Exploring Artificial
Intelligence:

Survey Talks
from the National Conferences
on Artificial Intelligence

Contributors

David Barstow Richard Hodges
Woody Bledsoe Richard E. Korf
Daniel G. Bobrow Wendy G. Lehnert
Randall Davis Ramesh S. Patil
Gerald DeJong Judea Pearl
Kenneth D. Forbus C. Raymond Perrauit
Nita Goyal Raymond Reiter
Michael P. Georgeff Yoav Shoham
Barbara J. Grosz Howard E. Shrobe
Walter Hamscher Beverly Woolf
Edited by

Howard E. Shrobe and the
American Association for Artificial Intelligence

Morgan Kaufmann Publishers, Inc.
San Mateo, California

Editor and President Michael B. Morgan
Production Manager Shirley Jowell

Text Design Michael Rogondino

Cover Design Michael Hamilton

Cover Mechanical Irene Imfeld

Copy and Technical Editor Lee Ballentine
Composition Ocean View Technical Publications
Text Programming Bruce Boston

Index Frances Bowles

Proofreading Patricia Feuerstein

Figure credits can be found on page 671.

Library of Congress Cataloging-in-Publication Data

Exploring artificial intelligence

Papers from the 6th and 7th National Conferences
on Artificial Intelligence, held 1986 in Philadelphia
and 1987 in Seattle.

Bibliography: p.

Includes index.

1. Artificial intelligence--Congresses. 2 .Reason-
ing--Congresses. I. Shrobe, Howard. II. American
Association for Artificial Intelligence. TIII. National
Conference on Artificial Intelligence (6th : 1986
Philadelphia, Pa.) IV. National Conference on
Artificial Intelligence (7th : 1987 : Seattle, Wash.)
Q334.E98 1988 006.3 88-13041
ISBN 0-934613-69-9

0-934613-67-2 (pbk)
Grateful acknowledgment is made to the following for permission to reprint previously

published material.

Annual Reviews: Perrault, C. Raymond and Barbara Grosz (1986) Natural Language
Interfaces, Annual Review of Computer Science, 1:47-82; and Reiter, Raymond (1987)
Nonmonotonic Reasoning, Annual Review of Computer Science, 2:147-186. Repro-
duced with permission from the Annual Review of Computer Science © 1986 and 1987
by Annual Reviews Incorporated.

Cover design with the kind permission of Michael Hamilton based on his original con-
cept for the cover of Al Magazine, Vol. 6 No. 2.

Morgan Kaufmann Publishers, Inc.
2929 Campus Drive, Suite 260, San Mateo, CA 94403
Order Fulfullment: PO Box 50490, Palo Alto CA 94303

© 1988 American Association for Artificial Intelligence
All rights reserved.
Printed in the United States of America

No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted in any form or by any means—electronic, mechanical, photocopying, recording,
or otherwise—without the prior written permission of the publishers.

93 92 91 90 89 54321

Preface

Howard E. Shrobe

Symbolics Incorporated
Cambridge, Massachusetts

This book is a collection of sixteen papers based on talks presented at the 1986
and 1987 national conferences of the American Association for Artificial Intel-
ligence (AAAI). The original talks were presented as surveys of the scientific
state of the art in distinct subareas of artificial intelligence (Al) research. They
reflect the depth and breadth of a field that has experienced enormous growth
and maturation during the last decade. Al is now a major technical discipline
with both a commercial and a scientific component.

As a commercial venture, Al has created a major market for a revolution-
ary style of computing. There are now hundreds of Al products which solve
previously inaccessible problems. These commercial efforts have moved past
the application of routinely used research techniques, creating new intellectual
challenges even for the purely academic researcher.

As a scientific discipline, Al has undergone major structural changes
during the last decade. In 1973 (when I entered the MLLT. Artificial Intel-
ligence Laboratory as a first-year graduate student), virtually everyone was a
generalist. There was an intellectual core to the field shared by researchers in
all subareas. While researchers in natural language understanding (for example)
might have to master a few techniques (such as parsing) that were particular to
their specific discipline, they were likely to speak a technical language acces-
sible to researchers working in other subareas of Al, such as expert systems or

v

vi Shrobe

intelligent tutoring. Virtually everyone in the field saw knowledge repre-
sentation, inference, and search as the core concerns of all Al efforts.

But as Al has matured, the subareas of research began to develop into dis-
tinct intellectual disciplines, each with its own particular techniques and intel-
lectual framework. Specialization has created so many subareas of research that
no longer can any individual stay abreast of the whole of Al literature.

Also, as Al developed into an applied commercial practice, many new re-
searchers and developers entered the field. Based in industry, many of the new
practitioners did not share the culture of those who had learned their Al by ap-
prenticeship training in a university research lab.

This led the AAAI program committee to establish a forum in which the
Al community as a whole could be brought up-to-date with the state of the art
in each of the subareas: A series of invited survey talks was presented at the
AAALI national conferences in 1986 and 1987. The 1987 conference (which I
co-chaired with Ken Forbus) included an entire track of invited survey talks
presented by recognized intellectual leaders in the field.

The reaction to the survey talks was so favorable that we felt they should
be made broadly available. The survey talk speakers were invited to revise and
update the tape transciptions of their talks. This book is the result of that
process. Regrettably, not every survey talk presented could be included here. In
a few cases, the speakers were simply too overloaded with other obligations to
undertake the task of revising their talks for publication.

We have grouped the talks into several sections:

+ Teaching and Learning

« Interacting through Language

« Planning and Search

» Reasoning about Mechanisms and Causality
« Theoretical Underpinnings

» Architecture and Systems

These cover a broad spectrum of current Al concerns; although it is noticeable
and unfortunate that this collection lacks any papers in computer vision or
robotics.

The first section, Teaching and Learning, includes two papers. The first,
by Beverly Woolf, addresses intelligent tutoring systems; the second, by Gerald
DeJong, is concerned with explanation-based learning. Learning is a major
concern of artificial intelligence; and one which has experienced a resurgence
of intellectual effort during the last few years.

DelJong’s paper discusses one of the new machine leamning techniques. In
contrast with many of the classic Al learning programs, explanation-based

Preface vii

learning does not induce general rules by finding common patterns in many ex-
amples. Instead, it works by using a theory of the domain to generate an ex-
planation of how the concept to be learned follows from the givens. The ex-
planation (which may be thought of as a network of deductive links) is then
generalized to form a new concept which is added to the program’s body of
knowledge.

Intelligent tutoring systems, the subject of Beverly Woolf’s chapter, is
concerned with how to guide a student to learn new concepts. Building an in-
telligent tutoring system is one of the most difficult tasks in Al because it in-
volves mastering virtually all areas of the field. A tutoring system must under-
stand how a student learns, it must understand the material it is trying to teach,
and it must be capable of planning how to instruct the student. Ideally, it
should also be capable of using natural language and other advanced modes of
interaction. Of course, no system exists today that meets all of those needs.
Woolf’s paper surveys the progress that has been made in individual systems
that successfully attack one or a few of the needs.

The second section of the book, Interacting through Language, links
closely with at least one of the concerns of intelligent tutoring systems, namely
how to interact through the use of natural language. This section also includes
two papers, “Knowledge-based Natural Language Understanding” by Wendy
Lehnert and “Natural-Language Interfaces” by Ray Perrault and Barbara Grosz.

The latter paper is concerned with natural language interfaces, particularly
with natural language interfaces to databases. Perrault and Grosz start with the
observation that a natural language query such as, “Who owns the fastest car?”
translates into more than 20 lines of code in a formal database query language.
Thus, a working natural language interface provides conciseness and natural-
ness not otherwise available. However, providing this convenience requires
solving many technical problems. The syntactic structure of the query must be
determined, even though it is often ambiguous. Referents for determiners such
as “the,” “each,” etc. must be discovered. Often this can only be done by un-
derstanding the discourse structure of the ongoing dialog between the user and
the system. Perrault and Grosz survey the various systems and techniques that
have been used in building such interfaces.

Wendy Lehnert’s paper is concerned with a different aspect of natural lan-
guage understanding, namely the part that is “knowledge-based.” As Lehnert so
gracefully puts it, “this (designation) mercifully allowed me to ignore a large
body of work that focuses exclusively on the syntactic structures of natural lan-
guage.” Indeed, much of what is discussed in this survey might be character-
ized as “story understanding.” A story understanding system is typically pre-
sented with a brief fragment of a story about which it is expected to be able to
answer questions. However, the answer to the question is not always explicitly
present in the story, but rather refers to background knowledge that the pro-
gram is presumed to possess. For example, a program might be told, “When

viii Shrobe

the balloon touched the light bulb, it broke. This caused the baby to cry. Mary
gave John a dirty look and picked up the baby.” It is reasonable to expect an
intelligent agent (person or program) to understand why the balloon broke and
why the baby cried. Most of us can guess why Mary gave John the dirty look.
Obviously, we are drawing on a huge reserve of commonsense knowledge. But
what is this knowledge, and how is it to be organized to facilitate under-
standing even brief story fragments like this? Lehnert’s chapter presents a his-
torical survey of various attempts to solve these problems.

The third section of the book, Planning and Search, is concerned with
how computer programs can create plans to satisfy goals. Planning and search
have always been closely related disciplines in Al, since planning programs in-
herently engage in a search through a space of actions, looking for a sequence
of actions that achieve a desired goal.

Michael Georgeff’s chapter, “Reasoning about Plans and Actions,” surveys
the work that has been done in building AI planning systems. Much of this
work is derived from the early STRIPS programs which established a framework
for representing actions and their effects. One major concern in this research
has been the problem of interactions between substeps of a plan for a conjunc-
tive goal; often a step of a plan, which achieves one part of the conjunctive
goal, may undo the prerequisite condition for another plan. Another problem in
planning deals with the representation of time. The STRIPS model assumes that
actions are atomic and may be described completely by their pre- and post-con-
ditions. However, in many planning contexts of current interest, this repre-
sentation is inadequate since multiple agents may be cooperating on a task and
the actions of these agents may have substantial time durations. Georgeff’s
chapter discusses several approaches to these problems.

Richard Korf’s chapter, “Search in Artificial Intelligence,” surveys the
huge body of work that tries to formally characterize heuristic search pro-
grams. Search is the oldest area of Al research (some of this research on search
pre-dates the creation of a distinct field called “artificial intelligence”). Korf re-
views the various styles of search problems, such as planning problems and
two-player game problems, and presents the various techniques (such as A*,
minimax, Alpha-Beta, etc.) that have been developed to increase the efficiency
of search programs.

Korf begins by presenting the basic brute-force techniques such as
breadth-first and depth-first search. He continues by showing the various ways
in which more knowledge can be brought to bear to increase the performance
of the search program. The earliest techniques involve using a heuristic evalua-
tion function to guide the search. Increasingly sophisticated versions of this
idea lead to A* and iterative deepening A* search. More knowledge can be
brought to bear, particularly in the context of planning, by using abstraction
and macro-operators—techniques developed originally as part of the STRIPS
planning system. This chapter also looks at the areas of open research such as

Preface ix

how to exploit parallelism in search and how to learn heuristic evaluation func-
tions.

The fourth section of this book, Reasoning about Mechanisms and
Causality, includes three chapters. All of these deal with how to represent and
reason about mechanisms such as electronic devices, steam power plants, or
the human body.

The first of these papers, by Ken Forbus, is concerned with qualitative
physics, which is the attempt to capture the informal and imprecise reasoning
about mechanisms that engineers use in much of their reasoning about en-
gineered artifacts. Qualitative physics is also an attempt to capture the naive
reasoning of ordinary individuals in reasoning about the physical world around
them. A typical qualitative physics program might be able to explain why
water will flow between two tanks of water that are connected when one is
filled higher than the other. It also tries to produce an explanation that is causal
and mechanistic; for example, that the higher tank exerts greater pressure
which causes the water to flow.

In contrast to classical physics, qualitative physics works with abstract
quantities rather than with precise numbers; one major area of concern in this
field is how to abstract quantities. Forbus discusses various alternatives: In one,
quantities are abstracted into three values—positive, negative, and zero. In
other approaches, the abstraction includes a set of inequalities. These abstrac-
tions allow a program to work in conditions where precise information is un-
available, but they also introduce ambiguity. The survey also discusses the
problems of qualitative reasoning about spatial relationships.

Randall Davis and Walter Hamscher discuss model-based troubleshooting,
the attempt to use knowledge of the structure and function of a device and its
components to troubleshoot and repair malfunctions. Like Forbus’s work on
qualitative physics, this work is very much concerned with understanding how
a mechanism works and how causality flows within it. In model-based trouble-
shooting, a model of the device is used to predict how it should respond to its
inputs. This prediction is compared with the actual observed behavior; the
places where the two differ are symptoms of the underlying malfunction of the
device. Model-based troubleshooters typically record the causal flow dis-
covered while simulating the device’s expected behavior. This representation
can then guide the search for a set of components whose malfunctioning can
explain the observed symptoms.

Model-based troubleshooting differs from classical Al diagnostic programs
such as Mycin in important ways. The basic framework is applicable to vir-
tually any artifact. In principle, a single program can be given a schematic or a
blueprint for a variety of artifacts and be capable of diagnosing all of them.
Mycin-style programs, in contrast, are hand-engineering one for each new arti-
fact. Mycin-like programs reason through associations between symptoms un-

x Shrobe

derlying causes using probabilistic techniques; model-based systems reason
about the causal flows using exact techniques.

Of course, not all diagnostic tasks are subject to model-based techniques.
Often we don’t have a complete description of the artifact. Frequently, even if
we do have the complete description, it’s too complicated to be used directly
without imposing simplifying abstractions. The cutting edge of research in this
field is the search for ways to abstract problems to ease the diagnostic task.

Ramesh Patil’s chapter discusses one important diagnostic task where
these problems are pressing, namely medical diagnosis. Obviously, our under-
standing of the human body is more limited than our understanding of the digi-
tal components that make up a computer. The body is also a more complex
system. Patil discusses several medical diagnosis programs, such as Mycin, In-
ternist, MDX, and PIP, which have attacked a variety of medical diagnostic
tasks. He also discusses programs, such as his ABEL, which combine qualitative
reasoning, such as Forbus’s, with mechanistic reasoning, such as in the model-
based troubleshooting programs.

The next section, Theoretical Underpinnings, presents four more formal
accounts of techniques used throughout Al The first of these is a survey by
Judea Pear] of the techniques used to reason about uncertainty, including the
calculus used in Mycin as well as Bayesian calculus. Pearl draws attention to a
trade-off between precision and tractability. Many of the techniques in this
field have well-understood formal properties, but in practice are computation-
ally very expensive. Other techniques have some rough edges but are quite
cheap to apply. Pearl also presents work of his own that attempts to identify
conditions under which one can have both nice computational properties and
semantic clarity.

Yoav Shoham’s chapter, coauthored by Nita Goyal, discusses temporal
reasoning, i.., attempts to model and reason about time. This is of great con-
cern for planning programs that attempt to piece together strings of action
which achieve some goal over time. This problem is deceptively simple. When
one attempts to capture temporal reasoning in a formal system that can reason
about change, several unexpected problems emerge. The frame problem is
probably the most significant of these: this is the problem of compactly repre-
senting how actions affect what’s true. In many representational systems, one
is forced to say what facts each action doesn’t affect. This is an unbounded
problem. Shoham and Goyal discuss the different representational systems used
to attack this problem and the reasoning tasks that result from using them.

One particular system that arises in temporal reasoning is nonmonotonic
logic, the topic of Ray Reiter’s chapter. Nonmonotonic logics are formal sys-
tems concerned with reasoning about exceptions and defaults; such as in the
statements, “The cup stays put, unless something moves it,” or “Normally birds
fly.” What all such systems have in common is a formal property that, as ax-
joms are added, the set of derivable conclusions may, in fact, decrease (hence

Preface xi

the name, since the size of the set of derivable facts is not a monotonic func-
tion of the size of the set of axioms). Nonmonotonic reasoning is ubiquitous in
commonsense tasks. Most people will believe that Tweety can fly when told
that Tweety is a bird; upon learning that Tweety is an ostrich, most people im-
mediately revise that belief. Building formal systems that account for such rea-
soning is surprisingly difficult. Reiter’s survey discusses the various ap-
proaches to this task that have been developed.

Woody Bledsoe’s survey, coauthored by Richard Hodges, on automated
deduction tries to summarize what we know about how to make programs per-
form deductions, particularly (but by no means exclusively) those deductions
that are required in formal contexts such as proving mathematical theorems.
This is a herculean task, because this is one of the oldest and most studied
parts of Al. Bledso and Hodges trace the development of automated deduction
from the discovery of the resoluton principle in the mid-1960s up to the
development of some very powerful theorem-proving programs that have pro-
duced formal proofs of results that are difficult for mathematicians.

Much of this chapter discusses the development. of formal techniques with
mathematically guaranteed correctness. However, there is another running
theme, which is the search for ways to achieve the efficiency of a professional
mathematician who reasons at a very abstract level making large jumps in the
proof. This search for strategic efficiency in theorem proving draws upon many
ideas from other areas of Al such as planning and knowledge representation.
Expert mathematicians know a lot of mathematics and a lot of theorem-proving
techniques; they are not mechanical proof generators who proceed a step at a
time. Bledsoe and Hodges see the attempt to capture this expertise of the pro-
fessional mathematician as the key to future progress in the field, and he points
to several preliminary results in this direction.

The final section of this book, Architecture and Systems, is concerned
with computational facilities that support artificial intelligence research.

My own paper on symbolic computing architectures is the first of the three
in this group. This paper traces the development of computer architectures mo-
tivated by the needs of the Al computing community. The first section tries to
show what features are present in modern LISP- and PROLOG-oriented architec-
tures and how these are likely to continue evolving. I pay a lot of attention to
machines in whose design I participated (such as the Symbolics 3600 and the
new Ivory chip) not only because I know the most about them, but also be-
cause these machines contain many leading-edge features. The second half of
the paper discusses how parallelism may impact Al computing. I review a
large number of attempts to build parallel Al-oriented machines. Not too many
of these have been successful, but I believe the failures highlight certain design
principles that are crucial.

Daniel Bobrow discusses a newly standardized programming language sys-
tem called Common LISP Object Standard (or CLOS, usually pronounced “C-

xii Shrobe

Loss™). This is an object-oriented extension of Common LISP which provides a
unifying framework for much of symbolic computing. This dovetails nicely
with my survey on computing architectures which emphasizes the object-
oriented viewpoint as a key feature.

David Barstow surveys what artificial intelligence can offer to software
engineering. Al has long tried to apply its techniques to various programming
tasks such as code synthesis, debugging or code understanding. Barstow sur-
veys the work in all these areas. He particularly tries to identify what makes
these tasks so difficult and why so little benefit has yet resulted.

Acknowledgments

Before concluding this Preface, I would like to thank many people for their un-
rewarded contributions to this effort. Each of the authors spent an enormous
amount of time converting transcripts of their talks into intelligible text. This is
not easy, as I’ve learned. A number of people were involved in providing the
logistical support for these survey talks, particularly Claudia Mazzetti, execu-
tive director of AAAI, whose organizational skills are truly remarkable; and
Steve Taglio of the AAAI office, who manages the logistics for the AAAI con-
ferences. Several of my colleagues contributed time to reviewing the papers,
proofreading, and indexing: Bob Cassels, John Hotchkins, Steve Rowley, John
Aspinal, Steve Anthony, and John Watkins. Finally, I’d like to extend a special
thanks to Ken Forbus who was co-chair with me of the AAAI-87 program
committee. Ken did more than half the work of identifying topics and soliciting
just the right people to present the survey talks.

I hope that this collection of papers will prove to be a useful base of infor-
mation about Al for experts, serious students, and new practitioners in the
field. These talks represent a serious attempt by the intellectual leaders of
many of the subdisciplines of Al to analyze what their work is about and pre-
sent it in a way that is accessible to the newcomer while still being informative
to the neophyte. The reaction to the talks at the conference was enthusiastic;
we hope that the quality of this collection merits the same enthusiasm.

Howard E. Shrobe
Chairman, AAAI Conference Committee

Chapter

I

Intelligent Tutoring Systems:
A Survey

Beverly Woolf

Department of Computer and Information Science
University of Massachusetts

Ambherst, Massachusetts

Introduction

This paper surveys the field of intelligent tutoring systems.1 It focuses on the
breakthroughs and barriers in the field, describing how we got where we are
today, where we think we’re going, and what is needed to accomplish the jour-
ney. The survey does not provide implementation details nor does it enumerate
advantages or disadvantages of various languages.

Before describing the computer science products that have been built, I'd
like to set the stage for this discussion by talking about the state of education
today. For those who don’t yet know, education is in trouble. Recent studies
confirm this view. For example, an NSF study says, “Most Americans are
moving toward virtual scientific and technological illiteracy” [National Science
Foundation, 1983]. Naisbitt says, “The generation graduating from high school
today is the first generation in American history to graduate less skilled than its

1 This work was supported in part by National Science Foundation grant MDR-8751362, Air
Force Systems Command, Rome Air Development Center, Griffiss AFB, New York, 13441 and
the Air Force Office of Scientific Research, Bolling AFB, DC 20332 under contract #F30602-85-
C-0008. This contract supports the Northeast Artificial Intelligence Consortium (NAIC). Partial
support also was provided by ONR University Research Initiative Contract #N00014-86-K-0764.

2 Woolf

parents...”[Naisbitt, 1984]. R. Buckminister Fuller says, “Classrooms are
desensitizing, stultifying and boring” [Fuller, 1962].

Another study found that the average Japanese student scores 100% better
in mathematics than the average American student [Walberg, 1982-3]. Andrew
Molnar from NSF says that only 75% of the teachers in America are qualified
to teach the courses they are teaching [Molnar, 1986]. For example, people
trained in physical education often end up teaching physics because both words
have the same root. In addition, America will be short one million teachers
within four years. Currently, one-fourth of all college freshmen take remedial
mathematics, and there has been a 63% increase in college remedial courses,
such as writing, reading, and mathematics. With a 63% increase in college re-
medial courses, the question is “What kind of learning goes on in high
schools?” People graduate without the basic skills necessary to function at the
college level.

The problems are great, and I certainly don’t suggest that intelligent tutor-
ing systems will solve all the problems in education. But there are some fasci-
nating opportunities provided by these new machines and we shall look into
them as we survey what these systems can do.

Building Effective Teaching Systems

A study by Bloom [1984] shows that conventional teaching, which means a
teacher presenting material in front of 20-200 people, provides one of the least
effective methods for educational delivery. The larger curve in Figure 1 shows
the results achieved through conventional teaching—the typical bell curve with
a median range of 50 to 60, as you’d expect. The mastery curve in Figure 1
shows the performance results when a teacher not only gives a lecture, but also
uses diagnostic tests to determine where the students have problems and mis-
conceptions, and then adjusts his/her lectures accordingly. If mastery teaching
takes place, then the mean test results seem to be around 84%.

However, and here is the important part of this study, students involved in
one-to-one tutoring seem to perform around the 98th percentile as compared
with traditionally trained students. These results were reproduced four times
with three different age groups on two different subjects. This study provides
evidence that tutoring is one of the most effective educational delivery
methods. If we plan to build new tools for education we should not replicate
methods that have already failed, such as lecture style teaching. Rather, we
should focus on one-to-one tutoring methods and thus, we need to begin by un-
derstanding the tutoring process.

Developing one-to-one machine tutors is not a straightforward process. For
instance, let’s say a student and teacher had the conversation shown in Figure
2. After the student’s initial expression of lack of understanding of how rain is
made, the tutor might think about what the student doesn’t know. It might rea-

Chapter 1 Intelligent Tutoring Systems 3

STUDENTS TESTED

One-on-One Tutoring
(1 : 1)

Mastery Teaching \

(1 : 30)

Conventional Teaching
(1 : 30)

84% :98% :

ACHIEVEMENT SCORES
(PERFORMANCE)

Figure 1 Advantages of One-to-One Tutoring (Adapted from Bloom [1984])

son about the student’s knowledge and causal modeling in the domain and
his/her ability to make inferences. The tutor might ask diagnostic questions to
figure out what the student doesn’t know and might then do some planning and
choose, as in the figure, to first teach about the effects of heat on moist air, and
then to teach about ocean currents, saying “Can you tell me what happens to
heated moist air?”

However, to generate this final response on a computer requires reasoning
about natural language processing, knowledge representation, diagnosis, and
causal modeling (see Figure 3). For example, to reason about “the effect of
heat on moist air,” the tutor must understand the causal effects of heat on air
and moisture, and must comprehend how such components interact in the
domain. The tutor must perform qualitative processing, that is, envision the
factors that contribute to the production of rain and be able to identify steps
within the evaporation/condensation cycle. The tutor must perform planning
and plan recognition and should recognize the student’s intentions, the peda-
gogical constraints in effect, and finally, the linguistic and pragmatic considera-
tions that need to be handled. For example, in the figure the tutor chooses to

4 Woolf

Student: " | don't see why there is so much
rain in warm places.”

Tutor (thinks): Aha, ha. . . This student probably doesn't
know about ocean currents.

He also probably doesn't understand the causal
effects of heat on moist air.

| should first teach him about the effects of heat
on moist air and then about ocean currents.

Tutor (says:): "O.K."
"Can you tell me what happens to heated moist air?"

Adapted from David Littman, 1987

Figure 2 Proposed Tutoring Conversation

say “OK.” Why should it say “OK” at this time? Linguistic and natural lan-
guage considerations, in addition to all of the above processes, are required in
order to engage in a tutorial discourse.

Therefore, building an intelligent tutor requires performing most of the
other activities of Al researchers (see Figure 4). This field is not an application
area of Al in which we can take off-the-shelf material developed by other Al
researchers and use it to build our systems. In fact, we have to complement all
the work done by researchers in Al, particularly in planning, knowledge acqui-
sition, and discourse management. We must use and augment what Al re-
searchers have been doing for years.

In addition, researchers in our field have several research efforts that go
beyond work in Al For example, we are concerned with visualizing problem
solving, as discussed in connection with William Clancey’s work (Section 3).
Our systems do more than explain how problem solving and diagnosis are
done; they need to show the student how to construct the knowledge for
him/herself and improve his/her ability to understand the material. We study
novice/expert research because we need to present materials in a way that ena-
bles a novice to understand the domain; in addition, we need to perform error
diagnosis on the student’s performance.

Chapter 1 Intelligent Tutoring Systems 5

NAT'L LANGUAGE
UNDERSTANDING \ KNOWLEDGE
/ REPRESENTATION
Student: " | don't see why there

is so much rain in warm places.”

Tutor (thinks): Aha, ha. . . This student

probably doesn’t know about CAUSAL

ocean currents. MODELING
DOMAIN _/
KNOWLEDGE

He also probably doesn't understand
about the causal effects of heat

on air moisture.
PLANNING QUALITATIVE

PROCESSING
1 should first teach him about
the effects of heat on moist air
and then about ocean currents.

PRAGMATICS\
Tutor (says:): "0.K, can you tell me what

happens to heated moist air?”
NATL LANGUAGE / LINQUISTICS

GENERATION

Figure 3 Models of Reasoning in the Proposed Tutoring Conversation

On the other hand, researchers in artificial intelligence are concerned with
issues that we don’t currently focus on, such as natural language processing
and machine learning. We may wrestle with these topics soon. I don’t mean to
imply that there is an exclusive relationship between AI and work done on in-
telligent tutoring systems. We obviously need to work together with Al re-
searchers and to use the materials now emerging through expert systems tech-
nology. On the other hand, we expect that technology which we produce will
ultimately be found useful by other members of the AI community.

The bottom line is that intelligent tutoring systems are Al complete, that is,
solving intelligent tutoring problems requires solution of nearly all the prob-
lems of artificial intelligence.

So, we take advantage of technology that is just now emerging. Such in-
novations as high resolution graphics, expert system shells, and qualitative
modeling are applications that can now be made available to education.

6 Woolf

Artificial Intelligence Jntelligent Tutoring Systems:

Cognitive Modeling

Yisualize

Qualitative Processes
Problem Solving

Natural Language
Processing

Planning/Plan Recognition

Knowledge Representation Represent

Teaching Strategies

Machine Learning Intelligent User Interfaces

Novice/Expert

Planning/Plan Recognition Studies

Knowledge Acquisition

Speech Understanding

Discourse Management Error Diagnosis

Figure 4 Active Research Areas

Factors in the Development of Intelligent Tutoring Systems

How do we define an intelligent tutoring system? First, we see intelligence as a
way to perform qualitative modeling [Clancey, 1986]. Soloway in his program-
ming research, and Clancey in his diagnostic work in medicine, have both de-
scribed their work as a modeling process [Soloway, 1986]. Soloway described
programming as a process whereby a student has a plan of a program and then
executes it. Ken Forbus [1986] and Ben Kuipers look at physics problem solv-
ing as modeling processes. By this reasoning, intelligent tutoring systems are
systems that model teaching, learning, communication, and domain knowledge
(Figure 5). They model and reason about an expert’s knowledge of a domain
and a student’s understanding of that domain.

For example, if a system teaches about physics, it should model and rea-
son about physics problems. At some level this is already being done by people
who build shells for expert systems. Since expert systems are linked to com-
mercial possibilities, I think such reasoning systems will continue to expand
and we can take advantage of them.

We also take advantage of communication models to illustrate the scien-
tific method as well as human problem solving methods. For example, if a sys-
tem teaches optics, we would expect that it would show a screen with several
lenses. It would allow the student to test many lenses on the screen and to send
rays through each, measuring the exit angle. Builders of our systems need to
take full advantage of the available communication resources, such as simula-
tions and animations, rich icons, pop-up windows, and pop-down menus.

Chapter 1 Intelligent Tutoring Systems 7

KNOWLEDGE & REASONING
MODEL

RESEARCH
PROCEEDS
INDEPENDENT OF
TUTORING WORK.

LINKED TO COMMERCIAL
POSSIBILITIES

COMMUNICATION
MEDIA

MOST PROMISING AREA FOR
INTELLIGENT ,TUTORS.

COGNITIVE
MODEL

POSSIBLY THE MOST
DIFFICULT AREA.

TUTORING
MODEL

FORCES IN THE DEVELOPMENT
OF
INTELLIGENT TUTORING SYSTEMS

VITAL TO FURTHER WORK;
YET LEAST STUDIED AREA.

Figure 5 Factors in the Development of Tutoring Systems

Modeling domain and communications knowledge are now being accom-
plished, since both communications and domain knowledge are being
developed independent of our community researchers. Our workers need to
focus on models of cognitive processes and tutoring.

By cognitive process modeling, I mean those factors necessary for a per-
son to learn a domain or for a teacher to teach in that same domain. Included
in this model is whether or not the student is motivated or has a clear mental
model of this domain. We need to determine whether the student’s domain
model is integrated or fragmented, whether it’s compiled, and whether it’s in-
terpretable. We also need to look at whether the student (1) knows what he/she
is talking about, (2) needs to be interrupted, or (3) might be insecure about the
answers. This kind of research takes a long time and requires help from cogni-
tive scientists, instructional designers, psychologists, and expert teachers. We
are now learning about cognitive principles and it’s possibly the most difficult
material in our systems. As shown in Figure 5, we have not yet made great
progress in this area.

The fourth and last factor needed is the tutoring model. Tutoring involves
knowing how to remediate the student, when to interrupt, what examples to try,

8 Woolf

what analogy to present, and how to respond to the idiosyncrasies of a student.
Without this information, there is nothing about the system that would keep
him/her working with the system.

Three Case Examples

I now present a few of the systems that have emerged in this field. I'll look at
some key issues addressed by these systems and then later look at many more
systems. The purpose of this survey is not to include all existing systems, just
those that represent advances in each of the areas mentioned above. Figure 6
shows the envisioning machine by Jeremy Roschelle at Xerox [Roschelle,
1987]. 1 particularly like this system because it presents a visualization of con-
cepts that have been very difficult to learn in the past. The screen shows an ob-
ject being thrown in the air and then falling down again. Large arrows are used
to show the velocity of the object as it rises and a smaller arrow is used to
show the acceleration. If you take an object and throw it upward, the velocity
starts off positive and high and then it decreases until it reaches zero at the
apex of the curve; as the object comes down, the velocity begins at zero and
then increases until it lands. Though the velocity reaches zero at the top of the
curve, the acceleration does not, because acceleration is always constant, origi-
nating from a gravitational pull downward. The direction of acceleration
changes as the ball rises; its direction also changes as the ball descends. Figure
7 shows the original graphic placed beside a picture of the Observable World.
In the Newtonian world on the left, the student sees the object moving accom-
panied by the illustrative arrows, and on the right is a picture of the same
movement without the arrows.

In the past, acceleration and velocity have been difficult to demonstrate, in
part, because they have been illustrated solely through still-picture problems at
the back of the book. Traditional drills with formulas don’t allow students to
see velocity or acceleration in a way that compares with the rich modeling
capability of the computer.

The goal here has been to help the student acquire a mental model of force
and acceleration in a way that can be taken back to the observable world. The
student can directly manipulate the interface, can move an object in any direc-
tion, add two or three balls, and use his/her observations to adjust possible mis-
conceptions. This system contributes in the areas of modeling communications
and the domain. In addition, it helps model cognitive processes and represents
a student’s understanding of physics. The author has also made a judgment
about whether the field is coherent or interpretable to the student. Roschelle
bases his work on P-prims, a system of physics primitives that offers a
theoretical basis to the explanation of physics phenomena.

Chapter 1 Intelligent Tutoring Systems 9

Newtonian World

K
c'__.)
...................................... F.....44A.<...<..A<A4.A.....A........4.......4.<.4.....--.-4-»4

; :
M N
H :
C
PR
Y

Figure 6 The Envisioning Machine [Roschelle, 1987]

10 Woolf

g brompt wanae

1

|
bty adua bt s s ! w-ﬁ*uu.*—.aﬂ—---u&-l'
o Camnianiy

{1 Dase] astlteow | Priem B
Pourd t4y: 3 yeix 4 4 csterstm 5 s Lactr, T

Misaryabier Warkd

:Illllllllllllllll|ll

128 (O OO TR O TR T N N
e

Ehitinns

-__

o o, el ed DR T AN
L SIS | RO SR Saa iion SVPOMGE MO | N P

Figure 7 The Envisioning Machine, Part 2: Roschelle

Figure 8 shows a second system from Xerox, the Alternate Reality Kit
(ARK) system by Smith [1987], which demonstrates objects in a bubble cham-
ber. The student uses switches, such as the one for “gravity” or “motion,” to
turn off gravity or motion. You can imagine using objects from Roschelle’s
system and turning off gravity and watching the velocity and acceleration. New
objects or switches can be created by the student.

Figure 9 shows the screen of an older system that remains one of the best
in terms of its ability to model tutoring discourse [Brown and Bell, 1982]. This
system is from the mid-1970s and was published in 1982. SOPHIE, as it is
called, provides a simulation of an electronics circuit and helps a student debug
a failure in the system (Figure 9). The student is told that there is a failure and
tries to diagnose the bug. SOPHIE has a hypothesis generator that simulates so-
lutions offered by the student, testing whether they are correct. It also has a
semantic parser that parses the student’s typewritten words, not by using a
grammar, but rather by using a semantic representation of possible phrases for
each word that might be used in this domain.

Chapter 1 Intelligent Tutoring Systems 11

0 0 Sl bl s i P v i RS R 50 L L e 3 Rl o Bk ecwititd Bk i b < e

Figure 8 Alternative Reality Kit [Smith et al., 1987]

Figure 10 shows a typical conversation with SOPHIE, although the output is
pretty ugly on the screen. The student can say, “What is the output?” and the
machine says, “The output voltage is (whatever it is).” The student can say,
“What is it in a working instrument?” Using a model of dialogue for reasoning
about indefinite pronouns, the machine understands that by saying “it” the stu-
dent meant the voltage in the previous sentence. And the machine answers. Re-
ferring to locations on the circuit, the student can say, “What is the voltage be-
tween R8 and Q1?” The machine says the voltage is so-and-so. The student
can also say, “I have a hypothesis. Is this the problem?” and suggests that Q6
may be open. The machine actually takes that hypothesis, evaluates it in the
simulator, and determines whether the student has solved the problem.

12 Woolf

(2861 ‘uoung pue umoig] JIHJOS woyj ‘A|ddng Jemod pajeinbey v 6 a/nbi4

104100
- -
© ©
=l
T
— *
Wi T o
(¢
Eo
¥
r
%3]
Asg A9t S OUINOD
1] (1] oA
u S et H“.E." 39¥i0A, N A
o] + v hotl swSvooss a0s
? o 9 133 L)
- - tic:) 0
AU S - e u<u>
Al L 4
voosty vooz| fusezi__uan us Juy v vooot
“ N ty u S T dw ay | sl T v iy
A AAA ARA AA b ANAM- AA~O—O~AM .
14 "w e v] oo :Wwﬁw 0 w T
ALY Aot o " X \
~ .[uv N10gmiss N 041609 SUIENNN J00N
+HILIMS IONVY +HILIMS JONVY TOHLINOD ANIYUND
0104, ANIUHND, ANIUENY,

Chapter 1 Intelligent Tutoring Systems 13

Welcome to SOPHIE, a reactive learning environment
[

The instrument has a fault and Its present control settings are: ‘) "‘
Py

;o

CC=1,CR=HIGH,LOAD=20,VC=1,VR=HIGH o T

>>What is the output?
The output voltage is 11.7 volts. Pa_o'“‘“”‘ s

uses rmodel o J, AAahJ (fol l.ea:mw-y

>5Whamg instrument?

In a working circuit the output volitage is 19.9 voits.

>»»What is the voltage between R8 and Q1?
The voltage at N1 is 47.6 volts.

>What is the base emitter voltage of the voltage limiting transitor?

= transistor f' o
The base emitter voltage of Q5 is -.037 millivoits. . JusaT!
othesis

hye
s it possible that Q6 is open? — M

Is the complete fault mode EB/EC/BC = OP/0OK/OP what you intended?

»Sure Constracts
counter- “IMPIQ

When the settings were:

CC-1.0, CR=HIGH, LOAD = 20, VC = 1.0, VR = HIGH

That fault conflicts with the following measurement. You observed that the

output voltage was 11.7 volts. It Q6 had fault mode EB/EC/BC = OP/OK/OP it

would be 23.9 volts. in a working circuit it is 19.9 volts.

