiter, 1982], diagnostic reasoning
[Poole, 1986; Reiter, 1987], and die theory of speech acts [Perrault, 1987].

Etherington [1986] provides a number of properties of default logic, to-
getiier with various results on its relationship to other nonmonotonic formal
isms. Lukaszewicz [1984] proposes a modification of default logic with several
desirable properties.

6.3 Approaches Based upon Minimal Models
A promising way of achieving nonmonotoniclty is to treat as theorems those
sentences tme in all suitably distinguished models of a logical theory. Provided
that enlarging the theory can lead to new distinguished models, then what was
once a theorem may no longer remain so; it may be falsified by one of the new
models. Approaches that adopt this perspective on nonmonotoniclty require
that these preferred models respect some minimality property.

6.3.1 Circumscription McCarthy [1980, 1986] has proposed basing non
monotonic reasoning on the notion of tmtii in all minimal models of a first-
order theory. ! 4 Since his 1986 approach generalizes that of his 1980 paper, we
shall focus on his more recent theory. The notion of minimality to which
McCartiiy appeals is as follows [Lifschitz, 1985b]:

Assume L is a first-order language. Suppose Ρ and Ζ are tuples of distinct
predicate symbols of L. For any two stmctures Σι and Σ2 for L, define

Σι<^'^Σ2 if

i. domain(Σl) = domain(Σ2);

ii. Σι and Σ2 inteφret all function symbols and predicate symbols other than
those of Ρ and Ζ identically; and

ill. for each predicate symbol Ρ of P, P ' s extension in Σι is a subset (not
necessarily proper) of its extension in Σ2.

4 McCarthy [1986] actually treats second-order theories. For simplicity of exposition, we shall re
strict ourselves to first-order theories. The more general case is elaborated by Lifschitz [1985b,
1986a].

458 Reiter

Notice that the relation <^'^ places no restrictions on how Σι and Σ2 inteφret
the predicates of Z.

Suppose now that Λ(Ρ; Ζ) is a sentence of L that mentions the predicate
symbols of Ρ and Z. Λ(Ρ; Ζ) may mention predicate symbols other than those
of Ρ and Z. In McCarthy's circumscription theory, the distinguished models of
interest are those models of Λ(Ρ; Ζ) that are minimal wrt <^'^. The sen
tences tme in all such minimal models are taken to be the nonmonotonic entail
ments of Λ(Ρ; Ζ) of interest.

The above focus on minimal models and their entailments is not tiie ap
proach emphasized by McCarthy [1986]. McCarthy acmally focussed on a syn
tactic approach, as follows:^

The circumscription of Ρ in Λ(Ρ; Ζ) with variable Ζ is defined to be the
(second-order) sentence

Λ(Ρ; Ζ) & [V F , ZO - , [A(F; Ζ') & F Ρ]. (10)

Here, for predicates Q and R of the same arity, β < R is defined to be

(Vx)(ß(x) 3 R{x)) & - Π (Vx)(/?(x) 3 ß(x)).

If we define β </? to be tiie formula (V χ)β(χ) 3 /?(x), then Q < R is logically
equivalent to the formula Q < R & - i { R < Q) . When (β ; , . . Q n) and (Ri,...,
Rn) are tuples of predicate symbols with correspondingly equal arities, (β ; , . . . ,
Qn) (P7,. Rn) is defined to be the formula

Ql<Rl & . . . & Q n < R n & ^ [R l Q l & . . . & R n < Q n l

The second conjunct in sentence 10 is called the circumscription axiom ofA(P;
Z). It says that the extensions in Λ(Ρ; Ζ) of the predicates Ρ cannot be made
smaller, even when the Ζ predicates are allowed to vary; or more succinctiy, Ρ
is minimal in A with Ζ varying. Sentence 10 thus expresses the original sen
tence A further constrained by the requirement that Ρ be minimized with Ζ
variable.

In McCarthy's formulation, the nonmonotonic consequences of Λ(Ρ; Ζ) of
interest are those sentences entailed by 10. Because of what the circumscription
axiom acmally says, it is not suφrising that the semantic and syntactic ac
counts of circumscription coincide. In other words as proved independentiy by
Lifschitz [1985b] and Etiierington [1986], tfie sentences tme in all models of
Λ(Ρ; Ζ) minimal wrt <^'^ are precisely the sentences entailed by 10.

5 We adopt here the equivalent formulation of Lifschitz [1985b].

Chapter 12 Nonmonotonic Reasoning 459

The circumscription axiom has the character of a second-order induction
axiom in mathematics. In fact, McCarthy [1980] shows that, when sentence A
defines a fragment of number theory, the circumscription axiom reduces to
conventional Peano induction on the natural numbers. In arriving entailments
of sentence 10, the circumscription axiom is used precisely the way induction
axioms are used to prove theorems in mathematics. Since the predicate varia
bles F and Z ' are universally quantified, we can substitute for them arbitrary
formulas (provided they have suitable numbers of free individual variables).
The entailments of any such instantiated version of sentence 10 will be some of
the consequences of 10 itself.

Because of the extreme generality of sentence 10 (for example, which
predicates P, Ζ of Λ do we focus on?), McCarthy [1986] proposes a uniform
principle for representing knowledge by sentences A in order to capture the
pattem "Normally, such and such is the case." His approach appeals to a dis
tinguished unary predicate AB (or often several such predicates ABu,. .,Λ^η)
standing for "abnormal." In circumscribing the sentence Λ, it is these unary
predicates that are minimized. The following example illustrates this use of the
AB predicates, together with how the circumscription axiom is used as an in
duction axiom for deriving consequences of sentence 10.

(VJC) THING(JC) SL^AB\{X)Z^^ FLY(JC) (11)

(VJC) BIRD(JC) 3 THING(jc) & AB\{x) (12)

(VJC) BIRD(JC) & ABiix) 3 FLY(jc) (13)

(VJC) EMU(JC) 3 BIRD(jc) & ^ FLY(jc) (14)

Formula 11 is intended to express that normal (i.e., not AB\ normal) things
don't fly. Thus restricts THINGs to being normal wrt not flying.
Formula 12 states that birds are abnormal things wrt not flying and 13 has in
tent of describing birds that are normal wrt being able to fly. Finally, axiom 14
distinguishes a subclass of nonflying birds.

Denote die conjunction of sentences 11-14 by A(ABu AB2; FLY] so that
we shall minimize AB\ and AB2 with FLY variable using the circumscription
axiom for A(ABi, ΑΒχ, FLY). The point of minimizing AB\ and AB2 is to
allow as few abnormal individuals as possible, namely those forced by the
theory Λ to be abnormal. The circumscription axiom is:

(V A Ä ' i , AB'i, FLYO ^ [A{AB\, AB'i; FLY')
&ΑΒΊ <ABi
ScAB'2<AB2
& -. (ABi < AB'i 8LAB2< AB'2)] (15)

460 Reiter

In this axiom, we have three universally quantified predicate variables AB'\,
AB\ and FLY', so we can choose these to be any fixed predicates we like.
Suppose we cunningly choose

AB'i(x) Ξ BIRD(jc)
AB'2{x) = EMU(jc)
FLY'ÍJC) = BIRD(jc) & EMU(jc).

If we make this Subsumtion for the universally quantified predicate variables of
the circumscription axiom 15, then from this instance of 15 together witii
AiABu ABTJ FLY) we can derive, in first-order logic alone, the following:^

(yx)ABi(x) = BIRD(jc)
(^χ)ΑΒ2(χ) = EMU(jc)

i.e., die only abnormal things wrt flightlessness are birds, and the only abnor
mal birds wrt flight are emus. From this it follows easily that

(VJC) THING(JC) & - . BIRD(jc) Z) FLY(jc)
(VJC) B I R D (X) & ^ EMU(JC) D FLY(JC)

neither of which is entailed by the original (uncircumscribed) theory.
As one can see from the example, it is not obvious in general how to in

itiate die ch-cumscribed theory. Lifschitz [1985b] provides some results about
computing circumscription for various interesting special cases. Another formal
problem is tfiat, because circumscribed tiieories are second order, their valid
formulas are not in general recursively enumerable. Note that this is also the
case for nonmonotonic and default logic. In addition, it can happen that a satis-
fiable theory has an unsatisfiable circumscription, although this cannot be in
the case of theories all of whose sentences are universal in the prenex normal
form [Edierington et al., 1985]. Lifschitz [1986a] generalizes this result on
when circumscription preserves satisfiability.

Of all the formalisms proposed for nonmonotonic reasoning, circumscrip
tion appears to be the richest. It is certainly the most amenable to mathematical
analysis. As a result, its formal properties have been extensively studied. Some
completeness results are known [Perils and Minker, 1986]. Its relationship to
Reiter's notion of the closed world assumption of Section 6.1 has been ana
lyzed by Lifschitz [1985a] and Gelfond et al., [1986]. Reiter [1982] shows that
for a certain class of first-order theories, Clark's notion of theory completion
(Section 6.1) is a consequence of circumscribing the theory. Lifschitz [1985b]
provides the same result for a different class of first-order theories. A modifi-

6 The derivation itself is straightforward but tedious so we omit the details.

Chapter 12 Nonmonotonic Reasoning 461

cation of McCarthy's circumscription, called pointwise circumscription
[Lifschitz, 1986b], together widi priority orderings on die predicated to be min
imized [McCarthy, 1986], has been used to provide a semantics for negation
for a large class of PROLOG programs [Lifschitz, 1986c]. All of this suggests
that circumscription is a rich formalism whose full potential is far from being
realized.

Independentiy of McCartiiy, Bossu and Siegel [1985] have provided a
semantic account of nonmonotonic reasoning for a special class of minimal
models of a first-order theory. In the notation introduced above, their notion of
minimality turns out be based on the ordering <^'^', where Ρ is the set of all
predicate symbols mentioned by die tiieory. In otiier words, tiiey minimize all
predicates, with no variable predicates. Their analysis is strictiy semantic,
which is to say they provide nothing corresponding to McCarthy's circumscrip
tion axiom. Most significantiy, Bossu and Siegel provide a decision procedure
for first-order theories and queries of a certain kind. More specifically, suppose

1. the only function symbols are constants (the normal state of affairs in
database tiieory),

2. tiie prenex form of each formula of the theory is universally qualified and
satisfies a further natural syntactic constraint (which turns out to be a
reasonable assumption for a database), and

3 . the prenex form of the query is universally quantified (a reasonable
assumption for some but far from all database queries) and satisfies a
further simple syntactic constraint.

Under these conditions it is decidable whether the query is tme in all minimal
models of die theory (and hence is circumscriptively entailed by the theory).
The decision procedure is based upon a particular resolution theorem-proving
strategy.

Minker [1982] provides a closely related "^ysis of the closed world assump
tion for database theory.

6.3.2 Minimality and the Frame Problem The frame problem [McCartiiy
and Hayes, 1969] concerns the representation of those aspects of a dynamically
changing world that remain invariant under state changes. For example, walk
ing to your front door or starting your automobile will not change the colors of
any objects in the world. In a first-order representation of such worlds, it is
necessary to explicitiy represent all of these invariant under all state changes
by so-called frame axioms. Thus, to represent die fact that turning on a light
switch does not alter the colors of objects requires, in the situational calculus
of McCarthy and Hayes [1969], a frame axiom of the form

462 Reiter

(VJC, C, 5, /) COLOR(jc, c, s) 3 COLOR(jc, c, result(tum-on, /, s))

where Í is a state variable, JC an object, c a color, and / a light switch.
The problem is that in general a vast number of such axioms will be re

quired; object colors also remain invariant when lights are switched off, when
someone speaks, and so on, so there is a major difficulty even articulating a
complete set of frame axioms for a given world, not to mention the comput
ational problems associated with deduction in the presence of so many axioms.

A solution to the frame problem is a representation of the world that pro
vides correct conclusions to be drawn about the dynamics of that world without
explicitiy representing, or reasoning with, the frame axioms. One of the prin
ciple motivations for the study of nonmonotonic reasoning was the belief that it
would provide a solution to the frame problem [McCarthy, 1977; Reiter,
1978a]; we required some way of saying that in the absence of information to
the contrary a state-changing event preserves the tmth of an assertion.

Hanks and McDermott [1986] have investigated various nonmonotonic
proposals for solving the frame problem and conclude that the apparently natu
ral approaches fail. Specifically, they consider the simple setting where in ini
tial state so, a person is alive, then a gun is loaded, some time passes, and the
gun is fired at die person. They ask whether the person's resulting death can be
deduced nonmonotonically, i.e., without explicit use of frame axioms. The ax-
iomatization used appeals to McCarthy's AB predicate. It also appeals to a bi
nary predicate Τ (for tme) where T(f, s) denotes that fact / i s tme in world state
s. Syntactically, facts are first-order sentences and so are treated as terms.
Their axioms for the shooting scenario are simple and seemingly natural:

r(alive, so)
(V5) Τ (loaded, result (load, s))
(\fs) Τ (loaded, s) z> A5(alive, shoot, s) & r(dead, result(shoot, s))
(V / e, s) T(f, 5) & - 1 AB(f, e, s) 3 T(f, result(e, s)).

Here AB(f, e, s) means that fact / is abnormal when event e occurs in world
state s. The last axiom, intended to circumvent die need for frame axioms, says
that normally a fact / , tme in state s, will remain tme in the state that results
from event e occurring in state s.

Hanks and McDermott consider circumscribing the above axioms, min
imizing AB with Τ varying and ask us to consider the following situations:

sOy s\ = result(load, ^o), 52 = result(wait, s\), S3 = result(shoot, 52).

Inmitively, we want r(dead, 53) to be circumscriptively derivable. Somewhat
suφrisingly, it is not. The reason is that die circumscribed theory has two mod
els minimal in AB. In one, Aß(alive, shoot, si) is the only tme AB atom, and it

Chapter 12 Nonmonotonic Reasoning 463

is easy to see that r(dead, 53) is tme in this model, as required. But there is
another model minimal in AB, namely diat in which A5(loaded, wait, si) is the
only tme AB atom, and in diis model, corresponding to die gun mysteriously
being unloaded during the wait event, r(alive, 53) is tme. It follows that
r(dead, 53) is not circumscriptively derivable from the above theory. Hanks
and McDermott also show diat default logic leads to an analogous result, in die
sense that the above axioms, together with the default mle schema

:-^AB(f,e, s)
^AB(f,e, s)

has two extensions, one containing r(dead, 53), the other containing r(alive.

One might argue that this failure to solve the frame problem stems from an
inappropriate set of axioms. Indeed, Lifschitz [1986d] has proposed an axioma-
tízatíon that circumscriptively does yield the correct conclusions. Others, e.g.,
Kowalski and Sergot [1986], have argued that time plays a distinguished role
in the frame problem, and that any nonmonotonic approach must respect this
special status of time. It is towards this perspective that we now mm.

By explicitly providing for time, we obtain a finer-grained representation
of dynamically changing worlds than with the situational calculus. We can, for
example, represent overlapping events, event durations, and so on [Allen, 1984;
Kowalski and Sergot, 1986; McDermott, 1982b]. In such temporal repre
sentations the frame problem becomes the persistence problem—determining
that a fact known to be tme at time t remains tme over a future time interval
provided no event is known to occur during that time interval to change the
fact's tmth value. In the case of the shooting scenario, assuming discrete time,
we have that a r = 0 die person is alive and the gun is loaded at í = 2 the gun is
fired.^ The problem is to infer that at í = 2 the person is still alive and the gun
still loaded, i.e., that the tmth of the fact "alive" and "loaded" persists from t =
0 to Í = 2. Intuitively, since we were not informed of an unloading event occur
ring at Í = 1, we want to infer tiiat at r = 2 the gun is still loaded. This, of
course, must be defeasible inference since it could have been the case that the

o

gun was unloaded att= 1.
Kautz [1986] proposes a minimal model solution to the persistence prob

lem, and shows that there is a second-order circumscription-like axiom corre
sponding to this semantics. Shoham [1986] adopts an S5 modal logic for repre
senting an agent's knowledge, proposing a minimal knowledge semantics for
die persistence problem. Kowalski and Sergot [1986] propose a PROLOG-based

7 Recall that in the scenario we wait some time before firing the gun.
8 Recall that in Hanks and McDermott's situational calculus version, the undesired model was one
in which the gun was mysteriously unloaded during the wait event.

464 Reiter

temporal calculus of events that addresses the nonmonotonic character of the
persistence problem using PROLOG'S negation-as-failure-mechanism. This is
currently perhaps the most sophisticated approach to the persistence problem
and the representation of events. It suffers primarily form its reliance on nega-
tion-as-failure, whose semantics is far from clear, so that is it somewhat closer
to an implementation than a specification.

Shoham [1986] speculates on foundations for nonmonotonic reasoning for
general settings, not just the temporal domain. He argues two perspectives.

1. There should be a shift in emphasis away from syntactic characterizations
[as in default and nonmonotonic logic, or autoepistemic logic (Section
6.4.1, below] in favor of semantic ones. This means that, having first
fixed upon a logical language (not necessarily first order) one next
provides a semantics for this language appropriate to the intended
entailment relation for the application in mind.^

2. This entailment relation will be defined in terms of tmth in all those
models of a given axiomatization minimal with respect to some
application dependent criterion. The ability to characterize such
minimality criteria axiomatically (as is the case for example with a
circumscription axiom in McCarthy's theory), while perhaps desirable, is
not essential. In effect, on Shoham's view, an axiomatization of an
application domain coupled with a characterization of its preferred
minimal models is a sufficient specification of the required entailments.

In supi)ort of his conclusion that nonmonotonicity necessarily involves
minimality of one kind or another, Shoham offers his own theory of temporal
minimization, as well as McCarthy's minimal semantic of circumscription. In
addition, he proposed a minimal model semantics for a modification of Reiter's
default logic.

Shoham's thesis—that nonmonotonic reasoning can be identified with
tmth in minimal models of one kind of another—is attractive. It provides a uni
fying perspective. Moreover, it suggests a methodology with which one can ap
proach novel applications by considering which notion of minimality is to be.
preferred. The considerable successes of different forms of circumscription is
strong evidence in its favor. Nevertheless, the fact that so few applications
have been thoroughly explored, coupled with the unexpected difficulty of the
frame problem, should caution us against overly hasty generalizations when it
comes to nonmonotonic reasoning.

9 Such an approach to knowledge representation was earlier provided by Levesque [1984].

Chapter 12 Nonmonotonic Reasoning 465

6.4 Epistemic Approaches
A number of approaches to nonmonotonic reasoning appeal to logic of belief
or knowledge. The intuitive idea behind these is that a possible paraphrase of
our favorite "Typically, birds fly" is something like "If χ is a bird and if you
don't believe (know) diat χ cannot fly, then χ can fly." Since the standard
epistemic logics (54, 55 and so on) are all monotonic, direct appeals to these
cannot work. However, nonmonotoniclty can be achieved by a logic that sanc
tions -iBa^^ whenever α is absent from an agent's belief set, a property
possessed by none of the standard epistemic logics. Under these circumstances,
if an agent's belief set contains BIRD(Tweety) together with the default sen
tence

(VJC) BIRD(JC) & - π 5 FLY(jc) 3 FLY(jc)

but not -I FLY(Tweety), tiien die belief set will contain Β - . FLY(Tweety)
whence, by modus ponens, the belief set will contain FLY(Tweety)

This, then, is the basic intuition behind epistemic approaches to nonmono
toniclty. Notice tiiat nonmonotoniclty is achieved by virtue of endowing an
agent with the ability to reflect on its pen beliefs in order to infer sentences ex
pressing what it doesn't believe. The sentences contained in such a belief set
depend on the entire belief set and hence are indexical.

We now consider several proposals for nonmonotonic epistemic logics.

6.4.1 Autoeplstemic Logic In response to the semantic deficiencies of
McDermott and Doyle's nonmonotonic logic, Moore [1984, 1985] provides a
reconstmction of their logic based upon belief rather than consistency, which
he calls autoeplstemic logic. Recall that the former logic appeals to a modal
operator Μ with consistency as its intended meaning. Autoeplstemic logic in
vokes a dual operator B^^ corresponding (roughly) to - i M - i . Moore's is a
propositional logic only with the usual formulas formed from a propositional
logic only with the modal operator B, Given some set of premises A, a set Τ of
formulas is a stable expansion of A just in case

T=Th(Au[Bw\weT} u {-^Bw \ v/^T])}^

Notice that this is a fixed-point definition much like that of McDermott and
Doyle. In fact, under the dual correspondence of Β with - i M-i Moore's defini
tion of a stable expansion differs from die fixed points of McDermott and
Doyle (Section 6.2.1) only by the inclusion of lBw\= w G Γ} in his fixed-point

10 We use to denote that an agent believes.
11 We use Β here for belief. In his papers, Moore uses the symbol L.
12 Here Th denotes closure under the entailment relation of propositional logic.

466 Reiter

construction. This set provides for an agent's perfect positive introspection; if
w is in its belief set, tfien it believes w so tiiat Bw is also in its belief set. The
second set in the definition provides for perfect negative introspection; if w is
not in an agent's belief set, die agent does not believe w.

Levesque [1987] generalizes Moore's notion of a stable expansion to the
full first-order case (which includes quantification into modal contexts). He
also provides a semantic account of stable expansions in terms of a second
modal operator O, where Ow is read as "w is all that is believed." Levesque
then goes on to characterize stable expressions as follows: Ow is tme exactiy
when all the formulas that are believed form a stable expansion of {w].

As observed by Konolige [1987], stable expansion have some undesirable
properties. Konolige note that there are two stable expansions of [Bpz^p], one
containing - · Bp but not p , the other containing both Bp and p . The first expan
sion is intuitively appropriate; an agent whose only initial belief is Bp ρ has
no grounds for entering ρ into her belief set and should therefore enter -i Bp.
The second expansion, containing both Bp and p , is intuitively unacceptable. It
corresponds to an agent arbitrarily entering p , hence also Bp, into her belief
set.

To eliminate this undesirable property of Moore's autoepistemic logic,
Konolige prcyoses the notion of a strongly grounded expansion of a set of
premises A.^ For any set Σ of formulas of our modal propositional language,
denote by Σο those formulas of Σ with no occurrence of the modal operator B,
i.e.. Σο is the purely propositional part of Σ. Call a stable expansion Γ of A
minimal iff there is no stable expansion 5 of A such that So is a proper subset
of To. Finally, call a set of formulas a strongly grounded expansion of A iff it
is a minimal stable expansion of A. Konolige [1987] proposes strongly
grounded expansions "as candidates for ideal introspective belief sets, because
they limit the assumptions an agent makes about the world." Notice that the
premise set {Bp z> p], which was problematic under Moore's account, has just
one strongly grounded expansion, namely, the inmitively appropriate expansion
containing -i Bp but not p .

Konolige provides several characterizations of strongly grounded expan
sion of A, all appealing to fixed-point constmctions. Perhaps the most interest
ing characterization is in terms of the modal logic KU45, which is axiomatic
55, with S5's axiom schema Βφ ID φ replaced by the weaker Β(Βφ 3 φ). De
note Ä'i/45's provability relation by I-KU45. Konolige shows tiiat Γ is a strongly
grounded expansion of A iff Τ satisfies the fixed point equation

13 Konolige [1987] calls these "strongly grounded autoepistemic extensions of He also deals
with a first-order modal language, generalizing Moore's [1984, 1985] propositional language, but
without quantifying into modal contexts. Here I continue to use a propositional modal language
since the differences are inessential when quantification into modal contexts is forbidden.

Chapter 12 Nonmonotonic Reasoning 467

Τ = [w\=A u {Ba\= a eA] u {-n Ba 1= a » Γο} I-KU45W}.

Suppose (D, WO is a default theory (Section 6.2.2). Define its auto
epistemic transform to be

Thus, the transform translates default mies to sentences of autoepistemic logic.
Konolige proves that autoepistemic logic is at least as expressive as default
logic in the following sense:

Let Λ be the autoepistemic transform of a default theory. Then £ is an
extension of diis (
expansion S of Λ.
extension of this default theory iff £ = 5o^^ for some strongly grounded

The question remains whether autoepistemic logic is stricdy more expres
sive than default logic. Is there a set A of sentences with a strongly grounded
expansion S for which So is not an extension of any default theory? Suφris-
ingly, the answer is no; Konolige shows:

For any set A of sentences there is an effectively constmable default
theory such that £ is an extension of this theory iff Ε = So for some
strongly grounded expansion S of A,

The above two results yield the unexpected conclusion that there is an
exact correspondence between the extensions of default logic and strongly
grounded expansions of autoepistemic logic.

6Λ.2 Self-Knowledge and Ignorance Levesque [1982, 1984] is con
cemed with the following question: What is an appropriate notion of knowl
edge diat would endow with self-knowledge a database KB of information
about a world? Levesque's concept of self-knowledge includes knowledge
about lack of knowledge; not only should KB know the information (and the
entailments thereof) it contains, it should also know that it doesn't know a fact
when indeed that fact is unknown to it.

14 Recall that SO is the purely propositional part of S.

468 Reiter

To simply the discussion, we shall consider a knowledge language called
KFOPCE by Levesque [1982] which, though elementary, is sufficient to convey
how nonmonotonicity and default reasoning can be achieved. In a subsequent
paper Levesque [1984] treats a much richer such language.

KFOPCE is a first-order modal language with equality and with a single
modal operator Κ (for "know"), constmcted in the usual way from a set of
predicate and variable symbols and a countably infinite set of symbols called
parameters. Parameters can be thought of as constants. Their distinguishing
feature is that tiiey are pairwise distinct and they define die domain over which
quantifies range, i.e., the parameters represent a single universal domain of dis
course.

A database KB of information about a world is a first-order sentence, i.e.,
a sentence of KFOPCE with no occurrence of the Κ operator. We consider how
Levesque defines die resuh of querying KB with a sentence of KFOPCE. This re
quires first specifying a semantics for KFOPCE. A primitive sentence (of
KFOPCE) is any atom of the form Ρ(ρι,.. .,Ρη), where Ρ is an n-ary predicate
symbol and p i , . . .,pn are parameters. A world structure is any set of primitive
sentences that includes ρ = ρ for each parameter p, and that does not include
pi = P2 for different parameters pi and p2. The effect of this requirement on
the equality predicate is that semantically the parameters are all pairwise dis
tinct. A world stmcture is understood to be a set of tme atomic facts. A struc
ture is any set of world stmctures. The tmth value of a sentence of KFOPCE
with respect to a world stmcture W and a stmcture Σ is defined as follows:

1. If ρ is a primitive sentence, ρ is tme wrt IT and Σ iff ρ e W.

2. -I w is tme wrt and Σ iff w is false wrt W and Σ.

3 . wi V W2 is tme wrt W and Σ iff wi or W2 is tme wrt W and Σ.

4 . (VJC)H<JC) is tme wrt W and Σ iff for every parameter p, w(p) is tme wrt
WmdZ.

5. Kw is tme wrt W and Σ iff for every S e Σ, w is tme wrt S and Σ.

Notice that condition 4 implies that, insofar as KFOPCE is concemed, the para
meters constimte a single universal domain of discourse. The parameters are
used to identify die known individuals. Notice also that when / is a first-order
sentence (so that condition 5 need never be invoked in the tmth recursion for f)
tiien the tmdi value of / wrt and Σ is independent of Σ, and we can speak of
the tmth value o f / w r t alone.

Given this semantics, Levesque defines the result of querying KB with an
arbitrary sentence of KFOPCE as follows:

Chapter 12 Nonmonotonic Reasoning 469

Let M(KB) be the set of the world stmctures W for which KB is tme wrt
W. M(KB) is thus die set of models of KB, The result of querying KB
widi a sentence *: of KFOPCE is defined to be

ASK(KB, k) = yes if for all € M(KB) k is tme wrt W and M(KBl

= no if for all M(KB)kis false wrt and Af

= unknown odierwise.

Notice diat diis is an S5 semantics widi M(KB) the equivalence class of mutu
ally accessible possible worlds. It is this semantics that justifies interpreting the
modal operator Κ of KFOPCE as a knowledge operator.

As an example, suppose KB is the conjunction of the following formulas:

ENROLLED(Bill, cslOO)
T E A C H (M a r y , cslOO) ν T E A C H (S U S A N , cslOO)
(BJC) TEACH(JC , matiilOO)

Here, Bill, Mary, cslOO,.. . , are among the parameters. The following are some
sample queries, together with the answers sanctioned by the above definition:

1 . Is anyone known to be enrolled in cslOO?

(3x)K ENROLLED(jc, cslOO): yes

2. Does anyone teach cslOO?

(3x) TEACH(jc, cslOO): yes

3. Is anyone known to teach cslOO?

(3x)K TEACH(jc, cslOO): no

4. Is anyone known to teach mathlOO?

(3x)K TEACH(jc, matiilOO): no

5. Is there a course in which Bill is enrolled and in which he is not known
to be enrolled?

(3JC) ENROLLED(Bill, x)&-.K ENROLLED(Bill, Jc): unknown.

Notice that ASK is nonmonotonic. For example, updating KB with
TEACH(Sam, matiilOO) would change die answer to question 4 ft-om no to
yes.

Levesque provides a noneffective way, requiring only an oracle for first-
order theoremhood, of determining the result of ASKing KB an arbitrary sen
tence of KFOPCE.

470 Reiter

In order to represent defaults like flying birds Levesque proposes

(VJC) BIRD(JC) & K ^ FLY(jc) 3 FLY(jc). (1 6)

This creates a technical problem; we must be able to update KB with non-first-
order formulas like this, which requires first specifying the semantics of such
updates. Levesque provides such a semantics, whose details we omit here. He
then shows how to (noneffectively) determine a first-order formula 1= ακΒ such
that the result of updating KB widi a is KB & 1= ακΒ\=· Thus, updating KB
with a default like statement 1 6 has the effect of conjoining with KB a certain
first-order formula.

Levesque's approach to (nonmonotonically) querying a first-order database
haw several advantages. It is semantically precise and well motivated. It allows
one to ASK a database about its states of knowledge (witness the above simple
example of an educational database), thus providing a far more expressive
query language than conventional approaches using first-order logic [Green,
1 9 6 9] . Moreover, the ASK operator can be realized in terms of first-order
theoremhood, albeit by appealing to an oracle.

On the other hand, Levesque's treatment of default reasoning is problem
atic. Because defaults like statement 1 6 are assimilated into KB as suitable
first-order formulas, they lose their character as defaults and hence cannot be
reasoned about within the logic. In this respect they are akin to the default
mies of default logic (Section 6 . 2 . 2) . Moreover, inconsistencies can arise when
intuitively they should not. For example, using the default sentence 1 6 to up
date the following KB leads to an inconsistent database:

BIRD(Tweety) BIRD(Opus) -i FLY(Tweety) ν FLY(Opus).

Intuitively, this is so since KB does not know FLY(Tweety), and it does not
know FLY(Opus), so by sentence 1 6 it deduces both FLY(Tweety) and
FLY(Opus). Most other formalisms for handling defaults—e.g., circumscrip
tion, nonmonotonic logic, and defauh logic—do not lead to inconsistencies like
this.

Despite such problems, Levesque [1 9 8 2] provides a variety of interesting
ideas for representing and stmcturing default information, including a proposal
that, in many respects, anticipates McCarthy's [1 9 8 6] use of the AB predicate
for representing typicality. In its simplest form, Levesque's proposal is to intro
duce the concept of a typical-P, written V P , understood to be a new predicate.
Thus V B I R D denotes a typical bird, and we can write a first-order axiom.

(VJC) VBIRD(JC) 3 FLY(jc).

Certain birds are not typical:

Chapter 12 Nonmonotonic Reasoning 471

(Vx) OSTRICH(jc) 3 BIRD(jc).

Defaults now state conditions under which instances of typical-birds may be
inferred.

(VJC) BIRD(JC) & - Π K - Π VBIRD(JC) 3 VBIRD(jc).

Using such representations for typicality, Levesque [1982] shows how to stmc
ture these to deal with many problems involving interacting defaults [Reiter
and Criscuolo, 1983] like the Quaker-Republican and shell-bearing examples of
Section 3.

There have been a few other theories of knowledge in which an agent's
ability to introspect on his ignorance leads to nonmonotonicity. Halpem and
Moses [1984] propose a propositional approach very like Moore's auto
epistemic logic (Section 6.4.1) but based upon an agent's knowledge radier
than (as in Moore's case) belief. Unfortunately, as Halpem and Moses observe,
tiieh- formalism cannot accommodate default reasoning. Konolige [1982] pro
poses a multi-agent logic of knowledge grounded in the propositional modal
logic S4. This achieves nonmonotonicity by means of a closed world mle of in
ference based upon 54 nonprovability. Using this logic, Konolige solves the
Wise Man Puzzle, which requires a wise man to reason about die states of
knowledge of two other wise men. However, the logic does not allow an agent
to conclude that he does not know some fact, and hence it cannot provide a
theory for default reasoning.

6.5 Conditional Logics

A few recent attempts to formalize nonmonotonic reasoning have been based
upon conditional logics, which have been studied by several philosophical logi
cians, e.g., Lewis [1973] and Stalnaker [1968].

We shall focus here on subjunctive conditionals, i.e., statements of the
form "If A were the case, then Β would be the case," which we denote by A =>
B. The classic example from the philosophical literature is "If a match were to
be stmck, then it would light," which inmitively we all take to be tme. But we
also take to be tme that "If a wet match were to be stmck, then it would not
light." and there is nodiing peculiar about these two statements in the presence
of a wet match. This means that die subjunctive if-then, =>, is not the same as
3 , material implication, for otherwise the match example would have the form
A 3 C and A ά Ä 3 -i C which, in the presence of A ά a wet match, leads
to a contradiction.

Now all of this certainly feels nonmonotonic. We can rephrase our bird ex
ample by subjective conditionals like "If JC were a bird then jc would fly,"
whereas "If jc were a featherless bird then jc would not fly." It is this intuition

472 Reiter

that suggests appealing to a suitable logic of conditionals to formalize nonmon
otonic reasoning.

Such logics do exist (e.g., [Delgrande, 1986]). Typically, these are based
upon a possible-worlds semantics in which the tmth value of a conditional A
=> θ in a world depends on a subset of those worlds in which A is tme. Condi
tional logics differ primarily in how these worlds-in-which-A-is-tme are distin
guished. Axiomatizations of conditional logics correspond to these different
semantics—e.g., Delgrande's [1986].

As Delgrande [1986] observes, one motivation for considering conditional
logics is that they allow us to reason about typicality within the logic. For ex
ample, "Typical canaries are not green" should be derivable (see Section
6.2.2). The logic should mandate the inconsistency of "All ravens are birds"
with "Typical ravens are not birds," provided some raven exists. Indeed, Del-
grande's logic has these properties.

Unfortunately, for our proposes, these logics have a fatal flaw; they are
monotonic. Moreover, they are extremely weak. For example, modus ponens
cannot be a mle of inference for conditional statements. This is so since other
wise, in our wet match example, from A => C, Λ ά ^ -i C, and A ά θ we
could derive both C and -i C. This failure of modus ponens means that we can
not infer default conclusions. BIRD(Tweety) and (VJC) BIRD(JC) => FLY(jc)
does not entail FLY(Tweety) in any conditional logic.

Despite these shortcomings, a few researchers [Delgrande, 1986; Ginsberg,
1986; Nute, 1984] have proposed basing nonmonotonic reasoning systems on
such logic. In all cases, nonmonotonicity is achieved by pragmatic considera
tions affecting how the logic is used. Unfortunately, this destroys the principled
semantics on which these logics were originally based, so it is unclear what the
advantages are of pursuing this approach to nonmonotonic reasoning.

7 Some Objections

Formalisms for nonmonotonic reasoning, grounded as they are in more or less
conventional logics, have often been criticized. The most common objection is
that probability theory is more appropriate (e.g., [Cheeseman, 1985]). Numeri
cally inclined nonprobabilists argue in favor of fuzzy reasoning [Zadeh, 1985]
or likelihood reasoning [Rich, 1983], etc. In effect, all such proposals identify
statements like "Typically birds can fly" with "Most birds fly." In other words,
they identify prototypical properties with statistical properties. Now, in certain
settings a statistical reading is warranted. Regardless of my concept of a pro
totypical bird, if I find myself lost and hungry in a remote part of the world,
my design of a bird-catching trap will depend upon my observation of the
frequency with which tiie local birds fly. But to appeal exclusively to a statisti-

Chapter 12 Nonmonotonic Reasoning 473

cal reading for plausible inference is to nüsunderstand the intended purpose of
nomonotonic reasoning.

In a wide variety of settings, nonmonotonic reasoning is necessary pre
cisely because the information associated with such settings requires that cer
tain conventions be respected. Such conventions may be explicit, as in the
closed world assumption for the representation of negative information in
databases. More commonly, these conventions are implicit, as in various prin
ciples of cooperative conmiunication of information where it is understood by
all participants that the informant is conveying all of the relevant information.
Any relevant item of information not so conveyed is justifiably infer that John
was beating the mg despite the fact that the original statement might be true
precisely because John never was beating the mg to begin with.^^ The point is
that if this were the case, your informant should have told you. Since she
didn't, convention dictates the appropriateness of your conclusion, despite its
defeasibility.

Pictures and diagrams provide another interesting example. There is a kind
of closed world convention to the effect that if an entity is not depicted in a
picture or diagram, then it is not present in the world or the device the diagram
represents.

It would seem that with such respect to such conventions, statistical rea
soning has no role to play whatsoever. It is difficult to imagine, for example,
what it could mean to assign a probability to the failure of a circuit diagram to
depict a device's power supply, or what advantage there could possibly be in
doing so. McCarthy [1980] makes a similar point in discussing the missionar-
ies-and-cannibals problem; he observes that the situation described by the
puzzle is so wildly implausible that it would be meaningless to try to assign a
conditional probability to the proposition that the boat is not leaky. In this con
nection, notice that puzzle solving is perhaps the clearest example of how con
vention sanctions and nonmonotonic reasoning independentiy of any prob
abilistic inteφretation. In fact, the preceding discussion suggests that much of
what passes for human commonsense reasoning may at heart be puzzle solving.

The above argument from convention does not address all objections to
logically based formalizations of nonmonotonic reasoning. Many nonmono
tonic inferences are abductive in nature, which is to say they provide plausible
explanations for some state of affairs. In this settings, an explanation can be
taken to be a set of formulas that, together with the available background
knowledge, entails the given state of affairs. The problem, of course, is tiiat not
just any explanation will do; it must, in some sense, be a "best" explanation.
An explanation might be judged "best" because it is simplest, most general, or
most probable, or because it is the outcome of weighing explicit evidence pro

15 In linguistics, the original statement is said to presuppose the conclusion that John was beating
the rug. Presupposition is well known to involve defeasible inferences ([Levinson, 1983] Ch. 4).

474 Reiter

and con, etc. No such criteria are embodied in any current formalism for non
monotonic reasoning.

Israel [1980] criticizes nonmonotonic formalism on similar, though more
general grounds. He objects to the centrality of deductive logic in these formal
isms as a mechanism for justifying an agent's beliefs. For Israel, "a heuristic
treatment [of nonmonotonic reasoning], that is a treatment in terms of rational
epistemic policies, is not just the best we could hope for. It is die only thing
that makes sense." Abductively reasoning to a best explanation would, in
Israel's view, require rational epistemic logic. McDermott [1986] levies a simi
lar criticism (among others) but is pessimistic about the very existence, cur
rently, of formal theories of such rational epistemic policies for abductive rea
soning. Nevertheless, as he observes:

This state of affairs does not stop us from writing medical diagnosis pro
grams. But it does keep us from understanding them. There is no inde
pendent theory to appeal to that can justify the inferences a program
makes... these programs embody tacii theories of abduction; these theo
ries would be the first nontrivial formal theories of abduction, if only one
could make them explicit.

We shall pursue McDermott's example of diagnostic reasoning because it
will allow us to draw an important distinction. This, in turn, will reveal a sig
nificant role for nonmonotonic logic in situations requiring Israel's rational
epistemic policies.

The proper way of viewing diagnosis is as a process of theory formation
[Poole, 1986]: What is the best theory that accounts for the given evidence?
But if there is a best theory, there must be poor ones; so diagnostic reasoning
really consists of two problems: (a) What is the space of possible theories that
account for the given evidence? (b) What are the best theories in this space?
Most mle-based diagnostic systems conflict these two questions, attempting to
converge on a best theory (usually by statistical means) without explicitiy ac
counting for die space of possible theories through which they are searching.
However, once diis distinction is revealed: They can characterize die space of
possible dieories diat explain the evidence. This is seen most clearly in papers
by Poole [1986] and Reiter [1987]. For example, Reiter shows that die space of
possible theories is precisely the set of extensions of a suitable formalization in
default logic (Section 6.2.2) of the diagnostic setting. Poole's characterization,
while somewhat different, is also based on default logic. Other approaches to
diagnosis tiiat emphasize characterizing die space of all dieories are give by de
Kleer and Williams [1986] and Reggia et al., [1985].

The second problem—choosing a best theory from the space of possible
dieories—is currendy beyond die province of nonmonotonic logic. In diis re
spect, Israel's criticism is correct. However, given the space of possible theo-

Chapter 12 Nonmonotonic Reasoning 475

ries as provided by nonmonotonic logic, we can at least begin a principled
study of the rational epistemic policies for theory selection that Israel rightly
emphasizes. This is tiie approach of de Kleer and Williams [1986] and Peng
and Reggia [1986], who provide probabilistic grounds for diagnostic theory
preference. In a different setting Poole [1985] proposes a preference ordering
on tiieories tiiat favors the most specific tiieories.

In brief, a proper analysis of diagnostic reasoning, and more generally ab
ductive reasoning, must address two distinct problems. The first—^tfiat of
characterizing the space of possible explanatory theories—is an appropriate
role for nonmonotonic logic. The second—that of determining theory prefer
ence—^requires rational epistemic policies tiiat appear to have littie to do with
current approaches to nonmonotonic reasoning.

8 Conclusions

Nonmonotonicity appears to be the mle, rather than the exception, in much of
what passes for human commonsense reasoning. The formal study of such rea
soning pattems and their applications has made impressive, and rapidly accel
erating progress. Nevertheless, much remains to be done.

The unexpected complexity of the frame problem suggests that many more
non-toy examples need to be thoroughly explored in order for us to gain a
deeper understanding of the essential nature of nonmonotonic reasoning. In this
connection, note that most potential applications have barely been touched, if at
all. Apart from those discussed in this paper, examples include implicatures
and presuppositions in natural language, high-level decision, qualitative phys
ics, and leaming.

With the possible exception of PROLOG'S negation-as-failure mechanism,
we know almost notiiing about reasonable ways to compute nonmonotonic in
ferences. Tmth maintenance systems must be integrated components of non
monotonic reasoners, yet we have no adequate formal account of such systems.
All current nonmonotonic formalism deal with single agent reasoners.
However, it is clear that agents must frequentiy ascribe nonmonotonic infer
ences to other agents, for example in cooperative planning or speech acts.^^
Such multi-agent settings require appropriate formal theories, which currentiy
we lack.

The ultimate quest, of course, is to discover a single theory embracing all
the seemingly disparate settings in AI where nonmonotonic reasoning arises.

16 See Pemiult [1987]. Incidentally, the requirement that an agent must be able to ascribe default
rules to anodier agent argues for an epistemic approach to nonmonotonic reasoning (Section 6.4).
See Halpem and Moses [1985] for a (monotonic) multi-agent logic of knowledge.

476 Reiter

Undoubtedly, there will be surprises en route, but AI will profit from die jour
ney, in the process becoming much more the science we all wish it to be.

Acknowledgments

Many thanks to David Etherington, Russ Greiner, and Hector Levesque for
providing valuable suggestions on improving an earlier draft of this paper. My
thanks also to Teresa Miao for carefully and patientiy preparing this manu
script. This research was done with the financial support of the National
Sciences and Engineering Research Council of Canada, under operating grant
A9044.

References

Allen, J. F., 1984. Towards a general theory of action and time. Artificial Intel
ligence 23:123-54.

Bobrow, D. G. and Winograd, T., 1977. An overview of KRL, a knowledge
representation language. Cognitive Science 1:3-^6.

Bossu, G. and Siegel, P., 1985. Saturation, non-monotonic reasoning and the
closed-world assumption. Artificial Intelligence 25:13-63.

Buchanan, B. G. and Shortliffe, E. ed., 1984. Rule-Based Expert Systems: The
MYCIN Experiments of the Stanford Heuristic Programming Project, Read
ing, Mass: Addison-Wesley.

Bundy, Α., 1985. Incidence calculus: A mechanism for probabilistic reasoning.
Journal of Automated Reasoning 1:263-83.

Cheeseman, P., 1985. In defense of probability. In Proceedings of the Ninth In
ternational Joint Conference on Artificial Intelligence, Los Angeles, pp.
1002-9. San Mateo: Morgan Kaufmann Publishers.

Clark, K., 1978. Negation as failure. See Gallaire and Minker, pp. 293-322.
de Kleer J. and Williams, B. C , 1986. Reasoning about multiple faults. In Pro

ceedings of the Fifth National Conference of the American Association for
Artificial Intelligence, Philadelphia, pp. 132-45. San Mateo: Morgan Kauf
mann Publishers.

Delgrande, J. P., 1986. A first-order conditional logic for reasoning about pro
totypical properties. Simon Eraser University Department of Computer
Science Technical Report. Bumaby.

Doyle, J., 1979. A tmth maintenance system. Artificial Intelligence 12:231-72.
Etherington, D. W., 1986. Reasoning with Incomplete Information: Investiga

tions of Non-monotonic Reasoning. PhD thesis. University of British Colum
bia, Vancouver.

Chapter 12 Nonmonotonic Reasoning 477

Etherington, D. W., 1987. A semantics for default logic. In Proceedings of the
Tenth International Joint Conference on Artificial Intelligence, Milan. San
Mateo: Morgan Kaufmann Pubhshers.

Etherington, D., Mercer, R., and Reiter, R., 1985. On the adequacy of predicate
circumscription for closed world reasoning. Computational Intelligence
1:11-15.

Fahlman, S. E., Touretzky, D. S., and van Roggen, W., 1981. Cancellation in a
parallel semantic network. In Proceedings of the Seventh International Joint
Conference on Artificial Intelligence, Vancouver, pp. 257-63. San Mateo:
Morgan Kaufmann Publishers.

Genesereth, M. R., 1984. The use of design descriptions in automated diagno>
sis. Artificial Intelligence 24:411-36.

Gallaire, Η., Minker, J., ed., 1978. Logic and Data Bases, New York/London:
Plenum.

Gelfond, M., Przymusinska, H., Przymusinska, T., 1986. The extended closed
worid assumption and its relation to parallel circumscription. University of
Texas, Department of Math. Sei. Work. Pap. El Paso.

Ginsberg, M. L., 1986. Counterfactuals. Artificial Intelligence 30:35-79.
Green, C , 1969. The Application of Theorem-Proving to Question Answering

Systems, Ph.D. thesis. Stanford University.
Halpem, J. Y. and Moses, Y., 1984. Towards a theory of knowledge and ig

norance: Preliminary report. In Proceedings of the AAAI Workshop Non
Monotonic Reasoning, New Paltz, pp. 125-43.

Halpem, J. Y. and Moses, Y., 1985. A guide to the modal logics of knowledge
and belief: Preliminary draft. In Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, Los Angeles, pp. 480-90. San Mateo:
Morgan Kaufmann Publishers.

Hanks, S. and McDermott, D., 1986. Default reasoning, nonmonotonic logics,
and the frame problem. In Proceedings of the Fifth National Conference of
the American Association for Artificial Intelligence, Philadelphia, pp. 3 2 8 -
33. San Mateo: Morgan Kaufmann Publishers.

Haugland, J., 1981. Mind Design, Cambridge, Mass: MIT Press.
Hayes, P. J., 1973. The frame problem and related problems in artificial intel

ligence. Artificial and Human Thinking, ed. A. Elithom and D. Jones, pp.
45-59. San Francisco: Jossey-Bass.

Israel, D. J., 1980. What's wrong with non-monotonic logic? In Proceedings of
the First National Conference of the American Association for Artificial In
telligence, Stanford, pp. 99-101. San Mateo: Morgan Kaufmann Publishers.

Kautz, Η. Α., 1986. The logic of persistence. In Proceedings of the Fifth Na-
tioanl Conference of the American Association for Artificial Intelligence,
Philadelphia, pp. 401-5. San Mateo: Morgan Kaufmann Publishers.

478 Reiter

Konolige, Κ., 1982. Circumscriptive ignorance. In Proceedings of the Second
National Conference of the American Association for Artificial Intelligence,
Pittsburgh, pp. 202-4. San Mateo: Morgan Kaufmann Publishers.

Konolige, K., 1987. On the relation between default theories and autoepistemic
logic. SRI Intemadonal Artificial Intelligence Center Technical Report. Palo
Alto.

Kowalski, R. and Sergot, M., 1986. A logic-based calculus of events. New
Generation Computing 4:67-95.

Levesque, H. J., 1982. A formal treatment of incomplete knowledge bases.
Fairchild Lab. Artificial Intelligence Research Technical Report 3.

Levesque, H. J., 1982. Foundations of a functional approach to knowledge rep
resentation. Artificial Intelligence 23:155-212.

Levesque, H. J., 1986. Knowledge representation and reasoning. Annual Re
view of Computer Science 1:255-87.

Levesque, H. J., 1987. All I know: Preliminary report. University of Toronto,
Department of Computer Science Technical Report. Toronto.

Levinson, S. C , 1983. Pragmatics. London: Cambridge University Press.
Lewis, D., 1973. Counterfactuals. Cambridge, Mass: Harvard University Press.
Lifschitz, v., 1985a. Closed-worid databases and circumscription. Artificial In

telligence 27:229-35.
Lifschitz, v., 1985b. Computing circumscription. In Proceedings of the Ninth

Interruitional Joint Conference on Artificial Intelligence, Los Angeles, pp.
121-27. San Mateo: Morgan Kaufmann Publishers.

Lifschitz, v., 1986a. On the satisfiability of circumscription. Artificial Intel
ligence 2%\\Ί-21.

Lifschitz, v., 1986b. Pointwise circumscription: A preliminary report. In Pro
ceedings of the Fifth Natioruil Conference of the American Artificial Intel
ligence, Philadelphia, pp. 406-10. San Mateo: Morgan Kaufmann Publish
ers.

Lifschitz, v., 1986c. On die declarative semantics of logic programs with nega
tion. Stanford University Computer Science Department Technical Report.
Stanford.

Lifschitz, v., 1986d. Formal theories of action. Stanford University Computer
Science Department Technical Report. Stanford.

Lukaszewicz, W., 1984. Consideration on default logic. In Proceedings of the
AAAI Workshop Non-Monotonic Reasoning, New Paltz, pp. 165-93.

McCarthy, J., 1977. Epistemological problems of artificial intelligence. In Pro
ceedings of the Fifth International Joint Conference on Artificial Intel
ligence, Cambridge, Mass., pp. 223-27. San Mateo: Morgan Kaufmann
Publishers.

McCarthy, J., 1980. Circumscription—^a form of non-monotonic reasoning. Ar
tificial Intelligence 13:27-39.

Chapter 12 Nonmonotonic Reasoning 479

McCarthy, J., 1986. Applications of circumscription to formalizing common-
sense knowledge. Artificial Intelligence 28:89-116.

McCardiy, J. and Hayes, P. J., 1969. Some philosophical problems from the
standpoint of artificial intelligence. Machine Intelligence 4, ed. B. Meitzer
and D. Michie, pp. 463-502. Edinburgh: Edinburgh University Press.

McDermott, D., 1982a. Non-monotonic logic II: Non-monotonic modal theo
ries. Journal of ACM 29:33-57

McI>ermott, D. V., 1982b. A temporal logic for reasoning about processes and
plans. Cognitive Science 6:101-55.

McDermott, D., 1986. A critique of pure reason. Yale University Department
of Computer Science Technical Report. New Haven

McDermott, D. and Doyle, J., 1980. Non-monotonic logic I. Artificial Intel
ligence 25:41-72

Mercer, R. E. and Reiter, R., 1982. The representation of presuppositions using
defaults. In Proceedings of the Can. Soc. Computat. Stud. Intell. National
Conference, Saskatoon, pp. 103-7.

Michalski, R. S., 1983. A dieory and metiiodology of inductive leaming. Ma
chine Learning ed., R. S. Michalski, J. G. Carbonell, T. M. Mitchell, pp.
83-129. San Mateo: Morgan Kaufmann Publishers.

Minker, J., 1982. On indefinite databases and the closed world assumption. In
Proceedings of the 6th Conference on Automated Deduction, New York, pp.
292-308.

Minsky, M., 1975. A framework for representing knowledge. The Psychology
of Computer Vision, ed. P.H. Winston, pp. ΙλΧ-Π. New York: McGraw-
Hill.

Moore, R. C , 1984. Possible-world semantics for autoepistemic logic. In Pro
ceedings of the AAAI Workshop Non-Monotonic Reasoning, New Paltz, pp.
396-401.

Moore, R. C , 1985. Semantical consideration on nonmonotonic logic. Artificial
Intelligence 25:75-94.

Nilsson, N., 1986. Probabilistic logic. Artificial Intelligence 28:71-87.
Nute, D., 1984. Non-monotonic reasoning and conditionals. University of

Georgia Advanced Comput. Methods Center for Research Report 01-0002.
Atiiens, GA.

Peng, Y. and Reggia, J. Α., 1986. Plausibility of diagnostic hypotiieses: The
nature of simplicity. Proceedings of the Fifth National Conference of the
American Association for Artificial Intelligence, Philadelphia, pp. 140-45.
San Mateo: Morgan Kaufmann Publishers.

Perils, D. and Minker, J., 1986. Completeness results for circumscription. Arti
ficial Intelligence 28:29-42.

Perrault, C. R., 1987. An application of default logic to speech act theory. SRI
Intemational Artificial Intelligence Center Technical Report. Palo Alto.

480 Reiter

Poole, D. L., 1985. On the comparison of theories: Preferring the most specific
explanation. In Proceedings of the Ninth International Joint Conference on
Artificial Intelligence, Los Angeles, pp. 144-47. San Mateo: Morgan Kauf
mann Publishers.

Poole, D., 1986. Default reasoning and diagnosis as theory formation. Univer
sity of Waterioo Department of Computer Science Technical Report CS-86-
08.

Putnam, H., 1970. Is semantics possible? Language, Belief, and Metaphysics,
ed. H. E. Kiefer and M. K. Munitz, pp. 50-63. Albany: State University of
New York Press.

Reggia, J. Α., Nau, D. S., Wang, Y., and Peng, Y., 1985. A formal model of
diagnostic inference. Information Science 37:227-85.

Reiter, R., 1978a. On reasoning by default. In Proceedings of TINLAP-2,
Theoretical Issues in Natural Language Processing 2, pp. 210-18. Univer
sity of Illinois, Urbana-Champaign.

Reiter, R., 1978b. On closed worid data bases. See Gallaire and Minker, pp.
55-76.

Reiter, R., 1980. A logic for defauh reasoning. Artificial Intelligence 13 :81-
132.

Reiter, R., 1982. Circumscription implies predicate completion (sometimes). In
Proceedings of the Second National Conference of the American Association
for Artificial Intelligence, Pittsburgh, pp. 418-20. San Mateo: Morgan Kauf
mann Publishers.

Reiter, R., 1987. A theory of diagnosis from first principles. Artificial Intel
ligence.

Reiter, R., Criscuolo, G., 1983. Some representational issues in default reason
ing. Journal of Computer Mathematics Applications 9:1-13 (Special issue
on computational linguistics).

Rich, E., 1983. Default reasoning as likelihood reasoning. In Proceedings of
the Third National Conference of the American Association for Artificial In
telligence, Washington D. C , pp. 348-51. San Mateo: Morgan Kaufmann
Publishers.

Rosch, E., 1978. Principles of categorization. Cognition and Categorization,
ed. E. Rosch, B. B. Lloyds. Hillsdale: Lawrence Erlbaum Assoc.

Sandewall, Ε., 1972. An approach to the frame problem and its implementa
tion. Machine Intelligence 7, ed. B. Meitzer, D. Michie, pp. 195-204. Edin
burgh: Edinburgh University Press.

Sandewall, Ε., 1985. A functional approach to non-monotonic logic. Comput
ational Intelligence 1:80-87.

Shepherdson, J. C , 1984. Negation as failure: A comparison of Clark's
completed data base and Reiter's closed world assumption. Journal of Logic
Programming 1:51-79.

Chapter 12 Nonmonotonic Reasoning 481

Shoham, Y., 1986. Reasoning About Change: Time and Causation from the
Standpoint of Artificial Intelligence. PhD thesis. Yale University, New
Haven.

Stalnaker, R., 1968. A theory of conditionals. Studies in Logical Theory, ed. N.
Rescher, pp. 98-112. Oxford: Blackwell.

Zadeh, L., 1981. PRÜF—a meaning representational language for natural lan
guages. Fuzzy Reasoning and its Applications, ed. E. Mamdani, B. Gaines.
New York: Academic.

Zadeh, L.., 1985. Syllogistic reasoning as a basis for combination of evidence
in expert systems. In Proceedings of the Ninth International Joint Confer
ence on Artificial Intelligence, Los Angeles, pp. 417-19. San Mateo: Mor
gan Kaufmann Publishers.

Chapter

13

A Survey of Automated
Deduction
Woody Bledsoe
University of Texas
Computer Sciences Department

Richard Hodges
Oakland, California

1 Introduction

1.1 What Is Automated Deduction?

It includes many things. A part of it involves proving theorems by computer,
theorems like the Pythagorean theorem from plane geometry (Figure 1) or the
theorem: If an equilateral triangle is inscribed in a circle, and lines are drawn
from its comers to a point on the circumference, then the length of the longest
such line is equal to the sum of the lengths of the others (Figure 1).

Or theorems from algebra such as:

A group for which jc^ = ^ for each of its elements x, is conunutatíve.
A ring for which jc^ = JC is commutative.

1 This is an enlarged version of a survey talk given by Woody Bledsoe at the Sixth National Con
ference on Artificial Intelligence, Seattle, Washington, July 16, 1987.

483

484 Bledsoe and Hodges

Or theorems from analysis such as the maximum value theorem and the in
termediate value theorems, depicted in Figure 2 :

EXAMPLE THEOREMS FROM GEOMETRY

Pythagorean Theorem:

Figure 1

EXAMPLES FROM ANALYSIS

Maximum Value Theorem and Intermediate Value Theorem,
for continuous functions.

Figure 2

Chapter 13 A Survey of Automated Deduction 485

A continuous function / defined on a closed interval [a, 6], attains its
maximum (and minimum) on that interval.

And if fia) < 0 and fib) > 0, then fix) = 0 for some χ in [a, b].

Also puzzles such as the truthtellers and liars one, can be solved by
theorem proving. See [Lusk and Overbeek, 1985].

On a certain island the inhabitants are partitioned into diose who always
tell die tmüi and those who always lie. I landed on die island and met
tíiree inhabitants A, B, and C. I asked A, "Are you a tmditeller or a liar?"
He mumbled something which I couldn't make out. I asked Β what A had
said. Β replied, "A said he was a liar." C then volunteered, "Don't believe
B, he's lying!"

What can you tell about A, B, and C?

The halting problem theorem (Figure 3) shows how complicated these
dieorems can get, and others more so.

HALTING PROBLEM IS UNSOLVABLE
(Burkholder)

(1) (Ex)[(3x & (Ay)(Py (Az)Dxyz)] ->(Ew)[Pw & (Ay)(Py(Az)Dwyz)]

(2) (Aw)([Pw & (Ay)(Py -> (Az)Dwyz)] (Ay)(Az)([Py & H^yz) -^(Hgwyz & Owg)]
& [(Py & - 1 Hg yz) (K3 wyz & Owb)]))

(3) (Ew)[Pw & (ay)([Py & Hgyy)(Hgwyy & Owg)] & [(Py & Η yy)
->(H2wyy & Owb)])]—(Ev)[Pv & (Ay)([Py & H2yy) — (H2 vy & Ovg)]
&[(Py&-.H2yy)~-(H2vy&Ovb)])]

(4) (Ev)[Pv& (Ay)([Py&Hgyy) -(Hgvy&Ovg)]&[(Py&-.H2yy)-(H2vy&Ovb)])]
-.(Eu)[Pu & (Ay)([(Py & Hgyy) ^Hguy] Hguy] & [(Py & -.Hgyy)
—(H yy) —(HgUy&Oub)])].

(5) --<Ex)[Gx&(Ay)(Py--(Az)DxyZ)l

Figure 3

486 Bledsoe and Hodges

1.2 Facets of Automated Deduction

What is automated deduction? It is a number of things. But in all cases one is
making deductions by computer. It is often called automated theorem proving
(ATP), or automatic reasoning (AR). We will use these terms interchangeably.
Let me list some of the facets and applications of automated deduction. See
Figure 4.

We consider proof discovery to be the major component of ATP, because
every application of ATP uses some amount of automatic proof discovery. We
will tend to concentrate on it in this talk, since we are personally interested in
it, and will discuss the others only briefly, if at all. There are a number of re
view papers and references for each of these areas. One might add to this list:
all nonnumeric programming, since some form of inferencing is involved in all
of it.

Automatic proof checking is a very important part of AR (see, for ex
ample, [Boyer and Moore, 1982; Constable et al., 1986; Hunt, 1985; Weyh-
rauch, 1977]) but will be discussed only briefly here. The reader is referred to
[McDonald and Suppes, 1984] for a report on using ATP in computer-aided in
stmction.
We will also not discuss interactive provers, but consider this to be one of the
most important areas of ATP. See [Bledsoe and Bmell, 1973; Boyer and
Moore, 1979].

APPLICATIONS OF ATP

Proof Discovery

Proof Checking: Including Computer-Aided Instruction

Interactive Provers (Man-machine)

Logic Programming & Programming Languages

Deductive Data Bases

Program Verification & Automatic Programming

Expert-Systems Inferencing

Algebraic Manipulation (such as Macsyma)

Proof Representation & Manipulation

Figure 4

Chapter 13 A Survey of Automated Deduction 487

We will discuss logic programming shorüy. Many efforts are underway to
combine logic and functional programming languages such as PROLOG and
LISP, and to join this with rapid type inheritance, to make it easier to write AI
applications, and attain greater speed. See, for example, [Ait-Kaci and Nasr,
1985].

In the near future we expect to see an increased research effort on deduc
tive databases, especially for very large collections of facts and rules, written
in logic, and requiring a great deal of inferencing to answer a query. See [Gal
laire and Minker, 1978] for a review and also [Renschen et al., 1984] for an
example of compiling database queries, to speed up retrieval.

Such a database might contain the facts about a corporation and its operat
ing "mies." Similarly for a political situation, such as die Middle East (will
country X cut off the oil or go to war), and for military situations. We believe
that a stmctured knowledge base of general (commonsense) knowledge, such
as [Lenat et al., 1986], will play a big role in these efforts.

Program verification (e.g., [Good, 1985; Boyer and Moore, 1979]) and au
tomatic programming [Manna and Waldinger, 1985] continue to be significant
application areas for ATP. Algebraic manipulation [Buchberger et al., 1983], as
represented by M A C S Y M A [1983] and other systems, has grown to be a sizable
part of AR.

Of most interest to the AI community is automatic inference associated
with expert systems and related "intelligent" programs. In this conference alone
there were 46 papers (out of 150) related to automatic reasoning. We expect
that trend to continue, especially as AI programs are being based more on
traditional logic and extensions of it. Here we could include nonmonotonic rea
soning (e.g., circumscription) [McCarthy, 1980; Brown, 1986] tmth main
tenance [Doyle, 1979; de Kleer and Brown, 1984], commonsense reasoning
[McCarthy, 1968; Lenat et al., 1986], qualitative reasoning, (see, for example,
[de Kleer and Brown, 1984; Forbus, 1984]), Metareasoning [Geneseretii et al.,
1983, 1987].

1.3 Proof Representation and Manipulation
Another branch of automated deduction studies methods of representing and
transforming proofs. Human mathematicians seem to be able to understand a
proof as a whole, whereas automated deduction systems tend to have a very
narrow view, centered around a single clause or a small group of clauses at any
one time.

One reason for wanting to be able to manipulate proofs is to facilitate
higher-level strategies for proof discovery. The method of proof by analogy is
an area which needs the ability to transform proofs, to extract the abstract con
tent of a proof, and to annotate proofs with additional information such as the
"motivation" for a given step. (See Section 5.2.1.)

488 Bledsoe and Hodges

The intemal representations used in automated deduction are often not
very easy for people to understand. Many theorem provers use clausal Resolu
tion. But putting a theorem into clauses often introduces redundancy and ob
scures the logical stmcture of the tiieorem and its proof. Observing that it is
often much easier to understand a proof in natural deduction format, Peter An
drews and Dale Miller have developed algorithms for transforming Resolution
proofs into an intermediate form called an "expansion tree" and then into a nat
ural deduction proof [Andrews, 1981]. Amy Felty, a student of Miller, has re
cendy developed a system to translate proofs into natural English. These sys
tems use "Higher Order Logic" (see Section 3.3) and have automatically pro
ven Cantor's theorem and a version of Russell's paradox.

A group of systems [Gordon et al., 1982; Nederpelt, 1980; Cardelli, 1986;
Coquant and Huet, 1985; Constable, 1986; deBmijn, 1980] have been
developed for representing and checking mathematical proofs using a Higher
Order Logic based on the Curry-Howard isomorphism between propositions
and lambda-types (see Section 3.4) These systems have also been used for
verifying software and hardware [Gordon, 1987]. Proofs often can be written in
a form much closer to that used by a human mathematician than by employing
first-order predicate calculus and Resolution. So far, little work has been done
on proof-discovery in these systems.

McAUester (MIT) has developed a theorem prover with set theory "built-
in" and with a novel concept for proof guidance: The user specifies a "focus
object" and the prover tries to forward chain from established facts to prove
everything it can about the selected object. The prover can then search using
patterns to see if anything useful has been proved. This seems potentially use-
fill as a representation for motivation in proofs. His ONTIC has been used to
proof-check the Stone Representation Theorem as well as others [McAUester,
1987].

Weyrauch [1977, 1982] has developed a system called FOL in which the
syntax and reasoning mies of a deductive system can be formalized in First
Order Logic (FOL). In particular, F O L can formalize its own logic. It can con
duct reasoning about proofs and about its own mies of inference. New mies
can be verified using the deductive capabilities of F O L and can be added decla-
ratively to the set of metatheorems representing facts FOL knows about itself.

2 References

There have been a number of excellent review papers of ATP during die last
few years. Perhaps die review by Loveland [1984] or [Bledsoe and Henschen,
1985] in the first issue of the Journal of Automated Reasoning, 1985, would be
the best for the beginner. In that same issue is an extended review of AR.
Those interested in the prehistory and early history of ATP should see Martin

Chapter 13 A Survey of Automated Deduction 489

Davis's [1983] article. Also see [Wos and Renschen, 1983]. Bill Pase, of I. P.
Shaφ Associates, has recently revised his 70-page bibliography of automated
deduction, which is very useful for diose serious about diis subject [Pace,
1987].

There are a number of books and collections of important papers which
are introductory to the subject. For example, [Chang and Lee, 1973; Loveland,
1978; Bibel, 1982, 1987; Wos et al., 1984a; Geneseretii and Nilsson, 1987;
Kowalski, 1979; Bundy, 1983; Andrews, 1986; IEEE, 1976; Wos, 1987; Boyer
and Moore, 1979; Siekmann and Wrightson, 1983; Bledsoe, 1984]. Also diere
are chapters on ATP in various books on AI such as [Nilsson, 1980; Rich,
1983], and various joumals and conference proceedings (Journal of Automated
Reasoning, AAR Newsletter, CADE Reports, AI Journal, MI Series, AAAI,
IJCAI, IEEE Transactions, RAMI and SSC, etc.).

Other books of related interest include Konolige [1986a] on representing
the capabilities of intelligent agents with imperfect knowledge; and Smullyan's
books of logic puzzles, especially [Smullyan, 1985], a good source of chal
lenge problems for ATP systems.

3 Brief History of Automated Deduction

Modem ATP was bom in the middle 1950s with die "Logic Machine" of
Newell, Shaw, and Simon [1956]. Gelernter's "Geometry Machine" [Gelernter,
1959], followed in the late 1950s, as well as other interesting work by Hao
Wang [1960], Davis and Putnam [1960] and many others (see [Davis, 1983]).
But it was the advent of J. A. Robinson's Resolution paper [Robinson, 1965a]
that forever changed this field.

Also note that Maslov's inverse method [Maslov, 1968] stems from the
mid 1960s. Vladimir Lifschitz [1987] has recentiy completed an excellent
paper simplifying the presentation of this powerful method.

Other proof procedures, such as the so called "Natural Deduction" provers
[Wang, 1960; Bledsoe, 1975; Loveland, 1978; Bledsoe, 1977; Plaisted, 1982],
model elimination, connection and mating methods [Andrews, 1981; Bibel,
1982], interConnectivity graphs [Kowalski, 1975; Sickel, 1976], semantic tab
leaux [Oppacher and Suen, 1986; Smullyan, 1968], and the earlier "inverse
methods" of Maslov [1968], have much in common with Resolution and also
suffer many of its shortcomings.

Still, we believe that the introduction of Resolution represents the single
most important event in ATP so far. What is it?

3.1 Resolution
The basic idea of Resolution is simple and is very easy to leam. See, for ex
ample, the presentation in [Chang and Lee, 1973]. It is based upon the modus

490 Bledsoe and Hodges

ponens rule, or more generally the chain rule. Referring to Figure 5, if the
chain rule is converted to clausal form (by replacing an expression χ y hy
(- Ü C V y) then the rule is effected by cancelling the q and - i ^ in the upper
clauses. Shown at the bottom of Figure 5 is the resolvent rule for first order
logic, where unification is required; here the variable χ is bound to the term a.

Figure 6 shows a Resolution proof of a simple theorem. Note that the hy
potheses are converted to clausal form and the conclusion is negated. Then
clauses are resolved until a contradiction, • , is reached.

For Propositional Logic (where no variables are to be bound), Resolution
is quite simple:

Resolution Rule

1. Negate theorem

2. Put in "clausal form" (i.e., conjunctive normal form, CNF)

3. Resolve until a contradiction, • , is obtained

Now let us look at Resolution for First Order Logic (FOL). Figure 7
shows some expressions in FOL and a theorem. One is dealing here with quan
tifiers and variables. In order to prove this by Resolution we must convert it to
clausal form (Figure 8). First each hypothesis is skolemized by removing the
quantifiers.

RESOLVENT RULE
OD

MODES PO^ENS CHAIN RULE RESOLVEr^ RULE

P, p - * q p — q , q - . r - , ρ ν 4 - . .q ν r
q p — r - , ρ V r

,p(x) V q(-x)' , -.jq(a) V r
-,p(a) V r

Figure 5

Chapter 13 A Survey of Automated Deduction 491

EXAMPLE Resolution Proof

Theorem: [(p — q) & p] —>q

Use CONTRADICTION. (Clauses)

4. q 1,2 1.

2.

3.

ρ V q

Ρ

q

5. 3,4
"box"

Actually: - ,ρ V q - .p V q ^ p V q

Ρ —>
' —•

Ρ —>
—> Ρ

- q

q

- q

q

Figure 6

In the first hypothesis, the expression is true for all χ and y, so we discard
the quantifiers, and remember that we can replace χ and y by any term we
please in the proof. We also convert the implication as before. Similarly in the
next hypothesis, except that we require a skolem function. For each p , there ex
ists a ζ such that Mother(z, p). It is clear that ζ depends on p, so we show that
dependence by replacing ζ by the expression m (p) . The conclusion is negated
(since Resolution uses Contradiction). The ζ remains a variable that also might
be replaced with a term. Figure 9 shows the corresponding clauses and the
derivation of • by Resolution. There, JC, y, p , and ζ are variables, and John and
m are constants. The proof goes as before except that some of the variables are
bound in the process. These bindings are called a substitution. The process of
determining the substimtion is called unification. Two formulas are unified
(made one) in the process.

For example, the pair

P(y,xO)

492 Bledsoe and Hodges

FIRST ORDER LOGIC

Girl (x), Female (x), Person (p)

THEOREM:

Vx V y [Mother (x,y)-> Female (x)] &

Vp Person (p) — • 3 ζ Mother (ζ,ρ)] &

Person (John)

-> 3 ζ Female (z)

Figure 7

is unified by the substitution [x <-xO,y i- gixO)] (where Λ: and are variables
and £ and xO are function symbols). But the pair

P(y. h(y))

has no unifier. Why?
The first step in trying to unify

P(y. h(y))

yields

Pig{x).x)
Pigix). h(gm.

Chapter 13 A Survey of Automated Deduction 493

CLAUSES

V x V y [Mother (x . y) - > Female (x)] &

Mother (x, y) ν Female (x)

V ρ Person (p) 3 ζ Mother (z,p)]

- · Person (p) ν Mother (m(p), ρ)
Note: m(p) is a "skolem" expression

Person (John)

Person (John)

—> 3 f Female (z)

- · Female (z)

FIgun 8

But we cannot finish, because χ occurs in h(g{x)). If we tried to continue by
substituting [xir- h {g{x))\ we would get into an infinite loop. We prevent diis
kind of error by what is called the " occurs-check" in the unification algorithm.
If we don't use such occurs-check, we could "prove" nontheorems, such as

VJC 3y P(y, JC) - > 3y VJC P (y, jc).

We will see more on the occurs-check problem when we discuss logic pro
gramming.

Resolution is complete for first order logic; i.e., any theorem expressed in
FOL can be proved by Resolution. This is an important result since FOL in
cludes much of mathematics (indeed, can include all of mathematics).

However, Resolution is not a decision procedure for FOL, there is no
guarantee that it will detect nontheorems in finite time; in fact FOL has no
decision procedure. Higher Order Logic (HOL), which we will discuss shortiy,
has no complete proof procedure, let alone a decision procedure.

494 Bledsoe and Hodges

PROOF

1. -"Mother (x, y) ν Female (χ)

2. --Person (p) ν Mother (m(p), p)

3. Person (John)

4. -"Female (z)

5. Mother (m(John), John)

6. Female (m(John))

7. •

3,2, ρ ^ John

5 ,1 , y ^ J o h n ,

X — m(John)

4, 6 ζ ^ m(John)

Figure 9

3.2 Compieteness

Completeness is a desirable property of a proof procedure such as Resolution;
we want to know what it can and cannot do before we employ it. But
completeness alone is not enough. We also need speed as well. But Resolu
tion—^as well as other proof procedures for FOL—^tend to be slow when at
tempting the discovery of proofs of hard theorems.

We are faced with the classic combinatorial explosion problem when we
automatically search a proof tree, such as the one depicted in Figure 10a. The
prover searches down along the branches looking for the goal nodes, indicated
by die asterisks. Finding such a goal finishes die proof

Actually, in standard Resolution, the search space is not really a tree, since
branches often rejoin other branches. Linear formats for organizing Resolution
search (such as SL-Resolution, Model Elimination, problem reduction) make
the search more tree-like. In any case, the "tree" metaphor in the following dis
cussion is useful for inmition.

Chapter 13 A Survey of Automated Deduction 495

PROOF SEARCH TREE

Figure 10a

The number of branches in die tree increases at least exponentially with
depth. When the solution nodes lie even moderately deep, bmte-force search
methods quickly exhaust available resources.

Professional mathematicians have an uncanny way of excluding much of
the "bmsh" of the tree by heading directiy toward one of these solution nodes.
But the computer—though a million times faster—^tends to thrash hopelessly
around through all the branches (using depth-first or breadth-first search
methods). The challenge of this age for this field is to shorten the search time.
Attempts to do so can be classified into two categories.

1. Methods that speed up the inherent reasoning process by

(a) Using faster hardware, or by

(b) Clever programming tricks, such as clause compiling

2. Those that prune the search tree.

496 Bledsoe and Hodges

PROOF SEARCH TREE

Figure 10b

The effect of the first category is to push down a few layers in the search
tree (see Figure 10b). The swath indicates how a faster prover might push
farther down in the tree. This may or may not help, depending, of course, on
the positions of the goal nodes in the tree. For many applications in AI and re
lated fields, it does help. A speed up of one or two orders of magnitude, that
seems to be attainable by the new clause-compiling techniques coming from
the PROLOG community, has made possible the proofs of many theorems pre
viously unattainable by automatic methods. This is good news for many work
ers in AI who are beginning to use logic more extensively for representing
rules for expert systems, and for entries in logic databases, etc.

This extended use of logic is placing a greater load on the ''inference en
gine" of these systems, and these new compiling techniques will help greatiy
with that load. But it is through the second category, the pruning strategies,
that we can expect satisfactory solutions for the long mn. speed alone cannot
replace the judicial use of knowledge. (See our recent paper. Some thoughts on
proof discovery [Bledsoe, 1986a], for a further articulation of this argument.)
There were many early attempts to prune the search tree. Most of these are
syntactic in nature, applying equally well from one subfield to another. Some
refinements of Resolution to speed up proof discovery are:

Chapter 13 A Survey of Automated Deduction 497

Set-of-Support Resolution

Hyper-Resolution

SL-Resolution (= Model Elimination)

Connection Mediod, Matings

InterConnectivity Graphs

Locking

Dozens more.

One such method, an important one, is the set-of-support strategy [Wos,
1965], whereby the program works back from the desired goal, and avoids
generating unmotivated lemmas that may or may not contribute to the final so
lution.

Another important one is called Hyper-Resolution [Robinson, 1965b] in
which a number of Resolution steps are combined into one larger step, with
the program keeping only the final resolvent and discarding the intermediate
resolvents ("fragments"). (See Section 5 below.) This method has been espe
cially powerful in the hands of the Argonne Group headed by Larry Wos.
Many other pmning strategies have been tried, but these will not be reviewed
here [Kowalski and Kuehner, 1971; Loveland, 1968; Andrews, 1984; Bibel,
1982; Kowalski, 1975; Sickel, 1976; . . .] .

It should be noted the ground proofs (proofs in which no binding of varia
bles takes place) are hardly ever difficult. It is only when we allow the binding
of variables (i.e., die replacement of variables by other terms), through die uni
fication process, that we encounter the combinatorial explosions that so hamper
our provers. There have been developed ground provers which are enormously
fast, and it is questionable whetiier further progress in this area is necessary.

We will remm to the problem of speeding-up proof discovery shortly, but
we first briefly discuss other logics and equality.

3.3 Higher Order Logic

In first order logic we do not quantify function symbols, predicate symbols, or
symbols representing higher order objects. For example, the formula

Va[Vjc/>(jc)-^P(a)] (1)

is from the first order logic because only the a and χ are quantified. But the
formula

^a3Q[\/xP{x)^Qm (2)

498 Bledsoe and Hodges

is not, because the predicate symbol Q has been quantified.^
Actually, (2) is an easy theorem for people or machines: We simply re

place " β " by "P , " and "JC" by "a," but it is part of Higher Order Logic (HOL),
which is not even complete, let alone decidable. Inherentiy, HOL is harder
than FOL. However, the methods of Unification and Resolution have been ex
tended to HOL [Huet, 1973; Andrews, 1984] with a certain amount of success.
For example, Andrew's Prover, based on the Huet Unification Algorithm has
proved:

Cantor 's Theorem: If is the set of integers, and SN is die set of sub
sets of N, then there is no one-to-one function from Ν to SN,

More difficult theorems, such as

Intermediate Value Theorem: If / is a continuous function on a non
empty closed interval [a, b], ββ) < 0, and / (¿) > O, then/(jc) = O for
some JC in [a, b], (Using the Least Bound Axiom.)

have been proved by special purpose provers such as the one described in
[Bledsoe, 1979], but that prover has limited generality. General purpose pro
vers tend to be SLOW, especially for HOL.

3.3.1 Propositions as Types
An interesting approach to HOL has been developed from the so-called Curry-
Howard isomoφhism. This is an elegant relationship between the typed
lambda-calculus and intuitionistic logic. It has been championed, primarily by
Martin-Lof [1984], as a basis for abstract computer science.

Basically, the idea is that if a proposition is viewed as a type and the proof
of a proposition is viewed as an object having diat type, lambda conversion is
formally the same as modus ponens. If A and Β are propositions (types) a n d / i s
a term of type B, die expression

(λ(χ:Α)/)

is a function mapping the type A into the type B, The type of this function is
symbolized as A -¥ B, which can be thought of as expressing the imphcation
Λ -> B, with the meaning that given a proof ρ of A, we can get a proof

(λ (J c) /) (p)

for B. To prove A Β means to demonstrate an object of type A ^ B, i.e., an
effective procedure for obtaining a proof of Β from a proof of A,

2 The predicate symbol Ρ is also universally quantified (implicitly) in (1) and (2), it is only when
"existential" type quantifiers are used, where the quantified predicate symbol is to be replaced
(bound) in the proof process, that we enter true Higher Order Logic.

Chapter 13 A Survey of Automated Deduction 499

This calculus is a sufficient starting point to do mathematics. It is possible
to constmct definitions of all the usual logical connectives (and, or, not), quan
tifiers, and equality (using Leibniz's definition of substitutivity of equals). See
[Coquand and Huet, 1985] for an example of how this is done in one system.

The resulting logic is intuitionistic; all objects purported to exist must be
constmcted, and there is no law of excluded middle. However, if desired, logi
cal connectives and quantifiers obeying the usual nonintuitionistic mies can be
constmcted from the intuitionistic ones.

A branch of category theory, the theory of Topoi [Goldblatt, 1979] leads
naturally to the same intuitionistic logic and is a convenient abstract setting for
foundational questions in this kind of logic.

Potential advantages of Curry-Howard systems for ATP include: higher
order quantifiers are naturally available; we can get a lot of security in die
logic from the strong typing; and there is a natural mapping between proofs
and programs for constmcting objects. So far the only provers using such rep
resentations are proof checkers, having very limited search capabilities.

3.4 Other Logics

Many sorted logic brings the idea of typed variables and terms into First Order
Logic. Waldier [1983] (see Section 6.9) has developed a complete many sorted
extension of Resolution. Mathematical problems can often be expressed more
compactiy in many-sorted logic tiian in standard POL. There is a significant
gain in efficiency of search for proofs, since die types attached to the terms
place restrictions on permissible unifications.

An example which has been widely used as an ATP benchmark is
"Schubert's Steamroller" (see below). Figure 11 shows how many sorted logic
can improve the proof length and input sizes for this problem, and also in
cludes data on further improvements which are possible using Cohn's LLAMA
logic [Cohn, 1987].

Schubert's Steamroller Problem

Wolves, foxes, birds, cateφillars, and snails are animals, and diere are
some of each of them. Also there are some grains, and grains are plants.
Every animal either likes to eat all plants or all animals much smaller than
itself diat like to eat some plants. Caterpillars and snails are much smaller
than birds, which are much smaller than foxes, which in turn are much
smaller than wolves. Wolves do not like to eat foxes or grains, while birds
like to eat cateφillars but not snails. Cateφillars and snails like to eat
some plants. Therefore there is an animal that likes to eat a grain eating
animal.

500 Bledsoe and Hodges

STEAMROLLER PROBLEM
STATISTICS

FOL Walter's logic LLAMA

No. of clauses initially 27 12 3

No. of possilile Inferences 102 12 7

Length of proof 33 10 5

Figure 11

For reasoning about the commonsense world, for planning actions, and for
communicating with agents (including people), it is necessary to express and
reason about ideas like possibility, belief, knowledge, successiveness (in time),
etc. Modal logics and temporal logics have been developed for this purpose.
Proof procedures based on connection methods [Wallen, 1986] and semantic
tableaux [Smullyan, 1968] have been developed.

Others, particularly Kowalski [1979], have argued that modal and temporal
logics are unnecessary and that the corresponding reasoning can be formulated
and carried out entirely in FOL. The situation calculus [McCarthy, 1963;
McCarthy and Hayes, 1969; Brown, 1986] formulates actions and their effects
on states in FOL. Green [1969] developed a large working system based on
Resolution for performing such reasoning.

For recent work in applications of these methods, see [Konolige, 1986a,
1986b; Appelt, 1982; Moore, 1985]. An excellent textbook covering tiiis area is
[Geneseredl and Nilsson, 1987].

3.5 Equality

An early problem, a persistent one, is that involving equality, the "substitution
of equals." For example, the theorem

(a = bA P(a)) P(b)

Chapter 13 A Survey of Automated Deduction 501

is rather easy, one simply substitutes a for b, or vice versa (assuming of course
that "=" has its traditional meaning). But in more complex examples, like tiie
following theorems,

A group for which jc^ = is conunutative, (Hard)
A ring for which ji^ = jc, is commutative, (Very Hard)

die proof discovery process is difficult for a computer program, because there
are so many ways in which one term can be replaced by another.

The problem arises because, if α = ¿> is hypothesized, then we can replace
either a by ft, or b by a. This branching factor of 2, when invoked many times,
leads to a serious combinatorial explosion. Paramodulation [Wos and Robin
son, 1970] and E-Resolution [Morris, 1969], provided complete solutions to the
equality problem, but brought very littie to prevent the inherent explosion.
Some ATP researchers have greatiy tamed the problem by the use of rewrite
rules. Called demodulators by Wos [Wos et al., 1967] and reductions by
Bledsoe [1971], diese procedures rewrite a formula using a set of reducers or
rewrite rules. For example, if we have the rewrite mies

jc + 0 - > JC

te{Ar\B)-^teA&teB

we would rewrite the formula

/(Oe (A(jc)nB(x + 0))

as

jit)eA{x)&jit)eB{x).

The great advantage here is that the substitution on one-way only. We replace
"jc + 0" by "x," but do not replace "JC" by "x + 0," as might be possible by par
amodulation and E-Resolution. Thus a branching factor of 2 is replaced by 1!
However, the disadvantage is that such procedures are incomplete^ some
tiieorems cannot be proved by rewriting alone.

3.5.1 Term Rewriting Systems An exciting advancement in tiiis area was
an attempt to enlarge these sets of rewrite mies to complete sets, the so called
complete sets of reductions, A signal paper in this subarea was [Knuth and
Bendix, 1970], that provided a set of ten rewrite rules which constitute a
complete set of reductions (CSOR) for (noncommutative) group tiieory (see
Figure 12). These can be used, by rewriting alone, to prove a variety of

502 Bledsoe and Hodges

dieorems in group dieory. Knuth and Bendix also offered a procedure for com
pleting an incomplete set, where that is possible.

This is part of a rapidly growing subfield of ATP called term rewriting
systems, which includes work on narrowing [Slagle, 1974] and unification al
gorithms with built-in theories [Fay, 1979].

The first studies conceming the use of complete sets of reductions in Res
olution were conducted by Dallas Lankford [1975]. They brought together the
notion of complete sets of reductions with that of "narrowing" introduced by
Slagle [1974].

The connection between CSORs and die smdy of unification algorithms
became closer when independentiy, Peterson and Stickel [1981] and Lankford
and Ballantyne [1977] used die conunutative associative unification algorithm
[Stickel, 1981] to extend tfie Knuth-Bendix completion algorithm to handle
commutative associative functions. Conversely, Fay [1979] used the narrowing
algorithm to generate unification algorithms for theories which could be repre
sented by CSORs. Fay's work was extended by HuUot [1980]. The study of
unification algoritiims is now being actively pursued by several research
groups, at SRI Intemational [Smolka et al., 1987] and Kirchner [1986] in par
ticular. See also [Ait-Kaci and Nivat, 1987].

COMPLETE SET OF REDUCTIONS
For a Group

KB1 X + 0— X

KB2 0 + X - * X

KB3 X + (-X) 0

KB4 (-x) + x - ^ 0

KB5 (x + y) + z - ^ x + (y + z)

KB6 - (- x) - > x

KB8 - (X + y) - (-y) + (-X)

KB9 x + ((-x) + y)) - " y

KB10 (-x) + (x + y) — y

Figure 12

Chapter 13 A Survey of Automated Deduction 503

A good survey of the field up to 1980 is found in [Huet and Oppen, 1980].
A more up-to-date survey on completion can be found in [Derschowitz,
1987a], and an equally recent survey on the termination of systems of reduc
tions can be found in [Derschowitz, 1987b].

4 Logic Programming and Ciause-Compiüng

Another giant subarea of ATP is represented by the PROLOG conununity, or
more correcdy, logic programming. During the early 1970s Kowalski,
Colmereauer, Roussel and others [Kowalski, 1974; Roussel, 1975], discovered
diat one could use a theorem proving system as a programming language. This
is in the spirit of earlier work by Green [1969], where an answer-clause was
used to retum the list of bindings of variables, resulting from the proof of a
theorem. For example, if one asserts the facts

Father(Frank, Mary)
Mother(Mary, Ted)
Grandfadier(jc, z) <- fadier(jc, y) & Modier(y, z),

and proves the theorem

3JC Grandfadier(jc, Ted),

he can obtain the binding

X Frank,

which gives an answer to the question, "Who is Ted's Grandfather?"
PROLOG is widely used as a programming language, especially in AI, and

there are a number of implementations of it. The "standard" version employs
ordinary Resolution, but

1. allows only Hom clauses,^

2. does not do the "occurs-check" during unification.

By restricting use to Hom clauses, the implementation can employ a
depth-first search, which greatiy simplifies the storage allocation problem, and
enables high performance via clause-compiling (which we will discuss shortly).

3 A clause is Hom if it has at most one positive literal, e.g., - i P(x) ν Q(x) ν - i R(x, y)

504 Bledsoe and Hodges

There is no apparent difficulty with ignoring the occurs-check when PRO
LOG is used as programming language. But it is unsound as a theorem prover,
because it would allow the unification of formulas such as

P(g(x),x)&P(y, h(y)),

thereby (as we saw earlier), "proving" nontheorems such as

VJC 3y P(y, JC) By VJC P(y, x)

It is also incomplete for FOL, because it employs a depth-first search, and
is restricted to Hom clauses."* So why are we interested in PROLOG as a reason
ing mechanism, since it is unsound and incomplete? The reason is that during
the last few years David Warren (for DEC 10 PROLOG) and others have used
some compiling techniques (clause-compiling, or mle-compiling) to greatiy
speed up the process—^by orders of magnitude.

Shortly we will (very) briefly describe how clause-compiling is done for
PROLOG, and how that is extended to speed up proofs in full first order logic.

Our interest is in automatic deduction more than programming, so we will
not report on the enormous literamre in logic programming and PROLOG. Those
with further interest should consult review papers such as those found in [Clark
and Tamlund, 1982].

4.1 Clause Compiling In PROLOG

Clause compiling is like ordinary compiling (of say LISP), in that it involves
stmcture sharing, clever use of the stack, open coding of unification, and much
more. See papers by Warren [1987] and Stickel [1986].

A key to clause-compiling is to have an unchanging set of (original)
clauses which will not be enlarged during the proof. So that these can be com
piled once and for all at the beginning, in a way that makes their use extremely
fast. Additionally, there will be one goal literal which continually changes
(during the proof search). These original clauses are compiled by anticipating
how unification might be accomplished with each of their literals, and con
stmcting a computer program by open coding to carry out that unification and
other tasks.

This program can be written in some computer language such as C, LISP,
or an abstract machine language such as Warren's W A M [Warren, 1987], and

4 Of course PROLOG, like any other programming language, can be used to implement a sound
and complete theorem prover. What is more, Plaisted's SPRF [Plaisted, 1987] (see Section 6.11)
gains much of the speed of PROLOG for ATP.

Chapter 13 A Survey of Automated Deduction 505

then compiled (ordinary compiling) into machine code. See [Warren, 1987;
Stickel, 1986] for details.

Suppose we have the following input clauses (and others)

1. {Px\)^(Qxz){Sz)

2. (P(fz)y)<^(Ryz)

3. . . .

The clause compiler will compile each of the predicates F , β , S, /?,. . by
constmcting a LISP^ function for each of them, and other supporting functions
(not shown here).

Shown here is the function, FUN-P , which has been constmcted for the
predicate P.

(DE FUN-P (u V CONTINUATION) (GOAL)
(PROG (z)

(COND((UNBOUND-VARIABLE v) (ASSIGN V 1))
((NOT (= V 1)) (GO OUT)))

(... Allocate, etc..)
(... Alter CONTINUATION to include the further goal(S z))
(Q u ζ CONTINUATION)

OUT
(C 0 N D ((=(FCN-SYM u) ' f) (SETQ Ζ (ARGl u)))

(T (go 0 U T 2)))

(R V ζ CONTINUATION).
0 U T 2))

Much has been left out, but the main idea is tiiat when a goal literal of the
form (P u v) is encountered, to determine whether Clause 1 will apply to it
(i.e., whether (P χ 1) will unify with (P u v)), we can ignore u since JC is a vari
able and hence can be bound to any term; we need only check whether ν is 1
or is a variable, and then accomplish the further goal (Q u z).

The continuation parameter refers to any additional goals that were carried
over from a previous call; we must add to it the subgoal (S z) getting continua
tion' before proceeding to the goal (β u z). \i (Q u ζ continuation') succeeds,
i.e., the goal (β u z) is accomplished plus the goals of continuation', then the
proof is finished; if not, then it attempts to apply Clause 2 to the goal literal (P
u v). This is done at the point OUT in the program.

5 Or a C program, etc. We have used LISP here to simplify the presentation.

506 Bledsoe and Hodges

Similar LISP functions are constmcted by die clause-compiler for the other
predicates Q, R, S, and any others that appear in the original clause set. All of
these LISP functions are then compiled (traditional compiling) to C code or ma
chine code. Of course, as mentioned earlier, the clause-compiler could avoid
LISP altogether. But LISP offers a convenient tool for die clause-compiler and a
convenience to us for explaining how this part of clause-compiling works.

4.2 Clause-Compiling for First Order Logic
The phenomenal speeds gotten by clause-compiling in PROLOG were not lost on
the rest of the ATP community—^they wanted this performance too, but could
not use the results from PROLOG unless three major difficulties with it were
overcome:

1. the Hom clause restriction

2. the depth-first search problem

3. the occurs-check problem

Work on these problems, to bring clause-compiling (and its inherent
speeds) to all of first order logic, represents some of the most exciting work in
ATP right now. Some systems which extend the PROLOG compiling techniques
as follows:

• Stickel's PROLOG Technology Prover [Stickel, 1986]

• Plaisted's Simplified Problem Reduction Format [Plaisted, 1987]

• Loveland's Near PROLOG [Loveland, 1987]

Overbeek and Lusk's New Argonne Prover

• Munich Group's PROTHEQ [Bayeri et al., 1986]

There are probably a number of others. How do these systems overcome
the restriction, 1-3? Let us consider them in order.

The Horn clause restriction (1) was used in PROLOG to allow a linear
search mechanism: once a proof-search is started it can proceed to success or
failure without having to backtrack, as is necessary when using ordinary-
clauses Resolution. This linear format greatiy simplifies die search mechanism;
one only needs a "stack" and no auxiliary clause storage; only the original
clauses are retained, and they can be compiled before the proof search starts.

Chapter 13 A Survey of Automated Deduction 507

The way that Stickel [1986] avoids the Horn clause restriction for full Res
olution is to employ a variation of Resolution called Model Elimination (which
is essentially SL-Resolution),^ which uses chains instead of clauses.

These chains act like clauses, with extra data in them which code the his
tory of how tiiey were constmcted in the proof process. This allows a linear
format similar to that used in PROLOG, but requires the addition of many con-
trapositives^ of input clauses.

Plaisted avoids the Horn clause restriction by using a form of "case-split
ting," which does not require contrapositives [Plaisted, 1987].

Loveland uses "multiple-head Horn clauses" e.g. P, Q <- R, with no con
trapositives needed. His technique is similar to Model Elimination but it greatiy
reduces the amount of extra "history information" recorded with clauses [Love
land, 1987].

The depth-first search problem (2), is avoided by "iterative deepening,"
i.e., by repetitively searching to deeper and deeper levels of the search tree.
The added cost for recomputing the top parts of the tree is minimal when the
search tree is branchy, which is usually the case.

There have been two ways used for avoiding the occurs-check problem:

(3.1) by detecting at compile time those literals which can possibly have an
occurs-check problem, e.g., P(jc,y(jc)), tagging them, and handling only
diem during the proof.

(3.ii) by examining the substitution resulting from any successful unification to
determine if there was a problem, and rejecting substitutions with
"cyclic" terms, like χ 4 - h{g(x)) (Plaisted, Overbeek and Lusk).

Both methods cause a loss of speed, but not a severe one because such
problems rarely occur, (e.g., it is necessary for a variable to occur twice in
such a literal for it to present an occurs-check problem.)

We believe diat clause-compiling will be very important for the future of
ATP. These great speeds cannot be ignored. Granted that the ultimate solution
is not in speed, but in the better use of knowledge to pmne the search tree.
Nevertheless, fast reasoning components will be important parts of future tech
nology.

Also, compiling methods of the kind that we have described, are useful for
other components of the reasoning process. For example, similar improvements
in performance have been obtained for forward chaining [Forgy, 1980], rewriting

6 Model elimination was discovered by Loveland [1968, 1969]; it is essentially equivalent to SL-
Resolution, developed independently by Kowalski and Keuhner [1971].
7 E.g., for the clause Q AR.V/G would add the contrapositives -· ß<- (-,Ρ AR) and -iR<-
HP^Qh

508 Bledsoe and Hodges

or demodulation [Boyer, 1986a], inheritance [Ait-Kaci and Nasr, 1985], and
database indexing [Butier, 1986].

5 Overview of Proof Discovery

Now let us give an overview of (our version) of automated proof discovery.
How do we classify the research that is being done and should be done?

We feel that building a program for discovering proofs is like designing an
autonomous vehicle to cross the USA, say from Atlantic City to Fresno. See
Figure 13. To do so one needs:

1. Fast cars;

2. Tactics: For getting from city to city;

3. Strategy: An overall plan of action.

And one needs a map.

Figure 13

Chapter 13 A Survey of Automated Deduction 509

But note that speed alone is not enough; dashing off in more less the right
direction will not lead to a distant goal without some guidance, no matter how
fast the car.

One could liken tiiis to die way that automated proof discovery is being at
tacked. See Figure 14. Here again we have "fast cars" (fast inference vehicles),
tactics and strategy. Let us break this down into more detail.

Category 1 is easy to define, it consists of tiiose efforts which produce
speed of inferencing. They are essential to the success of ATP. Whatever else
we do to prune die tree, it is absolutely necessary diat we have great speeds for
die "vehicle."

Examples of parallel processing in ATP, are the efforts of Overbeek et al.,
at Argonne National Lab [Lusk, 1982], tiie Munich Group [Bibel, 1987], and
Waltz and Stanfield at Thinking Machines [Stanfield, 1986].

But speed alone is not enough. Again we need overall guidance that comes
from tactics and strategy.

It is not so clear what to put in Category 2, tactics, but we feel that those
methods which employ "large inference" steps tend to have the "city to city"
flavor, as do the special purpose provers. We will discuss these in more detail
shortiy.

OVERVIEW OF AUTOMATED PROOF DISCOVERY

1. Fast Inference Vehicles:
Faster Hardware, Parallel Processing
Clause-Compiling (and Compiling Rewrite-rules, etc.)

2. Tactics:
Large Inference Steps
Semantic Methods
Special Puφose Provers

3. Strategy:
Analogy, Abstraction, etc.
"People" Methods

(and a "MAP": Knowledge Base)

Figure 14

510 Bledsoe and Hodges

But what do we put in Category 3, strategy? Is there any method being
used, that takes an overall, global view, that provides and uses an overall
strategy? Probably not. Perhaps analogy comes the closest to it; whereby, the
(complete) proof of one theorem acts as an overall guide to finding the proof
of another. Abstraction is surely another. All such methods th^t are used or ap
pear to be helpful, can be classified under the heading of "people methods,"
mediods routinely used by practicing madiematicians, but hardly used at all by
existing programs. And it is quite clear that there is an absolute requirement
for a structural knowledge base of mathematical knowledge (a "map" if you
will), if we are to attain substantial success at this field.

5.1 Tactics

5.1.1 Large Inference Steps Under tactics, we have listed large inference
steps (or multi-steps), where the prover tries to accomplish its goal (discover
the proof) by a few large steps radier dian a whole bunch of small ones.

The key here is to discard the intermediate results. Many current provers
"choke" from retaining unneeded proof fragments, such as intermediate
clauses.

Another key point is to identify for each such large step, the objective of
that step. The prover dien sets out to achieve that objective, and if it succeeds
it retains only the objective and discards all intermediate results. In fact it dis
cards the intermediate results even if it fails to achieve the desired objective.
Thus it keeps only a few powerful results for further use. These results act as a
kind of subsumers to those discarded.

Some examples of systems using large inference steps are:

Hyper-Resolution (J. A. Robinson)

Linked-UR-Resolution (Wos, et al.)

Terminator (Antoniou and Ohlbach, Kaiserslautem, Germany)

Variable Elimination (Bledsoe and Hines)

Hyper-Chaining (Hines)

Theory Resolution (Stickel)

Complete Sets of Resolutions (see Section 3 [Knutii and Bendix, 1970],
etc.)

Hyper-Resolution [Robinson, 1965b]. As mentioned earlier, Hyper-Resolu
tion has been extensively used for a number of years. Figure 15a gives an ex
ample of its use, showing also die objective, and the discarded intermediate
clause. The example shown is from propositional logic, but die method works
equally well for full POL, using unification.

Chapter 13 A Survey of Automated Deduction 511

Linked-UR-Resolution [Wos et al., 1984a]. Linked-UR-Resolution is some
what like Hyper-Resolution. The idea is depicted in Figure 15b, where a nu
cleus is given which contains a goal literal. The objective is to obtain a unit
clause by a set of resolutions, which eliminates all literals except (possibly)
one, die goal literal. A variation allows the goal literal to occur in one of the
satellite clauses. Also an initiating satellite (a unit clause) might be used to
start die process. The goal literal can also be required to satisfy a given predi
cate P. "This allows the use of semantic criteria for guiding the proof dis
covery."

Terminator [Antoniou and Ohlback, 1983]. The objective is to try for a
unit proof of • , at various points in the proof.

Variable Elimination [Bledsoe and Hines, 1980]. This procedure is de
signed for the field of real analysis, where the inequality predicates < and < are
used.

UNKED UR-RESOLUnON \SNo7]

Initiating SateRte:

Unit
Nucleus J, Goal

Satelit^l IJ_
m

Σ

OBJECTIVE: A unit clause

Altows the use of Semantic Criteria for guiding proof discovery.
It is related to other Connection Methods.

Figure 15a

file:///SNo7

512 Bledsoe and Hodges

HYPER-RESOLUTION
Example

Nucleus Clause:
- A - B - C Ε

Satélite Clauses:
A F
Β G
C Η

Hyper-Resolvent:
F G Η Ε

Three Resolution steps in one.

Discard intermediate Resolvents

F - B - C E , F G - C

OBJECTIVE: Remove all negative literals from a clause

FiguK 15b

Figure 16 shows an example where the variable χ is eliminated from the
target Clause 1 to obtain the VE-Resolvent 2. The objective is to remove an
eligible^ variable from a target clause.

In this example, the one large step is equivalent to six Resolution steps.
The method implicitly uses the axioms of real inequality theory, including
those for transitivity and interpolation.

This method has greatly helped with proofs in intermediate analysis. For
example, the proof of lim+, a limit theorem for sums,

lim J{x) = l ά lim g(x) = ifc ^ lim \f{x) + gix)] = l + k
X -> a X -¥ a X -* a

took only 13 steps instead of an estimated 100,000 or more by Resolution.

8 A variable χ is eligible in a clause C if it does not occur within the scope of any uninterrupted
function of predicate symbol.

Chapter 13 A Survey of Automated Deduction 513

VARIABLE ELIMINATION

Target Clause:
1. a < x x < b Q

X is a variable not occurring in Q

VE-Resolvent:

2. a < b Q 1,VEx

Six Resolution steps in one.

Implicitly uses the axioms of Real Inequality theory, including:
Transivity: x < y A y < z — > x < z , etc.

lnteφolation: u < v—>3 w (u < w < v)

OBJECTIVE: Remove a variable from a clause (if eligible)

Figure 16

Hyper-Chaining [Hines, 1987]. Hyper-Chaining is an extension of variable
elimination, wherein the variable χ being removed does not need to be eligible
in the target clause. The Hyper-Chain mle works to make the variable eligible
(using other Hyper-mles) and then eliminates it.

Figure 17 shows Hyper-Chaining on a simple example. A much harder ex
ample, the limit of a sum theorem. It, shown above, is proved in three steps.
See Figure 18. The objective is to remove the variable δ from the target Clause
10, which is done in one step to obtain Clause 11. This large step also udlizes
Clauses 2, 3, 5, 6, 8, 9, and is equivalent to at least 22 Resolution steps. Two
more uses of Hyper-Chaining yields • . Figure 19 shows a few of the interme
diate steps which were discarded.

Theory Resolution [Stickel, 1985]. Stickel's Theory Resolution encom
passes many of the ideas from the other large inference steps methods dis
cussed above. It incoφorates a theory (or theories) into a Resolution theorem
prover, thereby making it unnecessary to resolve direcdy upon the axioms of
that theory. Two or more clauses are resolved with respect to that theory. Inter
mediate results are discarded.

514 Bledsoe and Hodges

HYPER-CHAINING
Example

Target Clause:
1. a < x x < b f(x)_<c

X is a variable, not occuring in a, b, ore

Supporting Clauses:
2. d<f(y)

Hyper-Chain Resolvent:
3. a < b d < 0 1,2

OBJECTIVE: Remove a variable from a clause.

USES: Variable Elimination, Chaining,...

Figure 17

Hyper-Chaining Rule
Proving Sum-of-Limits Theorem

1.
2.
3.
4.
5.
6.
7.
8.

ο<δν

δν + x ' < X o

0<5 'V-
i'\~+x"<xa
6'V- + x " < x o
0<eo
Xo<Xi+Z

δν + X o
δν +χα<χ'
ε " SO
δ ' V - + J t o < « '
δ ' ν + « ο < * '

δ^Ο
δ^Ο

(fxo)<>{fx') + t' ε ' < 0
{fx')<,{fxa) + z' ε ' < 0

(g x ") s (g x o) + e " ε " SO
(^ χ ο) 5 (ί χ ") + ε " ε " ^ 0

9. x j S x o + δ
10. εο + (/χο) + (« Χ ο) < σ * ί) + («* ί)

(/•*ί) + (« *δ) + εο < (fxo) + (g «o)
δ^Ο

(Hyper-Chain 10 [δ]: 3 ,2 .6 .5 .9 .9 .8 .8)

11. ε ο < ε ' + ε " δ ' 5 0
(Hyper-Chain 11 [t]: 1)

12. ε ο < ε " δ ' ν ^ Ο
(Hyper-Chain 12 [ε '1:4)

13. • .

ε ' ί Ο δ 'ν-SO

ε " SO

ε " SO

Figure 18

Chapter 13 A Survey of Automated Deduction 515

discarded <

(Chaining 103)
(g xo) + εο < (f χδ) + ε ' ifx^) + (g x«) + εο < (fxo) + ig χο)
δν- + *δ < Jifo δV + Χο < ε ' ^ Ο

(Chaining ... 2)
(g χο) + εο < (g χδ) + ε ' (g χδ) + εο < (g χο) + ε '
δV + χδ < Χο δν + Χο < Χδ ε ' ^ Ο

(Chaining ... 6)
(g χο) + εο < (g χδ) + ε ' εο < ε ' + ε "
δν + χδ < Χο δV + Χο < χδ ε ' ^ Ο δ'V' + χδ < Χο δ'V' + χο < χδ

(Chaining ... 5)
ε ο < ε ' + ε "
δν + Χδ < Χο δV + Χο < Χδ ε ' ^ Ο δ'ν- + χδ < χο δ'V' + χο < χδ

(Chaining... 9)
ε ο < ε ' + ε "
δν + Χδ < Χο δV < δ

(Chaining... 9)
εο < ε ' + ε "
δν + Χδ < Χο δν < δ

(Chaining ... 8)
ε ο < ε ' + ε ' '
δν<δ

ε '^0 δν+χδ<χο δ'ν + χ ο < χ δ

ε '^0 δ'ν' + χ δ < χ ο δν<δ

ε '^0 δν+χδ<χο δν<δ

(Chaining ... 8) [before variable elimination of δ]
ε ο < ε ' + ε " δ̂ Ο
δν<δ ε ' ^ 0 δν<δ

11. ε ο < ε ' + ε " δν̂ Ο ε'^Ο δν^Ο

δ^Ο

δ^Ο

δ^Ο
ε"^0

δ^Ο
ε":δΟ

δ^Ο
ε":$0

δ^Ο
ε"^0

δ^Ο
ε"^0

ε"^0

ε"^0

Figure 19

Figure 20 shows two simple examples from taxonomic theory and inequal
ity theory. See [Stickel, 1985] for other examples, especially for useful applica
tions in AI. Figure 21 lists some of the other work that resembles tiieory Reso
lution.

Complete Sets of Reductions [Knutii and Bendix, 1970, etc.]. See Section
3. The objective is to reduce a target formula (e.g., clause) as far as possible by
applying to it a (complete) set of rewrite mies.

516 Bledsoe and Hodges

THEORY RESOLUTION EXAMPLES

1. Taxonomic Theory:
1. Boy(x)—" Person(x)
6. NoDaughter(x) & Child(x,y) — Boy(y)

Resolve: 11. Chlld(Chris, sk2) with
10. NoDaughter(Chris) to get

13. Boy(sk2) in one step.

2. Inequality Theory:

1. --(x < x)
2. χ < y & y < z—. X < ζ

• · • •

Resolve: 6. a < b, 7. b < c, & 8p(a < c)
to get 9. •

FIgun 20

OTHER WORK RESEMBLING THEORY RESOLUTION

Hyperresolution (J. A. Robinson) [Ro65A]

Z-resolution (Dixon) Px73]
U-generalized resolution (Harrison and Rubin) [HR]

E-resolution (J. Morris) [Mo69]

Linked inference Principle (Wos, et al) [Wo84]

General Inequality Prover (Bledsoe and Hines) [BH80]
Variable Elimination
Shielding Term Removal
Attached ground Prover

FIgun 21

Chapter 13 A Survey of Automated Deduction 517

5.1.2 Semantic Methods One of the most characteristic methods employed
by people is to use semantics to guide proof; A mathematician knows what his
symbols mean (for example, he knows that jc is a real number when doing
analysis). He also knows many examples of predicatively defined stmctures
(such as groups, continuous functions, etc.). He uses this knowledge in at least
two ways: (1) by extending known examples (closely related to analogy; see
Section 5.2.1 below); and (2) by not attempting to prove intermediate goals for
which he has a counterexample.

Method 2, checking for reasonableness seems to be extremely powerful—
it probably accounts for a major portion of the mental effort used by human
mathematicians. Several researchers have attempted to apply this principle with
varying success ([Gelemter 1959; Ballantyne and Bledsoe, 1982; Bledsoe,
1983; Wang, 1985] and Section 6.3 below).

It appears to be quite challenging both to represent and to access the large
variety of examples the human has available.

5.1.3 Special Purpose Provers We list here areas for which a few special
purpose provers have been developed, and which are classified under "tactics."

• Inequalities—Ground [Nelson and Oppen, 1978; Shostak, 1977, 1979;
Bundy, 1983; Sacks, 1987]

• Inequalities—General [Bledsoe and Hines, 1980; Bledsoe et al., 1985;
Hodes, 1972]

• Geometry (Wu and Chou, see this survey. Section 6)

• Nonstandard Analysis [Ballantyne, 1982]

• Algebraic Manipulation [MACSYMA, 1983]

• Equality Subsystems

5.2 Strategy

5.2.1 Analogy Analogy is die heart and soul of intelligent behavior. We do
very littie that is absolutely new. Somehow intelligent machines (including rea
soners) must make use of analogy, but success with it has been limited, so far.
It is closely related to the field of machine learning [Michalski et al., 1983,
1986].

There have been a number of AI researchers working on analogy, includ
ing Winston, Carbonell, Gentner, Greiner, Russell, and others. I will not review
all of that literature here. A good review, with an extensive set of references, is
given by Hall [1985].

518 Bledsoe and Hodges

There are many aspects of analogy, but we are concemed here only with
the situation where the solution of one problem is used as guide to the solution
of another, or the proof of one theorem as guide to the proof of another.

A signal paper of this sort, is that of Bob Kling [1971], in which he used
the proof of a theorem in Group Theory to guide the search for an analogous
proof in Ring Theory.

Figure 22 depicts this idea. The guiding proof proposes actions to the pro
ver. If the proposed action fails, then the prover must somehow recover, to get
the process back on track. Also a fetching mechanism is needed to automati
cally select, from a database, proofs that might be used as a guide to the cur
rent endeavor.

An example of this is an analogy prover based on Resolution and Chaining
[Brock et al., 1986], which has used the proof of /im+ as a guide for proving
lim*. See Figure 23. Since the proof of lim* makes some major detours from
that of /i>n+, it was necessary to rely on its "expert system" component for re
covery from failed actions, and to also rely on its stand-alone proving capabil
ity. See [Brock et al., 1986] for details. This same prover handled other pairs
of theorems, including those depicted in Figure 24, and has been extended and
converted to a natural deduction format [Brock et al., 1987], which we feel
will be better able to handle more complex proofs, especially where parts of
proofs are needed as guides.

ANALOGY FORMAT

Statement
of the

Guiding Theorem

Statement
of the

Analogous Theorem

Guiding Proof
Analogous Proof

(Derived
Automatically)

Figure 22

Chapter 13 A Survey of Automated Deduction 519

AN EXAMPLE

LIM +

l im j (x) = l A|im^g(x) = k - > l i m ^ [f (x) + 9 (x)] = I + k

LIM*

Jim^f(x) = l A|im^g(x) = k - > lirpjf(x) · g(x)] = l - k

Figure 23

LIM + sec|< >LIM +

>LIM

Figure 24

As was pointed out by Carbonell [1983], the derivational history of a
problem solution is very important when that solution is used as a guide to
solving an analogous problem. The reason for this is that when an analogous
action fails, the problem solver needs to "know" what was the intended goal of
die action, so that it can try to attain that goal by another action (through
analogy, or by stand-alone methods). Such a derivations history provides for
annotating a proof, with motivational information.

520 Bledsoe and Hodges

Another reason for the natural deduction format, is that subgoals of the
proof can be treated in a hierarchical way. Thus, in Figure 25, suppose the
hierarchical stmcture represents the proposed proof of a new theorem (as pro
posed by a guiding proof). Now if, for example, goal G23 fails, then the prover
can execute the following strategy:

1. Fetch another guiding proof and try to apply it to G23.

2. If step 1 fails, try to prove G23 by a stand-alone prover.

3 . If step 2 fails, fail the goal, backtrack and try steps 1-2 on goal G2.

Such a hierarchical stmcture helps make use of the derivational history
(annotated proof) that is needed. (Other useful information could also be in
cluded in the derivational history.)

A problem with this is that one must collect and store this additional infor
mation (i.e., not just proofs, but annotated proofs) if it is to be used to guide
new proof searches.

A HIERARCHICAL PROOF

Figure 25

Chapter 13 A Survey of Automated Deduction 521

Some possible mechanisms for these annotated proofs are:

• Expansion Trees (Andrews, Miller, Section 1)

• Proof Parsers (Simon, Section 6.9.2)

• Requirement Graphs [Bledsoe, 1986a]

Multi-step Rules (Hines, Section 5.1.1)

• Other formal representations (Section 1)

We believe that in the long term a large stmctured knowledge base will be
needed, such as CYC, the commonsense knowledge base being buih by Doug
Lenat and his team at MCC (Microelectronics and Computer Technology Cor
poration) [Lenat et al., 1986; Lenat and Feigenbaum, 1987]. See also [Hobbs
and Moore, 1985]. Indeed, analogy plays a central role in die building and use
of CYC.

5.2.2 Abstraction The idea here is to prove an abstraction of a theorem, as
a subgoal, and use that proof as a guide for proving the theorem itself. For ex
ample, one could abstract a formula P(JC, y) by suppressing the second argu
ment and retaining only P(x).

Such an idea was first introduced by Newell, Shaw, and Simon [1956], but
die best work in diis area is by Plaisted [1981, 1982], in which he suggests and
uses a number of kinds of abstraction, and uses a number of layers of abstrac
tion.

5.2.3 Other "People" Methods We list here some odier metiiods in addi
tion to analogy and abstraction, that are extensively used by professional math
ematicians, with some references to machine implementation:

• Generating and using examples in proof discovery [Ballantyne and
Bledsoe, 1982; Bledsoe, 1983]

• Using counter-examples to pmne search trees [Gelernter, 1959; Ballantyne
and Bledsoe, 1982] (See Section 5.1.2)

• Automatic conjecturing of lemmas and subgoals

• Automatic fetching of useful lemmas and definitions from a large knowl
edge base

• Agenda mechanisms for controlling the proof search [Tyson, 1981]
Higher-level reasoning, Metareasoning [Genesereth, 1983], Higher Order
Logic [Andrews et al., 1984]

522 Bledsoe and Hodges

6 Contemporary Provers, Centers, People

We describe here the work of a few groups and individuals conducting ATP
research. Some of the efforts of others are described in other parts of this sur
vey. This list is by no means complete, nor is it ordered by importance. For ex
ample, much of the work in expert systems is not included, as well as the work
in PROLOG and commonsense reasoning. See also [Pastre, 1987]. See [Lusk and
Overbeek, 1988] pp. 735-775, for abstracts of other prover systems.

6.1 Argonne Laboratory Theorem Provers, L. Wos, £. Lusk, Ä
Overbeek, et aL, [Wos et aL, 1984a; Wos, 1987]

Argonne is one of the most prolific center for ATP research in the world. Re
searchers diere have implemented a series of systems including AURA [Wos,
1981] and FTP [Lusk, 1984]. Currently, [Butler, 1986] diey are implementing a
new system aimed largely at getting an increase of speed (> 100 times) com
pared to FTP. This system will use implementation techniques from PROLOG

(e.g., clause compiling), multiprocessors, associative-commutative unification,
and database indexing techniques (for clause retrieval). McCune also has im
plemented an interactive Resolution proof checker. With Boyer, this system
was used to prove some basic mathematical theorems from Gödel's axiomati
zation of set theory [Boyer et al., 1986b].