That fault does not explain any of the symptoms you observed but it is
consistent with the values for the base emitter voltage of Q5 and the voltage at

~__ but alse determimes what s “3“&"
with the h’,.ttcso':]

Figure 10 A Conversation with SOPHIE [Brown and Burton, 1982]

14 Woolf

Interestingly, in this case the system finds the student’s hypothesis incon-
sistent with facts already received. This is pointed out to the student. First the
system clarifies the student’s hypothesis, “Is this what you mean?” (the student
says “Sure”). Then the machine says, “The fault that you’ve suggested con-
flicts with the following measurements. You observed that the output voltage
was 11.7. If this really had a fault mode, it would be 23 volts, and a working
circuit is 19.9.” It constructs the counter example and says that the fault does
not explain any of the symptoms observed, but is consistent with the values of
such-and-such. In this way, the system determines appropriate portions of the
student’s hypothesis and inconsistent portions.

This dialogue is quite friendly; it succeeds in modeling tutoring discourse
and in some sense, in understanding the student. The researchers stopped work
on this project, interestingly enough, because they could not represent in-depth
student’s reasoning about electronic circuits. They found that their existing
quantitative approach enabled success in analysis and diagnosis. Yet the system
could not help the student with deep misunderstandings because it didn’t un-
derstand the student’s cognitive models of circuits, which are assumed to be, in
part, qualitative. So, the researchers moved on to work in qualitative process
models. Subsequent work from this group has led to a new body of research in
qualitative process models [deKleer and Brown, 1986; Forbus, 1986]. Also, a
nice body of work has been produced by White and Fredricksen [1986] which
does represent a student’s first-order qualitative mental models about electronic
circuits. In this system, multiple models of a circuit are encoded in the system
and a student’s progression to a more advanced model is prohibited until evi-
dence is provided that he/she has mastered earlier models.

Figure 11 shows a system ['ve been working on, which been reported in
AAAI-86 [Woolf et al., 1986], so I'll review it quickly. This figure shows the
screen of the Recovery Boiler Tutor, RBT. The system was built in response to
the excessive number of accidents and explosions caused by human error in re-
covery boilers located at papermills across the United States. The insurance
companies threatened to cancel the insurance for the industry if the papermill
companies did not learn how to better train their staff in use of the boiler. The
system was built by Jansen Engineers, Inc. in Woodenville, Washington, and
has been placed in about 60 papermill sites around the country. In light of the
usefulness of this system, the insurance companies have offered discounts on
the premiums for any company that uses the tutor.

An actual recovery boiler is a difficult mechanism to operate. It is 14 sto-
ries high and costs about $90 million to build. It acts like a time bomb in the
sense that potential inorganic explosions are always threatening. Explosions,
accidents, and inefficient operations are frequent occurrences. Typically an
operator has only a high-school education, yet must understand complex physi-
cal, chemical, and thermo-dynamic processes to run the boiler. The tutor simu-
lates 100 parameters that participate in the process and it provides students

Chapter 1 Intelligent Tutoring Systems 15

with about 40 problems or critical events to work on. Figure 12 shows a fo-
cused display of the boiler and Figure 13 shows the control panel. The tutor
encourages the student to abstract his/her information about the process in at
least three ways. The first way is to engage in an on-line dialogue with the ma-
chine. The second is to use trend lines that show how various variables are
measured against each other (Figure 14). The third is to use the meters shown
on the left-hand side of Figures 11 through 13. These meters abstract seven or
eight parameters that reflect measurements of safety, emission, efficiency, or
reliability of the boiler at every moment. These are abstractions that would
probably never be calculated by the operator because they are too complicated.
Yet they need to be understood in order to operate the boiler.

RECOVERY
BOILER | FLUE GAS—
TUTOR
SAFETY .
- -
rpm Yd
STEAN
EMISSIONS 755 1815
. B
Mpp)
°F PP psi
EFFICIENCY —FEEDWATER——
481.8 :
== T
FUEL
RELIABILITY = liquor oil
- EV
apn [65-8) gom

Figure 11 The Recovery Boiler Tutor [Woolf et al., 1986]

RECOVERY
BOILER
TUTOR

[r——FLUE_GAS——

SAFETY .
| e
PpPM ¥
ENISSIONS STEAR
. / 7¢?-,\ 751 651
=~ 3?1.1
[272570 e
o, l“ °F psi
EFPICIENCY =z _ | FEEDUATER
9 0.

i 5
0 0 0 0.0 364.1 :

5 Mpph
———FUEL
RELIABILITY / liquor gas
- 258 [zsol .8

] s [65:8] ncen

e

Figure 12 Focus on the Fire Bed

16 Woolf

RECOVERY STEAN FLUE GAS
BOILER Drum| 1087 FEEDVATER Furnace
TUTOR ® @ Hpph 480.3
pyw— e i ‘F 388 -.5| 66
@ | ,cq4.q Psly 1208 Pressure CO TRS §02 02
- [4 Foph Sttesp 1.9 PPM PPM PPA %
: 755 DCE Dilution Flue Gas Temperature
tevel @ gpn 8 ID Fan
ENISSIONS S Sootblower 670
- -7 F Mpph 36.8) Bank Econ DCE
COMRUSTION ATR
EFFICIENCY Sptit Press Tenp LIQUOR MAXE-UP
3 (ugy) °F) Mpph 194.1
- prim 55 1.9 3600 gpn 291
°F 240 Saltcake
sec 44 5.8 308 % Sol 65.8 19 S
RELIABILITY DISSOLUING TANK stnlin 3.68
- Level(x) Dansity(x) Flow(gpm) psi ® 1a B°“
86 % 463 b
Figure 13 The Control Panel
RECOVERY []
BOILER FLUE |
TUTOR Sas
SAFETY == 9
- =
PPR rd
STEAN:
EMISSIONS 222 647
- X S
Mpph
°F PP psi
EFFICIENCY . —FEEDWATER——
164.6 H
] -
FUEL
RELIABILITY | b T liquor gas
- Liquor flow Feoduater flow 258 E.zol .8
Steam flow’ Alr flow Steam pressure S.B
Drun _leval 02 __TRS 9en fafn

Figure 14 Trends in the Recovery Boiler Tutor

The dialogue shown in Figure 15 is produced by cutting and pasting text
loaded with each problem. The dialogue shown here comes directly off the
screen. The student says, “Will I check smelt spout cooling water?”” The tutor
says, “It looks as though the liquor isn’t burning.” The tutor’s response implies
that the student wasn’t focused on the correct parameters. The system then
directs him/her to what should be investigated. The student says, “Help, what is
going on here?” He/she can stop at any time and say, “How did I get here?”
“How do I get out of this?” “How can I avoid this?” The tutor responds with,
“A partial blackout is occurring, etc. and I think part of the bed is not burn-
ing.” And the student says, “Rod the primary air ports.” The system then says,

Chapter 1 Intelligent Tutoring Systems 17

“Your action is correct, however, at this time, rodding alone is not effective.”
In other words, if the student had performed this action earlier, it would have
worked, but he/she waited so long that now a more serious action must be
taken. Finally, after a little bit, the student gets the right answer, and the tutor
says, “That solves the problem all right, good thinking.”

The third way this system helps a student abstract knowledge is through
trending (Figure 14). The student can look at feedwater flow, and can begin to
associate it, for instance, with steamwater flow. He/she should identify those
parameters unaffected by the problem, and those which have been affected,
such as TRS, sulphur, and O2. The student ought to see which parameters are
linked together and which are not.

We try to provide the student with tools that help him/her reason about the
problem. Actually, people who work in the mills say that some of these tools
would be helpful if put on the actual control panel. This is being considered.

(AN ALARM SOUNDS)

(Student: Check smelt spout cooling water.

[Student’s action does not resuit
In & change In the boller.]

Tutor: It 1ooks as though the Jiquor isn't burning . . .

—

(_ STUDENT REQUESTS HELP)

[Student: Help. what is going on?
Tutor: A partial) blackout is occuring and this
causes TRS, CO, 502 and 02 to increase. Steam
flow and steam temperature are dropping.

| think part of the bed is not burning.

Figure 15a

(__GRAIN OF TRUTH CORRECTION)

r Student: Rod the primary air ports.

Tutor: Your action is correct; however, at this time
rodding alone is not effective...

Student: Raise the liquor temperature.

Tutor: Rodding the air port apparently was not enough
to undo the blackout. INo improvement.
New a/orm sounds/

(_conFirnaTION)

f Student: Increase the oil fuel supply.
lEmergency /s now reversed.]

Tutor: That solved the problem airight.
Good thinking.

.

Figure 15b A Dialogue with RBT

18 Woolf

SOPHIE

ENVISIONMENT
WORLD
RECOVERY BOILER
TUTOR

MODEL OF
KNOWLEDGE
AND
REASONING

i
wllll"!!“.
ln...“‘h

COMMUNICATIONS s/
MEDIA

“"“!!WF
"

MODEL
COGNITIVE
PROCESSES

ummhm
e

i

MODEL
TUTORING
AND

DISCOURSE

Figure 16 Four Models Within Selected Intelligent Tutors

Chapter 1 Intelligent Tutoring Systems 19

Accomplishments Thus Far

I stop now after this brief introduction and ask: Where is the intelligence in
these three systems? We have moved ahead in some of the areas mentioned in
Section 1.2. In others, we’re moving ahead less rapidly. Figure 16 gives a pre-
liminary evaluation in terms of modeling accomplished within these four sys-
tems. The first system, the Envisionment World, enables a student to visualize
and make predictions about physics concepts. I give it good marks in modeling
knowledge and communication, and less good marks in modeling cognitive
processes and tutoring. SOPHIE, the system about debugging electronic circuits,
makes some contribution to knowledge representation, but it has a weak cogni-
tive model because it provides a quantitative, not qualitative model. However,
it receives high marks in tutoring. The Recovery Boiler Tutor represents
knowledge but its model of the student is weak. Its communication model does
not take advantage of icons, windows, and simulation or animation capabilities
of computers.

In assessing what we have accomplished thus far, we need to focus on the
issues, not just on the machinery built. Thus I look at the relationship between
these systems and Al programs in general (Figure 17). As mentioned earlier,
there is no need to compete with other Al workers, yet it is valuable to note
how our respective jobs differ. We need to recognize that Al systems, often
abbreviated to only expert systems, serve a very different purpose than do in-
telligent tutoring systems. Expert systems are intended to solve a problem. Our
systems solve problems yet they also construct a model of the human problem
solver. For instance, a system that can solve the electronics problem is not rele-
vant as a tutor if it does not also comprehend how the human solves the same
problem. Expert systems can use any problem solving method, such as predi-
cate calculus, semantic networks, PROLOG, or whatever language suits the pro-
grammer. Somewhere within our systems, we have to encode human problem
solving methods. We might represent the domain using some declarative lan-
guage, but ultimately we must represent how the human solves the problem in
order for the system to recognize the student’s reasoning.

Explanations and interpretations are important in expert systems. However,
explanations are not enough for tutoring systems. Our systems must actively
and systematically engage the user in a dialogue.

A tutoring dialogue might be compared with a police chase of a bank rob-
ber; neither can be planned ahead of time. One does not plan, say, four months
before the robber comes to town, which streets and buildings to search for the
robber. In fact, the police must respond and react to every action taken by the
robber. The same principle works in computer tutoring. As programmers, we
can’t decide what’s going to happen after we ask the student a question. The
system must plan what will happen in an opportunistic and dynamic way—and
must systematically engage a student based on his/her own actions.

20 Woolf

An expert system should also justify its reasoning and explain how it made
its decisions. In our systems we have to justify and explain our reasoning so
that the knowledge and problem solving process is remembered and mimicked
by the student. A system might say, “This is how we solve the problem,” but
that won’t help the student. Students should become so enamored of our
methods, or at least they should understand them so well that they will mimic
that problem solving process.

Expert System ——) Intelligent Tutoring
System

Solves a problem. :> Solves a problem and constructs
a model of the human problem
solver

Uses any problem @ Uses human problem solving
solving method. methods

Responds to the :> Actively and systematically
user. engages in a dialogue
with the user

Justifies its (—_'—D Justifies and explains its reasoning

reasoning. so that the knowledge and problem
solving process is remembered and
mimicked

Figure 17 Expert System vs. Intelligent Tutors

Chapter 1 Intelligent Tutoring Systems 21

PROBLEM

PHYSICIAN

Figure 18 MYCIN Assists a Doctor

As an example of the difference between expert systems and tutoring sys-
tems, I describe one of the most famous tutoring systems derived from an ex-
pert system. This is the GUIDON system built from MYCIN, a medical diagnostic
system that contains over a thousand rules and provides a diagnosis of an inter-
nal disease along with an appropriate therapy (Figure 18) [Clancey, 1979a;
Shortliffe, 1976]. While diagnosing a disease, the expert system can provide
the user with an explanation of its reasoning and its active rules. The physician
dealing with MYCIN can ask, “Why is it important to determine whether or not
the patient acquired an infection while hospitalized?” (Figure 19). The answer
is, “It has already been established that the morphology of organism-one is rod,
the gram stain of organism-one is gram neg, the aerobicity of organism-one is
facul; therefore, if the infection with organism-one was acquired while the
patient was hospitalized, then there’s weakly suggestive evidence (.2) that the
identity of the organism is pseudomonas.” The system can also show the
specific rule, in this case rule 50, that was used.

22 Woolf

Why is it important to determine whether or not the

patient acquired an infection while hospitalized?
It has already been established that:

the morphology of ORGANISM-1 is rod

the gram stain of ORGANISM-1 is gramneg

the aerobicity of ORGANISM-1 is facul

Therefore, if

the infection with ORGANISM-1 was acquired while the

patient was hospitalized
Then

there is weakly suggestive evidence (.2) that the
identity of ORGANISM-1 is pseudomonas [rule 050].

Figure 19 Conversation with MYCIN [Clancy, 1985]

Figure 20 The Doctor as Teacher

Chapter 1 Intelligent Tutoring Systems 23

Student: The patient has seizures.

Guidon: Seizures may indicate meningitis.

However if you can also show intracranial pressure, then
several more consistent interpretations are avaitable
to you.

For example, you might explore the possibility of
an intracranial mass lesion, a subarachnoid hemorrage,
or a brain aneurysm.

Figure 21 Rephrased Conversation with GUIDON (Adapted from Richer and
Clancey [1985])

Consider what a teacher might need to teach that same material (Figure
20). A system that teaches diagnosis might prefer to show a student its thou-
sand rules. Much of the work that Clancey has done with GUIDON at Stanford
is to recognize how medical knowledge is acquired and how medical students
analyze data [Clancey, 1984). Clancey has developed a system that demon-
strates how and when a student should ask for new data, which hypotheses to
expand, which hypotheses are still viable, and how to refine current hypotheses
[Richer and Clancey, 1985).

Test-Hypo
Infect-Process
Test-Hypo f ind-out
acutle-meningitis High-grade-fever

jQuestion

Febrille Q5
Test-Hypo Test-Hypo Find-out
Lung Infect Gryptococcus Low-grade-fever
Test-Hypo

Test-Hypo

Bact-stnusitis Infect-Process

Test-Hypo
Ear-infection

Test-Hypo
Av -maltormauon Selzures Q6
Test HVDO Test-Hypo
Test-Hypo Hemorrage Intracranial-pressure
Brain-aneurysm
Test-Hypo _
IC-p Find-out
Test-Hypo ressur Focal-seizure-duration
Mass-Lesion
Test-Hypo _ Test-Hypo Find-out
Hemorrage Intercranial-Pressure Diplopia uestion |
Test-Hypo Test-Hypo Find-out Visual-problems Q7
IC-Pressure Acute-meningitis Photophobta’

Figure 22 Graphic Conversation with GUIDON (Adapted from Richer and

Clancey [1985])

24 Woolf

GUIDON demonstrates this knowledge graphically, not in natural language
(Figure 22). I've rephrased the conversation into text (Figure 21) for explana-
tion purposes. For example, while examining a patient, the student might say,
“The patient has seizures.” GUIDON comes back and says, “Seizures may indi-
cate meningitis. However, if you can also show intracranial pressure, then
several more consistent interpretations are available to you. For example, you
might explore the possibility of an intracranial mass lesion or a subarachnoid
hemorrhage or a brain aneurism.” The system tells the student how he/she
should make hypotheses and which data he/she should collect. GUIDON does
not presently use natural language to carry on the conversation, GUIDON uses
graphics to explain that “If you have asked about seizures, then you ought to
test the hypothesis of meningitis. However, if you want to test the hypothesis
of intracranial pressure, then some other hypotheses are available to you. If the
pressure hypotheses work, then these other hypotheses are also available to
you.” For every piece of reasoning that the system performs, it explains the
kind of hypotheses the student might consider and the kinds of data to collect.

More Case Examples

I have addressed some of the issues of building intelligent tutoring systems and
have looked at a few start-up examples. Now I will examine more cases and
evaluate all the systems presented. In the conclusion, I will discuss controver-
sies, bottlenecks, and barriers facing further research.

Figure 23 shows a geometry tutor developed by Anderson at Camegie-
Mellon [Anderson et al., 1985]. This system provides a new form of visual rea-
soning for the student. Backward and forward chaining of geometry proof steps
are made visable. In the top of the top figure, the student is asked to prove that
M is the mid-point of EF. In the botton of that same figure, the student is given
that M is already a mid-point of AB and CD.

Every time the student suggets a step of the proof, the machine not only
writes down the step, but also annotates the triangles with the known relation-
ships. The machine shows the relation of each step and how it lies or does not
lie on a path of the proof. If steps performed don’t contribute to the proof, they
are shown on the trace as disjointed from the path. If the student can’t go any
further in the forward direction, he/she can always start at the top of the
graphic and go backward, adding proof steps in reverse. This system makes a
contribution to cognitive modeling and to the communication of tutoring. It
provides a structure for problem solving that was not previously available.

Figure 24 shows Anderson’s other tutor for teaching LISP [Anderson and
Reiser, 1986]. One good feature of Anderson’s work is the use of his cognitive
model of learning, the ACT theory, to build systems in geometry, algebra, and
LISP. The systems are used to test his model. If they don’t work well, Anderson

Chapter 1 Intelligent Tutoring Systems 25

can go back to refine his cognitive model. This methodology, the scientific
method, involves a hypothesize-test-evaluate cycle and is used too rarely in ar-
tificial intelligence. Anderson has demonstrated that he can improve on both
his cognitive model and the building of intelligent tutors.

M s midpoint of EF
DEF -MIDPOINT

EM Z MF

AMBD X AMAC
SAS
MEa AN LAMC 2LBMD Wb alW
o:r-u‘:onom vc’ar oer-ufonow'r

M 13 medpoint of KB M mudpont of TO

M 13 mdpont of EF
|
OEF - MIOPOINT
t
EMaMF

|
CORRES - PARTS

AAMET 2 BMF
t

LMDBILMCA LMBDZLMAC

CORRES-PARTS CORRES-PARTS

SMBOZAMAC

LMCA wpp L MCE BaA LAMC?LBMD WD =Cim LAME 2LBMF
f {
ADJ- SUP-ANGS"® DEF-MIDPOINT VERT DEF- MIDPOINT VERT
M 13 migpont of AB M 15 midpoint of CO

Figure 23 Geometry Tutor [Anderson et al., 1985]

26 Woolf

Returning now to the LISP Tutor (Figure 24), the student is asked to pro-
duce code for the function Factorial. He/she produces code and the machine
comes back with a response every time a new line is entered. In the second
line the student tried to test if a number argument was equal to zero. The ma-
chine said, “I assume you were trying to test if the number argument is equal
to the number zero. There’s a special function for testing equivalence to zero.
Try to use that function instead of equal.” The system uses 325 production
rules to represent LISP concepts and 475 rules to represent buggy concepts.

Anderson has accumulated some impressive results with this tutor. This
system was used to teach the first six lessons of LISP in a typical college course
at Carnegie-Mellon. Anderson says that it takes about forty hours with lecture-
style presentations to get through the first six lessons of LISP. It took only fif-
teen hours for people using this system. He found also that those students who
had both lectures and this system produced grades which were 43% better than
those of students who had only attended the lectures.

A Student-Tutor Dialogue for Coding a Recursive Function to Calculate Factorial

Define the function fact. It takes a
number arqument n and computes the
factorial of n, which is the result of
sultiplyingn X pn - ¥ Xn-2X--- X1,
For instance, i{act 3) =3 X 2X1=6. By
definition, the factorial of 0 is 1.

1. (defun <NAME> <PARAMETERS> <BODY>)

2. (defun fact (m)
(cond ((equal) <ACTION>)
<RECURSIVE-CASE>))

1 assume that you are trying to test if
the number argument 1s equal to the number
zero. There i1s a special function for
testing equivalence to zero. Try to use
that function instead of EQUAL.

what code can you write to test if the
condition for terminating case is true? Try
writing a predicate.

3. (defun fact (n)
(cond ({(zero <ACTION>)
<RECURSIVE-CASE>))

Did you mean zerop (y or n)? y

4. (defun fact (n)
(cond ((zerop nj} 1)
<RECURSIVE-CASE>))

Is the value of fact 1n the recursive cases
calculated by:

PRESS: IF YOU WANT TO:
t Calling fact recursively with n.
2 Multiplying n by fact of n minus 1.
3 Getting 1 2 ... n and then
multiplying the results.
4 Have the tutor choose.

Menu choice: 3

That 18 a reasonable way to think of
doing factorials, but 1t 1s not a plan for-
a recursive function. Since you seem to be
having trouble with the recursive cases,
let us work through some examples and
figure out the conditions and actions for
each of these cases.

The recursive relationship 1s the
relationship between fact called with n and
fact called with:

PRESS: IF YOU WANT TO:
¥ n minus 1.
2 n equal to 0.
3 n plus 1.
4 Have the tutor choose.

Menu choice: 1

We will consider some concrete examples.
We wi1ll characterize the recursive
relationship between fact called with 1 and
fact called with 0.

wWhat is the value of (fact 1)?
Answer: 1

What is the value of (fact 0)?
Answer: 1

EXAMPLES
fact (n— 1)
(fact 0) =1

fact {n)
A (fact 1) =1

We wil!l consider some more concrete
examples. We will characterize the
recursive relationship between fact called
with 3 and fact called with 2.

What 1s the value of (fact 3)?
Answer: 6

Figure 24 LiSP Tutor [Anderson and Reiser, 1986)]

Chapter 1 Intelligent Tutoring Systems 27

Promp! Window et sEess == st oo e o T s Bl RECORD WINDOW RNGIRRELD S0 nn;..'!.;,

L1 IR PN (PRUBLEN)

BEE e (19100 Problem

[
() T (Da-ke 1rhmatic)
(21) Miw-2e8.2 LIVBTRACT)
{12y A (Da-&r 1theat 1c) N

(13) Wed (SOLVED) I

VFCA-2V2 1004

aarCiaie

i Solve tor

4(2+N)=20

1o Bolh Siges:
[MLTIPLY | DIVIDE |
- Do-Arithnelic
e s e E & Distribule
ISILATE the ,s-iable Expand
COLLECT 1ib# tems 1nts & 3ingle erpression o p—
GROUP togetrar libe tarms (tranipose terms) e
SPLIT 3part a-pragsinng cONtaining tha varianls
SIPLIFY rhw o jireisiun (undo) (next problem)

Figure 25 Algebraland [Foss et al., 1987)

Another intelligent tutor teaches algebra (Figure 25) [Foss et al., 1987].
This system provides the student with a problem, such as 4(2 + N) = 20, and
asks the student to solve for N. As the student performs each operation the sys-
tem allows him/her to plan the solution. The student can say, “I want to collect
all like terms,” “I want to transpose terms,” or “I want to split apart expres-
sions containing like variables.” For every plan the student suggests, the sys-
tem provides the basic operations. The student can perform the operation or
ask the system to do it. He/she can expand expressions, add to both sides, sub-
tract from both sides, or divide by both sides simply by asking the machine.
Every action is seen in a trace window.

As shown in the figure, both sides of the equation are divided by 4, further
steps will be placed on the right side of the trace until the N = 3 value is
reached. On the other hand, if dividing by 4 is not the first step, and instead
multiplying through by 4 is the next step, then the steps will be shown on the
left-hand branch of the trace. The student would arrive at the same answer for
either path, as shown at the bottom of the trace.

file:///i7tlk-7/s

28 Woolf

This system begins to act as a partner in the sense that it can do the steps
anytime the student asks for assistance. Certainly the machine can do algebra,
that’s not the problem. The question is, can it also provide a view of algebra
that is intuitive, motivational, and helpful for the student? It does that by pro-
viding a trace, a record of all the steps performed, and by providing a higher-
level view of algebra operations. It acts as a partner in that if the student can-
not solve the problem or cannot do the arithmetic expansion, he/she can effec-
tively say, “I don’t want to fool around with this lower-level stuff, I want you
to do it” and the machine will do it. Several systems have been implemented in
this way. They act as mentors in that they tell the student what is correct or in-
correct and they also act as partners and actually perform the required steps.
Anderson’s LISP tutor acts as a partner in this way by executing the student’s
code.

The system called STEAMER is famous, in part, because of the icons pro-
vided, which the student “inserts” into a simulation of the working steam boiler
(Figures 26 and 27 [Hollan et al., 1984]. As a result, the student can see and
measure the effects of his/her actions on a working simulation of the steam en-
gine. By adding a pump or a toggle switch, the student can envision how the
real steam engine would perform under the same changes.

A tutor with the same methodological approach is the Intelligent Main-
tenance Tutoring System (IMTS), which also allows the student to place com-
ponents into a simulated working hydraulics system (Figures 28 and 29)
[Towne et al., 1987]. This system trains:students to fold helicopter wings. It
determines which problem the student should solve next, keeps track of how
much time it took to solve the problem, and maintains a model of the student’s
presumed learning.

One difficulty with the technology of the systems previously discussed is
that there’s little transference experience for the author building new systems.
There’s currently no way to implement a new system using technology from an
earlier system. The next three systems represent an exception to this rule
(Figures 30-32). These systems are built with bite-sized architecture, a repre-
sentation in which knowledge is bundled in bite-sized units and accessed by
several modules of the system [Bonar et al., 1986]. The bites communicate
with each other to exchange information about the next curriculum topic, or to
evaluate and respond to the student’s input.

The economics tutor, built on this architecture, allows a student to adjust
parameters in a simulated society, such as the size of the population, the num-
ber of stores, and the number of suppliers, etc. (Figure 30). The student’s task
is to deduce economic principles. For instance, he/she can see how much non-
dairy creamer, coffee, and tea have been sold; can change variables such as
price, distribution, or size of competition to deduce the rules in place; and then
can observe some relations between supply and demand. For each modification
made by the student, a record is kept noting how many parameters were

Chapter 1 Intelligent Tutoring Systems 29

changed and what increments were used. When the student has a hypothesis,
he/she writes the observed relationships down and the tutor evaluates them.
The tutor monitors the student’s actions and judges whether he/she is changing
the correct parameters and making appropriate changes in those parameters.

circle sQuare agamond tnangle octagon lozenge
157 45 E
60 32
80 Opsi e
agital bar bar force bar aiat column signai
<) 3 Y --
centriuga rotary arr ejactor log?le rotary tank
pump pump swilch switch
24 PR >
1 1 |) |
slop " check requiator requlator 10|
valve vaive vdlve valve valve
raph muiti-plot h
Qrap 50 ulti-plot grap
v T v v
2 2 4 6 8 10
.

Figure 26 STEAMER Icons [Hollan et al., 1984]

30 Woolf

s

PORT EMERG
FEED TANK

|

FROM ENGINE ROOM FROM AUX CONDENSERS
126GPM |8 xo o em_ma ma o ma .{ 34GPM |
i FROM HP DRAIN SYS.

\’ T0 ‘-’ A ‘%
MN COND i -‘i = 1BFWD PUMP 1 ‘ OFT
. .- = -:& ‘ B - W
ACUUM .
. VACUUM DRAG - : i 1150 Ly]
-
R i P T B Y T
) ~ g i
. !
& 2 =1
s “ENC KN K 3 |] 895 X
S MAKE-UP VLV -
s 12 : I TReG 850 :
= =T :
H .o m i Y
a ‘ -
[] N
i » A ENIND
H i a [}
| EXCESSFOWLV « . . COOLER i
i 1A FWD PUMP :
£ X OM FRES i
P w A FROMFRESH N
1 ' 20 WATERDRAIN TO BOOSTER PUMPS ¥
STBO EMERG 2 a | SYSTEM i
FEED TANK I T i e Tl Ty Ml R R O G

\

Figure 27 STEAMER [Hollan et al., 1984}

Chapter 1 Intelligent Tutoring Systems 31

jYou ure editing library file iDSK)(LlSl‘FllES)NAIXfulJA;l

: Rotate
Scale

| select
State—Opa

BLADEFOLD MYDRAUL IC SYSTEM BLADES 1 4 2 (3)

Figure 29 \MTS [Towne et al., 1987]

32 Woolf

[popuiation | Kaynesvite Promot Window

36 49 L4 64 19 wd Serdm
RPN R P

-_——‘_‘:

PR TR R R R R L R TI
b

Surplus =

0
Price = $1./0 per 100 bag box

'{ See market sales inlormation
Compuler adiust price & Continue|
~{ Adjust price yoursell & Continue
Set up Table
_Seiup Graph
State 8 Hypolhesis
Change Good, Same Variable(s
Same Good. Change Verisble(s)
Change Good, Change Var s) -
Continue To Next Meras

o —T T T T ;

3 1 e 8] ile e (LT i L] hd b N A

1 H Cr enora $ 19 1684 1M i1} L) A .. - b

1 3 Cremu o 3 1 9¢ 1509 e o84 L)

1 4 Coffea $ 17 15948 104 131} L]

1 5 Coffee i 179 1doe 1e%¢ m L] -

1 L] Caotree 1 1 a% 14,9 179 k] L]

1 7 Tes 4 LR 1749 1758 L] LX)

1} L] AT 4 19 10c9 1ve [.9

1 3 Tea 1) e (3N] ione + N)

Figure 30 Economics Tutor [Boner, 1986]

Two other tutors in this series also allow for student hypotheses within a
rich simulation environment. The OPTICS tutor allows a student to move lenses
over a screen; it sends a ray of light through each lens, and allows the student
to measure the entry angle and the exit angle for each of these lenses (Figure
31). This system is similar to the economics tutor in that the student creates
original experiments and matches his/her hypotheses against the actual per-
formance of the lenses. In this way, the student starts to intuit principles of op-
tics. Similarly, an electronics tutor demonstrates principles of electronics
(Figure 32).

Chapter 1 Intelligent Tutoring Systems 33

ety

-l

| X |M§;

X

n

Ocamang

[

TS

Figure 31 OPTICS Tutor [Boner et al., 1986]

Lo 1ty patdem you are (o deleimw wlm e reuu«) wir
T blank moter wit W Outerve (tw readuy un the guen
meter and decide whether \ha reading on the blank neler
o =3 wdl b e, ower, or aqual tu GLsorved readeeg

I T wiNl A w1t sean paeen TR

I 1 am wut at larty 1o dividp anytieey

NS Lormering tle carrunt n the wxurche, sofry
d

- 4 L] .
. . “ :
T !] N This is keeplor beloru auterring Niwie

)
Tey 13 Or ks i Cluhorat
(rutiens Hel current atter s (Hesinior)

1w 18 tha 1emphnd in ChonseNnde to use
(Nerivs (llesistor) (Proldent Rul current attor
1 (st)) (Tesntor) (Problen Ml varrent
attur an (Hesnior D}

(L6 Dallinsdt) (S Kechulistaw)) (8

150 w8)) Uoefin wACIATIS) Swries)

m ((V-Jl.up Beursu) (Serwes (Hesntor) (|'|d‘k~4u Hat
at

ter ulf (Mesistar)) (Newstor) {
Vopwr |-. wlshiar Pl currist afler o uuum-m]
Tower 1aratl (Serws (Hewatur) {Teshtar) (esator
I} (Seracy (Hesnlan) (Twantor)}) ((farabdd
fqual Hwsnlor) (Haesistur)} (Parabd (tasntar)

tiesistor)) (tesistor)))

#A&(Corant CEVOIR[MC1.302)
Aftre UntuseUuaiGua i Ot

Figure 32 Electronics Tutor [Boner et al., 1986]

34 Wooilf

Evaluating Tutoring Systems

We have looked at more than a dozen systems and we can now ask: What has
been achieved? Do these systems demonstrate completeness and reliability
within the four models: knowledge and reasoning, communication, cognitive
processing, and tutoring? The answer is no. Yet each system does demonstrate
varying amounts of completeness for each model (Figure 33). (Completeness
and reliability in a system indicate that it can be used effectively in training or
classroom situations.) In the right-hand column, under Advanced Results, I
identify those systems that can be used reliably by students and can provide
some coverage of a topic, albeit for a limited domain. Such systems can be
used generally by many students. Systems listed in the center column have, by
and large, demonstrated only knowledge engineering capability for one of the
four models. These systems demonstrate the prototypical behavior for an expert
in that model; yet that model is not complete and reliable.

Issues Identified

Knowledge Engineering
Protoypes and
Small Scale Testing

Advanced Resulls
Completeness and
Reliabitity Considerations|

Genetics [8yce sized Tutop [Medicine
MODEL Streibel Bonar et al. Clancey
KNOWLEDGE
AND
REASONING m —m
Anderson

White & Fredenck:lon

‘ Medicire)
Richer |[& Clancey
v Anderson l)

TN,

Towne & Munroe

COMMUNICATIONS
MEDIA

— N

Johnson & Solowa

MODEL
COGNITIVE
PROCESSES Electronics Algebra
white & E‘redericksgn Sleeman 7
Electronics I Medicine > IBoiler Tutor |
MODEL Clancey Woolf et al
TUTORING Brown & Burten
AND Lisp Tutor m
DISCOURSE Anderson ¥ | Woolf & MacDonald

Figure 33 Completeness and Reliability in Tutoring Systems

Chapter 1 Intelligent Tutoring Systems 35

As you saw, the LISP tutor by Anderson has been placed in schools and has
achieved completeness and reliability within its knowledge representation and
reasoning model. Its cognitive model is also very good. The medical education
tutor by Clancey has also been used by students and seems able to represent
complex data in a visual and intuitive way.

The majority of systems discussed lie in the middle column; they reflect
good knowledge engineering yet are not fully reliable in the classroom. We’ve
learned to build good prototypes and to performn small-scale testing on these
systems.

For some modeling tasks, notably that of representing tutoring primitives,
we’ve only just identified the issues. Development of tutoring models lags be-
hind development of knowledge and reasoning models. We’ve done some pro-
duction work in representing knowledge and communications, and are not
doing production work in representing cognitive processes or tutoring strate-
gies.

Figures 34 and 35 show how each system might be rated in terms of its
ability to implement each of the four models.

RECOVERY
ENVISIONMENT | soppie | power | MAINTENANCE | sreamen | BYTE SIZED
WORLD TUTOR TUTOR TUTOR
MODEL OF L
KNOWLEDGE &/
AND s
REASONING FACT SYSTEM SYSTEM SYSTEM SYSTEM GYSTEM
COMMUNICATIONS
MEDIA
MODEL
COGNITIVE
PROCESSES
MODEL £
TUTORING v
AND ¥
DISCOURSE :
Mentor Mentor

Figure 34 Qualitative Models, Part 1

36 Woolf

ELECTRONICS ALGEBRA. | GEOMETRY | BRIDGE
TUTOR MEDICINE | LISP TUTOR LAND TUTOR TUTOR
MODEL OF
KNOWLEDGE V s/
AND
REASONING META
SYSTEM KNOWLEDGE FORMAL FORMAL FORMAL | FORMAL

COMMUNICATIONS if

MEDIA %’

MODEL
COGNITIVE
PROCESSES

MODEL
TUTORING

AND

DISCOURSE

..""“I!n.

™
<

PARTNER PARTNER

Figure 35 Qualitative Models, Part 2

Figures 34 and 35 also indicate the variety of knowledge we teach and the
variety of ways in which we teach it. For example, we are able to teach facts,
e.g., velocity and acceleration, as well as whole systems, e.g., electronic sys-
tems, boiler system, and maintenance system. We have also begun to teach
meta-knowledge, or the knowledge needed to reason about and make infer-
ences in a domain, e.g., the medical education tutor shows how to organize and
focus data. Several other systems teach formal logic and formal knowledge,
e.g., Algebraland and the geometry tutor.

We have also developed new ways of teaching. Figure 34 indicates that we
use a mentor method in the SOPHIE and Recovery Boiler Tutor System, where
the system oversees the student’s actions and doesn’t necessarily comment, or
at least might reserve comment, while continuing to model the student’s ac-
tions.

We have systems that act as partners, e.g., the LISP tutor or Algebraland,
which allow the student to ask for help or which themselves execute the next
step (Figure 35).

What have we really achieved? Clancey has put it succinctly: “Education
has not been turned upside down.” Clearly we have not placed a lot of systems
in educational institutions. Neither have we performed extensive evaluation on

Chapter 1 Intelligent Tutoring Systems 37

these systems. We require around two years to build each system. Thus, in a
few more years we will have more systems in educational institutions, yet even
these systems will not be ready for evaluation. Classroom tests do not provide
a measure of success for these systems because they have not been integrated
into the curriculum. Soon however, we need thorough evaluations of these sys-
tems.

As shown in Figure 36, systems have been placed in grade schools, in-
dustrial sites, military training sites, and universities. In the grade schools, the
geometry and algebra tutors have been tested by Anderson. In industry, 60 or
so copies of the Recovery Boiler Tutor have been used at various papermill
sites. In military training, the original electronics tutor was used briefly and the
equipment maintenance tutor is about to be used. More progress has been made
in university training, perhaps because computer science researchers are often
found at universities. Thus, the Johnson and Soloway Pascal tutor [Johnson and
Soloway, 1984], the Anderson LISP tutor, a second Pascal tutor, called the
Bridge tutor [Bonar and Weil, 1985] and the medical education tutor have all
been used with university students and in some cases have undergone detailed
testing.

Figure 37 provides a rough estimate of the number of units used, where
units is taken to mean copies of software, rather than separate pieces of hard-
ware. Obviously the field is still new. As we begin to move into production
with these systems and produce hundreds of these units as in the case of the
Recovery Boiler, and the geometry, and STEAMER projects, we will be able to
more properly evaluate the effectiveness of these systems. Ten units might
mean that 10-30 students have used the system, and as we begin to actually
use systems for a semester or so, as was done with the Pascal or LISP tutor, we
will have hundreds of units available and can begin performing summative
evaluation on student performance.