The Argonne group has used ITP extensively in ATP research, proving
many theorems, verifying software and hardware, solving word problems using
ATP methods (AAR newsletter often reports examples of this work), and solv
ing open questions in mathematics. They have distributed ITP to over 200 sites
(it is written in Pascal for portability).

The basic technique is clausal Resolution widi set-of-support, paramodula-
tion, demodulation, and subsumption (all optional). Elaborate data stmcmres
are used to permit full stmcture-sharing for terms and literals (only one copy of
each unique object is kept). Indexing techniques allow efficient access to terms
which might unify with a given term. A complex evaluation function is used
for prioritizing the next Resolution step. A "user friendly" interface is provided
for interactive or batch use.

6.2 KLAUS Automated Deduction system (originally called COS):
Mark Stickel (SRI) [Stickel, 1985, 1986, 1986a]

This large system implements a number of techniques of ATP. The basis is a
connection graph encoding possible Resolution steps between nonclausal first-
order formulae. Special techniques include:

Control of inference direction (a formula may be restricted to forward or
backward chaining);

Chapter 13 A Survey of Automated Deduction 523

• Theory Resolution [Stickel, 1985] which increases efficiency by allowing
a single Resolution step to incorporate a whole "theory" such as rewriting
(demodulation), associative-commutative unification, many-sorted unifica
tion, taxonomic hierarchies, etc. (See Section 5.11);

• a Knuth-Bendix algorithm is provided for completion of sets of rewrite
mies;

• a priority control mechanism employing evaluation function;

a PROLOG Technology Theorem Prover (PTTP) component. Using Love-
land's Model Elimination style of PROLOG - l ike linear search, PTTP com
piles each clause into LISP functions which carry out the search corre
sponding to that clause. Iterative deepening is the search strategy. Occurs-
check is used except in cases where it can be determined that it is neces
sary (see Section 4.2).

Stickel has proved a good collection of standard ATP test theorems and
theorems from mathematicians.

6.3 Kaiserslautern: Ν. Elsenger, Η. J. Ohlbach, J. Siekmann,
Universität Kaiserslautern
The Margraf Karl Refutation Prover (MKRP) [Blasjus et al., 1981, 1984] is a
powerful system developed over many years at Kaiserslautem and Karlsmhe. It
uses connection graphs, due originally to Kowalski [1975]. Each possible infer
ence step (Resolution, paramodulation, factoring) in the clause set is repre
sented as a link in a graph. After performing a chain of inference steps, it is
often possible to "reduce" the graph, removing irrelevant and redundant links
[Ohlback, 1987]. This is die source of efficiency of the algorithm, but it is also
the source of a problem: there is no completeness theorem for connection-
graph Resolution with inference restriction strategies typically used (In prac
tice, this does not seem to be a problem).

Unification in M K R P is many-sorted [Waltfier, 1983] (see Section 3.4).
Further research on unification theory promises to add the capabilities for
handling equational theories and stmctured sorts.

An important technique in M K R P is die "terminator module" [Antoniou and
Ohlback, 1983] which quickly detects situations where die refutation of a set of
clauses can be completed immediately. Extensive input and output translation
facilities are provided.

The Kaiserslautem group is currentiy working on a successor system
called HADES (Highly Automated Deduction System). Among other features, it

524 Bledsoe and Hodges

attempts to incorporate higher-level links as atomic inference steps in the con
nection graph. They aim to encode and prove all theorems in a standard text
book on semigroups and automata.

BA Munich: W, Blbel^
The Munich group has implemented as a project within ESPRIT, a PROLOG- l ike
theorem prover called PROTHEQ based on Bibel's connection method [Bibel,
1982]. Special hardware including associative memory for accessing connec
tions and highly parallel multiprocessing is under development.

Available input preprocessing includes translation to clausal form. Lem
mas are generated and retained. Depth bound search is used. The system is
complete for first order logic.

Special reductions of the clause set [Bibel et al., 1987] are used for effi
ciency; for example, Schubert's SteanuOller is proved in 7 steps.

6.5 University of North Carolina: David Plaisted
Plaisted's Simplified Problem Reduction Format prover (SPRF) [Plaisted, 1982,
1987] is written in PROLOG and obtains efficiency by encoding first-order
formulae as PROLOG clauses. A special splitting mle is used for non-Hom
clauses for completeness. Contrapositives of the input clauses are not required,
but help in some cases. Rewrite mies can also be given and Knudi-Bendix
completion is available.

The search strategy is depth-limited with iterative deepening. Solutions to
subgoals are cached.

The code is noteworthy for its conciseness, about 15 pages of PROLOG.
Speed is competitive with major Resolution based provers such as ΓΓΡ, Stickel,
etc.

6.5.1 Greenbaum The Illinois prover was written by S. Greenbaum [1986;
Greenbaum and Plaisted, 1986] as a test-bed for Plaisted's abstraction methods
[Plaisted, 1981]. It became a general purpose prover of considerable power,
employing many interesting implementation techniques.

A special refinement of locking Resolution and unit preference is used
which simulates backwards and forward chaining. Complex data stmctures are
used for stmcture sharing and indexing speed.

The aim is uniformly good performance with minimal user guidance.
Schubert's Steamroller is obtained in about 1 minute on a VAX 11/780.

9 Bibel is now at the University of British Columbia.

Chapter 13 A Survey of Automated Deduction 525

6.6 Edinburgh: A. J. Mllner, M. J. Gordon, et aL
Lx)gic for Computable Functions (LCF) [Gordon et al., 1982] is a large system
for verifying properties of computable functions defined in typed lambda cal
culus. It is efficientiy implemented in ML [Cardelli, 1982].

LCF has been used to verify thousands of standard mathematical theorems.
It has recently been enhanced by Larry Paulson to include higher order deduc
tion [Paulson, 1986].

6.7 Boyer-Moore Prover: University of Texas [Boyer and Moore,
1979]
This is a large system for verifying properties of recursive functions defined by
lambda expressions in "pure LISP." Stmctural induction on the size of the mput
is used, with many heuristics available.

The prover has been implemented in several dialects of LISP and is widely
distributed, referenced and used by others. Applications, some of conunercial
importance, have included program verification [Boyer and Moore, 1981],
hardware verification [Hunt 1986; Borrione, 1987], verification of compilers,
and verification of the proofs of many theorems in mathematics and meta-
mathematics mcluding the uniqueness of prime factorization for natural num
bers, Wilson's Theorem [Rusinoff, 1985], The Church-Rosser theorem for pure
lambda calculus, and Gödel's Incompleteness Theorem [Shankar, 1986, 1987].

One of the conunendable features of this prover is its ability to automati
cally carry out the proof of a theorem when given the necessary lemmas by the
user. Another is its ability to automatically constmct a generalized induction
hypodiesis when the obvious one does not suffice.

Boyer has also done important work on compiling rewrite mies [Boyer,
1986a].

6.8 The WU'Chou Geometry Provers
An interesting proof procedure for theorems in geometry has been given by the
Chinese matiiematician, Wen-Tsun Wu [1978, 1984]. Shang-Ching Chou (Uni
versity of Texas) has extended and refined that work and used his implementa
tion to prove a number of difficult theorems in plane geometry (about 20(X)
Theorems), some of which are new [Chou, 1985, 1986, 1987; Chou and Schel
ter, 1986].

The procedure is as follows:

Transform die Hypotheses and Conclusion of a theorem in Geometry to
sets of Algebraic equations. Show that the conclusion follows from the

526 Bledsoe and Hodges

hypodieses by performing a series of "divisions" (somewhat like Matrix
operations). This requires factoring of polynomials over algebraic exten
sions of fields of rational functions (very difficult in some cases).

The method does not apply to all areas of plane geometry, only to cases
where hy potheses and conclusions can be expressed as equalities, not inequali
ties. The general method can be applied to other areas, such as Differential
Geometry. Figure 26 shows drawings from two examples from [Chou, 1987],
the first of which was given in Section 1 of this survey.

6.9 Bledsoe, et aL, (University of Texas and MCC)
Figure 27 shows some provers from this group. See also [Bledsoe, 1984,

1986a].

EXAMPLES USING THE WU-CHOU PROVER

Figure A30-29 Figure A32-49

Figure 26

Chapter 13 A Survey of Automated Deduction 527

BLEDSOE, etal (UTexas and MCC)

IMPLY - Natural Deduction Style Prover [8175]
- Regular and Interactive Versions

General Inequality Prover [BI84]

- Proofs in Analysis

Wang's Hierarchical Prover [WaT87]

BuiWing-in MultiStep Axiom Rules - Larry Hines

Gazing - Rummer (U, Edinburgh)

Proof Checking in Number Theory - Don Simon

Analogy Prover - Brock, Cooper, and Rerce

Figure 27

6.9.1 Wang's s h p (Semantlcally-gulded Hierarchical Prover) [Wang,
1985; Wang and Bledsoe, 1987] An interesting aspect of SHP is die hier
archical format. This is similar to SL-Resolution, recording extra information
along with each clause to record the history of subgoals which led to the
clause. Wang has implemented a number of completeness-preserving refine
ments (restrictions on Resolution) allowed by this implementation. For ex
ample, redundant subgoals can be avoided, certain forms of subsumption can
be checked quickly, etc.

A number of heuristic methods for assigning priority to subgoals are avail
able, and a user interface allows control of parameters a^ecting these heuris
tics.

Another goal of Wang's prover was to provide a base for semantic
guidance to the proof process. A partial model of the axioms of the input

528 Bledsoe and Hodges

theorem may be provided by the user. The user specifies a finite set of
(ground) terms from the Herbrand universe and provides effective procedures
for evaluating predicates built on these terms. Candidate subgoals are only at
tempted if they are acceptable in die model.

Several difficult theorems have been proved, such as IMV (a first-order
form of the intermediate value theorem).

6.9.2 Proof Ctiecklng Number Ttieory: Don Simon This system ac
cepts a proof in its natural language form (Figure 28) exactly as it is written by
the mathematician.^^ The proof is then parsed: First the sentences are parsed,
then the whole proof (see Figure 29, 30), using a proof granunar. This enables
the deduction component to verify the statements in the proof. A powerful re
ducer for number theory [Simon, 1984] is used.

E L E M E N T A R Y T H E O R Y O F NUMBERS - W. J . Leveque
T H E O R E M 1 - 1 . If a is positive and b is arbitrary, there is exactly one

pair of integers q, r Siuch that the conditions

b = qa + r, 0 < r < a, (6)
hold.

Proof: Rrst, we show that (6) has at least one solution.
OMTTTED

To show the uniqueness of q and r, assume that q' and r'
also are integers such that

b = q*a + r \ 0 < < a.
Then if q' < q, we have

b - q ' a = r' > b - (q - 1) a = r + a > a,

and this contradicts the inequality r' < a. Hence q' > q.
Similarly, we show that q > q'. Therefore q = q \ and
consequently r =r*. A

Figure 28

10 The system is currentiy working on proofs from LeVeque's book on Numbered Theory
[LeVeque, 1962]

Chapter 13 A Survey of Automated Deduction 529

PROVE (UNO {Q,R) (B - Q*A+R & 0 <- R & R < A))
l-TO
l-SHOW
|-im)UENESS
l-IMPLICITLY-SUPPOSE (B = 0*A+R & 0 <= R & R < A)
l-SUPPOSE (B - QrA-î RI & 0 <- RI & RI < A)
I l-ASSUME
I l-THAT
I |-(FORMULA (B β 01 *A+R1 & 0 <= R1 & RI < A))
I l-BREAK
i-PROVE (Q - 01 & R = RI)

l-PROVE 0 « 01

II

Figure 29

-PROVE (01 >- 0 & 0 >= 01)
[-PROVE 01 >= 0

hSUPPOSE Q1 < Q
I l-THEN
ll-IF
I (-(FORMULA (01 < O))
(-CONTRADICTON
I (-PROVE RI >= A
lll-WE
lll-HAVE
I I (-(FORMULA (B-Q1*A - RI & RI » B-(0-1)*A
III & B-(Q-1)*A - R4A & R+A >« A))
I I |-DEDUCEB-0rA = R1
I 11-DEDUCE Β-01·Α >= B-(0-1)*A

All proofs in Chapters 1 and 2 of LeVeque's book are in the process of
being proof checked [Simon, 1988].

6.9.3 Bulldlng-ln Multi-step Axiom Ruies: Hines [1986, 1987] This
system compiles multi-step actions into a single rule, thereby attaining higher-
level objectives. Interim results are discarded.

Examples of these are the VE rule and Hyper-Chaining rules described in
Section 5.1 above. Each rules has restricted entry points, and other restrictions
on their use. Most rules will not apply, but when one does, it can give sizable
results. They are somewhat like expert systems rules in that respect. The rules
are built up in a hierarchical way, some rules are subparts of others.

530 Bledsoe and Hodges

I I l-DEDUCE B-(Q-1)'A » R+A
I I I I l-OEDUCE R+A >= A
I I I l-AND
I I I l-THIS
I I I l-COfiTRADICTS

I [-(FORMULA (Rl < A))
I l-DEDUCE Rl < A
I l-DEDUCE R1 >e A <«> N0T(R1 < A)

I I I l-BREAK
I I l-HENCE

|-(FORMULA (01 » Q))
[-DEDUCE 01 < Q <-> N0T(Q1 >- Q)

I l-BREAK
)-PROVE 0 >= 01

II l-SIMILARLY
I hWE
I hSHOW
I [-(FORMULA (Q >« Ql))
l-BREAK
[-THEREFORE
h(F0RMULA (Q - Ql))
l-DEDUCE (Ql » Q & Q >- Ql) -> Q - Ql

t-AND
[-CONSEQUENTLY
[-(FORMULA (R - Rl))
[-BREAK
l-DEDUCE Q - Ql » R - Rl

Figure 30

6.9.4 Gazing: Dave Plumnwr [1987] Plununer's system, VOYER, is a nat
ural-deduction style prover, which uses the concept of gazing to control the use
of rewrite rules. Abstractions of rules are used, stored in a concept hierarchy
graph, to facilitate the proper acquisition and u s e ' ' .

11 Plummer, a visitor at the University of Texas, finished his Ph.D. thesis under Bundy at Edin
burgh.

Chapter 13 A Survey of Automated Deduction 531

7 Concluding Remarks

Logic is emerging as a foundation for AI and all of computer science. The con
sequence of this is that some form of automatic reasoning is a requirement for
most AI programs. Much of the research m ATP over the last thirty years is
applicable to this need.

As these programs grow more complex, die corresponding inference prob
lems will become more difficult, comparable in difficulty to the proof substan
tial theorems in mathematics.

We have reviewed the current research on automated reasoning and given
a proposed classification of that work. We note that some research areas, such
as clause-compiling and parallel processing, are very exciting, and this is
rightiy so. But we wonder whether these efforts on fast implementation, which
are very important in their own right, might divert us from the even more im
portant areas (in the long mn) of tactics and strategy.

Under tactics, we are especially hopeful about the work on larger-infer-
ence-steps, and the work on special purpose systems such as those for the use
of rewrite rules.

We believe that more large-scale experiments are needed, wherein re
searchers exercise their provers on worthwhile examples, rather than play with
toy problems and/or a couple of harder problems (such as the Steamroller
problem or the Intermediate Value Theorem).

What about strategy? Are we to soon attain "over all" strategies for our
provers? There has been some promising work on analogy and machine leam
ing; a littie on conjecturing, abstractions, and using examples to guide proof
discovery, but not much else.

We feel that fundamental progress will require advances in representing
and accessing the knowledge used by human mathematicians. This knowledge
includes examples, mies, heuristics, and motivations, in addition to the more
commonly recognized declarative facts represented by axioms and lenunas.
The experiments we have reported on demonstrate simplified approaches to
representing one or more forms of mathematical knowledge, but the realization
of an integrated truly powerful system remains for die future.

References

Ait-Kaci, H. and Nasr, R., 1985. LOGIN: A logic programming language widi
built-in inheritance. Technical Report MCC-AI-068-85, Microelectronics
and Computer Technology Corporation, Austin, Texas. Also to appear in
Jourruil of Logic Programming.

Ait-Kaci, H. and Smolka, G., 1987. Feature Unification.

532 Bledsoe and Hodges

Ait-Kaci, H. and Nivat, M., ed., 1987. Preliminary Proceedings of CREAS
Workshop, Lakeway, Texas. Also forthcoming book: Resolution of Equa
tions in Algebraic Structures, Academic Press, 1988.

Andrews, P. B., 1980. Transforming matíngs into natural deduction proofs. In
Proceedings of the Fifth International Conference on Automated Deduction,
Les Arcs, France. Bibel and Kowalski, ed. Lecture Notes in Computer
Science 87:281-292. Springer-Verlag, New York.

Andrews, P. B., 1981. Theorem proving via general matings. Journal of ACM
28:193-214.

Andrews, P. B., et al., 1984. Automating higher order logic. In Bledsoe, 1984,
pp. 169-192.

Andrews, P. B., 1986. An Introduction to Mathematical Logic and Type
Theory: To Truth Through Proof Academic Press, New York.

Antoniou, G. and Ohlback, H. J., 1983. TERMINATOR. In Proceedings of the
Eighth International Joint Conference on Artificial Intelligence, Karlsmhe,
West Germany, pp 916-919. Morgan Kaufmann Publishers, San Mateo,
Califomia.

Appelt, D. E., 1982. Planning natural-language utterances to satisfy multiple
goals. SRI International Technical Note 259.

Ballantyne M. and Bledsoe, W. W., 1977. Automatic proofs of theorems in
analysis using non-standard techniques. Journal of ACM 24:353-374.

Ballantyne, M. and Bledsoe, W. W. 1982. On generating and using examples
in proof discovery. In Machine Intelligence 10, pp. 3-39. Harwood, Chi
chester.

Bayerl, S., Eder, E., Kurfess, F., Letz, R., and Schumann, J., 1986. An im
plementation of a PROLOG-like theorem prover based on the connection
mediod. In AIMSA'86, P. Jorrand, ed. Nordi Holland, Amsterdam.

Bibel, W., 1982. Automated Theorem Proving, Vieweg Verlag, Braunschweig.
Second Edition, 1987.

Bibel, W. Kurfess, F., et al., 1986. Parallel inference machines. In Future of
Parallel Computers, J. de Bakker, P. Trealeven, ed. Springer-Verlag, New
York.

Bibel, W., Letz, R., and Schumann, J., 1987. Bottom-up enhancements of de
ductive systems. AI and Robotics I, Plander, ed. North Holland, Amsterdam.

Biundo, S., et al., 1986. The Karlsruhe induction theorem proving system. In
Proceedings of the Eighth International Conference on Automated Deduc
tion, Oxford, UK.

Blasjus, K., Eisinger, N., Siekmann, J., Smolka, G., Herold, Α., and Waltíier,
C , 1981. The Mariegraf Karl refutation procedure. In Proceedings of the
Seventh International Joint Conference on Artificial Intelligence, Vancou
ver, B.C., Canada, pp 511-518. Morgan Kaufmann Publishers, San Mateo,
Califomia. Also Seiki-84-08-Kl, FB Inf., Universität Kaiserslautem. 1984.

Chapter 13 A Survey of Automated Deduction 533

Bledsoe, W. W., 1971. Splitting and reduction heuristics in automatic tiieorem
proving. Artificial Intelligence 2:55-77.

Bledsoe, W. W. and Bmell, P., 1973. A man-machine theorem proving system.
In Proceedings of the Third International Joint Conference on Artificial In
telligence, Stanford University. Morgan Kaufmann Publishers, San Mateo,
Califomia. Also in Artificial Intelligence 5:51-72.

Bledsoe, W. W. and Tyson, M., 1975. The UT interactive prover. Memos
ATP17A and ATP17B, Department of Matiiematics, University of Texas,
1983.

Bledsoe, W. W., 1979. A maximal method for set variables in automatic
tiieorem proving. Machine Intelligence 9:53-100.

Bledsoe, W. W. and Hines, L., 1980. Variable elimination and chaining in a
resolution-based prover for inequalities. In Proceedings of the Fifth Inter
national Conference on Automated Deduction, Les Arcs, France. Bibel and
Kowalski, ed. Lecture Notes in Computer Science 87:281-292. Springer-
Verlag, New York.

Bledsoe, W. W., 1983. Using examples to generate instantiations of set varia
bles. In Proceedings of the Eighth International Joint Conference on Artifi
cial Intelligence, Karlsmhe, Germany. Morgan Kaufmann PuMishers, San
Mateo, Califomia.

Bledsoe, W. W., 1984. Some automatic proofs in analysis. In Bledsoe and
Loveland, 1984, pp. 89-118.

Bledsoe, W. W. and Loveland. D., ed., 1984. Automated Theorem Proving:
After 25 Years. Contemporary Mathematics Series 19. American Mathemat
ics Society.

Bledsoe, W. W., and Henschen, L., 1985. What is Automated theorem
proving? Journal of Automated Reasoning 1:23-28.

Bledsoe, W. W., Kunen, K., and Shostak, R., 1985. Completeness proofs for
inequality provers. Artificial Intelligence 27:225-288.

Bledsoe, W. W. 1986a. Some thoughts on proof discovery. In Proceedings of
the 1986 Symposium on Logic Programming, Salt Lake City, Utah, pp. 2 -
10. Also Technical Report MCC-AI-208-86. Microelectronics and Computer
Technology Corporation, Austin, Texas.

Bledsoe, W. W., 1986b. The use of analogy in proof discovery. Technical Re
port MCC-AI-158-86. Microelectronics and Computer Technology Corpora
tion, Austin, Texas.

Book, R. and Siekmann, J., 1985. On die unification hierarchy. In Proceedings
of the Ninth German Workshop on Artificial Intelligence, Springer-Verlag,
New York. Also published as SEKI-Report, Universität Kaiserslautem,
1985.

Borrione, D., ed., 1987. From HDA Description to Guaranteed Correct Circuit
Designs, North Holland, IFIP.

534 Bledsoe and Hodges

Boyer, R. S., 1971. Locking: a Restriction on Resolution. Ph.D. diesis. Univer
sity of Texas, Austin.

Boyer, R. S. and Moore, J. S., 1979. A Computational Logic. Academic Press,
New York.

Boyer, R. S. and Moore, J. S., 1981. A verification condition generator for
FORTRAN. The Correctness Problem in Computer Science, Boyer and
Moore, ed. Academic Press, London.

Boyer, R. S. and Moore, J.S., 1982. Proof checking die RSA public key en
cryption algoritimi. University of Texas Technical Report ICSCA-CMP-37.

Boyer, R. S., 1986a. Rewrite mle compilation. Technical Report MCC-AI-194-
86. Microelectronics and Computer Technology Corporation, Austin, Texas.

Boyer, R. S., et al., 1986b. Set tiieory for first order logic: Clauses for Godel 's
axioms. Journal of Automated Reasoning 2:287.

Brock, B., Cooper, S., and Pierce, W., 1986. Some experiments with analogy
in proof discovery. Technical Report MCC-AI-347-86. Microelectronics and
Computer Technology Corporation, Austin, Texas.

Brock B., Cooper, S., and Pierce, W., 1987. Analogical reasoning and proof
discovery. Submitted to the Ninth International Conference on Automated
Deduction.

Brown, F. M., 1986. An experimental logic based on the fundamental deduc
tion principle. Artificial Intelligence 30.

Buchberger, B., Collins, G. E., and Loos, R., 1983. Computer Algebra, Sym
bolic and Algebraic Manipulation. Springer-Verlag, New York.

Bundy, Α., 1983. The Computer Modelling of Mathematical Reasoning. Aca
demic Press, New York.

Burckert, H.-J., 1986. Some relationships between unification, restricted uni
fication and matching. In Proceedings of the Eighth International Confer
ence on Automated Deduction. Lecture Notes in Computer Science 230.
Springer-Verlag, New York.

Burckert, H.-J., 1987. Matching—^A special case of unification? In Report of
the First Workshop on Unification, ed. C. Kirchner, Universite de Nancy,
Val d'Ajol. Also published as SEKI-Report, Universität Kaiserslautem,
1987.

Butier, R., Lusk, E., McCune, W., and Overbeek, R., 1986. Patfis to high-per
formance automated dieorem proving. In Siekmann, 1986, pp. 588-597.

Carbonell, J. G., 1983. Leaming by analogy: Formulating and generalizing
plans from past experience. In Machine Learning, ed. Michalski, Carbonell,
Mitchell, pp. 137-161. Morgan Kaufmann, San Mateo, Califomia.

CardeUi, L., 1982. ML under Unix. Bell Laboratories, Murray Hill, New Jer
sey.

Cardelli, L., 1986. A polymoφhic Lambda-calculus witii Type:Type. DEC
SCR Report, Digital Equipment Corporation, Palo Alto Califomia.

Chapter 13 A Survey of Automated Deduction 535

Chang, C. C. and Lee, R. C. T., 1973. Symbolic Logic and Mechanical
Theorem Proving, Academic Press, New York.

Chou, S. C , 1985. Proving and Discovering Theorems in Elementary
Geometries Using Wu's Method, Department of Mathematics, University of
Texas, Austin.

Chou, S. C , 1986. Proving geometry theorems using Wu's method: A collec
tion of geometry theorems proved mechanically. Technical Report 50, Insti
tute for Computing Science, University of Texas at Austin. Note: 366
theorems.

Chou, S. C. and Schelter, W. P., 1986. Proving geometry dieorems widi re
write mies. Journal of Automated Reasoning, 2(4):253-273.

Chou, S. C , 1987. Mechanical Geometry Theorem Proving, Reidel Publishing
Company.

Clark, K., and Tamlund, S. Α., ed., 1982. Logic Programming, Academic, New
York.

Cohn, A. G., 1987. A more expressive formulation of many sorted logic. Jour
ruil of Automated Reasoning 3:113-200.

Constable, R. L., 1985. Constmctive mathematics as a programming logic I:
Some principles of theory. Annals of Discrete Mathematics 24:21-38.

Constable, R. L., et. al., 1986. Implementing Mathematics with the Nuprl Proof
Development System, Prentice-Hall, Englewood Cliffs, New Jersey.

Coquand, Th. and Huet, G., 1985. Constmctions: A higher order proof system
for mechanizing mathematics. In EUROCAL85, Linz. Lecture Notes in
Computer Science 203. Springer-Verlag, New York.

Coquand, Th., 1986. An analysis of Girard's paradox. In Symposium on Logic
in Computer Science, Cambridge, Massachusetts, pp. 227-236.

Davis, M., 1983. The prehistory and early history of automated deduction. In
Siekmann and Wrightson, 1983.

de Bmijn, N. G., 1980. A survey of project Automath. To H. B. Curry: Essays
on Combiruitory Logic, Lambda Calculus, arui Formalism, ed. J. P. Seldin
and J. R. Hindley. Academic Press, New York,

de Kleer, J. and Brown, J. S., 1984. A qualitative physics based on con
fluences. Artificial Intelligence 24:7-83.

de Kleer, J., 1984. Choices without backtracking. In Proceedings of the Fourth
National Conference on Artificial Intelligence, Austin, Texas, pp. 79-85.
Morgan Kaufmann Publishers, San Mateo, Califomia.

Derschowitz, N., 1987a. Completion and its applications. In Ait-Kaci and
Nivat, 1987.

Derschowitz, N. 1987b. Termination of rewriting. Journal of Symbolic Com
putation,

Dixon, J. K., 1973. Z-Resolution: Theorem-proving with compiled axioms.
Journal of ACM 20:127-147.

536 Bledsoe and Hodges

Doyle, J., 1979. A trudi maintenance system. Artificial Intelligence 12:231-
272.

Eisenger, N., 1986. What you always wanted to know about Clause Graph Res
olution. In Proceedings of the Eighth International Conference on Auto
mated Deduction,

Evans, T. 1951. On multiplicative systems defined by generators and relations.
In Proceedings of the Cambridge Philosophical Society 47:637-649.

Fay, M., 1979. First order unification in equational theories. In Proceedings of
the Fourth International Conference on Automated Deduction. Lecture
Notes in Computer Science 87:161-167. Springer-Verlag, New York.

Forbus, K. D., 1984. Qualitative process theory. Artificial Intelligence 24:65-
168.

Forgy, C. L., 1980. RETE: A fast algorithm for the many pattern/many object
pattem match problem. Technical Report 309, Carnegie Mellon University.

Gallaire, Η. and Minker, J., 1978. Logic and Data Bases. Plenum.
Geissler, C. and Konolige, K., 1986. A resolution method for quantified modal

logics of knowledge and belief. In Proceedings of the Conference on
Theoretical Aspects of Reasoning about Knowledge, pp. 309-324. Morgan
Kaufmann Publishers, San Mateo, Califomia.

Gelemter, H., 1959. Realization of a geometry-theorem proving machine. In
Proceedings of the International Conference on Information. UNESCO
House, Paris, 1979. Also in Computers and Thought, ed. Feigenbaum, Feld
man. McGraw-Hill, 1963, pp. 134-152.

Geneseredl, Μ. R., Greiner, R., and Smidi, D. E., 1983. A meta-level repre
sentation system. Stanford University Memo HPP-83-28.

Genesereth, M. R. and Nilsson, N. J. 1987. Logical Foundations of Artificial
Intelligence. Morgan Kaufmann Publishers, San Mateo, Califomia.

Goguen, J., 1980. How to prove algebraic induction hypotiieses without induc
tion. In Proceedings of the Fifth International Conference on Automated
Deduction.

Goldblatt, Robert, 1979. Topoi: The Categorial Analysis of Logic. North Hol
land, New York.

Gordon, M., Milner, Α., Wadsworth, C , and Edinburgh, L. C. F., 1982. A
Mechanized Logic of Computation. Lecture Notes in Computer Science 78.
Springer-Verlag, New York.

Gordon, Michael, 1987. HOL, a proof generating system for higher-order logic.
To appear in VLSI Specification, Verification, and Synthesis.

Green, C , 1969. Theorem proving by resolution as a basis for question-an
swering systems. In Machine Intelligence 4. American Elsevier, New York,
pp 183-205.

Greenbaum, S., 1986. Input Transformations and Resolution Implementation
Techniques for Theorem Proving in First Order Logic. Ph.D. thesis. Univer
sity of Illinois at Urbana-Champaign.

Chapter 13 A Survey of Automated Deduction 537

Greenbaum, S., and Plaisted, D., 1986. The Illinois prover: A general purpose
resolution theorem prover, extended abstract. In Eighth International Con
ference on Automated Deduction.

Greiner, R., 1985. Learning By Understanding Analogies. Ph.D. thesis. Stan
ford University Technical Report STAN-CS-1071.

Hall, R. P., 1985. Analogical reasoning in artificial intelligence and related dis
ciplines. Irvine Computational Intelligence Project, University of Califomia,
Irvine.

Halpem, J. Y. and Rabin, M. O., 1987. A logic to reason about likelihood. AI
Journal 32:379-405.

Harper, R. and Mitchell, K., 1986. Introduction to standard ML. Laboratory for
Foundations of Computer Science, University of Edinburgh.

Harper, Honsell, and Plotidn, 1987. A framework for defining logics. Second
Annual Conference in Logic in Computer Science, Cornell University.

Harrison, M. C. and Rubin, N., 1978. Another generalization of resolution.
Journal of ACM 25:341-351.

Henschen, L. J. and Naqvi, S. Α., 1984. On compiling queries in recursive first
order databases. Journal of ACM 31:47-84.

Hines, L. M., 1987. Hyper-chaining and knowledge-based theorem proving.
Submitted to the Ninth International Conference on Automated Deduction.

Hines, L. M., 1988. Building-in Knowledge of Axioms. Ph.D. thesis. University
of Texas.

Hoare, T. and Shepardson, J. C , ed., 1985. Mechanical proof about computer
programs. In Mathematical Logic and Programming Languages, Inter
national Series in Computer Science. Prentice-Hall, Englewood Cliffs, New
Jersey.

Hobbs, J. R., and Moore, R. C , 1985. Formal Theories of the Commonsense
World. Ablex Publishing Corporation, Norwood, New Jersey.

Hodes, L., 1972. Solving problems by formula manipulation in logic and linear
inequalities. Artificial Intelligence 3:165-174.

Huet, G. P., 1973. A mechanization of type dieory. In Proceedings of the Third
International Joint Conference on Artificial Intelligence, Stanford, pp. 139-
146. Morgan Kaufmann Publishers, San Mateo, Califomia.

Huet, G. and Oppen, D. C , 1980. Equations and rewrite mies: A survey. In
Formal Languages: Perspectives and Open Problems, ed. R. Book, pp.
348-405. Academic Press, New York.

HuUot, J.-M., 1980. Canonical forms and unification. In Proceedings of the
Fifth International Conference on Automated Deduction. Lecture Notes in
Computer Science 87:318-334.

Hunt, W. Α., Jr., 1986. The mechanical verification of microprocessor design.
In Borrione, 1987, pp. 89-129.

IEEE, 1976. IEEE Transactions on Computers C-25(8). Special issue on Auto
mated Theorem Proving.

538 Bledsoe and Hodges

Kirchner, C , 1987. Computing unification algorithms. In Proceedings of the
First IEEE Symposium on Logic in Computer Science 206-216.

Kling, R. E., 1971. A paradigm for reasoning by analogy. Artificial Intelligence
2:147-178.

Knoblock, T. B., and R. L. Constable, 1986. Formalized metareasoning in type
dieory. In LICS 86, ed. A. K. Chandra and A. R. Meyer, pp. 237-248.

Knuth, D. and Bendix, P., 1970. Simple word problems in universal algebras.
Computational Problems in Abstract Algebra, ed. J. Leech. Pergamon Press,
Oxford, pp 263-297.

Konolige, K., 1986a. A Deduction Model of Belief Research Notes in Artificial
Intelligence Series. Morgan Kaufmann Publishers, San Mateo, Califomia..

Konolige, K., 1986b. Resolution and quantified epistemic logics. In Proceed
ings of the Eighth International Conference on Automated Deduction, Ox
ford, England.

Kowalski, R. and Keuhner, D., 1971. Linear resolution with selected functions.
Artificial Intelligence 2:227-260.

Kowalski, R., 1974. Predicate logic as a programming language. Information
Processing.

Kowalski, R., 1975. A proof procedure using connection graphs. Journal of
ACM 22(4):424-436.

Kowalski, R., 1979. Logic for Problem Solving. Nortii-Holland, New York.
Lankford, D. S., 1975. Canonical inference. Memo ATP-32, Automatic

Theorem Proving Project, University of Texas, Austin.
Lankford, D. S. and Ballantyne, A. M., 1977. Decision procedures for simple

equational theories with commutative-associative axioms: Complete sets of
conunutative-associative reductions. Memo ATP-39, Automatic Theorem
Proving Project, University of Texas, Austin.

Lenat, D., Prakash, M., and Shepherd, M., 1986. CYC: Using common sense
knowledge to overcome brittleness and knowledge acquisition bottlenecks.
AI Magazine 6(Wmter).

Lenat, D. and Feigenbaum, Ε. Α., 1987. On the diresholds of knowledge. In
Proceedings of the Tenth International Joint Conference on Artificial Intel
ligence, Milan, Italy. Morgan Kaufmann Publishers, San Mateo, Califomia.

LeVeque, W. J., 1962. Elementary Theory of Numbers. Addison-Wesley, Read
ing, Massachusetts.

Lifschitz, v., 1987. What is die inverse metiiod? Memo, Stanford University
Computer Science Department.

Loveland, D. W., 1968. Mechanical theorem proving by model elimination.
Journal of ACM 15:236-251.

Loveland, D. W., 1969. A simplified format for die model elimination proce
dure. Journal of ACM 16:349-363.

Loveland, D. W., 1978. Automated Theorem Proving: A Logical Basis. Nortii-
HoUand, Amsterdam.

Chapter 13 A Survey of Automated Deduction 539

Loveland, D. W., 1984. Automated theorem-proving: A quarter-century review.
In Bledsoe, 1984.

Loveland, D. W., 1986. Automated dieorem proving: Mapping logic into AL
Invited paper. International Symposium on Methodologies for Intelligent
Systems. Z. Ras and M. Zemankova, ed. Knoxville, Tennessee, pp. 214-229.

Loveland, 1987. Near-Hom PROLOG. Duke University Report CS-1987-14.
Lusk, E. L. and Overbeek, R. Α., 1982. An LMA-based theorem prover. Re

port ANL-82-75, Argonne National Laboratory.
Lusk, E. and Overbeek, R. Α., 1985. Non-Horn problems. Journal of Auto

mated Reasoning 1.
Lusk, E., McCune, W., and Overbeek, R. Α., 1986. ITP at Argonne National

Laboratory. In Proceedings of the Eighth International Conference on Auto
mated Deduction, Oxford, England, pp. 697-698.

Lusk, E., 1987. Private communication.
Lusk, E. and Overbeek, R. Α., ed., 1988. Proceedings of the Ninth Inter

ruitional Conference on Automated Deduction, Argonne, Illinois. Springer-
Verlag, New York.

MACSYMA Reference Manual, 1983. Laboratory for Computer Science, Mas
sachusetts Institute of Technology.

Manna, Z. and Waldinger, R., 1985. The Logical Basis for Computer Program
ming 1. Addison-Wesley, Reading, Mass.

Martin-Lof, P., 1984. Intuitionistic Type Theory. Studies in Proof Theory Lec
ture Notes, Bibliopolis.

Maslov, S. J., 1968. The inverse method for establishing deducibility for logi
cal calculi. In Proceedings of the Steklov Institute of Mathematics. 98.

McAllester, D. Α., 1987. ONTIC: A Knowledge Representation System for
Mathematics. Ph.D. diesis, MIT. AI Laboratory Technical Report 979.

McCarthy, J., 1963. Situations, actions, and causal laws. AI Memo 2. Stanford
University AI Project.

McCarthy, J., 1968. Programs with common sense. Semantic Information Pro
cessing, ed. Marvin Minsky. MIT Press, Cambridge, Mass.

McCarthy, J., Hayes, P., 1969. Some philosophical problems from the stand-
pomt of artificial intelligence. Machine Intelligence 4, ed. Melzer and Mi
chie, pp. 463-502. Edmburgh University Press, Edinburgh, Scotiand.

McCarthy, J., 1980. Circumscription—^A form of nonmonotonic reasoning. Ar
tificial Intelligence 13:27-39.

McDermott, J., 1979. Leaming to use analogies. In Proceedings of the Sixth In
terruitional Joint Conference on Artificial Intelligence, Tokyo, Japan, pp.
568-576. Morgan Kaufmann Publishers, San Mateo, Califomia.

McDonald, J. and Suppes, P., 1984. Student use of an interactive dieorem pro
ver. In Bledsoe, 1984, pp. 315-360.

540 Bledsoe and Hodges

Michalski, R. S., Carbonell, J. C , and Mitchell, T. M., 1983. Machine Learn
ing: An Artificial Intelligence Approach. Morgan Kaufinann Publishers, San
Mateo, Califomia.

Michalski, R. S., Carbonell, J. C , and Mitchell, T. M., 1986. Machine Learn
ing: An Artificial Intelligence Approach, Volume 2. Morgan Kaufmann Pub
lishers, San Mateo, Califomia.

Milner, R., 1983. A proposal for standard ML. Report CSR-157-83, Computer
Science Department, University of Edinburgh. Also published in Conference
Record of 1984 ACM Symposium on LISP and Functional Programming,
Austin, Texas.

ML, 1986. The ML Handbook. Intemal Document, Project Formel, INRIA.
Moore, R. C , 1985. A formal theory of knowledge and action. In Hobbs and

Moore, 1985.
Morris, J. B., 1969. E-Resolution: Extension of resolution to include the equal

ity relation. In Proceedings of the First International Joint Conference on
Artificial Intelligence. Washington, D. C , pp 287-294. Morgan Kaufmann
Publishers, San Mateo, Califomia.

Nederpelt, R. P., 1980. An approach to theorem proving on the basis of a typed
lambda-calculus. In Proceedings of the Fifth International Conference on
Automated Deduction, pp. 182-194.

Newell, Α., Shaw, J. C , and Simon, H. Α., 1956. The logic theory machine.
IRE Trans Information Theory ΓΓ-2. Also in Computers and Thought, ed.
Feigenbaum, Feldman. McGraw-Hill, 1963.

Nilsson, N. J., 1980. Principles of Artificial Intelligence. Morgan Kaufmann
Publishers, San Mateo, Califomia.

Nelson, G. and Oppen, D. C , 1978. A simplifier based on efficient decision al
gorithms. In Fifth ACM Symposium on Principles of Programming Lan
guages, pp. 141-150.

Ohlback, H. J., 1987. Link inheritance in abstract clause graphs. Journal of Au
tomated Reasoning 3 :1-34.

Oppacher, F., and Suen, E., 1986. Controlling deduction witii proof condensa
tion and heuristics. In Siekmann, 1986.

Pace, B., 1987. A bibligraphy of automated deduction. Technical Report No.
87-5400-08,1. P. Shaφ Associated Limited, Ottawa, Ontario, Canada.

Pastre, D., 1987. MUSCADET: An Automatic Theorem Proving System using
Knowledge and Metaknowledge in Mathematics. Ph.D. thesis. University of
Paris.

Paulson, L., 1986. Natural deduction as higher-order resolution. Journal of
Logic Programming 3(3):237-258.

Petrie, C. J., Russinoff, D. M., and Steiner, D. D., 1986. PROTEUS: A default
reasoning perspective. Technical Report MCC-AI-352-86. Microelectronics
and Computer Technology Corporation, Austin, Texas.

Chapter 13 A Survey of Automated Deduction 541

Plaisted, D,, 1981. Theorem proving with abstraction. Artificial Intelligence
16:47-108.

Plaisted, D. Α., 1982. A simplified problem reduction format. Artificial Intel
ligence 18:227-261.

Plaisted, D. Α., 1987. Non-Hom clause logic programming without contraposi
tives. Memo, Department of Computer Science, University of North
Carolina.

Plummer, D., 1986. Gazing: A Technique for Controlling the Use of Rewrite
Rules in a Natural Deduction Theorem Prover, Ph.D. thesis. Department of
Artificial Intelligence, University of Edinburgh.

Rich, E., 1983. Artificial Intelligence, McGraw-Hill, New York.
Robinson, J. Α., 1965a. A machine-oriented logic based on die resolution prin

ciple. Journal of ACM 12:23-^1.
Robinson, J. Α., 1965b. Automatic deduction with hyper-resolution. Inter-

national Journal of Computer Mathematics 1:227-234.
Ross, K., 1986. Elementary Analysis: The Theory of Calculus, Springer-Verlag,

New York, New York.
Roussel, P., 1975. PROLOG: Manuel de Reference et d'utilisation, Croupe

d*Intelligence Artificielle, Universite d'Aux-Marseille, Luminy.
Russinoff, D., 1985. An experiment with the Boyer-Moore theorem prover: A

proof of Wilson's theorem. Journal of Automated Reasoning 1:121-139.
Sacks, E., 1987. Hierarchical reasoning about inequalities. In Proceedings of

the Sixth National Conference on Artificial Intelligence, Seattle, Washing
ton, pp. 649-654. Morgan Kaufmann Publishers, San Mateo, Califomia.

Schroeder-Heister, P. 1984. A natural extension of natural deduction. Journal
of Symbolic Logic 49(4): 1284-1300.

Shankar, N., 1986. Proof checking Metamathematics, Department of Computer
Science, University of Texas.

Shankar, N., 1987. A machine-checked proof of Gödel's incompleteness
theorem. In Proceedings of the Eighth International Conference on Logic,
Methodology and Philosophy Computer Science Congress,

Shostak, R. E., 1977. On die SUP-INF mediod for proving Presburger formu
las. Journal of ACM 24:520-543.

Shostak, R. E., 1979. A practical decision procedure for aridimetic widi func
tion symbols. Journal of ACM 26:351-360.

Sickel, S., 1976. Interconnectivity graphs. IEEE Transactions on Computers C-
25.

Siekmann, J. and Wrightson, G., 1979. Paramodulated connection graphs. Acta
Informática.

Siekmann, J. and Wrightson, G., 1983. The Automation of Reasoning I,
Springer-Verlag, New York.

Siekmann, J. and Wrightson, G., 1986. The Automation of Reasoning II,
Springer-Verlag, New York.

542 Bledsoe and Hodges

Simon, D., 1984. A linear time algoritiim for a subcase of second-order instan
tiation. In Seventh International Conference on Automated Deduction, Napa,
Califomia.

Simon, D., 1988. Checking rational proofs. Submitted to the Ninth Inter
national Conference on Automated Deduction.

Slagle, J. 1974. Automated theorem proving with simplifiers, commutativity,
associativity. Journal of ACM 21:622-642.

Smolka, G., Nutt, W., Meseguer, J., and Goguen, J. Α., 1987. Order sorted
equational computation. In Ait-Kaci and Nivat, 1987.

Smullyan, R., 1968. First Order Logic. Springer-Verlag, Berlin.
Smullyan, R., 1985. To Mock a Mockingbird. Alfred Knopf, New York.
Stanfield C , Waltza, D., 1986. Toward memory-based reasoning. Technical

Report. Thinking Machines.
Stickel, M. E., 1981. A unification algorithm for associative-commutative func

tions. Journal of ACM 28(3):423-434.
Stickel, M. E., 1984. A case study of theorem proving by the Knuth-Bendix

method: Discovering that x[3] = x implies ring commutativity. In Seventh In
ternational Conference on Automated Deduction, Napa, Califomia.

Stickel, M. E., 1985. Automatic deduction by theory resolution. In Proceedings
of the Ninth International Joint Conference on Artificial Intelligence, Los
Angeles, Califomia, pp. 1181-1186. Morgan Kaufmann Publishers, San
Mateo, Califomia.

Stickel, M. E., 1986. A PROLOG technology theorem prover: Implementation
by an extended PROLOG compiler. In Proceedings of the Eight Inter
national Conference on Automated Deduction. Lecture Notes in Computer
Science 230:573-587. Springer-Verlag, New York.

Tyson, M., 1981. APRVR: A Priority-ordered Agenda Theorem Prover. Ph.D.
thesis. University of Texas Computer Science Department. Also in Proceed
ings of the Second National Conference on Artificial Intelligence, Pitts
burgh, Pennsylvania, 1982. Morgan Kaufmann Publishers, San Mateo, Cal
ifomia.

Wallen, L., 1986. Chapter in Modal Logic in Artificial Intelligence and its Ap
plications. A. G. Cohn and J. R. Thomas, ed. John Wiley and Son, New
York.

Walther, C , 1983. A many-sorted calculus based on resolution and paramodu
lation. In Proceedings of the Eighth International Joint Conference on Arti
ficial Intelligence, Karlsruhe, West Germany, pp. 882-891. Morgan Kauf
mann Publishers, San Mateo, Califomia.

Walther, C , 1984. A mechanical solution of Schubert's SteanuOller by many-
sorted resolution. In Proceedings of the Fourth National Conference on Ar
tificial Intelligence, Austin, Texas, pp. 330-334. Morgan Kaufmann Pub
lishers, San Mateo, Califomia.

Chapter 13 A Survey of Automated Deduction 543

Wang, H., 1960. Toward mechanical mathematics. IBM Journal of Research
and Development 4:2-22. Also see Siekmann and Wrightson, 1983, pp.
244-264.

Wang, T. C , 1985. Designing examples for semantically guided hierarchical
deduction. In Proceedings of the Ninth Interruitional Joint Conference on
Artificial Intelligence, Los Angeles, Califomia, pp. 1201-1207. Morgan
Kaufmann Publishers, San Mateo, Califomia.

Wang, T. C. and Bledsoe, W. W., 1987. Hierarchical deduction. Journal of Au
tomated Reasoning 3:35-77.

Warren, D. H. D., 1987. Implementing PROLOG—compiling predicate logic
programs. University of Edinburgh Department of Artificial Intelligence Re
search Reports 39(40).

Webber, N. J., ed., 1977. Non-resolution dieorem proving. Artificial Intel
ligence 9:55-77. Also in Readings in Artificial Intelligence, Morgan Kauf
mann, San Mateo, Califomia, 1981 . .

Weyhrauch, R., 1977. POL: A proof checker for first order logic. Stanford AI
Memo AIM-235.1.

Winker, S., 1976. An evaluation of an implementation of qualified hyper-reso
lution. IEEE Transactions on Computers C-25(8):835-843.

Winston, P. H., 1980. Leammg and reasoning by analogy. CACM 23(12):689-
703.

Wos, L., Robinson, G., Carson, D. P., 1965. Efficiency and completeness of
die set of support strategy m theorem proving. Journal of ACM 12:536-541.

Wos, L., Robinson, G., Carson, D., Shalla, L., 1967. The concept of demodula
tion in dieorem proving. Journal of ACM 14:698-709.

Wos, L., Robinson, G., 1970. Paramodulation and set of support. Symposium
on Automatic Demonstration, Lecture Notes in Mathematics 125:276-310.
Springer-Verlag, New York.

Wos, L. and Henschen, L., 1983. Automated dieorem proving 1965-1970. In
Siekmann and Wrightson, 1983.

Wos, L., Overbeek, R., Lusk, E., and Boyle, J., 1984a. Automated Reasoning:
Introduction and Application, Prentice-Hall, Englewood Cliffs, New Jersey.

Wos, L., Veroff, R., Smidi, B., and McCune, W., 1984b. The linked inference
principle, II: The user's viewpoint. In Proceedings of the Seventh Inter
national Conference on Automated Deduction, Napa, Califomia, pp 316 -
332.

Wos, L., 1987. Automated Reasoning: 33 Basic Research Problems, Prentice-
Hall, Englewood Cliffs, New Jersey.

Wu, 1978. On the decision problem and die mechanization of theorem proving.
Elementary Geometry Scientia Sinica 21:157-179.

Wu, 1984. Basic principles of mechanical theorem proving in geometries.
Journal ofSys. Sei, and Math. Sei 4(3):207-235. Republished in Journal of
Automated Reasoning 2(4):221-252. 1986.

Chapter

14

Symbolic Computing
Architectures
Howard E. Shrobe
Symbolics Incorporated
Cambridge, Massachusetts

Introduction

In this survey, I'll be looking at the evolution of computer architectures that
have been developed in and for the AI community. These are known as sym
bolic computing architectures, because they emphasize the manipulation of
symbolic as opposed to numeric entities. The road map for this survey is as
follows: First, we'll discuss what is meant by symbolic computing; I'll try to
give you a sense of how this style of computation differs from conventional
computing. Hopefully this will help develop an appreciation of the unique
demands that symbolic computing places upon a systems architecture. Then
we'll spend some time reviewing the history of symbolic computing. We'll
look at how the earliest LISP systems matured as sophisticated hardware be
came available. Today's LISP Machine systems represent the culmination of
this history; I'll spend some time trying to show what's really important in
diese systems. Next we'll look at several efforts to push symbolic computing
into the future with parallel processing. Finally, we'll take a quick peek at
neural networks and some other ideas that are pretty speculative.

Throughout this survey I will emphasize a theme that one might expect to
hear from a physicist more than from a computer scientist; this is the search for
synunetry and coherence. I 'm using the word "symmetry" in the same sense

545

546 Shrobe

that a physicist would: A synmietry is an abstract structure that we can impose
on reality to reveal a uniformity and simplicity that would otherwise be hidden.
The nodon of coherence will become particularly important when we tum to
parallel symbolic computing. Allowing many symbolic processors to operate in
parallel forces us to worry about whether all of them share a common percep
tion of the system's state. One example of this problem is that of cache coher
ence; if each processor has a private cache-memory, how do we make sure that
they all agree about what's acmally in main memory?

As we'll soon see, the applications for which symbolic computing is the
technique of choice are characterized by their complexity and heterogeneity; it
is because of this that we need to find ways to stmcture problems so that hid
den uniformities become apparent. That is why symmetry and coherence are
such important architectural goals.

1 What is Symbolic Computing?

1.1 4 Simple Example

First of all, just exactiy what do we mean by symbolic computation? Let's take
a quick look at a very simple but nevertheless very paradigmatic program: a
symbolic differentiator. Such a program is given a mathematical expression as
input; it is supposed to remm another madiematical expression which is the
derivative of the input with respect to some particular variable. Although we
are used to writing these expressions using infix mathematical operators, it is
actually more convenient for the program to manipulate them in prefix form,
leaving the conversion to a simple parser. By a mathematical expression I
might mean something like the following:

(Plus (expt X 4) (times 2 (expt χ 3)))

which is the intemal form for

If one were going to write such a program in a conventional programming
language like FORTRAN or C, you'd have to spend a lot of time building all the
facilities needed to represent expressions like these. The list processing capa
bilities of LISP (or PROLOG) make tiiis work unnecessary.

Also, if you were writing tiiis program in FORTRAN or ADA or C, you'd
probably be forced to stmcmre it as a single big CASE statement (or a bunch
of nested IF statements). The CASE would test in mm whether die expression

Chapter 14 Symbolic Computing Architectures 547

is a PLUS expression, or a ΉMES expression or an exponentiation or a con
stant, or any of the other special mies we leam in first year calculus about
differentiation. Such a program is shown in LISP notation in Figure 1. There are
two problems with such a program. First, it 's inefficient. Second it 's unmain
tainable.

1.1.1 Date-äriven Programming In a symbolic computing environment
we would stmcture this program quite differentiy as a large collection of very
small routines (as shown in Figure 2). The core routine (called DIFF) only
checks a few of the simplest cases, for example, differentiating a constant. If
die expression is not any of these trivial cases, DIFF determines what kind of
expression it is and, based on this, dispatches to a specialized routine, say, a
PLUS differentiator or a ΉMES differentiator. The specialized routines, of
course, can and do call DIFF to recursively differentiate their subexpressions.

How does die core DIFF function known which routine to call? In this
program, expressions are represented as lists; the first element of each expres
sion is a symbol that indicates the type of the expression. DIFF simply looks
on the property list of this symbol for a differentiator property; this property
should index the procedure appropriate for that type of expression. For ex
ample, if the expression is a plus expression, DIFF should look for the differ
entiator property of plus which should contain the function which "knows how
to" differentiate plus expressions.

Notice that the differentiator decides which procedure to call by looking
inside a data stmcture (i.e., the property list). The specific data being processed
(i.e., die expression being differentiated) tells it which data stmcture to look in.
This is an example of data-driven programming, one of the hallmarks of

(defun Diff (expression)
(cond ((numberρ expression) 0)

((eq expression 'x) 1)
((symbolp expression) 0)
((eq (car expression) 'plus)

' (plus , (diff (second expression))
, (diff (third expression))))

((eq (car expression) 'times)
. . .Code to differentiate products. . .)
((eq (car expression) 'exp)
. . .Code to differentiate exponentials. . .)
(. . .etc.. . .)))

Figure 1 A naive differentiation program.

548 Shrobe

symbolic computing; this type of technique is very difficult or impossible to
implement in conventional programming languages.

^A.2 Embedded Languages One interesting diing to notice about this
program is that it has exacdy the same stmcture as an inteφreter for a pro
gramming language; it's actually quite similar to the LISP interpreter itself.
Both a language interpreter and the differentiation program are presented with
an expression (a program in one case, a mathematical expression in the other);
diey bodi traverse the tree-like stmcture of the expression and at each level
each of them lets the data dictate the flow of control (see Figure 3).

Because of this stmctural similarity to a language interpreter, we are in
clined to think of the DIFF program as if it actually is a specialized program
ming language: the DIFF language. In more complicated forms of data-driven
programming, such as mle-based inference systems, the similarity to a pro
gramming language is even clearer and we almost always refer to them as lan
guages. Such data-driven interpreters are specialized to their domain and make
expressing problems in that domain much simpler than if one had to express
everything in LISP alone. However, one does not lose the power of LISP by
building such data-driven inteφreters since they are embedded in LISP. Al
though DIFF has its own control regime and data stmctures it also has access
to all the facilities of LISP. Similarly, rule systems implemented in LISP typi
cally allow die body of the mle to use all the facilities LISP has to offer.

(defun Diff (expression)
(cond ((numberρ expression) 0)

((eq expression 'x) 1)
((symbolp expression) 0)

(t (apply (get (car expression) 'differentiator)
(cdr expresión)))))

(defun (iproperty plus differentiator) (addend augend)
^ (plus , (diff addend) (diff augend)))

(defun (-.property times differentiator) (multiplier
multiplicand)

. . .Code to differentiate products. . .)

. . .etc.. . .

Figure 2 A better way to organize the differentiator.

Chapter 14 Symbolic Computing Architectures 549

Plus Diff
o t h er p r o p e r t i es

Differentiation Code

Times Diff Differentiation Code
o t h er p roper t i es

D I F F

Figure 3 The similarity of DIFF to an Interpreter.

So we've identified a second very common technique of symbolic pro
gramming, language embedding. Rule-based inference engines and fi-ame sys
tems are typical more sophisticated examples of this technique.

1.1.3 Heterogeneity It should be clear diat diese tasks for which symbolic
computing is uniquely qualified are different in kind from those served well by
conventional numerical computing. Conventional programs tend to be uniform,
simple, homogeneous, and numerically intensive. Symbolic programs, instead,
are diverse and heterogeneous, involving a variety of mechanisms and concep
tual tasks within a single program. A single symbolic computing application,
for example the manager of an autonomous space vehicle, will have to perform
a variety of tasks such as hierarchical classification, signal inteφretation, hy
pothesis formation, matching, and logical inference not to mention conven
tional numerical tasks. It will have to employ a variety of different mechanisms
such as mle-based programming, frame instantiation, constraint propagation,
numerical simulation, object-oriented programming, symbolic madiematics, and
tmth maintenance; all within a single large system.

Finally, this single system may well employ several different embedded
languages. In AI applications, die most common embedded languages will be
mle-based inference systems and object-oriented programming languages. But
we may also need a symbolic manipulation language, for example MACSYMA.
All of these languages will need to share data and be able to call upon one
another's capabilities in a variety of ways; the fact that they are all embedded
in a common base language (which is typically LISP) makes this possible.

It should be clear that the popular notion of an AI program as a single,
simple mle inteφreter is a gross oversimplification. In fact, symbolic comput
ing places much more serious demands on the system architecture than would
be presented by the need simply to to support a simple mle inteφreter.

550 Shrobe

1.2 Characteristics of Symbolic Computing
So far we have seen that symbolic computing is aimed at solving large and
complex problems. To do this several programming techniques have been
developed. Data-driven programming and language embedding are two of the
most important of these techniques, because they allow the problem to be
stmcmred and abstracted. In a sense, they are examples of my theme of the
search for symmetry. They impose a stmcture on the problem which would
otherwise be hidden. Without this stmcture, the program would be longer and
more complex, assuming that the complexity didn't overwhelm the program
mer altogether.

However, these techniques of symbolic computing present challenges for
the hardware because they make the flow of both data and control hard to pre
dict. The fact that symbolic computing is diverse and heterogenous also pre
sents a challenge to the architecture, since it means that there will be no single
facility which will always be in the inner loop of the computation. Techniques
used to optimize highly regular numeric computations, such a vector pipelines,
are not particularly useful in tiie domain of symbolic computations.

There are two other characteristics of symbolic computations that present
challenges to the system architecmre. The first is that the program typically
works on very large knowledge representations; this necessitates a large and
uniform address space. In die absence of this, some of die knowledge simply
will not fit into the address space (by address space I mean the size of virtual
memory) and will have to be treated asymmetrically. Such an asynmietry
shows up as added complexity in the program since it necessitates special pro
cedures to deal with those data stmctures that don't happen to fit in the address
space along with all the odiers.

Secondly, symbolic computations tend to create temporary data stmctures
whose lifetime is difficuh to predict tiirough static analysis. Our differentiator,
for example, produces intermediate expressions representing the derivatives of
the subexpressions. But if two subexpressions both differentiate to 2x, then
their sum can be simplified to 4x and the data stmctures for the original subex
pressions will no longer be needed. But it is impossible to predict this in ad
vance; other inputs would create different subexpressions tiiat can't be
simplified and thrown away. Unless you know the specific data that the pro
gram will work on, you can't tell what intermediate results will be needed.

A more realistic example occurs in the Boyer benchmark from the Gabriel
[1985] set of symbolic computing benchmarks. This program creates about a
half million words of temporary storage every 10 seconds of execution (see
[Moon, 1984] for tiiis data). Most of that is volatile and unneeded by die end
of the 10 seconds, but the progranuner can't predict in advance which specific
pieces of data will be needed and which won't. So, the system must provide

Chapter 14 Symbolic Computing Architectures 551

the ability to fmd the storage which is no longer needed and make it available
for further allocation; this task is usually called garbage collection,

1.3 Desiderata
We can now summarize all this into a set of desiderata for a symbolic comput-
mg system. First and foremost, because of the complexity of the task, we need
to raise the abstraction level of the languages we use to express our solutions
so that we can program closer to the knowledge level. We want to leave as
many of the details as possible to the system (by which I mean both the hard
ware and the lower levels of system software).

Secondly, we want the system to provide a broad range of ready-to-use
facilities and a powerful program development environment to ease the task of
creating the code.

Finally, and most importantiy, we want the system to support incremental-
ity. By incrementality, I mean tiie ability to make a small modification to the
program while it's mnning (for example to replace a mle in a mle-based sys
tem). This is usually facilitated by decomposing the system into modular units
such as mies, frames, semantic network nodes, etc. Any of those can be
changed while the program is mnning without intermpting the program or
losing its state.

This is an extremely powerful capability because it lets you examine and
characterize a bug witiiin the context of tiie failing program: the stack, symbol
table, and the global state of the computation are there to help you understand
what went wrong. Furthermore, you can examine all this information while
mnning within an error handler and come up with a fix on the spot. Incremen
tality tiien allows you to replace die offending procedure with a better version
and to proceed from the error as if it had never occured. This dramatically
speeds up the rate of program development.

Because symbolic computations are evolved rather than designed, and be
cause of dieir size and complexity, they're never really done. Even when the
program is deployed, you need to be able to modify it, and you sometimes
need to do that quickly.

There are many stories of software systems that have been deployed in
critical applications where an entire mission depends on the program. Now,
suppose that there is a bug in the program which is only triggered once the
program is fielded. Certainly in such a case you'd like to be able to patch the
program without taking it down to mn some long and time-consuming Sysgen
activity. After all, there might be people's lives at stake during the entire time
you're doing this.

The ability to support incrementality does not come for free because it
means that virtually anything can change under you. Therefore, many more
decisions must be postponed until mntime.

552 Shrobe

1.4 The Object-oriented Viewpoint

What this leads to is a viewpoint of a computer that's characteristic of sym
bolic computation which I call Object-oriented Viewpoint. In this viewpoint,
the memory doesn't consist of a stream of raw bits organized into bytes or
words. Rather, it consists of much larger conceptual entities which we can
diink of as objects. An object might be something simple like a list, an array,
an integer or it might be something with higher semantic content, for example,
a node in a semantic network or a data stmcture representing an entity in the
real world.

We want these objects to have identity. This means that just by looking at
an object you should be able to tell what kind of object it is; in addition, you
should be able to tell its extent in memory. The techniques that are used to do
this are called storage conventions. Ideally, the hardware should guarantee that
the storage conventions are never violated. As we'll see later, this is precisely
what modem LISP Machines do. Notice that guaranteeing storage conventions
is an example of the need to preserve coherence.

The object-oriented viewpoint depends upon the ability to make memory
seemingly infinite, in die sense that diere will always be room for allocating
new objects. Indeed, the goal is to free the programmer from worrying about
where objects are allocated and when they are deallocated. In practice, this
means that the system needs to support garbarge collection, the process of re
claiming unused storage at a rapid enough rate so that you never mn out of
free storage. Garbage collection means that the symmetry of storage is main
tained; to die programmer all storage is die same, and it's always available.

The second major feature of the object-oriented viewpoint is that the pro
grammer codes using generic operations. By a generic operation, I mean an
abstract, conceptual operation which does not reflect the limitations of the
hardware. For example, addition is a concepmal operation which is meaningful
to apply to integers, floating-point numbers, vectors, polynomials, etc. Ideally,
there should be a single operation, called PLUS, which does all of these, dis
patching on the type of the objects being added to determine how to perform
die operation.

In conventional programming languages the types of die language reflect
the limitations of the hardware. The reason why you have integer types and
floating-point types in most languages is because that's what the hardware has;
the programming language is designed to make the programmer worry about
things like this so that the compiler can generate reasonably efficient code. In
symbolic computing, we would ideally like to free the programmer from these
details by emphasizing the abstract unity (or symmetry) of all the different
forms of addition.

As we'll see, modem symbolic computing hardware allows this viewpoint
to be supported efficientiy. It is the hardware's job to check every operation

Chapter 14 Symbolic Computing Architectures 553

and decide how to perfomi it based upon the types of the operands. So in ef
fect that hardware will tell itself: "That's a fixed-point number and therefore I
should do integer adds," or "That's a floating-point number, I should be doing
floating-point adds." Or, "It 's an extended number that I can't direcüy support
at all, but I can support it by this sequence of other instmctiions."

In addition to higher level code, this approach leads to better debugging
and incrementality. Any attempt to do an invalid operation on any particular
piece of data is detected by the hardware, allowing the progranuner to enter a
debugging sessions in the context of the error.

Figure 4 shows an example of a generic operation. Here we have the
single generic function plus, which when applied to two integers just adds them
using the fixed point adder. When applied to a mix of integer and floating
point operands, it converts one datum to the type of the other (for example, it
converts the integer to floating point) and dien uses a floating-point coproces
sor to compute the result. When presented with two vectors to add, (notice that
these are not hardware primitives), it traps out and performs a complex com
putation that makes vector which is the vector sum of die two operands. Pre
sumably, this operation is performed in software, but the way you get to that
software is by die hardware trapping you to it.

2 The Historical Evolution of Symbolic Computing

We've seen so far that symbolic computing is concemed with organizing large,
complex heterogenous computations into stmctures that have uniformity and
coherence. The conceptual core of symbolic computing is the object-oriented
viewpoint, which stmctures memory and abstracts the primitive operations.
Key to providing this conceptual viewpoint is the ability to tag objects with
their types, to delineate their extent in memory, to reclaim unused storage
making it available for reuse, and finally to support generic operations.

(+ 3 4) Use hardware to add 3 and 4 -> 7

(+ 3.0 4) Use hardware to convert 4 to 4.0
Use hardware to add 3.0 and 4.0 -> 7.0

(+ V1 V2) (MAKE-VECTOR (+ (VECTOR-DELTA-X VI)
(VECTOR-DELTA-X V2))

(+ (VECTOR-DELTA-Y VI)
(VECT0R-DELTA-YV2))) Ar"

Figure 4 The generic Add operation.

554 Shrobe

Now that we have an understanding of the nature of symbolic computing
and of the challenges that it creates for the computer architect, Fd like to lead
you on a tour through the evolution of symbolic computing technology. As
we'll see, die central theme of this history is tiie attempt to efficientiy support
the object-oriented viewpoint; this goal has been achieved reasonably well in
modem symbolic computing systems. After we complete this tour we'll look at
current day attempts to exploit parallelism in symbolic computing.

2.1 Homeric Times
Long ago, in the pre-history of symbolic computing, a few heroic individuals,
using tiny and weak vehicles, set forth on a joumey through storms and mon
sters and attempted to build the first tmly powerful computing environments.
Altiiough the people who pioneered diese efforts are all still alive and active,
they are surrounded by an aura of mystery in the popular mythology of the
major centers of symbolic computing research.

This was in the late 1950s and the machines were tiny by today's stand
ards; die early work was done on the PDP-1 [Deutsch and Berkeley] (and later
die PDP-6 [Samson, 1966] and tiie SDS-930 [Deutsch and Lampson] (later the
XDS-940) botii of which are long since dead, LISP 1.5 [McCarthy et al., 1962]
(preceded by LISP 2 [McCarthy et al., 1960] and followed by LISP 1.6 [White,
1967]) was the first tme LISP language, although it was preceded by a variety
of odier symbolic computing languages such as the IPL series [Newell, 1961] in
which the Logic Theorist and GPS were implemented. There has been in
credible progress since tiiose days, but it 's striking how many of the good ideas
were there in the original LISP language. McCarthy [1978] is a history of these
developments, told as only John McCarthy can.

2.2 Ancient Times
In die early recorded history (i.e., the mid-1960s) computing hardware evolved
enough to provide a significant base for serious research. Most significant was
die evolution from tiie PDP-6 to the DEC-10 which was the first machine big
enough and fast enough to provide adequate support for symbolic computing.

This hardware facilitated the development of three symbolic computing en
vironments each contributing a major theme whose importance continues to
this day.

2.2.1 MACLISP The LISP environment tiiat evolved at MIT on the DEC-10
eventually became known as M A C L I S P [Moon, 1976]. M A C L I S P was the "lean
and mean" approach to LISP implementation. It was low on frills, but it was a
very high-performance system. In particular, its numerical performance was as

Chapter 14 Symbolic Computing Architectures 555

good as die FORTRAN supplied by DEC. In parallel with MACLISP, a powerful
editor known as EMACS [Stallman, 1984] was developed by Richard Stallman
which had considerable support for editing LISP programs and which was
loosely coupled to the MACLISP environment. In particular, one could go from
MACLISP to EMACS to edit a single LISP definition and then return this defini
tion to the LISP environment. To the programmer it appeared as if this took
place within a single environment; in fact, the two systems ran in separate
address spaces.

The MACLISP environment continued to evolve forming the basis for die
MIT LISP Machine. The LISP dialect that continued to evolve in the LISP Ma
chine environment provided one of the strongest influences in the stand
ardization of Common LISP [Steele, 1984].

2.2.2 Interlisp The original SDS-940 LISP was ported to die DEC-10 at
BBN, assuming the name BBN LISP [Bobrow et al., 1966]; it continued to
evolve at BBN and took on the name Interlisp [Teitelman, 1978]. Many of the
developers moved from BBN to Xerox PARC which continued to champion
Interlisp. PARC developed a series of machines know as the D-Machines that
were microcoded to provide an Interlisp environment known as Interlisp-D
[Burton, 1981]. Interlisp implementations were also built for the VAX architec
ture [Bates et al., 1982] and otiier machines. I tiiink it's fair to say tiiat DEC-10
Interlisp was the first example of an integrated programming environment in
the sense described in Sandewall [1978]. It was a fairly large and complex
software system in which the compiler, editor, debugger, etc. all shared a com
mon environment and set of conventions. Each of these facilities embedded
considerable knowledge about the syntax and semantics of LISP and each was
capable of using the others as subroutines. Its major drawback was its rela
tively low performance, particularly as compared to the MACLISP implementa
tion on the same hardware.

2.2.3 PROLOG In roughly the same time period, David Warren at die Univer
sity of Edinburgh implemented a high-performance compiler for the logic pro
gramming language PROLOG [Warren, 1977]. Most of the interest in PROLOG
initially was confined to Europe, but it spread from there to Japan where logic
programming ideas are central to the Fifth Generation project [Moto-Oka and
Fuchi, 1983; Moto-Oka and Stone, 1984]. Warren's DEC-10 PROLOG intro
duced die idea of compiling the unification pattem matching tiiat is central not
only to PROLOG but also to many other mle-based languages used for expert
system development. The concept of a logic variable data type is central to this
scheme, but I'll delay talking about this idea until later.

2.2.4 BIBOP Data Typing As I've emphasized, die object-oriented view
point is the central concem of symbolic computing and the key to this viewpoint

556 Shrobe

is the ability to tell the type of an object just by looking at it. This capability
underlies the notion of generic operations and is crucial for all garbage collec
tion schemes. It is not suφrising, therefore, that during this period a very
clever scheme was developed to facilitate data typing even on a machine that
provided no special data typing features in its architecture. This scheme came
to be known as BIBOP (for Big Bag Of Pages) and was pioneered in MACLISP
[Steele, 1977b].

The BIBOP scheme tries to reconcile die lack of any extra bits in die hard
ware with the need to encode typing information. The DEC-10 was a 36 bit
machine and all 36 bits were used. BIBOPing is based on the observation that
we can encode the typing information in the way we refer to an object, i.e., in
its address. This dictates a set of storage conventions in which only objects of a
single data type are allocated on any particular page of virtual memory. For ex
ample, there will be pages that only contain integers, pages that contain only
floating-point numbers, pages of arrays, and so on. Notice that it isn't the nec
essary for all data of a particular type to be contiguous. The only requirement
is that each page contain objects of a single data type; the next page containing
similar objects can be far removed.

To figure out the type of a particular datum, we need to consult the master
type table, which maps page numbers to data types (see Figure 5). A pointer
(for example die CAR half of a CONS cell) in this scheme is simply an
address. The BIBOP scheme gets the page number from this address and uses
it to index into the master type table and retrieve die data type. So by knowing
the location of an object, we also know what kind of object it is.

Page Data Type Table

References are typed
Numbers must be cons'd

"Fixed" by compiler twiddles and extra stacks
Type checking is expensive
Address Space Inflexibility

Data Type

- Data Type

Figures BIBOP data typing.

Chapter 14 Symbolic Computing Architectures 557

The BIBOP technique has the advantage that it needn't steal bits from the
rest of a word; in particular numbers are represented to the full significance of
the hardware. The DEC-10 was a 36-bit machine, and so the numbers were 36
bits long. It is also a relatively compact scheme since it only requires a table
widi one entry per page of vhtual memory.

However this scheme also has two disadvantages. The first is that its use
of storage is inefficient. Since an object can only be stored on a page reserved
for objects of its particular data type, intermediate results of a numeric com
putation cannot be stored on the normal system stack. (Since if they were, the
storage convention would force the stack to contain only numeric data.) In ad
dition, data stmctures that need to contain mixtures of numeric and other data
cannot store the numbers as inmiediate data. Instead diey must store the
numeric data on a page containing numbers, and use a pointer in the data stmc
ture to point to the stored number. Finally, a page which is only partially full
of data of a particular type cannot be used to hold data of another type, forcing
the system to have many partially filled pages.

The second disadvantage of BIBOP is that its type checking scheme is
relatively expensive. To check a data type, you have to extract a page address,
index into the master type table and then fetch the data type. This takes many
instmctions and therefore clocks several cycles. Figure 6 shows the assembly

(defungp(ab)(«ab)>

Symbolic Computer

0 ENTRY: 2 REQUIRED. 0 OPTIONAL
1 PUSH-LOCAL FP|0 ;A
2 BUILTIN 4-INTERNAL STACK FP|1 ;B
3 RETURN-STACK

FIgun 6 Conventional machine's assembly code for a generic plus operation.

Conventional Machine

CMPI.W #2, 06
BEQ L1

~C§~EAL (flJA)' A2
L1: MOVEA.L (-12.2&). AO

MOVEA.L (-16,A6), A1
MOVE.L Ao, D4
MOVE.L A1,05
MOVE.W D4. 07
OR.W 05,t 07
ANDI Ix'" 07
BNE L2
AOD.L Q~ 04
BVS w

L4: MOVE.L 04, C4.A6)
MOVEA.L (-41A6), AS
LEA (-8,1\6), A7

MOVEA.L ~A7t A3JMP i\3
L3: SUBX.L 5. 4
L2: ~g~EA.L g~A4). A2

BRA t4)
BRA L4

558 Shrobe

code that a compiler for a M680xc processor has to emit to perform the type
checking; clearly this is cosdy. Since type checking is a very frequent opera
tion this cost is significant, slowing a program down by a factor of 2 or more.

The MACLISP implementers came up with several tricks to alleviate these
problems. MACLISP uses several stacks. One of those is reserved for fixed point
numbers and another is used for floating-point numbers. The compiler tries to
identify those places where the code produces a temporary numeric result of a
known type; when successful, it emits code that pushes the result onto the ap
propriate numeric stack. This requires the programmer to provide declarations
to help the compiler figure out what's going on. When the compiler can't make
this determination, it is forced to emit much more inefficient code which stores
the temporary result in heap storage. This, of course, adds to the burden on the
garbage collector.

Another trick used in MACLISP was to omit the type checking code alto
gether in compiled code under die assumption tiiat tiie code had been debugged
in the interpreter; this was probably a bad idea. Such unsafely compiled code
proved very difficult to maintain and debug.

2.2.5 Garbage Collection During the development of LISP systems on the
DEC-10 many of our modem ideas about garbage collection were consolidated;
see [Cohen, 1981] for an excellent survey of this topic. There were two main
styles of garbage collector developed, both of which seize total control of the
machine for a substantial period of time.

The first technique (called Mark-Sweep) [Schorr and Waite, 1985], builds
a "free list," a list of locations in memory which are not currentiy being used.
The algorithm has two phases. In the first, one starts at the "root nodes" (i.e.,
the registers of the machine as well as certain locations known to contain per
manent data, such as the symbol table). These are marked and then anything
that these locations point at is marked recursively. Of course, if you attempt to
mark a location which is already marked, you simply stop that path of the re
cursion.

Once the mark phase completes, a linear sweep through the address space
finds those locations which are not marked. These are linked together to form a
list of free locations. These free locations are then available for new allocation.

Mark-Sweep has several problems. The first problem is where to store the
mark bits; the obvious place would be in the word to be marked, but (as with
data type tags) there are no free bits. So an extra table has to be allocated in
memory for tiiis purpose. Secondly, tiiere is a significant pause during the mark
and sweep process during which the machine is unavailable to the user. In the
limited address space (256K words) of the DEC-10 this didn't matter very
much, since the whole process takes only a few seconds. But with today's
large address space machines tiiis time grows to many minutes. Finally, Mark-
Sweep does not compact the reclaimed storage. This becomes an issue when

Chapter 14 Symbolic Computing Architectures 559

one wants to allocate contiguous stmctures (such as arrays) of variable size.
Even though there may be more than enough words of storage on the free-list
they might be so fragmented that no block is large enough for the desired
stmcture. Pure and simple Mark-Sweep garbage collectors were, dierefore, al
ways augmented by a storage compacting facility as well. Many commercial
LISP systems that are available on conventional hardware today still employ
this basic strategy.

The second major style of garbage collector introduced in this period is
know as Stop-and-Copy [Minsky, 1963; Fenichel and Yochelson, 1969]. Stop-
and-Copy, like Mark-Sweep, seizes total control of the machine. However, it
has the advantage that it naturally compacts the reclaimed storage. Figure 7
show the basic stmcture of Stop-and-Copy garbage collection in which the
address space of the machine is divided into two subspaces called old space
and new space. Initially, new space is empty and all of the data (both live data
and garbage) reside in old space. The goal is to copy the live data from old to
new space. Once this is done, old space can be "reclaimed," i.e., the entire area
can be made available for new allocation. During the Stop-and-Copy process,
new space is broken into du-ee areas; two pointers are used to delineate these
areas, these are called the scavenge pointer and the transport pointer. Words
between the beginning of new space and the scavenge pointer are required to
point only to objects in new space. Words between the scavenge pointer and
the transport pointer may point either to old or new space. The area between
the transport pointer and the top of new space contains free storage.

Old S p a c e

New S p a c e
/ /

/ / /

/ ' /
V

S c a v e n ge Pointer

Transport Pointer

Figure 7 Stop-and-Copy garage collecting.

560 Shrobe

Initially, the root nodes are copied to new space, the scavenge pointer
points to the beginning of new space and the transport pointer points to die
first word after the root nodes. Following this the garbage collector repeatedly
performs the scavenge operation. Scavenging involves the following steps:

1 . Fetch the word in the location addressed by the scavenge pointer.

2. If this word is a pointer and it points to old space, then the location in old
space is transported to new space.

3. The word being scavenged is updated to point to the location in new
space to which die word in old space has been transported.

4. If the word being scavenged is either not a pointer or doesn't point to old
space, then no action is taken.

5. Finally, die scavenge pointer is advanced past the word just processed.

Scavenging involves an operation called transporting which involves the
following steps:

1 . Examine the location addressed.

2. If diis location (which is in old space) is not specially marked as a
GC'forwarded location then:

a. Copy die word in diis location to the location addressed by die
transport pointer.

b. Mark die location in old space as "GC-forwarded".

c. Set the address part of the location in old space to the current contents
of the transport pointer.

d. Advance the transport pointer past the copy in new space
(see Figure 8) .

3. If the location in old space is specially marked as a GC-forwarded
location then no action is required (see Figure 9).

4. Finally, retum the address part of the location in old space being
transported. In either case, this is die address of the new space copy of
the datum.

Notice diat the datum that is transported to new space may still point into
old space. However, the datum itself will be located between the scavenge
pointer and the transport pointer. Also notice that after we scavenge a location
containing a pointer, the pointer will point to a location in new space. There
fore, everything between the start of new space and the scavenge pointer points

Chapter 14 Symbolic Computing Architectures 561

only to new space. Finally, notice that any live datum in old space is copied to
new space exacdy once (because of the GC-Forwarded mark). Therefore, even
tually a point is reached during the process of scavenging when all live data
has been copied to new space; at this point the transport pointer will stop ad
vancing. As we continue scavenging, however, the scavenge pointer continues
to advance. Eventually it will reach the transport pointer. When this occurs, all
locations in new space will be in the region below the scavenge pointer, imply
ing that they point only to locations in new space. This means that all locations
in old space are now inaccessible and can be reclaimed.

Old Space GcForward .

/
/

New Space

11 Scavenge PoiniBr

Transport Pointer

Figure 8 Scavenging and transporting.

Old Space GcForward

New Space (
/ / i UM

-Λ \ \ /

Scavenge Pointer

Traneport Pohrter

Figure 9 Scavenging an already transported location.

562 Shrobe

It is important to realize that the both types of garbage collector inherently
rely on the ability to distinguish between pointer and nonpointer data types. In
addition, Stop-and-Copy needs two other capabilities: it must be able to tell
whether a location is in old or new space and it must be able to recognize a
GC-Forwarded location. In stock hardware, these needs are met by ad hoc
techniques. However, as we will soon see, the type checking capabilities of
LISP Machines solve all diese problems uniformly with a small addition of
hardware.

Other interesting ideas about garbage collection can be found in Deutsch
and Bobrow [1976], Cheney [1970], Ungar [1984] and Lieberman [Lieberman
and Hewitt, 1983]. Cohen [1981] is a survey which is a good starting point for
anyone who wishes to leam more about this area.

2.2.6 Summary During the ancient history period of symbolic computing
(typified by tiie DEC-10 generation of hardware) most of today's techniques
for symbohc computing were developed. Adequate LISP performance was
achieved and the power of LISP'S object-oriented viewpoint became apparent.
This showed up in the development of powerful LISP based program develop
ment environments. It also showed up in the successful early AI programs such
as Shrdlu, Hacker, or Strips, which illustrated the power of LISP for building
extremely complex and heterogenous applications.

During this period, however, the limitations of stock hardware were be
coming clear. First and foremost, the limited address space of die DEC-10 was
becoming the major impediment to the aspirations of AI programmers. The
fact tiiat tiie DEC-10 was timeshared among several users meant that one had
to work late at night to get anything like adequate performance. Although diere
were graphical displays for these machines (such as die Knight TVs at MIT),
diey were nonstandard and were not really utilized by the LISP software. The
lack of hardware support for data type checking caused serious performance
bottienecks tiiat were only avoided by compiling code that omitted all safety
checks, often leading to obscure and undebuggable software failures. Finally,
the fact tiiat die garbage collector seizes total control of the machine and
causes delays during which one can't use the machine was becoming aggravat
ing. Aldiough diese were fairly short intermptions, it was clear that tiiis brevity
was an artifact of tiie limited address space of die DEC-10; there just wasn't
much memory to garbage collect. It was clear that if we were to progress we
would need higher performance machines with special features to support the
object-oriented viewpoint of LISP.

2.3 The Recent Past
Many of these problems began to be addressed when Xerox PARC and then
the MIT AI Lab developed the first workstations. Hardware technology had

Chapter 14 Symbolic Computing Architectures 563

developed enough by the mid-1970s that it had become possible to build a full-
scale computer on a few printed circuit boards. Economically this meant that
one no longer had to share die computer among a large number of researchers,
but could instead dedicate a full computer to each individual. Furthermore diis
computer could be physically compact, fitting alongside (or underneath) the
desk. Since the machine was dedicated it was also possible to use a high reso
lution graphical display, devoting some of the processor's power to creating a
pleasant user interface.

Xerox PARC led the way with a machine called the Alto [Thacker et al.,
1979]; tíiis was the predecessor to their D-Machine series. The Alto was a mi-
crocoded machine with a large enough microstore to implement several differ
ent instmction sets; one of these was customized to supporting INTERLISP
[Deutsch, 1979]. I won't spend much time talking about die Alto since it is less
interesting from the point of view of symbolic computing than is the MIT
CADR. However, the style of interface and the very idea of a personal com
puter pioneered by PARC greatiy influenced the MIT efforts. The MIT ma
chine, which we will look at in some detail, in turn greatiy influenced the de
sign of the PSI [Taki et al., 1984], the logic programming oriented machine
built by ICOT, die Japanese Fifdi Generation Project's research center.

2.3.1 The MIT CADR The MIT CADR [Greenblatt, 1984] was die out
growth of a project started by Richard Greenblatt and Tom Knight at MIT in
die mid-1970s. (There was an mitial prototype called CONS [Knight, 1984],
but the first really usable machine was substantially redesigned and so renamed
CADR, which means "second" in LISP). The goal of this project was to pro
duce a "LISP Machine," i.e., a machine that met the needs of symbolic comput
ing. Its design directiy addressed many of the shortcomings of the DEC-10 that
were constraining the research community. The CADR addressed the needs of
the object-oriented viewpoint by dispensing with BIBOP and instead introduc
ing the idea that data in the machine carried their own tags.

The CADR was a 32-bit machine. It broke each word into 24 bits of data
and 8 bits of tag. Six of die tag bits were used to encode data types, while the
other two (called the CDR-codes) were used for representing list stmctures
compactiy. The 24-bit data field also served as an address field for pointer
data. This gave a relatively large address space for its day (24 bits of word
address, compared to die DEC-lO's 18 bits).

The CADR introduced several major new capabilities. First, it was micro-
coded to check die data types on all operations. Since this was more efficient
than the BIBOP scheme, the need for declarations or unsafe compiler tricks
was removed. Secondly, it introduced a new "real-time" garbage collection
scheme based on ideas by Henry Baker [1978] which removed the need for the
garbage collector to seize total control of the machine. The Flavors [Weinreb
and Moon, 1979; Moon, 1986] object-oriented programming paradigm (one of

564 Shrobe

the major influences on the Common LISP Object Standard) was introduced on
the CADR and special microcode was written to provide efficient support for
this technique. Fmally, the instmctíon set and data formats of the CADR were
those of a stack machine, a style of architecture that seemed like a very natural
way of supporting a stack-oriented language like LISP. It also introduced die
idea of invisible pointers; that is specific data types which say, "Don't look
here, look diere." These tumed out to be very important for the garbage collec
tor (serving as the GC-Forward mark) and for logic programming (serving as
logic variables). The whole operating system was written in LISP.

Figure 10 enumerates many of the hardware details of this machine. It was
built in the mid to late 1970s. It had a relatively fast microcoded engine with a
cycle time of 180 nanoseconds (relatively fast for this generation). The micro-
engine was, by design, extremely general purpose. The purpose of tiiis machine
was to investigate stmctures for efficientiy supporting symbolic computing and
so die machine had few wired-in ideas about the nature of its instmction set or
data formats. That was all implemented in the microcode. It had a large micro
store, containing 16,000 words of 48 bits. The general control stmcture of the
micro-engine was dispatching; i.e., branching to specific microcode routines
based on the content of subfields of the data being processed. It had a large
(IK) intemal bank of fast 32-bit registers with a few special features diat let
these be used as a buffer for the top of the stack.

Let's look a littie deeper into die way die micro-engine implemented the
abstractions of symbolic computing. The basic control stmcture of the micro-
engine, as I said, was dispatching. In fact, the micro-engine had only four types
of cycles, which were: (1) Running the ALU. (2) Extracting a byte field. (3)
Branching to a specific location in the microstore, and (4) Dispatching on a
subfield of any datum in tiie processor. The subfield could be up to 7 bits long
and was used as an index into a special dispatch memory inside the processor
which contained addresses of otiier microcode routines to jump to.

The Cadr (son of Cons) - 1976
Microprogrammed, General Purpose, 32 Bit

Basic Control Structure is Dispatching
First Microcoded Lisp Engine 16K χ 48 Microstore
Hardware Stack Cache 1Κ χ 32 bits
Microcoded Data Type Checking 180 ns cycle time

Microcoded Invisibile Pointers
Whole Operating System in Lisp
Extremely General Instruction Set Emulator

Figure 10 Details of the MIT CADR.

Chapter 14 Symbolic Computing Architectures 565

Given these capabilities, it takes the CADR 10 to 20 cycles of the micro-
engine to inteφret a simple instmction. The inteφretation of a plus instmction,
for example, involves the following steps:

• Extract the opcode from the word and dispatch on it (i.e., before it could
do anything, it had to figure out what instmction it was to execute).

Extract a second field fi-om the instmction and dispatch on this to deter
mine where to leave the result of the instmction.

• Extract another field from the instmction and dispatch on this to determine
how to address die stack. In particular, it has to determine which of several
intemal processor registers to use as the base register for the stack address
calculation.

• Extract an offset field from the instmction and add this to the base register
to calculate the stack address.

• Read this location from the stack cache.

Extract the data type field of this damm and dispatch on it to the routine
appropriate for adding this kind of data.

• Run die ALU.

Write die results back.

Each of these steps takes a few cycles since each involves a byte extrac
tion and a dispatch cycle, at least. That's why, on average, something as simple
as a plus instmction takes 10-20 cycles. One way of looking at this is that the
CADR microcode has to perform roughly die same operations as the BIBOP
scheme. The major difference is that it does not have to consult a master type
table because the data type is stored with the datum. Secondly it performs
these operations in the microcode which is faster at such tasks than a program
written the instmction set of a conventional machine. Nevertheless, die CADR
pays quite a performance penalty for inteφreting the instmction set and data
types. In addition its numeric data is nonstandard because it is only a 32-bit
machine, and it uses some of those bits for data types. Fixed-point numbers are
only 24 bits long and fioating-point numbers don't fit into a single word and
must be cons'd.

What is supposed to make up for this it is you have the machine all to
yourself. The CADR is a machine with a faster cycle time tiian that of the
DEC-lO's which populated the labs at the time of its introduction and you
didn't have share it with 20 other researchers. The assumption was that you
could afford to throw away cycles. (It's an interesting side-point that the idea
of a personal research machine was so powerful that at the beginning of the
CADR's microcode listing was a quotation from Tommy, the rock opera, that
said "Here comes a man to bring you a machine all of your own.")

566 Shrobe

2.3.1.1 Incremental Garbage Collection The CADR also introduced a
further evolution of garbage collection technology which was incremental in
the sense that a program could keep mnning while the garbage collection did
its work. This technique involved a very small modification of the copying gar
bage collector. As you will recall, tiie Stop-and-Copy garbage collection works
by scavenging the area of new space that contains pointers to old space; after a
location is scavenged, it will necessarily point to new space. Once the scavenge
pointer catches up to the transport pointer we can guarantee that there are no
pointers to old space left in new space; tiierefore, old space can be reclaimed.

In effect, the CADR's garbage collector mns the Stop-and-Copy garbage
collector in a separate process, while normal programs mn in their own
processes.

How can this interleaving effect the basic invariant of the Stop-and-Copy
collector? There are only two ways: The first is that the processor itself might
have a pointer in an intemal register that points to old space. The second is that
a process might allocate new storage containing a pointer to old space. In
either of these cases, we would no longer be able to guarantee that no live data
in new space points to old space. Both these problems can be fixed by
guaranteeing that there will never be a pointer to old space inside the proces
sor. This directiy addresses the first issue and indirectiy addresses tiie second.
If the processor can never contain a pointer to old space, it can never initialize
newly allocated storage to point to old space. To do so it would need to write a
pointer to old space into the new storage. But to write such a pointer, it must
first be in a processor register, and no processor register is allowed to point to
old space.

So how do we enforce this guarantee? It's very simple. We make the pro
cessor check every datum that it reads to see whether it's a pointer that points
to old space. In the CADR, this was implemented by first dispatching on the
data type of the word read, to see if it is a pointer and if it is by dispatching on
a field kept in die virmal memory page table which indicates whether a page is
in new or old space. If both these conditions hold, the processor dispatches to
the transport routine (which we've already seen in the Stop-and-Copy garbage
collector). Since transporting always produces a pointer to new space, the pro
cessor never winds up loading a pointer to old space.

To state this more simply: The hardware was made capable of trapping on
any read from memory that would have loaded a pointer to old space. The trap
routine transports die data, guaranteeing that there are only new space pointers
inside the processor. This small addition of hardware capability makes it
possible to mn a very large program in parallel with the garbage collector. The
intermption of the application program is bounded by the rather small time that
it takes to transport a location; therefore, the "coffee break length intermption"
that used to be necessary for garbage collection is no longer necessary.

Chapter 14 Symbolic Computing Architectures 567

In practice, this scheme didn't work out so well. The reason is that the
scavenging part of the garbage collector needs to sweep through the entire
address space, touching all the pages in the virtual memory of the machine.
Scavenging proceeds linearly through new space but it processes data that point
to a highly random set of locations in old space, each of which needs to be
transported. Transporting accesses both the page in new space with the pointer
and tiie page in old space that it points at. Finally, it accesses the page in new
space to which the datum is transported. Thus, the garbage collector can cause
a large number of page faults and diese are very slow by comparison to the
speed of the processor. Therefore, while the garbage collector is mnning the
machine thrashes. The page traffic becomes incredible, and die machine slows
down unacceptably.

Nonetheless die CADR proved to be a very powerful experimental vehicle,
providing die main computing platform for AI research work at MIT. After
several years of use at MIT, it was time for the CADR to move into the world.
Two companies spun off to commercialize the technology, LISP Machines Inc.
(LMI) produced a machine with the CADR architecture called the Lambda and
Symbolics Inc. as its first product repackaged the CADR as its LM-2. Texas
Instmments entered into a joint technology venture with LMI which coupled
the CADR's architecture to Ή ' s NuBus (which incidentally was also designed
at MIT originally). The machine is called the Explorer. Ή then further
developed this into a single chip implementation called die Compact LISP Ma
chine which is the processor in the Explorer-II. Architecturally, this machine is
still essentially the MIT CADR with a few new wrinkles.

2.4 Modern Times
Hardware advances in the late 1970s, coupled with the insights gained from the
CADR experiment led to a new generation of systems that appeared in the
1980s. One major development was the creation of an entirely new LISP Ma
chine architecture by Symbolics Inc. Symbolics was founded by many of the
CADR designers who felt tfiat enough had been leamed from die CADR to de
sign a much higher performance architecture. The resulting machine was called
the 3600 [Symbolics, 1983; Moon, 1985]; it introduced special purpose hard
ware to perform data type checking, and a newer form of garbage collection,
called ephemeral garbage collection, tiiat fixed the problems uncovered in die
CADR experience [Moon, 1984].

A second major set of advances that occurred during these years was the
consolidation of a set of efficient technique for implementing logic program
ming; much of this woric was done by David Warren at the University of Edin
burgh and at SRI Intemational. These techniques, known as the Warren Ab
stract Machine (WAM), lead to PROLOG implementations of very high-perform
ance, opening the possibility of using logic programming techniques as part of

568 Shrobe

the normal repertoire of an AI progranmier. Although these techniques were
developed originally in a compiler for the DEC-10, they have been adopted for
a large variety of other machines. In particular, special data types were intro
duced in die CADR and die 3600 to support Warren's ideas and the PSI ma
chine designed at ICOT (die Japanese Fifdi Generation research center) was
also influenced by these techniques.

2.4.1 The 3600 The first commercial 36(K)s were shipped to customers
around the end of 1982. Like the CADR, it's a microcoded workstation;
however it is a 36-bit machine, and it contains many hardware features that
provide a much higher level of support for symbolic computation. In particular,
many things that are implemented by dispatching in the CADR were wired
directiy into die hardware control stmcture of die 3600. Moon [1985] presents
an excellent overview of this architecture.

2.4.1.1 Trapping Control Structure The basic control stmcture of die
3600 is not dispatching but trapping. To see the difference it is useful to con
sider how each machine implements the plus instmction. As we saw before,
this involves a large number of byte field extraction and dispatching steps in
the CADR because neither the instmction set nor the data format is defined by
die hardware. In contrast, die 3600 has a predefined instmction set format, so
there are simple, direct connections that extract the opcode from an instmction
and the type field from a datum. It also has much more direct support for the
stack cache, including a special ALU dedicated to stack cache address calcula
tion. The plus instmction takes a single cycle on the 3600; during this cycle the
stack cache address is calculated, the addressed stack location (as well as the
top of the stack) is read from the stack cache and driven into the ALU. In par
allel with the ALU running, a special section of hardware, called the "tag pro
cessor" checks the data types of the operands; if these are not both integers, a
trap signal is generated and the processor is redirected to a microcode routine
diat can handle the actual data types.

The strategy in the 3600 is to assume that the data types will be those
which die hardware can deal witii quickly; if this assumption is wrong, die ma
chine traps to a routine that correctiy handles the slower case. Now since this
prediction is fairly accurate, most instmctions don't need to trap. You complete
most of die instmctions as fast as possible, without the dispatching overhead of
die CADR.

Trapping is also used in die 3600 to support the garbage collector. As
you'll recall, the cmcial facility needed by the CADR's garbage collector is the
ability to check every datum read into the processor to see if it 's a pointer to
old space. In die CADR diis cost several dispatching cycles. In the 3600 tills
facility is provided by a trap caused by the combination of the "tag processor"
signalling tiiat die datum read has a pointer data type and the "GC map" hard-

Chapter 14 Symbolic Computing Architectures 569

ware signalling that the location pointed at by the datum is in old space. In the
common case, when there is no trap, the check costs no time.

2.4 .1.2 Hardware Features Let's look at some features of this machine's
hardware these are shown in Figure 11. For more details see [Moon, 1984,
1985]. The 3600 has a much wider microcode word and a much more parallel
micro-engine. There are about 100 bits in each microinstmction word; this
wide control word controls a much larger set of facilities than that of the
CADR. These include the tag processor, the GC map, the stack cache address
ing ALU, the normal datapath's ALU, and the pipelined memory interface. The
microstore contains 16K words. The machine has 36-bit words, broken into a
32-bit datum and four bits of tag (two of these bits encode the CDR code and
two encode the data type). The data type tag is actually implemented in a two-
level scheme. Immediate numeric data such single precision fixed and floating
point numbers are encoded by specific two bit tags. However, if the first two
bits do not indicate that the data is inunediate numeric data, dien 4 more bits
are taken from the datum part of the word. In that case, there are 6 data type
bits and 28 bits of pointer address. So you have 28 bit addresses, 32 bit num
bers, and enough tag to tell the difference. These data formats are known about
in the hardware.

The cycle tíme of this machine is actually just a little slower than the
CADR's (about 200 nanoseconds) but because of the greater efficiency of the
micro-control system, diis machine runs considerably faster than the CADR.
This is because the most frequent simple instmctíons such as Push, Pop, Plus,
etc. execute in a single cycle; additionally, function calling executes in about
20 clock cycles on die 3600 but takes close to 100 on die CADR.

Symbolics 3600-1982
Microprogrammed, Lisp Specific, 36 Bit

Basic Control Structure is Trapping

100 bit χ 16K Horizontal Microcode Concurrent Data and Control Path Execution
36-bit Data Format (Data plus Tag) 32 bit Arithmetic
Hardware Defined Data Formats Hardware Data Type Trapping
210 ns Cycle Time
Pipelined Memory Access Hardware Assisted Garbage Collection

Figure 11 Details of the Symbolics 3600.

570 Shrobe

Now the overall efficiency of a computer comes from three factors. The
first is the efficiency of the instmction set (i.e., how many instmctions does it
take to do a particular task). The second is the "architectural constant" which is
the average number of clock cycles it takes to execute an instmction. The third
factor is die length of a clock cycle. The last of these is obviously very much
influenced by the implementation technology. The 3600 sacrificed a little on
the third of diese measures but improved on the first two dramatically. On
balance it wound up being 3 to 5 times faster than a CADR (depending on the
task).

2A^,3 Memory Pipelining The 3600 also introduced pipelining in die
memory system. One of the reasons for this is that the processor mns much
more quickly dian its memory. This mismatch of speeds means that every
access of memory causes the processor to wait for the memory to retum the
data. In the 36(X) design, the processor is not forced to idle while waiting for
tiie memory. Often tiiere is some check that can be done during the idle cycles;
for example, when accessing an array element, you can check that the refer
ence is within the bounds of the array. The other tiling you can do while wait
ing for data to retum from memory is to issue another memory request; this
can be done since the bus in die 3600 provides separate address and data lines
and the memory is implemented as a set of separately functioning (i.e., inter
leaved) banks. When used this way, die processor can access a word from
memory on every cycle, although each word comes back a few cycles after the
request is issued. This type of pipelined memory accessing is used by die in
stmction prefetcher, by routines m the garbage collector tiiat sequentially scan
pages of memory, and by graphics routines like BITBLT.

2.4.1.4 The Tag Processor Stmcmrally, die 3600 is just a conventional
(stack-oriented) computer with some extra facilities added on. (It is in no sense
specialized; it just has some special facilities in addition to the normal ones.)
This can be seen in Figure 12 which shows tiie data format and the stmcture of
the datapath of the machine. A word has a conventional 32-bit damm with an
extra 4-bit tag. The 32-bit datum is processes by a normal ALU as it would be
in any other computer. The tag is processed by the tag processor, which is die
part of tiie machine tiiat is unique. On each cycle, tiie microcode instmcts tfie
tag processor which types to check for. The ALU produces a set of signals diat
indicate exceptional arithmetic conditions (overflow, underflow, etc.); the tag
processor produces other signals (such as whether the data is illegal, can only
be handled by a trap routine, and whetiier its arithmetic or pointer data). The
ALU (die conventional machine) and the tag processor (the symbolic comput
ing part of die machine) run in parallel. The tag processor generates trap sig
nals diat inhibit the writing of any results into registers when die data types are

Chapter 14 Symbolic Computing Architectures 571

illegal, just as the ALU generates traps that inhibit side effects when die results
overflow the precision of the machine.

Figure 13 shows the hardware organization in a litde more detail. The top
of the stack is held in a bank of fast processor registers implemented as a 4K-
by-36-bit intemal memory. There is also a smaller scratch-pad register file,
which holds a second copy of the top word of the stack as well as some other
data. A typical two-input instmctíon takes its first operand from the top of the
stack and fetches its other operand from a stack location encoded in the in
stmction. These two operands are processed by the ALU. In parallel, the tag
processor looks at the tags of the operands and either confirms or traps the
operation.

Instmction

T ag

V a l id T y p es

I m m e d i a te D a t um or Po in ter

Tags Processor
Data Path

P o i n t e r? T r a p?

Figure 12 The datapath of the Symbolics 3600.

1 r
O v e r f l o w? M i n u s?

A l u O ps

IticroCode Tag Checker

From Memory

Instruction

Microcode
roffset

Stack Cache
4K Words

Trap

Scratch Pad

To Memory

Adder, Masker, Shifter

Figure 13 The stack cache and datapath of the Symbolics 3600.

572 Shrobe

2.4.1.5 Ephemeral Garbage Collection The 3600 introduced a diird in
novation in garbage collection technology, called Ephemeral Garbage Collec
tion (EGC) [Moon, 1984]. This technique is aimed at overcoming the page
thrashing and odier large overheads associated with the CADR's incremental
garbage collector. The insight behind die EGC is die observation diat a small
region of memory holds nearly all of the most volatile data. Typically this re
gion (called the Ephemeral region) is where temporary results are rapidly
created and equally quickly dirown away. Relative to the size of the whole
address space, the Ephemeral region is tiny. Conversely, the region containing
static stmctures (for example, knowledge bases) is huge. Clearly, we should try
to concentrate our efforts on reclaiming storage from the ephemeral area since
dial's where we'd reclaim die most storage per unit of work done.

But to reclaim unused storage in the ephemeral region, we'd have to find
all pointers into ephemeral space which are stored in more stable areas. We
could then use these as the root nodes of a CADR-style incremental garbage
collection diat needed only to scavenge ephemeral space, rather than the whole
virtual memory. To do this, we need to monitor every write into memory,
checking whether the datum being written is a pointer and whether it points
into ephemeral space. (Notice that incremental garbage collection requires the
processor to check every read from memory, and ephemeral garbage collection
requires the processor to check every write to memory.) If these conditions are
met, then the processor sets a special bit in the page table, indicating that the
marked page contains a pointer to ephemeral space. When we want to conduct
an ephemeral garbage collection, we start by scanning these marked pages to
find the pointers to ephemeral space; these are the root nodes for garbage col
lecting this area. From this point on, the garbage collection algorithm is identi
cal to that used in the CADR; it's just concentrated on a very small area that
has a very high payoff. Typically, EGC completes in a few seconds and causes
degradation that is hardly noticeable to the user.

The EGC is exceedingly effective in reclaiming storage and it is backed up
by the Dynamic Garbage Collector (which is essentially die same GC used in
die CADR). Given diis hierarchy of techniques, it's very typical that LISP Ma
chine users run their machines for weeks on end without rebooting; you just let
the garbage collector keep reclamiing stuff for you. My machine right now has
been running for about four weeks straight without rebooting (4 weeks, 5 days,
3 hours, 36 minutes, 53 seconds, to be precise), supporting a continuing pro
gram development session as well as die work to edit this paper. Here are
some statistics on what it 's done:

The GC generation count is 959 (1 full GC, 37 dynamic GCs, and 921
ephemeral GCs). Since cold boot 162,578,792 words have been consed,
150,960,828 words of garbage have been reclaimed, and 234,476,700

Chapter 14 Symbolic Computing Architectures 573

words of nongarbage have been transported. The total "scavenger work"
required to accomplish this was 1,340,776,491 units.

2.4.1.6 The Special Hardware The 3600 contains only a few special hard
ware modules to support tag processing and garbage collection. I've akeady
mentioned the existence of the tag processor, which detects and traps illegal
operations, controls the dispatching for generic operations, and distinguishes
pointers from inmiediate data for the garbage collector. Another module, called
the GC Map, can tell us, amongst other things, whether a pointer points into
ephemeral space and whether it points into old space. The special logic used by
the EGC is shown in Figure 14. It fomis the conjunction of two signals that
diese modules provide: POINTER-DATA-TYPE and POINTER-TO-
EPHEMERAL; if this conjoined signal is tme and there is a memory write
operation being performed then the microcode turns on a bit in die page table
entry for the page being written. This bit indicates that die page contains at
least one pointer to ephemeral space.

These extra hardware modules are implemented by small memories inside
the processor. The tag processor (see Figure 15) is an intemal processor
memory. It is addressed an index created by concatenating a 6-bit microcode
field with the 6-bit data type field of the datum being checked. Each entry of
this memory is a few bits wide and encodes a set of signals such as: "arith
metic trap," "illegal data type," "pointer data type." This memory is prepro
grammed at the time you boot the machine; you can think of its contents as
part of the microcode. Tag processing consists of fetching the appropriate word
from this memory and driving it into the various logic modules that use these
signals; in particular, the GC logic and die trapping logic.

cpnemenu L

Figure 14 Hardware support for The Ephemeral Gart)age Collector.

574 Shrobe

MicroOp
Data Type.

12
6 / 4Kx4 /
6

4Kx4 /
6

Figure 15 The tag processor of the Symbolics 3600.

The GC map (see Figure 16) is also a small memory intemal to the pro
cessor, which is indexed by a subfield of a pointer's address. The contents of
each word is a small number of bits that encode information such as "pointer
to ephemeral space" and "pointer to old space." This memory is initialized by
the virtual memory manager and the GC during the creation of a new page and
the flipping of new and old space.

Address

Old Space Ephemeral

Figure 16 The Symbolics 3600 GC map.

Chapter 14 Symbolic Computing Architectures 575

What is the total hardware cost for providing these feamres? It only adds
up to about 10% extra hardware, most of which is fairly cheap. What it adds
up to in performance is shown in Figure 17. This shows die performance on
the more interesting Gabriel benchmarks of a 3600 and a conventional 68020-
based machine. Both machines are measured doing die benchmarks widi full
type checking enabled. The 3600 can be seen to have qualitatively better per
formance. It should be noted diat the 68020 processor is implemented in hard
ware technology a generation more modem than that of the 3600, and it mns
with a faster cycle time. If we were to compare systems implemented with
equivalent technologies, the comparison would be even more favorable to the
machine which contained special features for symbolic computing. The small
addition of hardware buys a lot. Figure 18 shows why this is tme. The as
sembly code on the left is what the 3600 would have to execute for the simple
processor shown; the code on the right is what the compiler for the 68020
would have to emit. The conventional processor needs to execute roughly 10
instmctions for one executed by the 3600.

Symbolics 3675

1.5

1.0 Η

Sun 3/160

' 1

BOYER BROWSE PUZZLE TRAVERSE INIT TRAVERSE DESTRU

Figure 17 Comparative performance of a symbolic and a conventional
processor.

576 Shrobe

Description Conventional
Machine

Symboiic
Processor

Fetch Operand 1
Extract Tag
Fetch Operand 2
Extract Tag
Compare Tags
Branch to Proper Add Code
Execute Add
Generate Result Tag
fñerge Tag into Result
Store Result

μ ι

TötäT

Figure 18 Steps in a generic add operation for a symbolic and a conventional
processor

2.4.2 r/ie Warren Abstract amachine While die attention of people in
Cambridge was centered on LISP Machines, there were other people concentrat
ing on logic programming and in particular, on PROLOG. This work represents
another major trend in symbolic computing. Where logic programming differs
most strongly from LISP programming is in its emphasis on Unification. (I sus
pect that people who are more involved in logic programming that I am will
regard this statement as an oversimplification.) As I've mentioned earlier,
David Warren developed a set of techniques for compiling PROLOG that lead to
very efficient implementations; these techniques center on the efficient im
plementation of unification [Warren, 1977; 1980; 1983]. One key idea in die
Warren Abstract Machine is the introduction of a new data type called a logic
variable; logic variables are the objects diat get bound during unification. Inter
estingly, in a LISP Machine, logic variables tum out to be just a special kind of
invisible pointer.

Figure 19 shows the task to which Warren's techniques are addressed.
Here we have a set of PROLOG clauses (or backward chaining mies, for those
who are more used to this terminology). The left-hand side of each mle is a
statement of a goal which might be solved by tiiat mle; the right-hand side is a
set of subgoals that must be solved for the mle to succeed. A mle with no
right-hand side can be regarded as a fact; a top-level goal is just a clause with
no left-hand side.

In PROLOG, when a goal is posted, the system finds mies whose left-hand
sides match the goal. By matching we mean that there is an assignment of
values to the logic variables (indicated by leading question marks in my nota
tion) that makes botii die goal and the head of die clause equal. Matching a

Chapter 14 Symbolic Computing Architectures 577

variable with a constant is straightforward, this involves simply binding the
variable to the constant value. However, when a'variable is matched to another
variable, diey must be unified in such a way that if either variable is later
matched against a constant, then both variables will be bound to its value.

In the example in Figure 19, we have a clause (the grandfadier clause)
which says diat ?X is ?Y's grandfadier if there is some ?Z such that ?X is ?Z's
father and ?Z is ?Y's father. We start off by asking if there is someone
(?WHO) that Abraham is the grandfather of. This query is matched against the
head of die grandfadier clause; binding ?X to Abraham and ?WHO to ?Y. The
first subgoal on die right is now posted. The goal asks if diere is a ?Z of which
?X is die father; but ?X is not bound to Abraham, so we really ask who is
Abraham the father of This query matches the fact the Abraham is the father
of Isaac, which unifies the variable ?Z with Isaac. We then proceed to the next
subgoal which asks whether ?Z is the father of ?Y. ?Z is of course now bound
to Isaac and ?Y is unified with the variable ?WHO from the original query; so
this query amounts to asking whose father is Isaac. This matches a fact which
states that Isaac is Jacob's father. Performing diis match matches ?Y with
Jacob; but ?Y is unified with ?WHO from the original query so it also unifies
?WHO with Jacob. We return with these bindings in effect, leaming that one
possible value for ?WHO is Jacob, i.e., that Abraham is the grandfather of
Jacob.

Jacob

Goal (Grandfather Abraham ?who) Abraham ?who Isaac
t , / Í Í Í

(Grandfather ?x ?y) <- (Father ?x ?z) (Father ?z ?y) ?x ?y ?z

Í
Goal (Father Abraham ?z)

1
(Father Abraham Isaac)

Goal (Father Isaac ?)̂ ?y

(Father Isaac Jacob)

?z

Figure 19 The reasoning task addressed by PROLOG.

578 Shrobe

If we want to get more answers (Abraham could be die grandfadier of
other people), we then retum to the last place where a choice was made (for
example, Isaac could have been the father of other children but we chose to
work with Jacob first), undo the bindings created for that choice and then
proceed with the next choice. This choice may create other bindings. If a par
ticular choice doesn't work out (it leads to a subgoal which cannot be unified
widi the head of any clause) then we backtrack to the last choice point, undo
ing the bindings made at that level. A new clause for this subgoal is then
chosen if there are any remaining; if not we unwind to the choice point pre
vious to diis one. So, in effect, PROLOG searches depth first and backtracks
chronologically when encountering a failure. (In passing, I should mention that
this same paradigm was also introduced in Carl Hewitt's Planner language
somewhat earlier than the first PROLOG.)

The challenge in implementing this paradigm is to find an efficient tech
nique for binding logic variables. In particular, it 's important to notice diat
logic variables can get unified to odier logic variables and that diere is no
upper bound to the number of variables that be unified into a single group.
Warren's techniques are based around two insights. The first is that the depth
first search technique used in PROLOG can be supported in an (extended) stack
discipline. As is usual for stack-based implementations, when a clause is in
voked, the variables in the clause are assigned locations in the stack frame for
this invocation. Warren's second insight is that when a variable is unified, all
you have to do is make it point to the thing to which it is bound (because of
die stack discipline, you have to ensure that these pointers always point from
more recent to older locations in the stack). To look up the value of a variable,
you simple follow die pointer. Of course, if it points to anodier variable (as
when ?Y and ?WHO were unified in our example), then you have to follow
that pointer. You have to keep "dereferencing" the variables until you either
get to a constant or to a variable which isn't bound to anything else. This
means that you have to be able to check data types, to tell whether something
is a variable or a constant, and to distinguish bound from unbound variables.
Some implementations use a special data type to distinguish bound from un
bound logic variables, but Warren's origind technique marks unbound logic
variables by the fact diat they point to themselves. As I mentioned before, a
bound logic variable is just an invisible pointer, i.e., a datum that says "don't
look here, look diere."

Warren worked out an entire instmction set based on the ideas of derefer
encing and unifying logic variables [Warren, 1983]. Dereferencing involves
checking die type of the datum and, if it 's a bound logic variable, following it
to the datum that it points to, and continuing this process until a datum is en
countered which is not a bound logic variable. It tumed out that our data type
checking hardware was just what was needed to support dereferencing even
though it had been designed for a different purpose.

Chapter 14 Symbolic Computing Architectures 579

Unification is the basic step of the matching process. Unification consists
of first dereferencing the two items to be unified. Notice that if either of the
items is a logic variable, dereferencing will produce the ultimate "home" of the
datum; if die variable is bound to a constant, the home is that constant; if the
variable is bound to other variables, the home is die location of the single logic
variable at the end of the chain of indirect pointers. Unification then checks the
data types of the two items. If both are constants, then we simply perform an
equality check; if die items are equal we continue, otherwise we initiate a
failure. If only one item is a logic variable, then it is bound to the other. This
means that we make the location containing the home of the logic variable
point to the other datum. Since a logic variable is always dereferenced before it
is used, it will behave exacdy as if it were the constant to which it 's bound. If
bodi items being unified are unbound logic variables, then one is made to point
to the other (as I've said, the pointers are always managed so that variables
more recendy added to the stack point to older ones). This makes the two logic
variables behave as if they were the same datum.

Of course, there needs to be some bookkeeping to keep track of choice
points and the choices remaining at each one. These are kept on a special stack
which is shown in Figure 20. In addition, we need to keep track of when die
variables are bound so that when we fail we will know what to unbind. This in
formation is kept on another stack called the "trail." Finally, there is another
stack which hold values that cannot be kept m the main stack; the reason for
needing this stack is too complex to explain here, see [Warren, 1980, 1983] for
more details.

Data Areas

\ \

\
stack Choice Points Heap

Code

Trail

Instruction Set:

Procedural:
Get/Put:
Unify:
Indexing:
Random Additions:

Proceed, Allocate, Call
Get-variable, Get-constant, Get-structure, Put-variable,...
Unity-variable, unify-constant, unity-nil
Try-me, Retry-me, Tmst-me, Switch-on-term, Switch-on-constant,,

Figure 20 The Warren Abstract Machine model.

580 Shrobe

2.5 Summary
We have seen how, in order to present a uniform, or symmetric, view of the
progranmiing process, the object-oriented viewpoint grew up in the symbolic
computing community. This viewpoint centers around the need to be able to
identify die extent and type of an object just by examining it in memory. In ad
dition, this viewpoint requires efficient support for storage management, in par
ticular, for garbage collection.

Over the last 15 years or so, a series of very powerful techniques have
been developed for supporting this viewpoint. Probably, the 3600 architecture
was the first one in which there was a clear identification of what is unique and
important about symbolic computing. A symbolic computer is simply a con
ventional computer with a small amount of extra hardware added in to check
data types and support garbage collection. I tiiink it's fair to say that the nature
of the conventional processor part of the machine is not cmcial as long as it
provides high-performance procedure calls. It need not be a stack machine like
that in the 3600; it could be a register-oriented RISC processor as well, as is
being explored by die Berkeley SPUR group [Hill, 1986].