APPLICATION
AREA 1960 1970 1980 1990 2000
GRADE SCHOOL Geography Tutor
Algebra Tutor Geometry Tutor
INDUSTRIAL a .
SITES ecovery Boiler Tutor
MILITARY Steam Boiler Tutor
TRAINING Electronics Tutor Equipment Maintenance Tutor
Pascal Tutor
UNIVERSITY Medicine Tutor Lisp Tutor
Bridge Tutor

Figure 36 Intelligent Tutors in the Classrom and Training Sites

38 Woolf

HUNDREDS OF UNITS Pascal Tutor
Lisp Tutor

Recovery Boiler Tutor
Geometry Tutor
Electronics Tutor
Steam Boiler Tutor

TENS OF UNITS
Medicine Tutor
Bridge Tutor
Equipment Maintenance Tutor
Algebra Tutor
SINGLE UNITS

Geography Tutor

1987 PRODUCTION LEVELS OF Al TUTORING SYSTEMS

Figure 37 Number of Units

Controversies

Several controversies surround this work. As discussed above, a major problem
is that we have not yet evaluated these systems. For example, if a system
succeeds, which models should be assigned the credit? How can the various
models be fine-tuned to improve the next generation of systems? Such evalua-
tion studies are beginning. Anderson [1988] and Soloway have made detailed
studies of the effects of their systems on learning and performance in the class-
room.

A second issue of controversy is the definition of intelligent tutoring sys-
tems. Frequently, researchers in the field develop two or three of the models
suggested in Section 1.2 and say that the resulting system is intelligent. If, for
instance, a system has a good interface and representation of the domain, but
lacks a cognitive or tutoring model, is it intelligent? I suggest that until all four
models are achieved the system is not intelligent.

Another controversy concerns the effectiveness of these systems. And as
I’ve said, there are very few systems out there. Moreover, funders are reluctant
to pay for evaluation of these systems. Apart from a few isolated efforts, no
large scale effort to evaluate this work has been undertaken.

Yet another controversy concerns the theory, or lack of same, that guides
development of these systems. Ideally, we should look at cognitive theories,
model them in the design of a new system, and use the systems to test the

Chapter 1 Intelligent Tutoring Systems 39

theory. The crucial step is the iteration, which enables results from one step to
inform development of the next: A working tutor should enable refinement and
evaluation of a cognitive principle and vice versa. Results from a working tutor
should, in theory define a new cognitive model. Currently, precious little
theory guides development of these systems. Not enough has been learned
from cognitive processes results or from instructional design literature. There is
nothing so practical as a good theory.

Another issue is use of the scientific method. Do we hypothesize, test, and
evaluate rules and processes? Most of us do not. We need to clarify how hy-
potheses are generated in this field, how experiments help test those hypothe-
ses, and then how results are to be evaluated.

We have been unclear abut the intersection of our field with other applica-
tions of computers for education, such as simulations and microworlds. Do
they work? For the most part, they do not. There is some evidence that simula-
tions alone do not work, that microworlds are effective in getting the student to
manipulate specific parameters. But there is little evidence of transference from
cither system to other domains. In both cases the missing element is a tutor
that guides the interaction. Without some reasoning about the student’s inten-
tions and some appropriate remediation, effective teaching does not take place.

Bottlenecks, Barriers, and Breakthroughs

Many bottlenecks stand in the way of full realization of these systems. A pri-
mary one is the acquisition of sufficient person-power to build these models.
How can researchers in psychology, education, and instructional design partici-
pate in this effort? A great deal of education and networking is required. Com-
puter scientists need to work with instructional designers and educators who
need to work with psychologists. We all need to benefit from prior work in the
other fields. Currently, there is minimal communication between participants.
Computer scientists, psychologists, domain experts, and teachers each publish
in distinct journals using non-intersecting vocabularies. Results from empiri-
cists are often not precise enough to enable production of knowledge and con-
trol structures.)
Another barrier concems the intensive amount of work necessary to build
each tutor. Without the aid of shells and authoring systems this task is over-
whelming. Even with software tools, each new domain requires indentification
of topics and prerequisite topics, causal and temporal reasoning between topics,
and the relative difficulty for learning topic. Cognitive modeling requires iden-
tification of meta-cognitive skills and an index to how a person might organize
knowledge in the new domain, as well as identification of human strengths and
weaknesses. Building a communications model requires visualization of the

40 Woolf

reasoning process, such as Clancey has done with the medical tutor or as Bonar
has done with the OPTICS tutor. It also requires taking advantage of high resolu-
tion graphics, windows, menus, icons, and other available graphics tools.
Building a tutoring model requires specification of the relative difficulty of
each topic, as well as strategies and tactics for tailoring instruction to an in-
dividual student, and corpus analogies, examples, and error diagnosis tech-
niques for teaching each topic. Thus, each new tutor requires exensive pro-
gramming and empirical results.

Some breakthroughs however, facilitate future development of these sys-
tems. Powerful and inexpensive small computers have become availabe for ed-
ucation. For example, the Recovery Boiler Tutor was built on an IBM AT. It
might have had more powerful communication capabilities if it had been
developed on an Al-workstation, and we are beginning to scale down such sys-
tems to run on microcomputers. Funding for this research has recently become
available at different levels through industry, government, and military sources.
For example, Xerox PARC has established an Institute for Research on Learn-
ing, the purpose of which is to research new ways of teaching adults, using a
computer. The founding of this Institute was motivated by the urgent need for
adult education, particularly in industry. Xerox contributes a solution to this
problem by funding researchers at Palo Alto to look at the cognitive process of
learning and applying this knowledge to the building of intelligent tutors. The
National Science Foundation and the Office of Naval Research have funded
this type of work for a long time.

Existing software facilitates development of these systems. Expert systems,
particularly the advent of expert systems shells, enable us to use existing sys-
tems, especially those in qualitative process modeling, and to base our tutors
on the expert knowledge contained therein. This is not a simple, direct process,
as Clancey has shown, but it does provide a starting point. Recent advances in
cognitive modeling have also helped. Studies in learning, inferencing, and
modeling processes are available. We are beginning to know more about what
we’re teaching and how to model the individual student as he/she learns. Cur-
rently we need more information about activities that engage particular students
and that distinguish novice from expert behavior [Larkin et al., 1980; Chi et al,,
1981], and about how to respond to the individual student.

Conclusions

In sum, I want to be very clear that we do not offer a panacea for the problems
discussed at the beginning of this talk. Even if we build systems as powerful as
suggested here, these systems will not fix all the educational deficiencies listed
earlier. But they do provide some exciting possibilities, one of the most excit-
ing is the possibility of building enticing learning environments that appear

Chapter 1 Intelligent Tutoring Systems 41

more effective than any existing forms of teaching. They also provide experi-
ments for simplifying complex learning: For example, the Recovery Boiler
Tutor and the maintenance tutor attempted to reify complex situations and
make numerous components and parameters easy to manipulate.

One potentially significant impact of these machines is to transform educa-
tion from a push to a pull, whereby people eagerly choose to work using these
systems. Operators who have the Recovery Boiler Tutor report working on it
up to 76 hours in the first three months. We don’t ask the operators to work
that many hours, they just enjoy playing with the system. Teaching systems
that attract people have a significant advantage over non-attracting forms of
teaching media.

As shown above, intelligent tutoring systems research is not an application
area of Al. We cannot take off-the-shelf products from Al and use them to
build our systems. This means that we are required to do a lot of work and to
be more eclectic and persistent in modeling cognitive, tutoring, domain, and
communication knowledge. However, the possibility is there for us to create
world-class teaching systems that will change the current education delivery
system.

References

Anderson, J., C. Boyle, and G. Yost, 1985. The 'Geometry Tutor. Proceedings
of the International Joint Conference on Artificial Intelligence. Los Angeles,
CA. '

Anderson, J., and B. Reiser, 1986. The LISP Tutor. Byte 10(4):159~175.

Anderson, J., 1988. Unpublished talk at NSF MDR Principal Investigator’s
Meeting, Phoenix, AZ.

Bloom, B. S., 1984. The 2-Sigma Problem: The Search for Methods of Group
Instruction as Effective as One-to-One Tutoring, Educational Researcher
13:4-16.

Bonar, J., R. Cunningham, and J. Schultz, 1986. An Object-Oriented Architec-
ture for Intelligent Tutoring. Proceedings of the ACM Conference on Ob-
Jject-Oriented Programming Systems, Language and Applications. ACM,
New York.

Bonar, J. G., and W. Weil, 1985. An Informed Programming Language. Paper
presented at the meeting Expert Systems in Government. Washington, D.C.
Brown, J. S., and A. Bell, 1982. SOPHIE: A Sophisticated Instructional En-
vironment for Teaching Electronic Troubleshooting (An Example of AL in
C.AL). In Sleeman, D. and J. S. Brown, ed. Intelligent Tutoring Systems.

Academic Press, Cambridge, MA.

Chi, M., P. Feltovich, and R. Glaser, 1981. Categorization and Representations

of Physics Problems by Experts and Novices. Cognitive Science 5:121-152.

42 Woolf

Clancey, W., 1979a. Transfer of Rule-Based Expertise Through Tutorial Dia-
logue. Ph.D. Dissertation, Department of Computer Science, Stanford Uni-
versity.

Clancey, W., 1979b. Case Management for Rule-Based Tutorials. In Proceed-
ings of the International Joint Conference on Artificial Intelligence.

Clancey, W., 1979. Tutoring Rules for Guiding a Case Method Dialogue. Inter-
national Journal of Man-Machine Studies 11. Also in D. Sleeman and J. S.
Brown, ed., Intelligent Tutoring Systems. Academic Press, Cambridge, MA,
1982.

Clancey, W., 1984. Classification Problem Solving. Proceedings of the
National Conference on Artificial Intelligence.

Clancey, W., 1986. Qualitative Student Models. In Traub, I. F., ed., Annual
Reviews, Inc. Palo Alto, CA.

Clement, J., and D. Brown, 1984. Using Analogical Reasoning to Deal with
Deep Misconceptions in Physics. Cognitive Processes Research Group,
Physics Department, University of Massachusetts, Amherst.

deKleer, J., and J. S. Brown, 1986. A Qualitative Physics Based on Con-
fluence. In Bobrov, D. C., ed., Qualitative Reasoning about Physical Sys-
tems. MIT Press, Cambridge, MA.

Forbus, K., 1986. Qualitative Process Theory. Artificial Intelligence 24:85—168.
Reprinted in Bobrow, D. C., ed., Qualitative Reasoning about Physical Sys-
tems. MIT Press, Cambridge, MA.

Forbus, K., and A. Stevens, 1981. Using Qualitative Simulation to Generate
Explanations, Report #4480, Bolt, Beranek and Newman, Inc.

Fuller, R. B., 1962. Education Automation: Freeing the Scholar to Return to
his Studies. Southern Illinois University Press, Carbondale, II.

Hollan, J., Hutchins, E., and L. Weitzman, 1984. STEAMER: An Interactive
Inspectable Simulation-Based Training System. Al Magazine. Summer.

Johnson, L., and E. M. Soloway, 1984. Intention-based Diagnosis of Program-
ming Errors. Proceedings of the National Conference on Artificial Intel-
ligence. pp. 369-380, Austin, TX.

Larkin, J., McDermott, J., Simon, D., and H. Simon, 1980. Expert and Novice
Performance in Solving Physics Problems. In Science 208:1335-1342.

Molnar, A., 1986. An unpublished talk presented on the panel “Al in Educa-
tion,” E. Soloway, Chair, National Meeting of the American Association on
Artificial Intelligence, Philadelphia, PA.

Naisbitt, J., 1984. Megatrends: Ten New Directions Transforming our Lives.
Warner Books: New York, NY.

National Science Foundation, 1983. Educating America for the 21st Century.
Washington, DC.

Richer, M., and Clancey, W., 1985. GUIDON-WATCH: A Graphic Interface
for Viewing a Knowledge-Based System. I[EEE Computer Graphics and Ap-
plications 5(11):51-64.

Chapter 1 Intelligent Tutoring Systems 43

Roschelle, 1987. Unpublished paper title presented at The Third International
Conference on Artificial Intelligence and Education, Pittsburgh, PA.

Shortliffe, E., 1976. Computer-based Medical Consultations: MYCIN. Ameri-
can Elsevier Publishers, New York, NY.

Sleeman, D., and J. S. Brown, ed., 1982. Intelligent Tutoring Systems. Aca-
demic Press, Cambridge, MA.

Smith, 1987. ARK. Unpublished Paper presented at The Third International
Conference on Artificial Intelligence and Education.

Soloway, E., 1986. Learning to Program vs. Learning to Construct Mechanisms
and Explanations. CACM. 29(9):850-858.

Stevens, A., Collins, A., and S. Goldin, 1978. Diagnosing Student's Miscon-
ceptions in Causal Models Technical Report 3786, Bolt, Beranek and New-
man, Cambridge, MA, also in International Journal of Man-Machines Stu-
dies 11 and in Sleeman, D. and J. S. Brown, ed., Intelligent Tutoring Sys-
tems. Academic Press: Cambridge, MA, 1982.

Towne, D., A. Munroe, Q. Pizzini, and D. Surmon, 1987. Simulation Composi-
tion Tools with Integrated Semantics. Abstracts of the Third International
Conference on Artificial Intelligence and Education. p. 54. Leamning Re-
search and Development Center, University of Pittsburgh, PA.

U.S. Department of Education, 1982. Computers in Education: Realizing the
Potential.

U.S. Department of Education, 1983. Proceedings of the Office of Education
Research and Improvement.

White, B. and J. Frederiksen, 1986. Intelligent Tutoring Systems Based upon
Qualitative Model Evolutions. Proceedings of the National Conference on
Artificial Intelligence.

Woolf, B., D. Blegen, J. Jansen, and A. Verloop, 1986. Teaching a Complex
Industrial Process. National Association of Artificial Intelligence, Philadel-
phia, PA.

Woolf, B., and D. McDonald, 1984. Context-Dependent Transitions in Tutor-
ing Discourse, National Association of Artificial Intelligence, Austin, TX.
Woolf, B., and D. McDonald, 1984. Design Issues in Building a Computer
Tutor. IEEE Computer September. Special issue on Artificial Intelligence

for Human-Machine Interaction.

Woolf, B., and D. McDonald, 1984. Representing Discourse Conventions in
Tutoring. In Expert Systems for Government Symposium. IEEE and MITRE
Corp., McLean, VA.

Walberg, H., 1982-3. A Series of Reports (1982-3) Concerning Computational
Studies of Mathematics Skills Scores between U.S. and Japanese Students.

Chapter

2

An Introduction to
Explanation-based Learning

Gerald Dedong
Coordinated Science Laboratory
University of lllinois

Introduction

What is explanation-based learning? That is the central question we will ex-
amine. Unfortunately, there is yet no satisfactory answer to this question. Nor
is there universal agreement among researchers on what phenomena should and
should not be included under the rubric of explanation-based learning (EBL).
Such an admission may first seem rather unsettling to a scientist. Is it im-
possible to scientifically study a topic whose very boundaries have not been
clearly delineated? Is EBL a paradigmatic conundrum? My answer (not sur-
prisingly) is “No!” The difficulties are real but quite natural. They are a reflec-
tion in part of EBL’s immaturity—it is young even by Al standards, and in
part of similar problems with the broader field of Al

What would it mean to have a satisfactory answer to our central question?
We would need a complete and precise characterization of EBL. The conjunc-
tion of these two attributes is the problem,; it is too early to be complete and
precise. We can offer imprecise and ad hoc characterizations that capture many
of our intuitions about EBL, or we can give precise characterizations which are
stultifying and shallow.

45

46 Dedong

While we may accept this description of EBL’s current state as accurate,
we cannot be content with it. It is the presence of these difficulties that makes
EBL worthy of scientific study, and it is the struggle of scientific study by
which we can eliminate them.

There are two approaches to EBL research. We will call them the “formal-
ist” approach and the “implementationalist” approach. Each has its advocates.
The formalist takes small, certain steps, building on a firm foundation. The im-
plementationalist throws caution to the wind, programming large systems with
impressive input/output behavior. An ideal researcher must be a bit of both.
The proper task of a formalist, aside from formalizing, is to broaden the scope
of his research. The proper task of an implementationalist, aside from im-
plementing, is to distill a little true progress from the overabundance of im-
plementational details.

An honest formalist, when asked “How can you be sure what you're
studying is important?” must reply “I cannot”; an honest implementationalist,
when asked “How can you be sure your work represents a scientific advance?”
must give the same response. Both researchers rely ultimately on their own in-
tuition—their own gut feeling for what is an exciting research direction. So it
is with explanation-based learning. Each component brings its own brand of
progress, and it is only through their nexus that EBL can arrive at the scientific
Nirvana of completed research.

In this paper we begin by building an intuitive appreciation for EBL. Next,
we will briefly compare EBL with similarity-based learning (SBL). Then we
will list and discuss the various types of EBL generalization and present
several formalisms that have been advanced to handle some small fraction of
them. After discussing why these formalisms fall short of capturing EBL, a
brief historical account of EBL development will be given followed by a dis-
cussion of a few of the important outstanding research issues.

An Intuitive Specification of EBL

Explanation-based learning is best viewed as a kind of learning from observa-
tion [Mitchell, Mahadevan and Steinberg, 1985; DeJong and Mooney, 1986a).
It allows a system to acquire general knowledge through an analysis of a few
specific episodes. Background knowledge plays a crucial role in the analysis
process. In large part, the background knowledge substitutes for the massive
training sets needed in traditional machine learning. It is convenient, though
not necessary, to view EBL in the context of problem solving, or more pre-
cisely, learning about problem solving. We will primarily explore EBL in this
context.

It is important to realize that the determining feature of an EBL system is
not the presence of something called an explanation. Many systems construct

Chapter 2 Explanation-based Learning 47

explanations or proofs but are not EBL systems (e.g., [Fikes and Nilsson, 1971;
Charniak, 1977, Wilensky, 1978; Schank, 1986]). Rather, it is how the ex-
planation is used that qualifies a system as taking an EBL approach. Each EBL
system uses the explanation of a very few examples (usually just one) to define
the boundaries of a concept. The concept’s definition is determined by a
domain-theory-guided inspection of why an example worked, not by similari-
ties and differences between this example (or example’s explanation) and pre-
vious instances.

"Hey! Look what Zog do!"

Figure 1 Early explanation-based learning. "The FAR SIDE cartoon
by Gary Larson is reprinted by the permission of Chronicle Features,
San Francisco, California."

48 DeJong

Figure 1 is a reproduction of a “Far Side” cartoon which shows an ex-
ample of early explanation-based learning. A group on the left are Neander-
thals. They are familiar with fire but have not yet discovered the concept of a
cooking skewer. Zog, the Cro-Magnon with glasses on the right, has invented
the world’s first skewer and is happily broiling his pterodactyl drumstick over
his own fire. Zog is creative and intelligent, the Einstein of the late Pleistocene
age. It would be nice to develop a computer model that captures Zog’s creative
problem solving ability. Sadly, that task is far beyond current Al technology.
However, there is another interesting individual in the picture. The smartest of
the three Neanderthals has noticed Zog’s invention. He realizes that Zog is not
scorching his hand in the traditional way and yet Zog is just as successfully
cooking his food. Our Neanderthal friend has done much more than rote learn-
ing. He has appreciated something of the generality of Zog’s cleverness. For
example, he probably knows that the cooking technique would work for him as
well as for Zog, also that it is not specific to Zog’s drumstick but would work
equally for his friend’s lizard or tomorrow’s yet-uncaught wild rabbit. He per-
haps realizes some of the parametric constraints on the concept. The skewer
concept could be applied to his own fire, though since the fire is larger and
hotter than Zog’s, a slightly longer stick would be propitious. He probably also
understands some of the limitations of the concept: It would not work well
when applied to giant turtle eggs or a whole woolly mammoth—the turtle eggs.
would shatter and the woolly mammoth could not be lifted with the stick. Our
Neanderthal has done much more than simply store away a single uninterpreted
episode. He has, in fact, acquired a new general concept.

In spite of the fact that our Neanderthal is not as intelligent (or at least not
as creative) as the Cro-Magnon Zog, he now has a skewer concept that is quite
possibly as effective as Zog’s own. Furthermore, he did not have to waste the
time or effort that Zog spent—the sleepless nights agonizing over his creation,
the endless and tedious trial-and-error experiments. How did our Neanderthal
friend learn this useful new concept? There are three steps. First, he noticed
Zog had a better way of doing things. Second, he explained to himself why
Zog’s method works using his knowledge about the world—knowledge about
fire, sharp sticks, flesh, food, and so on. Third, he generalized the explanation
of the single observed instance into a useful, broadly-applicable problem solv-
ing concept.

The Neanderthal's acquisition of the skewer concept illustrates what we
term explanation-based learning (EBL). Our ultimate goal is to formalize this
process. It is a much more modest Al goal than to build an implementable
model for Zog's creativity. Much of Al seeks to do the latter, to automatically
construct clever original solutions of difficult real-world problems. Al planning
systems do everything from scratch. The fourth time through “monkeys and
bananas” is no easier than the first time. Planning from scratch is, in general,
very difficult [Chapman, 1987] and has not met with much success. Instead,

Chapter 2 Explanation-based Learning 49

we will be content for our EBL system to gracefully acquire new concepts by
observing others who are more intelligent than the system is. We will not insist
that the system produce a maximally general concept, just a useful concept. If
our Neanderthal friend falsely believes that a skewer can only be used to roast
pterodactyl parts, the concept is still worth knowing. He should, of course, al-
ways be open to the possibility of later concept refinement. We will insist,
however, that the general concept be tractable to leam and efficient to access
and use.

Is this too modest a goal? Are we over-simplifying to insure success? Will
we be left with anything worthwhile? Consider what the EBL approach does
not cover. Since EBL requires a substantial amount of world knowledge both
to construct and also to generalize the explanations, acquisition of initial world
knowledge is beyond its scope. Also, invention, Zog’s process of creative con-
cept formation, is out of its scope. EBL will not result in computer programs
that can invent the phonograph or electric light as Thomas Edison did. While
such creative insights are essential for our culture’s technological advancement,
they are very rare. Indeed the number of truly creative advances made by any
individual over his lifetime probably averages to less than one. There are a few
Thomas Edisons who make perhaps three or four creative advances, but most
of us are just plain folk who can appreciate and use inventions but do no sig-
nificant inventing of our own. The task is modest, but its modesty is derived
from not trying to surpass average human abilities. This seems to be an entirely
reasonable sort of modesty.

Much of adult learning seems to have characteristics that make it suscep-
tible to an explanation-based learning approach. Apprenticeship leaming is ubi-
quitous in human training. After a modicum of classroom-style learning, doc-
tors, plumbers, carpenters, graduate students, farmers, and so on, all finish their
training with an extended period of close observation of an established master.
This is clearly a very large, interesting, and useful class of learning. We are not
claiming that humans must be employing EBL in these apprenticeship domains.
In this paper we are not even claiming that humans do learn this way although
there are some recent experimental evidence for the psychological plausibility
of the approach [Ahn, Mooney, Brewer and DeJong, 1987). We only claim that
the approach is an interesting one that may prove to be an important com-
ponent in an over-all model of learning, and that it merits further study.

Informally, then, this is the kind of learning that we term explanation-
based. 1t involves determining that an example is worthy of learning, construct-
ing an explanation for the example (or examples), and generalizing the ex-
planation into a new concept. It is my own opinion that EBL systems are used
to the best advantage when the explanation is constructed from the observation
of the behavior of an expert. However, some EBL researchers prefer systems
that generalize their own successful problem solving actions. Others have no
preference as to where the explanations come from. But learning from observ-

50 Dedong

ing others has an advantage. More complex and interesting concepts can be ac-
quired by relying on the intelligence and creative abilities of others. This is be-
cause the computational complexity of understanding is less than that of crea-
tive problem solving [Dejong, 1986b].

Explanation-based and Similarity-based Learning

Next, we wish to briefly compare explanation-based learning with similarity-
based learning. The term similarity-based is originally due to Michael Le-
bowitz and has been popularized by Ryszard Michalski and others, but has not
been adopted by all researchers. Pat Langley, whose research is also in this
vein [Langley et al, 1981a; Rose and P. Langley, 1986], prefers the term
empirical learning indicating that learning is driven primarily by experience
rather than an preexisting theory. Similarity-based learning (SBL), or empirical
learning, is the dominant model of learning in both AI and psychology [Wins-
ton, 1975; Quinlan, 1986; Michalski, Mozetic, Hong and Lavrac, 1986a; Ren-
dell, 1983; Stepp and Michalski, 1986; Schank, 1982; Kolodner, 1987, Medin,
Wattenmaker and Michalski, 1987]. It has to do with discovering a combina-
tion of features that best classifies the regularities in a set of examples. The re-
sulting generalization over the examples is the new concept. The hallmarks of
SBL are (1) the use of many examples and (2) the need for very little domain
knowledge. It is, in these ways, the antithesis of EBL. In SBL, concepts
emerge from the consideration of many positive (and often also negative) in-
stances of the concept. The classification is often, but not always, provided by
a teacher. The quality of the resulting concept is dependent on the number of
examples and also on how representative the training examples are of the con-
cept’s actual space.

To illustrate the differences between EBL and SBL we will consider ac-
quiring the concept in Figure 2.

Figure 2 A cup.

Chapter 2 Explanation-based Learning 51

What is the object in Figure 27 It is a cup. But suppose we are not familiar
with cups. A similarity-based method of acquiring the concept would be to
look at a number of examples of a cup, trying to formulate what it is that they
have in common. A teacher, or some other mechanism, must be used to class-
ify world objects into cups and non-cups. Suppose our teacher has produced
the labeled objects of Figure 3. The ones on the left are classified as cups and
the ones on the right are not cups. The objects (both positive and negative ex-
amples) are presented to the SBL system as a conjunction of features. The first
positive example is cylindrical and red, has a round handle and a flat bottom,; it
weighs 5 ounces, and belongs to Herman. The second one is conical and
brown, has a fashionable art-deco handle and a flat bottom; it weighs 6.3
ounces and is the property of Mary. The third one is shown in Figure 3.

An SBL system, after examining many positive and negative examples,
will construct a general description which ideally is satisfied by all of the posi-
tive examples and none of the negative examples. Often, many different de-
scriptions will be consistent with the known examples. Figure 4 shows two
different concept descriptions represented as areas in a two-dimensional feature
space. Each accounts equally well for the example instances. Positive examples
are represented by ‘+’; negative examples are represented by ‘~’. Each object

NOT
CUPS CUPS

. d
J an

Figure 3 Positive and negative examples.

52 DedJong

is represented as the conjunction of just two feature values. Feature A may be
the object’s color, and feature B its weight. This is, of course, a trivial repre-
sentation scheme; in it a brick and a golden retriever puppy are identical ob-
jects. In actuality, there would be many, many features and the space would
have as many dimensions. Six dimensions were used in the discussion of
coffee cups above (shape of body, shape of handle, shape of bottom, weight,
and owner). This is also too few. A feature space must be rich enough to sup-
port the distinctions necessary for the concept.

A concept description specifies an area in the feature space. Three concept
descriptions are shown in Figure 4, each of which successfully includes all of
the positive examples and excludes the negative examples. The areas are repre-
sented by the contours of their boundaries.

Notice that we are allowing disjunctive concepts—concept 1 is composed
of two disjoint areas. Many other concept descriptors can be formed that
successfully separate the ‘+’s from ‘-’s. Once a concept description is selected,
previously unclassified objects are classified by whether or not they fall inside
the concept’s area. Obviously, an SBL concept description may be wrong. The
next negative example supplied by the teacher may not fall within the descrip-
tor’s area, or the next positive example may not be included in the area. Either
way, the very next instance supplied by the teacher may require adjustment of
the concept descriptor.

With enough training instances, an SBL system may come to believe that
the shape of the handle is not so important, but all the things that are cups must
have handles. The color and owner are completely irrelevant. However, all
cups are light weight (say less than 10 ounces), and all must have flat bottoms.

— =~ Concept 1
/ }) —— — Concept2
7 (
Feature B / @ “
_ \]
N J/
Feature A

Figure 4 Two alternative concept boundaries.

Chapter 2 Explanation-based Learning 53

There are many different SBL algorithms, each with its own strengths and
weaknesses. Some perform incremental learning in which an existing concept
may be adjusted to account for a few new examples without reviewing all of
the past positive and negative examples. In others, new examples must be
added to the original set of positive and negative examples after which the
learning algorithm is again run on the augmented training set. Some systems
eliminate the need for a teacher by looking for “well formed” clusters of object
instances. “Well formed” means that each instance is more similar (using some
metric) to instances in its own cluster than it is to any instance in different
clusters. Another variation is whether or not the learning system can tolerate
noise. Suppose a teacher occasionally misclassifies objects, or that the repre-
sentation of an object may be incorrect (e.g., an object which is actually blue is
represented as having “red” as the value of the color feature). In the presence
of noise, the best concept description may not be one that correctly classifies
all of the positive and negative examples. Rather, it may be the description that
maximizes the distance (in some metric) between most of the positive ex-
amples and most of the negative examples.

One should not minimize the importance of these variations. When com-
pared with an EBL system, the differences between SBL systems may appear
small. But, it is a mistake to lump them together. Research careers are built
upon these differences. Having said that, we will now lump all of the SBL sys-
tems together, noting that they (1) rely on many examples and (2) make mini-
mal use of background knowledge. Notice that having a large number of ex-
amples improves the confidence we may have in the system’s concept descrip-
tion, provided, of course, that the examples are more or less evenly distributed
throughout the feature space (no large areas are devoid of classified objects). If
the feature space were totally labeled, that is, if the teacher exhaustively
classified every possible object, then there would be a uniquely correct concept
area, and all acceptable concept descriptions would be notational variants of
each other. Notice also that no semantic properties of the features need be used
to construct the concept description. The adjustments to the concept’s descrip-
tion, when presented with a newly classified example, can be specified entirely
in terms of changing the area covered. It matters little what the new area corre-
sponds to in the real world. Parenthetically we should note that many re-
searchers in SBL are incorporating more background knowledge into their sys-
tems [Stepp and Michalski, 1986]. However, the amount of background knowl-
edge is relatively small and always optional; the lack of background knowledge
does not preclude the formation of concept description.

A major advantage of SBL is that it can be done in almost any domain,
even one in which there is little or no understood domain theory. A disadvan-
tage is that the system must be given many, many examples, and even then
generalizations formed may reflect coincidences in the examples rather than

54 Dedong

systematic truths. For example, one system (IPP [Lebowitz, 1980]) advanced
the generalization that terrorist bombings in El Salvador do not kill people.

How is explanation-based learning different? Consider the same problem
of learning a cup. This is an example that is based on an example of Mitchell’s
[Mitcheli, Keller and Kedar-Cabelli, 1986], which he based on an example
from Winston [Winston et al., 1983].

First, we need a domain theory from which explanations can be built. This
is shown in Figure 5a. We have chosen first order predicate calculus as a
formalism for the domain theory. This is not required; other representation sys-
tems would work as well.

Second, EBL requires a functional specification of the desired concept,
shown in Figure 5b. This has been called a non-operational goal definition
[Mitchell, Keller and Kedar-Cabelli, 1986]. However, it should not be viewed
as giving the learning system a definition of the goal concept (which sounds
suspiciously like cheating). Rather it is better to think of it as an effective pro-
cedure with which to recognize when an object has the desired functionality.
For example, we may specify to the system the goal of designing a Star Trek
transporter mechanism. We may have no idea of how to build one ourselves
and, indeed, the mechanism may be impossible. Nonetheless, we may function-
ally specify its attributes: A transporter is a device that makes people disappear
from one location and appear somewhere else. Such a specification is surely
not cheating and yet provides a success criterion. In our “cup” example, we de-
fine a cup to be anything one can drink from. This is too broad (it includes the
concept of a “glass™), but it will suffice for pedagogical purposes.

Thus, in EBL, concepts are individuated by their functionalities. Any ob-
ject with the specified functionality is necessarily an instance of the concept.
Incidentally, functionality is not to be interpreted in any kind of “action-like”
way. This notion of functionality has only to do with the role played in the
domain. The implications of individuating concepts in this way is can be sur-

1) ¥x [(Liftable(x) & Open(x}) & Stable(x) & Liguid-container(x))

=> Drinkable-from(x)}

wx Hdy [(Weight(x,LIGHT) & Has-part(x,y) & Isa(y,HANDLE)})
=> Liftable(x)]

2

3) ¥x dy [(Has-part(x,y) & Isa(y,CONCAVITY)) => Open(x]]

4) wx Hy [(Has-part(x,y) & Isa{y,CONCAVITY) & Orientation(y,UPWARD))

=> Liquid-container(x)]

wx Hdy [(Has-part(x,y) & Isa(y,FLAT-BOTTOM)) => Stable(x)]
Figure 5A The Domain Theory

S

Cup(x) <=> Drinkable-from(x)
Figure 5B The Functional Specification

Figure 5 The functional specification.

Chapter 2 Explanation-based Learning 55

prisingly subtle. It enforces a kind of abstract homogeneity among instances of
a concept for which there is no obvious analog in SBL.

Third, the EBL system must observe an instance of the desired concept, in
this case, 0BJ1 whose semantic network representation is shown in Figure 6.
In fact, 0BJ1 is just the name given to this collection of properties. OBJ1 has a
concavity (CON12), it’s a red color, Herman is its owner, it has a handle
(HAN31), etc.

It is the case that 0BJ1 is a cup. This can be proved using our domain
theory. The proof is given in Figure 7. Such a proof is called an explanation. 1t
is a kind of data dependency support graph of the “cupness” of oBJ1. EBL
does not require that the explanation be constructed in any specific way. It may
be done by a resolution theorem prover internal to the learning system, by
some backward-chaining natural deduction mechanism, or the explanation itself
may simply be input to the system.

The explanation, once constructed, can itself drive the generalization
process. Not all of the attributes of 0BJ1 are used in the explanation. These
features, such as “color” and “owner,” could have other values without com-
promising the veracity of the explanation. The explanation makes explicit
which features of OBJ1 are necessary for its “cupness” and which are ir-
relevant. The remaining features directly contribute to the cupness of OBJ1.
However, such features of a training example, while sufficient to satisfy the
functional goal, may not be necessary. Some may represent particular points
along a continuum of satisfactory values. Others represent a particular resolu-
tion of a set of mutual constraints. But, perhaps, other resolutions are also
possible. By examining the explanation structure of the particular training ex-
ample in the light of the system’s domain knowledge, some of the variability
may be discovered. The result can be a new concept that is much more general
than the observed instance.

UPWARD
CONCAVITY

Orientation
Isa

CONC12

Shape
\-b CYLINDER
Has~-part
ERMAN
RED
\ Owner
Color

OBJ1

““JNeight
Has-Part s-part

LIGHT
BOT7

HAN31
Isa
Sha)
Isa
FLAT-BOTTOM CIRCLE
HANDLE

Figure 6 OBJ1, a positive example.

56 Dedong

Cup(OBJ1)

Drinkable~-from(OBJ1)
Liftabie(OBJl) Open(OBJ1) Liguid-container(OBJ1) Stable{OBJ1)

T

Isa(BOTY, FLAT-BOTTOM)

Isa(HAN31, HANDLE)

Weight (OBJ1, LIGHT)
Has-part(OBJ1,CORC12)
Has-part(OBJ1,BOT7)

Has-part(OBJ1,HAN31)
Orientation(CONC12,UPWARD)

Isa(CONC12,CONCAVITY)

Figure 7 Proof that OBJ1 is.a cup.

Types of Generalization

Before examining the types of generalization that we will expect from explana-
tion-based learning systems, it is important to clarify what is meant by the term
“generalization.” In EBL we will use the term in a slightly different fashion
than it is used in similarity-based learning. The difference is subtle, but it has
caused past communication problems. Being precise will help shed light on the
issues of over-generalization and learning at the knowledge level [Dietterich,
1986] which will be discussed briefly in the conclusion. It is important to make
the difference in terminology explicit.

In SBL, one concept specification is a generalization of an instance if the
instance is contained in the extension of the concept. The Venn diagram in
Figure 8a shows an instance (represented as a ‘+’) along with several generali-
zations.

SBL generalization is a purely syntactic notion. It is best viewed as a can-
didate specification for the concept. Michalski [1983] has provided a taxonomy
of syntactic generalizations. There is no guarantee that such a generalization
will be useful or even semantically well-formed when interpreted in the real
world. Rather, desired properties such as expected utility and semantic well-

Chapter 2 Explanation-based Learning 57

formedness are dependent on features of the training set as a whole (e.g., how
representative it is of the actual concept). Since generalizing a particular in-
stance is performed without regard to semantic considerations, the resulting
generalization may be an over-generalization of the desired concept. By con-
trast, the generalization process in EBL has semantic as well as syntactic com-
ponents. Figure 8b shows the relationships involved in an EBL generalization.
A qualitatively new sort of boundary is present: the solid line represents the ex-
tent, in feature space, of the functional goal concept as supported by the
domain theory. This concept boundary may be defined by goal regression
[Waldinger, 1977; Nilsson, 1980]. Its shape can be very complex, even encom-
passing several disjoint areas. Its determination is intractable in all but the sim-
plest of domains. Instead, EBL relies on efficient generalization techniques
which may undergeneralize but which do not cross the true boundary. In
Figure 8b the instance point is generalized via EBL to the area enclosed by the
dashed triangular boundary. Two sides and a portion of the third side of the
EBL boundary (represented by coincident dashed and solid lines) are shared
with the true concept boundary. This reflects concept limits that the functional
goal specification imposes on the explanation. Another portion, represented as
a single dashed line, reflects limits imposed by the explanation’s structure.
Thus, in EBL, the generalization process itself guarantees that the generaliza-
tion specifies a (possibly improper) subset of the concept’s feature-space area.
It is less susceptible to over-generalization. Over-generalization is unavoidable
only when the domain theory itself results in fuzzy concept boundaries. SBL
does not make this commitment in the generalization process, and over-gener-
alization is much more common, even desirable. However, it requires a large
training set of examples to justify the semantic correctness of the ultimate
generalization.

F-——=---- :

N !
AT A !
\ -—— -_——— -
~__/

Figure 8a Two syntactic generalizations of an instance.

= True Boundery

=== EBI Boundry

Figure 8b The true boundary of the concept iliustrated by the instance and an
EBL-generated boundary.

58 Dedong

It might have been desirable to use the term consistently, especially since
it is so central to learning. But perhaps not. The meaning of the term “generali-
zation” has already evolved; Soloway used it in a rather different SBL fashion
ten years ago [Soloway, 1978]. Most SBL researchers have not so much ex-
cluded a semantic facet of the term as simply never included one, and, when
discussing a concept’s limits in transformed spaces (as in constructive induc-
tion [Rendell, 1985]), “generalization” is used freely to refer to volumes in
more abstract spaces.