2.5.1 The Future Of Uniprocessor Symbolic Computers I 'd like to
say a few tilings about what's coming next witiiin the uniprocessor worid. I
think that the main driving force will be technology, in particular, the use of
VLSI. This gives us the ability to implement a single chip microprocessor with
architectural techniques tiiat were conventionally found only in mainframes;
these include pipelining, the use of "scoreboarding" techniques to execute in-
stmctions out of order safely (although no one has actually done that yet), the
use of lots of caches to match memory and processor speed, and so on.

Let me talk a little bit about a LISP microprocessor I worked on; this chip
is called Ivory [Baker et al., 1987; Edwards et al., 1987], and although it is not
yet commercially available (as of January 1988), it has been announced. There
is a single chip LISP CPU announced and shipped by Ή which is called the
Compact LISP Machine [Bosshart et al., 1987]. Architecturally, die CLM chip
is essentially a CADR (with some further architectural tricks) implemented in a
very fast VLSI technology.

The Ivory chip is much more in the 3600 tradition; it has about 3 to 5
times the performance of tiie 3600 measured over a typical mix of instmctions.
It is of tiie same complexity as an Intel 80386 or a Motorola 68030. Figure 21
is a photomicrograph of the chip (chip people always seem to need to show
their chip pictures). The Ivory chip is more or less divided into three horizontal
slices; the top is the datapath and stack cache, the middle is the control system,
and the bottom is the memory interface. In the middle of the control system is
a very large microstore, again comparable to what you'd see in a 80386 or a
68020 class machine.

Chapter 14 Symbolic Computing Architectures 581

Figure 21 Photomicrograph of the Ivory processor.

Ivory is a pipelined machine. It has several separate stages, each of which
is active during each cycle. An instmction flows sequentially through the pipe
line stages, but you can have a different instmction in each of the stages at
once. The pipeline stages are called Instruction, Decode, Execute, and Confirm,
Simple instmctions spend one cycle in each stage of the pipeline. Figure 22
shows a two-instmction sequence consisting of a Pop and an add instmction
moving through the pipeline. In the first cycle, the Pop instmction is in the In
struction stage, where it is read from die on-chip instmction cache and some
initial decoding is performed. The address of the next instmction to be ex
ecuted is also calculated in this stage. The next stage is the Decode stage; this
stage performs the stack cache address calculation (much as happens in the
3600) and in parallel looks up the first microinstmction to be executed for this
instmction. The Execute stage reads the operands from the stack and runs the
ALU; in parallel the tag processor performs whatever type checking is necessary.
Finally, the Confirm stage uses the result of the type checking to determine if a

582 Shrobe

trap is necessary. If so, it backs up the pipeline (moving information from the
Confirm stage to the Execute stage) and redirects the processor to the trap
handling routine. Otherwise, the result of the calculation is written into the ap
propriate destination.

You can see from the chart in Figure 23, which is called a Reservation
Table, ύϊ2Λ you can complete simple instmctions at the rate of one per clock
cycle; in addition, an instmction will inhabit each stage of the pipeline on
every cycle. Because the total work is broken down into pipeline stages, the
cycle rate of die clock can be made shorter than it was in the 3600. With cur
rent and near-term technology, an Ivory processor could probably be made to
mn with a 50-nanosecond clock. Of course, expert chip designers (like those at
Motorola or Intel or Ή) could make it mn faster.

PROGRAM:
PUSH A
PUSH Β
ADD
POPO

I

ADD PUSH Β
POP 0 ADD

POPO

PUSH A
PUSH Β PUSH A
ADD PUSH Β
POP C ADD

POPO

Figure 22 Two Instructions in the Ivory Pipeline.

Sample Instructions
(defun bar (x y)

(i f (< 7 x 1 ¿) (f o o) (+y2))))
(bar 40959 80930)

1 D Ε C
-1 push - -
0 greaterp push - -
1 branch greaterp push -
2 lessp branch greaterp push
3 branch lessp branch greaterp
4 start-call branch lessp branch
5 push - branch lessp
6 add push branch branch
7 return add push branch

push fp|2
greaterp-no-p 7
branch-false
lessp 12
branch-false
start-call foo
finish-call return
push fp|3
add 2
return-single tos

Figure 23 A reservation chart.

Chapter 14 Symbolic Computing Architectures 583

Figure 24 show some statistics about Ivory. The size of the chip was about
a centimeter-and-a-half on a side m die earliest version which was done using
2-micron CMOS technology. The first commercial version will be done in a
1.6 micron process and will be about a centimeter on a side, as is the TI chip.
This makes it a very large, (but not impossibly large), chip to fabricate. There
are about 255,000 actual transistors on die die. However, the common way of
measuring chip complexity is to count the number of transistor sites; this meas
ures the size of the mtemal ROMs better. Using that count, this is one of the
largest chip ever done, containing nearly 4(X),000 transitor sites. The chip was
designed very quickly (it took about 9 months from the freezing of the archi
tecture to the first prototype chip, using a team of only 4 designers). Figure 24
also shows some numbers which tell you how much garbage collection and so
on it took to do all the work needed. All the CAD tools ran on the 3600; I
think these numbers show pretty clearly how important a facility the garbage
collector is for large and complex problems.

In summary, an entire processor, which used to require a large box full of
boards, can now be implemented in a single chip such as Ivory or die TI CLM.
This means that you can now make a board which is an entire symbolic com
puter, including the processor, cache, main memory, and die bus interface.
Such a board can be embedded inside other processors. In the near future we
will certainly see LISP Machine plug-in boards for PCs, Macintoshes, Suns, Mi
cro VAXes, etc.

Before leaving this subject, I should mention that there have been a num
ber of interesting LISP Machine designs done outside the U.S., particularly in
Japan. For example, see [Hayashi].

• CMOS - 2 Level metal
• 1.6 micron lithography <
• 4.0 micron Ml Pitch
• 5.6 micron M2 Pitch
• 12.6x12.3 mm die size
• 156,374 Ν devices

• 87,438 Ρ devices

243,812 devices
390K sites

• Layout completed in 6 months

86,610 Electrical Nodes

29,025,007 bytes of GIF
> 6000 GIF Symbols
10,000,000 rectangles when flattened

17,044 Ephemeral GCs

8,054,179,498 Words Consed
4,090,120,205 Words Reclaimed
6,468,520,595 Words Transported
29,759,877,917 Units of "scavenger work"

Figure 24 Ivory statistics.

584 Shrobe

3 Parallelism

Now, let's tum to the future. As we've seen, one direction leads to a continued
and aggressive evolution of uniprocessors leading to mainframe performance
from a single processor chip. But the trend which I 'd like to turn to now is par
allelism. During this section of my talk, I'll describe a number of machines de
signed to support parallel AI programs. We'll see a lot of variation among
these designs, but to state my central theme once again, symmetry and coher
ence are key. I'll argue that some of these machines are very much less likely
to succeed than others, precisely because they fail to be symmetric or coherent.
In the uniprocessor world, the need for symmetry and coherence led to a pro
gramming model, to a view of operations and data, that centered around the
object-oriented viewpoint. In looking at parallel machines, this concem will
persist, but the need for synunetry and coherence will show up in new ways as
well.

There are a large number of dimensions along which we can characterize
parallel machines (see Figure 25). One of these is grain size: Is the individual
processing element a relatively large, full blown computer, say, a 16-bit or 32-
bit machine, or is it small, but weak (e.g., a bit-serial processor). We'll see ex
amples of both styles. Another dimension is the scale of the parallelism; we
may divide this into three conceptual categories of small, modest, and massive.
Massive parallelism involves the use of thousands to millions of processors;
small scale uses 2 to 32; modest scale parallelism is the area between. Another
dimension along which parallel machines differ is the style of parallel pro
cessing: Do all the processors do exactiy the same thing, but on different data,
(which is called SIMD, Single Instmction stream Multiple Data stream) or do
they each do their own thing (which is called MIMD, Multiple Instmction,
Multiple Data.) There are some combinations of these two styles, for example,
an ensemble with several SIMD machines mnning separate SIMD programs.
We'll see examples of all these.

Another dimension relates to die degree of coupling between die individual
processing elements: Do the tasks they perform require very close communica
tion and cooperation, or are they performing nearly independent and separable
tasks that have low communication requirements? Need they share a common
bus, memory, or address space, or do they, in fact, have separate versions of
each of diose? A final dimension is the style of interconnection: Are die pro
cessors laid out in a mesh where each can talk directiy only to its nearest
neighbors, or are they all on a single bus supporting direct connection between
any pair; perhaps the processors are connected only by a local area network
operating as a distributed processing system. Finally, diey may be connected
by a multistage switching network like an Omega network or dieir topology
might be a higher dimensional figure such as a hypercube or a hypertoms.

Chapter 14 Symbolic Computing Architectures 585

Grain Size: Coarse (Microprocessor per node)
Fine (bit serial simple node)

Scale: Small(2-32)
Modest (Up to IK)
Massive (Many Ks to Ms)

Processing Style: SIMD, MIMD, MuitisiMD, cond-siMD

Coupling: Loose, Close, Shared Memory
Interconnect: Planar Mesh

BUS
L A N
Switching Network

Hypercube
Omega

Figure 25 Dimensions of parallelism.

Since there have been many proposals, I 'm forced to select a few ex
amples that illustrate as many of these options as I can. Necessarily, I'll slight
someone by omitting their ideas completely, and I 'm sure that my biases will
come through clearly.

3.1 The Variable Supply Model
The Variable Supply Model (VSM) [Singh and Geneseretii, 1986] is shown in
Figure 26. This is a simple idea proposed as a technique for introducing paral
lelism into logic programs. It is a near-term idea, implementable with current
technology and minimum software complexity. This machine is a coarse
grained, small-scale, loosely connected system which uses a local area network
as the interconnect. The individual processors need not share address space or
memory.

The VSM is intended to support PROLOG and other paradigms that exhibit
a simple stmcture of reducing goals to subgoals. The key idea is that anytime a
goal is reduced to subgoals (or more generally, anytime a task is reduced to
subtasks), die subtask can be broadcast across the network allowing another
processor to work on it. Although the model doesn't assume a shared memory,
it assumes that the mies are replicated in each machine (of course, if there is a
shared memory, we needn't replicate the mies). In fact, not every rule need be
replicated by each machine, but this assumption makes the paradigm much
simpler to analyze.

586 Shrobe

Modest Scale, Coarse Grained, Loosely Coupled, LAN Connected

Q Ethernet

Lispm LIspm Lispm • • • Lispm

Task is Grabbed

Current
Task

Task is Available

Potential
Set
Work

Commit Line

Figure 26 The Variable Supply Model.

The central problem to be confronted is that the local area network doesn't
have a lot of bandwidth. There is a tradeoff between how much of the net
work's bandwidth you use and how much parallelism you achieve. This is easy
to see by considering two extreme strategies. In the first, any new subtask is
broadcast over the network, allowing any other processor to work on the task.
This leads to maximum parallelism, but also uses up more network bandwidth;
eventually, the performance of this approach degrades because the network is
saturated and the processors wind up spending all their time trying to com
municate. In die odier extreme, no subtask is ever broadcast; in diis case, the
bandwidth of the netwoik is not taxed at all, but you get no parallelism. For
any particular problem diere's a tradeoff point in the middle diat successfully
exploits both the processors and the network.

The VSM defines a protocol for task distribution. Each processor main
tains two sets of tasks. The first set is maintained locally and includes only
tasks diat die processor has reserved for itself. The second set is maintained
globally (it is replicated in each processor) and includes tasks that are available
for any processor to work on. When a processor reduces a task to a subtask, it
makes a policy choice about whether to use up network resources by broad
casting the subtask. If so, the processor broadcasts die subtask over the net
work and each other processor adds the new subtask to its copy of the global

Chapter 14 Symbolic Computing Architectures 587

task pool. If the processor feels that the network is saturated or if it has no
work to do, then it can decide to reserve the task for itself, simply adding it to
its local task pool. When a processor runs out of private tasks, it takes a task
from the global pool and broadcasts a message allocating this task to itself; all
other processors must then remove the task from their copy of the global task
pool. It is possible that two processors can allocate the same global task simul
taneously. Each will discover this as it sees the message from the other claim
ing die task. One processor will relinquish the task as dictated by a tie-breaking
scheme which involves the processors' ID numbers and die time at which each
allocated die task.

This protocol involves relatively little overhead. For a particular problem,
you can work out a policy that tends to give you good balance between paral
lelism and network resources. Singh and Genesereth's paper [1986] on die
VSM presents an example of using the VSM in which they achieve a nearly
linear speedup.

A comparison they do not make, however, is between the speed of the
VSM and that of a very fast PROLOG implementation optimized for a uni
processor. Although I do not know for sure, I suspect that a good uniprocessor
implementation might exceed the performance of the VSM using many proces
sors. One reason for my suspicion is that the VSM has a major asymmetry:
Processing a subtask on a processor different from the one which processed the
parent task involves broadcasting a description of the task over the network. In
contrast, a subtask processed locally can use the extremely efficient techniques
of the Warren Abstract Machine.

Thus, a remote processor looks very much more expensive than does the
local processor. This is the sense of symmetry that will be important in dis
cussing parallelism. If we put ourselves at one node of the multiprocessor, do
all the other nodes look equally desirable to us? If not, there is an asymmetry
which will tend to corrupt our programming model. The global task pool of
tills model also introduces a problem with coherence. In principle, every pro
cessor should have the same image of this task pool, but due to network delays
this isn't tme. Two processors can allocate die same task since there is a delay
between die time at which each processor removes tiie task from its image of
the global task pool and time at which the remote processor gets a notification
fi-om the network telling it that the task no longer available. There is a short
time in which the two machines have an incoherent image of this shared re
source. The tie breaking part of the VSM protocol is what resolves this diffi
culty; tie breaking in tiiis model is not very expensive, but if it were not for the
incoherent memory image, it would be unnecessary.

Singh has developed a much more complex model for parallel logic pro
gramming [Singh and Genesereth, 1987] that combines a/i^-parallelism with
ör-parallelism and pipelining, but I don't have the time to describe this. In ad
dition, I should mention tiiat the logic programming community has proposed a

588 Shrobe

large number of parallel extensions (or variations) of PROLOG [Shapiro and
Takeuchi, 1983; Shapiro, 1983; 1984; Clark and Gregory, 1984].

3.2 Production Systems

There has also been significant interest in supporting parallel forward-chaining
systems (in particular OPS-5 [Forgy, 1982]). Forward chaining is a data-driven
paradigm in contrast to the goal-directed style of PROLOG . In forward-chaining
systems, we have a collection of mies each of which has several trigger pat
tems. There is also a database of assertions, which is initially empty. As asser
tions are added to the database, each mle checks to see whether there is a set
of assertions that match its set of trigger pattems. Each assertion from the set
matches a particular pattem of the mle, binding die variables in that pattem;
but it is required diat a variable tiiat occurs in more than one pattem of a mle
must be bound to the same value by each of these matches. When such a set of
assertions is found, the mle becomes eligible for execution; the execution of
the mle can lead to new assertions being added or to old ones being removed.

In OPS-5, after all the actions of a mle are performed, die system checks
to see which mies are then eligible for execution and picks a single one of
diese, based on a set of criteria called the "conflict resolution strategy"; the set
of mies ft-om which this selection is made is called die "conflict set." After the
selected mle is executed, there will be a new conflict set (which may include
many of the members of the conflict set from the previous cycle) and a new
selection is made. Other forward-chaining mies do not impose this conflict res
olution step, but simply allow a mle to execute whenever there is a set of
assertions that consistently match its pattems.

Forgy [1982] developed an efficient algorithm for supporting this style of
mle-based programming. A key component of this algorithm is a data stmcture
called die Rete network. (Rete, by the way, is Latin for spiderweb.) The Rete
network has an upper half and a lower half (see Figure 27). The upper half is a
discrimination tree, which examines the incoming data (i.e., an assertion which
has just been added to the database). Each node of the upper half asks a simple
question about the data (such is what is the value of the next token in the asser
tion); based on the answer to the question, an outgoing branch that corresponds
to the answer is selected and control is transferred along this branch to the next
node in the network. Typically, the first several layers of the network corre
spond to constants that occur in a pattem of a mle. For example, if a pattem
has the token FOO in the third position and die token BAR in tiie fifth posi
tion, then the network will have a node which asks what is the content of the
third token in the asserted data; this node has an outgoing link corresponding
to the value FOO which leads to a node that examines the fifth position; a link
corresponding to the value BAR leads out from this node.

Chapter 14 Symbolic Computing Architectures 589

(pp1 (01 TattM <x> Tattr212)
(02 Tattn 15Tattr2<x>)
(03 Tattrl <x>)

-> (Remove 2)) root

(pp2 (02 Tattrl 15 Tattr2 <y>)
(04 Tattrl <y>)

-> (Modify 1 Tattrl 12))

Mem-node

Two-input-node

Mem-node

Two-input-node

Terminal-node
Conflict Set

4

Class = 04

Mem-node

Terminal-node

Figure 27 A Rete network.

Once we have passed tiirough all die constant tests, the next node matches
the variables in the pattem against the data, building a binding environment
which is stored at this node. Below this node is die lower half of the network
which is a merge netwoiic. The upper half finds matches to the individual pat
tems of a mle, but does not check whether a variable found in more than one
pattem is matched consistentiy by the triggering assertions. The lower half of
the network finds subsets of the triggering assertions that have consistent varia
ble bindings. The stmcture of the lower half network consists of a series of
two-input, or merge nodes. Each of diese is linked to two nodes higher up in
the network, for example, to two nodes which store match environments.
Whenever a new environment is added to one of these upper nodes, it is com
pared to all the environments stored at die odier of the upper nodes. If two
such environments bind the variables consistentiy then a new environment is
created and stored at the child node; this environment represents the variable
bindings from both parent nodes. This child node is then paired with a node
representing another pattem of die mle and the merging continues as above.
Once the merging has found a set of matches for each pattem of a mle that are
consistent, we get to the bottom of the network with an environment repre
senting a mle instantiation ready for execution (i.e., it represents the mle to
gether with the environment of its triggering matches).

3-2.1 Dado and Non-Von There were two machines designed at Columbia
to support diis style of processing. The first of these is called Dado [Stolfo and
Shaw, 1981, 1982, Stolfo et al., 1983] (see Figure 28). It is a massively paral-

590 Shrobe

parallel, relatively fine-grained, SIMD, tree-structured machine without shared
memory. Each node of the processor tree is an 8-bit processor with a connec
tion to two children processors and to one parent processor. Each processor has
a relatively small amount of private memory (about 4K words) and they all ex
ecute a common instmction stream.

One idea for using Dado was to identify processor nodes with nodes in the
Rete network (there were actually a number of different schemes for doing
this, see [Gupta, 1984; Stolfo, 1984] for details). For example, it is easy to see
how the upper half of the Rete network can be laid onto the tree stmcture of
Dado. A new assertion is sent to the root processor of the tree which sends it
on to one or the other of its children based on the value of some field of the
data. The merging part of the Rete algorithm is also tree-like so it too is rela
tively easy to map onto the tree architecture of Dado. The fact that the machine
is SIMD complicates this somewhat.

A second machine of this same general stmcture was called Non-Von
[Shaw, 1982, 1984, 1985] (which I think of as "Dado meets die kitchen sink"),
(see Figure 29). It's a massively parallel, fine-grained, tree-stmctured machine.
However, there is also a rectilinear mesh connecting the processors at the bot
tom of die tree. This mesh is useful for image processing applications because
you can identify the lowest level processors with individual pixels; many filter
ing algorithms can be performed locally, just by having each processor talk to
its nearest neighbors. The tree stmcture can then be used to combine and
process the information more globally, for example it can threshold the data.

Massive, Parallel, Tree

Each Node
Left Child

Figure 28 Dado.

I Parent

| l /0 Switch

Right Child

— ^
16K bytes RAM

Chapter 14 Symbolic Computing Architectures 591

Massive, Fine-Grained, Tree and Mesh

LPE Network

5 ^ í7 <W 5 ^ (W <W

Figure 29 Non-Von.

The processors in the lower layers of Non-Von are called small processing
elements and are 8-bit processors; those at the top are called large processing
elements; diese are Motorola 68000 processors. There is a very fast network
that connects diese large processing elements. The large processing elements
can have disk drives with smart read heads for doing database applications.
This is a fairly complicated machine. I don't believe that a full-blown version
of the whole thing was ever built, but there were subsets constmcted; typically
these had 64-1000 processors.

Unformnately botii diese machines speed up OPS-5 execution by a factor
much smaller than the number of processors would lead you to believe. A 1000
processor system might lead to speedups of 32. The reason for this was shown
in a smdy by Gupta [Gupta and Forgy, 1983] who simulated a variety of acmal
OPS-5 programs to determine how much parallelism is available in these pro
grams. Gupta points out diat ahnost all of what goes on in OPS-5 is matching
and merging (i.e., the steps of the Rete algorithms). But the amount of parallel
matching you can do is determined by how many new assertions you drop into
the top of the Rete network at any one time. Typically, this number is very
small—it is very often only 1. This is because die typical mle asserts or deletes
a single item. When this one new assertion is added, you have to perform some
tests to locate the appropriate pattern-matching nodes; once the assertion has
been matched, you merely have to go through the merging process, checking

592 Shrobe

what stored environments are consistent with the new assertion. Although this
does lead to some parallelism, the amount of parallelism is relatively small, be
cause the Rete algorithm was developed to reduce the amount of useless work
that a uniprocessor would need to do. The state of the system changes only a
littie between cycles, so the work the algorithm needs to do is proportional to
die size of this change, not to die size of the whole mle-base. Since die algo
rithm is pretty good, there really just isn't much work to do on each cycle. This
is an example of a general lesson that a clever data stmcture and a good algo
rithm are more effective than lots of blindly applied parallelism.

The results of Gupta's measurements are shown in Figure 30. The paral
lelism available in each task is peculiar to that task but the range is not that
broad. In the best case, if you have 64 processors to apply, you will get a
speedup somewhat less than 15. Furthermore, you will have already passed the
point of diminishing returns. As you can see, the curves have all flattened out
by that point. Gupta's conclusion is that perhaps 32 processors are all that you
can really exploit for OPS-5 programs; more than that would be wasted re
sources.

But botii Von-Non and Dado involves hundreds to thousands of proces
sors; achieving a speedup of 15 with so many resources seems particularly in
efficient. The reason for this inefficiency is that the tree stmcture of diese ma
chines leads one to identify nodes of the Rete network with specific processors.
But only a few nodes in the Rete network are active on any cycle of the algo
rithm, meaning that most of the processors are idle most of die time.

16 24 32 40 48 56 64 72
Number of Processors

Figure 30 Production system parallelism.

Chapter 14 Symbolic Computing Architectures 593

We can see once again the cost of asynmietry. In these machines not all
processors are equal; specific tasks can only be performed by specific proces
sors. In addition, the time required to communicate between two processors has
a delay that depends on their specific positions in the tree. Because of this,
hundreds of processors are forced to do nothing even though there are tasks
waiting to be performed.

3.2.2 The Production System Machine Based on diese observations,
Gupta and Forgy [Forgy 1982; Gupta and Forgy, 1983] proposed a radically
different machine for running OPS-5 style production systems. This is a mod
est-scaled, course-grained, closely coupled machine in which the processors
share a common bus, address space, and shared memory. Each processor
would be a relatively fast 32-bit processor; the task of each processor is to ex
ecute arbitrary subtasks of the Rete algorithm tiiat have been posted with a
conunon hardware scheduler (see Figure 31). Each processor has a cache
memory with it, which raises the issue of how these individual caches maintam
a coherent memory image; there is a standard solution to this problem called
snoopy caches developed by Goodman [1983]. The idea is that each cache
watches all transactions on the shared bus. If a write transaction takes place on
the bus and a cache currentiy has an entry for the location being written, then it
replaces its current content widi tiie new content. In addition, by watchmg the
bus traffic, each cache can tell whether an entry is shared by other caches. The

Modest Scale, Coarse Grained, Shared Memory

(̂ T̂̂ 16 - 32 Processors

Mem [Cidiel Mem I Cache |

Shared Bus(es)

Mem Mem

Figure 31 The proposed Production System Machine.

594 Shrobe

cache need only broadcast write transactions on die bus for diose cache loca
tions that are shared. Snoopy caches reduce the bus traffic by use of this
ownership protocol; more importantiy, they guarantee that the global image of
memory is coherent.

Gupta and Forgy's simulations showed that diis proposed Production Sys
tem Machine can get the same performance as Dado and Non-Von with an in
vestment of considerably less hardware (see also [Okuno and Gupta, 1988].

Although I agree with their conclusions in general, I would like to critique
one part of their mediodology. This mvolves die conflict resolution step in
OPS-5. Conflict resolution imposes a sequential bottieneck at the end of every
cycle and therefore it limits the parallelism available. We have seen results in
our own simulations that suggest that there is more parallelism available if die
conflict resolutions step can be omitted. However, the sequential bottleneck is
also an opportunity to impose control over the production system. At the mo
ment, our progranuning models are very weak, and conflict resolution is one of
the few control techniques that we do have for forward-chaining systems. I
find it hard to believe that conflict resolution's "carefully controlled race con
ditions" (to use the phrase of my colleague Steve Rowley) is really the ultimate
answer to this problem, and so I think that we should inteφret diese results
carefully.

3.2.3 FAIM'I I 'd now like to turn to a variety of other machines. The first of
diese is a machine proposed at Schlumberger Palo Alto Research called FAIM-
1 [Davis and Robison, 1985]. (The name stands for Fairchild AI Machine,
since Fairchild was a subsidiary of Schlumberger at die time diis project
started.) This machine is a coarse-grained, massively parallel, loosely coupled
ensemble of machines connected in a hexagonal mesh. Each machine in die en
semble is a 16-bit LISP processor with a collection of specialized littie pieces of
hardware added on (see Figure 32). The processor is a simplified stack ma
chine (you might think of it as a half-sized 36(X)). Attached to it is: (1) The In
stmction Streaming Memory (ISM) which is responsible for instmction pre
fetching. (2) The Context Addressable Memory (CAXM) which is responsible
for fetching potential candidates for pattem matching. (3) The Stream Pipeline
Unifier which actually performs unifications. (4) The Stmctured RAM
(SRAM) and (5) The Post Office, which is the communication interface that is
responsible for message collection and distribution. Each node of the network
has all of diese hardware modules; each node is capable of direct conununica-
tion with its six nearest neighbors. Communication with other processors in
volves relaying the message one hop at a time. Thus, once again diere is an
asymmetry; each processor in this hexagonal mesh is close to six processors,
but more distant from all the rest. This means that communication costs will
eventually dominate and the programming paradigm will be distorted to reflect
the asymmetry of the processor.

Chapter 14 Symbolic Computing Architectures 595

Massive, Loosely Coupled,
Coase-Grained, Hexagonal Planar Grid

At Each Node:

FRISO

ISM
CxAM
S P U N
S R A M
Post Office Processing

Element

< ^20 bit data plus 2 bit control

Figure 32 The proposed FAIM-1 parallel processor.

FAIM-1 is a very complicated machine; unfortunately, this complexity
swamped the efforts of die development team and the patience of the parent
corporation. The project was cancelled before a first prototype could be fabri
cated.

3.2.4 The Connection Machine A very interesting and novel machine is
die Connection Machine [Hillis 1981; Hillis and Barnes, 1987]. The initial
development of this machine began at ΜΓΓ under the leadership of Danny Hil
lis and Tom Knight; the effort then spun off into a private venture called
Thinking Machines Corporation (TMC). Figure 33 shows some features of tiie
machine, which is a massively parallel SIMD machine in which every proces
sor executes the same instmction stream. Each processor is an extremely fine
grained bit-serial processor (i.e., it 's a 1-bit processor), but there are 64,000
processors (in the initial machine—^TMC aims at building larger models). Each
processor has only a modest amount of local memory (4K bits) and has a
router tiiat connects it to a hypercube interconnection network (whose details
I'll explain in a moment). In addition, the processors are connected in a rectil
inear grid in which each processor can talk directiy to its four nearest neigh
bors. The whole ensemble is driven by a front-end uniprocessor, typically a
3600 or a MicroVAX.

596 Shrobe

Massive SIMD, Hypercube

64K Processors
Single Bit Processor
IK bits of local memory
Router Per Processor
HyperCube Topology
Also a Grid
Controlled by Conventional Host (e.g. 3600)

Powerful Tool:
Vision
Simulation
Knowledge Representation

General Purpose Active Memory

Ultimate Associative Memory

Router

Figure 33 Features of the Connection Machine.

The original motivation for the Connection Machine was to serve as a par
allel semantic network engine (the idea grew out of Scott Fahlman's NETL
proposal [Fahlman, 1979, 1980]). Roughly speaking, each processor (together
with its small amount of memory) can be thought of as a node in a semantic
network; the memory can contain the addresses of other nodes, in effect form
ing the links of the semantic network. The hypercube interconnection network
can route messages between arbitrary pairs of processors in parallel with a
delay that's proportional to LogzN (where Ν is tiie number of processors).
Since most semantic network operations are implemented by simple marker
propagation algorithms, the Connection Machine can potentially gain signifi
cant speedups by propagating the markers in parallel. These algorithms are
conducive to the SIMD style of die connection machine. A typical step in such
an algorithm directs each processor to examine a particular bit in its memory
and if that bit is on to send that bit to the processor whose address is stored in
a particular location of its memory. The Connection Machine has been found
to be useful for vision and simulation problems as well, primarily because
tiiese can take advantage of the rectilinear mesh interconnect.

Chapter 14 Symbolic Computing Architectures 597

The Connection Machine designers like to think of the machine as a
general purpose active memory in which processors are intertwined with the
memory. You ask the memory to do more complex things for you than you
would of a normal memory, but because of the processing power attached to
each memory location, it is capable of performing these operations in parallel.
One such use is to employ the Connection Machine as a very sophisticated as
sociate memory. Although it certainly isn't the ultimate associative memory,
it's closer to that than anything else we happen to have in hand (on the other
hand it's also a lot more expensive).

3.2.4.1 Hardware Details An individual node contains 4K bits of memory,
a 1-bit ALU, and a few flag bits. The basic processor cycle involves feeding
three 1-bit inputs to the ALU (two from memory and one from the flags), pro
ducing two 1-bit outputs. The logic is acmally just implemented by lookup ta
bles, in effect, the opcodes are just all possible 2-output combinations of three
Boolean inputs. You can program it to perform multibit addition since each
step of addition takes the two obvious 1-bit inputs plus the carry-in and pro
duces a sum and a carry-out. A sequential application of 32 such steps com
putes a 32-bit sum. Of course, it can be programmed to do other thmgs as well.

As I mentioned there are two interconnection systems in the Connection
Machine. The first is a rectilmear mesh connecting each node to four nearest
neighbors; die second interconnect is a hypercube. The hypercube can be un
derstood as follows: Each processor has a wire connecting it to every other
processor whose address differs from its own address by exactiy one bit.
Figure 34 shows a three-dimensional cube in this way; the hypercube is simply
the higher dimensional analog. This property makes message routing in a hy
percube easy to understand. To route a message to a particular address, you
simply pick some dimension (i.e., one bit of the address) for which die destina
tion address differs from your own address. The message is sent along the wire
for that dimension and the corresponding bit of the address is flipped. Notice
that on each such routing step, the message is sent to a node whose address
differs from that of the destination node's by one less bit. Thus, after a number
of steps equal to the dimension of the hypercube the message will have to ar
rive at its intended destination. The delay of routing a message through a hy
percube with Ν nodes is Log2N; the number of wires emanating from a node is
also Log2N; die total number of wires in die hypercube is NLog2N.

Each node can send out a number of messages on each cycle (and simi
larly it can receive a number of messages). This number is the dimension of
the hypercube, because each node has that many wires connected to it. Of
course, if a node has several messages bound for the same location, it can't
send them all at once; therefore there needs to be a message buffer at each
node. In practice there is some but not an overwhelming amount of congestion
in the network.

598 Shrobe

Figure 34 Hypercube interconnection.

You would like to think of each processor as being coimected to every
odier processor by a synunetric communication system. This is partially
achieved by the hypercube conmiunication network in the Connection Ma
chine; however, the time delay for remote communication is qualitatively
higher than the time to access local memory. It is also much higher than the
delay to access a processor's nearest neighbors over the rectilinear mesh. In
practice, therefore, people have tried to force their computations into a pattem
that emphasizes local conmiunication; low-level vision applications are very
popular for this reason; semantic network applications are harder to accommo
date.

The Connection Machine is commercially available and many people are
experimenting with it now. But there has been little use of it for the semantic
network kinds of applications tiiat made it seem appealing for symbolic com
puting to begin with. It is also an expensive machine, which limits the amount
of experimentation that can happen. Finally, since it is a SIMD machine, one
has to think of how to create an instmction stream that leads to a large number
of processors producing useful work. This requires a programming style which
isn't yet understood very well.

Chapter 14 Symbolic Computing Architectures 599

I think it's reasonable to say that there is some similarity between the dif
ficulties of progranruning the Connection Machine and those we saw with Dado
or Non-Von. The Connection Machine is more flexible (and less asymmetric),
but the slowness of the hypercube routing network causes a lack of symmetry
that makes one inclined not to tiiink of the machine as a single large active
memory. Again, the lack of symmetry means that for many applications the
user has invested in a massive number of processors but can only use a few of
them at a time. I think it's fair to say that the jury has yet to retum a final ver
dict on die Connection Machine.

3.2.5 The IPSO Another hypercube machine that deserves a brief mention is
tiie Intel iPSC. This is a hypercube connected machine with Intel 80JC86 pro
cessors at tiie nodes (the most recent version uses 80386 chips). Each machine
has a modest amount of local memory and there is no shared address space or
bus. The processors execute as a loosely coupled ensemble, passing messages
through the hypercube routing network. Each processor can only execute in
stmctions that are stored in its local memory, forcing code to be duplicated.
Since there is no sharing between die nodes, die transfer of information along
the links can be fairly expensive. A parallel LISP has been developed for this
machine, some of whose results are shown in Figure 35. The results are fairiy
disappointing so far, showing the onset of the diminishing returns phenomenon
at about 16 to 32 processors, and achieving a performance level that is qualita
tively equal to that of the 3600. Again the lack of symmetry and coherence
leads to disappointing levels of performance.

mir
Benchmark

iPSC
Single
node node node

Sym
bolics
3600

T(seconds) 1,023.2 69.8 37.5 115.1

Speedup 14.8 27.6

Figure 35 Symbolic computing benchmart̂ . Results of the IPSC Hypercube.

6 0 0 Shrobe

3.2.6 The BBN Butterfly Another machine that's actually been built is the
BBN Butterfly, which is a modest-scale, coarse-grained, tighdy coupled ma
chine. The processors are 680JCO machines (I believe the newest model uses
6 8 0 2 0 processors) each with a modest amount of local memory; a large con
figuration has 2 5 6 processors (although the design acconmiodates more). The
processors are connected to the global memory by a multistage switching net
work (called an Omega network). See Figure 3 6 . A request travels through this
network a stage at a time. In each stage one bit of tiie address is examined, a 1
routes the message downward, a 0 routes the message upward. Like the hyper
cube, tills network requires Log2N stages to complete die routing of a request;
also like the hypercube (as long as the congestion issue is ignored) the network
can transmit a request for every processor on every cycle.

The goal of the Omega network is to create the illusion of a shared global
memory diat is equally accessible to all processors. However, this fails in the
Butterfly for two reasons: First, each processor can only execute instmctions
fi-om its local memory and in any even the time to reach the global memory is
qualitatively longer than the time to access local memory—^the system is asym
metric. Second, there is a coherence problem. Each processor has a local cache
memory but there is no general mechanism for keeping these consistent. The
snoopy cache approach can't work since it relies on a shared bus that is lacking
in diis design. A shared bus could not provide die bandwidth needed by the
large number of processors. The lack of coherence was simply accepted as a
problem for the progranmier to solve. Performance figures for LISP on the But
terfly have been disappointing, partly due to the lack of compiler to date and
partly due to the natural consequences of the lack of synunetry and coherence.

The Butterfly and the iPSC were botii originally designed with scientific
computation in mind and only later investigated as symbolic computers. Both
these machines have enough symmetry to support important classes of scien
tific calculations (such a finite element analysis computations) with high effi
ciency; such computations emphasize local connections along which only mod
est amounts of numeric data is transferred. Symbolic computation is much
more irregular and involves the sharing of much more complex information.
These characteristics are exactiy tiie ones which motivated the object-oriented
viewpoint that uniprocessor LISP Machines were designed to support. Unfor
mnately, these multiprocessors do not do a very good job of supporting this ab
straction.

3.2.7 What My Friends And I Are Doing I 'd like to briefly describe
some ideas for multiprocessors that we are working on in my group at Symbol
ics. The common thread in each of these designs is an attempt to maintain sup
port for the object-oriented viewpoint, for which symmetry and coherence are
the sine qua non.

Chapter 1 4 Symbolic Computing Architectures 6 0 1

Modest Scale, Coarse Grained, Tightly Coupled, Omega Network

|1^Mbyte| |MC6ÍBOOO| [N o de Control

Figure 36 The BBN Butterfly Using Omega Network Interconnect.

A near-terai version of this idea involves a modest-scale, shared bus,
shared memory multiprocessor using Ivory chips and snoopy caches (see
Figure 37). These processors are high performance and require a lot of band
width from the shared bus even with fairly large caches on each processor
card. Because of this, the design will support only about 8 processors on the
bus. This design is similar in gross detail to the Production System Machine,
but the processors are intentionally full symbolic computers and the program
ming model is general purpose, not just production systems. The approach of
using a shared bus with snoopy caches naturally produces a symmetric and co
herent system and the symbolic computing features of Ivory provide high per
formance execution at each node.

A programming paradigm diat seems very attractive for such a machine is
based on the idea of Futures which has grown out of a long tradition in the
LISP programming world; this feature has most recendy appeared in a language
called MultiLiSP [Halstead, 1 9 8 4 ; 1 9 8 5] by Bert Halstead at MIT and in
anodier language called Q L I S P [Gabriel and McCardiy, 1 9 8 4] by Richard Ga
briel at Stanford. A Future is an abstraction that combines a storage location
widi a process responsible for computing the value that should be stored in it.
References to the Future are, in effect, invisible pointers (like logic variables)

602 Shrobe

that say, "I 'm not really the data, go look over there for the data." The Future
object is treated just like any other object; a Future can be an element of a list
or of any other data stmcture. Futures can be copied from one stmcture to
another.

A Future only differs from other data stmctures when one tries to compute
with its value. For example, if one tries to add a Future to some odier quantity
or tries to take its CAR, then something special will happen if the value of the
future has not yet been computed; in this case die process requesting the value
is blocked until tiie value is computed. When the Future is created, a process is
also created to compute its value; this process mns asynchronously. In the best
case, the process that is responsible for computing the Future's value will ter
minate and deliver the value before any other process requests it. If so, the re
questing process simply uses tiie delivered value as if nothing had happened; if
the value has not been delivered and no process has started to calculate the
value, tiie blocked process computes and delivers the value. However, if
another process has already started calculating the value, the blocked process
simply waits.

From the point of view of the program, however, there is no difference be
tween futures and other data. This leads to a data- and demand-driven form of
inteφrocess synchronization that very naturally embeds itself into symbolic
computing paradigms. A sequential LISP program can be made parallel just by
wrapping a Future constmct around an expression. Of course, one must be
careful if there are side effects; locks must be used to guarantee the security of
critical regions, and so on. So it 's not a free lunch, but it is a very attractive
software paradigm.

Snoopy Cache Protocol

High Bandwidth 40-bit T T L bus

Proc Proc Proc Proc

cache cache cache cache

memory

The caches watch the bus, and maintain cache coherency

Figure 37 A Snoopy cache, shared bus multiprocessor.

Chapter 14 Symbolic Computing Architectures 603

Futures can be supported either by mechanisms in the hardware or in the
operating system (or both). Because any value might be a Future, it 's much
more efficient for the hardware to support Futures direcdy by using type-
checking hardware; otherwise, the compiler must insert extra tests all over the
code to check whether the data being computed with is an undelivered Future.
Ivory provides hardware to treat Futures as a special kind of invisible pointer,
making die system support for Futures simpler and much more efficient. We
see the power of both forms of symmetry that we've talked about; the data
type checking hardware that was created for uniprocessor symbolic computing
makes Futures seem to be the same as any other object. The symmetric and co
herent shared memory multiprocessor architecture allows each processor to ex
ecute any task as efficientiy as any other processor. Together these features
provide a powerful base for experimenting with high-performance parallel
symbolic computations.

A second machine that is being investigated in our group is Aurora, a mas
sively parallel machine, proposed by Tom Knight. The prototype version of
this is intended to be a 64-way multiprocessor, but the goal is to support a
thousand or more processors. The interconnect is a multistage switching net
work, similar to that in die BBN Butterfly, but with much higher performance.

0(64) 2000X multiprocessor

TvfsimI Proc#MOf>
e a ch 3 2Χ c u r r e nt 3 6 ΧΧ
8 p r o c e s s o rs + 2 5 6 MW
c o h e r e nt c d c h es

first tuvo s t a g es on p rocessor b o a rd
loMf l a t e n cy (3 0 0 n s) r e m ó te a x e ss
1 0 - 11 - 1 0 - 12 t M u d tc
C M OS d e s i gn w Hh u n i q ue seH-tei

s e c o nd tiMO router s t a g es h e re
c o h e r e n cy t e c h n i q u es u n d er d e v e l o p m e nt

aUngd

Support for most parallel programming models:
shared memory, futures, virtual processors, actors, data-level parallelism

Concept can be scaled to -1000 processor range

Figure 38 Tom Knight's proposed Aurora machine.

604 Shrobe

This is shown in Figure 38. This design uses a packaging trick used in the But
terfly; half of the boards are vertically aligned while die other half are horizon
tal. The first few stages of switching takes place on the vertical boards and
dien the remaining stages are on the horizontal boards. So to create a connec
tion between any two processors, you route vertically on the first processor's
board to the correct vertical level; you then connect through die backplane to a
horizontal board at that height; then you switch horizontally to the correct hori
zontal position. The signal then retums through die backplane where it is con
nected directiy to the second processor.

The exciting feature of this network is diat Knight is designing it to have
very low latency; it will take about 300 nanoseconds to route a request between
any two processors. Each processor has associated with it a cache and a bank
of memory. The memory is not tiiought of as a private resource of that proces
sor. In general, a processor fetches instmctions and data from its cache, not the
local memory; when a processor takes a cache miss, the cache controller will
get the appropriate word from main memory. This usually requires it to make a
request tiirough the network, but if the location is located in die local memory,
it need not use the routing network. The difference in access times between
diese two cases is designed to be fairly small. So die need for symmetry is
satisfied.

The other main goal of die design is to maintain cache consistency; as we
saw in the Butterfly, this is difficult when there is no shared bus. This is solved
in Knight's design by adding complexity to the caches; when a memory loca
tion is cached by several processors, the cache entries are linked into a list; a
special field in each cache entry points to the next processor which caches tiiat
location. A processor which modifies a shared location is required to send a
message through the switching network to the next processor diat shares the
value; this processor updates its state and then passes the message onto the
next processor. If the degree of sharing is small (which seems to be the case
for most locations that are not read-only), this process does not cause too much
overhead.

The switching network of Aurora is called Teranet because it can support
an aggregate bandwidth of nearly a terabit per second. Knight believes that
Teranet can serve as the general purpose backplane of any future parallel pro
cessor. Widi very high-performance symbolic processors at the nodes, Aurora
should be capable of delivering 3 orders of magnimde more aggregate comput
ing power than one can get from the best of today's symbolic computing sys
tems. Its symmetry makes it very good at simulating any of the parallel pro-
granmiing paradigms that I 've discussed in the context of symbolic computing;
in addition, it appears to be a very good match to many numeric parallel pro
cessing problems as well. Finally as we look ahead in the next section to more
speculative paradigms, we will see that Aurora might be a nearly perfect en
gine for these approaches as well.

Chapter 14 Symbolic Computing Architectures 605

4 Beyond the Fringe

I'd now like to mm to some very adventurous ideas that may or may not pan
out. The first of these is a very clever idea of Knight's, called LIQUID that
may be a very important technique for supporting general purpose parallel
computing. The other two ideas are motivated by biological metaphors and fall
within the general area of "connectionism."

4.1 LIQUID
LIQUID [Knight, 1986] (which I 'm told stands for Lisp QUIck Damn-it) is a
technique for automatically extracting parallelism from a program even in the
presence of side-effects. It 's a clever idea with a great deal of similarity to a
technique from the database literature called optimistic concurrency. The goal
of LIQUID is to achieve parallelism without having to modify the program.
The technique depends both on a novel compiler and a novel cache stmcture.

I'll try to explain die LIQUID idea in stages. To start, let's assume tiiat die
program is completely side-effect free. In such cases, the amount of parallelism
is limited only by the data dependencies. That is, no operation can be executed
until its inputs are computed. A dataflow network (or the right set of Futures)
will give you as much parallelism as is available.

Of course, most programs aren't side-effect free, and this is often for good
reason. So our goal is to get parallelism even in die case when there are side-
effects. The basic insight is shown in Figure 39. The compiler breaks the pro
gram up into littie blocks each of which begins witii a prologue that loads
operands into the processor, the main section of the block then computes re
sults; finally the epilogue writes the results back into memory. There is a natu
ral sequence to these blocks which is their relative position in the original pro
gram; the blocks are forced to finish execution according to this ordering.
However, we will let a block start executing as soon as possible in an attempt
to keep all the processors busy.

Since we are allowing the blocks to execute out of order, it 's possible that
a block will load a value from a particular location before the block that should
produce its value completes its execution and writes its output. Knight's opti
mistic concurrency trick is to ignore this problem and solve it dynamically
during execution using special cache hardware. Each processor has two caches:
The first, called the dependency cache, contains an image of any location from
which the processor has loaded a value; the second caches all locations into
which the processor has written a value. The cache locations in this second
cache are not written out until tiie block finishes. At that point, the processor
attempts to "confirm" the block; but it must wait until all preceding blocks
have been confirmed. A block is confirmed simply by writing back all die
modified cache locations.

606 Shrobe

A program consists of a sequence of blocks:

time - >

Assign each blocl< to one processor:

Processor Processor Processor

Confirm Depends Confirm Depends Confirm

S

Memory Memory

Depends

Optimistic Concurrency (Kung & Robinson)
Assume transactions are non-conflicting
Perform them in parallel
Check the validity of the assumption
Restart if the prediction was wrong

Figure 39 Knight's proposed LIQUID architecture.

As a block is confirmed, all other processors "snoop" at the bus, trying to
determine if a location in their dependency cache is being written. If so, and if
the value written is different from that in the cache, then the processor must
abort the execution of its current block and restart. This is because the com
putation has been performed with an incorrect input value.

The reason this technique is called "optimistic concurrency" is that we try
to maximize parallelism by being optimistic about conflicts. We start computa
tions off by assuming that a conflict won't occur; if our optimism pays off, we
win big. If not, we simply back up and do the work we would have had to do
anyhow. (Notice the similarity between this idea and the trapping control stmc
ture of the 3600 that is used for data type checking). In the best case, LIQUID
confirms one side-effect per clock cycle and tiiis is tiie only limit on its per
formance.

4.2 Connectionist Machines

The next two proposals that I will discuss hark back to cybemetic ideas that
were popular in the late 1950s and early 1960s just before there was a field

Chapter 14 Symbolic Computing Architectures 607

called Artificial Intelligence. These machines try to mimic the behavior of neu
rons, using a large number of processors (large enough to correspond to the
millions of neurons in biological systems) and a communication network that
can connect tiiem. The goal is to be able to simulate the complicated interac
tions between neurons. The connectionist model is a graph stmcture in which
die nodes are processors and die links are labelled widi a weight indicating the
strength of the connection. Some of the processors have a connection to a
value that represents a sensory input.

4.2.1 The Boltzmann Machine The Boltzmann Machine is described in
[Hinton et al., 1984; Fahlman and Hinton, 1983]. This design was influenced
by the optimization technique known as "simulated annealing" [Kirkpatrick,
1983]. Simulated annealing is a hill-climbing technique in which the search
program tries to take the path of steepest descent; however, if the search space
isn't stricdy monotonic, this strategy can get stuck at local minima diat are not
globally optimum (the search is seen as going downhill). Simulated annealing
fixes diis problem by allowing die search to proceed against the gradient under
the guidance of a probability function. There is a free parameter in diis prob
ability function called the temperature which initially allows the search to go
uphill rather frequentiy. As time progresses, the temperature is decreased, lim
iting the ability to move against die gradient. The general effect is diat in the
initial phases the process jumps around the space conducting a global search,
but as time goes on it focuses. The jumping around tends to keep the system
from getting stuck at a local minimum.

The Boltzmann Machine is a system that does diis type of search. In par
ticular, it conducts a search for the settings of the state of its nodes diat leads
to a minimum value for a synthetic quantity called the "Energy" of the system
which is shown in Figure 40. This is a function of the weights (Wij) on the
links, the state (Si) of each node, and the difference between the input (INi) ap
plied to each node and a direshold value (0i) for diat node. In die Boltzmann
Machine, the state of a node is Boolean; the node is either on or off, which
makes the quantities shown very easy to compute.

Each node can determine the state it should assume using only local infor
mation (i.e., the value of its input, its own state, and that of its neighbors in the
network plus the weight on its connections). The effect that a particular node
can have on the total energy is the quantity ΔΕ in Figure 40. This is the differ
ence in total system energy that would result if this node should flip from the
false state to the tme state. Each node chooses to flip its state based on this
quantity; however, it does this probabilistically. If flipping would minimize the
energy, the node always flips; however, it will also flip sometimes even if this
would increase the energy. It makes this choice will probability Pk which de
pends on the AEk and the free parameter T.

608 Shrobe

Massive, Fine grained, Boolean State, Probabilistic

E = -1/2 JWjj^^ - I (In, - Theta,)^

'^^"^^k" Σνν; ,^ . i n , -The ta ,

Figure 40 The Boltzmann Machine.

We can think of the link weights and the threshold values as representing
the content of the network and the inputs as representing a sensory image. By
minimizing the energy, the system tries to find that state which most closely
"matches" the input. This stmcture leads to many interesting properties that
seem to mimic biological systems. It is distributed, in the sense that an in
dividual node represents something only through its connections to its neigh
bors. It is robust in that the malfunction or total loss of a single node usually
has little effect on the overall behavior. It is associative in that it is capable of
finding die nearest match to input, and it is massively parallel.

4.2.2 Neural Networks Hopfield [Hopfield, 1982; Hopfield and Tank,
1986] and many otiiers, have taken the biological analogy further. In their
model the individual nodes are analog, not digital systems. There is, however,
a very similar set of equations that describe such systems, as long as the nodes
exhibit a nonlinear, amplifying response curve such as that shown in Figure 41 .
These systems too have a notion of a global energy, and tiiey also tend to find
the optimum value of this quantity. Hopfield's interest seems to be in using
such systems to solve classic optimization problems, such as the travelling
salesman class of problems. Physically constmcting a system with nonlinear
analog elements is very difficult; in any event, virtually any interesting prop
erty of such a system can be simulated by a digital system.

Chapter 14 Symbolic Computing Architectures 609

Massive, Fine grained. Analog

Continuous Analog "Neurons" (squishy things): 0 . —^
• at

E = -1/2lW¡jV¡V.
¡i i

where V.

Figure 41 A neural network using nonlinear elements.

4.2.3 Conr^ectlonlsm and Learning There is another reason for the inter
est in connectionist systems. In certain classes of connectionist networks, the
settings of the weights and threshold values (which represent what the network
"knows") can be inferred automatically from a sequence of "training ex
amples" [Hinton et al., 1984] which means that one never needs to program the
machine. This removes the greatest objection to the architecture which is the
extreme tedium that would be involved in setting the thresholds and weights by
hand. However, it remains to be seen whether such connectionist systems can
leam interesting behavior from relatively short training sequences. The pro
spect of investing the same number of years in training a neural network as we
do in training a child is not very exciting. The data available so far is very pre
liminary; there is, however, an enormous outburst of interest in connectionist
systems.

What are the architectural implications of these systems? I guess I should
say that Tm still fairly skeptical about current connectionist models, although I
do think that something more or less like connectionism will play an important
role in AI eventually. Fm also convinced that connectionism will never be the
only important technique in AI; symbolic processes are clearly part of cogni
tion and will be as much a part of the ultimate AI architecture as will con
nectionist processes.

I don't believe that the machines that support connectionist ideas need to
bear a very direct relationship to the topological stmcmre of the connectionist

610 Shrobe

networks, nor do I believe that connectionism requires special purpose hard
ware. We've abeady seen many examples of how a synunetric hardware sys
tem can be the most effective simulator of an algorithmic paradigm, even when
die topology of die hardware is not identical to tiiat of tiie data stmctures
manipulated by the algorithm. In particular, it seems to me that the Aurora ma
chine could simulate connectionist systems as effectively as any special pur
pose architecture which maps the network topology directiy into hardware.
Such an approach would allow us to integrate connectionist ideas witii more
classical AI ideas in a general framework of symbolic computing; the con
nectionist part of tiie system would play a cmcial but specialized role. There
would be a symmetry between these two styles of processing; each would have
access to die capabilities tiiat tiie other can provide it and neither would be
fenced off in a special purpose machine.

5 Conclusions

In sununary, what can I say about what's going to happen in die future? It
seems pretty clear to me that uniprocessors aren't dead yet. It is in this domain
that we best know how to stmcture problems and architectures to achieve the
desirable properties of symmetry and coherence. Without the stmcturing power
of these abstractions, we programmers mn into complexity barriers that we
cannot surmount. In fact, I think that sequential programming will continue to
be the dominant computing paradigm for a long, long time. There is still a lot
more performance we can get out of uniprocessors; the technology revolution
that drives this may be starting to slow down, but it's still progressing rapidly.

But it 's equally clear that parallelism will assume increasing importance.
My best guess is that those forms of parallelism which look the most like uni
processors, in the sense of being symmetric and coherent, will be the ones that
programmers will find die most convenient.

Many of the ideas I've covered in this talk are unlikely to withstand tiie
test of time and will disappear. Indeed, several of the parallel processing pro
posals have abeady died (Non-Von, FAIM-1). But some of die ideas we
looked at are too powerful to be entirely wrong. Data type checking and gar
bage collection seem too valuable to dirow away, particularly now tfiat we un
derstand them so well.

One thing is certain: We will continue to get higher and higher levels of
performance. Lots of companies talk about boosting performance by a factor of
2 every year. Obviously that won't go on forever, but it will go on for a while.
The other tiling that's certain is that the computer architects who think up and
build these machines will probably get pretty wom out. But we have a good
time doing it.

Chapter 14 Symbolic Computing Architectures 611

References

Ackley, D. H., Hinton, G. E. and Sejnowski, T. J., 1985. A leaming algoridim
for Boltzmann machines. Cognitive Science 9:147-169.

Allen, D., Steinberg, S. and Stabile, L., 1987. Recent developments in Butterfly
LISP. In Proceedings of the Sixth National Conference on Artificial Intel
ligence, Seattle, Washington, pp. 2-6 . Morgan Kaufmann Publishers, San
Mateo, Califomia.

Baker, H. G., 1978. List processing in real time on a serial computer. Com
munications of ACM 21(4):280-294.

Baker, C , Chan, D., Cherry, J., Corry, Α., Efland, G., Edvy^ards, B., Matson,
M., Minsky, H., Nesder, E., Red, K., Sarrazin, D., Sonmier, C , Tan, D. and
Weste, Ν., 1987. The Symbolics Ivory processor: A 40-bit tagged architec
ture LISP microprocessor. In Proceedings of the IEEE International Confer
ence on Computer Design, Rye Brook, New York.

Bates, R., Dyer, D., Koomen, H., 1982. Implementation of Interlisp on a VAX.
In Proceedings of the 1982 Symposium on LISP and Functional Program
ming, ACM, New Yoik.

Billstrom, D. Brandenburg, J., and Teeter, J., 1979. CCLISP on die iPSC con
current computer. In Proceedings of the Sixth National Conference on Artifi
cial Intelligence, Seattie, Washington, pp. 7-12. Morgan Kaufmann Publish
ers, San Mateo, Califomia.

Bobrow, D. G., Darley, L. D., Murphy, D. L., Solomon, C. and Teitelman, W.,
1966. The BBN LISP System. AFCRL-66-180, Bolt Beranek and Newman,
Cambridge, Massachusetts.

Bobrow, D. G. and Claric, D., 1979. Compact encodings of list stmcture. ACM
TOPLAS 1(2):266.

Bosshart, P. W., Hewes, C. R., et al„ 1987. A 553K-transistor LISP processor
chip. IEEE International Solid State Circuits Conference Digest of Techni
cal Papers, pp. 202-203.

Burton, R. R. et al., 1981. Interlisp-D overview. In Papers on Interlisp-D,
Xerox PARC, CIS-5 (SSL-80-4).

Cheney, C. J., 1970. A nonrecursive list compacting algorithm. Communica
tions of ACM 13(l l) :677-678.

Claric, Keith and Gregory, Steve, 1984. Notes on systems programming in par-
log. In Proceedings of the International Conference on Fifth Generation
Computer Systems. ICOT.

Cohen, J., 1981. Garbage collection of linked data stmctures. ACM Computing
Surveys 13(3).

Davis, A. and Robison, S., 1985. The architecture of tiie FAIM-1 symbolic
multiprocessing system. In Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, Los Angeles, pp. 32-38. Morgan
Kaufmann, San Mateo, Califomia.

612 Shrobe

Deutsch, L. Ρ and Berkeley, E. C. The LISP implementation for die PDP-1
computer. The Programming Language Lisp: Its Operation and Applica
tions, E. C. Berkeley and Daniel G. Bobrow, ed.

Deutsch, L. P., and Bobrow, D. G., 1976. An efficient, incremental, automatic
garbage collector. Communications of ACM 19(9):522-526.

Deutsch, L. Ρ and Lampson, B. W. Reference Manual, 930 LISP, University of
Califomia at Berkeley.

I>eutsch, L. P., 1979. Experience with a microprogrammed Interlisp system.
IEEE Transactions on Computers TSC-28(10).

Digital Equipment Corporation, 1982. VAX-11 Architecture Reference Manual,
Dmmheller, M., 1986. Connection machine stereomatching. In Proceedings of

the Fifth National Conference on Artificial Intelligence, Philadelphia, Penn
sylvania, pp. 748-753. Morgan Kaufmann Publishers, San Mateo, Cal
ifomia.

Eastiake, D. E., 1972. ITS status report. AI Memo 238, MIT Artificial Intel
ligence Laboratory.

Edwards, B., Efland, G. and Weste, Ν., 1987. The Symbolics I-Machine archi
tecture: A symbolic processor architecture for VLSI implementation. In
Proceedings of the IEEE International Conference on Computer Design,
Rye Brook, New York.

Fahlman, S. E., 1979. NEJL: A System for Representing and Using Real-World
Knowledge, MIT Press, Cambridge, Massachusetts.

Fahlman, S. E., 1980. Preliminary design for a million-element NETL ma
chine. Technical Report, Department of Computer Science, Carnegie-Mellon
University.