In EBL circles, attributing a semantic facet to the term “generalization”
was consummated by Mitchell, Keller and Kedar-Cabelli [1986]. This should
not be thought of as a redefinition, but rather a natural evolution in the term to
reflect simultaneous changes in syntactic feature space and in the semantic
functional space. In any case, we will use the term “generalization” in this
sense. If the reader objects he should do an internal RPLACA throughout the
paper of “generalization” with “valid generalization” or “useful generalization.”

Irrelevant Feature Elimination

The features that are not used to support the conclusion of cupness for 0BJ1
(e.g., “color” and “owner”) can be removed. The result is a generalization of
the specific training example. We will call this kind of generalization irrelevant
feature elimination. In the cup domain, the amount of generalization provided
to OBJ1 is rather modest. In rich domains, this is a powerful method that, in
large part, solves the feature selection problem faced by similarity-based and
empirical learning methods. Furthermore, in problem solving domains, it re-
sults in the elimination of unnecessary operators, which means that the learning
system can itself perform a measure of optimization, as well as generalization,
of the observed training example.

Identity Elimination

The second generalization type, identity elimination, removes unnecessary de-
pendence on particular objects. 0BJ1 has a handle, HAN31. We can see by the
explanation that without a handle this particular proof of 0BJ1’s cupness would
not be valid. It is not important, however, that 0BJ1 must have handle HAN31.
Any particular handle would work as well; if 0BJ1 had handle HAN32 instead,
it would be just as liftable and just as much of a cup. Thus, we can parameter-
ize specific components occurring in the explanation. 0BJ1 will become ?X
and HAN31 will become 2Y. But this goes too far. The relations that appear in
the explanation must be maintained. For example, Handle (?Y) and Has-
part (?X, ?Y) must be true. With our particular training instance, this relation-
ship is enforced by reality. 0BJ1 in fact does have handle HAN31 as a part.

Chapter 2 Explanation-based Learning 59

Once the particular objects are replaced with variables, the EBL system must
insure that only mutually consistent objects be allowed to bind to the variables.
It can do this by simply asserting, as constraint requirements among the varia-
bles, those relations that appear in the explanation. This kind of generalization
is called identity elimination since it is not the identity of the particular real
world item HAN31 that is important for “cupness” but only HAN31’s property
by virtue of the fact that it is a handle and is attached to the object of interest.

Identity elimination works because of generalities already built into the
domain theory. These preexisting generalities are exploited to the advantage of
acquiring new concepts. Such preexisting generalities are essential for EBL.
This is not a requirement about theoretical functionality or the adequacy with
which our domain theory captures the world, but rather about how the domain
theory is written. A different domain theory might support all of the same con-
clusions as the domain theory in Figure 5, but prohibit an EBL acquisition of a
broad “cup” concept. Consider the domain theory like the one in Figure 5 but
with rule 2 replaced with the rules given in Figure 9.

Using this domain theory 0BJ1 is still liftable but not by virtue of the fact
that it has a handle that incidentally happens to be HAN31 but rather directly
because HAN31 is part of OBJ1. Explanation-based generalization about the
handles of cups is very limited in this domain theory, even though the theory
adequately supports a proof of the training instance: the cupness of OBJL.
Clearly, we would prefer to avoid domain theories such as this. Ideally the role
that an object may play in the domain theory is entirely determined by its prop-
erties—never by its identity. Philosophically this has some interesting ramifica-
tions, but it is uncontroversial, at least so far, in Al It may be termed the prin-
ciple of no “function in form” [Anderson and Thompson, 1987a)] and is often
implicitly followed by Al researchers. Adherence to this principle helps to im-
prove the generative power of the domain theory as well as allowing EBL; a
domain theory designed with this principle can often support the same set of
inferences using fewer rules. The principle is also very important for the next
type of generalization, operationality pruning.

2A) ¥x dy [(Weight(x,LIGHT) & Has-part(x,HAN31)) => Liftable(x)]
2B) ¥x dy [(Weight(x,LIGHT) & Has-part(x,HAN32)) => Liftable(x)]
2c) ¥x dy [(Weight(x,LIGHT) & Has-part(x,HAN33)) => Liftable(x)]

2D) ¥x Jy [(Weight(x,LICHT) & Has-part(x,HAN34)) => Liftable(x)]

Figure 9 Alternative domain rules for liftability.

60 Dedong

Operationality Pruning

The third component of generalization based on explanations we will term
operationality pruning. It eliminates easily reconstructable sub-explanation
from the explanation. We will call any constituent of the explanation oper-
ational (after Mostow [1983]) if its truth can easily be verified. Parenthetically,
we should note that this is a rather informal definition and that “operationality”
can be a slippery issue, but for now we will pretend that it is well defined. The
leaves of a well-formed explanation must all be operational, but some internal
constituents may be operational as well. The particular sub-explanation
supporting an operational internal constituent should be dropped from the con-
cept definition. Such sub-explanations can be filled in as needed. This can lead
to greater generality because the particular sub-explanation used in the training
instance may be arbitrary: A number of satisfactory alternative sub-explana-
tions might also have been used. Once the specific constituent’s support is
pruned, the concept is no longer constrained to the specific sub-explanation.

To illustrate this, consider a slight modification of the “cup” example.
Suppose it were the case that the predicate “liftable” were operational. This
does not necessarily mean that liftable is a feature that can be immediately ob-
served (like “color™), but only that the truth value of “liftable” can be easily
determined for most objects of interest. In the case of 0BJ1, “liftable” is true
because OBJ1 has a handle. Suppose there are a few (say half a dozen) very
easy ways to prove “liftable.” Further, suppose that there are a relatively few
and easy ways to prove “not liftable.” It might be that if an object does not
satisfy one of the half-dozen easy proofs, it is certainly not liftable. Then the
predicate “liftable” itself is operational. There is no reason to keep a trace of
the particular proof, liftable-via-a-handle, as part of the concept definition for
“cup.” To determine the “cupness” of something, it is almost as easy for the
system to remanufacture the liftable-via-a-handle proof as to verify an already-
expanded version. Greater concept generality is achieved by means of a handle.

Structural Generalization

The fourth type of generalization we will call structural generalization. By this
we mean a generalization that alters the internal structure of the explanation it-
self. This is the most difficult and the most interesting of the generalization
types, and merits a sub-taxonomy. The previous three generalization types, ir-
relevant feature elimination, identity elimination, and operationality pruning, do
not alter the structure of the explanation for the training example, except per-
haps to remove nodes. Structural generalization includes rearranging, trans-
forming, and adding components to the explanation. We will briefly discuss
three important sub-types of structural generalization: disjunctive augmentation,
temporal generalization, and number generalization.

Chapter 2 Explanation-based Learning 61

ﬁé——zm

Figure 10 Alternative method for achieving stability. Zarf with round bottomed
cup.

Disjunctive Augmentation Disjunctive augmentation involves adding al-
ternative options to an explanation constituent. If, as part of the domain theory,
the system knows a different but acceptable method of supporting a constitu-
ent, that alternative is specified along with the method used in the example. For
example, consider the “cup” domain theory with the additional concept of a
“zarf,” which is a chalice-like holder for small round-bottomed objects (see
Figure 10).

The domain theory includes a different method for achieving stability. The
example cup, OBJ1, is stable because it has a flat bottom, but stability might
have been achieved in another way. If the domain theory included the possi-
bility of employing a “zarf” to achieve stability, then the generalized oper-
ational concept should include a disjunct at the stability constituent. Note that
this is very different from operationality pruning. Stable (?X) itself is not
operational, but Isa (?X, FLATBOTTOM) and Isa (?X, ZARF) are. Of course, if
the original constituent support is a specialization of one of the alternative

62 Dedong

methods, then the original constituent may be dropped altogether without loss
of generality.

It may seem that allowing disjunctive augmentation opens a rather nasty
can of worms. It is possible, indeed likely, that in any interesting explanation
there are augmentations possible which are fraught with many subtle con-
straints and result in only minor improvements in the concept’s generality. Dis-
covering them and processing them is expensive, and their benefit is small.
Indeed this is true of most forms of structural generalization. Does this call into
question the validity or the desirability of performing such generalizations? Not
at all. An important point to remember for structural generalization, which ap-
plies to all of EBL, is that the resulting concept need not be fully general to be
useful. Any generalization is better than none. There is a truism called the
80/20 rule: one gets 80% of the work done with 20% of the effort, and the re-
maining 20% of the work requires 80% of the effort. The rule is usually cited
as a caution against extrapolating the performance characteristics of prototype
systems. However, in EBL it works to our advantage. Getting 80% of the
generalization with 20% of the work is a great bargain. We can afford to be
content with less-than-totally-general concepts; there is nothing magical about
generalizing any particular concept to its utmost limits. A problem solving area
not covered by one concept will likely be covered by another, and if not, the
system’s overall performance is still improved due to efficiency gains in the
problem solving areas that are covered.

Temporal Generalization Temporal generalization applies particularly to
planning. A plan is a sequence of operators that achieve a goal. The training
example demonstrates how a goal is achieved by a particular sequence of oper-
ators. It is possible that a different sequence of the same operators would work
as well. The example’s explanation explicitly specifies required dependency
orderings among states and operators. The timing of some operators may be ar-
bitrary; other operator sub-sequences may require a particular ordering but
allow other sub-sequences to be interleaved, and so on. The general problem
solving concept should allow for variations in operator orderings.

Mooney [1988] has specified an algorithm to perform temporal generaliza-
tion for STRIPS-type operators. This can be quite an involved and expensive
process. Things get much worse when considering a more general specification
of operators. Non-instantaneous processes allow simultaneous and overlapping
changes in the world (as is common in qualitative reasoning [Forbus, 1984; de
Kleer, 1979; Kuipers, 1984]). Full temporal generalization under such real-
world conditions is not completely understood. One possibility might be to
deny the apparently special status of “time.” Time might be represented expli-
citly as one more aspect of the domain model (e.g., [Allen, 1983; Dean,
1983]). Then temporal generalization might be adequately subsumed by the
other EBL generalization types.

Chapter 2 Explanation-based Learning 63

As with disjunctive augmentation, discovering all possible temporal order-
ings is not necessary. Any temporal variability aids in the generality of the
concept.

Number Generalization Number generalization refers to the recognition
that a particular sub-explanation can be replicated. For example, suppose we
wish to teach a system, which knows about immediate support and stability,
how to build a tower of blocks. A training example is given in which three red
blocks are stacked. With the generalization types described so far, the resulting
concept will be limited to building three-block towers. The system will recog-
nize that the particular blocks used in the example are not required, that the
blocks need not be the same color, etc. The system will realize the requirement
that the lower blocks be flat on top, that they be relatively incompressible, and
so on, as dictated by the domain knowledge and explanation. However, the
new concept will not apply to building towers with four blocks. Another train-
ing example of stacking four blocks will be required, and yet another for five
blocks, and so on. Clearly, this is inadequate. The system should itself realize
that the particular techniques for building three-block towers also apply to
stacking four or more blocks.

Number generalization is difficult because the parameter being generalized
(in our example, the number of blocks) is not explicitly represented anywhere
in the explanation. Rather the “threeness” of the tower is implicitly coded in
the topology of the explanation itself. There are three sub-explanations proving
the resulting stability after a block is grasped and moved. The three sub-ex-
planations are not identical; the blocks are different, their initial and final loca-
tions are different, etc. Number generalization crucially involves a repre-
sentation transformation of the explanation into a form in which “sets” or
“loops” are included in the theory’s ontology. Several systems [Prieditis, 1986;
Shavlik, 1988; Cohen, 1987] have advanced directions to investigate number
generalization.

It is interesting to note that not all cases in which number generalization is
theoretically supportable should result in number-generalized concepts. Con-
sider rotating the tires on an automobile. Even though the procedure readily
generalizes to automobiles with 5, 6, or 7 tires (and such automobiles are logi-
cally possible), there is no particular advantage in complicating the ROTATE-
TIRE problem solving concept to include them.

Formalisms for Explanation-based Learning

The first attempt at formalizing EBL is due to O’Rorke [1987]. He formalized
EBL as the posting and propagating of constraints through a network. The sys-
tem that was implemented to demonstrate the formalism’s feasibility, named

64 DedJong

MA, required the assertion of retractable equality relations. This was per-
formed by a McAllester-style TMS [McAllester, 1982]. Only a limited form of
structural generalization was performed. While theoretically pleasing, the
formalism proved too unwieldy to directly support implementations.

More recently there have been two major formalizations of the EBL gener-
alization process. These are the EBG algorithm of Mitchell, Keller and Kedar-
Cabelli [1986] and the EGGS algorithm of Mooney and Bennett [1986]. Both
advance a domain-independent generalization process. They produce similar
(perhaps identical) generalizations of an explanation. However, neither is a full
solution to the problem of formalizing explanation-based learning.

We will first consider the EBG algorithm. Generalization is performed by
regressing the goal concept through the example’s explanation structure. Goal
regression [Waldinger, 1977] of a formula through a rule computes the neces-
sary and sufficient conditions under which the rule can be used to infer the
formula. That is, for a given rule and a desired formula it yields the weakest
constraints that must be met by the antecedents of the rule to insure that the
consequent unifies with the desired formula. The goal regression of EBG is
similar to the goal regression algorithm of Waldinger except for two important
differences. First, the algorithm is expanded to regress a formula through ex-
planations (proof structures) instead of single rules. Second, disjunctive possi-
bilities are ignored; this is equivalent to representing only a sufficient condition
for inferring the formula rather than necessary and sufficient conditions. In par-
ticular, the sufficient conditions chosen correspond to the example’s explana-
tion structure.

Extending goal regression to an explanation structure complicates the
standard goal-regression algorithm. The simplest use of goal regression would
be to start at the final consequent of the explanation. Since the explanation
succeeded, this formula, which is the final consequent, must be an instance of
the goal concept. Instead of the final consequent, the general (functional and
non-operational) goal concept itself might be used as the formula to regress
across the last inference rule. The resulting formula can then be regressed
across the penultimate inference rule(s), and so on until the leaves of the ex-
planation are reached.

There are two problems with the simple algorithm. First, once a rule is
selected for a goal regression step, only the portion of the goal concept sup-
ported by the rest of the explanation should be regressed through the rule.
Since the example’s explanation itself may not support the full generality of
the goal concept, regressing the general goal concept via strict back-propaga-
tion may result in weakest preconditions which are in fact too general. A sec-
ond complication is due to the fact that explanations are tree structured. Tree
structured explanations result from implication rules with conjunctive antece-
dents. An example of a conjunctive rule is the rule for inferring “liftable” in
the cup domain theory of Figure 5. Goal regression is a local algorithm. The

Chapter 2 Explanation-based Learning 65

problem with tree structures is that mutually inconsistent constraints may be
imposed on a variable by different sub-explanation branches.

The EBG solution is a two-stage propagation algorithm. First, forward
propagation is done from the leaves up to the final consequent. This results in a
general formula that is fully supported by the particular explanation structure.
The resulting formula (which may be more specific than the original goal con-
cept) is then back-propagated through the explanation structure to produce the
weakest operational preconditions.

The other formalism for generalization is called EGGS (for Explanation
Generalization using Global Substitutions). It requires that an explanation be
made up of constituents (called units) and that units are connected by unifica-
tions. A domain theory of implication rules and propositions (as in Figure 5),
fits this requirement: A unit is a proposition or implication that is connected
into an explanation structure by unifying propositions and consequents with an-
tecedents.

Some of the unifications in the explanation are specific to the example;
others are required by the interaction of domain theory units. EGGS maintains
separate specific and general unification binding lists. The specific list records
all unifications in the explanation. The general list records only those unifica-
tions that are imposed among the domain theory units; no unifications to at-
tributes of the particular example are made. Thus, the general list reflects the
most general version of the explanation proof. Applying the general substitu-
tion list to the input goal concept yields the functional specification of the
achievable goal concept—which, as discussed earlier, may be a specialization
of the input goal concept. Applying the general substitution to the leaves of the
explanation (excluding formulas representing features of the training instance),
produces the weakest operational features required of an object to be an in-
stance of the new concept.

In EGGS the order of unification is unimportant since the unification algo-
rithm itself correctly propagates global effects of each unification. Furthermore,
the general unification substitution list may be constructed simultaneously with
the specific list while the explanation is constructed. Thus, the general concept
may be available immediately upon explanation. This means that within-trial
learning is possible; a new concept may be acquired as the result of the con-
struction of a sub-explanation that may be useful in constructing another sub-
explanation.

There are many similarities between the two algorithms. Both are rea-
sonably efficient; both rely heavily on unification. Provided the domain model
is cast in terms of first order predicate calculus implication rules so that goal
regression is well defined, they appear to compute identical solutions. It has
not yet been proved, but is strongly suspected, that the algorithms are, in a
sense, notational variants. The difficulty in proving this is due to the very
different way unification is used. EBG asserts more unifications than EGGS,

66 Dedong

but the EGGS unifications tend to be more complex. Order of unification is
important for EBG but not for EGGS.

What the Formalisms Miss

Formalizing EBL is one of the great challenges for researchers in machine
learning. The two formalisms of EBG and EGGS are excellent first steps, but
they are only first steps; neither is close to a full answer. Both perform ir-
relevant feature elimination and identity elimination well, but their approaches
to operationality pruning are unsatisfactory. Furthermore, neither even attempts
disjunctive augmentation, temporal generalization, or number generalization.

To perform operationality pruning, both build on an incomplete characteri-
zation of operationality. Informally, a constituent of an explanation is oper-
ational if its achievability is easily judged. If it is easy to achieve, the precise
method of achievement need not be selected until the time of achievement. No
prior problem solving effort need be spent on its achievement. This is an ap-
pealing concept, but like so many other appealing concepts, it is not rigorously
defined. While both formalisms drop the explanation’s support of “operational”
constituents, their methods for determining operationality are too narrow.

In EBG, operationality is determined by an a priori classification of predi-
cates. EGGS does not commit itself to any particular method of judging oper-
ationality, but in practice, EGGS systems assign operationality on the basis of
an a priori classification of units. In both cases, operationality is treated as a
context-free notion; operationality is assigned to a unit without consideration
for the relation of the unit to other units in the explanation, or to a predicate
without consideration for its arguments. This works well for directly observ-
able or static properties. Consider the predicates Color and Isa in a simple
system. These can be classified as operational because the truth value of
Color (?X,?Y) and Isa(?X,?Y) are always easy to determine regardless of
what ?x or ?Y are bound to. For Color, the system looks at the object; for
Isa it looks up the object in its memory. Unfortunately, most important predi-
cates/units are not operational by this definition. Consider the predicate
Possess. It is operational, in the informal sense, for some of its arguments but
not all. The expected ease of determining the truth value depends crucially on
what is being possessed and by whom. The possession of a driver’s license
may well be considered operational for adults and for grade school children; al-
most all adults have one and almost no grade school children have one. The
formalisms of EBG and EGGS cannot take advantage of this very compelling
generality. Possess is operational when the object is a driver’s license, but
only when person is not in the ambiguous high school years. As another ex-
ample, consider the problem of determining the operationality of Provable. In

Chapter 2 Explanation-based Learning 67

particular, compare Provable (*2+2=4") and Provable (“*Fermat’s last
theorem”). Suppose the first expression arises in a concept that somehow
needs the number ‘4’, which is achieved in the training instance as the sum of
2 and 2. Even though the proof is trivial, given a few easy axioms about addi-
tion, it cannot be judged as operational by EBG or EGGS because with
another argument (Fermat’s last theorem) its truth value is not easy to deter-
mine. It does not help that we are guaranteed that such difficult arguments will
not show up when attempting to additively produce 4 from two integers. The
expanded proof must remain as part of the concept definition, explicitly deriv-
ing 4 from 2+2 and not from 3+1 or —6+10, etc.

Neither EGGS nor EBG attempts to formalize any form of structural
generalization (disjunctive augmentation, temporal generalization, or number
generalization).

The History of EBL

The roots of EBL can be traced back a long way, at least long as judged by Al
standards. There is some question whether Waterman’s poker player system
[Waterman, 1970] should be included. It had three learning methods. One,
which he called analytic can be viewed as explanation-based. Unfortunately, it
was the least successful of the three, and probably cost more than it benefited
the system.

The first truly explanation-based research is the MACROPS learning work
done in the STRIPS system [Fikes and Nilsson, 1971]. It worked in a simple
robot world and stored generalized versions of successful plans. The resulting
general problem solving concept was stored in an interesting data structure
called a Triangle Table. The Triangle Table specified all of the preconditions
that needed to be tested in the current world state to insure that an entire
sequence of actions would succeed.

In an historical context, it was a very impressive system. It included a no-
tion of operationality by transforming all the preconditions of a plan’s com-
ponent operators into a form directly testable in one of a set of possible initial
states. It also introduced as a central concept the notion of chunked knowledge
structures. This notion was to be reinvented several years later as frames,
scripts, and schemata [Chafe, 1975; Minsky, 1975, Schank and Abelson,
1977]. Automatic acquisition of chunked knowledge structures would not re-
emerge for even longer [Rosenbloom, 1983; DeJong, 1981; Mitchell, Keller
and Kedar-Cabelli, 1986].

Lest we find ourselves too enraptured we should examine a few shortcom-
ings of the research. While clearly ahead of its time, it also had many faults. It
only performed identity elimination generalization; it did no operationality

68 Dedong

pruning or structural generalization. The overall system behaved as if it could
perform irrelevant feature elimination, but this generalization was not reflected
in the Triangle Table data structure. Rather, a clever indexing hack (of
questionable efficiency) allowed the system to skip over irrelevant operators at
execution time. Additionally, the domain was so simple as to preclude address-
ing many important issues. Only a handful of simple operators were allowed.
Finally, the research was never formalized. It is important to realize that to for-
malize research one need not adopt any particular language or representation
scheme. Indeed, STRIPS and MACROPS were deeply and effectively com-
mitted to predicate calculus. But this is not enough. To formalize research
means to separate the science of the model from the implementation of the sys-
tem. Theoretical claims must be clear and explicit and not tied up with ir-
relevant programming details. This was never achieved or, indeed, attempted
for MACROPS.

The next system of interest is Sussman’s HACKER [Sussman, 1973].
HACKER learned to improve its planning skills in a simple blocks world
domain. One of its forms of learning was explanation-based in nature and
called the subroutinization process. It relied on a trace of the execution of the
patched program kept by a simulator. The trace served the role of an explana-
tion during generalization. Generalization consisted of variablizing constants
while taking any dependencies into account.

Eliot Soloway’s baseball system [Soloway, 1978] induced many of the
rules of baseball from conceptual representations of players’ action. The sys-
tem was primarily similarity-based but had a strong explanation-based com-
ponent. The program was given initial background knowledge about competi-
tion and games in general. This formed the system’s domain theory. Input
game sequences were embellished and interpreted using the background knowl-
edge. The result was then generalized, also using the background knowledge,
to form hypotheses for the underlying rules of the game. Other game sequences
were then examined to confirm the generalizations.

Mostow devised a model which also made use of background knowledge
[Mostow, 1981]. The system worked in the domain of the card game “hearts.”
Not one for half-way measures, Jack did away with the training examples alto-
gether. The system operationalized advice without necessarily seeing any in-
stances of the concept. A teacher provided good but non-operational advice
such as “avoid taking points.” The system then “operationalized” this advice
into usable rules like “don’t lead with high cards.”

Finally, there were the first EBL systems of the modern era: Mitchell’s
LEX2 [Mitchell, Utgoff and Banerji, 1983b}, Bernard Silver’s LP [Silver,
1984]), and my own work in acquiring schemata for natural language pro-
cessing [Dejong, 1981]. Independently, all three researchers hit upon the idea
of substituting a knowledge-based examination of a single instance for the
large or carefully tailored training sets needed by other machine learning sys-

Chapter 2 Explanation-based Learning 69

tems (e.g., [Michalski, Mozetic, Hong and Lavrac, 1986a; Quinlan, 1986;
Mitchell, Utgoff and Banerji, 1983b; Winston, 1975]. The exciting discovery of
each other’s work occurred at the 1983 International Machine Learning Work-
shop. These three systems were only tentative first steps. My work was ad hoc.
In LEX2 Mitchell did not realize the advantage of forming or generalizing new
knowledge-chunked concepts, and Silver’s LP often queried the user to input
the correct generalization directly. But basically, we were on the right track.
Since then there has been an explosion of explanation-based learning re-
search. As can be seen in Figure 11, there are significantly more EBL systems

every year.
WHEN WHAT
1970 POKER
1972 STRIPS/
MACROPS
1973 HACKER
1978 BASEBALL*
1981 KIDNAP*
1982 CRITTER
LEX2
1983 ANALOGY
CLAUDAGGY*
HANDICAPPER
Ly
1984 GAMES*
MA
PET
1985 ADEPT
ARMS
CHEF
GENESIS
LEAP
OCCAM

1986

PDA
PHYSICS-101
SHIFT*

ACES
CONSTELLATION
EBG

EBL-LT*
EBL-SOAR

EGGS
FERMI

WHO WHERE
Waterman Stanford
Fikes et al SRI
Sussman MIT
Soloway University of Massachusetts/
NeJong University of Illinois/Urbana
Kelly & Rutgers

.Steinberg
Mitchell Rutgers
Winston MIT
O Rorke University of Illinois/Urbana
Salzberg Yale . .
Silver University of Edinburgh
Minton Carnegie Mellon Universitg
O Rorke University o inois/Urbana
Porter & University of California/

Kibler Irvine
Rajamoney University of Illinois/Urbana
Segre University of Illinocis/Urbana
Hammond Yale
Mooney University of Illinois/Urbana
Mitghe%l Rutgers

et a
Pazzani University of California/

. Los Angles

Kedar-Cabelli Rutgers
Shavlik University of Illinois/Urbana
Ellman Columbia
Pazzani The Aerogpace Corporation
Lathrop & MIT/Gould

CKirk
Mitchell Rutgers

et al
O ‘Rorke

Rosenbloom &
aird

Universitg/of Illinois/Urbana

Xerox PARC/Stanford

Mooney & University of Illinois/Urbana
Bennett

Cheng Carnegie Mellon University
Carbonell

Minton Carnegie Mellon University

Hall MIT

Dogle. MIT

Lebowitz Columbia

Flann & | Oregon State University
Dietterich

* Denotes invented names for un-named systems.
For hybrid systms, year indicates when an EBL
component was first reported.

Figure 11 Explanation-based learning systems.

70 Dedong

Continuing Research Issues

There are some important areas for future EBL research. In this section we list
and briefly discuss a few.

The whole notion of operationality is a cloudy one. It is clearly a central
concept for EBL but, in general, operationality judgements would seem to be
context sensitive. A particular generalized structure (say a plan) may be oper-
ational in one state of the world but not in another. This is a strong statement
that is possibly surprising and probably unfortunate. Note that “operationality”
is quite different than “applicability.” Obviously, a plan may be applicable in
some world states but not others. Operationality is a bit more abstract. A con-
cept is operational if, given a world state, the applicability judgment of that
concept is easy. If we persist in our current notion of operationality (which is
unquestionably sensitive to the state of the world), and if EBL continues to de-
fine the border of a new concept based on operationality, then it follows that
the concept’s definition changes in different world states. This is odd, at best.

Formalization is another area in need of work. There is an interesting ob-
stacle to formalizing structural generalization. To formalize a model means to
separate the theoretical claims from its incidental details. Ideally, we want a
“structural generalization” module into which we may plug domain theories.
Then to implement an EBL system in a new domain, we need only supply the
domain. The rest of the system remains unchanged. The easy road to formali-
zation is to provide a domain-free specification. Sadly, this is not possible for
structural generalization. Structural generalization depends on aspects of the
domain itself. This is not to say that a domain-independent specification is im-
possible, however. It only means that the generalization algorithm must know
crucial characteristics of the domain, and that the domain implementation must
follow this discipline so that relevant domain characteristics are coded expli-
citly. Part of the formalization of structural generalization is to provide a tax-
onomy of domain characteristics upon which generalizations depend. Thus,
formalizing structural generalization requires a fair amount of progress in
knowledge representation.

EBL does not pretend to be a complete answer to the problem of machine
learning. Much work remains to be done on combining EBL ideas with ideas
from other learning paradigms such as similarity-based learning [Quinlan,
1986; Stepp and Michalski, 1986], empirical learning [Langley, Bradshaw and
Simon, 1981a; Rose and Langley, 1986], analogy [Falkenhainer, Forbus and
Gentner, 1986; Gentner, 1983; Anderson and Thompson, 1987a; Carbonell,
1985], and connectionism [Rumelhart, Hinton and Williams, 1986; Hinton and
Sejnowski, 1986; Anderson, 1987b]. Hybrid systems can range from applying
EBL ideas in other areas (e.g., Kedar-Cabelli’'s work on EBL and analogy
[Kedar-Cabelli, 1985]), to constructing unified learning systems composed of

Chapter 2 Explanation-based Learning 71

identifiable modules (e.g., Kodratoff’s DISCIPLE system [Kodratoff and
Tecuci, 1987)).

Of particular importance is combining EBL and SBL. There has been
some work in this area already [Pazzani, 1985; Pazzani, Dyer and Flowers,
1987; Lebowitz, 1986; Flann and Dietterich, 1986; Danyluk, 1987]. There are
two obvious combinations. EBL can be done first, followed by SBL, or they
can be reversed. Interestingly, they both make sense. Using EBL first allows it
to perform the task of feature selection. Feature selection is a notoriously diffi-
cult problem for SBL. Another way of looking at the arrangement with EBL
first is that SBL then performs its induction in a kind of “explanation” space
instead of the original feature space. Using SBL first can greatly focus the job
of constructing an explanation. It is useful in domains where the domain theory
is uncertain, where explanations are difficult to construct, or where many
spurious EBL concepts may be constructed. SBL first detects significant pat-
terns in the examples; EBL is then only run on these SBL-filtered candidates.
Other more integrated approaches may be even more productive.

Are there other less obvious future directions for EBL research? Yes, of
course. My favorite way to find them is to pick a real-world domain and pose
the question: “Why won’t current EBL solutions work here?”” Most often, EBL
will not work, and analyzing why yields large inadequacies in the current re-
search.

Consider again our prehistoric friend acquiring the skewer concept. He
could not have constructed an air-tight proof of why Zog’s skewer worked. To
begin with, he has only a mediocre theory for combustion and radiant energy.
The caloric theory of heat, so central to explaining why cooking works, will
not surface for thousands of years. His “explanation” is very different from a
logical proof. His first attempt at building his own skewer may well fail. The
stick may be too short or too dry. Does this mean he should give up, that Zog's
solution is somehow unavailable to him? Certainly not. He must be able to an-
alyze the failure and refine his skewer concept accordingly. The notion of con-
cept refinement must play a large part in almost all real-world domains. It is
unrealistic to expect a computer system to get things right the first time, since
people seldom do. Such behavior is beyond any formalization of EBL, al-
though there has been some initial work in this direction [Hammond, 1987;
Chien, 1987; Bennett, 1987].

This is just one view of the ugly domain problem: Domains are character-
ized by theories that are necessarily incomplete, incorrect, or inconsistent. Most
real-world domains cannot be captured by clean, first-order rules. Furthermore,
humans work incredibly well with incomplete, incorrect, and inconsistent
views of the world. This is probably a strength and not a failing. A quantum
physicist does not consider the Schrodinger wave of his cup when pouring
coffee. Even though he has a more accurate formalism than the rest of us, he
chooses (correctly) not to use it. Furthermore, most interesting domains that

72 Dedong

support clean formalizations (like chess, go, or robotics kinematics and dynam-
ics) are intractable. In principle everything-can be solved in these domains, but
in reality anything worth doing is too complex to achieve. Humans often deal
with such complexity by introducing fuzzy terms like “weak queen side” and
“exposed king,” thus transforming an intractable domain into an incomplete or
inconsistent one.

The notion of an explanation must be broadened to include much more
than just proofs in first order predicate calculus. Almost all real-world prob-
lems involve gradual changes that persist over time. Furthermore, it is seldom
possible to specify all of an operator’s preconditions or effects. Operators are
never instantaneous. World situations are never fully known. Actions may
overlap. A single agent assumption is seldom tenable, and even simple objects
defy definition. Philosophers have long wrestled with the problem of defining
everyday concepts such as “chair” and “game.”

Richer formalisms (such as those offered by qualitative reasoning [Forbus,
1984; de Kleer, 1979; Kuipers, 1984], must be examined. Formalizing EBL in
these contexts will be far more difficult than in the idealized paradigms of situ-
ational calculus or STRIPS-type operators.

Extending the domain theory is another important avenue of future re-
search. This is another facet of the incomplete/incorrect theory problem. EBL
is very sensitive to the particular domain rules used in an explanation. The ini-
tial implementer of an EBL system cannot correctly anticipate all of the con-
cepts that the system will learn. Yet without this knowledge, he cannot be cer-
tain that his domain theory will adequately support the acquisition of all the
desired concepts. The system must itself detect and remedy inadequacies in its
domain theory. There has been some important initial EBL work on this topic
[Rajamoney, 1986]. Additionally, a unified systemn might be able to apply some
of the current SBL, empirical, or discovery (e.g., [Lenat, 1983]) techniques to
the problem of refining its domain theory.

More work must be done on determining when an EBL generalization
should be made. The current formalisms begin to address “how” a generaliza-
tion can be performed, but have nothing to say about whether overall system
performance will improve or degenerate from the learning experience. Minton
[1985] has pointed out the problem of unconstrained acquisition of concepts.
System performance can be degraded by spending inordinate amounts of time
evaluating complex applicability tests of irrelevant concepts. The obvious solu-
tions are to be selective in learning concepts and to simplify the applicability
tests. Segre [1987] has proposed that concepts only be retained if they satisfy a
learning criterion. In particular, his system generalizes and retains only that
portion of a new experience that includes the explanation of subgoals inter-
acting in a novel way. One of the interesting methods of simplifying applicabil-
ity tests for new concepts has been proposed by Keller [1987]. He suggests re-
taining a set of test problems for each concept. The test problems are best if

Chapter 2 Explanation-based Learning 73

they are representative of the problems the system will face. Applicability con-
ditions (and concepts themselves) are syntactically simplified while monitoring
performance on the test sets. Simplification is performed until a concept satis-
fies some externally imposed criteria of speed and accuracy on its test set.

Finally, there is work to be done on a cognitive science front. The classical
approach to concept acquisition in psychology involves only artificial concepts.
For example, cards, each with two or three geometrical objects of different
colors, are presented to the subject. A concept is fabricated by the experimenter
to describe some but not all cards. For example, “a star or a circle of any color
along with any other blue shape.” The subject has “learned” the concept when
he can classify the cards correctly. Isolating the study of concept formation
from any intrusion of a subject’s background knowledge was originally seen as
an advantage. However, in recent years psychologists have questioned these
semantic-free paradigms as ecologically unsound [Murphy and Medin, 1985].
There is some evidence that EBL is psychologically valid [Ahn, Mooney,
Brewer and DelJong, 1987]. Furthermore, the SOAR system [Laird, Rosen-
bloom and Newell, 1986], which has a strong EBL flavor, is primarily moti-
vated by psychological considerations.

Conclusions

Where might EBL systems be used? The one obvious and compelling applica-
tion is in “expert” systems. A major obstacle in the road to more competent ex-
pert systems is the problem faced by the knowledge engineer of extracting in-
formation from the task expert. The expert is quite capable of superior per-
formance of the task but cannot accurately introspect on his own algorithmic
rules. This has been termed the knowledge-acquisition bottleneck, and it causes
endless trouble and expense to the knowledge engineer. EBL might be used to
observe the experts problem solving thus eliminating the need for the expert’s
inaccurate introspections. Interestingly, EBL does not require any special be-
havior of the expert. To return to the prehistoric skewer for a moment, the EBL
Neanderthal acquires the new concept through non-intrusive observation of the
Cro-Magnon expert. Zog is not required to verbalize about his invention or
help the Neanderthal’s explanation process or even provide any hints about the
representational features for the new concept. He simply carries on with his
own unimpeded problem solving behavior while the Neanderthal watches.
EBL, therefore, may offer a solution to the knowledge-acquisition bottleneck
faced by expert systems.

Since EBL involves reasoning from the specific to the general it is a form
of induction, but it also has a strong deductive flavor. The deductive com-
ponent is from the application of a system’s background knowledge or domain

74 DeJong

theory. Creating explanations can be viewed as problem solving or theorem
proving.

Reliance on background knowledge restricts the EBL approach to domains
in which such knowledge exists. Without a theory of the domain, explanations
are not possible, nor is explanation-based generalization.

EBL is not an alternative to SBL. Rather the two are complementary, each
possessing strengths and weaknesses. SBL approaches can learn in areas where
EBL cannot (e.g., where little background knowledge exists). Conversely, EBL
is not hamstrung by the feature selection problem in rich spaces that forces
SBL systems to adopt strong learning biases [Utgoff, 1986].

Initially, EBL may appear not to support knowledge-level learning. Know!-
edge level is a term coined by Newell [1981] and formalized by Dietterich
{1986] referring to the deductive closure of the knowledge in an Al system.
Since explanations are constructed from the system’s original domain theory
and since the generalization process is guided by the domain theory, it would
seem that any EBL-acquired concept must already be implicitly contained in
the domain theory, albeit in an intractable and unusable form. Thus, there is no
change at the knowledge level, and hence no learning at the knowledge level.
This is true if applied to the narrow EBL formulations of EGGS and EBG.
However, it does not apply to broader formulations. In particular, the ADEPT
system of Rajamoney [1986] is designed to alter the components of its domain
theory. The work on approximations [Bennett, 1987] also yields a system that
changes at the knowledge level. Finally, Dietterich’s system defines the knowl-
edge level in terms of first-order inference closure on monotonic theories. It is
not clear what the knowledge-level learning claims have to say about non-mon-
otonic systems (e.g., [Chien, 1987; Hirsch, 1987]).

EBL is a burgeoning research area. Every new Al conference brings excit-
ing advances. EBL has attracted some of the very finest young Al Ph.Ds, but it
cries out for more. Research to date has only scratched the surface, and in this
limited space we have only sampled the surface scratches of existing research.
Explanation-based learning is an exciting, fresh, and promising new approach
in machine learning. 1 believe it will play an increasingly important role both
in Al research and in Al applications systems. Of course, my own view is
somewhat biased, but I hope that some of my excitement has been captured
here.

Acknowledgments

I wish to thank the members of the Illinois Explanation-based Learning Group
and the Office of Naval Research for support under grant N-00014-86-K0309.

Chapter 2 Explanation-based Learning 75

References

Ahn, W_, R. J. Mooney, W. F. Brewer and G. F. DeJong. 1987. Schema Ac-
quisition from One Example: Psychological Evidence for Explanation-based
Learning. Proceedings of the Ninth Annual Conference of the Cognitive
Science Society. Seattle, WA, pp. 50-57. Also appears as Technical Report
UILU-ENG-87-2231, Coordinated Science Laboratory, University of Illinois
at Urbana-Champaign.

Allen, J. F. 1983. Maintaining Knowledge about Temporal Intervals. Com-
munications of the Association for Computing Machinery 26(11):832-843.
Anderson J. R. and R. Thompson. 1987a. Use of Analogy in a Production Sys-
tem Architecture. In Similarity and Analogical Reasoning S. Vosniadou and

A. Ortony, ed. Cambridge University Press, Cambridge, England.

Anderson, C. W. 1987b. Strategy Learning with Multilayer Connectionist Rep-
resentations. Proceedings of the 1987 International Machine Learning
Workshop, Irvine, CA. pp. 103-114.

Bennett, S. W. 1987. Approximation in Mathematical Domains. Proceedings of
the Tenth International Joint Conference on Artificial Intelligence. Milan,
Italy, pp. 239-241. Also appears as Technical Report UILU-ENG-87-2238,
Al Research Group, Coordinated Science Laboratory, University of Illinois
at Urbana-Champaign.

Carbonell, J. G. 1985. Derivational Analogy: A Theory of Reconstructive Prob-
lem Solving and Expertise Acquisition. Submitted paper. Department of
Computer Science, Carnegie-Mellon University, Pittsburgh, PA.

Chafe, W. 1975. Some Thoughts on Schemata. Theoretical Issues in Natural
Language Processing 1:89-91.

Chapman, D. 1987. Planning for Conjunctive Goals. Arrificial Intelligence
32(3):333-378.

Charniak, E. 1977. MS. MALAPROP, A Language Comprehension System.
Proceedings of the Fifth International Joint Conference on Artificial Intel-
ligence. Cambridge, MA.

Chien, S. A. 1987. Simplifications in Temporal Persistence: An Approach to
the Intractable Domain Theory Problem in Explanation-based Learning.
M.S. Thesis, Department of Computer Science, University of Illinois, Ur-
bana, IL. Also appears as UILU-ENG-87-2255. Al Research Group, Coordi-
nated Science Laboratory, University of Illinois at Urbana-Champaign.

Cohen, W. W. 1987. A Technique for Generalizing Number in Explanation-
based Learning. ML-TR-19, Department of Computer Science, Rutgers Uni-
versity, New Brunswick, NJ.

Danyluk, A. P. 1987. The Use of Explanations for Similarity-based Learning.
Proceedings of the Tenth International Joint Conference on Artificial Intel-
ligence. Milan, Italy. pp. 274-276.

76 Dedong

Delong, G. F. 1981. Generalizations Based on Explanations. Proceedings of
the Seventh International Joint Conference on Artificial Intelligence. Van-
couver, B.C., Canada. pp. 67-70. Also appears as Working Paper 30, Al
Research Group, Coordinated Science Laboratory, University of Illinois at
Urbana-Champaign.

DeJong, G. F. and R. J. Mooney. 1986a. Explanation-based Learning: An Al-
ternative View. Machine Learning 1(2):145-176. Also appears as Technical
Report UILU-ENG-86-2208. Al Research Group, Coordinated Science
Laboratory, University of Illinois at Urbana-Champaign.

DelJong, G. 1986b. An Approach to Learning from Observation. In Machine
Learning: An Artificial Intelligence Approach, Vol. II. R. S. Michalski, J.
G. Carbonell and T. M. Mitchell, ed. Morgan Kaufmann, San Mateo, CA.
pp- 571-590.

de Kleer, J. 1979. Causal and Teleological Reasoning in Circuit Recognition
Technical Report 529, Ph.D. Thesis, MIT Al Lab, Cambridge, MA.

Dean, T. 1983. Time Map Maintenance. Technical Report 289, Yale Univer-
sity, New Haven, CT.

Dietterich, T. G. 1986. Learning at the Knowledge Level. Machine Learning
1(3):287-316.

Falkenhainer, B., K. Forbus and D. Gentner. 1986. The Structure-Mapping En-
gine. Proceedings of the National Conference on Artificial Intelligence.
Philadelphia, PA pp. 272-277.

Fikes, R. E. and N. J. Nilsson. 1971. STRIPS: A New Approach to the Appli-
cation of Theorem Proving to Problem Solving. Artificial Intelligence
2(3/4):189-208.

Fikes, R. E., P. E. Hart and N. J. Nilsson. 1972. Learning and Executing
Generalized Robot Plans. Artificial Intelligence 3(4):251-288.

Flann, N. S. and T. G. Dietterich. 1986. Selecting Appropriate Representations
for Learning from Examples. Proceedings of the National Conference on
Artificial Intelligence. Philadelphia. PA. pp. 460-466.

Forbus, K. D. 1984. Qualitative Process Theory. Artificial Intelligence 24:85—
168.

Gentner, D. 1983. Structure-Mapping: A Theoretical Framework for Analogy.
Cognitive Science 7:155-170.

Hammond, K. J. 1987. Learning and Reusing Explanations. Proceedings of the
1987 International Machine Learning Workshop. Irvine, CA. pp. 141-147.
Hinton, G. E. and T. J. Sejnowski. 1986. Leaming and Relearning in
Boltzmann Machines. In Parallel Distributed Processing. Vol. I D. E.
Rumelhart and J. L. McClelland, ed. MIT Press, Cambridge, MA. pp. 282~

317.

Hirsch, H. 1987. Explanation-based Generalization in a Logic-Programming
Environment. Proceedings of the Tenth International Joint Conference on
Artificial Intelligence. Milan, Italy. pp. 221-227.

Chapter 2 Explanation-based Learning 77

Kedar-Cabelli, S. 1985. Purpose-Directed Analogy. Proceedings of the Seventh
Annual Conference of the Cognitive Science Society. Irvine, CA. pp. 150-
159.

Keller, R. M. 1987. The Role of Explicit Contextual Knowledge in Learning
Concepts to Improve Performance. Ph.D. Thesis. Department of Computer
Science, Rutgers University, New Brunswick. Also appears as Machine
Leaming Technical Report #7, Laboratory for Computer Science Research,
Rutgers University.

Kodratoff, Y. and G. Tecuci. 1987. Disciple-1: Interactive Apprentice System
in Weak Theory Fields. Proceedings of the Tenth International Joint Con-
ference on Artificial Intelligence. Milan, Italy. pp. 271-273.

Kolodner, J. L. 1987. Extending Problem Solver Capabilities Through Case-
based Inference. Proceedings of the 1987 International Machine Learning
Workshop. Irvine, CA. pp. 167-178.

Kuipers, B. 1984. Commonsense Reasoning About Causality: Deriving Be-
havior from Structure. Artificial Intelligence 24:169-204.

Laird, J., P. Rosenbloom and A. Newell. 1986. Chunking in Soar: The Anat-
omy of a General Learning Mechanism. Machine Learning 1(1):11-46.

Langley, P., G. L. Bradshaw and H. A. Simon. 1981a. BACON.S5: The Dis-
covery of Conservation Laws. Proceedings of the Seventh International
Joint Conference on Artificial Intelligence. Vancouver, B.C., Canada. pp.
121-126.

Langley, P. 1981b. Data-Driven Discovery of Physical Laws. Cognitive
Science 5(1):31-54.

Lebowitz, M. 1980. Generalization and Memory in an Integrated Understand-
ing System. Technical Report 186, Ph.D Thesis. Department of Computer
Science, Yale University, New Haven, CT.

Lebowitz, M. 1986. Integrated Learning: Controlling Explanation. Cognitive
Science 10(2):219-240.

Lenat, D. B. 1983. The Role of Heuristics in Learning by Discovery: Three
Case Studies. In Machine Learning: An Artificial Intelligence Approach. R.
S. Michalski, J. G. Carbonell and T. M. Mitchell ed. Morgan Kaufmann
Publishers. San Mateo, CA. pp. 243-306.

McAllester, D. A. 1982. Reasoning Utility Package User’s Manual, Version
One, Memo 667. MIT Al Lab, Cambridge, MA.

Medin, D. L., W. D. Wattenmaker and R. S. Michalski. 1987. Constraints and
Preferences in Inductive Learning: An Experimental Study of Human and
Machine Performance. Cognitive Science 11(3):299-239.

Michalski, R. S. 1983. A Theory and Methodology of Inductive Learning. In
Machine Learning: An Artificial Intelligence Approach. R. S. Michalski, J.
G. Carbonell, T. M. Mitchell ed. Morgan Kaufmann Publishers. San Mateo,
CA. pp. 83-134.

78 Dedong

Michalski, R. S., I. Mozetic, J. Hong and N. Lavrac. 1986a. The Multi-Purpose
Incremental Learning System AQ15 and its Testing Application in Three
Medical Domains. Proceedings of the National Conference on Artificial In-
telligence. Philadelphia, PA. pp. 1041-1047.

Michalski. R. S., I. Mozetic, J. Hong and N. Lavrac. 1986b. The AQ15 Induc-
tive Learning System: An Overview and Experiments. Proceedings of the
International Meeting on Advances in Learning. Les Arcs, Switzerland

Minsky, M. L. 1975. A Framework for Representing Knowledge. In The Psy-
chology of Computer Vision. P. H. Winston ed. McGraw-Hill, New York,
NY. pp. 211-277.

Minton, S. N. 1985. Selectively Generalizing Plans for Problem-Solving. Pro-
ceedings of the Ninth International Joint Conference on Artificial Intel-
ligence. Los Angeles, CA. pp. 596-599.

Mitchell, T. 1983a. Learning and Problem Solving. Proceedings of the Eighth
International Joint Conference on Artificial Intelligence. Karlsruhe, West
Germany. pp. 1139-1151.

Mitchell, T. M., P. E. Utgoff and R. Banerji. 1983b. Learning by Experimenta-
tion: Acquiring and Refining Problem-solving Heuristics. In Machine
Learning: An Artificial Intelligence Approach. R. S. Michalski, J. G. Car-
bonell, T. M. Mitchell, ed. Morgan Kaufmann Publishers. San Mateo, CA.
pp- 163-190.

Mitchell, T. M., S. Mahadevan and L. I. Steinberg. 1985. LEAP: A Learning
Apprentice for VLSI Design. Proceedings of the Ninth International Joint
Conference on Artificial Intelligence. Los Angeles, CA. pp. 573-580.

Mitchell, T. M., R. Keller and S. Kedar-Cabelli. 1986. Explanation-based
Generalization: A Unifying View. Machine Learning 1(1):47-80.

Mooney, R. J. and S. W. Bennett. 1986. A Domain Independent Explanation-
based Generalizer. Proceedings of the National Conference on Artificial In-
telligence. Philadelphia, PA. pp. 551-555. Also appears as Technical Report
UILU-ENG-86-2216, Al Research Group. Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign.

Mooney, R. J. 1988. A General Explanation-based Learning Mechanism and
its Application to Narrative Understanding. Ph.D. Thesis, Department of
Computer Science, University of Illinois. Urbana, IL. Also appears as
UILU-ENG-87-2269, Al Research Group, Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign.

Mostow, J. 1981. Mechanical Transformation of Task Heuristics into Oper-
ational Procedures. Ph.D. Thesis, Department of Computer Science, Car-
negie-Mellon University, Pittsburgh, PA.

Mostow, D. J. 1983. Machine Transformation of Advice into a Heuristic
Search Procedure. In Machine Learning: An Artificial Intelligence Ap-
proach. R. S. Michalski, J. G. Carbonell, T. M. Mitchell, ed., Morgan Kauf-
mann Publishers. San Mateo, CA. pp. 367-404.

Chapter 2 Explanation-based Learning 79

Murphy, G. L. and D. L. Medin. 1985. The Role of Theories in Conceptual
Coherence. Psychological Review 92(3):289-316.

Newell, A. 1981. The Knowledge Level. Artificial Intelligence Magazine 2:1—
20. .

Nilsson, N. J. 1980. Principles of Artificial Intelligence. Morgan Kaufmann
Publishers. San Mateo, CA.

O’Rorke, P. V. 1987. Explanation-based Learning Via Constraint Posting and
Propagation. Ph.D. Thesis, Department of Computer Science, University of
Illinois, Urbana, IL. Also appears as UILU-ENG-87-2239, Al Research
Group, Coordinated Science Laboratory, University of Illinois at Urbana-
Champaign.

Pazzani, M. J. 1985. Explanation and Generalization Based Memory. Proceed-
ings of the Seventh Annual Conference of the Cognitive Science Society. Ir-
vine, CA. pp. 323-328.

Pazzani, M., M. Dyer and M. Flowers. 1987. Using Prior Learning to Facilitate
the Learning of New Causal Theories. Proceedings of the Tenth Inter-
national Joint Conference on Artificial Intelligence. Milan, Italy. pp. 277-
279.

Prieditis, A. E. 1986. Discovery of Algorithms from Weak Methods. Proceed-
ings of the International Meeting on Advances in Learning. Les Arcs, Switz-
erland. pp. 37-52.

Quinlan, J. R, 1986. Induction of Decision Trees. Machine Learning 1(1):81-
106.

Rajamoney, S. A. 1986. Automated Design of Experiments for Refining Theo-
ries. M.S. Thesis, Department of Computer Science. University of IHinois,
Urbana, IL. Also appears as Technical Report UILU-ENG-86-2213, Al Re-
search Group, Coordinated Science Laboratory. University of Illinois at Ur-
bana-Champaign.

Rendell, L. 1983. A New Basis for State-Space Learning Systems and a
Successful Implementation. Artificial Intelligence 20(4):203-226.

Rendell, L. 1985. Substantial Constructive Induction using Layered Informa-
tion Compression: Tractable Feature Formation in Search. Proceedings of
the Ninth International Joint Conference on Artificial Intelligence. Los An-
geles, CA. pp. 650-658.

Rose, D. and P. Langley. 1986. STAHL: Belief Revision in Scientific Dis-
covery. Proceedings of the National Conference on Artificial Intelligence,
Philadelphia, PA. pp. 528-532.

Rosenbloom, P. S. 1983. The Chunking of Goal Hierarchies: A Model of Prac-
tice and Stimulus-Response Compatibility. Ph.D. Thesis, Department of
Computer Science, Carnegie-Mellon University, Pittsburgh, PA.

Rumelhart, D. E., G. E. Hinton and J. R. Williams. 1986. Learning Internal
Representations by Error Propagation. In Parallel Distributed Processing.

80 Dedong

Vol. I. D. E. Rumelhart and J. L. McClelland, ed. MIT Press, Cambridge,
MA. pp. 318-362.

Schank, R. C. and R. P. Abelson. 1977. Scripts, Plans, Goals and Understand-
ing: An Inquiry into Human Knowledge Structures. Lawrence Erlbaum and
Associates, Hillsdale, NJ.

Schank, R. C. 1982. Dynamic Memory. Cambridge University Press, Cam-
bridge, England.

Schank, R. C. 1986. Explanation Patterns: Understanding Mechanically and
Creatively. Lawrence Erlbaum and Associates, Hillsdale, NJ.

Segre, A. M. 1987. Explanation-based Learning of Generalized Robot As-
sembly Tasks. Ph.D. Thesis, Department of Electrical and Computer En-
gineering, University of Illinois, Urbana, IL. Also appears as UILU-ENG-
87-2208, AI Research Group, Coordinated Science Laboratory, University
of Illinois at Urbana-Champaign.

Shavlik, J. W. 1988. Generalizing the Structure of Explanations in Explana-
tion-based Learning. Ph.D. Thesis, Department of Computer Science, Uni-
versity of Illinois, Urbana, IL. Also appears as UILU-ENG-87-2276, Al Re-
search Group, Coordinated Science Laboratory, University of Hlinois at Ur-
bana-Champaign.

Silver, B. 1984. Using Meta-level Inference to Constrain Search and to Learn
Strategies in Equation Solving. Ph.D. Thesis. Department of Artificial Intel-
ligence, University of Edinburgh.

Soloway, E. 1978. Learning = Interpretation + Generalization: A Case Study
in Knowledge-Directed Learning. Ph.D. Thesis, University of Massa-
chusetts. Amherst, MA. Also appears as COINS Technical Report 78—13.

Stepp, R. E. and R. S. Michalski. 1986. Conceptual Clustering: Inventing Goal-
Oriented Classifications of Structured Objects. In Machine Learning: An Ar-
tificial Intelligence Approach, Vol. II. R. S. Michalski, J. G. Carbonell and
T. M. Mitchell, ed. Morgan Kaufmann, San Mateo, CA. pp. 471498.

Sussman, G. J. 1973. A Computational Model of Skill Acquisition. Technical
Report 297, MIT Al Lab, Cambridge, MA.

Utgoff, P. E. 1986. Shift of Bias for Inductive Concept Learning. In Machine
Learning: An Artificial Intelligence Approach, Vol. II. R. S. Michalski, J. G.
Carbonell and T. M. Mitchell, ed. Morgan Kaufmann, San Mateo, CA. pp.
107-148.

Waldinger, R. 1977. Achieving Several Goals Simultaneously. In Machine In-
telligence 8. E. Elcock and D. Michie, ed. Ellis Horwood Limited, London.

Waterman, D. A. 1970. Generalization Learning Techniques for Automating
the Leaming of Heuristics. Artificial Intelligence 1(2):121-170.

Wilensky, R. W. 1978. Understanding Goal-based Stories. Technical Report
140, Ph.D. Thesis, Department of Computer Science, Yale University, New
Haven, CT.

Chapter 2 Explanation-based Learning 81

Winston, P. H. 1975. Learning Structural Descriptions from Examples. In The
Psychology of Computer Vision. P. H. Winston, ed. McGraw-Hill, New
York, NY. pp. 157-210.

Winston, P. H., T. O. Binford, B. Katz and M. Lowry. 1983. Learning Physical
Descriptions from Functional Definitions, Examples, and Precedents. Pro-

ceedings of the National Conference on Artificial Intelligence. Washington,
D.C. pp. 433439.

Chapter

3

Knowledge-based Natural
Language Understanding

Wendy G. Lehnert

Department of Computer and Information Science
University of Massachusetts
Ambherst, Massachusetts

1 Introduction

This overview is organized within an historical framework, although time limi-
tations have forced me to invent a version of history that is necessarily in-
complete. The title of the talk was given to me by the AAAI Program Com-
mittee, which wisely restricted the scope of my task by including the descriptor
“knowledge-based.” This mercifully allowed me to ignore a large body of work
that focuses exclusively on the syntactic structures of natural language. Even
so, the body of work that can accurately be described as “knowledge-based
natural language understanding” is large, and difficult to cover in the space
available. To maintain continuity, I have utilized the recurring theme of weak
methods vs. strong methods. This foundational theme helped me pare down my
view of history and serves as my only defense against otherwise unforgivable
omissions in the overview. Even so, it was difficult to pick and choose from
the corpus of potentially relevant research, and the usual disclaimers about in-
telligible brevity at the cost of comprehensive coverage must be piously in-
voked to ward off inevitable accusations of ignorance, prejudice, and other sins
associated with warped thinking.

83

84 Lehnert

I’'m going to use a lot of examples to illustrate key concepts, interleaving
the examples with a chronological survey of the literature. We’ll periodically
try to rise above the trees to see the forest, and search for threads of strong
methods and weak methods throughout. We’ll see how strong methods came to
dominate the field for a period of time, only to be followed by the pendulum’s
swing toward weak methods, where we seem to be today.

If we go back to the beginning of time, we go back about 15 years. I
would date 1972 as a convenient starting point for knowledge-based natural
language processing. There were two very important pieces of work that sur-
faced around 1972. First, Terry Winograd published his Ph.D. dissertation
under the title Understanding Natural Language [Winograd, 1972]. At the
same time, Eugene Charniak completed his Ph.D. dissertation on a model of
children’s story comprehension [Charniak, 1972]. Both of these theses came
out of MIT—in fact, Charniak and Winograd were office-mates at MIT.

Despite the physical proximity of the authors at the time, these two views
of natural language processing couldn’t be more different. Let me read you an
excerpt from a recently published retrospective by Terry Winograd. In his own
words, he sums it up as follows:

Fifteen years ago, a program named SHRDLU demonstrated that a com-
puter could carry on a simple conversation about a blocks world in written
English. Its success led to claims that the natural language problem had
been solved and predictions that within a short time conversations with
computers would be just like those with people.

... With years of hindsight and experience, we now understand better why
the early optimism was unrealistic. Language, like many human capabili-
ties, is far more intricate and subtle than it appears on first inspection
[Winograd, 1987].

That’s Terry Winograd speaking in 1987. To understand the significance
of his cautionary hindsight, we must first understand that there was tremendous
excitement over SHRDLU when it was initially publicized in the early 70s.
There was much less excitement over Charniak’s relatively unknown thesis, al-
though we do find people referencing it even now. Philosopher Hubert Drey-
fus, a well-known critic of Al, says the following about Charniak:

... by 1970, AI had turned into a flourishing research program, thanks to a
series of microworld successes, such as Winograd’s SHRDLU, Evan’s
Analogy Problem Program and Winston’s program which learned concepts
from examples.

... Then rather suddenly, the field ran into unexpected trouble. It started, as
far as I can tell, with the failure of Charniak’s attempts to program chil-

Chapter 3 Natural Language Understanding 85

dren’s story understanding. It turned out to be a much harder problem than
one expected to formulate a theory of common sense. It was not, as
Minksy had hoped, just a question of cataloging a few hundred thousand
facts [Dreyfus, 1987].

To sum up, Winograd was dealing with a view of language that was very
optimistic and designed to convince the world that natural language processing
was a viable research problem. Charniak was taking a somewhat more unpopu-
lar but realistic stand in looking at the really hard problems we would eventu-
ally have to tackle if we were to deal with language in any truly general sense.
To digress for a moment, I would like to mention something ironic about
Winograd and Charniak. While Charniak was clearly the pessimistic foil to
Winograd’s optimist, it is amusing to note that Charniak remains extremely ac-
tive and productive in the field of natural language processing, whereas Wino-
grad has ceased to make contributions to Al, opting instead to investigate the
philosophical implications of hermeneutics [Winograd and Flores, 1986].

We will look at Charniak’s thesis just long enough to note the general em-
phasis in that research. Here’s a quotation from the dissertation abstract:

An earlier version of the model described in this thesis was computer im-
plemented and handled two story fragments, about a hundred sentences.
The problems involved in going from natural language to internal repre-
sentation were not considered, so the program does not accept English, but
an input language similar to the internal representation is used [Charniak,
1972].

To be blunt, Charniak’s program never analyzed sentences. In some sense,
Charniak’s thesis was not a thesis about language analysis at all, although I
view it as a milestone thesis for knowledge-based language understanding.
Charniak was looking at a set of problems that are not specific to sentence
analysis per se, but which nevertheless are key to understanding natural lan-
guage. Chamiak was concerned with the problem of inference. That concemn
evolved into a driving motivation for much of the research on knowledge-
based natural language processing we’ve seen over the last 15 years.

It is useful to contrast the two veins of research that were more or less in-
itiated by Charniak and Winograd. There is problem-driven research and there
is technology-driven research. I'll characterize problem-driven research as
basic research designed for the long haul: Given the difficulties inherent in un-
derstanding language, what techniques might be of use to us in surmounting
these difficulties? Technology-driven research is the research of near-term ap-
plications: Given the current state-of-the-art, what applications are appropriate
for the existing technologies?

SHRDLU was a wonderful example of technology-driven research. The
blocks world lent itself to techniques that were available at the time. But

86 Lehnert

SHRDLU was just a prototype designed to inspire further work. The contem-
porary offspring of that inspiration are found today in database query inter-
faces. We have a technology-driven research program on natural language in-
terfaces that works (more or less), but is successful primarily because it does
not need to deal with natural language in its full generality.

To appreciate the problems of natural language in general, we have to un-
derstand what is meant by the inference problem in natural language—the
problem that made Charniak such a pessimist about life outside the blocks
world. Let’s take an example of a short narrative to illustrate the problem:

When the balloon touched the light bulb, it broke. This caused the baby to
cry. Mary gave John a dirty look and picked up the baby. John shrugged
and picked up the balloon.

This is a typical example of narrative text. We can analyze it in terms of
its information content by distinguishing explicit information from implicit in-
formation. We are explicitly told about seven events in this story and one ex-
plicit causal relationship signaled by the verb “caused.” But implicitly, there’s
more information. There are at least six implicit events and states that are pre-
sent in the paragraph, eight implicit causal relationships, and six implicit goal
states or emotional states (see Figure 1).

For example, probably the balloon was inflated. Probably the balloon ex-
ploded when it broke. There is an ambiguity associated with the pronoun when
we are told “it broke.” Was it the balloon that broke or the light bulb that
broke? Most readers have no trouble understanding that the balloon broke.
Furthermore, we might conjecture that the light bulb was on and it was the heat
from the light bulb that broke the balloon. These are all plausible common-
sense inferences people are able to make—but they are only assumptions, and
assumptions that could be wrong. We will define an inference to be an assump-
tion that could be wrong. Technically speaking, this type of inference is known
as defeasible inference, but for the remainder of this talk we’ll just call them
inferences.

Charniak’s interest in children’s stories was centered on the problem of in-
ference generation. Children are capable of highly sophisticated inferences, a
fact which makes children’s stories extremely complicated for computers. Al-
though the language in children’s stories may be relatively simple in terms of
syntax and vocabulary, the underlying processes of inference required to under-
stand a typical children’s story are not so easy to characterize. The basic prob-
lem has to do with knowledge about the world. Children have a great deal of
knowledge, although the magnitude of this underlying knowledge base is
largely unappreciated by people who have never tried to get a computer to
operate with comparable facility.

Chapter 3 Natural Language Understanding 87

The balloon was originally inflated.

The balloon broke (not the light bulb)

The light bulb was hot.

The light bulb was on.

The heat caused the balloon the break.

The balloon exploded.

The explosion made a loud noise.

The baby was scared.

The loud noise scared the baby.

The baby cried because it was scared.

Mary is mad at John.

Mary communicated her anger to John.

Mary picked up the baby to comfort it.

John is not overly concerned

John will throw the balloon away.

John was responsible for the balloon breaking.
John was responsible for the baby crying.
Mary is mad at John for making the baby cry.

© %X %X & % »* %

X * % @ © 0

* causal connections
S goal states/emotional states

Figure 1 inferences from the Balloon Story

The general problem of inference generation inspired a lot of work in the
mid-to-late 70s devoted to identifying knowledge structures that could spawn
inferences. During this period, we saw progress that I would characterize as
work in strong methods for natural language processing. By this I mean to say
that there was a strong preoccupation with specific knowledge structures and
knowledge-specific mechanisms of inference generation. I will briefly outline
the major contributions of that period since the work was highly influential, not
only within the Al community, but within cognitive psychology as well. Even-
tually, we will get around to looking at problems of sentence analysis per se.

88 Lehnert

2 Knowledge Structures

The first knowledge structure that was proposed as a powerful device for infer-
ence generation was the script [Schank and Abelson, 1977]. Scripts have
trickled down into the introductory textbooks on Al, but for those who are not
familiar with the concept, I’ll run through it very briefly.

Scripts are designed to encode stereotypic event sequences. This is mun-
dane knowledge about some standard scenario for which a common linguistic
community shares knowledge. So, for example, we all have knowledge about
going to the movies. And if I say to you, “I went to a movie last night,” you
are capable of generating a lot of inferences about what I did last night that go
far beyond the explicit information content of that sentence. You understand
that I must have had money to buy a ticket and the ticket was purchased at the
theatre. I may have had to wait in line for a bit before I could go into the
theatre, but once inside I could have bought popcorn, candy, or ice cream. I ex-
changed the ticket with an usher who gave me a stub back

You have all these little facts about going to the movies. These are all as-
sumptions that could be wrong. But for the most part, these are the assump-
tions you have to make. And if we want to create computers that can under-
stand language, we have to worry about creating systems that generate these
inferences as well. This is the implicit information content underlying lan-
guage.

A system called SAM was first implemented in 1975, which was given
simple narratives and then tried to generate inferences appropriate for those
stories on the basis of scripts [Cullingford, 1978]. SAM stood for “Script Ap-
plier Mechanism.” The architecture of SAM was fairly simple. There was a
parser that mapped sentences into an internal memory representation, in this
case, Conceptual Dependency [Schank, 1975]. Then the actual script applier
mechanism accessed the appropriate scriptal knowledge structure and tried to
fill in any missing implicit events in a causal chain representation. “I went to a
movie last night” would be expanded into a very long causal chain repre-
sentation containing all the implicit events associated with knowledge about
movies.

SAM was a prototype program designed to demonstrate the utility of one
particular knowledge structure. That knowledge structure became somewhat
controversial in terms of its generality. Where do scripts work? Where don’t
they work? Are they appropriate for generating all the inferences we need?

If we go back to our balloon story, we could, for example, hypothesize the
existence of a balloon script. Here is our stereotypic event knowledge about
balloons: They start out in an uninflated state. They get inflated in one of two
stereotypic manners, they get tied, and then they die a natural death in one of
three ways (see Figure 2).

Chapter 3 Natural Language Understanding 89

THE BALLOON SCRIPT

blow-up balloon pump-up balloon
by mouth with helium*

N

tie balloon

balloon balloon balloon
explodes
whithers P flies
away away*

Figure 2 The Balloon Script

This is event-oriented knowledge about balloons. If we wanted to under-
stand our little story about the light bulb and the balloon using 1975 tech-
nology, we would simply match the explicit input against the events described
in the balloon script, and infer that the balloon was inflated and tied before it
broke. While these are undeniably nice inferences to have, we wouldn’t know
anything about why the balloon broke or why it was reasonable for it to break.
Indeed, if our “light bulb script” included breakage as one of the stereotypic
ways that light bulbs come to an end, there would be no way of knowing
which referent (for “it”) was broken on the basis of these scripts alone.

At the time that scripts were being proposed by Roger Schank at Yale,
Schank also understood that scripts were not the solution to all of the problems

90 Lehnert

of knowledge-based inference generation. He proposed other knowledge struc-
tures as well. For example, there was knowledge about plans and goals.

If I told you I hired someone to clean my house, you could make a number
of inferences about exactly what that entailed. I had to find someone who
would be willing to clean the house, I had to approach this person, ask them to
clean my house, there was probably some negotiation over payment, and so on
and so forth. All of these inferences are very general in the sense that they
would apply to anyone I might hire to do a periodic task for me, such as mow
my grass or do my shopping for me. Any number of tasks that keep popping
up over and over again could be handled in the same manner. So these infer-
ences appear to originate from a more general understanding of plans and
goals. In this case, we have a problem of goal subsumption (finding a solution
to a recurring goal), and a solution in terms of agency (locating an agent who
will do the work for me). So plans and goals involve a level of abstraction that
goes beyond scripts, but which still allows us to characterize stereotypic situa-
tions {Wilensky, 1978].

A well-known book came out in 1977 that put down in writing all of the
ideas that were floating around Yale at that time [Schank and Abelson, 1977].
This was a book about knowledge structures, more specifically, scripts, plans,
and goals, among other things. It was a seminal piece of work insofar as it
generated, by my count, ten Ph.D. theses in Al (there were probably a com-
parable number of Ph.D.s in psychology as well). So there was a tremendous
amount of work along these lines in the mid and late 70s, and that work
created a foundation for the more recent research to which we now turn.

First, we’ll look at two different directions that took off after that initial
foundation in knowledge structuring was first laid. In so doing, we’ll see
different knowledge structures: (1) plot units [Lehnert, 1981], and (2) thematic
abstraction units [Dyer, 1983b], both of which were designed to produce sum-
maries for narratives.

In both systems, we assume that multiple levels of memory representation
are being generated in response to the input text. Sentences are translated into
Conceptual Dependency, and inferences are generated via script application
and the analysis of plans and goals. In the case of plot units, additional levels
of abstraction are required to produce an affect state map, and finally a plot
unit graph. The plot unit graph rests on top of all these “lower” levels of
memory representation, which act, in turn, as conceptual scaffolding for the
narrative summarization task.

In the tradition initiated by Charniak’s thesis, most experiments run on
plot units require hand-coded memory representations at the lower levels in
order to see anything of interest at the level of a plot unit graph. Granting that,
there is a program called PUGG (the Plot Unit Graph Generator) that generates
memory representations of the sort found in Figure 3.

Chapter 3 Natural Language Understanding 91

JUDAS~AUTHORITIES
DR

JUDAS~DISCIPLES

JUDAS~DISCIPLES
ENTHUSIAST

Figure 3 The New Testament in a Plot Unit Graph

92 Lehnert

This is a plot unit graph generated in response to Arnold Toynbee’s synop-
sis of the New Testament [Alker et al., 1985]. Note that this graph could never
be generated automatically from the source text of the New Testament, given
the current state of the art. Just the hand coding of the knowledge structures
would necessitate sacrificing an entire generation of graduate students in an
orgy of exploitation normally unheard of outside the biological sciences.

Each node in this graph represents an instantiated plot unit where plot
units describe things like competition between two characters, or one
character’s successful resolution of a problem situation. Arcs are created be-
tween nodes when two plot units depend on a shared component from the af-
fect state map. In this way, the plot unit graph provides a picture of the con-
ceptual connectivity across the narrative. Ideally, this graph will allow us to
identify the salient and most central concepts by looking at the topological fea-
tures of the graph. For example, the cut points in this graph are very important
plot units for our story. The three major cut points for the main body of this
plot unit graph point to the following events from the New Testament:

(7) Jesus called on the people to support him.
(47) The authorities arrested Jesus.

(89) The authorities crucified Jesus.

If we wanted to produce a truly minimalist synopsis of the New Testa-
ment, we are perhaps on the right track here, although we do not have the ex-
planatory power to tie these three events together into a truly self-contained
blurb about Jesus.

We could elaborate on this skeleton a bit by invoking a minimal path algo-
rithm to connect our three cut points. These produce the following event-sum-

mary:
(7) Jesus makes an appeal to the masses for support.
(9) The government wants to maintain authority over the masses.
(10) Jesus causes a scandal.
(18) Jesus takes the law into his own hands to avenge God.
(47) The authorities arrest Jesus.
(89) Jesus is crucified.
(92) Jesus’ death is a triumph.
(93) Jesus is worshipped.

I am told that this is, in fact, a Marxist interpretation of the New Testa-
ment.

Chapter 3 Natural Language Understanding 93

Let us now return to the other line of work on narrative summarization
that relied on scripts, plans, and goals. As we saw with plot units, it is possible
to produce narrative summaries based on event descriptions alone, as long as
you can identify the central events of the story. But there are other kinds of
summaries that operate on a more abstract level of understanding. Fables are
famous for the adages associated with them, and the ability to associate an ap-
propriate adage with a novel narrative is considered a hallmark of mature intel-
ligence (understanding the meaning of proverbs is a task used by the Stanford
Binet IQ test as a standard for measuring adult intelligence).

Research on thematic abstraction units addressed this aspect of narrative
summarization [Dyer, 1983a]. Dyer claimed that adages are properly associated
with abstractions at the level of plans and goals. Each thematic abstraction unit
describes a pattern of plan-oriented behavior, and if all the required com-
ponents of the pattern are met, the specific adage associated with that thematic
abstraction unit will apply.

So, for example, a close call, which would perhaps be described by the
adage, “A miss by an inch is as good as a mile,” could be recognized via the
following thematic abstraction unit:

(1) X experiences a major preservation goal, G.
(2) G was created in response to an event not intended by X.

(3) G is a fleeting goal so no recovery plan is required.

Note that a close call can be easily transformed into a regrettable mistake
(don’t cry over spilt milk) if G is not characterized as a fleeting goal and a re-
covery plan therefore becomes appropriate.

It is interesting to note that a plot unit analysis can be performed without
the benefit of thematic abstraction units, and thematic abstraction units can be
recognized without any of the effort associated with affect state maps and plot
unit graphs. These two approaches to narrative summarization are fully inde-
pendent of one another and simply reflect different types of summarization
tasks. As far as the computational models are concerned, skills with one task
do not predict seemingly associated skills in the other.

Plot units and thematic abstraction units both emerged from a large re-
search effort centered around a system named BORIS [Lehnert et al., 1983].
BORIS attempted to integrate a large number of knowledge structures in a
single system, addressing the architectural problems posed by multiple knowl-
edge structures. The BORIS system, completed in 1982, marks the end of the
knowledge structuring era. For the most part, people stopped proposing new
knowledge structures at about that time, and interests shifted into other areas.

To understand why, we need only look at the diagram in Figure 4 (taken
from [Dyer, 1983a)).

94 Lehnert

s }——(ces) BELIEF:)

SCENARIOs SCENEs
IPT = Interpersonal Theme REL = Relationship
IP-UNIT = Interpersonsl Action HOP = Hemory Organization Packet
RT = Role Theme TAU = Thematic Abstraction Unit

ACE = Affect as a Consequence of Empathy

Figure 4 The Knowledge Dependency Graph for BORIS

BORIS attempted to integrate no less than 22 different knowledge struc-
tures, each responsible for generating its own class of inferences encoded with
structurally-specific knowledge representations, and using its own structure-
specific inference mechanism. Figure 4 tells us what lines of communication
were open between the various knowledge structures. Each node of the graph
represents a generic knowledge structure, and each arc tells us when one
knowledge structure was allowed to talk to another one. Rather than having all
possible pairwise channels of communication open, we limit communication

Chapter 3 Natural Language Understanding 95

between knowledge structures and impose some order on the potential chaos
that would otherwise break loose.

Unfortunately, the rich diversity of the knowledge structures requires
unique forms of communication between sanctioned pairs of knowledge struc-
tures. No two arcs in this diagram are quite the same in terms of the type of in-
formation being requested or the methods of computation required to produce a
response. Not only are there inference processes specific to each knowledge
structure, but the communications between pairs of knowledge structures are
pairwise specific.

However impressive BORIS may have been as a tour de force in knowl-
edge-based natural language understanding, the word “elegant” has never
graced any noun phrase describing the flow of control in BORIS. “Ad hoc”
was rather closer to the truth, and the difficulties of continuing on in this vein
were apparent to all. Suffice it to say, no one ever attempted to re-implement
the BORIS system after Dyer completed his noteworthy thesis based on the
system, and no one associated with the original BORIS system went on to pro-
duce a son of BORIS. The complexity of the architecture, the fragile scaffold-
ing needed to make it all hang together, and the methodologically difficult bus-
iness of engineering mundane knowledge for natural language were all over-
whelming. Although Dyer has never been accused of being a pessimist, his the-
sis, published 10 years after Charniak’s, was another milestone destined to
send the faint-hearted elsewhere in search of smoother sailing.