Fahlman, Scott E. and Hinton, Geoffrey E., 1983. Massively parallel architec
tures for AI: NETL, THISTLE and Boltzmann machines. In Proceedings of
the Third National Conference on Artificial Intelligence, Washington, D . C ,
pp. 109-113. Morgan Kaufmann Publishers, San Mateo, Califomia.

Feldman, J. Α., Ballard, D. H., 1982. Connectionist models and dieir proper
ties. Cognitive Science 6:205-254.

Fenichel, R. R. and Yochelson, J. C , 1969. A LISP garbage-collector for vir
tual memory computer systems. Communications of ACM 12(11):611-612.

Forgy, C , Gupta, A, Newell, A. and Wedig, R., 1984. Initial assesment of ar
chitectures for production systems. In Proceedings of the Fourth National
Conference on Artificial Intelligence, Austin, Texas, pp. 116-120. Morgan
Kaufmann Publishers, San Mateo, Califomia.

Forgy, C. L., 1982. Rete: A fast algorithm for the many pattern/many object
pattem matching problem. Artificial Intelligence.

Gabriel, R. P. and McCarthy, J., 1984. Queue-based multiprocessing LISP.
Symposium on LISP and Functional Programming.

Gabriel, Richard P., 1985. Performance and Evaluation of LISP Systems. MIT
Press, Cambridge, Massachusetts.

Chapter 14 Symbolic Computing Architectures 613

Goodman, J. R., 1983. Using cache memory to reduce processor memory traf
fic. In Proceedings of the 10th Annual International Symposium on Com
puter Architecture.

Greenblatt, R. D. et al., 1984. The LISP Machine. Interactive Programming
Environments, D. R. Barstow, H. E. Shrobe, E. Sandewall, eds. McGraw-
Hill, New York.

Gupta, A. and Forgy C. L., 1983. Measurements on production systems. Car
negie Mellon University.

Gupta, Α., 1984. Implementing OPS-5 production systems on DADO. Inter-
national Conference on Parallel Processing.

Halstead, R., 1984. Implementation of MultiLiSP: LISP on a multiprocessor. In
Proceedings of the 1984 Symposium on LISP and Fuctional Programming,
Austin, Texas. ACM.

Halstead, R., 1985. MultiLiSP: A language for concurrent symbolic computa
tion. ACM TOPLAS,

Hayashi, H., Hattori, Α., and Akimoto, H. ALPHA: High-performance LISP
Machine equipped with a new stack stmcture and real time garbage collec
tion system. Fujitsu Laboratories, Ltd. draft report.

Hill, M. et al., 1986. Design decisions in SPUR. IEEE Computer 19(l):8-22.
Hillis, W. D., 1981. The Connection Machine. Technical Report 646, MIT Ar

tificial Intelligence Laboratory, Cambridge Massachusetts.
Hillis, W. D. and Barnes, J., 1987. Progranuning a highly parallel computer.

Nature 326(6108):27-30.
Hillyer and Shaw, D., 1986. Execution of OPS-5 programs on a massively par

allel machine. Journal of Parallel and Distributed Computing 3(2):236-268.
Hinton, G. E., 1981. Implementing semantic networks in parallel hardware.

Parallel Models of Associative Memory, G. E. Hinton and J. A. Anderson,
ed. Erlbaum, Hillsdale, N.J.

Hinton, G. E. and Sejnowski, T. J., 1983. Analyzing cooperative computation.
In Proceedings of the Fifth Annual Conference of the Cognitive Science
Society, Rochester, N.Y.

Hinton, G. E., Sejnowski, T. and Ackley, D., 1984. Boltzmann machines: Con
straint satisfaction machines diat leam. CMU-CS-84-119, Carnegie Mellon
University.

Hopfield, J. J., 1982. Neural networks and physical systems with emergent col
lective computational abilities. In Proceedings of the National Academy of
Sciences USA, 79, pp. 2554-2558.

Hopfield, J. J. and Tank, D. W., 1986. Computing with neural circuits: A
model. Science 233(4764):625^32.

Ishida, T. and Stolfo, S., 1984. Simultaneous firing of production mies on tree-
stmctured machines. Technical Report, Department of Computer Science,
Columbia University, New York.

6 1 4 Shrobe

Kirkpatrick, S., Gelatt, C. D. and Vecci, M. P., 1983. Optimization by simu
lated annealing. Science 220:671-680.

Knight, Thomas, 1984. The CONS microprocessor. Working Paper 80, MIT
Artificial Intelligence Laboratory, Cambridge Massachusetts.

Knuth, D. E., 1968. The Art of Computer Programming, Volume 3. Addison-
Wesley, Reading, Massachusetts, pp. 417-419.

Lieberman, H., and Hewitt, C , 1983. A real-time garbage collector based on
the lifetimes of objects. Communications of ACM 26(6):419-429.

Massinter, L. and Deutsch, L. P., 1981. Local optimization for a compiler for
stack-based LISP machines. In Papers on InterLISP-D, Xerox PARC CIS-5
(SSL-80-4).

Massinter, L., 1981. InterLISP-VAX: A report. Department of Computer
Science, Stanford University, Stanford, Califomia. STAN-CS-81-879.

McCarthy, John, Brayton, R., Edwards, D., Fox, P. Α., Hodes, L., Luckham,
D., Mating K., Park, D., and Russell, S., 1960. LISP 1 progranmier's
manual. Artificial Intelligence Group, Computation Center and Research
Laboratory of Electronics, Cambridge, Massachusetts.

McCarthy, John, P. W. Abrahams, D. J. Edwards, T. P. Hart, and M. I. Levin,
1962. LISP 1.5 Programmer's Manual. The MIT Press, Cambridge, Massa
chusetts.

McCarthy, John, 1978. History of LISP. ACM Sigplan Notices 13(8):217-223.
McClelland, J. L. and Rumelhard, D. E., ed., 1986. Parallel Distributed Pro

cessing: Explorations in the Microstructure of Cognition. MIT Press, Cam
bridge, Massachusetts.

Minsky, Marvin, 1963. A LISP garbage collector using serial secondary
storage. Memo #58, MIT AI Lab. Cambridge Massachusetts.

Moon, David, 1974. The Maclisp reference manual version 0. LCS, MIT.
Moore, J Strother. The Interiisp virmal machine specification. CSL-76-6,

Xerox PARC.
Moon, David, 1976. Architecture of die Symbolics 3600. 12th IEEE Inter

national Symposium on Computer Architecture .
Moon, David, 1984. Garbage collection in a large LISP system. In Proceedings

of the 1984 Symposium on LISP and Functional Programming, pp. 2 3 5 -
246. ACM.

Moon, David, 1986. Object-oriented progranuning with Ravors. In Proceed
ings ofOOPSLA, pp. 1-^.

Moto-Oka, T. and Fuchi, K., 1983. The architectures in die Fifth Generation
computers. Information Processing 83, R.E.A. Mason, ed.

Moto-Oka, T. and Stone, H. S., 1984. Fifth Generation computer systems: A
Japanese project. Computer (March):6-13.

Newell, Allen, 1961. Information Processing Language V Manual. Prentice-
Hall, Englewood Cliffs, New Jersey

Chapter 14 Symbolic Computing Architectures 615

Okuno, H. G. and Gupta, Α., 1988. High-level language approach to parallel
execution of OPS-5. Fourth IEEE Conference on Artificial Intelligence Ap
plications, San Diego.

Rumelhard, D. E., Hinton, G. E. and Williams, R. J., 1986. Leaming internal
representations by error propagation. Parallel Distributed Processing: Ex
plorations in the Microstructure of Cognition, J. L. McClelland and D. E.
Rumelhard, ed. MIT Press, Cambridge, Massachusetts.

Samson, Peter, 1966. PDP-6 LISP. Memo # 98, AI Group, Computation Center
and RLE, MIT, Cambridge, Massachusetts.

Sandewall, Erik, 1978. Programming in the interactive environment: The LISP
experience. ACM Computing Surveys 10(l):35-72.

Schorr, H. and Waite, W. M., 1985. An efficient machine independent proce
dure for garbage collection in various list stmctures. Communications of
ACM 10(8):501-506.

Shapiro, E. Y., 1983. A subset of concurrent PROLOG and its inteφreter.
Technical Report TR-003, ICOT, Tokyo.

Shapiro, E. Y. and Takeuchi, Α., 1983. Object-oriented progranuning in con
current PROLOG. New Generation Computing 7, pp. 25-48. Ohmsha, Ltd
and Springer-Verlag.

Shapiro, E. Y., 1984. Systems progranuning in concurrent PROLOG. In Pro
ceedings of the Eleventh Symposium on Principles of Programming Lan
guages, ACM.

Shaw, D. E., 1982. The Non-Von supercomputer. Technical Report. Depart
ment of Computer Science, Columbia University, New York.

Shaw, D. E., 1984. SIMD and MSIMD variants of the Non-Von supercom
puter. In Proceedings of the Spring 1984 Compcon, San Francisco.

Shaw, D. E., 1985. Non-Von's applicability to three AI task areas. In Proceed
ings of the Ninth Interruitiorml Joint Conference on Artificial Intelligence,
Los Angeles, pp. 61-71 . Morgan Kauftnann Publishers, San Mateo, Cal
ifomia.

Singh, Vineet and Genesereth, Michael R., 1986. PM: A parallel execution
model for backward-chaining deductions. Stanford Knowledge Systems Lab
Report No. KSL-85-18, Stanford, Califomia.

Singh, Vineet and Geneseretii, Michael R., 1987. A variable supply model for
distributing deductions. In Proceedings of the Ninth Interruitioruzl Joint Con
ference on Artificial Intelligence, Los Angeles, pp. 39-45. Morgan Kauf
mann Publishers, San Mateo, Califomia.

Stallman, R., 1981, 1984. EMACS: The extensible, customizable display edi
tor. Memo 519a 1981, MIT Artificial Intelligence Laboratory. Also in Inter
active Programming Environments, Barstow, Shrobe and Sandewell, ed.
McGraw-Hill, New York.

616 Shrobe

Steele, G. L., 1977a. Fast arithmetic in MACLISP. In Proceedings of the 1977
MACSYMA Users' Conference, NASA Scientific and Technical Infomiatíon
Office, Washington D.C.

Steele, G. L., 1977b. Data representation in PDP-10 MacLISP. In Proceedings
of the 1977 MACSYMA Users' Conference, NASA Scientific and Technical
Information Office, Washington D.C.

Steele,G. L., 1984. Common USP: The Language, Digital Press.
Steinberg, S., Allen, D. Bagnall, L., Scott, C , 1986. The Butterfly LISP sys

tem. In Proceedings of the Fifth National Conference on Artificial Intel
ligence, Philadelphia, Pennsylvania, pp. 730-734. Morgan Kaufmann Pub
lishers, San Mateo, Califomia.

Stolfo, S. and Shaw, D., 1981. Specialized hardware for production systems.
Technical Report, Department of Computer Science, Columbia University,
New York.

Stolfo, S. and Shaw, D., 1982. DADO: A tree-stmctured machine architecture
for production systems. In Proceedings of the Second National Conference
on Artificial Intelligence, Pittsburg, Pennsylvania, pp. 242-246. Morgan
Kaufmann Publishers, San Mateo, Califomia.

Stolfo, S. Miranker, D. and Shaw, D., 1983. Architecture and applications of
DADO: A large-scale parallel computer for AI. In Proceedings of the
Eighth International Joint Conference on Artificial Intelligence, Karlsmhe,
West Germany, pp. 850-854. Morgan Kaufmann Publishers, San Mateo,
Califomia.

Stolfo, S., 1984. Five algorithms for production system execution on the
DADO machine. In Proceedings of the Fourth National Conference on Arti
ficial Intelligence, Austin, Texas. Morgan Kaufmann Publishers, San Mateo,
Califomia.

Symbolics Inc, 1983. 3600 technical summary.
Taki, K., Yokota, M., Yamamoto, Α., Nishikawa, H., Uchida, S., Nakashima,

H. and Mitsuishi, Α., 1984. Personal Sequential Inference Machine (PSI). In
Proceedings of the International Conference on Fifth Generation Computer
Systems, pp. 398-409

Teitelman, Warren, 1978. INTERLISP reference manual. Xerox PARC and
BBN.

Thacker, C. P., McCreight, E. M., Lampson, B. W., SprouU, R. B. and Boggs,
D. R., 1979. ALTO: A personal computer. CSL-79-11 Xerox PARC.

Tick, E. and Warren, D. H. D., 1984. Towards a pipelined PROLOG processor.
New Generation Computing 2:323-345.

Touretsky, D. S., 1985. Symbols among the neurons: Details of a connectionist
inference architecture. In Proceedings of the Ninth International Joint Con
ference on Artificial Intelligence, Los Angeles, pp. 238-243. Morgan Kauf
mann Publishers, San Mateo, Califomia.

Chapter 14 Symbolic Computing Architectures 617

Ungar, D., 1984. Generation scavenging: A non-dismptive high performance
storage reclamation algorithm. In Proceedings of the SIGSOFT/SIGPLAN
Practical Programming Environments Conference, pp. 157-167. ACM.

Warren, D. H. D., 1977. Applied Logic: Its Use and Implementation as a Pro
gramming Tool PhD. dissertation. University of Edinburgh, 1977. Also
available as Technical Note 290, Artificial Intelligence Center, SRI Inter
national.

Warren, D. H. D., 1980. An improved PROLOG implementation which opti
mises tail recursion. Research Paper 156, Department of Artificial Intel
ligence, University of Edinburgh, Scotiand.

Warren, D. H. D., 1983. An abstract PROLOG instmction set. Technical Re
port No. 309. Artificial Intelligence Center, SRI International.

Weinreb, D. L., 1979. A Real-Time Display-oriented Editor for the USP Ma
chine. S.B. Thesis, Department of Electrical Engineering and Computer
Science, MIT.

Weinreb, D. L. and Moon, D., 1979. LISP Machine manual. MIT Artificial In
telligence Laboratory.

Weinreb, D. and Moon, D., 1980. Flavors: Message passing in the LISP Ma
chine. MIT AI Laboratory, Memo # 602.

White, John L., 1967. PDP-6 LISP (LISP 1.6) revised. Memo #116a, ΜΓΤ Ar
tificial Intelligence Laboratory.

Chapter

15

The Common LISP Object
System:
An Example of Integrating
Programming Paradigms'
Daniel G. Bobrow
Xerox Palo Alto Research Center
Palo Alto, California

Overview

A programming paradigm is a supported style of progranuning with significant
advantages for a domain of problems. Many programming paradigms have
been added on top of LISP , but few have been tightly integrated. Conunon LISP

Object System (C L O S) is a model of a good integration. C L O S blends the object-
oriented progranuning paradigm smoothly and tightly with the usual procedure-
oriented paradigm of LISP . Functions and metiiods are combined in a more
general abstraction. Message passing is invoked via normal LISP function call,
and methods are viewed as partial descriptions of procedures, LISP data types
are integrated with object classes. With these integrations, it is easy to in
crementally move a program between the procedure and object-oriented styles.

1 This paper is based on a talk given at AAAI-86. At that time, CommonLoops was the example
used of tight integration of paradigms. Since that time, the Conmion LISP Object System has
emerged as a better example (see the Acknowledgments section of this survey).

6 1 9

620 Bobrow

1 Introduction

Choosing the right tool for a task is an important step toward rapid and
successful completion of that job. In progranmiing, what corresponds to a tool
is often a style of programming that fits the task at hand. To be useful, this
style must not only have available the appropriate semantic primitives—^it must
also be supported by tiie language and system in which it is embedded. We call
such a style a paradigm after Kuhn's use of the term because a supported style
can reflect and demand a particular worldview. Kuhn talks about shifts of para
digms in science, and conflicts between competing paradigms. One often sees
such shifts and conflicts in the programming world. Adherents of styles such as

•LISP'S procedural symbolic programming, Smalltalk-80's object-oriented pro
gramming, or PROLOG'S logic programming, argue that all problems are best
solved in a system supporting just their worldview.

The argument for having a single paradigm is that it provides a simple,
uniform base. One leams a small collection of tools and somehow feels
equipped to tackle any problem. However, when another style can make a task
easier, adherents of any of the "one tme ways" usually try to provide a com
plex cliché in their language to aid in doing the task. On the other hand, there
have been people who have claimed that all one needs is a tool kit of several
well supported styles of doing business within a single system. It is harder,
perhaps, to leam this larger collection of tools, but having them available al
lows a program to be written in the style best suited to the problem it is solv
ing. The forms of expression are important because programs are used for
communication not only to machines but to programmers. A good form not
only highlights what is important but suppresses distracting details. A good
form supports invariants over program change. Procedural abstraction is a
simple example. It suppresses the detail involved with storing remm addresses,
etc., and allows the implementation of a procedure to be changed without re
quiring changes in tiie caller.

As another example, consider progranuning based on production systems
such as OPS-5 [Forgy, 1982]. Each mle has a set of conditions on elements that
must exist in a workspace to allow that mle to fire. Firing a mle can make
changes in the elements of the workspace. Since adding or changing a single
element in the workspace may enable more than one mle to fire, and since only
one is allowed to fire, a separate conflict resolution mechanism is necessary to
choose tiie mle that fires. Thus tiiis paradigm supports separation of concems
of mle applicability from selection of the mle to be fired. It is easier to specify
behavior contingent on data being examined in a mle-based system than in a
procedure based system where a procedure must specify an order in which data
elements are examined. On the other hand, production systems must use
special clichés to ensure a specified ordering for firing mies.

Chapter 15 The Common Lisp Object System 621

Production systems have been buih in LISP, and most such systems allow
easy calls back and forth between LISP and the production system. But there
isn't a simple abstraction diat covers both styles of programming, and that al
lows smooth and incremental transition between these styles.

Over the last decade many systems have been written that add objects to
LISP (e.g.. Flavors, Loops, Object LISP.) Each of these has attracted a group of
users who recognize the benefits of message sending and specialization and
have endorsed an object-oriented style, LISP provides an important approach for
factoring programs that is different from common practice in object-oriented
programming. The object languages in these systems have been embedded in
LISP with different degrees of integration. We argue that in the Common LISP

Object System (C L O S) we have done more than merge these two paradigms.
We claim to have developed abstractions that unify the two. In diis survey we
present the linguistic mechanisms that we have developed for integrating these
styles. We argue diat the unification results in somediing greater than the sum
of the parts, that is, that the mechanisms needed for integrating object-oriented
and procedure-oriented approaches give C L O S surprising strength.

This smooth integration of ideas can work efficientiy in LISP systems im
plemented on a wide variety of machines. PCL, a portable implementation of
CLOS is available and is being used in many Common LISP implementations.
We chose Conunon LISP as die base because it is a de facto LISP standard, sup
ported on almost all commercial LISP workstations. As part of the Common
LISP standards effort, the X3J13 subcommittee [Bobrow, DeMichiel, Gabriel,
Keene, Kiczales, and Moon, 1987, 1988]. has been developing a detailed speci
fication for this object-oriented extension.

2 Methods and Functions

In LISP, functions are applied to arguments. The code that is run is determined
only by the name of the function. The LISP form

(foo a b)

can be inteφreted in terms of a function-calling primitive, f uncall as

(funcall(function-specified-by 'foo) a b) .

In object-oriented systems one "sends messages" to objects. The code that
is run is determined by bodi die name of die message and the type (class) of
the object. Methods defined for a particular selector are associated with a class.

622 Bobrow

In the next section we will indicate how we merge die ideas of LISP data types
and object classes. The following message using selector sel,
(send a 'sel b)

can be inteφreted as the function call

(funcall (method-specified-by 'sel (type-of a)) a b)

The collection of all methods defined for sel defines the "generic" func
tion for that selector. Which method is mn when a generic function is invoked
is determined by the type of the first argument. Thus a method is a partial de
scription of a generic function restricted to objects of a particular type. With
this understanding of method invocation, we can reinterpret all standard LISP

calls (foo a b) as meaning

(funcall(method-specified-by 'foo(type-of a)) a b)

if there is a method defined for foo and (type-of a). We use the term
"generic function" to refer to a function defined using a set of methods.

A method for move applicable only when the first argument is of type
block is defined in CLOS as follows:

(defmethod move((obj block)χ y)
;for moving a block.

The code for this method is added to the generic function for move, and is in
voked for objects of type block, or any subtype. If tiiere was an existing
method for the same selector and type, defmethod replaces that method. To
invoke this method, one simply writes:

(move blockl x-pos y-pos)

Given that blockl is of type block, the code above will be invoked.
Other methods for move could be defined for the first argument being a win
dow, a sketch, and so on. If more than one method is applicable (because of
subclassing), the most specific method is used.

2.1 Default Methods
One can use the defmethod form without specifying any types for the argu
ments:

(defmethod move(thing χ y)...)

This metiiod is run when no more specific method of the generic function for
move is applicable. When only such a default method is supplied, it is like de
fining an ordinary LISP function. There is no speed penalty for using such de
fault methods instead of functions.

Chapter 15 The Common Lisp Object System 623

The difference between defining a default method and defining an ordinary
LISP function is that the latter is not allowed to be augmented by specialized
method definitions. This protects users from inadvertentiy overriding or spe
cializing predefined functions where perhaps special compilation optimizations
have been used. For example, in most LISP implementations, calls to the primi
tives car, cdr, and cons are compiled specially for efficiency. Specializing
these functions could have disastrous effect on system efficiency and/or no ef
fect on previously compiled code.

Where it is possible and useful to be able to define methods, C L O S sup
ports defining a generic function and making the existing function its default
method. Additional methods can then be added to that generic function.

2.2 Multi-Methods
CLOS extends LISP'S function call even furtiier. It allows a method to be
specified in terms of the types of any number of arguments to the form. It in
terprets the form (foo a b) as

(funcall(method-specified-by 'foo(type-of a) (type-of b))a b)

Thus, unlike most other object-oriented schemes, CLOS allows method-
lookup to be based on more than the class of the first argument. For example,

(defmethod insidep((w window)(x integer)(y integer)) ...)

defines the method for insidep when the first argument is a window and the
second and third arguments are integers.

For any set of arguments, tiiere may be several methods whose type speci
fications match. The most specific applicable metiiod is called. Metiiod speci
ficity is determined by the specificity of the leftmost type specifiers which
differ. However, as discussed below, other regimes can be implemented using
the meta-objects facility.

2.3 Individual Methods
Another extension in CLOS is definition of methods that are specialized to in
dividuals. By this we mean that some methods are applicable only if called
with a specific object as argument. We inteφret the function call of (foo a b)
as follows:

(funcalKmethod-specified-by 'foo a b)a b) .

624 Bobrow

g e n e r i c - f u n c t i o n o b j e c t

(d e f i n i n g method may c rea te or
update e x i s t i n g one)

code to choose
a p p l i c a b l e methcd code

l i s t of methods (. . •)

m e t h o d o b j e c t
\ /

type s p e c i f i e r s

method f u n c t i o n
(b l o c k)

< c o d e >

Figure 1 These objects are used for interpretation of a call. The generic
function contains both the code that selects the method to be calleed and the
list of methods that comprise it. It uses the information in the method object;
the method object is also used in the compilation of the code for the specific
method.

For example, this would allow a special-case for a connection to a particu
lar host on a network for some period of time when special rerouting needs to
be done, or to define a method for moving a particular window.

(defmethod move ((w(eql *prompt-window*)) (x integer) (y integer))
. . .)

This is a method applicable to an individual more specific than any method just
specified on types.

2.4 Method and Generic Function Objects
In CLOS all tiie data stmctures used to implement die system are objects. In
particular, defining a metiiod uses both a method and a generic function object.

The metiiod object represents die method being defined. The method ob
ject contains die type-specifiers and die code for die mediod. The generic

Chapter 15 The Common Lisp Object System 625

function object contains a list of all the methods defined on a particular selec
tor. Hence, it describes the generic function. Together, the generic function and
all of its methods produce die LISP code tiiat is called when the selector is in
voked to determine which method to call. Thus the generic function is both an
object with state, and a funcallable object (in that sense, it is like a closure in
Common LISP) . Because the method-lookup and calling mechanisms are under
control of the generic function and method objects, specialized method-lookup
and method-combination mechanisms can be implemented by defining new
classes of generic functions and methods that specialize parts of the method-
lookup protocol.

2.5 Method Combination
Frequentiy, when one specializes behavior for a given class of object, the
desire is to add only a littie behavior to the methods of the superclasses.

CLOS provides a procedural mechanism combining a more specific method
with one that is shadowed. The CLOS function call-next-method is defined
to mn the next most specific method matching the arguments of the current
method. If there is no such method an error is signaled.

For example,

(defmethod move((w bounded-window) (x integer) (y integer))
(cond ((in-bounds-p w χ y) (call-next-method))

(t ... ;; set χ y to closest point inside
(call-next-method w χ y))))

defines a method diat specializes the move method on window so that it always
moves in-bounds.

The call-next-method is essentially the mechanism of method combi
nation found in Smalltalk-80, Loops, Director, and Object LISP . In Smalltalk-80
and Loops, it was called sending a message to super as opposed to self.
This mechanism is both powerful and simple. It allows arbitrary combination
of inherited code with current code using LISP as the combination language.

CLOS also supports a declarative means of specifying method combination,
adapted from the New Flavors mechanism. Parts of methods that play different
roles can be defined separately and combined in an effective method. For ex
ample, :before and rafter parts can be specified for any method, and these
will be mn before and after any primary method, without requiring any knowl
edge in the primary method. Before and after parts can be attached any place
in the inheritance chain. In C L O S , this feature is specified using a special
method-combination object that helps in die selection of the appropriate code
for building a method combination. CLOS also provides an interface for users to

626 Bobrow

define tiieir own new method combinations, based on that designed for New
Flavors.

Method and generic function objects are used to implement both call-
next-met hod and the user-defined method combination mechanism. This pro
vides the flexibility of choosing a mixture of procedural or declarative method
combination. In addition, the existence of these meta-objects allows experimen
tation with other kinds of combination and invocation. A possible user exten
sion that has been explored by some users is the integration of logic program
ming into the CLOS framework. Logic programming requires specialized
method and generic function objects to combine metiiod clauses using back
tracking search.

2.6 Processing of Method Code
The code that implements a method is inteφreted and compiled in a context in
which the method object is available. The method can use information from the
type-specifiers to optimize parts of the method body, or to provide special syn
tax within the body of the method to access the slots of arguments to the
metiiod. Because diis processing is done using a defined protocol of messages
to the method object, it can be extended by users.

3 Defining Classes

CLOS uses def class to define its classes, similar to the def struct constmct
found in Common LISP for defining composite stmctures.

(def class position ()
((x-coord linitform 0 :accessor position-x-coord)
(y-coord :initform 0 :accessor position-y-coord)))

defines a class named position, and specifies that instances of that class
should have two slots, x-coord and y-coord, each initialized to 0. As a side
effect of defining this class, using the : accessor option, def class defines
methods on the generic function position-x-coord and position-y-
coord to access the slots of an instance. An updating form using setf on
diese generic functions can be used to change die values in die slots, e.g.,

(setf(position-x-coord i-l)13)

An extension of a previously defined class can be defined using def-
class.
(defclass 3d-position(position)((z-coord 0)))

Chapter 15 The Common Lisp Object System 627

The new class is a subclass of the old, and includes all of its slots and may add
slots of its own. Thus 3d-position has slots x-coord, y-coord, and z-
coord, and inherits all methods defined on position.

3.1 Metaclasses
In CLOS, classes are themselves instances of other classes. These special classes
are known as metaclasses. Figure 2 indicates the relationships of the classes
defined above, and their metaclass structure-class.

Instance of:
3D-P0SITI0N

Figure 2 Three different relations are illustrated in this diagram.
3d-position and marked-position are both SUbclasses of position,
and inherit its structure and behavior, pi is an instance of 3d-position. The
three position classes are instances of structure-class. We call
structure-class the "metaclass" of pi, since it is the class of its class.

628 Bobrow

Metaclasses control the behavior of the class as a whole, and the class-re
lated behavior of the instances such as initialization, as do Smalltalk-80 meta
classes. In Flavors, the Flavors themselves are not instances of any Flavor, and
hence their behavior is uniform.

In CLOS, metaclasses have important additional roles. A metaclass controls
the representation of instances of the class; it specifies the order of inheritance
for classes; finally, it controls allocation and access to instance slots.

3.2 Representation of Objects
Metaclasses control die representation of instances. Consider the following
definitions of the class position:

(defclass position()
((x-coord linitform 0)

(y-coord :initform 0))
(:metaclass structure-class))

(defclass position()
((x-coord :initform 0)

(y-coord :initform 0))
(:metaclass standard-class))

In the first definition, the structure-class metaclass is specified. In
some implementations, this can cause a significant difference in the repre
sentation. An instance of position created with metaclass structure-
class could be represented as a linear block of storage with two data items,
which is very efficient in space. The second definition specifies the metaclass
standard-class. For this metaclass, the instances need to be represented in a
flexible way that allows updating of the stmcture. For example, this might be
done using a level of indirection between a header and the storage for the data.
Such an instance can track any changes in its class (adding or deleting instance
variables) without users of the instance needing to do anything to update the
instance. Automatic updating occurs when access to slots is requested. The in
stance can even change its class and invisibly update its stmcture. Because the
metaclass is responsible for the implementation of the instance, it is also re
sponsible for access to slots of the instance. We retum to this below.

3.3 Multiple Inheritance
Many metaclasses allow multiple inheritance. For example.

Chapter 15 The Common Lisp Object System 629

(defclass titled-window(window titled-thing)())

defines a new class, titled-window, diat includes both window and
titled-thing as superclasses. Under control of the metaclass, the new class
will inherit slots from all the superclasses. Although the usual inheritance for
slots is to take the union of those specified in the superclasses, some meta
classes could signal an error if there were an overlap in names.

The class being defined is the root of a directed graph from which descrip
tions are inherited. The specified order of the included classes determines a
local precedence among the classes. Subclass-superclass relationships also
specify a precedence order. This precedence relation is used to compute a non-
duplicating linear order used for inheritance. This class precedence list is deter
mines inheritance of the class.

The metaclass determines the algorithm for computing the class prece
dence list from the local precedences. The algorithm used by the metaclass
standard-class is a topological sort using tiie precedence relationship
specified by the local order and the subclass-superclass relationship. Ambigui
ties in the topological sort are resolved by trying to keep all superclasses of
any given subclass togetiier. In ahnost all simple cases, diis algorithm produces
the same linearization as the Loops mle left to right, depth first, up to joins,
but the algorithm produces more intuitive results for the rare (in programming)
complicated cases.

The precedence relationships may be inconsistent; for example, a local
precedence list might specify that c i comes before C 2 , and c i is somehow a
super of C 2 . In tiiis case, CLOS signals an error.

3.4 Initial Classes In CLOS

CLOS uses the flexibility provided by metaclasses to define classes that corre
spond to the primitive U S P types. These classes are part of the same class lat
tice as all other CLOS classes. Thus the LISP data-type space is included in the
CLOS class lattice. This means that methods can be defined on die LISP built-in
classes as well as on types defined by def struct. This is a significant differ
ence from New Flavors.

As shown in Figure 3, CLOS provides several pre-defined metaclasses that
provide functionality for stmctures of Conunon LISP, the built-in types, and the
metaclass standard-class designed to facilitate exploratory programming
[Shell, 1984]. The user can define a new metaclass to provide other functional
ity for a different object system. For example, with Gary Drescher, we have
looked at defining a metaclass that supports Object LISP [Drescher, 1986] in
heritance and behavior.

630 Bobrow

STAWDARO-OBJECT SYMBOL SEQUENCE

/ \
POSITION CLASS LIST VECTOR

-POSIT]
3D Γ ION

STRUCTURE-CLASS / B U I L T - I N - C L A S S

STANDARD-CLASS

Figure 3 Classes in italics are instances of buiit-in-ciass, all others are
instances of standard-class. Τ is the superclass of everything in CLOS. It
corresponds to the Common LISP type specifier of the same name, class is a
primitive class used to implement metaclasses. All metaclasses have class as
a superclass.

3.5 Slot Options In Class
The representation of instances used by class allows allocation strategies for
slots in addition to the usual direct allocation of storage in the instance. A
: class allocation specifies that the slot is stored only in the class; no storage
is allocated for it in the instances. The slot is then shared by all instances of the
class. Updating the value in one instance is seen by all. This option provides
functionality similar to class variables in Smalltalk-80 and Loops, except that
CLOS class variables share the same name space with instance variables.
Changing the : allocation option of a slot does not require the user of the
class to change the source code that accesses that slot.

An extension that has been considered, and has been incorporated using
the metaclass mechanism is a : dynamic allocation tiiat specifies storage for
tills slot should be allocated in the instance, but only when the slot is first used.
If the first access is a fetch, then storage is allocated, the : initform is eval
uated, and the value is stored in the slot and retumed. If the first access is a
setf, the storage is allocated, the value is stored in the slot, and retumed. This

Chapter 15 The Common Lisp Object System 631

allows infrequently used slots to have initialization declarations, but take
storage only if needed.

Another extension allows objects to have slots that do not appear in the
defclass declaration. This gives objects dieir own property lists: This is
analogous to Flavor's plist-mixin flavor. It differs from a plist-mixin in
diat diere is uniform access to slots independent of whedier diey were declared.

4 CLOS Implementation

CLOS can be implemented efficientiy, even on conventional machines. The
most important cases for time-critical applications are well understood and
have been implemented in several object-oriented systems.

4.1 Method Lookup
Implementation of method lookup can be specialized with respect to four^
cases: where there is only one method defined for a particular selector, where
the only method has no type specification, where all the methods have specifi
ers only on their first argument, and the general case.

4.1.1 Single Method In this case there is only one nondefault method de
fined on die selector. A static analysis of Loops and Flavors code shows that
approximately 50% of the selectors fall in this category. In this case the
generic function can compile into appropriate type checks and an open call to
the mediod. Thus die method-lookup time adds only the time required to check
the types of the arguments, a necessary overhead.

4.1.2 Default Method Only This case is similar to die single method case
except that the method has no type specifiers at all, so it is always applicable.
In this case no type checks are required. The generic function runs as if it were
defined as an ordinary function.

4.1.3 Classical Methods Only When diere are multiple metiiods, all of
which only have type specifiers on their first argument, the situation is .the
same as in Smalltalk-80 and Flavors. We call this "classical" to stress its
equivalence to classical object programming systems. On stock hardware this
can be implemented using any of the proven method-lookup caching schemes.
The cache can eitiier be a global cache, a selector-specific cache, a callee
cache, or a caller cache. Variations have been used in Smalltalk-80 systems
[Krasner, 1983], Loops, and Flavors. On specialized hardware this can be im
plemented using the same mechanisms as in Flavors. A default method can

632 Bobrow

easily be combined with a set of classical methods, calling it instead of a stand
ard error.

4.1.4 General Case In die remaining case, a selector has more than one
method, and at least one of them has a type specifier on other than the first ar
gument. A standard case might have type specifiers for the first two arguments,
e.g., where die types for show could be:

(square, display-stream)
(square, print-stream)
(circle, display-stream)

In our current implementation of multi-method invocation, we have built a
straightforward extension of the caching techniques used for classical method
lookup. We do not have enough experience with multi-methods to know what
other common pattems should be optimized.

In classical object-oriented programming, this example could be handled
by introducing a second level of message sending. Instead of having separate
multi-methods for each case, one could (by convention) write two methods for
each case [Ingalls, 1986]. Thus, the show message for square would send a
second message to the stream (show-square-on) that would embed the type
information about square implicitiy in tiie selector.

Multi-method lookup in CLOS is faster than multiple sequential method
lookups. The overhead for doing lookup is the thne of an extra function call (a
call to die generic function, which tiien calls tiie chosen method) plus the time
of a type check for each specialized argument.

4.2 Slot Access and Metaclasses
Slot access can be implemented in a variety of ways. The metaclass stand
ard-class uses a caching technique similar to that used in Smalltalk-80. The
metaclass structure-class, because it does not allow multiple inheritance,
can compile out the slot lookups in the standard way. The metaclass stand
ard-class uses the mapping-table technique used in Flavors.

We have also looked at extensions to CLOS that compile out the cost of
method lookup and slot lookup entirely. Having metaclasses and generic func
tion objects should allow the specification of special ways of optimizing a call
to a generic function when the types of some of tiie arguments are known at
compile time. In certain cases the appropriate method can be determined at

Chapter 15 The Common Lisp Object System 633

compile time so that no method lookup need occur at mn time. The body of
the method might even be compiled in-line.

Compilation of calls to accessor functions is a conmion case where in-line
expansion works well. The resulting code can access the slot directiy. Meta
classes which do this kind of optimization are useful in production versions of
applications where the time to change a program vs. program execution speed
tradeoffs is heavily biased toward execution speed.

Flexibility to use different slot access or method-lookup schemes based on
the metaclass is an important feature of CLOS. Efficiency is a matter of
tradeoffs. Object systems without metaclasses must choose one set of tradeoffs
and implement it as well as possible. Users have to live widi tiie tradeoffs
chosen by the implementers. In CLOS, different sets of tradeoffs can be imple
mented, allowing users to choose which set of tradeoffs is appropriate for a
given situation.

5 CLOS and other Systems

In this section we consider several important object-oriented languages. All of
these languages have been influential in the design of CLOS, and we try to note
similarities and differences. A general overview of features of object languages
and multi-paradigm systems can be found in [Stefik and Bobrow, 1986].

5.1 Loops
Loops [Bobrow and Stefik, 1983] is a multi-paradigm system for knowledge
programmmg implemented in Interlisp-D. It is integrated into the interactive
environment provided by Interlisp-D. It also provides special environmental
capabilities, such as class browsers and object inspectors. The design of CLOS
draws on our experience with Loops, but is a major departure from it.

CLOS provides new functionality but also introduces many minor incom
patibilities and lacks some functionality of Loops as discussed below. Features
of Loops such as composite objects that are appropriately implemented in
terms of the CLOS kernel are not discussed. Modifying Loops to mn on top of
CLOS will require a substantial programming effort.

5.1.1 Class Variables Loops supports the notion of class variables that are
accessed via special functions. CLOS provides : class variables which provide
nearly equivalent functionality. There are not, however, different name spaces
for instance variables and class variables as there are in Loops. We now
believe that the advantages for modiflability of a program outweigh the advan
tages of multiple name spaces.

634 Bobrow

5.1.2 Default Values Loops supports the notion of a default value which at
slot access time finds the default value in the class or the superclasses of the
class. CLOS provides initforms in slot descriptions tiiat specify how to com
pute the default value at creation time. The essential difference is that in Loops
an instance tracks the slot description until given a local value while CLOS al
ways gives a local value at creation time. The Loops behavior can be imple
mented in CLOS using annotated values as described in the section on open de
sign questions. In our experience, initial values are satisfactory for most of the
applications of default values.

5.1.3 Slot Properties In Loops a slot can have named properties in addi
tion to a value. This provides a convenient way to store more information
about a value without interfering with access of the value. This can be sup
ported using annotated values.

5.1.4 Active Values In Loops a value can be active, so that specified func
tions can be mn when a slot containing an active value is accessed. CLOS can
be extended to provide comparable capabilities.

5.2 Smalltalk-ao System
The Smalltalk-80 system [Goldberg and Robson, 1983] is botii an object-
oriented programming language and a vertically integrated programming en
vironment tiiat is uniformly object stmctured. The strength and importance of
the Smalltalk-80 system rests not only with its object-oriented progranuning
style, but also in tiie careful engineering of the set of kernel classes and their
behavior that define the Smalltalk-80 image.

In terms of its provisions for class definition, name lookup, method dis
crimination, and method combination, CLOS can be viewed as a superset of
Smalltalk-80, with some notable exceptions.

The Smalltalk-80 virtual machine directly supports only single superclass
inheritance. Nevertheless, additional inheritance schemes can be implemented
(by changing the manner in which new classes are defined), and multiple su
perclass inheritance is included as part of the standard Smalltalk-80 environ
ment. It operates substantially the same as in CLOS, except that multiply in
herited methods for the same selector must be redefined at tiie conunon sub
class, or else an error will result when the method is invoked. This Smalltalk-
80 feature is inconvenient for mixin classes that specialize standard methods as
used in Flavors and Loops.

The Smalltalk-80 multiple inheritance scheme provides an explicit scheme
for mediod combination: Objects can send messages to tiiemselves in a way
diat specifies from which superclass method lookup is to proceed. This is done
by composing the name of the superclass with the selector; e.g., an instance of

Chapter 15 The Common Lisp Object System 635

ReadWriteStream may send itself the message ReadStream next to indi
cate that die ReadStream superclass is to supply the method. This explicitness
can cause problems because methods build in as constants information about
the class hierarchy, which may change.

Classes and metaclasses bear the same relationship to each other and there
is some overlap of function in both systems. However, there are some signifi
cant differences in functionality. Instances of all Smalltalk-80 classes (except
for the compiled-method class) are realized in terms of just three basic im
plementations: pointer objects, word objects, and byte objects. The class defini
tion directiy determmes which implementation is to be used. By convention in
Smalltalk-80 each class has a unique metaclass.

In many Smalltalk-80 miplementations, enumerating die instances of a
class is intended to be computationally bearable (just how bearable depends on
implementation dependent factors, e.g., whether and how virtual memory is
implemented). As a result, Smalltalk-80 classes can broadcast to their in
stances. This makes them extensional, as well as intensional, characterizations
of sets of objects. Since even integers have a class in CLOS, it is not generally
useful to enumerate all instances of every class. It is straightforward in CLOS to
implement a metaclass tiiat allows a class to keep a list of instances it has
created.

Similarly, in some Smalltalk-80 systems, one can find all references to a
particular object. It is even possible to interchange all die references to one ob
ject with all the references to some other object, regardless of dieir respective
classes. In effect, the two objects exchange identities. This operation is inex
pensive if references to objects are made indirectiy through an object table,
which is the standard practice. This capability enables, among other things,
cheap resizing of instances of variable-length classes. In CLOS, instances of
classes created by the metaclass standard-class can easily modify their
contents and class pointers to achieve the same functionality.

Smalltalk-80 provides class variables, which are shared by all the instances
of a class and its subclasses, and pool variables, which are shared by all in
stances of some set of classes and their subclasses. The effect of class variables
is directiy achieved in CLOS through the :allocation class slot option. The
effect of Smalltalk-80's pool variables can be achieved through the expedient
of defining a common superclass among the classes to be "pooled" diat con
tributes nothing but a shared slot.

Smalltalk-80 differs more fundamentally from CLOS in diat Smalltalk-80
objects are encapsulated, and control primitives are based upon message pass
ing. In Smalltalk-80, unlike CLOS, only methods of an object can access and
update die state directiy (tiiis is not stricdy tme, but the operations provided for
breaking encapsulation are viewed as just that, and are used primarily for
building debuggers, viewers, and so on). All other methods must send mes
sages.

636 Bobrow

Conditionals, iteration, and the like in Smalltalk-80 are done via message
passing, and contexts (stack frames) are first class objects. CLOS relies upon the
Common LISP control constmcts that in general are special forms and cannot
be specialized.

5.3 New Flavors
CLOS is practically a superset of New Flavors. CLOS and New Ravors share the
notion of generic function. In developing CLOS we have included die New
Flavors mechanism for user-defined method combination.

The important difference between CLOS and New Flavors is die existence
of meta-objects in CLOS. Meta-objects make CLOS much more extensible. Meta-
objects allow experimentation witfi other kinds of object systems. They allow
CLOS to treat primitive LISP types as classes. Methods can be defined on those
types, and the standard CLOS mechanisms for accessing the slots of a stmcture
can be used to access the fields of primitive LISP objects.

5.4 Other Object Languages
Object LISP [Drescher, 1986] also integrates objects and LISP . Unlike C L O S , Ob
ject LISP distinguishes fundamentally between LISP types and Object LISP ob
jects. This means that one cannot define methods on existing types. Another
difference is that Object LISP supports only classical methods.

τ shares with CLOS die common syntax for message sending and function
call. Like Object LISP, τ supports only classical methods and there is no inte
gration of LISP types with objects [Rees and Adams, 1982].

5.5 Adding Access-Oriented Programming to CLOS

Access-oriented programming is one of the popular features of Loops and
several frame languages such as KEE, U N I T S , and S T R O B E . The merits of tiiis
feature are often confounded with the merits of its various implementations. In
this section, we try to separate these issues, and indicate altemative implemen
tations available in C L O S .

In access-oriented programming, fetching from or storing in an object can
cause user-defined operations to be invoked. Procedural annotations (or active
values) associate objects with slots so that methods are invoked when values
are fetched and stored. It is also useful to associate other information witii a
slot in addition to its value. Stmctural (or property) annotations associate arbi
trary extendible property lists with a value in an object. Collectively these
kinds of annotations are called annotated values. These annotations can be in
stalled on slots and can be nested recursively.

Chapter 15 The Common Lisp Object System 637

Annotated values reify the notion of storage cell and are a valuable ab
straction for organizing programs. Stmctural annotations can be used for in-
core documentation. They are also used for attaching records for different pur
poses. For example, such annotations can record histories of changes, depend
encies on other slots, or degrees of belief. Procedural annotations can be used
as interfaces between programs that compute and programs that monitor those
computations. For example, they can represent probes that connect slots in a
simulation program to viewers and gauges in a display program.

Annotated values are convenientiy represented as objects, and must satisfy
a number of criteria for efficiency of operation and noninterference [Stefik et
al., 1986]. When multiple annotations are installed on the same value, die
access operations must compose in the same order as the nesting. Annotated
values can be implemented in different ways that optimize performance de
pending on the expected pattems of common use.

One implementation of annotated values in CLOS would require the slot
access primitives of tiie metaclass check whether the value is an active value
object. The active value check can be made fast if the active value objects are
wrapped in a unique data type. This technique for implementing active values
has been used successfully in Loops. Hardware or microcode support of this
fast check would allow the use of annotated values in ordinary LISP stmctures
(e.g., in c o n s - c e l l s) , greatiy extending die utility of this abstraction.

Alternatively, a procedural implementation of annotated values could be
built upon the ability in CLOS to specialize methods with respect to individuals.
For those slots for which a special action is desired upon access, one can de
fine methods for those accessors and objects that do the special action.

CLOS is capable of supporting either implementation. In addition, we
believe that it is appropriate in CLOS to provide metaclasses that can support
annotated values according to the needs of optimization. If active values are to
be attached and detached frequentiy, checking dynamically for annotated
values may be preferable to changing the generic function frequentiy. If probes
are usually installed only once, then one may prefer the lower overhead of the
procedural implementation. If access to properties is relatively rare compared
with the access to values, then differentiating property access at compile time
might be preferred.

It is useful to be able to view a program that uses annotations in terms of
that abstraction, rather than in implementation terms. The issue of supporting
views of programs is discussed more generally in the next section.

5.6 Programming Environment Support
Programming environments must provide computational support for particular
views (or perspectives) of programs [Stefik and Bobrow, 1986]. A view is said
to support a particular progranuning abstraction when the elements of the view

638 Bobrow

are in the terminology of the abstraction, and the operations possible within
tfiat viewer are those appropriate for tiie abstraction.

For example, a viewer that supports the view of a program in terms of
annotated values would show annotated values, not methods or wrappers that
make up their impleφentation. The installation and nesting of annotated values
are the appropriate actions available in the viewer.

Another important and popular view of object-oriented programs is that
classes are defined by their slots and methods. While program listings often
show stmcture and methods separated, it is useful to view such programs as or
ganized in terms of classes with access to slot and mediod descriptions. CLOS

viewers can also provide access to any multi-method from all of its associated
classes. CLOS supports both the classical view of object-oriented progranuning,
with appropriate extensions.

Views of classes can be organized around semantic categories, as in the
standard Smalltalk-80 browser, or around a graph of the class inheritance lat
tice of some portion of the system, as in Loops and CommonLoops. In the lat
ter case, certain operations become natural to perform directiy through the lat
tice browser—^for example, promoting methods or slots to more general
classes, or changing the inheritance stmcture. Changing the name of a slot or
selector through a browser can invoke analysis routines that can find and
change all occurrences of die name in code.

Viewers on CLOS can also support a procedural abstraction. They can pro
vide static browsers of program-calling stmcture, where each generic function
is considered as a single function. Through such browsers, one can get access
to individual method definitions from the corresponding generic function.

To provide viable support for programming with an abstraction, the
viewers must be integrated with the debugging system. For example, to support
a view of program in terms of methods, it should not be necessary to under
stand how methods are implemented or to refer to metiiods created automati
cally by the system. Ratiier, debugging should use the same terms diat the pro
grammer uses in writing the program.

6 Summary and Conclusions

Over the last ten years many systems have been written that add object-
oriented programming to LISP (e.g.. Flavors, Loops, Object LISP) . Each of these
has attracted a group of users who recognize the benefits of message sending
and specialization and have endorsed the object-oriented style. The object-lan
guages in these systems have been embedded in LISP with different degrees of
integration.

Interest in object-oriented programming has also been spurred by work in
expert systems. Several knowledge-programming systems (ART, K E E . Strobe,

Chapter 15 The Common Lisp Object System 639

U N I T S , etc.) have emerged. These systems have included variations and exten
sions on object-oriented progranuning, and tools for creating knowledge bases
in terms of objects. As research continues, additional knowledge programming
systems will emerge. Each of these will have their advocates and perhaps their
niche in the range of applications and computer architectures. All of these sys
tems can benefit from an object-oriented base that is efficient and extensible.

The creation of a good base involves both theoretical language design and
engineering concems. CLOS has attempted to respond to several kinds of pres
sure on the design of such a system.

The applications conununity wants to use a system for its work. The lan
guage must be suitable for state-of-the-art applications and systems that they
build on top of it. The language must have an efficient implementation. It must
be a graceful extension of Common LISP because existing code and existing
programming skills need to be preserved.

Vendors share these interests. They want their systems to provide a sui
table base for a large fraction of the applications. They want the kemel of the
language to be lean, easy to maintain, and efficient; they want the kemel to be
principled and free of idiosyncratic features with no enduring value beyond
their history. Vendors don't want to implement multiple versions of object lan
guages, gramitously different and incompatible.

The research community has somewhat different interests. Like the appli
cation community, it needs to be able to share code, but it is concemed with
being able to try out otiier ways of doing things. New ideas for languages come
out of the experience of the research community. To build higher-level lan
guages, the base must provide mechanisms for open-ended experimentation.

CLOS has responded to these pressures by providing a base for experimen
tation through the use of meta-objects, while capturing in its kemel the ability
to implement the features of current object-oriented systems. By integrating
classes with the LISP type system, and using a syntax for method invocation
that is identical to the LISP function call, C L O S makes possible a smooth and in
cremental transition from using only the functional paradigm for user code to
using the object paradigm. As a portable system implemented in a widely
available base, it allows users the choice of hardware and environments. It al
lows them a road to the future.

Acknowledgments

This paper is based on a talk given at the 1986 National Conference on Artifi
cial Intelligence. At that time, CommonLoops was the example used of tight
integration of paradigms. Since that time, the Common LISP Object System has
emerged as a better example. It incorporates good ideas from CommonLoops,
New Flavors, and from the X3J13 Common LISP Object System Specification

640 Bobrow

subcommittee consisting of Daniel G. Bobrow, Linda G. DeMichiel, Patrick
Dussud, Richard P. Gabriel, Sonya E. Keene, Jim Kempf Gregor Kiczales, and
David A. Moon. Their contributions to the design have helped make this a bet
ter paper. I also want to thank my coauthors of an earlier paper on Common-
Loops that I have adapted for this article [Bobrow et al., 1986]; they are Ken
Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik, and Frank Zdybel. Any
mistakes that remain are solely the responsibility of the author.

References

Bobrow, D. G, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, and
D. A. Moon, 1987-88. X3J13 standards committee documents 88-002 and
88-003.

Bobrow, D. G., Kahn, Κ., Kiczales, G., Masinter, L., Stefik, M., and Zdybel,
P., 1986. CommonLoops, merging Common Lisp and object-oriented pro
gramming. In Proceedings of the ACM OOPSLA '86 Conference,

Bobrow, Daniel G. and Stefik, Mark, 1983. The Loops Manual. Intelligent Sys
tems Laboratory, Xerox Corporation.

Bobrow, Daniel G. and Stefik, Mark, 1986. Perspectives on artificial intel
ligence programming. Science 231(4741):951.

Dresher, Gary, 1986. Object USP User Manual. LMI, 1000 Massachusetts
Avenue, Cambridge, MA.

Forgy, C. L., 1982. Rete: A fast algorithm for the many pattern/many object
pattem match problem. Artificial Intelligence 19(1).

Goldberg, A. and D. Robson, 1983. Smalltalk-80: The Language and its Im
plementation. Addison-Wesley, Reading, MA.

Ingalls, D. H., 1986. A simple technique for handling multiple polymoφhism
In Proceedings of ACM OOPSLA '86 Conference.

Moon, D., 1986. New Flavors. In Proceedings of the ACM OOPSLA Confer
ence.

Krasner, Glenn, ed., 1983. Smalltalk-80: Bits of History, Words of Advice. Ad
dison-Wesley, Reading, MA.

Rees, J. A. and Adams, N. I., 1982. T: A dialect of Lisp or, Lamda: The ulti
mate software tool. In ACM Symposium on Lisp arui Functioruil Program
ming.

Sheil, B., 1984. Power tools for programmers. Interactive Programming En
vironments, Barstow, D. et al., ed. McGraw Hill, New York.

Steele, G. L., 1984. Common Lisp: The Language. Digital Press.
Stefik, M. and Bobrow, D. G., 1986. Object-oriented programming: Themes

and variations. AI Magazine 6(4).
Stefik, M., Bobrow, D. G., and Kahn, Κ., 1986. Integrating access-oriented

programming into a multi-paradigm environment. IEEE Software.

Chapter

16

Artificial IntelUgence and
Software Engineering
David Barstow
Schlumberger-Doll Research

Ridgefield, Connecticut

Introduction

This paper is based on a talk tided "Artificial Intelligence and Software En
gineering." That's actually a bit broader than I 'm going to be. In particular, I 'm
only going to look at attempts to apply AI techniques to software engineering
problems. So I will specifically not discuss indirect contributions from AI to
software engineering, of which there are many. I also won't discuss the appli
cation of software engineering techniques when you're building AI systems, of
which there is a great need.

There are three parts to this paper. First, I 'm going to give an overview of
software engineering, because it's important to understand what software en
gineering is, and I think many of us have been remarkably ignorant about it.
Then I'll look at the state of the art in research on the application of AI to soft
ware engineering. Finally, I'll look at what the impact of all this might be on
the practice of software engineering.

641

642 Barstow

Parti

It's conventional to divide software engineering activities into two categories,
usually referred to as programming-in-the-small and progranuning-in-the-large
[DeRemer and Kron, 1976]. Programming-in-the-small is typically done by in
dividuals or very small groups. A typical project might be a few thousand lines
long, and it's typically not more tiian a few months of effort. Progranuning-in-
tiie-large is done by very large groups of people, and programs have several
hundred thousand or millions of lines, with very long intended lifetimes. Now
these are obviously ends of a spectmm, but the issues involved in these two
different categories are really quite different. So it's a useful distinction to try
to make. Let me illustrate both of these by considering two problems that you,
as a software engineer, might get involved with.

1.1 Programmlng-ln-the-Small
The first example is related to Schlumberger's activities in oil well logging
(Figure la). Basically, our service involves lowering an instmment down an oil
well, pulling it back out, making measurements along die way, and then inter
preting those measurements in terms of the things that our clients, oil compa
nies, are interested in. For example, where is die oil? So, imagine that a tool
designer has just built a new tool and you've been asked to write the software
for it. Let's think about what you would do.

The first thing you do is try to write a specification for that software, some
kind of complete and precise description of what the software is supposed to
do (Figure lb). As suggested by die bubbles in tiie figure, while you're doing
this, you need to know something about the tool and about the physics upon
which the tool's sensors are based.

Now, the next tiling you do is realize that it will be a moderately big pro
gram, so you want to reduce it into more manageable pieces, as shown in
Figure Ic. While you're doing this, you obviously need to know about the
specification. You also need to know about the architecture of the machine
you're going to run die software on, and you need to know the progranuning
techniques that you leamed when you were in school. You also find that you
have to talk to the tool designer because, despite everybody's best attempts, the
specification is neither complete nor precise.

Once you've got tiie little pieces, you try to implement tiiem (Figure Id).
This again requires knowledge of tiie architecture of the target machine and
programming techniques. And once again, you need to talk to die tool designer.
Then comes testing (Figure le).

The goal here is to ensure that the source code actually implements what
the specification says it ought to implement. This involves taking some data.

Chapter 16 AI and Software Engineering 643

(a) Oil Well Logging

Specification
Dopument

(c) Decomposition

Decomposition

A
Component
Sp^gifigat'gnl

How To
Program

Tool
Designer

Source
Code

(d) Implementation

specification
ΠΩΠίΐΓΤΐίΐηΐ . . Tool

% j r Designer

— •

Source
Code

(e) Testing

Tool
^ j r Designer —*

Source
Code

(f) Optimization

Tool
. ^ Jt^ Designer

i * ^ *

Specification Source
Code

(g) VaiiäetioH

Coder Tool
Μ Designer

Specifi ication
iment

Source
Code

(*) Evolution

Figure 1 Programmlng-in-the-small.

644 Barstow

studying the tool again, and talking with the tool designer to make sure you've
covered all the cases. And in the process, of course, you change the code.

Next you find out that the code isn't fast enough and needs to be op
timized (Figure If). There are some very tight constraints on the software for
logging, and you find out diat the software doesn't meet those. So you get out
your stopwatch, study the architecmre of the target machine, study the tool
again, talk to die tool designer again, and finally try to get the code to be fast
enough.

Then you ask yourself whether this really implements what the tool de
signer wants (Figure Ig). As you recall, all you've tested so far is that it
matches the specification. Validation is the process of making sure that the
specification specifies tiie software that the tool designer wants, that it satisfies
the tool designer's real needs. In order to do this, you obviously need to make
measurements, you need to study the tool and the physics, and you need to talk
to the tool designer.

Now, you may think you're done, but in fact you're not, because someone
has been busy designing a new tool, or perhaps developing a better under
standing of the physics. So you have to rewrite the code to satisfy the needs of
the new tool or the new understanding of physics (Figure Ih). One of the
things you find is that you're not the same person you were when you wrote
the code in the first place. So you have to talk to the coder who did it the first
time as well as the tool designer. When you talk to the coder, you need to un
derstand what decisions were made when he or she wrote the software. And
not only what decisions were made, but why they were made. That is, you
need to know the rationale for the decisions.

1.2 Programmlng-ln-the-Large
For an example of programming-in-the-large, imagine you work for the Inter
nal Revenue Service, and Congress passes a new tax law (Figure 2a). You've
been told you have to write the software to process the tax retums. I don't
know about you, but first I would panic. But once that panic is over, you real
ize that the first thing to do is figure out what's going on in the tax law. That
is, you have to do requirements analysis (Figure 2b). Now, let's suppose there
are 18(X) pages of "legalese." There are no doubt numerous ambiguities, prob
ably intentional, adding to what is already a rather difficult problem for you, so
you talk to a tax expert to help you figure it all out, and you also hire a number
of people to work with you.
Now, once you think you understand the tax law, the next thing you have to do
is break the system down into components that can be considered or attacked
as problems of programming-in-the-small (Figure 2c). That's usually called
"design." In order to do this, it tums out you need to know some software en
gineering techniques, and you find again that you're talking to a tax expert.

Chapter 16 AI and Software Engineering 645

• • • • • •
• • • •
• • I R S o o

(a) New Tex Uw

Requirements
Document

Tax
Expert

(b) Requirements Analysis

é ~ . —
Requirements!

PQgymgnt

Req & Desn How To
Tax Documents Program

ic) Design

^ ^ ^ ^

Designer Tax
Expert

[Source
Code

[Source
Code

ISource
C o d e .

(d) Coding

/¡
Design

Pwmgnt

[Source
Code

|System
Code

?

(e) Integration

Coders Coders Tax
Expert

A A
^Requirements Design Source

Code

(f) Maintenance and Evolution

Figure 2

646 Barstow

Now, having done the design, you go through the coding process (Figure
2d). This typically involves smaller groups of people, and it can be thought of
as programming-in-the-small, for relatively independent activities. In doing
this, of course, you need to know progranuning techniques, and you need to
talk to the tax expert, but you also need to talk to the system designers, in
order to understand why the system design is the way it is, in order to under
stand the namre of the interfaces of your piece of code with the other pieces of
code.

Now, having completed die coding, you go through an integration process,
again a group activity (Figure 2e). You get everything together to make sure
you have tiie right large system. The integrators may not be the same as the
coders, so the integrators have to talk to the coders.

Now, you have the same case here diat you had with tool software (Figure
2f). Congress is already talking about changing the tax law. So while you've
been working away at it, the requirements are changing. So you have to change
the software that you've written. And in doing this, you have to talk not only
to tax experts, but also to the coders and the designers. Because once again
you're a different group than when you started. Once again you have to know
not only what decisions were made, but also the reasons that they were made.

1.3 Distribution of Effort In Software Projects
Let's try to analyze these examples a little bit. First, it's important to under
stand the distribution of effort among the various activities. The pie chart in
Figure 3a, based loosely on Barry Boehm's Cocomo model [Boehm, 1981],
shows die relative amount of time spent in different activities involved in pro
gramming-in-the-small. (I've actually left off evolution; we'll see that in the
chart for programming-in-the-large.) Notice that only a fifth of the time is
spent in implementation, what we normally think of as programming. And only
a little over half of the time is spent with code. Overall, the effort is pretty
evenly distributed.

The distribution is not so even for programming-in-the-large (Figure 3b).
In particular, according to the Cocomo model, an extremely small part of the
time goes into coding. Most of the time goes into maintenance and evolution,
something like 60 or 70 percent of the effort on a large software system. In
fact, more recent studies seem to show tiiat tiie number is increasing.

1.4 Knowledge Used In Software Activities
The next thing to look at is the knowledge used during these activities. We can
see five general categories. Three obvious categories are software engineering
methodologies, programming techniques, and the architecture of the target

Chapter 16 AI and Software Engineering 647

Specification

ζ Decomposition

Implementation

Optimization

Testing

Validation

(a) Programming-in-the-Small

Requirements Analysis

Design

Programming-in-the-Small

Integration

Maintenance & Evolution

(b) Programming-in-íhe-Large

Figure 3 Distribution of effort in software projects.

machine. The other two are, I think, more interesting. One is the amount that
you have to know about the application domain; the other is the history of the
target software. Let's consider these in a little more detail.

648 Barstow

Used
Programming-in-the-Small

Specification •
Decomposition
Implementation •
Testing •
Validation •

Programming'in-the-Large
Requirements Analysis •
Design •
Integration
Maintenance and Evolution •

Figure 4 Knowledge of the application domain.

Figure 4 shows die various software activities, with check marks indicating ac
tivities which require a substantial amount of knowledge about the application
domain. (Recall the little pictures of tools, physics, and taxation and the figures
representing tool designers and tax experts.) Domain knowledge is used in two
ways. First, you must have a rather deep understanding of die domain in order
to specify and validate die software, where you want to make sure tiiat you are
doing the right thing. Similarly, a deep understanding of the domain is needed
during requirements analysis and evolution. Second, you must use domain
knowledge to help make implementation decisions during the implementation,
testing, and design activities.

Created Used
Programming-in-the-Small

Specification •
Decomposition •
Implementation •
Testing •
Optimization • •
Validation •

Programming-in-the-Large
Requirements Analysis •
Design •
Integration • •
Maintenance and Evolution • •

Figure 5 Knowledge of the target software.

Chapter 16 AI and Software Engineering 649

Now, let's look at knowledge of the target software, that is, knowledge of
what decisions were made earlier in the development process. It is interesting
that, whfereas knowledge of the domain exists a priori, knowledge of the target
software is created during the process of writing the software. Figure 5 has
check marks indicating where a significant number of decisions are made, and
tiiose are die places where that knowledge comes into existence. The second
set of check marks indicates where that knowledge is used. Perhaps the most
important mark is die one next to maintenance and evolution, because knowl
edge created throughout the earlier phases is relied on to a very great degree
during maintenance and evolution.

1.5 Techniques for Knowledge Management
In fact, I would make the following assertion: The high cost of software
development and evolution is primarily due to the ineffectiveness of current
techniques for managing knowledge about the application domain and about
the implementation history.

Let's look at what those current techniques are. They're listed in Figure 6,
roughly in increasing order of frequency of use. Sometimes we have require
ments documents, more frequentiy we have design or specification documents,
and people usually put some comments in the code. But most of the time we
rely on human memory and the wastebasket. That is, we think we will remem
ber the decisions we made when we look at the code later, and we may just
throw away any thoughts that we had about it, believing that they won't matter.

The weaknesses of these techniques are obvious. First, most of the infor
mation is not recorded. And in fact, that's one of the reasons for the great cost
of the later phases of software engineering activities. Second, complex interac
tions are not made explicit. That is, you may make a design decision early on
in the software development process that has ramifications throughout the
code. And if all you have are the conmients to look at, tiien you're not going to
understand the nature of those interactions. And finally, of course, the informa
tion is difficult to access. If it was thrown away or put in somebody's memory,
it's obviously very difficult to retrieve.

• Requirements Documents
• Design Documents
• Specification Documents
• Comments in Code
• Human Memory
• Wastebasket

Figure 6 Current techniques for knowledge management.

650 Barstow

In other words, software engineering is fraught with uncertainty: A major
source of problems during software development is uncertainty about require
ments; a major source of problems during software evolution is uncertainty
about design and implementation decisions made during development.

1.6 The Need for AI Techniques
So these are, to my mind, the fundamental problems faced by software en
gineering, and obviously, I believe that AI techniques ^ught to be able to come
to the rescue here. A straightforward argument says diat: (a) Effective knowl
edge management requires computer support and (b) Computer support for
knowledge management requires AI techniques. Now, when I say die same
kinds of things to software engineering audiences, this is the basic argument
that I feel like I have to make. I would hope that I don't have to make this ar
gument here, but in case you have to make it some time, that's the argument.

Now, it's certainly not the case that only AI is necessary, and we can men
tion many other computer technologies that are absolutely required to solve the
software engineering problem, including at least data bases, communication
systems, and user interfaces. But I think the argument for the necessity of AI is
quite strong.

1.7 Review
Let's review what we've established so far. Software engineering activities are
knowledge intensive, especially requiring knowledge of the application domain
and of the target software. Many software engineering costs are due to the inef
fectiveness of current techniques for managing the knowledge. And AI tech
niques ought to be able to help manage the knowledge more effectively.

Part II

Let's see what's been done in trying to apply AI techniques to software en
gineering activities. In doing this, I will look at several different paradigms, the
results of the work to date, and the directions that I think we ought to be pursu
ing.

2.1 Deductive Synthesis
The first paradigm is usually referred to as deductive synthesis, and essentially
it relies on an analogy between programming and tiieorem proving. In particu
lar, tiiere's an analogy between a specification and a theorem, and an analogy

Chapter 16 AI and Software Engineering 651

between a program and the proof of the corresponding theorem. So the idea is
diat, in a mechanical way, you can go from a specification to a theorem, then
you mn your theorem prover forward to get a proof, and from the stmcture of
the proof you go back to the program.

Let me just summarize what some of the basic techniques are. Typically, a
specification will consist of two parts, a pre-condition and a post-condition. A
pre-condition is usually a predicate on the input variables, say P(X). A post
condition is a predicate on the input and output variables, say Q(X, Y). The es
sence is that the software writer can assume that P(X) holds of die inputs and
must write software that guarantees that ß(X, Y) is satisfied after the program
halts. This specification corresponds to die dieorem VX 3 y P{X) => ß(X, Y),
and if we have a proof of this theorem, we can take die stmcture of the proof
and map it into a program. For example, a constmctive proof typically corre
sponds to an assignment statement, a case analysis corresponds to a condi
tional, and induction corresponds to recursion. There is, of course, a lot of
detail in these techniques; I 'm just trying to summarize them here.

The history of the technique goes back to two Ph.D. theses [Green, 1969;
Waldinger, 1969]. Both came up with essentially the same observation, the
correspondence between programs and proofs. Around 1980, Manna and
Waldinger developed a new formulation [Manna and Waldinger, 1980]. It 's
fundamentally the same technique, but it 's a new formulation that makes it a
littie bit easier to work widi. They call it the tableau method. An interesting re
cent development is some work by Smith, looking at decomposition strategies
and derived pre-conditions, widi the goal of getting to some relatively more
complicated kinds of algorithms, such as divide-and-conquer algorithms
[Smith, 1985]. The state of the art is that there have been some demonstrations
for some very simple programs, tilings like sorting, greatest conunon divisor,
and binary search [Manna and Waldinger, 1985]. Those are really pretty simple
programs.

So what are the major issues? One issue relates to size and complexity:
How do you write larger and more complex programs? The work of Smith, for
example, is aimed in that direction, but has not gotten very far. A second issue
relates to die efficiency of the resulting program. And to understand this issue,
you have to go back to die basic technique, where you're doing all of the work
in the theorem-proving domain. So if you want an optimal program, then you
have to make sure that you find the proof that corresponds to that optimal pro
gram. Typically, optimal programs are longer than the average program that
someone will write. And so typically, the proof will be longer than the proof
for the average program that you want to write. And therefore, you're trying to
guide the dieorem prover to find a long proof instead of a short proof, and
most theorem provers are not oriented in that direction. So diis is, I think, a
fundamental weakness for this paradigm.

652 Barstow

2.2 Program Verification
The second paradigm, program verification, is also based on tiieorem-proving
techniques. The essence of it is that, from a specification and from a program,
you can derive in a mechanical way some tilings called verification conditions.
Now, if you can show that those verification conditions hold, that is, if you can
mn your theorem prover and find a proof, then that guarantees that the pro
gram satisfies the specification.

Let me illustrate tiie technique witii an example. Suppose tiie specifica
tion's pre-condition is P(X) and the post-condition is Q(X, Y), and the program
is:

if R(X) then Y F(X) else Y ^ G(X)
Then the verification condition is

P(X) => iR(X) => Q(X, F(X))) A (-^(X) => ρ (Χ , G(X)))

You can see tiie correspondences among die parts of tiie pre-condition, post
condition, program, and verification condition. Of course, verification condi
tions for larger programs are much larger dian tiiis simple example.

This all goes back fundamentally to work in the 1960s on die semantics of
programming languages by people like Floyd, Hoare, and Dijkstra [Floyd,
1967; Hoare, 1969; Dijkstra, 1976]. The first program verifier tiiat I know
about was by King [1971]. In the 1970s, there were a very large number of
rather substantial verification projects, at places like Stanford, SRI and ISI. In
the 1980s, we've had some successful demonstrations on small but nonetheless
real-life programs, for example, encryption algorithms and certain kinds of se
cure operating systems. So the state of the art here is that we've had demon
strations for non-trivial algorithms, certainly more complicated algorithms than
was the case in deductive synthesis, and also some other kinds of small pro
grams and work on abstract data types. All of these have required a substantial
amount of effort, both by the user and by the theorem prover. So it's certainly
not a straightforward task to force one of these proofs to go through. But
people have succeeded in doing it.

One major issue with program verification is size: The larger the program,
die larger the verification condition, hence the more difficult it is to find die
proof. Another issue is that writing specifications, even after you have the
code, can tum out to be a rather difficult problem.

2.3 Transformational Implementation
Now, the third paradigm is one that is usually referred to as transformational
implementation. The basic idea here is that you start widi the specification and

Chapter 16 AI and Software Engineering 653

transform it through a potentially very large number of very littie steps, the end
resuh of which is tfie program that satisfies the specifications. Now, with this
paradigm, the techniques are not as clearly understood as they are in the case
of verification and deductive synthesis. But we can identify certain categories
of tilings tfiat you have to do if you want to build a system like this.

One such thing to have is a wide-spectrum language, a term coined by
Bauer [Bauer et al., 1978]. The basic idea here is that you need some coherent
framework for representing the program during the entire process of going
from a specification down to the code at the bottom. And since there are differ
ent concepts tiiat appear in the specifications than appear in the code, you need
to span a range of concepts, and that's why it 's called a wide-spectrum lan
guage. Some of the concepts that you need to span here mclude abstract and
concrete data types and operators, and different kinds of computational para
digms.

You also need a library of transformations. This is, after all, the mecha
nism to get from one step to the next in the transformation process. Some of
tiie kinds of transformations that have been worked on include data type and
operator refinement and global reformulations. A typical library may have
many hundreds of transformations, so building the library is, itself, a major
piece of work.

The odier problem that can happen here is that, as you're going through
the transformational process, there may be several different transformations
that can be applied at die same time. So in fact, you have a search tree. Each
of the different paths down the tree leads to a different program, and choosing
one path over another amounts to making an implementation decision. The
potential for explosive growth in that tree is very clear, and die trees can get
extremely large, especially when you have thousands of steps. So search con
trol is clearly important. People have looked at several techniques. One in
volves efficiency analysis—^analyzing an intermediate-level program and guess
ing what die efficiency is going to be like. Heuristic techniques can be used to
simplify or eliminate the need for analysis. However, user interaction is the
most common technique to date; that is, the user decides which transformation
to apply at any given point. One interesting technique is the idea of replay.
That is, once you've gone tiuOugh a sequence of transformations and you
know which transformations were applied to which parts of the program, if you
change the specification a littie bit, you can replay the same sequence of trans
formations, or something close to it, and thereby save a lot of the work of
thinking about which transformations to apply to those steps.

The history of the technique goes back to the early 1970s, when there were
a number of transformation projects at places like Munich [Bauer et al., 1982],
Stanford [Green, 1976], IS! [Balzer, 1981], Harvard [Cheatham et al., 1979],
and elsewhere [Partsch and Steinbmggen, 1983]. In 1978, I used transforma
tions as a way of representing programming knowledge, a way of encoding

654 Barstow

knowledge about programming techniques [Barstow, 1979]. At about the same
time, Kant did some work on using efficiency considerations to guide the
search [Kant, 1983; Kant and Barstow, 1981]. Both of these were done as part
of the PSI project at Stanford. Around 1982 or so, a couple of results came out
of die Information Sciences Institute work that I think are worth noting. One is
due to Fickas who attempted to use heuristics to guide the search [Fickas,
1985a]; another involved some work by Wile on describing transformation his
tories, essentially laying tiie basis for the replay idea [Wile, 1983].

So what's the state of the art? There's routine use of such systems in re
search settings, such as ISI [Balzer, 1985] and the Kestrel Institute [Smith et
al., 1985]. And there are some attempts to demonstrate practical value for the
transformational technology, including some commercial ventures that have
every incentive to make the technology work. So I think one of the nice results
that we can expect soon is a demonstration of practical value.

Now, what are the major issues? Fh-st, how do you want to specify things?
All the projects use different techniques for specification, so I don't think
tiiere's any general agreement on that [Balzer et al., 1983; Balzer et al., 1978;
Smith et al., 1985]. Second, search control: As I mentioned, there are a variety
of approaches, and it does seem to be an issue that we have to address, and we
really don't know how yet. And third, the implementation history: You need to
record that implementation history somehow, and we only are beginning to un
derstand ways to do that.

2.4 Programmer's Assistant
The fourth paradigm is usually called the programmer's assistant. The under
lying idea comes from the observation that a human progranuner has a great
deal of knowledge about programming techniques. If you could build a system
that shared tiiat kind of knowledge, then tiie system ought to be able to help tfie
programmer in the process of developing a program.

One of the basic techniques involves representing programs. You want to
represent what you know about programs, not at the level of syntax of the tar
get language, but rather at a somewhat more abstract level. Some of the tech
niques tiiat have been developed mclude data flow, control flow, and hierarchi
cal decomposition. Just as with transformations, you need a library of these
things, usually called plans, and it 's very similar to having a library of transfor
mations. You also need a mechanism to do some kind of analysis. The basic
idea here is diat you do a data and control flow analysis on die program and
then try to match tiiat against what you have in the library. And the problem is
that it won't always match, but it'll be close, so you have to transform things,
either the plan or die program you're looking at, in order to find the right kind
of match.

Chapter 16 AI and Software Engineering 655

The history of this basically goes back to the Programmer's Apprentice
project begun at MIT in the 1970s and described in a paper by Rich and
Shrobe which is still wordi reading [Rich and Shrobe, 1978]. Rich's thesis de
scribed the first plan representation system [Rich, 1981]. Waters, in the same
project, did some work on integrating a conventional EMACS editor with a li
brary of plans for doing some synthesis and analysis [Waters, 1985]. In a re
lated effort, Johnson built a program that used similar techniques to analyze
student programs to make suggestions to help die students leam about pro
gramming [Johnson and Soloway, 1985]. Now, the state of the art is that we've
had some demonstrations of the use of plans for analysis and synthesis. To my
knowledge, the size of the programs that have been analyzed are typically a
few lines, perhaps a page or two. Some of the ones that have been synthesized
using plans may go up to half-a-dozen pages.

So what are the major issues? I think it has tumed out that analysis is
much more difficult than had been hoped originally when Rich and Shrobe
made their first proposal. And I think this difficulty is a very major issue, and
it may turn out to be the stopper for this. Recognition is part of analysis, and
some good matching techniques have been developed, but it 's not clear
whether that can carry us far enough to do analysis. And then, as with all the
other paradigms, there's die question of large programs. All these systems
work to one degree or another on programs that range from a few lines to a
few pages. So the question here, as with the others, is what happens when you
look at larger programs.

2.5 Other Work
Now, I want to cite several other pieces of work. I don't have time to go into
them in detail, but there have been a variety of efforts in other ways of apply
ing AI techniques to software engineering. These include altemative specifica
tion techniques, such as natural language [Heidorn, 1976] and examples
[Smith, 1984]. Some work has been done at ISI on monitoring change and evo
lution in software [Balzer, 1987]. Swartout did some work on explaining soft
ware [Swartout, 1983]. Kant and Steier did some work on analyzing protocols
for designing algorithms [Kant, 1985; Steier and Kant, 1985]. Greenspan and
Fickas have both done some work on trying to use knowledge representation
techniques in requirements analysis for programming-in-the-large. [Borgida et
al., 1985; Fickas, 1985b]. And there has also been some work on data stmcture
selection [Katz and Zinunerman, 1981]. There are other projects that I 've left
out, I just wanted to suggest some of the tilings tiiat have been done. The rea
son I've picked four paradigms to describe in a littie more detail is that I think
they're the ones that have had the most attention. Because of that, we can say
there really are a paradigms that have been explored.

656 Barstow

2.6 Practical Utility
Now, one of the things that Vm afraid we have not seen is a demonstration of
the utility of AI techniques to support software engineering in practical situa
tions. I wish I were wrong in saying this, but I don't believe I am. The closest
I think we have come are diose few programs diat have been verified with very
great effort, and there are suggestions that some of the commercial work may
be panning out. But I don't think we've yet had any really solid demonstrations
of the practicality of all this. Now, I'd like to see if we can explore why: If
diere have been 20 years or so of work on this, why haven't we demonstrated
anything practical?

I think one of the reasons is that it really is a hard problem. To see that,
let's try to compare software engineering widi medicine, an area in which AI
seems to have had more success. Now, I 'm not trying to compare software en
gineers and doctors in terms of their intelligence or skills. Radier, I want to
look at the characteristics of the tasks that these people are performing, and
Figure 7 shows five dimensions for comparison. The check marks indicate that
the particular domain seems to have a greater amount or a greater diversity of
knowledge.

In the first dimension, accumulated expertise, there have been something
like two orders of magnitude more time spent on medicine than on software
engineering, something like 2,000 years to 20 years. So there's certainly a
greater amount of accumulated expertise in medicine. But that may not make it
a harder task, because one result of diat accumulated expertise is a set of useful
abstractions. Doctors have nice short words that they can use to refer to things,
and I think tfiat we in software engineering haven't really developed diose nec
essary abstractions yet. So although the check says that medicine ought to be
harder, it is kind of double-edged.

The second dimension is complexity of subject, and it certainly seems to
me that people are more complicated than any of the software systems that
anybody's been able to build so far. I think medicine has a clear edge there.

On the other hand, we can look at the third dimension, variation of sub
jects. Depending on how you count, there are one or two varieties of people.
However, if you look at software systems, there is enormous diversity. There
are real-time systems, data base systems, conununication systems, data analysis
systems, and so on. So diis great diversity means that you can't just teach a
person all about software engineering and expect it to apply in all situations.
So diversity is a major problem for software engineering.

The fourth dimension is the run-time environment. Your doctor may ask
you whether people smoke where you work, but he's not likely to ask you
much more about the environment in which you "mn." And yet, when we build
software systems, those systems have to interact with the world, and we have
to study that interaction very, very carefully, or else the software isn't going to

Chapter 16 AI and Software Engineering 657

Medicine Software Engineering
Accumulated Expertise · /
Complexity of Subjects •
Variation in Subjects · /
Runtime Environment •
Implementation History •

Figure 7 Amount and diversity of knowledge.

be correct. So a great deal more attention has to be paid to the mn time en
vironment in the case of software.

The final dimension is the implementation history. It 's really not necessary
for doctors to know why we have two hands or why we've evolved die way we
have. But in the case of software, especially for maintenance, it 's very impor
tant to know what decisions were made and why they were made. So that is
another area in which software engineering at least appears to be somewhat
more complicated tiian medicine.

So die amount and diversity of knowledge is one reason that I think that
Software Engineering really is a very hard problem. So maybe it's not so bad
that we haven't demonstrated practical successes yet.

But I think there's another reason, one for which we may bear more re
sponsibility. And diat's that most of the research on AI applied to software en
gineering has been relatively narrowly focused, missing what I think are many
issues of practical importance. The focus, if you add up everything that's been
done, has largely been on algorithm design, and a little more on data stmcture
selection. But it tums out tiiat if you look at how various kinds of effort are
distributed, algorithm design and data stmcture selection are really only a small
part of programming. And progranuning in fact is only a small part of software
engineering. So it 's as if we're solving a very small part of a very small part of
the problem. The end result is that, if we successfully automated away algo
rithm design and data stmcture selection, there would be only a minimal im
pact on software engineering. To see this, let's look back at our two example
software projects.

Figure 8a shows various activities involved in producing, software for log
ging tools. The dots indicate major time-consuming activities and die checks
indicate activities which make significant use of algorithms and data stmctures.
You spend most of your time studying the tool and the physics, testing and
validating the functionality, measuring performance, and looking at existing
programs that you've written or tiiat other people have written. Algorithm de
sign will help you in writing signal processing algorithms and in writing code
for computations and input and output. Notice the mismatch—^most of the ef
fort in AI applied to software engineering has been aimed at helping in ways
that are relatively inconsequential in this particular category of software.

658 Barstow

Studying tool and physics
Studying target machine and communication system

• Writing signal processing algorithms
• Writing code for computations and input/output

Testing and validating functionality
Measuring performance
Smdying existing algorithms

8a Logging tool software.

• Studying tax law
Designing overall system stmcture

• Designing data base and communications systems
• Writing code for calculations and input/output

• Testing components and complete system
• Studying existing programs
• Conununicating with colleagues

8b Tax Return software.

Figure 8 Importance of algorithms and data structures. The dots indicate
major time-consuming activities and the checks indicate activities which make
significant use of algorithms and data structures.

We can say the same thing about writing tax software (Figure 8b). A very
large part of your time is spent smdying die tax law, conununicating with your
colleagues, looking at other programs, and testing the various components of
the complete system. Algorithm design and data stmcture selection are going to
help a bit in designing data bases and communication systems, and in writing
code for calculations and input and output. So once again, we see that the bulk
of the effort has gone into activities tiiat are relatively inconsequential.

2.7 Major Research Issues
So, if tiiat's the case, what are the consequential research issues? For program
ming-in-the-small, I 'd like to suggest three. One is the representation of
domain knowledge. You remember the number of times, in Figures 1 and 2,
tiiat there was a little bubble diat showed somediing about tiie domain in those
various activities. I think the best plan of attack is to build several systems that
are domain specific and that actually work in practical situations, and then to
get down to the fundamental issue here, which is, how do you represent
domain knowledge, for use by a programming or software engineering system,
in a way that's domain independent? The second issue relates to techniques for
controlling search, especially m the transformational paradigm. We have had a

Chapter 16 AI and Software Engineering 659

little bit of progress on those, but the space is so huge here that it's a very
critical issue. The third issue involves representing the implementation history.
How do you represent, in some kind of useful way, the design decisions, the
implementation decisions that have led from a specification down to a pro
gram? Now, the early transformational systems represented that as a sequence
of transformations. But a sequence of a thousand transformations is not a very
usefiil way to represent tiiat information. There has to be more stmcture to it.
So the question is, what kind of stmcture can we impose on that kind of repre
sentation? Now, I was being critical a few minutes ago about the application of
AI to software engineering. In fact, all these issues are being addressed in one
way or another, so the situation isn't quite as bad as completely ignoring the
major issues.

On the other hand, it unfortunately is the case that the research issues re
lated to programming-in-the-large have been almost totally ignored. So here
are some issues that are ripe for working on and you don't have to worry about
someone having solved them already. First, the representation of domain
knowledge: Again, just as in the case of programming-in-tiie-small, it 's a major
issue. Here the question is, can you develop techniques to represent what you
know about a domain as a resuh of doing a requirements analysis? There's
been a little work on some relatively small examples, but it 's certainly a major
issue that we ought to be able to resolve, or that we ought to at least attack.
Second, what are good techniques for describing large systems? At present we
have a few techniques, such as the plan representation, for describing small
programs. Can we find reasonable techniques for representing large systems
and the interactions among the various components, in some kind of manage
able way?

A tiiird and related issue is, can we represent, again in a manageable way,
the design history of large systems? This is to me the single most important
problem. So if you want to hit something, if you want to solve a problem with
high impact, this is die one I would suggest you look at. How do you represent
the design history of very large systems? And I have no idea, no clue at all,
about how to go about it. I hope one of you can come up with a clue. Finally,
there are models of collaborative work. Especially in programming-in-the-
large, you spend a lot of your time just talking with people. So, to the degree
that we can develop models of collaborative work, that ought to help in the
area of progranmiing-in-tiie-large, but I don't see it as being substantially
different from models of collaborative work in other areas [Association for
Computing Machinery, 1986; Stefik et al., 1987].

2.8 Practical Experimentation
In order to achieve practical results, one guideline in addressing these issues is
to build experimental systems in practical simations. If there was a failing in

660 Barstow

the first decade of work on AI applied to software engineering, it was that we
weren't following this guideline. We thought programming was writing little
algorithms, like they taught us in school. That's not what programming and
software engineering are all about. So we really have to look at realistic, prac
tical situations, in order to make sure that we're addressing the right sorts of is
sues. So here are a few suggestions about tiie kinds of systems that I think are
ripe for attacking. Domain specific automatic programming systems: I'll give
you an example of one of those in a minute. Very high level language com
pilers: The REFINE^ system being marketed by Reasoning Systems is an ex
ample based on the transformational implementation paradigm [REFINE Users
Guide, 1985]. Program library manager: Software reuse is a hot topic diese
days in discussions of software productivity. One of the problems in reuse is, if
you have a large library, how do you find the piece that you want to reuse? So,
a manager that would help you find your way tiirough that library would cer
tainly be a valuable thing. Data stmcture selection advisor: A couple of data
stmcture selectors have been built, but they haven't really been tested in practi
cal situations, so I think that's ripe for doing. Project management advisor:
There is certainly a lot of expertise that project managers have, and that ought
to be able to be captured. Finally, a maintenance advisor for a specific system:
It's important to notice that qualification for a specific system. I've heard
people suggest that you ought to be able to build a maintenance advisor. After
all, if maintenance and evolution is a major cost area, and you have people
who do maintenance and evolution, then you ought to be able to build an advi
sor, using standard mle-based expert systems techniques. I think that's folly, at
least to think that you could build one to work in general. Because in fact, a lot
of die knowledge that die good maintainers and evolvers have is knowledge
about the details of the specific system that they are maintaining and evolving.
But that suggests that perhaps you could build one for a very specific system.
So find a system that you think is going to have a long lifetime, a system that
comes witii some people who are good at maintaining and evolving it, and try
to codify their expertise.

2.9 ΦΝΙΧ
Now, just to illustrate one of these, I want to describe a project tiiat we're
working on at Schlumberger-DoU Research. It's a project we call ΦΝΙΧ, a
domain-specific automatic programming system for software that controls and
records data from oil well logging tools [Barstow, 1985a, 1985b]. In fact, that's
the very first example I showed you earlier. There are two basic goals. One is
to enable a user, and you can think of a tool designer here, to describe a

1 REFINE is a trademark of Reasoning Systems, Inc., Palo Alto, Califomia.

Chapter 16 AI and Software Engineering 661

problem in terms that are natural to him or her. The odier goal is automatically
to write software that is robust and efficient enough for routine use, because
we want to put the software out on a tmck and log a well with it. And that, I
think, is a very valuable attribute of our efforts, because it gives us a kind of
reality check.

Now, it tums out diat logging software is rather interesting computation
ally. It's a mixture of value- and behavior-oriented computations. There are
real-time constraints, due both to the communications systems and the physics.
These are non-terminating programs. Most of the formal definitions of auto
matic programming say that the specifications are going to be satisfied when
the program halts. If the program halts in our case, the specifications are
without doubt not satisfied. There are concurrent constmcts in our target archi
tecture, so we get a chance to look at a bit of parallelism. And it 's clearly a
case of programming-in-tiie-small. This, at least, gives us a little bit of hope
that we might be able to have some success, I think. And one of the other
things that I like about logging software is that it's a special case of a more
general class of software, namely device-control software.

There are five basic features to our approach. First, we're separating the
total process into a formalization process and an implementation process, a
ratiier standard type of separation. The formalization process we're imagining
to be interactive, with the system possessing a significant amount of knowledge
about the domain, in particular, knowledge about the tool in the form of a
model of die device.

We specify software by what we call stream expressions. We model the
interaction of the software with its extemal environment in terms of temporal
sequences of values called streams, and a specification is a statement of con
straints on the input and output streams. We're using a transformational ap
proach with search control based on a certain kind of performance measure. In
our case, it 's not a measure of the absolute cost of something, because these
programs are supposed to mn forever, so their absolute cost ought to be in
finite. Rather, we're looking at a measure of the load that they put on the pro
cessor as the guideline for search control.

That's about all I 'm going to say about ΦΝΙΧ here. We haven't logged a
well yet, so we certainly haven't demonstrated practicality, but I 'm hoping that
some time in the not-too-distant fumre, we will be able to do that.

2.10 Review
Let's see what ground we've covered in Part II. I think tiie important thing
here is to see tiiat research on AI applied to software engineering has had vir
tually no demonstrations of practical value. And it 's important for us to under
stand why. In part it's because software engineering is a harder problem, I
think, than others that have been addressed somewhat more successfully with

662 Barstow

AI techniques, and in part because the research has been narrowly focused. I
think that is changing. We're beginning to understand what we have to look at
in order to have a practical impact on software engineering. I 'm optimistic that
we'll have more results in the future.

Part III

Now let's go on to Part III, where I'd like to look at what die impact of all diis
might be on software engineering. But first let's think about what the prospects
are for practical results. I'd like to do this by analogy. If you look back at the
history of mle-based systems, the first ones were built around 1970, for ex
ample, Mycin [Shordiffe, 1976]. The first, what I would call solid, practical
use of die technology was around 1980 widi XCON (dien called R l) [McDer
mott, 1981], and depending on whose publicity you look at, it seems they're in
widespread use, and have been for a couple of years. So let's say that there's
something like a 15-year gap between experimental systems and widespread
use.

Now, in the application of AI techniques to software engineering, if we
could have started spanning diat 15-year gap last year, we ought to have wide
spread use in 2(X)1. For programming-in-the-small, I 'm actually a little bit
more optimistic than tiiat. I think we are close to having some experimental
systems, things like ΦΝΙΧ that we're working on, or the REFINE system, or
work at ISI [Balzer, 1985], AT&T [Kelley, 1987], Mitre [Brown, 1985], and
several other places [Prywes et al., 1979]. Any one of these may turn out to be
a good experimental system in a practical situation. I tiiink there's good hope
of having some actual use in practical situations sometime in the 1990s. If so,
maybe before the next century we will have relatively widespread use of pro
gramming support systems based on AI for programming-in-the-small.

I 'm considerably more pessimistic about programming-in-die-large. I think
the earliest that we can hope for any kind of experimental system in practical
situations is the 1990s, and I hope I 'm not being too optimistic in saying that. I
think the issues are just extremely difficult, and that's why I want to stress
again that there is a single issue on which, if we could marshal a whole lot of
work on it, we might make some progress; that is, how do you capture the de
sign of a large system? And it's that issue that I think is either going to make
or break die work in diis area. But I certainly don't expect to see practical sys
tems by earlier than sometime in the next century.

But let's assume success and see what the impact might be. In terms of the
direct impact on software engineering, I think we're likely to gain a factor of
two or three in productivity, a few hundred percent, based on some simple
back-of-tiie-envelope calculations. Figure 9a shows what the impact of having
an automatic programming system might be on programming-in-the-small. On

Chapter 16 AI and Software Engineering 663

Specification

Decomposition

Implementation

Optimization

Testing

1 I Validation

(a) Automatic Programming on Programming'in'the'Small

Requirements Analysis ΒΙΙΙΙΙΙΙΙΙΙΙΙΙΜ Integration

Design | Maintenance & Evolution

Β Programming-in-the-Small

(a) Design History on Programming-in-íhe-Large

Figure 9 Direct impact of artificial intelligence on software engineering activities.

664 Barstow

the left is the same pie chart I showed you earlier. On die right is what I think
the effort might be if you had one of diese hypothetical automatic program
ming systems. One of the interesting things to see is that the specification
would probably be harder, and would take more effort, because you wouldn't
be able to get by with inadequate specifications. You'd be forced to make sure
they're adequate. So that would probably take more work. On the other hand,
decomposition and implementation and optimization ought to be substantially
helped. Testing really ought to go away—^if there's one thing we ought to buy
out of tills, it 's to get away from the need for testing. But validation, that is,
making sure you have the right program and the specifications are right, is not
likely to be affected at all. So we can see here a factor of two or three or so
overall.

Now, let's suppose someone's figured out how to represent the design his
tory of a large system, what might that do? Here again, you see the pie chart I
showed earlier. Requirements analysis is not likely to be affected at all. Design
might actually be speeded up, because a lot of design is a collaborative effort,
and if you have a formal representation of the thing you're designing, that
ought to help the communication process. So we can guess tiiat design might
be a little bit easier. The programming-in-tiie-small part is not going to be
helped at all. Integration is probably also not going to be helped at all. Main
tenance might be cut in half, because you have an explicit representation of all
those decisions that are die focus of your attention during maintenance and
evolution. So that's an area that ought to be helped. Overall, you can see that
you've gained a factor of about one-and-a-half on productivity. If you also
tiu-ow in an automatic progranuning system, tiien the programming-in-the-small
piece ought to go down a bit, as well as maintenance and evolution. So you'll
find again, that you get a factor of something like two or three.

Now, when I first put these together, I was rather disappointed. I wanted
to be able to say that you could get orders of magnitude improvement in pro
ductivity. And based simply on this kind of direct effect, I think that's not tme.
If we think that's tme, then we're deceiving ourselves.

However, the situation isn't quite that bad, I think, because there will be
indirect effects of having a sophisticated technology like this helping software
engineering. One indirect effect is that you'll be able to look at programs that
are now in the progranuning-in-the-large area, but think of them as program-
ming-in-tiie-small. And the effort involved in programming-in-the-small is sub
stantially less, so we ought to gain something there just because we can think
of some large problems as being small problems.

But more interestingly, I think die successful application of AI techniques
to software engineering activities will enable the use of profoundly different
software development paradigms. And diis is where I think die real gain in all
of diis is going to be.

Chapter 16 AI and Software Engineering 665

Let's look at a couple of examples. Let's think about what automatic pro
gramming would do for rapid prototyping. There's a lot of emphasis now on
building rapid prototypes of software systems in order to understand the re
quirements, to understand what it is that you want the system to do. Not how
to build it, but what it is you want it to do. Now, if we have automatic pro
gramming systems, we ought to be able to build those prototypes much more
rapidly, and dierefore do the requirements analysis much more rapidly; and in
addition, we ought to be able to convert to a final product more easily because
we have a formal representation of the specifications. We don't just have the
prototype, we also have the specifications for the prototype. And this in fact is
one of die effects that people using REFINE have noted. So there is some in
dication that the indirect impact may actually be happening.

As another example, think of what a design history would do for software
reuse. I mentioned before that one problem in software reuse is finding the
thing you want to reuse. The other problem is tiiat it isn't quite what you want.
It may be very close, but not quite. And what not quite means is that some im
plementation decisions were not made correctly, at least from your point of
view. There may have been hundreds or thousands of decisions made along die
way, but some of them, a few of them, are not the ones that you would have
made if you were writing die software in the first place. Now, normally that
means that you can't reuse the software, or you have to go through a great deal
of evolution on that software. But if we had a representation of the design his
tory diat allowed us to replay most of the development of tiiat software auto
matically, then all we would have to worry about are those few decisions that
were made in the wrong way. And therefore, it ought to be much easier to
reuse software that is similar, but not identical, to what is required.

3.1 Review
So let's review Part ΠΙ. I think diat practical results for progranmiing-in-the-
small ought to be achievable in the 1990s, and there's a lot of work now that
ought to get us there. But for programming-in-the-large, I think the practical
results are really very, very far away, not before tiie mm of the century. Fi
nally, the real impact of AI will not be directiy on software engineering in
terms of automating or supporting specific individual activities, but rather, in
directiy, by letting us use profoundly different paradigms.

4 Conclusion

Now let me pop up one more level and summarize what I've tried to say. First,
software engineering activities are knowledge intensive. They require substantial

666 Barstow

knowledge of the application domain and the target software itself, and AI
techniques ought to be able to help manage that knowledge effectively. But un
fortunately, past research has not demonstrated practical success in this area, in
part because of the amount and diversity of the knowledge, and in part because
the efforts have been relatively narrowly focused. For programming-in-the-
small, I think the time is right for substantial experiments in practical situa
tions. For progranuning-in-the-large, I think there are several major research is
sues, most importantiy, how to represent the design of large systems, that have
to be addressed before diere will be any practical demonstrations. And finally,
the real long-term impact of AI will not be on the individual activities, but
rather on the software development paradigms that it will let us use.

Note

For other discussions of the relationship between AI and SE, see Simon's pre
sentation at the Seventh Intemational Conference on Software Engineering
[Simon, 1986], Brooks's presentation at the 1986 Intemational Federation of
Information Processing Conference [Brooks, 1987], the special issue of IEEE
Transactions on Software Engineering [Mostow, 1985], the report on the
Knowledge-Based Software Assistant [Green et al., 1983], and several collec
tions of papers [Barstow et al., 1984; Biermann et al., 1984; Rich and Waters,
1986].

Acknowledgments

This paper is an edited transcript of a presentation at the Sixth National Con
ference on Artificial Intelligence, Seattle, Washington, July 17, 1987; based in
part on presentations at the IBM Thomas J. Watson Research Center, York-
town Heights, New York, October 30, 1986, and at the Ninth Intemational
Conference on Software Engineering, Monterey, Califomia, April 1, 1987. The
presentation and paper have benefited substantially from suggestions from Bob
Balzer, Paul Barth, Barry Boehm, Steve Fickas, Cordell Green, Sol Greenspan,
Elaine Kant, and Stan Vestal.

References

Association for Computing Machinery, 1986. Proceedings of the Conference
on Computer-Supported Cooperative Work, Austin, Texas.

Chapter 16 AI and Software Engineering 667

Balzer, R., N. Goldman, and D. Wile, 1978. Informality in program specifica
tions. IEEE Transactions on Software Engineering 4(1):94-103. Reprinted
in Rich and Waters, 1986.

Balzer, R., 1981. Transformational progranmiing: An example. IEEE Transac
tions on Software Engineering 7(1):3-14.

Balzer, R., D. Cohen, M. Featiier, N. Goldman, W. Swartout, and D. Wile,
1983. Operational specification as the basis for specification validation.
Theory and Practice of Software Technology, Ferrari, Bolognani, and
Goguen, ed. North Holland, Amsterdam.

Balzer, R., 1985. A 15 year perspective on automatic programming. IEEE
Transactions on Software Engineering 11(11): 1257-1268.

Balzer, R., 1987. Living in the next-generation operating system. IEEE Soft
ware 4(6):77-85.

Barstow, D., 1979. An experiment in knowledge-based automatic ^^o^dm-
ming. Artificial Intelligencene 12(2):73-119. Reprint Rich and Waters, 1986.

Barstow, D., 1982. The roles of knowledge and deduction in algorithm design.
Machine Intelligence 10, J. Hayes, D. Michie, and Y.-H. Pao, ed. Ellis Hor-
wood and Wiley, New York. Reprinted in Biermann et al., 1984.

Barstow, D., 1984. A perspective on automatic programming. AI Magazine
5(l):5-27.

Barstow, D., H. Shrobe, and E. Sandewall, ed., 1984. Interactive Programming
Environments, McGraw-Hill, New York.

Barstow, D., 1985a. Automatic progranuning for streams. In Proceedings of
the Ninth International Joint Conference on Artificial Intelligence, Los An
geles, CA, pp. 232-237. Morgan Kaufmann, San Mateo, Califomia.

Barstow, D., 1985b. Domain-specific automatic programming. IEEE Transac
tions on Software Engineering 11(11):1321-1336.

Bauer, F., Μ. Broy, W. Dosch, R. Gnatz, B. Krieg-Brückner, A. Laut, Μ.
Luckmann, Τ. Matzner, Β. Möller, Η. Partsch, P. Pepper, Κ. Samelson, R.
Steinbrüggen, Μ. Wirsing, and Η. Wössner, 1978. Programming in a wide
spectmm language: A collection of examples. Science of Computer Pro
gramming 1:73-114.

Bauer, F., Μ. Broy, W. Dosch, F. Geiselbrechtinger, W. Hesse, R. Gnatz, B.
Krieg-Brückner, A. Laut, Τ. Matzner, Β. Möller, F. Nicki, Η. Partsch, P.
Pepper, Κ. Samelson, Μ. Wirsing, and Η. Wössner, 1982. Algorithmic Lan
guage and Program Development. Springer-Verlag, New York.

Biermann, Α., G. Guiho, and Y. Kodratoff, ed., 1984. Automatic Program
Construction Techniques, Macmillan, New York.

Boehm, B., 1981. Software Engineering Economics, Prentice-Hall, Englewood
Cliffs, New Jersey.

Borgida, Α., S. Greenspan, and J. Mylopoulos, 1985. Knowledge representation
as the basis for requirements specifications. IEEE Computer 18(4):82-91.
Reprinted in Rich and Waters, 1986.

668 Barstow

Brooks, F. P., 1987. No silver bullet: Essence and accidents of software en
gineering. IEEE Computer 20(4): 10-19.

Brown, R., 1985. Automation of programming: The ISFI experiments. Techni
cal Report M85-21, MITRE, Bedford, Massachusetts.

Burstall, R. and J. Darlington, 1977. A transformation system for developing
recursive programs. Journal of the ACM 24(l):44-67.

Cheatham, T., J. Townley, and G. HoUoway, 1979. A system for program re
finement. In Fourth Internatioruil Conference on Software Engineering,
Munich, Germany, pp. 53-62. Reprinted in Barstow et al., 1984.

DeRemer, F. and Η. Krön, 1976. Programming in die large versus program
ming in the small. IEEE Transactions on Software Engineering 2(2):80-86.

Dijkstra, E. W., 1976. A Discipline of Programming. Prentice-Hall, Englewood
Cliffs, New Jersey.

Fickas, S., 1985a. Automating die transformational development of software.
IEEE Transactions on Software Engineering 11(11): 1268-1277.

Fickas, S., 1985b. A knowledge-based approach to specification acquisition
and constmction. Technical Report CIT-TR 85-13, Department of Computer
Science, University of Oregon.

Floyd, R., 1967. Assigning meaning to programs. Mathematical Aspects of
Computer Science, J. Schwartz, ed., pp. 19-32. American Mathematical
Society.

Green, C , 1969. Application of theorem proving to problem solving. In Pro
ceedings of the First Internatioruil Joint Conference on Artificial Intel
ligence, Washington, D . C , pp. 219-239. Morgan Kaufmann, San Mateo,
Califomia.

Green, C , 1976. The design of the program synthesis system. In Second Inter
national Conference on Software Engineering, San Francisco, pp. 4-18.

Green, C , D. Luckham, R. Balzer, T. Cheatiiam, and C. Rich, 1983. Report on
a knowledge-based software assistant. Technical Report, Kestrel Institute.
Reprinted in Rich and Waters, 1986.

Heidom, G., 1976. Automatic progranuning through natural language dialogue:
A survey. IBM Journal of Research and Development 20(4):302-313. Re
printed in Rich and Waters, 1986.

Hoare, C. A. R., 1969. An axiomatic basis for computer programming. Com
munications of the ACM 12(10):576-583.

Johnson, W. and E. Soloway, 1985. PROUST: Knowledge-based program un
derstanding. IEEE Transactions on Software Engineering l l (3) :267-275.
Reprinted in Rich and Waters, 1986.

Kant, E. and D. Barstow, 1981. The refinement paradigm: The interaction of
coding and efficiency knowledge in program synthesis. IEEE Transactions
on Software Engineering 7(5):458-471. Reprinted in Barstow et al., 1984.

Kant, Ε., 1983. On die efficient synthesis of efficient programs. Artificial Intel
ligence Journal 20(3):253-306. Reprinted in Rich and Waters, 1986.

Chapter 16 AI and Software Engineering 669

Kant, E., 1985. Understanding and automating algorithm design. IEEE Trans
actions on Software Engineering 11(11): 1361-1374.

Katz, S. and R. Zinunerman, 1981. An advisory system for developing data
representations. In Proceedings of the Seventh International Joint Confer
ence on Artificial Intelligence, Vancouver, British Columbia, Canada, pp.
1030-1036. Morgan Kaufmann, San Mateo, Califomia.

Kelley, V. E., 1987. Inferring formal software specifications from episodic de
scriptions. In Proceedings of the Sixth National Conference on Artificial In
telligence, Seattie, Washington, 127-132. Morgan Kaufmann, San Mateo.

King, J. C , 1971. Proving programs to be correct. IEEE Transactions on Com
puters 20(11)'

Manna, Z. and R. Waldinger, 1980. A deductive approach to program synthe
sis. ACM Transactions on Programming Languages and Systems 2(1):90-
121. Reprinted in Rich and Waters, 1986.

Manna, Z. and R. Waldinger, 1985. The origin of the binary-search paradigm.
In Proceedings of the Ninth International Joint Conference on Artificial In
telligence, Los Angeles, CA, pp. 222-224. Morgan Kaufmann, San Mateo,
Califomia.

McDermott, J., 1981. R l : The formative years. AI Magazine 2(2):21-29.
Mostow, J., ed., 1985. Special issue on artificial intelligence and software en

gineering. IEEE Transactions on Software Engineering 11(11).
Partsch, H. and R. Steinbrüggen, 1983. Program transformation systems. Com

puting Surveys 15(3): 199-236.
Prywes, N., A. Pnuelli, and S. Shastry, 1979. Use of a nonprocedural specifica

tion language and associated program generator in software development.
ACM Transactions on Programming Languages and Systems 1(2): 196-217.

REFINE Users Guide, 1985. Reasoning Systems, Inc., Palo Alto, Califomia.
Rich, C. and H. Shrobe, 1978. Initial report on a Lisp programmer's appren

tice. IEEE Transactions on Software Engineering 4(6):456-467. Reprinted
in Barstow et al., 1984.

Rich, C , 1981. A formal representation for plans in the progranuner's appren
tice. In Proceedings of the Seventh International Joint Conference on Artifi
cial Intelligence, Vancouver, British Columbia, Canada, pp. 1044-1052.
Morgan Kaufmann, San Mateo, Califomia.

Rich, C. and R. Waters, ed., 1986. Readings in Artificial Intelligence and Soft
ware Engineering, Morgan Kaufmann, San Mateo, Califomia.

Shortliffe, E. H., 1976. Computer-Based Medical Consultations: MYCIN, El-
sevier-North Holland, New York.

Simon, H., 1986. Whether software engineering needs to be artificially intel
ligent. IEEE Transactions on Software Engineering 12(7):726-732.

Smith, D., 1984. The synthesis of Lisp programs from examples: A survey. Au
tomatic Program Construction Techniques, A. Biermann, G. Guiho, and Y.
Kodratoff, ed., pp. 307-324. Macnüllan, New York.

670 Barstow

Smith, D., 1985. Top-down synthesis of divide-and-conquer algorithms. Artifi
cial Intelligence Journal 27(l):43-96. Reprinted in Rich and Waters, 1986.

Smidi, D., G. Kotik, and S. Westfold, 1985. Research on knowledge-based
software environments at Kestrel Institute. IEEE Transactions on Software
Engineering 11(11): 1278-1295.

Stefik, M., G. Foster, D. Bobrow, K. Kahn, S. Lanning, and L. Suchman, 1987.
Beyond the chalkboard: Computer support for collaboration and problem
solving in meetings. Communications of the ACM 30 (l) :32-47 .

Steier, D. and E. Kant, 1985. The roles of execution and analysis in algorithm
design. IEEE Transactions on Software Engineering 11(11): 1374-1386.

Swartout, W., 1983. Xplain: A system for creating and explaining expert con
sulting systems. Artificial Intelligence Journal 21(3):285-325.

Waldinger, R., 1969. PROW: A step toward automatic program writing. In
Proceedings of the First International Joint Conference on Artificial Intel
ligence, Washington, D.C., pp. 241-252. Morgan Kaufmann, San Mateo,
Califomia.

Waters, R., 1985. The progranuner's apprentice: A session with KBEmacs.
IEEE Transactions on Software Engineering 11(11): 1296-1320. Reprinted
in Rich and Waters, 1986.

Wile, D., 1983. Program developments: Formal explanations of implementa
tions. Communications of the ACM 26(11):902-911. Reprinted in Rich and
Waters, 1986.

Acknowledgments
and Figure Credits

Chapter 1

Fig. 1: B.S. Bloom "Advantages of One-to-One Tutoring," Educational Re-
searcfier, vol. 13, pp. 4-16. © 1984 with American Educational Researcher,
Washington D . C ; reprinted with permission. Figs. 6 and 7: J. Roschelle, "The
Envisioning Machine," J. Roschelle, Mental Models Qualitative Physics, and
Computer Simulations, unpublished; reprinted witii permission. Fig. 8: J.
Smith, "Altemative Reality Kit," ARK, unpublished; reprinted witii permission.
Figs. 9 and 10: J.S. Brown and R.R. Burton,"50P///JE:," unpublished; reprinted
witii permission. Fig. 19: W. Clancy "Conversation witii MYCIN," Transfer of
Rule-Based Expertise Through Tutorial Dialogue. © 1979 Ph.D. Dissertation,
Department of Computer Science, Stanford University; reprinted witii permis
sion. Fig. 20: W. Clancy "The Doctor as Teacher," Case Management for
Rule-based Tutorials, in Proceedings of the International Joint Conference on
Artificial Intelligence, © 1979; reprinted with permission. Figs. 21 and 22:
"Rephrased Conversation With Guidon," adapted from M. Richer and Clancy,
W., IEEE Computer Graphics and Applications, vol. 5, pp. 51-64,. © 1985 by
IEEE; reprinted with permission. Fig. 23: J. Anderson, Boyle, C , and Yost, G.
"Geometry Tutor," © 1985, Proceedings of the International Joint Conference
on Artificial Intelligence, Los Angeles, CA; reprinted with permission. Fig. 24:
J. Anderson and Reiser, B., "The Lisp Tutor," BYTE vol. 10, pp. 159-175. ©
1986, BYTE Magazine, Petersborough, NJ; reprinted with permission. Fig. 25:

671

672 Shrobe

C. Foss "Algebraland," 3rd International Conference on Artificial Intelligence
and Education p. 27. © 1987, Leaming Research and Development Center,
University of Pittsburgh; reprinted with permission. Figs. 26 and 27: J. HoUan,
E. Hutchins, and L. Weitzman, "STEAMER Icons" AI Magazine, Sunmier. ©
1984, published by the American Association of Artificial Intelligence; re
printed with permission. Figs. 28 and 29: D. Towne, A. Munroe, Q. Pizzini,
and D. Surmon, "IMTS Icons," Abstracts of the Third International Conference
on Artificial Intelligence p. 54. © 1987 by the Leaming Research and Develop
ment Center, University of Pittsburgh; reprinted with permission. Figs. 30-32:
J. Bonar, R. Cunningham, and J., Schultz "Economics Tutor," "OITICS
Tutor," "Electronics Tutor," Proceedings of the Eighth Annual Conference of
the Cognitive Science Society. © 1986 by the Cognitive Science Society; re
printed widi permission.

Chapter 3
Fig. 3: Alker, H.R., Jr., Lehnert, W.G., and Schneider, D.K. "The New Testa
ment in a Plot Unit Graph" in Graziella Tonfoni, (ed.). Artificial Intelligence
arui Text Uruierstanding: Plot Units arui Summarization Procedures, Quaderni
di Ricerca Lingüistica; permission pending. Fig. 4: Dyer, M. "Knowledge De
pendency Graph," Encyclopedia of Artificial Intelligence. © 1987 by John
Wiley and Sons, Inc; reprinted widi permission. Fig. 16: Lehnert, W.G.
"Semantic Memory vs. Episodic Memory," from a special issue on Meaning
and Mental Representations, edited by Umberto Eco, Marco Santambrogio, and
Patrizia Violi. VS 44/45, pp. 155-179. © 1987 by Indiana University Press; re
printed with permission. Fig. 17: Reisbeck, C. and Martin, C. "Direct Memory
Access Parsing," in Riesbeck and Kolodner (eds.). Experience, Memory and
Reasoning, Hillsdale, NJ: © 1986 by Lawrence Erlbaum Publishers; reprinted
with permission.

Index

ABACUS, 259, 286
ABEL, 368-75
Abstraction

in CADR, 564-65
integrating, in CLOS, 621
in model-based diagnos
tics, 336-37
and number representation,
288
procedural, progranuning
paradigm and, 620
in proof discovery, 521
qualitative simulation and,
242
in searches, 203, 216, 217-
19
stmcuiral, 288-89
system dynamics, 262

Access, lexical. 111
ACE, 376
Action

concurrent, in temporal rea
soning, 423
defined, 174
instantaneous, in temporal
reasoning, 422
reasoning about, 173-93
representing, 174-79

in multiagent domains.