I think a lot of people realized the implications of BORIS in 1982. Al-
though there was no way to walk away from the need for knowledge, the
growing commitment to knowledge-based natural language processing gradu-
ally shifted into a wistful longing for processes operating over uniform knowl-
edge representations, inference mechanisms that transcend individual knowl-
edge structures, and elegant control mechanisms that can be explained within
the confines of a single page. Of course, there were always people in the field
who felt compelled by these aesthetic criteria: Winograd was involved in the
development of KRL [Bobrow and Winograd, 1977], and even Charniak once
desclribed himself as a methodological “scruffy” with a “neat” struggling to get
out.

1 See [Abelson, 1981] for the official explanation of “scruffy” and “neat” as technical terms refer-
ring to methodological styles.

96 Lehnert

3 Marker Passing

The excitement associated with PROLOG in the early 1980s, and the more re-
cent fever surrounding connectionism, have both exerted a predictable pull
over researchers in knowledge-based natural language processing who felt a
need to swing the pendulum back a bit from the strong methods associated
with wildly propagating knowledge structures. At this time we seem to be
swinging back in the direction of weak methods, with a clear question to be an-
swered: Does the commitment to knowledge-based techniques necessarily force
us into a technology dominated by strong methods? Ten years ago the answer
was maybe. Today we seem to be saying maybe not.

In keeping with this general trend, we are seeing new work on homo-
geneous inference generation. The roots for this do go back, so we should take
a little time to give credit where credit is due. Probably the earliest reference is
Quillian, who first promoted the idea of intersection search in a computational
framework. This was followed up by Rieger’s thesis work, for which Rieger
was honored by being asked to give the Computers and Thought Lecture at the
1975 1JCAL Let me talk a little bit about all of that so we can appreciate the
significance of more contemporary contributions to homogeneous inference.

The idea of an intersection search is fairly simple. Quillian is generally
credited with the earliest description of an intersection search algorithm {Quil-
lian, 1968], but we’ll introduce the idea in the context of Rieger’s thesis be-
cause Rieger’s work is more on-target with respect to inference generation
[Rieger, 1974].

Suppose we have a meaning representation for sentence S1, and a meaning
representation for a second sentence, S2. These two representations serve as
input to Rieger’s program, MEMORY. Each meaning representation then
generates a first generation of immediate inferences, which will each recur-
sively spawn a second generation of inferences, then a third generation, “and
so forth and upward and onward” (gee whizz! [Geisel, 1950]). In theory, we
can produce inferences arbitrarily far away from the original input sentences.

In an intersection search, this recursive generation of inferences halts when
we find a path of inferences connecting the two input generators. If MEMORY
can find a path of inferences that starts at S1 and concludes at S2, then we
have a good candidate for a causal chain between the two sentences. That is,
we have a string of causally connected events and states that take us from one
sentence to the next. So we might understand, for example, if the balloon
touches the lightbulb (S1) and the balloon subsequently breaks (S7), then there
is a causal chain going from (S1) the balloon coming into contact with the
lightbulb, to (S2) the balloon coming into contact with a light bulb that is
turned on, to (S3) the balloon coming into contact with a light bulb that is
turned on and hot, to (S4) the balloon coming into contact with a hot object, to
(S5) the balloon being in contact with a hot object, to (S6) the balloon explod-

Chapter 3 Natural Language Understanding 97

ing as a result of contact with a hot object, to (§7) the balloon breaking. Note
that S2 and S3 would each be generated from S1, while S4, S5, and S6 would
be generated from S7. If an intersection can be established between S3 and S4,
we will have a causal chain analysis of the two sentences.’

When Rieger employed intersection search for inference generation back
in the early 70s, he was not working in a knowledge-based framework. Con-
sequently, there was no knowledge in MEMORY—certainly nothing we would
recognize today as a declarative knowledge structure. Rather, Rieger had 16 in-
ference “molecules” that were responsible for the propagation of inferences un-
derlying the intersection search. If there was any knowledge in MEMORY at
all, it had to be buried inside the lisp code that realized these 16 inference
classes. But in fact, most of the inferences that MEMORY generated were
based on simple manipulations of Conceptual Dependency event and state de-
scriptions, and none of those manipulations were dependent on structures out-
side of the search space being generated during the intersection search. Despite
its name, MEMORY had no long-term memory, and the expanding circles of
inference it generated were essentially pulled out of thin air (or at least 16 thin
inference molecules).

If Rieger’s thesis looks weak from the perspective of knowledge-based
systems, we must remember that he intended to make a contribution regarding
search. Indeed, he had an elegant idea concerning the relationship between in-
ference generation and causal chain construction: The construction of a causal
chain was a search problem and the undirected generation of inferences created
the search space in which to operate. Both components were nicely addressed
within the simple framework of an intersection search. This emphasis on the
algorithin for search created a model about control, and the beauty of
MEMORY s control was its simplicity and homogeneous generality.

Rieger’s work is important for us because it illustrates a weak method for
inference generation based on a simple mechanism of great generality. We
should also note that Roger Schank was Rieger’s thesis advisor, and Schank
has said that his work on scripts was strongly motivated by what he perceived
to be the fatal flaw in Rieger’s MEMORY: a lack of knowledge. In Schank’s
view, the real problems were inside those inference molecules (or whatever
mechanisms were needed to generate inferences). The key problem must be to
understand the organization of knowledge needed to create inferences.
MEMORY was appealing, but sadly predicated on the wrong framework for
the problem of inference generation. If inference generation is essentially a
problem of search, then MEMORY should give us some answers worth

2 In fact, Rieger's meaning representation language (Conceptual Dependency) was not well suited
for this particular example, and MEMORY probably couldn’t have found this causal chain, but
we’re just trying to illustrate the general idea.

98 Lehnert

pondering. But if inference generation is better characterized as a problem of
knowledge application, then MEMORY must fall very short of the mark. If
Rieger made a mistake, it was in asking the wrong question more than in find-
ing the wrong answer.

Now we can move the clock up to 1987 and look at a program called
FAUSTUS, which identifies seven classes of inference and activates selected
concepts throughout a potentially large search space in an effort to identify
useful inferences [Norvig, 1987]. At first glance, this may look like a reincar-
nation of Rieger, but we need to look a little closer. First we note that the
simple intersection search has been replaced by a more sophisticated marker
passing algorithm. The new algorithm looks like a step in the right direction (it
narrows the potential search space), yet we still have homogeneous control for
inference generation. How is this possible?

It seems that FAUSTUS benefited from all the work that followed and su-
perseded Rieger without sacrificing the weak method of homogeneous control.
FAUSTUS utilizes extensive amounts of knowledge, yet the intelligent
manipulation of that knowledge is handled by a marker passing algorithm that
can be described in terms of a simple grammar. FAUSTUS has a fixed
memory which is rich in knowledge, but it is structured very carefully using a
knowledge representation language called KODIAK [Wilensky 1986]. When
activation passes from one concept to another, it must conform to a legal path
“shape” specified by the grammar in the marker passing algorithm. When inde-
pendent markers collide at a shared node, the resulting path of activated nodes
provides useful inferences about the original input items. The idea of the inter-
section search is still there—it’s just harder to generate false positives (bogus
intersections).

The best way I can give you a feel for FAUSTUS is by looking at an ex-
ample. The following example was manufactured for this talk and is un-
doubtedly all wrong as far as the details of KODIAK and Norvig’s actual algo-
rithm are concerned, but we’ll settle for ballpark accuracy to get the main idea
across.

Let’s go back to our overworked text about the balloon and the light bulb.
The first sentence was, “When the balloon touched the light bulb, it broke.”
We have a reference to a light bulb, a reference to a balloon, and physical con-
tact between the two of them. That’s explicit in the sentence. We also know
something broke, but the pronoun leaves us up in the air as to exactly what
broke. It could have been the light bulb or it could have been the balloon. We
would like to be able to disambiguate the pronoun and infer a plausible causal
relationship between the two events described. Figure 5 shows us what a mean-
ing representation for the input sentence might look like before any inferences
are made.

Chapter 3 Natural Language Understanding 99

INPUT:

prior state i
causal
» relation,
obj? % { oby?
l post event

Figure 5 When the Balloon Touched the Light Bulb, it Broke

Now let’s look at some knowledge we should have available to us. We
have knowledge about breaking that tells us all the different ways things can
break. For example, we can understand that one way things break is by explod-
ing. An exploding event is a further specification or “concretion” of a breaking
event, and this further specification is only valid under certain circumstances.
Using KODIAK, we can create inheritance hierarchies that encode structured
inheritance via role-play links. As we will see, this notion of structured inheri-
tance will help us make some important inferences about what broke and ex-
actly what the breaking event describes.

We have a hierarchy of entailed event concepts going from breaking down
to exploding, with role-play links telling us how these structures are inherited.
These hierarchies bottom out with very specific event descriptions: specific, for
example, at the level of a balloon exploding (see Figure 6). And we understand
that there’s a constraint on the balloon exploding event that the object of any
such event must be a balloon. This is not a constraint available to us at the
higher levels, where we may only be constrained by the specification of an in-
flatable object, or even more generally, a physical object.

A hierarchy with these richly constrained specifications allows us to
generate concretion inferences that help us see beyond the explicit meanings
available to us from the source text. For example, if we are told that a balloon
broke, we should be able to infer the constraints operating at low levels of
greater specificity in order to understand that if the object of a breaking event
was a balloon, then it may be safe to assume that the balloon exploded.

100 Lehnert

b
roken object - @
_/R
5 |
P
exploding) _exploded object O
T_/2
D
infla:;;~\\\\\1p

balloon i-b-e object
exploding

inflated
balloon

Figure 6 Inheritances for Exploding Balloons

Concretion inferences are one of the inference types handled by FAUS-
TUS, but the simple inheritance mechanism described above cannot resolve
complicated ambiguities of the type present when we have to understand what
it was that broke in the first place. In our original text, we have to decide be-
tween a balloon breaking or a light bulb breaking. It is nice to know that the
balloon would break by exploding, whereas the light bulb would break by shat-
tering (see Figure 7), but we still have to decide which object we think we’re
dealing with.

Chapter 3 Natural Language Understanding 101

. broken object
breaking >

{ g

p

. shattered
shattering object > O
4
R
D
P
light

bulb 1-b-s object
shattering o (light buib

Figure 7 Inheritances for Shattering Light Bulbs

If we really want to resolve the reference, we have to drag in more knowl-
edge. So let’s assume we have knowledge about balloons (see Figure 8).

This is somewhat reminiscent of the balloon script we discussed earlier.
We understand that one of the things that can happen to an inflated balloon is
that it might come into contact with a hot object, in which case we can make a
pretty fair prediction about a causal relationship with a balloon exploding
event. The preconditions for this balloon exploding event can be obtained from
the light bulb if we understand that a light bulb can be a hot light bulb, and
that hot light bulbs are further specifications under turned-on light bulbs. With

102 Lehnert

KNOWLEDGE:

to
obj 1 '
Q—’—— M inflated
balioon

D .
prior
light state
D -
bulb V\ turned-on
light bulb causal
relation

post
event

inflated
balloon

exploding

Figure 8 Knowledge About Balloons

appropriate inheritance inferences (including the fact that a touching event is a
further specification for physical contact, and the fact that an inflated balloon is
a further specification for a balloon), we might manage to fill out a causal
chain if all the pieces are available to us in memory and the paths of relevant
inference are recognized by the marker passing grammar.

As this example shows, FAUSTUS attempts to marry extensive knowledge
access to a homogeneous control structure realized in terms of marker passing.
The approach represents an appealing synthesis of two seemingly contradictory
directions: the weak methods of homogeneous control and the strong methods
associated with large amounts of knowledge. However, it is difficult to say
what happened to the strong methods associated with traditional knowledge
structures when we encoded our knowledge base in KODIAK. Can a marker
passing algorithm achieve the computational power of a script applier mecha-

Chapter 3 Natural Language Understanding 103

nism? Can generic concepts be instantiated and utilized by multiple referents
without getting confused? What if our story references two balloons and we
have to keep distinct concretions straight? These are questions about the
possible limits of marker passing algorithms. The homogeneous control is
great, but is it powerful enough for our needs? These are questions we need to
answer about marker passing as a weak method for inference generation.

4 Syntax and Semantics

We’ve been talking a lot about inference generation, but it would be a mistake
to assume that’s all there is to knowledge-based natural language processing. In
fact, homogeneous control for inferences really goes hand in hand with homo-
geneous control for other problems. For example, we are also seeing a trend
toward homogeneous control for the integration of syntax and semantics, a
problem that is very important for models of sentence analysis. Let’s see how
some people have worked to bring homogeneous control back down to the
level of sentence analysis.

What do you usually see when you look at a textbook on Al with a section
devoted to natural language processing? There’s a good chance you’ll see a
flow-of-control diagram that looks something like tho one shown in Figure 9.

Here we see that the problem of sentence analysis has been divided into
specific modules. We have syntactic knowledge—knowledge about grammar—
that is important in analyzing the structure of a sentence. We also have seman-
tic knowledge, which is where concept frames are defined and various con-
straints operate to control the slot fillers for those frames. And we often see a
reference to pragmatic knowledge, which is where all the common sense rea-
soning needed for inference generation resides. Pragmatics is also where
knowledge about discourse is stored. Generally speaking, pragmatic knowledge
is defined to be anything we need which wasn’t already covered by syntax and
semantics.

The flow of control that we see here is serial control. This is a nice modu-
lar idea about language analysis that lays out the pieces clearly and simply.
Unfortunately, systems built along these lines just don’t work very well. Serial
control is used for some database interfaces, but it doesn’t work for continuous
narrative text at all.

To see why not, let’s look at a couple of sentences (see Figure 10). The
sentences I'm interested in are, “John took her flowers” and “A stranger took
her money.” These two sentences are syntactically identical, and they are syn-
tactically ambiguous as well. “Her flowers” could be a single noun phrase, or it
could be an indirect object followed by a direct object. Similarly, “her money”
could be a single noun phrase, or it could be an indirect object followed by a
direct object.

104 Lehnert

input sentence

|

syntactic analysis

|

parse tree

l

semantic analysis

|

semantic representation

|

—~

~.

GRAMMAR

pragmatic analysis

\@ \e \

inferences

Figure 9 Serial Flow of Control

Chapter 3 Natural Language Understanding 105

Mary was in the hospital.
John took her flowers.

(John took flowers to Mary)

Mary was walking through Central Park.

A stranger took her money.

(A stranger took money from Mary)

Figure 10 Context Effects for Sentence Analysis

When Mary is in the hospital, we understand, without effort or conscious
thought, that John brought flowers to Mary. The sentence contains an indirect
object and a direct object. But when Mary is in Central Park, we see a single
noun phrase operating as a direct object. Somehow we fail to consider the ab-
surd possibilities of John taking flowers away from Mary in the hospital, or
even sillier, the possibility that a stranger could walk up to Mary in Central
Park and hand her money.

Apart from the syntactic ambiguities confronting us, we also have a lexical
ambiguity associated with the verb “to take.” In the hospital this verb means
“to bring,” while in Céntral Park we understand it to mean “to take away.”
This is a strictly semantic ambiguity that forces us to choose between compet-
ing word senses.

So we have two interesting ambiguities operating here. We have a syntac-
tic ambiguity that needs to be resolved, and the semantic ambiguity associated

106 Lehnert

with multiple word senses. Both ambiguities must be resolved in order to ar-
rive at appropriate interpretations for the sentences.

How do we do it? Well, first we note that there are useful relationships be-
tween syntax and semantics. When “take” is used to mean “bring,” it predicts a
different set of syntactic constituents than when “take” is used to mean “take
away.” When you take something away from someone, you can’t have an in-
direct object. This means that a resolution of the semantic ambiguity will auto-
matically take care of the syntactic ambiguity as a natural side effect. Once we
know what the verb means, we’ll know how to parse the sentence syntactically.
We’ll return to the problem of knowing what the verb means in a minute.

In the meantime, notice that we’re already in trouble using our serial archi-
tecture. This architecture assumes that all the syntactic decisions are made
before we even look at the semantics of the sentence. The dependency is run-
ning the wrong way. If we stick with this architecture, we’ll have to allow the
syntax module to operate nondeterministically, handing multiple parse trees
over to semantics in the hope that semantics can decide which one is appro-
priate.

This is, in fact, exactly what a lot of language processing systems do. In
the “syntax-first” tradition, whole sentences are analyzed syntactically, and
multiple parse trees are passed on for further analysis, making the job of
semantic analysis a job of sorting through all the parse trees. When sentences
contain prepositional phrases, reduced relative clauses, and other sources of
rich syntactic ambiguity, the number of syntactic parse trees available to us can
easily run into the hundreds.

Most researchers in knowledge-based natural language processing reject
the syntax-first approach to sentence analysis and strive to integrate syntax and
semantics in a more natural and effective manner. But once we open the door
to integrated models of sentence analysis, we must necessarily ask whether the
problem is restricted only to syntax and semantics. After all, just how do we
decide what word sense for “took” is the appropriate one?

It seems that the answer to this question must be obtained by using a lot of
knowledge about the world. Although you may not have thought about it, you
make an inference when you hear “Mary was in the hospital.” Probably, Mary
was a patient in the hospital (note that this could be wrong). It follows that
Mary was probably sick or injured. And there’s a tradition in our culture about
people who are sick or injured. Friends and relatives usually send something to
cheer up the invalid: Cards and flowers are traditional items. All of this is use-
ful in disambiguating the proper word sense in “John took her flowers.” Given
the strong context surrounding the sentence, we might reasonably expect to be
dealing with a bringing event as soon as we hear “John took”

On the other hand, we also have knowledge about Central Park. We all
have a strong association between Central Park and muggers, we know what a
mugging is, what the goals of a mugger are, and we know that pedestrians in

Chapter 3 Natural Language Understanding 107

Central Park are at risk. All of this is available to most adult Americans be-
cause it’s a part of our shared culture. And this is the knowledge that helps us
to understand the appropriate word sense for the verb when we hear “A
stranger took ...” in the context of pedestrians and Central Park.

If we define pragmatic knowledge to be the basis for inference generation,
then we have to integrate not just semantics with syntax, but semantics and
pragmatics with syntax as well. For this reason, many people believe that the
line between semantics and pragmatics is not well-motivated: There is no good
basis for distinguishing semantic knowledge from pragmatic knowledge if you
are going to work within an integrated framework for sentence analysis.

People who are interested in this integration problem are interested in
ideas for control. How are we going to integrate the top-down processes, which
are knowledge-based, with low-level bottom-up processes, which are not
knowledge-based? Although there are many answers to this question based on
co-routines and message passing, it has been difficult to find solutions that are
truly elegant and readily adaptable if your grammar changes or your theory of
semantics begins to shift.

However, two interesting approaches to this problem have surfaced very
recently, and I’d like to give you a rough feeling for those solutions. I am not
convinced that anyone has a good solution to the pragmatic context effects
we’ve been looking at in Figure 10, but we can at least see progress at the
level of syntax and semantics with hopeful hand waving aimed at pragmatic in-
teractions.

In the first case, structured inheritance is being pushed as a key mecha-
nism for integrated sentence analysis. This approach argues that the key to the
problem lies in the correct design and organization of our knowledge base. For
example, a selling event can be characterized in terms of two transfer events,
where the object of one transfer is money and the object of the other transfer is
merchandise. The sources and recipients for these two transfer events constrain
one another by exchanging roles, and at a very high level of abstraction, each
of these transfer events are instances of some very vague event which corre-
sponds to the primitive ATRANS in Conceptual Dependency. Figure 11 shows
how all of this knowledge about selling might be represented using KODIAK.

In KODIAK diagrams we use a bit of shorthand that is important to under-
stand. Whenever you see a named link like the actor link in Figure 12, that’s
actually a shorthand notation for structured inheritance via a role-play link. It’s
very cumbersome to work with the fully expanded notation all the time, so the
shorthand notation is useful, but we must remember that this shorthand implies
a structured inheritance that is not explicit in the diagram.

What we’re trying to do here is create a very systematic and highly con-
strained style of knowledge representation through which we inherit a lot of
implicit structure as needed. Let’s try to look at some examples of this in ac-
tion.

108 Lehnert

Structured Inheritance

complex-event

a-transfer-event

D
D
commerclal-trans

r\-fw;
merch-transfer D

1. sub-event
part. recipien

customer
Sourc
sourc 1 tender-transfer
merchant
™ “recipient
bject object
merchandise object
bject
tender

Figure 11 Representing the Verb "To Sell"

Selling is interesting because it’s two transactions, and both of those trans-
actions are transfers. We have some very high level of generality, a transfer of
an object from one person to another, or from one entity to another. And in one
case, the transfer is a merchandise transfer, so we have an object of barter
being moved from one person to another. In the other case, moving in the op-
posite direction is a transfer of tender: Money is changing hands. If we’re very
careful with our representation, we can understand how these two transfers re-
late to one another. They are not isolated transfers. Rather, they are connected
through a series of links that identify specific roles, such as customer, mer-
chant, merchandise, tender. Whenever there’s a selling event, we implicitly
know that four roles must be present, whether we can instantiate them with ref-
erents or not.

Chapter 3 Natural Language Understanding 109

Structured Inheritance

action -
actor
.4: H Ly
selling .
m
seller
OR :
selling
actor
seller

Figure 12 Implicit Roll-Play Links

While this network is designed to represent semantic information, the idea
of structured inheritance networks has been applied to traditionally linguistic
(syntactic) knowledge as well [Jacobs, 1987a]. It is possible to take knowledge
about grammar, the rules for recognizing legitimate sentence structure, and en-
code that knowledge in a KODIAK network utilizing structured inheritance.
Once this is done, we have our linguistic knowledge together with the semantic
knowledge within a single representational framework (see Figure 13).

Concretion mechanisms (or any other marker passing algorithm) that
worked for inference generation can now be applied to syntactic structures as
well since the underlying data structures are indistinguishable. Whether all
such mechanisms generalize to useful applications is another question, but at
least we are now in a position to ask.

110 Lehnert

Putting it Together

Conceptual Structures Linguistic Structures
transfer-event REF »| to-pmod
relation
' g R i T
y ; p-;.-(}? A
D destination L prep—ob]
a-ransfer-event REF, verb-indir
D relation
\ \de:bmrion \.g
reciplent Indir—obj
D
D
VIEW i REF
merch-transfer [« > selling < > lex-sell
VIEW) REF
comm-transfer |« L telling - - lex-tell

phys-transfer
3

D

msg-transfer

Figure 13 Integrating Syntax and Semantics

Although we are concentrating here on techniques for sentence analysis, it
is interesting to note that the integrated KODIAK structures we've been. dis-
cussing are used for both sentence analysis and sentence generation [Jacobs,
1987b].

Chapter 3 Natural Language Understanding 111

Although Jacobs is probably the first researcher to investigate highly inte-
grated methods for syntactic/semantic processing from the two perspectives of
analysis and generation, he was not the first to work with a uniform repre-
sentational framework for sentence analysis. The earlier Word Expert Parsing
effort [Small, 1980] deserves to be mentioned along with related work on lexi-
cal access [Cottrell and Small, 1983] which focused on the problem of word
sense ambiguity.

A very different approach to the problem of integrating syntax and seman-
tics can be found in an effort that was strongly influenced by Cottrell and
Small’s earlier work. Waltz and Pollack [1985] picked up where Cottrell and
Small left off, and tried to generalize connectionist techniques into higher
levels of sentence analysis. While we have seen a lot of exciting work by con-
nectionists on sentence analysis within the last year or two (see for example,
[McClelland and Kawamoto, 1986]), I've chosen to talk about Waltz and Pol-
lack because the techniques they use are much more accessible to an Al
audience without an introductory tutorial on connectionism.

Waltz and Pollack work with large, knowledge-rich networks in their sys-
tem, but these networks are not as carefully structured as the KODIAK net-
works we saw before. Indeed, one of the weaknesses of this system is its lack
of inheritance in any form. There are no theoretical claims about knowledge
representation here either: One could invent a node for any sort of frame with
additional nodes for any kind of role or slot constraint imaginable.

The key idea here is spreading activation and network relaxation. But now
the activation is analog activation, which means that nodes are given numerical
values to indicate how much activation is present at any given time. Relaxation
is the process of systematically adjusting activation levels within the network
until the network assumes a stable state. A stronger connectionist flavor is ob-
tained by the use of lateral inhibition to expedite the stabilization of competing
nodes where activation levels are expected to be mutually exclusive. If we ap-
pear to have walked off some sort of cliff in terms of your familiarity with
these terms, that’s probably because this is a numerical algorithm and not the
sort of thing we normally associate with “mainstream” symbolic Al

Consider, for example, an eating node, which has arcs leading out to role
nodes that represent things like agents and objects (see Figure 14). When we
understand the sentence “Mary ate spaghetti with Sue,” we want to see the net-
work stabilize with a high level of activation on this eating node as well as the
appropriate slot-filling nodes. It is important to settle on a high level of activa-
tion for the co-agent node lest we interpret Sue to be a co-object (like
meatballs) or instrument (like fork) for the eating event. If all goes well,
semantic constraints within the network will push the relaxation process in the
right direction, and inappropriate pathways in the network will die off for lack
of sufficient activation.

112 Lehnert

SPAGHETTI

/ |
% ’quc,
COAGENT @
@
END OF
SENTENCE

Figure 14 Eating Spaghetti with Massive Parallelism

If ever there was an algorithm to illustrate homogeneous control, numeri-
cal relaxation must be it. This idea can be applied to networks of nodes repre-
senting anything you want. We can have different nodes for different word
senses, other nodes for semantic features, and even nodes for traditional syn-
tactic constituents. Plug in a grammar by wiring the nodes correctly, and you
can produce syntactic parse trees as a side effect of network relaxation (see
Figure 15).

Chapter 3 Natural Language Understanding 113

So—os\

STREET

o~ INEDIBLE

Within this framework we integrate semantic constraints and syntactic con-
straints in a massively parallel architecture that can readily compute a global
assessment of the situation after each word of the sentence is received. Pre-
ferred word senses and syntactic preferences may shift around as we move
through the sentence, making it possible to run interesting experiments by
taking “snapshots” of the network as we move through a sentence. Activation
levels from a syntactic constituent may inhibit or support a specific semantic
interpretation, and semantic preferences can flow back toward the nodes decid-
ing about syntax.

Figure 15 Adding Syntactic Constraints

114 Lehnert

This provides us with a very nice framework for investigating a lot of
problems, and in particular, garden path processing phenomena are especially
well suited for analog spreading activation models. Of course, all of the prob-
lems we have with marker passing algorithms apply here as well: E.g., what
happens if two different referents activate the same sections of the network? In
fact, the interference effects associated with analog activation are even worse
than with marker passing algorithms because we have to make sure that nodes
“die out” within a reasonable period of time by tweaking the numeric algo-
rithm. In a marker passing framework, a node can be told to die after a fixed
number of words have been parsed or after a specific marker like a clause
boundary is encountered. In the symbolic paradigm it is at least easier to un-
derstand why a node is turned on or off. In the analog paradigm, the status of
each node is dependent on the status of every other node in the network,
making the whole business rather inscrutable.

Now that we’ve seen how syntax and semantics might be intertwined
under homogeneous control, let’s return to the issue of pragmatics and how
processes of inference might be interleaved with processes of sentence analy-
sis. As I said earlier, I don’t think a lot of progress has been made in this area.
Waltz and Pollack have designated a subset of their nodes as “context nodes,”
but it is difficult to evaluate the utility of that idea in the absence of a system-
atic methodology for building large, massively parallel networks. Probably the
best I can do is show you some more places where “high-level” knowledge
must be allowed to influence “low-level” decisions about syntax. One of the
places where this appears to happen involves analogies and the role of analogi-
cal thinking in natural language.

5 Analogical Reasoning and Language

Her hair was like lamb’s wool, her teeth were like pearls.

We're supposed to understand from this that her hair was soft and her teeth
were white. We’re not supposed to conclude that her hair was white and her
teeth were hard. One discovers that the mapping of a sentence onto appropriate
analogical features is not such a simple business. Perhaps her hair was smelly
and her teeth were very round?

Analogical reasoning is a major problem in natural language communica-
tion, and we don’t have to reach for poetry to find instances of it. In fact, it’s
much more common than you might imagine. Sometimes we see it explicitly,

Chapter 3 Natural Language Understanding 115

in the example above. The word “like” warns us that we may be talking about
an analogy and we’d better get the mapping right. But analogies can also
operate more subtly.

For example, idioms often rely on analogies of one sort or another. I can
pick up an article in the newspaper and read about a conflict in the Middle
East: “Despite the fact that the two factions had been fighting for 20 years,
they finally agreed to bury the hatchet.” This is a standard idiom. Everyone un-
derstands what is meant by it. Or we can go back to Mary in the hospital.
Maybe after John took her flowers, she took a turn for the worse and kicked
the bucket. Another idiom. In fact, there were two idioms in there. Nobody I
know can take a turn for the inferior.

For a long time, no one in Al had much to say about idioms. They were
just conventionalized and fossilized expressions in the language—a part of the
phrasal lexicon that had to be learned case by case. But if you look at it with
analogy in mind, there are some very interesting phenomena associated with
idioms. To be precise, there appear to be some rules that govern the syntactic
flexibility of idioms, and those rules are based on analogical reasoning
processes. '

First, we must understand that some idioms are more fossilized than
others. The burying of the hatchet can be passivized: “After the peace talks, the
hatchet was buried.” The kicking of the bucket cannot be passivized: “After a
long illness, the bucket was kicked by Mary.” That’s just not an option. One of
these idioms can tolerate a syntactic transformation while the other can’t.

In a recent Ph.D. thesis we find a claim about this [Zernik, 1987]. The key
question is whether or not a given idiom can be explained via analogical rea-
soning. If an idiom can be explained, then it will be syntactically flexible. If it
can’t be explained, then it will be brittle. Let’s look at this in a little more
detail.

In the case of the hatchet, we have associations and we have knowledge.
You always have to have knowledge in order to have an analogy. And the
knowledge that’s relevant here is knowledge about war. One can imagine a war
script, where we have stereotypic events. You have some initial conflict, you
gather your troops, you attack, you defend, you win, lose, draw, you establish
an agreement, and you bring your troops home. Somehow, we have to get from
burying the hatchet, which is a very specific literal event, to the withdrawal of
armed troops. If we can make that connection, then the hatchet operates as an
instrument of aggression (just as the armed troops are a symbol of aggression),
and burying the hatchet translates into a deliberate disarmament, a halt to ag-
gression.

How do you make those connections? This is a very difficult problem for
knowledge representation and memory organization. We could call it a concre-
tion problem, but that doesn’t solve anything. Is there an abstract event that
dominates both troop withdrawals and hatchet burials in some massive inheri-

116 Lehnert

tance hierarchy? If we go up the abstraction hierarchy too far, all events will
map to all other events (because they’re all dominated by some very general
event node way up at the top).

Concretion by itself is probably too powerful a mechanism in the sense
that it could be used to make sense out of idioms no one ever heard of. If bury-
ing a hatchet is a further specification of weapon burial, then burying a rifle
should be recognized just as easily as burying the hatchet. Somehow we lost
track of the fact that one of these is an idiom and the other is not. What distin-
guishes the one from the other is an instance (real or plausibly constructable)
where someone actually buried a hatchet following a conflict. Perhaps we all
remember a story about the pilgrims and the Indians from our 4th grade history
lessons. It’s at least conceivable that an Indian might have buried a hatchet in a
war ritual. To bury a rifle is to impose an event from a ritually rich culture on
an object from a culture largely lacking in symbolic rituals. The mismatch
arouses cognitive inconsistency and seems disturbing.

Ignoring the very difficult problems associated with analogical reasoning,
we can hypothesize that some such processes take place. Or at least they take
place for the idioms that can be explained. If we had to explain “burying the
hatchet” to a child, we would probably describe a scenario where a hatchet got
buried to symbolize the end of physical aggressions. But what would you do if
someone asked you to explain “kicking the bucket?” Most people explain this
one by saying it's just an expression (don’t bother me kid). There is no
analogical mapping that gives us a plausible explanation for why death is as-
sociated with kicking a bucket. Most of us do not know of any such explana-
tions and can’t construct a plausible one even if we try.

So why should any of this matter to a syntactic transformation? The fact
that some idioms are syntactically flexible while others are not suggests that
the processes associated with the two types of idioms are very different. An ex-
plainable idiom is understood at a deep conceptual level... the idiom maps into
a conceptual structure retrieved by analogical reasoning. An inexplicable idiom
is understood (she kicked the bucket = she died) but not explained by analogi-
cal mappings.

When an explanation is available, all of the language processing power
available for the targeted conceptual structures can be applied. The explanatory
concept underneath the idiom can be expressed using a variety of syntactic
structures, and this makes the idiom receptive to syntactic transformations.
When no explanation is available, there is no underlying concept associated
with the idiom, and so there is no language processing capability that applies.
Brittle idioms lack the conceptual scaffolding required to loosen them up.

Before we leave the topic of analogical reasoning, I want to give you some
more examples of its utility for natural language. One way that analogical rea-
soning creeps in is via metaphor. Metaphors are abundant in natural language,
and so pervasive we don’t even notice them most of the time. For example, it

Chapter 3 Natural Language Understanding 117

is common to assume that technical literature is characterized by very dry and
literal language. If there is one place where metaphors might not intrude, it
must be when people discuss technical or scientific concepts.

Surprisingly, technical descriptions are often very rich in metaphors. Con-
sider, for example, the language we commonly use when talking about comput-
ers:

You can get into the editor by...
I ran it through spell to...
The editor died when...

If you have a language processing system that assumes only living things
can die, you’re going to have a lot of trouble with a sentence like “The editor
died on me” [Wilensky, Arens and Chin, 1984].

Oliver North has given us a beautiful example of how intimately interde-
pendent language and analogical reasoning can be. If you were listening to the
Congressional hearings, you heard Col. North explain a misunderstanding he
had about the term “delete” in the context of electronic mail. He thought that
when you pushed the delete button, the mail really went away.

I suspect that this faulty interpretation of deletion was the direct result of
an analogical mapping to a bad analogy. Given the rest of his testimony before
the Congressional hearing, it seems quite likely that Col. North mapped the de-
lete command in his mail system to the on button of a paper shredding ma-
chine. When you turn on the shredding machine, things really do go away. Un-
fortunately, shredding machines are not very good models for what happens to
electronic mail. If Col. North had ever worked with icon-infested software of
the sort found on personal computers, he might have mapped the delete com-
mand to a wastepaper basket, and been more concerned about the security of
his deleted documents for the same reason that one should worry about waste-
paper baskets.

I do not mean to disparage Col. North or his memory organization. This
kind of misunderstanding happens to all of us and it’s especially dangerous
when a word appears to be so simple. How do people usually explain some-
thing like a delete command? When you say delete, the message will go away.
When you delete a message you throw it out. Deleting a message destroys the
message. None of these explanations are quite correct but how many of us re-
ally want technically correct explanations? Natural language communications
are generally very effective in trading off accuracy for brevity. But every so
often the trade-off slips up and mistakes result. What’s amazing is how we all
get by as well as we do.

118 Lehnert

6 Episodic and Semantic Memory

Let me close on a topic that is in keeping with our theme of homogeneity. In
addition to homogeneous control, we can talk about homogeneous memory.
There’s some very interesting work that I think is just beginning to get off the
ground. The one example that I’ll draw from in order to illustrate what I'm
talking about is some recent work done at Yale [Riesbeck and Martin, 1986].

Traditionally, people who talk about memory make a distinction between
semantic memory and episodic memory. To understand this distinction, let’s
think about how we might go about answering a simple question. Suppose I
ask you, “Does a penguin have skin?” If you have a semantic memory availa-
ble to you that involves penguins, you will understand that a penguin is a type
of bird, and as a bird, it has specific features, one of which is skin. If you have
any kind of retrieval algorithm available for answering questions, you will
traverse links of this sort in order to confirm that penguins do indeed have
skin.

Now suppose I ask a very similar question. What about a chicken? “Does
a chicken have skin?” Now, if you have semantic memory, you’re going to an-
swer the question much the same way you answered it for penguins. You
won’t have associations available to you about Antarctica, but you’ll find
chickens, you’ll find birds, you’ll find features for birds, and you’ll find skin.
Just like before. This is the semantic view of memory.

However, a number of people believe something else goes on, that perhaps
semantic memory can sometimes be short-circuited by something much scruff-
jer called episodic memory. Episodic memory has to do with personal first-
hand experience with the world. For example, dinner last night is a good ex-
ample of episodic knowledge. If dinner last night happened to be fried chicken
and you really like the skin on fried chicken, you might have a much faster
path for answering the question about chicken skin than the one available
through semantic memory (see Figure 16).

Traditionally, semantic knowledge and episodic knowledge have always
been thought to be in competition with one another: These are two distinct
views of memory and there really isn’t room in this world for both of them to
coexist peaceably [Tulving, 1972].

But very recently we’ve begun to see some work that seems to blur the
semantic/episodic barrier and cross lines between the two without any trouble
at all. We've already seen some of this with FAUSTUS. What sort of a node is
the node that represents balloons exploding? An exploding balloon sounds
pretty episodic. Yet two steps up the hierarchy we’ll see general nodes for ex-
plosions and breaking events. Nodes like that are commonly found in semantic
networks. If we examine the memory structures engineered for FAUSTUS, it
seems that the task of inference generation needs both types of memory and
would be badly impaired if forced to function without one or the other.

Chapter 3 Natural Language Understanding 119

Semantic Memory vs. Episodic Memory

Does a penguin have skin?

feathers

nas-feature

lives-in

has-feature

desolate

II l! Aeature

Does a chicken have skin?

dinner wmatn-course

last night

location

/s .
KentUCky Fned Jsecret- 1ngrt‘01gn\l

~_ Chicken =
pa———g 11 herbs m
T N T ST

Figure 16 Semantic Memory vs. Episodic Memory

120 Lehnert

Now let’s get back to Riesbeck and Martin to see how the semantic/epi-
sodic issue relates to sentence analysis. Before describing their system, DMAP
(Direct Memory Access Parsing), Riesbeck makes an interesting claim about
language analysis at the level of sentence comprehension. He points out that
there are really two distinct views about what it means to analyze a sentence.
In one perspective, we think of a sentence as mapping into existing concepts in
memory. That is, you really only understand this sentence because you have
knowledge in memory that allowed you to make sense out of it. Then when
you understand the sentence, the very act of understanding the sentence oper-
ates to reinforce or modify existing structures in memory. This view of sen-
tence analysis might not sound terribly controversial, until you realize that vir-
tually every sentence analyzer ever implemented operates under different prem-
ises.