183-86
STRIPS representation of,
177-79
synchronization, in multi-
agent planning, 188-89

Activation, spreading, in sen
tence analysis, 111-14, 127

ADA, differentiation in, 546
Adams, Emest, 410
Address space, in symbolic

computing, 550, 562
ADEPT, 74, 287
Agency, solution in terms

of, 90
AIM. See Artificial Intel

ligence in Medicine
AI. See Artificial intelligence
Algebra

machine tutor for, 27-28,
36
symbolic, 252

and causal ordering, 271,
273n
place vocabularies and,
275
qualitative physics and,
240

Algebraland, 27, 36

Algoritíun
A*, 213-16, 224

iterative-deepening
(IDA*), 214-15, 216,
223-24
real-time (RTA*), 225-26

alpha pruning, 225, 230
alpha-beta pruning, 220-
22, 230, 231
best-first search, 213
clinical (flow-chart), for di
agnosis, 347, 348
design of, in software en
gineering, 657
deterministic, for sorting,
200
DFID, 208
EBG, 64, 65-67, 74
EGGS (Explanation Gener
alization using Global Sub
stitutions), 64, 65-67, 74
goal regression, 64
Huet Unification, 498
intersection search, 96
Knuth-Bendix. See Com
pletion, Knuth-Bendix
minimal path, 92
narrowing, 502
PIP diagnostic, 363

673

674 Index

propagation, 65
Rete. See Network, Rete
search, 200

efficiency of, 202-3
minimax, 219-20
parallel, 229-30
problems for, 198-99

:allocation
in CLOS, 630

in Smalltalk-80, 635
Altemate Reality Kit

(ARK), 10,11
Alto, 563
Ambiguity, qualitative, 242,

247, 252
Amdahl, Gene, 205
Analogy

and EBL, 70
in proof discovery, 517-21
Stmcture-Mapping theory
of, and QP dieory, 286

Analysis
causal, mechanisms and,
270
comparative, and qualita
tive physics, 243
decision, for medical diag
nosis, 347
nonstandard, special pur
pose prover for, 517
perturbation, 244n
qualitative spatial, 249-257
sentence

"build-and-store" ap
proach to, 120
in knowledge-based natti-
ral language, 103-14
and memory, 120-23
"record-and-store" ap
proach to, 120-22

Annual Review of Computer
Science, 197

AR (automated reasoning).
See Deduction, automated

Arc consistency, discussed,
228

Architecture
bite-sized, in machine tu
tors, 28

for embedded planning sys
tems, 189, 191
for Hitech, 223
in NLI, 141^8

differences among, 147-
48

symbolic computing, 545-
610

ARF, 350-52
Argument, monotonicity,

449
Arithmetic, in qualitative

physics, 258
ARK. See Altemate Reality

Kit
A R T , 638
Artificial intelligence (AI)

for medical diagnosis, 347-
76
procedural nonmonotonic
ity in, 449-50
search in, 197-233
techniques of, for software
engineering, 641-66
types of reasoning in, 439-
40

Artificial Intelligence in
Medicine (AIM), 348-49,
375-76

Assumption
class-wide, 267
closed world (CWA), 259,
266, 288

DB and, 442, 451,461
and nonmonotonic reason
ing, 451-53,473
and procedural negation,
449

simplifying, in qualitative
physics, 289

Assumption, STRIPS, 179
ATMI, 281

ATMS. See System, assump
tion-based tmth main
tenance

ATP (automated theorem
proving). See Deduction,
automated

A T R A N S , primitive, 107

Attachment, in semantic in-
teφretation, 155-57

Augmentation, disjunctive,
60, 61-62, 63, 66, 67

A U R A , 522

Aurora, 6 0 3 ^ , 610
Axiom

complex, to describe ac
tion, 186-88
frame. See Frame
independence, 187

Backgammon, search in, 198
Backtracking

in constraint satisfaction
bmte-force, 227
intelligent (heuristic),
227-28

dependency-directed, 228
heuristic. See Backtrack
ing, in constraint satisfac
tion
parsing and, 150

Backward chaining. See
Chaining, backward

Balloon, story about, 86, 88-
89, 96-97, 98-102

Bandwidtíi, 586, 601, 604
Baseball system, EBL ele

ments in, 68
BBN Butterfly. See Butterfly
B D D S , 358

Behavior
diagnosis from, 443
and diagnostic hypothesis
discrimination, 326-27
in model-based reasoning,
306, 307-8

Belief
function, as probability of
provability, in D-S theory,
4 0 3 ^
in planning systems, 191,
193
updating, 398

Belle machine, for chess,
223

Bell Laboratories, 223

Index 675

Benchmark
Boyer, 550
Gabriel, 550, 575

BIBOP, for data typing, 556-
58, 563

Birds, flying, 448-49, 450,
455, 459-60, 470-71
and plausible reasoning,
441

Boltzmann Machine, 607-8
BORIS, 93-95
Botdeneck, knowledge-ac

quisition, 73
Bounds propagation, in ex

tensional systems of evi
dential reasoning, 391

Boyer-Moore Prover, 525
Bridge tutor, 37
Butterfly, for parallel com

puting, 600, 607, 603-4

clause-compiling in, 504,
506
differentiation in, 546

Cache
consistency of, in Aurora,
604
snoopy, 593, 600, 601, 602

CADR, 563-67
cycle time in, 569
garbage collection in, 568,
572
uniprocessing and, 580

CADUCEUS, 365, 375
Calculus

certainty factors, 409
mies in, 386-87
and uncertainty, 385

Dempster-Schafer, 385
incidence, in evidential rea
soning, 408-9
predicate, 19, 65, 72

and EBL, 54, 68
qualitative, infinitesimal
values and, 258
relational, as query lan
guage, 135
situation, 176-77, 249

and EBL, 72
proof procedures and, 500
and temporal reasoning,
420, 421

typed lambda, 498-99, 525
Candidate

generation of, in GDE, 323
in model-based reasoning,
defined, 306

Candidate set, and medical
diagnosis, 364

CARPS, 246
Case, in temporal logic

first-order, 429-32, 433
propositional, 428-29, 433

CASNET/Glaucoma pro
gram, 348, 376

Causal chain, constmction
of, and inference genera
tion, 97

Causality
in Bayesian networks, 395-
97
in qualitative physics, 262,
269-72
in representing action, 186-
87
Yale shooting problem
and, 435

CF. See Language, context-
free

CG5. See KLAUS Auto
mated Deduction system

Chaining
backward (regression), 24,
55

in planning, 181-82
in searches, 209-10

forward (progression), 24
clause-compiling and, 507
in parallel computing,
588-604
in planning, 181

Change, reasoning about,
420-36

Change-indicator, 421
CHAT-80, 145, 148, 156, 158
Checkers, search in, 198,

230

Chess
machines for, 231
search in, 198,211,219,
223

CHF, 376
Children, stories for, and

natural language under
standing, 84, 86

Chip, Ivory. See Ivory
Circuit, electronic, machine

tutoring on, 10-14
Circumscription, 410

minimality in, and nonmon
otonic reasoning, 457-61
as nonmonotonic logic, 434
pointwise

semantics of negation
and, 461
as solution to die Yale
shooting problem, 435

Class
in CLOS

defining, 626-31
initial, 629-650
slot options m, 630-31

variables of
in Loops, 633-34
in Smalltalk-80, 635

Claissification, heuristic, in
medical diagnosis, 358, 358

Clause-compiling, in auto
mated deduction, 503, 504-
8

CLM. See Compact LISP Ma
chine

CLOCK, 275-76, 290
CLOS. See Common LISP

Object System
Closure, in Common LISP,

625
Clustering, and Bayesian

network loops, 400, 401-2
Cocomo model, of disuibu-

tion of effort, 646
Coherence, in symbolic com

puting, 546, 584, 587, 600
Collaboration, models of,

for software engineering,
659

676 Index

Combination, Dempster's
Rule of, 406

Combination function, user-
specified, in extensional
systems of evidential rea
soning, 391-93

Common LISP, 555, 629
Common LISP Object Stand

ard, 564
Common LISP Object Sys

tem (CLOS), 619-39
defining classes in, 626-31
design of, influences on,
633-38
functions in, 621-26
implementation of, 631-33

Common LISP Object Sys
tem (CLOS), integration of
programming paradigm
and, 619

Common LISP Object Sys
tem (CLOS), mediods in,
621-26

CommonLoops, program
ming environment of, 638

Compact LISP Machine
(CLM), 567, 580, 581

Compiler, 135, 660
Completeness

in modeling, and model-
based diagnostics, 340
in proof procedure, 493,
494-97

Completion, Knuth-Bendix,
501-2, 523, 524

Component, in model-based
reasoning, defined, 306

Composability, and qualita
tive state vectors, 261-62

Computers, power of, and
machine tutoring, 40

Computing, symbolic
applications for, 546
architectures for, 545-610
characteristics of, 550-51
described, 545, 546-53
desiderata for, 551
example of, 546-47
history of, 554-83

new developments in, 605-
10
object-oriented viewpoint
in, 552-53, 554, 555-56
parallelism in, 584-604

Concept
acquisition of

in EBL, 54-57
in SBL, 50-54

description of, 52-53
refinement of, 71

Conceptual Dependency, 90,
97, 107

Concretion, mechanism for,
109, 116

Conditional, subjunctive, in
conditional logics, 471-72

Conditioning, and Bayesian
network loops, 400, 401

Conditions, quantity, in
processes, 266

Conflict resolution
in OPS-5, 620
in parallel computing, 588,
594

Conflict set, 588
Conjecture, poverty, in qual

itative physics, 272, 273
Connection

causal, and simultaneity,
184
method of (matings), in
Resolution, 497

Connectionism
and EBL, 70
and leaming, 609-10
machines for, 606-10
in sentence analysis, 96,
111-14, 124

Connection Machine, for
parallel computing, 595-99

Connectives, in evidential
reasoning, 385

CONS, 563
Consistency, notion of, in

nonmonotonic reasoning,
411-12, 454

Constraint
backward, 209-10

inteφΓetatíon, and informa
tion, 139-40
propagation of, 262
real-time, in planning, 189
recording of, 228
suspension of, for diagnos
tic hypothesis testing, 315-
19, 333

Continuity, in qualitative
physics, 268-69

Control stmcture, trapping
as, in die 3600, 568-69

Convention, storage, objects
and, 552, 553

Correspondence
and monotonic function,
259
vocabulary, in semantic in-
teφΓetatíon, 154-55

Corroboration, diagnostic hy
pothesis testing and, 323-
26

Cost
of ABEL, 375
in diagnostic hypothesis
discrimination, 331-32
solution, in searches, 203,
205-6

Coupling, degree of, in par
allel computing, 584

Coverage, semantic, in NLI,
161-62

CSOR. See Reduction,
complete set of

CWA. See Assumption,
closed world

CYC, 521
Cycle cutset, 229, 401

Dado, 589-90, 592-93, 599
DART, for combining hy

pothesis generation and
testing, 319-20, 333, 339

Database (DB)
adaptation to new, and sys
tems architectures, 148
clinical, for diagnosis, 347
deductive, 442, 487
and NL, 134-66

Index 677

relational, 135, 442
dieories of, and plausible
reasoning, 442

Database management sys
tems (DBMS), and NLI,
133-66

DATALANGUAGE, 134
Data stmcture

selection of, in software en
gineering, 657, 660
temporary, in symbolic
computing, 550-51

Data type
BroOP, 555-58
checking, 557-58, 562,
563, 567, 568, 610
logic variable as, 555, 576

DBMS. See Database man
agement systems

DB. See Database
Deactivation, of hypotheses,

in medical diagnosis, 354
Deatii, nauiral, in temporal

reasoning, 423
DEC-10, 554-58 passim,

504, 562, 568
Decision making

clinical, AI for, 347
dieories of, for resource-
bounded agents, 192-93

Decision node, hierarchy of,
in medical diagnosis, 358

Decision tree
compared witii model-
based reasoning, 302, 305
and optimal probing, 329

Decomposition
in qualitative physics, 259
of search tree, in parallel
processing, 230

DEDALE diagnosis system,
257

Deduction
automated (automated rea
soning (AR); automated
theorem proving (ATP)),
483-531

described, 483, 486-87
formalization in, 488

history of, 489-503
in EBL, 73-74

Defeaters, defined, 389
Demodulator. See Rule, re

write
Dempster-Shafer (D-S)

dieory
and behef networks, 394,
402-9
compared with probability
dieory, 406-7
and constraint networks,
402-9

Depth-First Iterative-Deepen
ing (DFID), 207-209, 215.
See also Iterative deepening

Dereferencing, logic varia
bles, 578-79

Description, qualitative,
247, 252, 286

Design, qualitative physics
and, 243

Desire, in planning systems,
191, 193

Detachment, in the principle
of modularity, 386, 389,
390

Device
dependence, in model-
based diagnosis, 304, 332-
33, 334, 335
in model-based reasoning,
defined, 306
ontology, 262-65

DFID. See Deptii-First Itera
tive-Deepening

Diagnosis
circuit, models used in, 301
from first principles, 364,
443
in machine tutors, 3, 4
medical

in ABEL, 373-75
AI for, 347-76
differential

ABEL and, 373-74
of acute renal failure,
program for, 350-52

numbers of hypotheses
and, 352

hypothetico-deduction in,
349-50
models used in, 301
multiple disorders and,
362-75, 363-67, 367-75
sequential Bayesian, 350-
53
time in, 419

model-based reasoning for,
297-344, 309-32
qualitative physics and, 243
recognition in, 280
from stmcture and be
havior, 443

Diagnostics, compared with
model-based reasoning,
302-3

Diagram
influence, 397. See also
Network, Bayesian
metric, for spatial reason
ing, 272-75
qualitative influence, for
medical diagnosis, 352

Dialogue, in NLI, 164-66
Difterentiator, symbolic,

546-47
DIFF (routine), described,

547-48
Direct Memory Access Pars

ing. See DMAP
Director, 625
DISCIPLE system, 71
Discourse, modelling, for tu

toring, 10, 14
Discrepancy, in model-

based reasoning, defined,
298, 306

Discrimination tree, 588
D-Machine, 555, 563
DNiAP. See Parsing, Direct

Memory Access
Domain, multiagent, 183-^9
Domain compiler, for plan

ning, 284-85

678 Index

Domain independence, in
model-based reasoning, re
search issues in, 334, 335

Domain knowledge, 63
in machine Uitors, 7
in searches, 2 0 3 ^
in software engineering,
648, 658, 659

Domain theory
in the baseball system, 68
in EBL, 54, 59,71,72, 73-
74

"Doubting Thomas" system,
284n

Dynamics, qualitative, in
qualitative physics, 252,
253-72, 261, 272
place vocabularies and,
275-76

EBL. See Leaming, explana
tion-based

Economics, machine tutor
for, 28-29, 32

Effect
delayed, in temporal rea
soning, 422-23
desired (intended), in multi-
agent planning, 185
instantaneous, in temporal
reasoning, 422-23

Efficiency, 210
analysis of, in software en
gineering, 653

Eff̂ ort, distribution of, in
software engineering, 646

Electronics, machine tutor
for, 32,33, 37

Elimination, in generaliza
tion
identity, 58-59, 60, 66, 67
irrelevant feature, 58, 60,
66, 68

Ellipsis, in NLI, 160-61
EMACS, 555, 655
EMYCIN, 387
Engine, mle-based infer

ence, 549

Engineering
knowledge, 35
qualitative physics applica
tions in, 244, 246
software. See Software en
gineering

Environment, in ATMS, 408
ENVISION, 277
Envisioning machine, 8-10,

18
Envisionment, 248, 252,

261, 276-80, 281, 282,
283, 285
defined, 246
molecular collection on
tology and, 284

Equality, in automated de
duction, 500-503
subsystems, 517

E-Resolution, 501
ESPRIT, 524
Event

modelling, 174-76
sequences of, to represent,
185
type, defmed, 174

Evidence, correlated, in ex
tensional systems of evi
dential reasoning, 390-93

Explorer, 567
Explorer-n, 567
Expand, defmed, 204
Expansion, strongly

grounded, 466
Expansion tree, for anno

tated proofs, 521
Expert system

EBL and, 73
and machine tutoring sys
tems, 5, 20-24
shell, 39, 40

Explanation, 63
in machine tutoring, 19
and proof, 71,72
time in, 420

Explosion, combinatorial,
494, 497
in searches, 211

Expression, referring, in DB
queries, 158-60

Fables, narrative summariza
tion of, 93

FAIM-1 (Fairchild AI Ma
chine), for parallel comput
ing, 594-95, 610

Fairchild AI Machine. See
FAIM-1

Fault, bridging, and model
ing, 338, 341

Fault dictionary, compared
widi model-based reason
ing of, 302, 303

Fault masking, 324-26
FAUSTUS, 98-102, 118
Findings

nonspecific, in medical di
agnosis, 354-55
trigger, in medical diagno
sis, 355

Finite-State Automation
(FSA), 149

Havors, 563-64, 621, 628,
630, 631, 634, 638

Flow-chart (clinical algo
ritiim), 347, 348

Fluent, 184-85, 431
defmed, 175-76
propositional, 176

FOG, 257
FOL, 488
FOL. See Logic, First Order
Formalism, Bayesian

compared with D-S theory,
406-7
mies in, 386

FORTRAN, 546, 555
Forward chaining. See

Chaining, forward
Frame, 249

axiom, 177, 461-63
and minimality, 461-64
and nonmonotonic reason
ing, 444, 445-46
origin of, 67
and the persistence prob
lem, 463-64

Index 679

in temporal reasoning,
424, 433, 434-35
use of, in medical diagno
sis, 350

FROB, 249-52, 260, 261,
272-74, 277, 281

FSA. See Finite-State Auto
mation

FUG. See Grammar,
functional-unification

Function
analytic, in traditional
physics, 288
in CLOS, 621-26

generic, 622-26 passim
heuristic evaluation, 204,
212, 230-31
monotonic, in qualitative
physics, 258-59
in planning systems, 190
reasoning about, and medi
cal diagnosis, 364, 367

Future (abstraction), 601-3,
605

Galleries, belief netwoiics
as, 394

Games, two-player, heuristic
search in, 219-23

Garbage collection, in sym
bolic computing, 551, 556,
558-62, 610
ephemeral (EGG), in die
Symbolics 3600, 567, 568-
69, 572-73
incremental, in CADR, 566-
67
Mark-Sweep technique of,
558-59
object-oriented viewpoint
and, 552
"real time," 563
Stop-and-Copy technique
of, 559-62, 566

Gazing, in automated
theorem proving, 530

GDE. See General Diagnos
tic Engine

General Diagnostic Engine
(GDE), for combining hy
pothesis generation and
testing, 319, 321-23, 329,
333

Generalization
explanation-based, 55, 57,
59, 74

defined, 56, 58
timing of, 72-73
types of, 56-63

number, 60, 63, 66, 67
stmctural, 60-63, 64, 67,
68

open problems in, 70
taxonomy of syntactic, 56
temporal, 60, 62-63, 66, 67

Generalized set cover, in
medical diagnosis, 364-567

General Problem Solver, 199
Generate, defined, 204
Geometry

machine tutor for, 24, 25,
36, 37
special purpose prover for,
517, 525-26

Geometry Machine, 489
GIZMO, 268-69, 277
Goal

of diagnostic reasoning in
medicine, 348-49
as knowledge stmcture, 90
of maintenance, 184
of qualitative physics, 242-
43, 290
regressed, 182
subsumption, 90

Goal state, search and, 199-
200

GORDIUS, 281
GPS, 182, 554
Grain size, in parallel ma

chines, 584
Grammar

aggregate, 143n
augmented transition net
work (ATNG), 149-51

in LUNAR, 142

order dependence and,
151-52
parsing in, 150
mies application and, 147

definite-clause, 151
DIAGRAM, 153
extraposition, 151
functional-unification
(FUG), 151, 153
generalized phrase-stmc
ture, 153
lexical-function, 153
logic, unification in, 152
metamoφhosis, 151
modular, 151
phrase-stmcture, in NLI,
149
semantic {see also Gram
mar, aggregate)

attachment in, 155-56
ellipsis in, 160
and NLP architecture,
142-45

transitional (TG), 153-54
Graph

constraint, 229
data dependency support,
55
inconnectivity, in Resolu
tion, 497
requirement, for annotated
proofs, 521
search, 201

Graphoids, and the formali
zation of relevance, 394,
412-13

Greenbaum, S., tiieorem pro
ver written by, 524-25

GUIDON, 21-24, 35, 37, 40

HACKER, 68, 562
HADES (Highly Automated

Deduction System), 523-24
Hardware

of CADR, 564
of the Connection Ma
chine, 597-98
and programming language
limitations, 552

680 Index

for symbolic computing,
550, 562-63
of die Symbolics 3600,
569-70, 573-75
for two-player games, 223

Heterogeneity, in symbolic
computing, 549

Heuristics
intersection, in classifying
disease, 361
network-based, in con
straint satisfaction, 228-29
partitioning, and multiple
disorders, in medical diag
nosis, 363
problem-reformulation, 375
use of, in scoping, 157

Heuristics (Pearl), 197
Hierarchy

definitional inheritance, in
medical diagnosis, 356-358
of medical knowledge, in
ABEL, 368-570
multiple, in medical diag
nosis, 361-62, 364
taxonomic, in ABEL, 368

Hierarchy, in sentence analy
sis, 122

History
derivational, in analogous
proof discovery, 519-21
generation of, 277-80,
283, 285
Hayes's notion of, 246,
248, 249, 252, 261, 266
metric diagram for, 275
in qualitative physics, 276

envisionment and, 277-80
Hitech, 223, 229
HOL. See Logic, Higher

Order
Hom clause, and clause-

compiling, 506
How to Solve it (Polya), 217
Hyper-Chaining, 510, 513,

514, 529
Hypercube, interconnection

network as, 596-99
Hyper-Resolution, 510,511

Hypothesis
causal directness, 270
composite, in ABEL, 371-
73
determinism, parsing and,
150-51
discrimination among, in
diagnosis, 309, 326-32,
333
generation of, in diagnosis,
309-14, 319-23, 333
hierarchy of, in medical di
agnosis, 355-60
limiting, in medical diagno
sis, 352-60
problem space, 199-200
testing, in diagnosis, 309,
314-26

Hypodiesizer ("Doubting
Thomas" system), for
measurement inteφretation
and explanation, 284

IBM AT, 40
IBM. See Intemational Busi

ness Machines
Icon, in machine Uitors, 28,

29, 31
ICOT, 568
IDA*. See Algoridim, A*, it

erative-deepening
Idiom, analogy and, 115-16
Ignorance

chronological, as solution
to the Yale shooting prob
lem, 435
and nonmonotonic reason
ing, 471

Implementation
of CLOS, 631-33
in qualitative physics, 249,
282-83
representing history of, in
software engineering, 657,
659
transformational, in soft
ware engineering, 652-54

IMTS. See Intelligent Main
tenance Tutoring System

Incrementality
in symbolic computing,
551, 553
uncertainty and, 384

Independence, conditional,
uncertainty and, 384

Independent, in representing
events, 184

Indexing, DB, and clause-
compiling, 508

Individuals, specification of,
in processes, 266

Induction, constmctive,
generalization and, 58

Inequalities
and number representation,
253, 254-55, 288
and die relevance prin
ciple, 242
special purpose prover for,
517

Inference
and automated deduction,
487

large steps in, 510-16
bidirectional, in exten
sional systems of eviden
tial reasoning, 388
defeasible, 86
generating, 87, 96-98
in natural language under
standing, 85, 86-^7

INFERNO, 391, 392
Infinitesimals

and continuity, in QP
tiieory, 268-69
and order-of-magnitude
representation, 258

Influences, in processes, 266
Information

database, NLI and, 140
discourse, 140
encoding context-depend
ent, in evidential reason
ing, 382
encyclopedic, 140
illocutionary, 139-40
negative, in DB, 442

Index 681

sources of, and NLI archi
tectures, 147

Inheritance
clause-compiling and, 508
hierarchy of, plausible rea
soning and, 448
multiple

in CLOS, 628-29
in Smalltalk-80, 634-35

rapid type, 487
stmctured, in sentence
analysis, 107-11

Instance, in class defínitíon,
in CLOS, 626, 628, 630

Institute for Research on
Leaming (Xerox), 40

Intel 80386, 580
Intel iPSC, for parallel com

puting, 599, 600
Intelligent Maintenance Tu

toring System (IMTS), 28,
57,41

Intention, in planning sys
tems, 191

Interconnection, style of, in
parallel computing, 584

Interface
database query, 86
natural-language (NLI),
133-66
interpretation and, 138-41
open problems in, 162-66

Interiisp, 555, 563
Interlisp-D, 555, 633
International Business Ma

chines, Inc. (IBM), 154
INTERNIST-I, 348, 356, 357,

358, 363, 375, 376, 382
INTERNIST/MQR, 376
InteφΓetation

DBs and, 138-39
measurement, in qualita
tive physics, 281
inNL

discourse-level, 158-61
mediods for handling,
149-62
semantic, 154-58

IPL, 554

IPP, 54
IRL. See Language, interme

diate representation
IRUS, 145, 147, 148
Isomorphism, Curry-

Howard, 488, 498
ISSAC, 246
Iteration, in machine tutors,

39
Iterative deepening

and clause-compiling, 507
in searches, 214-215, 222.
See also Depdi-First Itera
tive Deepening
in theorem proving, 523

ΓΓΡ, 522
Ivory (chip), 580-83

for a shared bus, shared
memory multiprocessor,
601-3

Join trees, in Bayesian net
works, 402

KEE, 636, 638
KFOPCE, 468-71
Kinematics, qualitative

in qualitative physics, 252-
53, 272-75, 289

defined, 272
model for, 273-75

and qualitative state vec
tors, 261

KLAUS Automated Deduc
tion system (CG5), 522-23

Knowledge
acquisition of, and natural
language, 122-23
background {see also
Domain theory), and con
cept description, 53
causal, in medical diagnos
tic program, 368-570, 375
commonsense (general),
239, 246, 487. See also In
formation, encyclopedic
communications, in ma
chine tutors, 7

dimension of, in searches,
203-4
domain. See Domain
knowledge
programming, in transfor
mational implementation,
653-54
real-world. See Informa
tion, encyclopedic
representation of, 19, 35,
440, 445

EBL and, 70
in machine tutors, 3

in software engineering,
646-49

management of, 649-50
sources of, 138n
tacit, 241, 243

Knowledge stmcture, in nat
ural language, 88-95, 126-
27, 128-29

KODL\K, 98-102, 107,108,
109, 110, 127

KRL, 95, 450

LADDER, 143, 145, 162
Lambda, 567
Landmark, in qualitative

physics, 255-56, 283
Language

abstraction level of, for
symbolic computing, 551
Concept Dependency, 97,
107
constraint, 249
context-free (CP), 149
embedded, in symbolic
computing, 548^9, 550
intermediate representation
(IRL), 141^2, 147-48,
160
architectures and, 145-46

KODLaJC, 98-102, 107,
J08,109, 110, 127
naUiral. See Natural lan
guage
programming (PL)

limitations of, and hard
ware, 552

682 Index

NLI compared witíi, 135
query. See Query language
wide-spectmm, in software
engineering, 653

Law
Amdahl's, 205
causal, of actions, 186
simulation, composability
and, 261

LCF. See Logic for Comput
able Functions

Leaming
by adults, as explanation-
based, 49
and connectionism, 609-10
empirical. See Leaming,
similarity-based
explanation-based (EBL),
45-74

applications for, 73-74
formalisms for, 63-67, 72

deficiencies of, 66-67
history of, 67-69
intuitive specification for,
46-50
open problems in, 70-73
and SBL, 50-56, 70, 71

incremental, 53
knowledge-level, EBL and,
74
machine systems for, 286-
87
parameter, 230
and qualitative physics,
286-87
similarity-based (SBL)

domain theory in, 72
and EBL, 50-56, 70, 71
generalization in, 56

time in, 420
traditional machine, and
EBL, 46

Left-recursion, problems
with, in parsing, 150

LEX2, 68, 69
LIFER, 145
Limit point, discussed, 255,

256, 286

Linguistics, computational,
inteφretation in, 138

Linked-UR-Resolution, 510,
511,572

LIQUID
architecture of, 606
parallelism and, 605-6

Liquids
Hayes's axioms for, 261
process ontology and, 265,
266, 267

LISP 1.5, 554
LISP 1.6, 554
LISP 2, 554
LISP

architecture of, 545
and automated deduction,
487
BBN, 555
on tiie Butterfly, 600
for CADR, 564
clause-compiling in, 504,
505, 506
differentiation in, 547
integration of, with pro
gramming paradigm, 619
interpreter, 548
machine tutor for, 24-26,
28

evaluation of, 35, 36, 37
microprocessor. See Ivory
parallel, 599
parsing and, 150
programming. Future in,
601
SDS-940, 555

LISP Machine, 545, 555, 576
object-oriented viewpoint
of, 600
origins of, 563
storage conventions in, 552
type checking in, 562

LISP Machines, Inc. (LMI),
567

LLAMA logic, 499
LM-2, 567
LMI. See LISP Machines,

Inc.

Locality, in the principle of
modularity, 386, 389, 390

Locking, in Resolution, 497
Logic

autoepistemic, and non
monotonic reasoning, 465-
67
classical

first order. See Logic,
First Order
inadequacy of, for non
monotonic reasoning,
448-49

conditional, and nonmono
tonic reasoning, 471-72
default, and nonmonotonic
reasoning, 434, 454-57
deficiencies of, for uncer
tainty, 384
dynamic, 177

and temporal reasoning,
420, 421-22

epistemic, and nonmono
tonic reasoning, 465-71
First Order (FOL), 427,
428, 488

clause-compiling for,
506-7
and logic programming,
504
proof procedures and, 500
Resolution for, 490-93

fuzzy, and uncertainty, 385
Higher Order (HOL), 488,
493, 497-99
interval, and multiagent
planning, 188
intuitionist, 498, 499
LLAMA, 499
many-sorted, 499-500
modal, 177, 421

as nonmonotonic logic,
434
proof procedures and, 500
temporal, 177, 427-28

nonmonotonic, 453-54
and evidential reasoning
under uncertainty, 409-12

of occurrence, 277

Index 683

of persistence, as solution
to the Yale shooting prob
lem, 435
process, 177
propositional

dynamic (PDL), 421-22
Resolution and, 490

temporal, 420
developing, 425-33
fomi of, 427-28
proof procedures and, 500
sample, 428-32

Logic for Computable Func
tions (LCF) (theorem veri
fier), 525

Logic Machine, 489
Logic program, parallelism

for, 585
Logic programming

and automated deduction,
487, 503-4
parallel, developments in,
587-88
in PROLOG, 620
and symbolic computing,
576
techniques for, 567-68

Logic Theorist, 198, 554
Logic variable, 576-79
Loops

annotated values in, 637
in Bayesian networics, 400-
402
compared with CLOS, 621,
625, 629, 630, 631, 633-
34, 638
programming environment
of, 638

LP system, 68, 69
LUNAR, 141, 142-43, 144,

156, 158, 159
grammar for, 153
query range in, 147
semantic inteφretation in,
155

MA, implementation system,
for EBL formalisms, 63

Machine, 68020-based, 575

Machine leaming, analogy
and, 517

MACLISP, 554-55, 556-58
Macro-operator, in searches,

216, 217
MACROPS system, 67, 68
MACSYMA, 487, 549
Magnitude, order of, in rep

resentations for number,
253, 257-58, 288

Maintenance, advice on, in
software engineering, 660

Manhattan distance, as heur
istic evaluation function,
212, 216, 231

Manipulation, algebraic,
247, 280
and automated deduction,
487
special purpose prover for,
517

Map, coloring, problem of,
199

Margraf Karl Refutation Pro
ver (MKRP), 523

Marker passing, 96-103, 127
Mathematicians, pro

fessional, methods of, for
proof discovery, 521

MC, 277
MDX, 358, 382
Measurement, inteφreting,

and qualitative physics, 243
Mechanism

and diagnostic hypothesis
generation, 311-14
negation-as-failure, reason
ing pattems and, 449, 464
notion of, in qualitative
physics, 269-70, 272
reasoning about, 275-76
Script Applier (SAM), 88

MECHO, 246
MEDAS, 382
Medicine

compared with software en
gineering, 656-57
diagnostic reasoning in,
347-76

MEMORY, 96-98
Memory

episodic, and natural lan
guage, 118-23, 124, 125-
26
object-oriented viewpoint
and, 552
pipelining in, in the Sym
bolics 3600, 570
semantic, and natural lan
guage, 118-23, 124, 125-
26
virtual, in symbolic com
puting, 550

Message
as function call, in CLOS,
622
passing, belief propagation
by, 398-400
routing, in the Connection
Machine, 597
sending, in CLOS, 632

Metaclass, in CLOS, 626-
28, 629-630, 632-33, 635

Meta-object, in CLOS, 626,
636

Metaphor, analogy and, 116-
17

Mediod
m CLOS, 621-26, 629

combination of, 625-26
defauh, 622-23, 631
individual, 623-24, 631
lookup, 631-32
multiple, 623, 632
object, 624-25, 626
processing code for, 626

combination of, in Small
talk-80, 634-35
inverse (Maslov's), 489
scientific, in developing
machine tutors, 39

Metric (function), defined,
225

Micro VAX, for die Connec
tion Machine, 595

Microworld, as a teaching
tool, 39

684 Index

Minimality, notion of
in circumscription, 457-61
in CWA, 461
and the frame problem,
461-64

Minimization
causal, as solution to the
Yale shooting problem, 435
temporal, theory of, and
nonmonotonic reasoning,
464

Misbehavior, second prin
ciples of, in model-based
diagnostics, 337-38

MIT AI Lab, 562, 563
MITRE, 154
MKRP. See Margraf Karl Re

futation Prover
Model

causal, for medical diagno
sis, 350, 374
cognitive, 35, 39
defined, 301
domain

in PHINEAS, 287
and planning, 284-85
in qualitative physics,
242-43, 282, 283

elimination of. See Resolu
tion, SL
of events, 174-76
MD/PV, for qualitative
kinematics, 273-75
minimal, as formalization
of nonmonotonic reason
ing, 457-64
in model-based diagnostics

inaccuracy of, 339-40
research issues in, 334,
335, 338-44
selection of, 340-44

patient-specific (PSM), in
medical diagnosis, 371-
372, 373-74
qualitative, 286

large-scale organization
of, 288-89

qualitative process, 14,
281, 287

of reasoning, 35
recursive, 397
of states, 174-76

Modeling
causal, in machine tutors, 3
cognitive, 7, 24, 40
in numerical simulation,
241
qualitative

and intelligent tutoring
systems, 5, 6
process, 40

student, in intelligent tutor
ing systems, 268

Modularity, limits of, in ex
tensional systems of evi
dential reasoning, 389-90

Molecule, inference, 97
Moφhology, and inteφreta-

tion constraints, 139
Motorola 68000 processor,

591
Motorola 68030, 580
MultiLISP (language), 601
Multiple Instmction, Multi

ple Data stream (MIMD),
584

Multiprocessor, snoopy
cache, shared bus, 601-3

MUM, 382
MUNIN, 385
MYCIN, 21, 348, 376, 382,

385, 388, 392, 393, 662

Naive Physics Manifesto,
247-49

Naming, and monotonic
function, 259

Narrowing, in term rewrit
ing systems, 502

Narrowness, in numerical
simulation, 241

National Science Founda
tion, 40

Natural kinds, and nonmono
tonic reasoning, 444, 445

Natural language (NL)
advantages of, 134

and analogical reasoning,
114-17
interface. See Interface,
natural-language
and knowledge acquisition,
122-23, 124
knowledge-based, 83-129

development of, 84-87
semantics in, 103-14
syntax in, 103-14

and memory, 118-23
metric diagram for, 275
problems in

open, 124-25
for querying DBs, 136-38

qualitative physics and, 246
trends in, 123

Near PROLOG, 506
Negation, procedural, 449
Net, causal. See Network,

Bayesian
Network

Bayesian
defined, 395
and graphoids, 412-13
in intensional systems of
evidential reasoning, 394,
395^M)9
for medical diagnosis, 352

belief, 382
in intensional systems of
evidential reasoning, 393-
409

causal, in medical diagno
sis, 369
constraint

belief networks as, 394
and D-S theory, 402-9
inconsistencies in, 316

decomposition of, in evi
dential reasoning, 382
device, and qualitative
physics, 262
hypercube interconnection,
596-99
multistage switching (Ter-
anet), in Aurora, 603, 604
neural, for symbolic com
puting, 545, 608-9

Index 685

Omega, in die Butterfly,
600, 601
qualitative Markov, belief
networks as, 394
recursive transition (RTN),
149-50
Rete, 588-89, 590, 591,
592, 593
semantic, 19

Neurons, mimicking, for
symbolic computing, 607

New Argonne Prover, 506
New Havors, 625-26, 629

compared with CLOS, 636
New Testament, plot unit

graph of, 97-92
NEWTON, 246, 247, 252,

260, 261, 277
NLL See Interface, natural-

language
NLP. See Processing, natu

ral-language
NL. See Natural language
NOAH, 217
Node

generation of, 229
ordering, in searches, 222

Nonmonotoniclty, proce
dural, in AI, 449-50

Non-Von, 590, 591-93,
599, 610

Northwestem Chess 4.5, 208
Notation, in qualitative phys

ics, 253
NuBus, 567
Number, representation for,

287-88

Object, in object-oriented
viewpoint, defined, 552,
555-58

Object centered, in model-
based reasoning, defined,
307

Object LISP, 621, 625, 629,
638
compared with CLOS, 636

Objects
adding to LISP, 621

in CLOS, 624-25
funcallable, 625
representotion of, 628
widi state, 625

Occurs-check, in theorem
proving, 493, 5 0 3 ^ , 507,
523

Office of Naval Research, 40
Oil well logging, software

engineering for, 642-44,
657-58, 660-61

0[M], 257-58
ΟΝΉΟ, 488
Ontology

"contained liquid"
(Hayes), 283
future shifts in, 283-84
"molecular collection,"
283-84
"piece of sniff" (Hayes),
283-84
in qualitative physics, 260-
67

device, 262-^5, 266, 267,
283
process, 265-67, 283
qualitative state vector,
260-62

temporal logic, 432-33
Operationality

early notion of, 67
in EBL

formalisms of, 66-67
open problems in, 70

Operationality pmning, in
generalization, 60, 61, 66,
68

Operation, generic, 556
add, efficiency of, 575-576
in symbolic computing, ob
ject-oriented viewpoint
and, 552, 553

Operator
plan modification, in
embedded planning sys
tems, 190
primitive, defined, 200
in STRIPS representation,
177-78

STRIPS-type, 62, 72, 266
temporal, in modal logic,
177

OPS-5, 588-89, 591, 593,
594
programming in, 620

0ΡΉ08 tutor, 32, 33, 40
Optimistic concurrency, in

LIQUID, 605, 606
Ordering

causal, in QP dieory, 271-
72
constraints on, 184
value, 228
variable, 227

Odiello (game)
machines for, 231
search in, 198

Pair, kinematic, 275
Paradigm, in software en

gineering, 650-55
transformational, 658-59,
660, 661

Parallelism
degree of, 605
fumre of, 610
in production systems, 592
scale of, 584
style of, 584
in symbolic computing,
584-604

characteristics of, 584-85
Paramodulation, 501
Parsimony, principle of,

364, 365
Parsing

algorithms for, 150
Direct Memory Access
(DMAP), 120-22, 126
NL and, 150-51, 154

Pascal tutor, 37
Patil analysis, 397
Pathology, in minimax

search, 232
PATR-n, 153
Pattem recognition, for

medical diagnosis, 347

686 Index

PCL (portable LISP im
plementation), 621

PDL. See Logic, preposi
tional dynamic

PDP-1, 554
PDP-6, 554
Phase portraits, in qualita

tive description, 286
PHINEAS, 287
ΦΝΙΧ, 660-61, 662
PHLIQAl, 145, 148
Physics

commonsense
causal ordering and, 271
spatial reasoning in, 252

qualitative, 239-90
applications for, 241,
243^6
described, 240-46
goal of, 242-43, 290
leaming and, 286-87
open problems in, 287-90
pre-history of, 246-52
time in, 419

traditional, and qualitative
physics, 285

Pipelining
in the Ivory chip, 581
in parallel logic program
ming, 587

PIP. See Program, Present
Illness

Plan
constmctor, 189
executor, 189
as knowledge stmcture, 90
metalevel, 191
partial, 180-81, 193
reasoning about, 173-93
recognition of, in machine
tutors, 3
representing, 174-79
syntiiesis of, 179-83

PLANES, 143, 145n
Planner

general deductive, 180
(language), 578
nonlinear, 182
special-purpose, 182

temporal, 284
Planning

coordination in, 185-86
embedded system of, 189-
93
in machine tutors, 3, 19-20
multiagent, 183-89
qualitative physics for,
243, 284-85
reactive system of, 190-91
search as, 180-82
system of rational agents
as, 191-93
temporal generalization
and, 61-62
time in, 420

Plant monitoring, qualitative
physics and, 244

Plot Unit Graph Generator.
See PUCXJ

Plot units, as knowledge
stmcture, 90-92

PL. See Language, program
ming

Pointer
invisible, 564, 576, 578,
601-2
scavenger, 559
transport, 559

Port, in device ontology, 262
Port (event type), defined,

187
Postcondition, strongest

provable, in planning, 181
P-prims, 8
Precedence, relation of, in

CLOS, 629
Precondition

in processes, 266
weakest provable, in plan
ning, 181

Predicate
occurs, defined, 176
in situation calculus, 176

Prediction, time in, 419
Presupposition, in scoping,

157-58
Probability

conditional, and evidential

reasoning, 410-11, 412
of failure, in diagnostic hy
pothesis discrimination,
327, 328-29
theory of

belief networks and, 394-
402
as intensional formalism,
387
for medical diagnosis,
347, 350-53, 373, 375
and nonmonotonic reason
ing, 472

Probe, in diagnostic hypotiie
sis discrimination
guided, 326-27, 328
optimal, 329, 331

Problem
constraint-satisfaction,
heuristic search and, 198-
99, 226-29
Eight Queens, 198-99,
200, 209, 226
frame. See Frame
graph-coloring, 404-6
knowledge representation,
440
map coloring, 199
missionaries-and-can-
nibals, conventions and,
473
path-finding, search algo
rithms for, 198
persistence, frame problem
as, 463-64
qualification, in temporal
reasoning, 423, 433-34
quantifier scoping, 136-37
ramification, in temporal
reasoning, 424, 433
road navigation, 200, 212,
217, 231
Schubert's Steamroller,
499-500, 524
single-agent, searches and,
223-26
Traveling Salesman, 198
two-player games, search
algorithms for, 198

Index 687

Yale shooting, 434-35
frame axioms and, 462-63

Problem instance, described,
199

Problem solving
clinical, AI for, 348-49
EBL and, 46, 49, 74
in machine tutors, 24
methods of, and qualitative
physics, 253

Problem space
abstract. See Abstraction,
in searches
described, 199

Procedure generation, in
planning, 285

Process
continuous, in temporal
reasoning, 423
domain compiler and, 285
garden path, 114, 127
physical, qualitative phys
ics and, 243
in qualitative physics, 265-
67
qualitative (QP)

notation of, 253-54
dieory of, 244n, 271n

envisionment and, 277
and monotonic function,
258-59
and process, 266, 267,
269-70
and Structure-Mapping
theory of analogy, 286

in representing actions, de
fined, \S1'188
subroutinization, 68

Processing
natural-language (NLP),
133
in machine tutors, 3

parallel, 545
in heuristic searches, 229-
30

Processor, in Non-Von
as large processing ele
ment, 591

as small processing ele
ment, 591

Production system
in LISP, 621
m OPS-5, 621

Production System Ma
chine, for parallel comput
ing, 593-94, 601

Program
development environment
of, in symbolic computing,
551
library management for, in
software engineering, 660
Present Illness (PIP), 363
size of, 655
verification of, in software
engineering, 652

Programmer's assistant (par
adigm), in software en
gineering, 654-55

Programming
access-oriented, adding to
CLOS, 637-38
automatic

and automated deduction,
487
time in, 419

data-driven, in symbolic
computing, 547-48, 550
in-die-large, 642, 644-46

distribution of eftort in,
646, 647
experimental systems in,
662,664
knowledge used in, 648

in-the-small
described, 642-44
distribution of effort in,
646, 647
experimental systems in,
662-64
knowledge used in, 648
research issues for, 658-
59, 659

logic. See Logic program
ming
object-oriented

in CLOS, 621

in Smalltalk-80, 620
paradigm, described, 619,
620
procedural symbolic, in
L I S P , 620

procedure-oriented, in
C L O S , 621

sequential, future of, 610
Programming environment,

support for, in C L O S , 637-
38

Progression, in planning, 181
Progression. See Chaining,

forward
Project

Automated Physicist, 286-
87
Fifth Generation (Japan),
555, 568
Linguistic String, 153
management of, in soft
ware engineering, 660
Programmer's Assistant,
655
SRI Speech-Understand
ing, 153

P R O L O G , 19, 96, 152, 449-

50, 452-53, 461, 463-64
and automated deduction,
487, 496
clause compiling in, 504-6
compiler for, 555
D E C - 1 0 , 504, 555
logic programming and,
503-4, 567-68
logic variables in, 576-78
style of, 588
V S M and, 585, 587

P R O L O G Technology
Theorem Prover (PTTP),
506, 523

Pronouns, in database query
ing, 137, 138

Proof
annotated, in analogous
proof discovery, 520-21
checking, automatic, in au
tomated deduction, 486

688 Index

discovery, automated, 486,
508-21
explanation as, 55,57
guiding, in automated
proof discovery, 518-579
in machine tutoring, 24
manipulation of, and auto
mated deduction, 487-88
parser, for annotated
proofs, 521
representation of, and auto
mated deduction, 487-88
tree, search space as. Reso
lution and, 494-97

Proof Checking Number
Theory, 528-29, 530

Propagation, local, device
ontology and, 262

Propagator, temporal con
straint (TCP), 282

Property, of world states,
174-75

Proportionality, qualiuitive,
258-59, 266, 286, 288

Proposition
as type

and automated deduction,
498-99
distinguishing, in tem
poral logic, 432-33

PROSPECTOR, 382, 385
PROTHEQ, 506, 524
Prototypes, and nonmono

tonic reasoning, 444-45
Prototyping, rapid, for soft

ware engineering, 665
Prover

interactive, 486
"Natural Deduction," 489
resolution dieorem, 55
special purpose, 517
systems for

Argonne Laboratory, 522
AURA, 522
Bledsoe's, 526,527
Boyer-Moore, 525
Complete Sets of Reduc
tion, 510, 515
Greenbaum's, 524-25

HADES, 523-24
ΠΡ, 522
KLAUS Automated De
duction, 522-23
Margraf Karl Refutation
(MKRP), 523
New Argonne, 506
ΟΝΉ€, 488
PROLOG Technology
Theorem (PTTP), 506, 523
PROTHEQ, 506, 524
Semantically-guided Hier
archical (SHP), 527-28
Simplified Problem Re
duction Format (SPRF),
506, 524
VOYER, 530
Wu-Chou Geometry, 517,
525-26

PRS. See System, Pro
cedural Reasoning

PSI machine, 568
PSM. See Model, patient-

specific
Psycholinguistics, and natu

ral language, 127-28
Psychology, cognitive, infer

ence generation and, 87
PTTP. See PROLOG Tech

nology Theorem Prover
PUGG (Plot Unit Graph

Generator), 90-92
Puzzle

Eight, search in, 198, 201-
2, 206, 207, 210, 212, 216,
231
Fifteen, 211,216
solving, by automated de
duction, 485
tmditellers and liars, 485
Twenty-Four, 216, 224
Wise Man, 471

QLISP, 601
QL. See Query language
QMR, 285
QPE, 269, 277, 279
QP. See Process, qualitative
QSIM, 256, 277, 280

QUAL, qualitative physics
in, 254, 277

Quantity, spatial, formaliz
ing, 287

Quantity space, described,
255, 256

Quantization, 242
QUEL, 134
Query

elliptical, 137-38
interpretation, witíi NLI,
134
range of, and systems ar
chitectures, 147-48

Query language (QL)
compared witii NL, 134-35
in NLI, 163-64
and NLI architectures, 141

Quiescence, in searches, 222

R1.5€€XC0N
Ratio, likelihood, 392-93
RBT. See Recovery Boiler

Tutor
Reactivity, in planning sys

tems, 190-91
Reasoning

abductive, and nonmono
tonic reasoning, 473-74,
475
analogical, and natural lan
guage, 114-17
automated (AR). See De
duction, automated
case-based, for medical di
agnosis, 375
causal

in medical diagnosis, 373
in qualitative physics, 269

commonsense, causal
ordering and, 271
deductive, in AI, 440
deep. See Reasoning,
model-based
diagnostic

approaches to, 443
in medicine, 347-76
and nonmonotonic reason
ing, 474-75

Index 689

evidential
Bayesian networks and,
3 9 5 ^ 3
defined, 381
under uncertainty, 381-
413

from first principles. See
Reasoning, model-based
fuzzy

in AI, 439
and nonmonotonic reason
ing, 472

hierarchic, in medical diag
nosis, 357-60
inductive, in AI, 440
likelihood, and nonmono
tonic reasoning, 472
means-ends, in planning
systems, 179-80, 193
model-based, for diagno
sis, 297-344

altematives to, 302-6
characteristics of, 332-34
contraindications of, 305-
6
open problems in, 334-44
systems of, 300
tasks of, 298-302, 309-32

nonmonotonic, 439-76
formalization of, 450-72

consistency-based ap
proach to, 453-57
minimal models as, 457-
64
objections to, 472-75

motivation in, 440-46
pattems of, in AI, 439-40
plausible

and DB dieory, 442
flying birds as the canoni
cal example of, 441
nonmonotonic reasoning
as, 440^2

probabilistic, in AI, 439
qualitative, 62, 244, 245

and EBL, 72
for medical diagnosis, 375

spatial
and mechanisms, 275-76

metric diagram for, 272-
75
and qualitative kinemat
ics, 289
dieory of, 252

styles of, in qualitative
physics, 252, 253, 276-81,
282
temporal, 419-36

change-based, 420-24
for medical diagnosis, 375
nonmonotonic, 433-35
time-based, 425-33

Recognition, in qualitative
physics, 280-81

Recovery Boiler Tutor
(RBT), 14-17, 19, 36, 37,
40,41

Reduction
complete set of (CSOR),
501-3
Complete Sets of (proof
discovery system), 510,
515. See also Completion,
Knuth-Bendix; Rule, re
write

REFINE, 660, 662, 665
Regression. See Chaining,

backward
REL, 143
Relaxation

network, in sentence analy
sis, 111-14
symbolic, 262

Relevance, formalization of
in evidential reasoning, 382
and graphoids, 412-13

Replanning, monitoring,
189-90

Representation
of actions, 174-79
causal chain, in scripts, 88
knowledge. See Knowl
edge representation
of large systems, in soft
ware engineering, 659
multi-level, in medical di
agnosis, 369, 370

for number, 253-58, 287-
88
of plans, 174-79
of programs, 654-55
qualitative, 252, 287

for equations, in qualita
tive physics, 253, 258-59
in qualitative physics, 272

in temporal logics, 425-28
REQUEST, 154
Research, in natural lan

guage understanding
problem-driven, 85
technology-driven, 85-86

Resolution, 247
and automated deduction,
489-93

completeness in, 494-97
and HOL, 498
hyper, 497
set-of-support, 497
SL (model elimination),
497, 507

in numerical simulation,
241
problem of, 258

Rewriting (demodulation),
clause-compiling and, 507-
8

RISC processor, 580
Robot

task-achieving units in, 190
time in planning in, 419

Robotics, qualitative physics
and, 289

RTA*. See Algoritíun, A*,
real-time

RTN. See Network, recur
sive transition

Rubik's Cube, search in,
198, 199

Rule
applications of, 147
chain, 490
default, and certainty-fac
tors calculus, 409
Loops, 629
modus ponens, 489-90, 498

690 Index

multi-step
for annotated proofs, 521
building in, to automated
theorem provers, 529

NLI, and architectures, 148
production, in LISP tutor,
26
qualitative simulation, 261
Resolution, 490
rewrite, and equality, in au
tomated deduction, 501
STRIPS, 178
and systems architectures,
147
VE, 529

RUM, 382, 391
RUS parser, 147

SAM. See Mechanism,
Script Applier

SBL. See Leaming, similar
ity-based

Scaling up, in model-based
reasoning, research issues
in, 334-38

Scavenging
in CADR, 567
in garbage collection, 560,
561

Schemata, origin of, 67
Schlumberger Palo Alto Re

search, 594
Scope, relative, in semantic

inteφretation. See Scoping
Scoping, in semantic inter

pretation, 157-58
Script

as knowledge stmcture, 88-
89
origin of, 67

SDS-930, 554
Search

bidirectional, 210-11
binary, guided probe as,
327
Boltzmann Machine, 607
breadtii-first, 204-5, 207-9
bmte-force, 203, 204-11,
217-18

controlling, in software en
gineering, 658-59
deptii-first, 206-7
efficiency of, 202-3
heuristic, 203, 204, 211-16

defined, 211-12
open problems in, 229-33
reviewed, 197-233
mnning time of, 215-16

history of, in AI, 197-98
inference generation for, 97
intersection, 96-98
minimax, 219-20, 230

altematives to, as an
open problem, 231-33

minimin lookahead, 224,
225
optimal probing for, 329
parallel window, 230
planning as, 180-82
real-time single agent, 223-
26
selective, 232
tiieory of, 199
uniform-cost, 205-6

Search horizon, 224
Search tree, 201-2
Self-knowledge

concept of, 467-68
and nonmonotonic reason
ing, 467-71

Semantically-guided Hierar
chical Prover (SHP), 527-
28

Semantics
denotational, formalisms
and, 153
first-order case, 431-32
to guide proof, 517
in knowledge-based natu
ral language, 103-14
of nonmonotonic reason
ing, 461
propositional case, 429
usages, witfi NLI, 140-41

Sentence, reified, 427, 428
Set, active hypothesis, in

medical diagnosis, 353
SHAKEY, 190

Shooting, scenario. See Prob
lem, Yale shooting

SHP. See Semantically-
guided Hierarchical Prover

SHRDLU, 84, 85-86, 562
Signs, qualitative repre

sentation of, in qualitative
physics, 253-54

Simplified Problem Reduc
tion Format (SPRF), 506,
524

Simulated annealing, 607
Simulation

fault-model, for diagnostic
hypotiiesis testing, 314, 333
in model-based reasoning,
307
numerical, qualitative phys
ics and, 240-41
qualitative, 285

constraints on, 281
engineering design and,
244, 247
hierarchy in, 288
in qualitative physics,
243, 276-77

stochastic, and Bayesian
network loops, 400, 401
as a teaching tool, 39

Simulator
model-based, for diagno
sis, 311-14
qualitative, and implemen
tation, 282, 283

Simultaneity, in repre
senting events, 184

Single Instmction, Multiple
Data stream (SIMD), 584,
598

SIPE, 182
Situation (see also State),

logic of, 176-77
Slot

access to, in CLOS, 632-33
properties of, in Loops, 634

Smalltalk-80, 620, 625, 628,
630, 631,632
compared with CLOS, 634-
36

Index 691

programming environment
of, 638

SME, 286
SOAR, 73, 199
Software

reuse of, in software en
gineering, 660, 665
target, knowledge in, 648,
649

Software engineering
AI techniques and, 641-66

application of, 650-62
usefubiess of, 656-58

compared with medicine,
656-57
overview of, 642-50
paradigms in, 650-55
practical experimental sys
tem of, 659-60
practice of, 662-65
research issues for, 658-59

SOPHIE, 10-14, 19, 36, 313
Soundness, in STRIPS, dis

cussed, 178-79
SPRF. See Simplified Prob

lem Reduction Format
State (see also Situation)

modelling, 174-76
qualitative

heuristic search and, 283
and measurement inter
pretation, 281
in qualitative physics, 276
transition of, and continu
ity, 268-69

reachability of, 176
transition of, and envision
ment, 278

Statics, comparative, causal
ordering and, 271, 272

STEAMER, 37
qualitative physics and,
243-44, 245
tutor, 28,29, 30

Storage
compaction of, 558, 559
data typing and, 557-58

Stream expressions, in soft
ware engineering, 661

Strength, evoking, notion of,
in medical diagnosis, 355

STRIPS system, 67, 68, 177-
79, 182, 190,421,562

STROBE, 636, 638
Structure

chunked knowledge, 67
diagnosis from, 443
and diagnostic hypothesis
discrimination, 326
in model-based reasoning,
defined, 306
reasoning about, and medi
cal diagnosis, 364, 367
representation of, 306-7
of time, in temporal logics,
426-27

STUDENT, 246
Style, methodological,

characteristics of, 95
Subclassing, in CLOS, 622
Subcommittee, X3J13, 621
Subgoal, in searches, 216-17
Summarization, narrative,

93-95
Suspect, in model-based rea

soning, defined, 306
Symbolics 3600, 567, 568-

576
for the Connection Ma
chine, 595
cycle time in, 569-70
memory pipelining in, 570
object-oriented viewpoint
of, 580
tag processor in, 570-71,
573, 574
trapping confrol smicture
in, 568-69

Symbolics Inc., 567
multiprocessor work by,
600-604

Symmetry
in Aurora, 604
in connectionist machines,
610
in production systems, 593
in symbolic computing, 584

defined, 545-46

in VSM, 587
Symptom, uses of, in model-

based diagnosis, 302-3,
333

Syntax
first-order case, 430-31
of intensional systems of
evidential reasoning, 393-
94
and inteφretation con
straints, 139
in knowledge-based natu
ral language, 103-14
in NLI, 149-54
propositional case, 428-29

Synthesis
deductive, in software en
gineering, 650-51
plan, 179-83

System
assumption-based truth
maintenance (ATMS), 321-
22, 323, 329, 408
authoring, 39
automatic programming, in
software engineering, 660-
61,662, 664-65
extensional (production;
rule-based), 662

compared widi model-
based reasoning, 302,
3 0 3 ^
in parallel computing,
588-604

extensional (production;
rule-based), of evidential
reasoning, 382, 383, 385

compared with inten
sional systems, 385-86
computational merits of,
386-87
semantic deficiencies of,
387-93

frame, 549
Highly Automated Deduc
tion. See HADES
intensional, of evidential
reasoning, 382, 383, 385

692 Index

compared witíi exten
sional systems, 385-86
network representation
and, 3 9 3 ^

in model-based reasoning,
defined, 306
nonmonotonic, 74
parallel forward chaining,
588-604
Procedural Reasoning
(PRS), 191-92
procedure-based. See Sys
tem, extensional
production. See System, ex
tensional
mle-based. See System, ex
tensional
tmtii-maintenance (TMS)

in evidential reasoning,
408
McAllester-style, 64
plausible reasoning and,
447-48

System dynamics, 262, 263

T, compared witfi CLOS, 636
Tag bits, development of,

563
Tag processor, in tfie Sym

bolics 3600, 570-71, 573,
574

Task, distribution of, in
VSM, 586-87

Tax retums, software en
gineering for, 644-46, 658

TCP. See Propagator, tem
poral constraint

Teaching, mentor metfiod
of, 36

TEAM, 145, 148, 153, 156,
158

Teranet, 603, 604
Terminator, 510, 511
Test generation, in diagnos

tic hypotiiesis discrimina
tion, 329-31

Texas Instruments, Inc., 567
TG. See Grammar, U"ansi-

tional

Theorem
Cantor's, 498
Intermediate Value, 498
Stone Representation, 488

Theorem proving, 198, 210
automated (ATP)

See Deduction, automated
systems for. See Prover

EBL and, 74
mathematical, time in, 419

Theory
cognitive, and machine tu
tors, 38-39
commonsense, 241
confluence, 244n

mechanism in, 269-70
Davis's infinitesimal, 257,
258
D-S. See Dempster-Shafer
theory
formal

axiomatic, of physics, 240
for nonmonotonic reason
ing, 447^8

QP. See Process, qualita
tive, theory of
speech-act, time in, 419
of Topoi, 499

Theory Resolution, 510,
513,515,576, 523

Thinking Machines Corpora
tion (TMC), 595

Time, in AI. See Reasoning,
temporal

TMC. See Thinking Ma
chines Corporation

TMS, See System, tmtfi-
maintenance

TQA, 154
Transporting

in CADR, 567
in garbage collection, 560-
61

Trending, in machine tutor
ing, 17

Triangle Table, 67, 68
Troubleshooting (see also

Diagnosis), time in sys
tems for, 419

Tutor, machine. See Tutoring
Tutoring

intelligent systems for, 1-
41

barriers in, 39-40
defined, 6, 38
development of, 2-8
effectiveness of, 36-37,
38
evaluation of, 34-38, 38
qualitative physics and,
243-44

model of, 7-8
Type table, master, for data

typing, 556

Uncertainty
approaches to, 384-85
evidential reasoning under,
381^13
reasoning with, for medi
cal diagnosis, 375
summarizing, 383-84

Unification, 497
algorithm, 65, 502
and HOL, 498
in logic programming, 576-
79
in MKRP, 523
in Resolution, 490-93

Uniprocessing, in symbolic
computing, 580-83, 610

Unit, thematic abstraction,
as knowledge stmcture,
90, 93-95

UNITS, 636, 639

Validation, in qualitative
physics, 289

Value
active, in Loops, 634
annotated, in access-
oriented programming,
636-37
default, in Loops, 634

Variable Elimination, 510,
511,512-575

Index 693

Variable Supply Model
(VSM), of parallelism, 585-
88
tie-breaking protocol in,
587

VAX 11/780, 524
Vector, qualitative, repre

sentation and, 275-76
Verification

diagnostics as, 302
program, and automated
deduction, 487

Viewpoint, object-oriented,
in symbolic computing,
562, 580, 584
data typing in, 555-58
described, 552-53

uniprocessing and, 600
Vision, qualitative physics

and, 289
VLSI, in uniprocessing, 580
Vocabulary

functional, in qualitative
physics, 280
place, 274, 275

VOYER, 530
VSM. See Variable Supply

Model

WAM. See Wan^n Abstract
Machine

Warren Abstract Machine
(WAM)
clause-compiling in, 504

development of, 576-79
implementation speed and,
587
logic programming tech
niques as, 567

Word Expert Parsing, 111
World histories, 183-84
Wu-Chou Geometry Prover,

517, 525-26

XCON (Rl), 376, 662
XDS-940, 554
Xerox, 8, 10
Xerox PARC, 40, 555, 562,

563