In most models of sentence analysis, sentences do not map directly into
memory. They create meaning representations, and these meaning repre-
sentations may be influenced by some form of memory, but the act of sentence
analysis rarely has any side effects that alter memory as the target meaning
representation is being produced. The processes that analyze a sentence are
normally segregated from the processes that alter memory (if indeed, any
process is capable of altering memory).

Riesbeck characterizes the traditional framework as the “build-and-store”
approach to sentence analysis. He calls the non-traditional framework the “rec-
ognize-and-record” style of sentence analysis. He then goes on to argue that it
would be much to our advantage to investigate recognize-and-record models of
parsing as a wholly new style of parsing that lends itself more naturally to a
truly memory-intensive view of language.

In faimess, we should point out that the Waltz and Pollack parser falls
somewhere in between build-and-store and recognize-and-record. Their analy-
zer produces a pattern of activation over its entire memory. Indeed, it may be
very difficult to interpret this pattern of activation should anyone ever need to
know what a particular sentence means. So Pollack and Waltz are certainly not
consistent with the build-and-store paradigm. On the other hand, the changes
made to memory as a result of sentence analysis are completely transient and
wiped out each time a new sentence is processed. So this is not exactly con-
sistent with the recognize-and-record idea either. Yet the connectionist enter-
prise in general is clearly operating within the recognize-and-record paradigm
if we look at the learning algorithms that adjust weights and modify the net-
work each time a new sentence is processed. The radical view that Riesbeck
advocates is really only radical within symbolic Al circles. Connectionists
would feel quite at home with it.

To see how Riesbeck and Martin try to realize a recognize-and-record
model using symbolic techniques, let’s look at one of their example sentences.
Here is a picture of DMAP’s memory (see Figure 17).

Chapter 3 Natural Language Understanding 121

(actor. MTRANS-word.object)

MTRANS-event
actor object
A Mental
ctor Object
Economist
(name)| actor | Opinion Economic
i Argument
Human| object L (time, event)
name -)
(first, last) Economist time || Prediction
i) Prediction| object }b
Name actor Nﬂt
NAME 'Economist Economic e
first - " Prediction
last Friedman’s 7 Change
First Miltonl_as:i Last Interest Rates
Name| [Names Name| [actor| Prediction I;terest (variable |behavior)
firs a.tes.) Economic
Mﬂmn Prediction State
Milton Fri Time| / event variabl Change
i ’ name e -
Fn:ldmm il 1\ / Economic behavior
ame Variable
st an Future Interest | |Behavior
" " s " Rates Up
("Milton™) ("Friedman") C'will")
Interest | variable

Rates behavior Up| [Down

("interest","rates") ("rise")

Figure 17 Understanding Milton Friedman

122 Lehnert

DMAP has some knowledge about newspaper articles taken from news-
papers. The sentence we are now trying to understand is, “Interest rates will
rise as an inevitable consequence of the monetary explosion.” This is a quote
from Milton Friedman in the New York Times. Figure 17 shows us the portion
of DMAP’s memory which is important for understanding “(Milton Friedman
says) interest rates will rise”

At the highest level of memory, we can characterize this sentence as a
transfer of information. Somebody said something. This is a highly abstract
characterization of the input sentence. As we move down to a more specific
representation, we further understand the sentence to be an opinion by an
economist. Even more specifically, a prediction by an economist. And more
specifically again, a prediction by Milton Friedman about interest rates.

Looking at Figure 17, we can see an inheritance hierarchy that gives us all
the further specifications needed to represent the input at various levels of ab-
straction. If we start at the top node for a communication event, filling in the
details becomes something like a concretion problem. Of course, memory will
only look like this if DMAP has already seen other stories about Milton Fried-
man making predictions about interest rates. Given such knowledge, the act of
mapping our new input sentence into memory becomes an act of recognition: I
see now... this is another interest rate prediction by Milton Friedman. DMAP
shows how a sentence analyzer can work with memory in order to situate the
content of a sentence within an existing framework for memory. The algorithm
is a marker passing algorithm, and DMAP shows us what sentence analysis
might look like within a memory-rich recognize-and-record paradigm.

Let’s take one more look at the nodes in this tree structure (see Figure 17).
Although the root node for a communication event looks very generic and
therefore semantic, nodes further down the tree structure look more and more
episodic. We have a node for all the names we know with the first name Mil-
ton. We have a node for economic predictions by Milton Friedman. This is
completely episodic.

At some point, we’ve crossed the line and moved from nice, clean, seman-
tic knowledge down to scruffy, first-hand experience knowledge of Milton
Friedman and what he’s said in the past. In fact, the marker passing algorithm
in DMAP was designed with two kinds of memory organization in mind: ab-
straction hierarchies and packaging hierarchies [Schank, 1982]. The abstraction
hierarchy is the traditional is-a hierarchy we see in semantic networks, and the
packaging hierarchy handles stereotypic chronologies of the sort we first saw
with scripts—this is clearly episodic knowledge.

So an interesting line gets crossed in DMAP, and there are important im-
plications when you cross that line. One of the implications has to do with
knowledge acquisition. If you are willing to cross that line and benefit from the
advantages associated with it, then you necessarily have to worry about knowl-
edge acquisition. Because every time you understand a sentence, you should

Chapter 3 Natural Language Understanding 123

add another instance of something to your knowledge framework. The tenth
time you read about Milton Friedman predicting interest rates will rise, you
should feel that the concept is somehow more familiar than it was the second
time around. You are automatically in the learning business at that point. Ear-
lier work on generalization and dynamic memory organization comes to mind
[Lebowitz, 1983]. But this is a not a standard perspective on sentence analysis.
Most researchers in natural language processing and even knowledge-based
natural language processing would not claim to be working on learning or
knowledge acquisition. So this is a really a radical view of language being pro-
moted here.

7 Conclusions

That brings us to our wrap-up. I've tried to point out some trends over the last
15 years. It is possible to associate the trends with roughly five year cycles
starting in 1972.

The first cycle (1972-77) was characterized by a preoccupation with
strong methods addressing specific knowledge structures and processes of in-
ference associated with specific knowledge structures. Ph.D. theses by
Chamiak and Rieger motivated much of this work, and Schank organized a
large research group at Yale to identify knowledge structures for natural lan-
guage processing.

The second cycle (1977-82) was characterized by a gradual appreciation
for the implications of language processing based on strong methods alone.
Dyer’s thesis gave us a taste of the price we would have to pay in terms of sys-
tem complexity if the strong methods continued to propagate without other
kinds of processing techniques. At the same time, powerful ideas based on the
earlier impetus toward strong methods were being pushed hard and refined in a
number of computer implementations. Jaime Carbonell, Richard Cullingford,
Gerald DelJong, Michael Dyer, Richard Granger, Janet Kolodner, James Mee-
han, Mallory Selfridge, Robert Wilensky, and I, all finished theses at Yale
during this period. The pendulum was poised to swing back from there.

The third cycle (1982-87) fueled a renewed interest in weak methods—
techniques for homogeneous inference generation, homogeneous memory or-
ganization, and broad processing techniques of great generality. Marker passing
algorithms enjoyed a lot of attention during this period and progress by con-
nectionists was greeted with cautious enthusiasm. Spreading activation became
a common theme in a lot of the original research of this period. James Hendler,
Graeme Hirst, Paul Jacobs, Peter Norvig, and Jordan Pollack, all completed
theses consistent with the Zeitgeist of this cycle. Work by Gary Cottrell and
Steve Small, which was completed before 1982, received recognition during
this period for having surfaced “before its time.”

124 Lehnert

So where are we going in the next five years? It’s always safer to wait for
20-20 hindsight, but I'm willing to stick my neck out and imagine a future that
would at least not surprise me.

+ I expect to see a push toward knowledge acquisition as an active concern
in knowledge-based natural language.

» The symbolic community will grapple with the questions raised by con-
nectionist research: What are the essential issues in the symbolic/subsym-
bolic paradigm struggle? Should we all see the light and become con-
nectionists? Should the connectionists see the light and forsake connection-
ism? Given the unlikelihood of those two scenarios, how will the two
communities come to view each other and the relationship between their
distinctive research paradigms?

« Somewhere in the midst of all this, theoretical progress might be made on
the episodic/semantic distinction. More and more people will find it con-
venient to acknowledge the utility of both memory types and design algo-
rithms that move freely between them. This will be viewed either in terms
of an integration of two distinct memory types, or a demonstration that the
original distinction cannot be supported by computational models (it was a
bad idea in the first place).

» Finally, we may see some serious efforts aimed at evaluating our models
and understanding the qualitatively different contributions that are being
made by different research styles. The neat/scruffy dichotomy may give
way to some other, more timely wedge, as more and more people find it
difficult to pigeonhole themselves as card-carrying neats or free-spirited
scruffies. Those who never liked this distinction in the first place will hold
a workshop and burn all reprints that contain the keywords “neat” or
“scruffy.”

In closing I'll leave you with two of my favorite quotes. The first one is
by Thomas Edison. Thomas Edison was born too early to be an Al person, but
I think he would have been a good one if persistence counts for anything. He
had a lot of trouble finding the right filament for the light bulb, and he tried a
lot of filaments before he found a workable one. Whenever I see the following
quote I like to mentally transport Edison into 1987 and place him in an NSF
office where he’s trying to convince a program manager to fund his research.
Exasperated and impatient with the obvious difficulty of his situation, he says:

“I’ve tried everything. I have not failed. I've just found 10,000 ways that
won’t work.”

I think anyone who’s been in Al for more than ten years can probably re-
late to that scenario, but this is a rather pessimistic perspective on the state of
the art, so I don’t really want to leave you on that note. It makes the whole

Chapter 3 Natural Language Understanding 125

business sound like a simple brute-force search, and I think we’re all at least a
little smarter than that.

Here’s a happier observation from Francis Bacon that seems closer to the

true spirit of Al:

“Truth emerges more readily from error than from confusion.”

Questions and Answers

Q)

Q)

I wonder if you might have seen the little note on USENET from Donald
Norman about artificial intelligence as a science. Whether you have or
not, let me ask the question. What, in your opinion, controls the
development of this research from the point of view of both evidential
support and falsification? I ask it because you didn’t say anything about it.

Well, I think there’s a lot of soul searching that goes on in Al on this
point, particularly within the machine learning community. Language
researchers are perhaps less preoccupied with such concerns because it is
very hard to design convincing experiments for processes of this
complexity. However, one good collection of psychological experiments
inspired by the knowledge structuring work at Yale is [Galambos et al.,
1986].

I think a big part of our enterprise can be reasonably characterized as
trying to understand the problem before we can presume to find
solutions. For example, Rieger thought the inference problem was
primarily a control issue. Schank says it’s primarily an issue about
knowledge and memory organization.

I think we understand a good deal more about language now than we did
15 years ago, but whether we’re learning what we learn by practicing a
normal science is another issue. Personally speaking, I don’t really care if
we’re practicing science as long as we can say we’re learning something.

How about an easy question?

I’ll give you a technical question I have about the last point of your talk...
where you describe the recent work by Riesbeck as an effort combining
episodic memory with semantic memory. You said that would create a
problem for knowledge acquisition. It seems to me that if you could store
the sentences you understand in the same representation that you are
using to parse them, then that would be a big windfall for knowledge
acquisition, because once you parse it, you have it available as part of
your episodic memory for use later on. So the impression I get is just the
opposite of what you said. Can you clarify that?

126 Lehnert

(A)

(A)

You have to be careful about exactly what it is you think you should
learn. If you’re interested in psychological validity, there’s a lot of
evidence that people are very bad at remembering sentences verbatim in
long-term recall or recognition. Even so, the content of those same
sentences can be recalled. This suggests that our episodic memory
structures operate with some system of knowledge representation that is
not dependent on sentences per se.

When we say that DMAP can “understand” a sentence better if it’s seen
the sentence before, we should keep in mind that DMAP will also
understand a paraphrase of that sentence with equal advantage because
the memory which facilitates understanding is based on a canonical form
for meaning representation: All semantically invariant paraphrases are
collapsed into a single meaning representation. So DMAP can’t be
expected to learn anything about syntax or the processes needed to handle
syntactic information as long as its memory can’t record distinctions
specific to syntax.

It is very difficult to say how the learning associated with episodic
domain knowledge relates to the problem of learning how to analyze
sentences. Going back to psychological validity, children acquire the
basics of sentence analysis very early on. By the time a child enters
school, she’s basically working on vocabulary acquisition and an
increasing tolerance for syntactic complexity—the hard part of language
acquisition is over and what remains is a lot of expansion within existing
structures. This suggests that the mechanisms associated with adult
language processing are probably not very plastic or sensitive to specific
sentences on a case-by-case basis. It might therefore make sense to
separate the two types of learning as distinct and separable problems (as
DMAP does). Of course, there are plenty of connectionists who would
disagree with me about this.

You spent some time talking about how one could use the same
knowledge representation structures for representing the concept in the
sentence and concepts of just verb and noun through grammatical terms,
but I guess I missed something along the way. What power does that give
you, what’s the advantage of doing that?

Ah. Well, the idea is that we should get away from that one slide I
showed you from Dyer’s thesis, where the 22 different knowledge
structures interact with one another in very arbitrary and idiosyncratic
ways. If we could find knowledge representation techniques and memory
organization techniques that allow us to bring in all kinds of different
knowledge structures under the same representational umbrella, then we
could develop algorithms that manipulate that information in a uniform

Chapter 3 Natural Language Understanding 127

Q)

Q

(A)

manner. So it’s a question of finding uniform processing theories as
opposed to allowing the whole enterprise to break down into 1,001
interacting experts who each speak different languages and talk about
different things.

I should also point out that I’m only trying to identify some trends in our
research. Time will tell whether or not this trend is justified. Maybe
reality will ultimately reveal herself to be 1,001 different experts and
we’ll just have to develop appropriate techniques for dealing with that
kind of complexity.

So in the case of Waltz and Pollack, we’ve really got sentences being
parsed using only spreading activation? Some form of connectionism?

In the case of Waltz and Pollack, that’s exactly what we’ve got. In the
case of Jacobs, who was working with KODIAK, we see another form of
spreading activation called marker passing, which operates a lot like
relaxation except it’s just not numerical relaxation. In both the numeric
and non-numeric approaches, a simple algorithm is iteratively applied to
nodes in the network until a stable state is reached. A lot of people are
playing around with marker passing these days, including Charniak.

And do those parsing algorithms duplicate the same phenomena that
something like the Marcus parser does... garden path phenomena?

Pollack and Waltz were very interested in garden path sentence
processing and they have examples that simulate effects exhibited by
human subjects.

Could you speak briefly about the current interaction between
psycholinguistics and computer science in language understanding,
because it seems like some of these models come from insights from
psycholinguistics, but you didn’t mention that.

I think if you concentrate on the knowledge-based aspects of language
processing, you find influence coming in from a number of places. For
example, the Zernik work on frozen idioms and analogical mappings was,
I suspect, heavily influenced, or at least inspired, by the work of George
Lakoff.

Much of psycholinguistics, however, restricts its domain of inquiry to
syntactic phenomena without appropriate concern for interactions
between syntax and other knowledge structures. To the extent that this is
true, many of the results we see from those experiments are not very
illuminating for people working on knowledge-based natural language.
Indeed, most of us argue rather vehemently against the segregation of
syntactic processing.

128 Lehnert

Q

No, but the psycholinguists do experiment on memory, and they’re
interested in memory, they’re interested in semantic memory, they’re
interested in cross-cultural effects of understanding. I was just wondering
if there are any active relationships between these bodies of research.

There are scattered instances of influence. For example, Eugene Charniak
was strongly influenced by the experiments of David Swinney in the late
70s. Experiments by Robert Milne are important for people working on
lexical access. I'm not sure how much there is in terms of active
collaboration, but it is always important to keep the channels of
communication open.

I’ve noticed that the entire description stayed within the verbal domain,
and I'm wondering if that reflects a supposition about how people really
think. Or is that just a starting point that we might have to move away
from at some later time?

What do you mean by “verbal” domain?

Well, for instance, when you said, “Does a penguin have skin?” I
immediately saw a picture of a penguin. As a matter of fact, it was
superimposed on a map like an old Disney movie. Then I saw a few
feathers removed and then I saw skin underneath. I didn’t say, “Is this a
bird?” There was no classification like that going on.

Right. There are two things to say about that. First, a warning, and then
an answer. It’s a little dangerous to place a lot of credibility in your
subjective experience of what happens when you answer questions or
understand sentences. If we’re conscious of anything, that’s just the tip of
the iceberg. In fact, we can’t even say if it’s a real piece of the iceberg or
some completely misleading side effect caused by the iceberg. So that’s
the warning. :

Having said that, I think there’s a very serious question about whether or
not the knowledge structures underlying language are in fact the same
knowledge structures underlying visual information processing. If they
aren’t, then we should worry about which aspects of common sense
reasoning would be better served by which structures.

And as far as I can tell, there’s precious little interaction between
high-level vision researchers and knowledge-based language researchers.
This is too bad. Surely we both have needs related to spatial reasoning,
although those concerns are probably much more central to vision
processing than language processing.

There’s been a certain amount of philosophical posturing around this
question. Pylyshyn and Jackendoff come to mind. But it seems silly to

Chapter 3 Natural Language Understanding 129

jump to any conclusions given how little we really know about the whole
business. I can’t even say the jury is still out since the matter hasn’t
really come to trial.

Acknowledgments

This research was supported by DARPA contract #N00014-87-K-0238.

References

Abelson, R., 1981. Constraint, Construal, and Cognitive Science. Proceedings
of the Third Annual Conference of the Cognitive Science Society. Berkeley,
CA.

Alker, H. R, Jr., Lehnert, W. G., and Schneider, D. K., 1985. Two Reinter-
pretations of Toynbee’s JESUS: Explorations in Computational Hermeneu-
tics. In Artificial Intelligence and Text-Understanding: Plot Units and Sum-
marization Procedures, Quaderni di Ricerca Linguistica. Graziella Tonfoni,
ed.

Bobrow, D.G., and Winograd, T., 1977. An Overview of KRL-0, a knowledge
representation language. In Cognitive Science 1(1):3—46.

Charniak, E., 1972. Toward A Model of Children’s Story Comprehension. Mas-
sachusetts Institute of Technology Artificial Intelligence Laboratory, Cam-
bridge, MA. AI TR-266.

Cottrell, G.W. and Small, S.L., 1983. A Connectionist Scheme for Modeling
Word Sense Disambiguation. Cognition and Brain Theory 6(1).

Cullingford, R., 1978. Script Application: Computer Understanding of News-
paper Stories. Yale University, Department of Computer Science, Research
Report #116. Dissertation.

Dreyfus H., 1987. Artificial Intelligence: Where Are We? ABACUS 4(3):13. A
collection of interviews edited by Bobrow, D.G. and Hayes, P.J.

Dyer, M., 1983a. In-Depth Understanding. MIT Press. Cambridge, MA.

Dyer, M., 1983b. The Role of Affect in Narratives. Cognitive Science 7:211-
242,

Galambos, J., Abelson, R., and Black, J., 1986. Knowledge Structures. La-
wrence Erlbaum Assoc., Hillsdale, NJ.

Geisel, T., 1950. If I Ran the Zoo. Random House, New York.

Jacobs, P., 1987a. A Knowledge Framework for Natural Language Analysis.
Proceedings of the Tenth International Joint Conference on Artificial Intel-
ligence. Milan, Italy. 675-678.

130 Lehnert

Jacobs, P., 1987b. Knowledge-Intensive Natural Language Generation. In Arti-
ficial Intelligence 33(3).

Lebowitz, M., 1983. Memory Based Parsing. Artificial Intelligence 21(4):363-
404,

Lehnert, W.G., 1981. Plot Units and Narrative Summarization. Cognitive
Science 5(4).

Lehnert, W.G., Dyer, M., Johnson, P. Yang, C. and Harley, S., 1983. BORIS—
An Experiment in In-Depth Understanding of Narratives. Artificial Intel-
ligence, 20:15-62.

McClelland, J., and Kawamoto, A., 1986. Mechanisms of Sentence Processing:
Assigning Roles to Constituents. In Parallel Distributed Processing: Ex-
plorations in the Microstructures of Cognition—2. Rumelhart and McClel-
land, ed. Bradford Books.

Norvig, P., 1987. Unified Theory of Inference for Text Understanding. Depart-
ment of Computer Science, University of California, Berkeley. Dissertation.

Quillian, M.R., 1968. Semantic Memory. In Semantic Information Processing.
Marvin Minsky, ed. MIT Press, Cambridge, MA.

Rieger, C., 1974. Conceptual Memory: A Theory and Computer Program for
Processing the Meaning Content of Natural Language Utterances. Depart-
ment of Computer Science, Stanford, Univ. Memo AIM-233, Stan-CS-74-
419. Disseration.

Riesbeck, C. and Martin, C., 1986. Direct Memory Access Parsing. In Ex-
perience, Memory and Reasoning, Riesbeck, C. and Kolodner, J., ed. La-
wrence Erlbaum, Hillsdale, NJ. i

Schank, R., 1982. Dynamic Memory: A Theory of Reminding and Learning in
Computers and People. Cambridge University Press.

Schank, R., 1975. Conceptual Information Processing. American Elsevier,
New York.

Schank, R. and Abelson, R., 1977. Scripts, Plans, Goals, and Understanding.
Lawrence Erlbaum, Hillsdale, NJ.

Small, S., 1980. Word Expert Parsing: A Theory of Distributed Word-Based
Natural Language Understanding. Department of Computer Science, Uni-
versity of Maryland, TR-954. Dissertation.

Tulving, E., 1972. Episodic and Semantic Memory. In Organization of
Memory. Tulving and Donaldson, ed. Academic Press, New York.

Waltz, D. and Pollack, J., 1985. Massively Parallel Parsing: A Strongly Inter-
active Model of Natural Language Interpretation. Cognitive Science 9(1).
Wilensky, R., 1986. Knowledge Representation—A Critique, A Proposal. In
Experience, Memory, and Reasoning. Kolodner, J. and Riesbeck, C., ed. La-

wrence Erlbaum Assoc.

Wilensky, R., 1978. Understanding Goal-Based Stories. Department of Com-
puter Science, Yale University Research Report #140. Dissertation.

Chapter 3 Natural Language Understanding 131

Wilensky, R., Arens, Y., and Chin, D., 1984. Talking to UNIX in English: An
Overview of UC. Communications of the Association for Computing
Machinery.

Winograd T., 1987. Natural Language: The Continuing Challenge. Al Expert
2(5):7-8.

Winograd T., 1972. Understanding Natural Language. Academic Press, New
York.

Winograd T., and Flores, F., 1986. Understanding Computers and Cognition.
Ablex Publishing Corp., Norwood, NJ.

Zemik, U., 1987. Strategies in Language Acquisition: Learning Phrases from
Examples in Context. UCLA-AI-87-1. Dissertation.

Chapter

4

Natural-Language Interfaces

C. Raymond Perrault and Barbara J. Grosz
SRI International

and Center for the Study of Language and Information

Menlo Park, California

Ann. Rev. Compus. Sci. 1986. 1:47-82
Copyright © 1986 by Annual Reviews Inc. All rights reserved

1 Introduction

Since the early 1960s when support decreased for machine translation, much of
the research on natural-language processing (NLP) in North America has been
motivated by its potential use for communicating with software systems.1 Nat-
ural-language systems have been developed to extract information from
databases, to control (simulated) robots [Winograd, 1972}, to interact with
graphic systems [Brachman et al., 1979], to specify simulation problems
[Heidorn, 1976], and to communicate with systems embodying expertise in
some task or problem area [Bobrow, 1977; A. Robinson, 1981].

In this article we focus on interfaces to database management systems
(DBMS).2 We use the term natural-language interface (or NLI) to refer to such
interfaces, unless otherwise specified. In addition to being among the earliest
interface systems developed, interfaces to databases account for most of the
NLIs implemented to date and they are the subject of a substantial literature.
Although some work has been done on the use of natural language to update

1 Notable exceptions include the story-understanding programs of Schank and his colleagues
{Chamiak, 1973; Schank, 1975].

2 We do not discuss commercial systems even though they are becoming increasingly available
[Bates and Bobrow, 1983; Johnson, 1985]; the first was ROBOT/INTELLECT (Harris, 1977].

133

134 Perrauit and Grosz

databases [Davidson and Kaplan, 1983] and on generating appropriate re-
sponses, most of the work on NLIs has been concerned with interpreting quer-
ies, and we will restrict ourselves to this problem area.

Besides discussing the main system architectures used in NLIs, we also
sketch the body of techniques developed for them. In doing so, we distinguish
between the task of an interface (the various functions of the underlying soft-
ware system, such as answering questions, updating a database, or moving a
robot) and its domain (the set of objects, properties, and relations denoted by
the utterances it must interpret—e.g., employees and managers).

Natural language (NL) is but one of the methods available for human-ma-
chine interaction, but the reasons for its attractiveness are obvious:

« It provides an immediate vocabulary for talking about the contents of the
database.

« It provides a means of accessing information in the database independently
of its structure and encodings.

» It shields the user from the formal access language of the underlying sys-
tem.

» It is available with a minimum of training to both novice and occasional
user.

Although form-filling and menu-based techniques [Tennant et al., 1983]
are appropriate to simple software systems whose structure is easily learned
(and whose only user may be its designer), we conjecture that NL becomes
more desirable as the following become true:

+ The organization of the underlying information and procedures becomes
more complex, so that the information necessary to process one query may
be distributed widely throughout the system.

» The encoding of the information becomes more remote from everyday
concepts, perhaps for the sake of retrieval efficiency.

« The problems the user wishes to solve become so complex that even writ-
ing a correct program in a formal query language may be difficult.

For example, the English query, “Who owns the fastest submarine,” trans-
lates into over 20 lines of code [Hendrix et al., 1978] in the query language
DATALANGUAGE. Even when compared to the more abstract relational query
languages, NL is more concise. For instance, Warren and Pereira [1982] pro-
vide the following QUEL [Stonebraker et al., 1976] equivalent for the query
“How many countries are there in each continent?”

Chapter 4 Natural-Language Interfaces 135

range of C is countries

range of Cont is continents
range of I is inclusions
retrieve (Cont.name, count (C.name

where C.name = I.inside and I.outside = Cont.name))

As indeed they must, NLIs allow the same information to be requested in
a variety of ways. For example, the following queries might all be used to ask
a database to determine which manufacturers were known to have shipped
equipment to Mexico:

Who sent equipment to Mexico?

Who sent Mexico equipment?

Mexico received equipment from which manufacturers?
Equipment was sent to Mexico by whom?

The function of an NLI is to translate utterances in NL to expressions of a
more immediately interpretable form, such as the formal query language (QL)
of a DBMS. In this regard the NLI is much like a programming-language (PL)
compiler although differing from it in some important respects. The syntax of a
PL is much simpler and the language is intentionally free of both syntactic and
semantic ambiguities. PLs and their compilers assume certain primitive data
types (e.g., numbers, strings). Although programs written in these PLs may be
about other types of objects (e.g., employees, salaries), the syntax, the seman-
tics, and the compiler of the PL are not sensitive to these types; the program-
mer must explicitly provide an ending for them into the data types provided by
the PL. NLIs, on the other hand, are inherently sensitive to the types of objects
in the domain. Thus, whereas with PLs the programmer must encode the ob-
jects in the datatypes of the PL, with NL the decoding burden is on the inter-
face designer.

To simplify the discussion, we assume throughout that the underlying DBs
are relational [Codd, 1970], and that the query language is relational calculus
[Codd, 1972]. The relation between other DB models and the relational model
is well understood [Ullman, 1982]; at worst they can be accommodated by
building translators to them from relational calculus.

In the following section, we introduce a small database as the basis for the
examples in this paper and we examine some of the more important problems
of interpretation that an NLI must be designed to handle. We discuss the main
sources of information available for the interpretation of utterances and outline
the general features of the architecture of three classes of NLIs. We then offer
a more detailed description of various NLI constituents, which shows how the

136 Perrault and Grosz

sources of information are used by different systems to solve the various prob-
lems of interpretation. We conclude with a brief review of current research is-
sues in NLP and their importance for more sophisticated interfaces to software
systems.

2 An Overview of the Problems

The flexibility and succinctness of NL for querying DBs are achieved at the
cost of problems in determining the interpretation of a query.

Several of these problems, which we illustrate briefly here, have received
interesting general treatments within the context of NLIs. For purposes of il-
lustration, we consider a simple database containing information about em-
ployees and divisions in an organization. The information about an employee
includes name, salary, division, and whether or not the employee was exempt
from overtime pay. The information concemning a division includes its
manager, its revenue, and its product.

The syntactic structure of a sentence is often ambiguous. For example, in
the request, “Give me all the employees in a division making more than
$50,000,” it is unclear whether the modifying phrase “making more than
$50,000” is meant to apply to employees or divisions. This may be termed the
modifier attachment problem. In some cases, however, certain possibilities can
be filtered out on semantic grounds. For example, while in general, “making
shoes” in the query “Give me all the employees in a division making shoes”
could modify either “employees” or “division,” in a domain constrained by the
information in our sample database, only divisions make shoes, not employees;
thus the query in this specific case is unambiguous.

NL sentences with determiners—words such as “the,” *“each,” and
“what”—can have several readings, unlike the well-formed formulas of quan-
tified logic. For example the query “What employee earns more than every di-
vision manager?” might be either a request to name the one employee whose
salary exceeds that of any division manager or a request to name for each
manager some employee who earns more than that manager. The relative scop-
ing of the quantifiers corresponding to the different determiners depends on a
number of factors, including the form of the utterance, the particular deter-
miner, and the context of use. Various solutions to this problem, which is re-
ferred to as the quantifier scoping problem, are presented below.

The nominal compound problem is illustrated by the phrase “sales divi-
sion” in the query “Who manages the sales division?” Such noun-noun combi-

3 Succinctness is certainly not a characteristic of all uses of NLP; for example, it is not a property
of NL when used for the direct specification of low-level programs.

Chapter 4 Natural-Language Interfaces 137

nations occur frequently in natural language. The syntax itself gives no clue as
to the relationship between “sales” and “division.” This kind of construction
can be used to express arbitrary relationships (as illustrated by combinations
like “wine glass,” “oil pump,” and “pump 0il”) and can be extended to longer
concatenations of nouns “national park ranger station equipment procurement
form”). The syntax does not even determine the direction of the modifier rela-
tionship (editors’ attempts to encourage helpful hyphenation notwithstanding).
For example, “Stanford Research Institute” formerly referred to a research in-
stitute associated with Stanford University, whereas “Computer Research Insti-
tute” would likely refer to an institute organized to conduct computer research.
This problem is one of several related to modification discussed below.

The interpretation of a query may depend, in a number of different ways,
on previous queries and their interpretations. Of these forms of dependency, el-
liptical utterances and certain uses of pronouns are prevalent in database query-
ing.

Elliptical queries often arise because users are interested in obtaining simi-
lar information about different objects. After making a full request, they may
ask for additional information with a single word or phrase. For example,
Query 1, below, can be followed by either of the elliptical queries, 2a or 2b,
which should then be interpreted as 3a or 3b, respectively.

1. Who is the manager of the automobile division?
2a. of aircraft?

2b. the secretary?

3a. Who is the manager of the aircraft division?

3b. Who is the secretary of the automobile division?

In these two examples, the “expanded” query is like the original one with
but a single word (a different word in each case) replaced. The kind of expan-
-sion required may be much more complex, however. For example, a simple
constituent may have to be replaced with a more complex one, as in Queries 4
and 5 below; or different parts of the original query may require replacement
as in Queries 6 and 7.

4. What is Benson’s salary?
5a. the sales division manager’s?
5b. the highest revenue division’s manager’s?
What is the salary and title of the highest paid nonexempt employee?
7. Division of the lowest paid?

138 Perrauit and Grosz

Note that Query 7 might be interpreted as either:

8a. What is the salary and division of the lowest paid nonexempt employee?
8b. What is the division of the lowest paid nonexempt employee?
Pronouns and other referring expressions provide one means of referring

repeatedly to the same entities. For example, “they” in Query 9b must be re-
solved to refer to employees who earn more than the sales division manager.

9a. Can you tell me which employees earn more than the sales division
manager?

9b. How much do they earn?

3 Constraints on Interpretation

In computational linguistics, as well as linguistics more generally, there is sub-
stantial disagreement (and no small amount of confusion) as to what interpreta-
tion actually is. Agreement has yet to be reached on answers to two fundamen-
tal questions:

+ What receives interpretation? The alternatives include sentences, sentences
in context, sequences of sentences, and dialogues.

e What is its object? Here alternatives include truth-values (especially for
declarative sentences), answers (for questions), procedures for giving an-
swers, or even the mental state the speaker must be in to make his utter-
ance.

Within the restricted realm of interfaces to DBs, it is generally taken to be
sentences and, occasionally, sequences of sentences that receive interpretations.
The interpretation given to a query is taken to be a complex predicate; this
predicate is satisfied by all the tuples of objects that are answers to the ques-
tion. To allow for the possibility of ambiguity, we will take interpretation to be
a relation between sentences and these complex predicates. For the interpreta-
tion relation to be specified, the following must be provided:

e A number of information sources,4 each consisting of a class of objects
and constraints on those objects. Thus, the syntactic information source

4 These are often called knowledge sources, but we prefer to reserve the term knowledge for
other uses, as it suggests that the information is true; this is a connotation we wish to avoid.

Chapter 4 Natural-Language Interfaces 139

might have words, phrases, and features as objects, and syntactic rules as
constraints.

» Constraints that hold across information sources—expressing, for example,
the relation between parse trees and their associated senses, or between
sets of words (from the morphology) and sentences (from the syntax).

The NLI designer must also decide how the various objects and constraints
will be represented, and how interpretations or, more accurately, their repre-
sentations will be computed. One confusion that abounds in much of the com-
putational-linguistics literature is the identification of interpretations with repre-
sentations (i.e., interpretations are taken to be representations).

Although it is desirable for the overall theoretical account to be as modular
as possible, computational efficiency may (and often does) suggest architec-
tures where the various sources of information interact significantly. The kinds
of information that are considered depend upon the kinds of tasks being per-
formed by the NLI and the linguistic proficiency that is being sought. The
standard information sources include morphology, syntax, the lexicon, illocu-
tionary and discourse information, and encyclopedic information about the
domain.

The objects of morphology are words, their roots, inflections, and deriva-
tions. Inflections in English include markers for number (to distinguish the sin-
gular “employee” from the plural “employees™), gender (to distinguish the
masculine “him” from the feminine “her”), and case (to distinguish the nomi-
native “who” from the accusative “whom”). Derivational morphology accounts
for relationships among words of different syntactic classes, such as “inflate,”
“inflation,” “inflationary,” and “disinflate.” Many NLIs include some treatment
of inflectional morphology to minimize the size of the lexicon. Winograd
[1983] provides a simple procedure. A more sophisticated computational treat-
ment based on finite-state transducers is presented by Koskenniemi [1983].

The objects of syntax are words, phrases, and features. Of particular con-
cern are phrase types (to distinguish noun phrases, prepositional phrases, and
verb phrases), constraints on phrase structure (for example, that a prepositional
phrase such as “in the auto division” consists of the preposition “in” and the
noun phrase “the auto division™), and various phenomena collectively labelled
as long-distance dependencies. These include constraints on complements (such
as that John is the person doing the pleasing in “John is eager to please” but is
the one who is pleased in “John is easy to please™). We include a brief review
of various syntactic issues below; Winograd [1983] provides an excellent
detailed treatment.

The illocutionary source is concerned with the actions (e.g., assertions,
questions, requests) that can be performed using language, and with the indica-
tors of those actions. In written language, the principal indicator is sentence

140 Perrault and Grosz

mood—whether a sentence is indicative, interrogative or imperative. In spoken
language, intonation is also important.

The discourse source specifies how the context established by sequences
of utterances interacts with interpretation. It includes constraints on the struc-
ture of the sequence that are provided by linguistic expressions, as well as con-
straints on the interpretation of particular phrases that derive from the form and
content of previous utterances.

The c:ncyclopedia5 contains constraints derived from the “real world”; it
specifies its objects, relations, the structure of events, and the content of mental
states. Of particular importance to NLIs is the domain model, that part of the
encyclopedia describing the domain of the DB. The encyclopedia also encodes
(a) restrictions on what word senses can modify or be modified by what others
(e.g., that the adjective “solvent” can apply when “bank™ denotes a financial in-
stitution but not when it denotes the side of a water course), and (b) sortal re-
strictions indicating that in “John paid Mary” the syntactic object “Mary” is the
recipient of the payment, while in “John paid 5 dollars” the syntactic object “5
dollars” is the amount of the payment.

NLIs, unlike general linguistic theories, also need information about the
software system to which they are interfaced. We simply call this database in-
formation.

Constraints are also necessary to relate information across information
sources. The first set of these is the lexicon, which specifies relations between
words and their senses (e.g., that the word “bank”™ has at least the two senses
mentioned above). Also important are those constraints stating how to derive
the interpretations of various syntactic constructions from those of their constit-
uents. In some cases, these constraints relate parse (sub)trees with interpreta-
tions, while in others syntactic and semantic rules are linked.

Solutions to the interpretation problems mentioned in the previous section
must typically make use of several information sources. The referent of a pro-
noun, for example, is constrained by syntactic, lexical, encyclopedic, and dis-
course information.

We have so far avoided the term semantics. In accordance with common
practice in the field, we will use semantics in three ways, generally leaving it
to the context to distinguish uses. By the model-theoretic semantics of an utter-
ance we mean its interpretation, subject to the constraints of the information
sources. We also refer loosely to the lexicon, encyclopedia, and illocutionary
sources as semantic sources, or simply semantics. Finally, the process of find-
ing a representation for what we call here the interpretation of an utterance is
generally called semantic interpretation.

5 This is often called real-world or commonsense knowledge.

Chapter 4 Natural-Language Interfaces 141

Most of the current attempts to develop a model-theoretic semantics for
NL, roughly parallel to that given to artificial languages, are inspired by the
work of Montague [1973]. Although Montague’s interpretations could at least
in principle be assigned directly to sentences, his formulation did make use of
an unambiguous intermediate formal language—the language of intensional
logic. In the computational framework such intermediate languages, or logical
forms, are common. Moore [1981] examines various problematic NL construc-
tions (e.g., adverbs, tense, quantification, and questions) and suggests ways of
encoding them in a higher-order predicate calculus with intensional operators.
Encoding of information in semantic sources lies at the very heart of artificial
intelligence (AI) research. The articles in Hobbs and Moore [1985] discuss a
number of such encoding problems, from the perspective of first-order logic
and its extensions.

The use of logical languages for representation and of formal deduction as
the means to draw inferences, as well as the desirability of a model-theoretic
semantics for NL (and for the representations constructed in the process of in-
terpreting utterances), are still controversial. Most studies in NL processing
until the late 1970s, and many current efforts as well, stress the computational
aspects of determining an interpretation rather than semantic issues {Schank,
1975; Wilks, 1975; Hirst, 1983; Palmer, 1983]. Much of this research empha-
sizes the role of implicatures based on stereotypical and salient information.

4 System Architectures

The various architectures in NLI systems reflect different choices of what in-
formation is to be applied (and thus what interpretation problems to attempt)
and in what manner. After sketching the three main architectures, we discuss
their differences and how these affect the range of natural language they can
handle.

All systems must build at least one internal representation of a query, that
is, an expression in QL. Some systems add an explicit, purely syntactic repre-
sentation: One of the earliest and best known of these is Woods’s LUNAR
[Woods et al., 1972], described briefly in the following section. Semantic
grammar systems, further discussed in the next section, also produce only a
single intermediate representation, which in this case encodes constraints from
several information sources. Finally, many systems produce a separate repre-
sentation of the meaning of the query in terms of the concepts of the domain of
the DB, independently of the DB structure.

We use the term intermediate representation language (or IRL) to refer in
general to the languages in which these representations are expressed; the par-
ticular names of IRLs in individual systems (that is, meaning representation

142 Perrault and Grosz

language, logical form) are used only when discussing the particular properties
of those systems.

4.1 LUNAR

The LUNAR system [Woods et al., 1972], based on earlier work by Woods
[1967], pioneered many of the techniques that still underlie most NLIs. De-
signed as an interface to a two-file database containing information about
chemical analyses of the Apollo-11 moon rocks and references to the literature
on those analyses, LUNAR has three components: a parser, a semantic inter-
pretation routine, and a query interpreter. The parser uses an augmented transi-
tion network grammar (discussed in more detail in the section on syntax) to
produce parse trees in the form suggested by Chomsky [1965]. The grammar is
a domain-independent grammar of English, which, through subsequent
development as part of several systems, has become one of the most extensive
computer-based English grammars ever constructed.

Semantic interpretation rules are used to map parse trees to QL expres-
sions. Generally triggered by the head of a constituent (verbs for sentences,
nouns for noun phrases), the rules obtain interpretations of the dependent and
modifying constituents; they then combine these into the interpretation of the
whole. Thus, there will be a set of semantic interpretation rules for each noun
and verb in the sublanguage covered by the NLIL.

WHICHQ ROCKS QREL NP AUX /VP\
DET N Vv /N]f\
WHR ROCKS CONTAIN AND NP NP

CHROMITE ULVOSPINEL

(FOR EVERY X7 (SEQ VOLCANICS)
(AND (CONTAIN X7 (NPR* X9 'SPINEL))
(CONTAIN X7 (NPR* X10 'CHROMITE)));
(PRINTOUT X7))

Figure 1 Parse tree and QL query from LUNAR.

6 The optimization of the generated queries is not discussed in this paper. Whether or not IRLs
are used does not affect the question of whether, but only of when and in what manner optimiza-
tion can be done.

Chapter 4 Natural-Language Interfaces 143

The target of the semantic interpretation is an expression in a model first-
order quantified language; this expression can be evaluated directly against the
database to return a set of records. The vocabulary of the QL includes all the
relations encoded directly in the DB, plus a number of derived relations. The
only constraint on derived relations is that it should be possible to associate
with each of them its own retrieval function, expressed in terms of the basic re-
lations of the DB.

Figure 1 shows both the parse tree and the resulting QL query produced by
LUNAR for the sentence “Which rocks contain chromite and ulvospinel?”
LUNAR’s parses are not surface structures, so in this query, the question-deter-
miner noun phrase “which rocks” is taken to be the logical subject of the sen-
tence and the analysis is analogous to that of “which rocks such that they con-
tain chromite and ulvospinel exist?” The QL query includes two database-
query specific constructs: SEQ, a general-purpose enumeration function that
assumes its argument is a (precomputed) list, and PRINTOUT.

After LUNAR, architectures of natural language processors (NLPs) diverged
in two directions: Systems were constructed in which either (a) syntactic, lexi-
cal, encyclopedic, and database information was encoded in one set of rules, or
(b) the different information sources were kept quite separate. We examine
each of these in turn.

4.2 Semantic-Grammar-Based Systems

The principal characteristic of a semantic grammar [Burton and Brown, 1979]
is that it intentionally collapses distinctions among information sources. NLIs
that incorporate semantic grammars vary somewhat in the details, but all class-
ify words and phrases under a combination of syntactic, lexical, illocutionary,
and database information. Exemplars of different approaches are PLANES
[Waltz, 1978], LADDER [Hendrix et al., 1978], and REL [Thompson and Thom-
pson, 1975]. The grammar rules incorporate categories that are oriented around
a particular domain and task.’

For example, a semantic grammar for the domain of university life might
contain the categories student, instructor, and course times; one for the domain
of ships could include ships, officers, and ship locations. In contrast, typical
categories of syntactic grammars are sentence and noun phrase. A semantic
grammar for the task of database querying would have a category to cover the
presentation of answers; this category might include various interrogatives
{e.g., “what is™) as well as certain imperatives (e.g., “show me”). In contrast, a
semantic grammar for an experimental setting might include a category that

7 As there is nothing especially semantic about these grammars, the term aggregate grammar
might be less confusing. ’

144 Perrault and Grosz

covered references to hypothetical situations (e.g., “if . . .,” “what if . .)V
“suppose that . . .”). Associated with each “syntactic” rule in the semantic
grammar is a rule for combining the results of the interpretations of the sub-
constituents into an interpretation of the constituent being analyzed.

As an example, we can consider a simple semantic grammar for handling
queries about our sample database. To handle the query “Who manages the au-
tomobile division?” the grammar would include rules like the following:8

Grammar Fragment

<SENTENCE> — <PRESENT> <ATTRIBUTE> <DIVISION>
(db(subst(genvar ‘** ‘DIVISION ATTRIBUTE’)))

<PRESENT> — who (is) / what (are) / show (me)
<ATTRIBUTE> —» <ATTRNAME>

‘return ATTRNAME.*’

<DIVISION> — the <DIVNAME> division

‘for each * in DIV file with DIV-NAME *= ‘DIVNAME’ ’

Lexicon Fragment

manages: <ATTRNAME>
‘manages’

automobile: <DIVNAME>
‘auto’

Figure 2 shows the “syntactic analysis” and the interpretation for the above
query. Each node of the tree is associated with an interpretation for the subtree
below it; for example, the node labelled <ATTRNAME> would (from the lexi-
cal information) get the interpretation ‘division,’” and the node <ATTRIBUTE>
would (from the third rule) get the interpretation ‘RETURN MANAGER.X".

Unlike the nodes in the parse tree produced by LUNAR, the nodes in this
parse tree are not labelled with general syntactic categories. However, as in
LUNAR (and to an even greater extent in some cases), the interpretation here as-
signed to a query is essentially a piece of code that states how to retrieve the
answer to the query.

8 The grammar rules and lexical categories are in roman type, the associated interpretation is in
italics.

Chapter 4 Natural-Language Interfaces 145

As is evident from this example, a semantic grammar is both domain-and
task-dependent; a different grammar must be constructed for each application.
The LIFER system [Hendrix, 1977}, on which LADDER was built, supplies a set
of tools for building semantic-grammar-based NLIs. Although LIFER provides
general capabilities for handling ellipsis and paraphrase (the first is done by the
parser and hence works for all LIFER-defined grammars; paraphrases are
handled by automatically modifying the language definition), it too requires a
new grammar for each different application domain and task.

4.3 IRL Systems

IRL systems (CHAT-80 [Warren and Pereira, 1982], IRUS {Bates and Bobrow,
1983], PHLIQA!1 [Scha, 1976; Landsbergen, 1976], TEAM [Grosz et al., 1986;
Ginsparg, 1983]) construct at least three separate representations of a query: a
parse tree, an IRL formula, and a QL query.9 Each system separates the rules
stating syntactic constraints from those that specify lexical, semantic, ency-
clopedic, and discourse constraints. Typically the objects, predicates, and rela-
tions of the encyclopedia furnish the IRL’s basic vocabulary, and the repre-
sentations used for encyclopedic constraints are quite close to those used for
the QL. Encyclopedic constraints include at least taxonomic information (types
and subtypes) and constraints on the arguments of predicates and relations.

<SENTENCE >
<PRESENT > <ATTRIBUTE > <DIVISION >
<ATTRNAME > <DIVNAME >
WHO MANAGES THE AUTOMOBILE DIVISION

DB (FOR EACH X IN DIV FILE WITH DIV-NAME X = 'AUTO
RETURN MANAGER.X)

Figure 2 Parse tree and QL query from a semantic grammar.

9 From this perspective, the PLANES system is a hybrid; it uses a semantic grammar but actually
builds an intermediate representation of the “meaning” of the query from which it constructs the
QL query. Because its IRL, like its grammar, is designed specifically for the task it undertakes
(i.e., it comprises a collection of special-purpose “frames”), we have included it with the other
semantic-grammar systems.

146 Perrault and Grosz

The differences between the IRL and other architectures can be clarified
by an example. For the query “Which countries contain a volcano and a non-
volcanic peak?” an IRL system10 would produce a parse tree like the one in
Figure 3 by using such grammar rules as the following:

SWHQ — WHNP PREDICATE
VP — VPT NP

NP — DETP NOMHEAD

NP — NPSERIES CONJ NP

The parse, like LUNAR’s, is based on a general grammar of English.
(However, it is a surface-structure, not a deep-structure, analysis, reflecting a
change in underlying syntactic theory.) For example, the conjunction “a vol-
cano and a nonvolcanic peak” is treated as a conjunction of noun phrases, as
was the conjunction “chromite and ulvospinel” in the LUNAR example.”> -
<DIVISION> and <DIVISION>.

The IRL representation of the interpretation of the query [in this case logi-
cal form) is shown in Figure 4 along with the QL [in this case an expression in
SODA [Moore, 1979]. The IRL representation is a complex predicate composed
of general predicates in the domain; it makes no reference to the actual
database structures or any retrieval process. Only the QL representation reflects
the database and the querying task. Although there are fragments of the LUNAR
QL that resemble the logical form (e.g., the representation of the meaning of
the conjoined NPs), the overall representations are different in kind.

4.4 Comparing Architectures

The different architectures provide for different ways of handling various inter-
pretation problems. We leave until the next section discussion of the particular
ways they do so. There are five major overall differences among the architec-
tures.

First, the information sources that contribute to the interpretation of a
query by the system are different. Many systems, for example, make little (or
only ad hoc) use of morphological, illocutionary, or discourse constraints. In
one way or another, however, they all utilize syntactic, lexical, and database
constraints.

10 We will use an example produced by the TEAM system; the actual structures produced by
other IRL systems would, of course, differ in detail.

11 In semantic-grammar-based systems, conjunction, if treated at all, is specialized for aggregate
categories containing rules such as <DIVISION

Chapter 4 Natural-Language Interfaces 147

SWHQ
PREDICATE
VP
/>"\
vPT NPSERIES NP
WHNP NP CONJ NOMHD
NOMHD NOMHD PRENOMP
NOUN DETP NOUN DETP ADIP N0|UN
WHDET N Vv N AD) N
| | | |

WHICH -S COUNTRY CONTAIN A VOLCANO AND A NONVOLCANIC PEAK

Figure 3 Parse tree from IRL system.

Second, there are different ways of combining the information sources into
sets of rules. The semantic-grammar systems combine all sources into one set
of rules. LUNAR distinguishes syntactic rules from the rest. IRL systems also
separate database information and provide general constraints for mapping be-
tween syntactic constructions and their interpretations.

Third, the application of separate sets of rules may be sequential or inter-
leaved. Although most systems apply the rules sequentially, IRUS uses the
capabilities of the RUS parser [Bobrow and Webber, 1980] to interleave syntac-
tic and semantic constraints; the interleaving is accomplished with cascaded
ATNS [Woods, 1980]. Interleaving is done in Colmerauer’s Prolog-based sys-
tem [Colmerauer, 1979] and was also used in several speech-understanding
systems [Lesser et al., 1975; Walker, 1978].

Fourth, the range of queries the systems can process at different stages is
different. In semantic-grammar-based systems, any query that can be parsed
can be translated into QL. In contrast, LUNAR and IRL systems can syntacti-
cally analyze some sentences for which they cannot construct a semantic inter-
pretation. The range of concepts covered also differs. In semantic-grammar-
based systems, only those queries that can be translated in QL can be inter-
preted at all. In contrast, in IRL systems, the concepts (i.e., objects, properties,
relations) in the domain model provide the basic vocabulary for the IRL. A

148 Perrault and Grosz

mapping from these concepts to DB structures provides the basis for translating
IRL expressions (which are in terms of the concepts of the domain model) into
QL expressions. With this sort of approach it is possible to supply interpreta-
tions of queries for which there is no QL representation (e.g., because the DB
covers the domain only partially).

The IRL systems all take this type of approach; the actual coverage they
offer, however, depends on how their domain models are defined. For example,
the PHLIQA1, IRUS, and CHAT-80 domain models are provided completely inde-
pendently of the DB (they are essentially “hand-built” by the system design-
ers); it is therefore quite possible for them to construct IRL representations of
queries for which there is no QL representation. In contrast, the TEAM system,
which automates the process of adapting an NLI to a new domain and DB,
constructs its domain model mechanically from information supplied about the
DB; this restricts the concepts to those that can be generated from the DB con-
cepts through relational calculus.

Finally, the architectures differ with respect to how easy it is to adapt an
interface to a new domain or DB. As remarked previously, a semantic-gram-
mar-based system requires extensive revision to be adapted to a new domain or
task. Because all constraints are encoded in the grammar, the grammar itself
must be rewritten or at least extensively revised. In contrast, adapting an IRL
system to a new database requires little, if any, change in the syntax rules. In
some systems (IRUS, Ginsparg’s, PHLIQA1), modification of the semantic rules
is required. In others (TEAM, CHAT-80), the semantic rules do not change; only
the domain model and lexicon do.

(QUERY (WH COUNTRY1
(COUNTRY COUNTRY1)
(SOME PEAK-VOL3
(PEAK-VOL PEAK-VOL3)
(SOME PEAK4
(AND (PEAK PEAK4)
(NONVOLCANIC PEAKA))
(AND (CONTAIN COUNTRY 1 PEAK-VOL3)
(CONTAIN COUNTRY 1 PEAKA)))

((IN #:31 PEAK)

((#:$1 PEAK-VOL)EQY)

(IN #:$2 PEAK)
((#:32 PEAK-COUNTRY)} EQ #:$1 PEAK-COUNTRY))
((#:$2 PEAK-VOL)EQN)
(2 { #:$1 PEAK-NAME))
(? (#:32 PEAK-NAME))
(? (#:31 PEAK-COUNTRY)))

Figure 4 IRL and QL representations from IRL system.

Chapter 4 Natural-Language interfaces 149

5 Methods

A number of techniques have been developed for encoding and applying the
information sources needed to determine the interpretation of a query. In this
section, we examine various methods used to handle the interpretation prob-
lems discussed earlier. We have chosen to focus on techniques sufficiently
general for a wide range of natural-language-processing applications. As a re-
sult, certain problem areas are covered in more detail than others. This unequal
treatment reflects, in part, a difference in the state of the art in the various
areas of NLP. The usefulness of any specific method depends to some degree
on a system’s architecture; where it is relevant and not obvious, we will remark
on the applicability of a method to different architectures.

5.1 Syntactic Models

With very few exceptions, phrase-structure grammars have provided the basis
for the syntactic components of NLIs. Most of these grammars, in fact, are
context-free (CF), with the possible addition of extra conditions on the sub-
constituents. The languages generated even by the extended grammars are, al-
most certainly, CF. In fact, the only solid arguments contending that NLs are
not weakly CF are quite recent ([Shieber, 1985] for Swiss—German and [Culy,
1985] for Banbara). Both involve constructions not treated by grammars in ex-
isting NLIs. As with programming languages, non-CF grammars may be used
to make the description of CF languages easier, especially when some con-
straints (subject-verb agreement, subject and object control) must be applied to
nonadjacent nodes in the parse tree. Perrault [1984] surveys the known formal
properties of some of the more common syntactic formalisms. Slocum [1981]
compares the performance (on several hundred sentences) of various parsing
strategies.

The first substantial extension of CF grammars widely used in NLP was
the augmented transition network grammar (ATNG) of Woods [1970]. The
ATNG is a two-step generalization of the Finite-State Automation (FSA) [Hop-
croft and Ullman, 1979]. The FSA has a finite set of states; transitions among
them are allowed when certain symbols appear in the input. One of the states is
distinguished as the start state, one or more as final states. The input string is
accepted if it leads to a sequence of acceptable transitions from the start state
to a final state. The languages recognized by FSAs are the finite-state, or Type
3 languages. Recursive transition networks (RTNs) generalize FSAs by allow-
ing a transition between two states to be taken via a recursive jump to a start
state. RTNs recognize exactly the class of CF languages. Finally, the ATNG
adds to the RTN a finite set of registers and actions that can set registers to
words observed in the input, their corresponding lexical entries, or to some

150 Perrault and Grosz

function of the contents of other registers; a recursive call to the network can
pass values back to its calling level, which can in turn assign that value to a
register. Transitions can be made conditional on register contents. ATNGs
generate all recursively enumerable sets.

Because grammars for all but the smallest subsets of NLs are ambiguous,
the LR(k) techniques often used for parsing PLs are generally not applicable to
NLs. In their place, a number of parsing algorithms have been developed.

ATNGs are naturally implemented in recursive top-down parsers; in fact,
in the early literature on the subject, grammars and parsers were hardly distin-
guishable from one another. The register assignment mechanism makes it diffi-
cult to conceive of using the grammar in other than a top-down left-to-right
parsing scheme.

Much effort was devoted to efficient implementation of top-down ATN
parsers. In the early implementations, the grammar and the lexicon were en-
coded as LISP data structures and interpreted by the parser. Burton and Woods
[1976] then showed how to compile the parser and the grammar into a large
LISP program and then, through the LISP compiler, into machine language.
Compilation improved parsing performance by an order of magnitude.

However, pure top-down parsers suffer from some well-known problems.
First, they cannot handle left-recursive constructions (as in “John’s father’s
brother’s book™), and second, their backtracking regimes may be very ineffi-
cient. The left-recursion problem can be solved by converting the grammar to a
weakly-equivalent right-recursive one, but at the cost of complicating the
process of deriving the interpretation.

The backtracking problem has been addressed in two quite different ways.
The first has been through extensions of bottom-up [Younger, 1967 and Earley,
1970] parsing strategies to non-CF grammars. These methods include use of
the well-formed substring table [Kuno and Oettinger, 1962; Wolf and Woods,
1980] and charts [Kay, 1980].

The second, and more radical, line is based on Marcus’s determinism hy-
pothesis. Marcus [1980] claims that English (and possibly other NLs) can be
parsed by a mechanism that operates “strictly deterministically,” in that:

« All syntactic structures created by the parser operating on an input string
are permanent and must be included in the output produced for that input.

« The internal state of the mechanism is constrained so that it cannot encode
temporary syntactic structures.

Marcus designed a parser satisfying these conditions (along with a small gram-
mar for it) that captures interesting generalizations related to such phenomena
as passives, imperatives, and yes/no questions. He also suggests a simple ex-

Chapter 4 Natural-Language Interfaces 151

planation for so-called garden path sentences, such as “The horse raced past
the barn fell” and “Have the students who failed the exam take the supplemen-
tal” (closely related to “Have the students who failed the exam taken the sup-
plemental?””). These sentences are perfectly grammatical, but their analysis by
humans seems to require conscious backtracking. The determinism hypothesis
is not without problems (for example, it depends essentially on an integration
of syntactic and semantic analysis that remains to be demonstrated convinc-
ingly; moreover, no large deterministic grammar has yet been written).
However, Marcus’s work has influenced the design of some ATN parsers that
now utilize look-ahead to reduce backtracking [Bobrow and Webber, 1980].
Recently Marcus et al., [1983] suggest representing syntactic analyses as logi-
cal formulas over the domain of syntactic nodes, in which the disjunction of
the possible attachments can be stated, or in which no attachments are stated at
all, save those that preserve the left-to-right order of constituents in the sen-
tence.

Another problem with ATNs was that the dependence of the grammar on
left-to-right processing made it very difficult to use the same grammar with
different control regimes. For example, if subject-verb agreement was to be
tested by having the parser assign to an ATN register the number of the subject
noun phrase, so that this register could then be tested upon encountering the
main verb, this procedure would fail if the parser encountered the verb before
the subject. In doing research on speech-understanding systems, Paxton [1978]
and Wolf and Woods [1980] investigated parsing “middle-out,” that is, starting
from the highly stressed parts of the sentence, and constructed parsers that
were not order-dependent. In a different vein, some workers on language
generation [Kay, 1979; Appelt, 1983] have argued that it is desirable to be able
to make decisions about syntactic constituents independently of the order in
which they are to appear in the utterance. It is not possible to do this, however,
with an order-dependent ATN.

Although the need for order independence is still controversial (see [Wolf
and Woods, 1980] for speech recognition and McDonald [1983] for language
generation), several proposals to achieve it have been made, relying on unifica-
tion of graphs as the main operation in parsing. One of the earliest proposals in
this direction was Kay’s functional-unification grammar (FUG) [Kay, 1985]. In
several of these formalisms, grammatical rules are represented as formulas in
first-order logic, or more accurately, in its Horn clause subset. In these logic
grammars (under various guises known as metamorphosis grammars [Colmer-
auer, 1978], definite-clause grammars [Pereira and Warren, 1980], extraposi-
tion grammars [Pereira, 1981], modular grammars [McCord, 1985], and
others), predicates are defined to be true of strings meeting certain conditions,
such as NPs. Nonlocal syntactic constraints and semantic constraints can be
imposed by allowing the predicates to take on extra arguments, enabling infor-
mation to be propagated across the analysis. Subject-verb agreement provides a

152 Perrault and Grosz

very simple example. Consider the following very simple grammar, expressed
as first-order sentences. According to the conventions of PROLOG, identifiers
starting with an upper-case letter are variables and all free variables are as-
sumed to be universally quantified. The indices I, J, and K take integer values
denoting positions between words in a sentence.

s (I, J,Number) ¢ np(I,K,Number) and vp(K+l,J,Number)
vp(I,K,Number) & v (I,K,Number)

np (I,K,Number) & occurs(I,I+1l,the) and n(I+1,K, Number)
n(I,I+1l,Number) ¢ occurs(I,I+l,X) and lex(X,n,Number)
v(I,I+1,Number) ¢ occurs(I,I+1,X) and lex(X,v,Number)

If the lexicon contains the assertions

lex(fish, n, singular)
lex(fish, n, plural)
lex (fish, v, singular)
lex(swim, v, plural)

lex(swims, v, singular)

then the sentence “the fish swims” can be recognized as generated by the
grammar by asserting

occurs (1,2 the) and occurs(2, 3, fish)

and occurs (3,4 swims)

and then proving that

(exists Number) s(1,4,Number).

The heart of logic grammars is their use of unification to test the compati-
bility of information and to propagate constraints. Although definite-clause
grammars, for example, provide all the necessary expressive power within Pro-
log, this power is achieved at the cost of a certain lack of perspicuity. As a re-
sult, the constraining predicates have as many arguments as there are “pieces
of information” that they control or that must be propagated through them.
These arguments are all specified positionally; in the example above, the first
two arguments denote the delimiting positions in the input string, while the
third denotes the number feature of the subject and verb. This can easily lead
to very long lists of arguments whose management is difficult.

Chapter 4 Natural-Language Interfaces 153

In the last few years, several more perspicuous unification-based syntactic
formalisms have been developed that derive their inspiration from both the lin-
guistic and computational traditions. From pure linguistics have come lexical-
functional grammar [Kaplan and Bresnan, 1982] and generalized phrase-struc-
ture grammar [Gazdar et al., 1985], which are full syntactic theories, including
formalisms for representing rules and derivations and general constraints on the
use of these formalisms. Coming from the computational perspective, the al-
ready mentioned FUG of Kay and PATR-II [Shieber, 1984] are formalisms only,
without theoretical commitment.'? The semantics of the formalisms has been
studied with the tools of denotational semantics [Scott, 1982] by Pereira and
Shieber [1984]. Kay has investigated the use of FUG for both generation and
recognition.

Writing the extensive grammars needed by useful NLIs is still a difficult
task that is normally performed only in research centers with substantial re-
sources. Some examples are the LUNAR grammar, revised through several pro-
jects at Bolt, Beranck and Newman and now part of the IRUS system [Bates
and Bobrow, 1983], the DIAGRAM grammar [J. Robinson, 1982], first
developed at SRI as part of the SRI Speech-Understanding Project [Walker,
1978] and now included in the TEAM system, and the grammar of the Linguis-
tic String Project [Sager, 1981].

Most “practical” grammar-writing exercises resuit in very liberal gram-
mars that will accept sentences native speakers would not consider grammati-
cal. There are three reasons for this. First, since grammars are devices that per-
mit (rather than proscribe) membership in a language, it is often easier to write
a small number of very general rules than a large number of specific ones. Sec-
ond, it may be easier to exclude uninterpretable sentences on nonsyntactic
grounds. Finally, one might want to allow certain nonstandard sentences (e.g.,
telegraphic speech) to be treated as if they were grammatical [Weischedel and
Sondheimer, 1983}, if there is reason to believe that users would want to ex-
press themselves that way. The main practical drawback in such a liberal posi-
tion is that, by proliferating parses, it becomes much more difficult to select
one that is semantically acceptable.

No discussion of syntactic models would be complete without mention of
the transformational grammars (TG) introduced by Chomsky [1965]. They
have provided the framework for much of the theoretical work on syntax since
the 1960s. A TG has two main constituents: a base grammar, usually a phrase-
structure grammar, and a set of transformations. The base grammar generates a
class of trees, to which the transformations are applied to rearrange, copy, and
delete constituents. The sentences of the language are the yield strings of the
trees that result from all possible applications of the transformations to all

12 This is also the case with ATNGs and definite-clause grammars.

154 Perrault and Grosz

possible base trees. The details of the number and power of the transformations
have changed considerably since their introduction in 1957, but, in some early
versions of the theory, a passive sentence and its corresponding active sentence
were transformationally related.

It therefore seemed plausible that one could build a parser that would take
a sentence, construct a surface structure, and apply to it the transformations in
reverse to obtain a base tree representing the interpretation of the sentence.
This technique was first tried in a system built at MITRE [Zwicky et al., 1965]
and then in the REQUEST and TQA systems built by Petrick, Plath, and Damerau
at IBM [Damerau, 1981; Petrick, 1973]. One of the problems with the ap-
proach is that the inverse transformations can be applied only to the surface
trees, even though the TG does not, in general, characterize those trees in any
computable manner. The aforementioned systems dealt with this problem by
handcrafting surface grammars. The TQA system is exceptional in that it is one
of the very few to have been put to substantial use by bona fide users while it
was undergoing development.

5.2 Semantic Interpretation

We turn now to semantic interpretation, the process of translating syntactic
analyses into IRL.!? The translation involves establishing three kinds of corre-
spondences:

+ Between the words of an NL and expressions in the IRL.

o Between various constituents of an NL phrase (e.g., head, subject, object,
modifier) and the constituents of the expressions to which they correspond
in the IRL (e.g., argument of a predicate, value of a field).

+ Between the scope of determiners and other operators of an NL expression
and the scope of the quantifiers to which they correspond in the IRL.

Vocabulary Correspondences The first issue in semantic interpretation is
the correspondence between words of the language and concepts in IRL. Some
common nouns in English (such as “man” in “John is a man”) correspond to
one-place predicates in IRL, others (such as “manager” in “John is the manager
of the sales department”) correspond to relations. Verbs correspond to predi-
cates (as in “John sleeps™) or to relations (as in “John manages the sales de-
partment”). Some adjectives (such as “exempt” in our fragment) can be inter-

13 Some systems, including those using semantic grammars and several built by Schank and his
colleagues [Schank, 1975; Lehnert and Shwarntz, 1983), never construct an explicit representation
of the syntactic analysis but go directly from NL to IRL.

Chapter 4 Natural-Language Interfaces 155

preted as one-place predicates, although this solution is generally inadequate:
Adjectives such as “tall” must be interpreted differently, so that “tall men” and
“tall babies” do not refer to things that are independently tall and men, or tall
and babies. “Former senators” and “alleged thieves™ are certainly not senators
and possibly not thieves. In systems in which the IRL is first-order logic, the
presence of these adjectives may affect the interpretation of the nouns they
modify; when this occurs, the lexical-assignment problem interacts with the
modifier-attachment problem. In LUNAR, for example, “analyses” and “modal
analyses” are translated by two unrelated predicates. Prepositions correspond in
some instances to relations (as in “What employees are in the sales depart-
ment?”), while in others they are markers of the case of arguments of other
predicates (as in “Did Bill go to Boston?”). Their interpretation varies accord-
ing to the situation of use; Herskovits [1986] provides an excellent discussion
of locative prepositions (e.g., “on,” “near,” “beside”) as well as a theoretical
framework for handling them.

Modification and Attachment There are various ways in which the mean-
ings of constituents of a phrase can combine to determine, at least to some ex-
tent, the meaning of the entire phrase. Two special kinds of problems arise in
computing these combinations:

» The surface form may not determine a unique association among the ele-
ments in a phrase; this happens, for example, with the attachment of prep-
ositional phrases.

» Even when the association of constituents is clear, it may not be obvious
exactly how the meanings combine; this may occur with combinations of
adjectives and nouns, or with two nouns.

Proposed solutions to the attachment problem fall into three classes:

* The syntactic component makes direct use of lexical and encyclopedic
constraints and produces only attachments that satisfy all of them simul-
taneously.

* The syntactic component produces structures corresponding to all possible
attachments, which are then filtered by other constraints.

* The syntactic component proposes one attachment only, representing all
the alternatives, and the semantic interpretation component is allowed to
move the attached phrase so as to satisfy the other constraints as well.

Semantic grammar systems adopt the first approach. Some logic grammar
systems [Colmerauer, 1979; Dahl, 1981] do likewise; these keep the syntactic
categories separate, but have a single set of rules that constructs syntactic and

156 Perrault and Grosz

IRL representations simultaneously. The second approach has the simplest or-
ganization and is used in many large systems such as LUNAR and TEAM. The
third is used by CHAT-80. The last two approaches use case frames [Bruce,
1975; Fillmore, 1977] to encode the relations between verbs, their syntactic
cases, restrictions on the types of the fillers of the cases, the target language
predicate, and the correspondence between the syntactic case fillers and the ar-
guments of the target predicate. Reviews in Woods [1978] and Pereira [1983]
contain excellent discussions of these topics.

The selection of IRL predicates to correspond to NL words has a consider-
able effect on the resolution of attachment problems. For example, the verb
“have” can be used to express a have-as-part relationship (“A car has an en-
gine”), an ownership relationship (“Susie has a Porsche”), and a have-as-prop-
erty relationship (“Jack has red hair), among others. This variety is also found
with prepositions (“John is in the sales department,” “John is in Europe”),
genitives (“Joe’s finger,” “Joe’s mother,” “Joe’s house,” “Joe’s friend”), and
nominal compounds (“American ship,” “American car,” “American cooking”).

Although different kinds of surface forms give rise to these semantic prob-
lems, their treatment is similar in two ways. First, the resolution of the inde-
finiteness requires a search for the most reasonable relationship that can hold
between two concepts. In the case of nominal compounds and genitives, these
are the immediate constituents of the phrase (“Joe” and “finger,” “American”
and “car”), whereas for verbs (“have” and “be”) and prepositions (e.g., “em-
ployees in sales”) the two concepts that are being related are structurally more
distant from each other. Second, the larger context of the discourse may make
possible interpretations that would not arise in isolation. For example, although
the phrase “Boston flights” would not ordinarily be taken to refer to flights that
are only passing through Boston, in the two-query sequence “Which flights
from London to St. Louis enter the U.S. through Boston or Philadelphia? What
times do the Boston flights leave?” the phrase receives precisely this interpreta-
tion.

Syntactic constraints determine which pairs of concepts need to be related
for all of these constructs except nominal compounds that include more than
two nouns, but they do not further constrain the particular relationship. Be-
cause the relationship that may hold between the two concepts may be arbi-
trarily complex, some proposals for handling noun-noun relations in general
[Hobbs, 1980] depend on sophisticated inferential capabilities and a complex
model of the domain. Several techniques have been developed for handling a
narrow range of such expressions under the assumption that users will not
create new constructions (e.g., using the phrase “toilet paper submarine” to
refer to a recently mentioned submarine that needs a resupply of toilet paper).
Isabelle [1984] surveys the nominal compound problem. Finin [1985] presents
a set of rules for handling those nominal compounds that can be resolved in
terms of case relationships or type hierarchies. The TEAM system includes a

Chapter 4 Natural-Language Interfaces 157

limited treatment for nominal compounds as well as several other related prob-
lems that uses relationships derived straightforwardly from the database struc-
ture.

Scoping The third set of interpretation questions involves determination of
the relative scope in the target language of quantifiers corresponding to such
NL determiners as “a,” “the,” “each,” and “most” as well as to such operators
as negation, tense, modals, and superlatives (“most,” “oldest”). Viewed syntac-
tically, the determiners occur in noun phrases, within the scope of verbs, but in
first-order representations the quantifiers must be given wider scope than the
predicates. Syntactically again, determiners can occur within one another’s
scope, as in “each manager of some division,” or in parallel, as in “each
manager manages some division.” Operators can occur at the noun-phrase
level, such as in superlatives and in the negation in “none,” or at the sentence
level, such as in tense, modals, and sentential negation.

Even within noun phrases there may be changes in relative scope between
the syntactic representation and the IRL: The interpretation of “Some employee
of each manager is exempt” is that, for each manger, some employee of that
manager is exempt. However, there are syntactic limits to how far up a quanti-
fier can migrate: For example, no quantifier can move out of a relative clause,
so that “Who is the manager who manages every employee?” cannot mean
“For each employee, who is his manager?”

Aside from such syntactic constraints, all other relative scopings of the
quantifiers are possible in certain circumstances, although some heuristics are
useful for ranking the plausibility of the interpretations. Two can be mentioned.
One simply gives preference to relative scopings, while preserving the left-to-
right order of the corresponding determiners in the sentence. Thus, “Every
manager manages some employee” would be read preferably as “For every
manager m there is some employee e such that m manages e.” Similarly, the
preferred interpretation of “Some employee is managed by every manager”
gives “some” wider scope than “every.” Another heuristic, suggested by Hin-
tikka [1974] and used by Hendrix [1978], associates with each determiner not
only a corresponding quantifier but also a “strength.” Interpretations in which
stronger quantifiers outscope weaker ones are preferred. Thus “each” is
stronger than “all,” “any,” and “some,” so that in “Some manager manages
each employee” there is a different manager for each employee, while in
“Some manager manages every employee,” either interpretation is possible,
since “some” and “every” have similar strengths.

Presuppositions also affect scope. For example, in “What is the salary of
all employees?” the determiner “all” probably should be given wider scope
than “the,” simply because it is unlikely that all employees would be receiving
the same salary; the latter interpretation would violate the presupposition that
the question has an answer. Although some computational work on presupposi-

158 Perrault and Grosz

tion has been done [Weischedel, 1979; S. J. Kaplan, 1982], it does not deal
with scoping.

Woods [1978] proposed a compositional method for semantic interpreta-
tion in which phrases are assigned interpretations consisting of two constitu-
ents: a quantifier and a matrix proposition. The composition rules for a constit-
uent combine the interpretations of the subconstituents by combining the
matrix elements, nesting the quantifiers among themselves, or wrapping them
around the matrices. This framework has been the basis for most scoping
schemes since then. It has also been arrived at independently by theoretical lin-
guists [Cooper, 1979]. Woods’s rules in LUNAR produce only one scoping,
which is obtained by pushing quantifiers up the parse tree past their weaker
counterparts until they reach a “hard” boundary, such as the top of a relative
clause or a conjunction. Arbitration between quantifiers of similar strength is
done on the basis of the left-to-right heuristic. A similar strategy is used in
CHAT-80. TEAM applies a generate-and-test algorithm, in which all scopings that
are not disallowed by syntactic constraints are produced; these are ranked by a
set of heuristics. This framework allows better use of the quantifier strength
heuristics.

In practice, the treatment of quantifier scoping in semantic-grammar sys-
tems is very limited; they could use LUNAR-style rules, but tend not to. Lacking
an intermediate representation, they have no way of applying more global
scoping strategies.

5.3 Discourse-Level Interpretation

Users of an NLI are typically interested in getting information from a database
to solve some problem. It is rare that a single piece of information is all that is
required; even when such is the case, the user may not be able to request it in a
single query. Although no NLI contains a sophisticated or general model of the
query dialogue, most incorporate some capabilities for handling a limited range
of these discourse-related expressions. Special attention has been paid to some
kinds of referring expressions (pronouns) as well as to certain constrained uses
of elliptical phrases. In this section, we describe the basic techniques used in
NLIs and provide a brief overview of the techniques currently being investi-
gated by researchers concerned with more general applications of NLP.

The Interpretation of Referring Expressions There are two kinds of re-
ferring expressions prevalent in database queries: pronouns (especially, “it” and
“they,” but also “he” and “she”) and definite descriptions (“the shoe depart-
ment,” “the U.S. peak”). To handle such expressions in a comprehensive man-
ner requires a general model of the discourse context that takes into account
the structure of the overall discourse and the purposes behind it [Grosz and
Sidner, 1986; Litman, 1985]; in addition, the model must take into account the

Chapter 4 Natural-Language Interfaces 159

features of the immediate discourse context of neighboring utterances [Sidner,
1983; Grosz et al., 1983] as well as the structure and interpretation of an in-
dividual utterance [Webber, 1980; Heim, 1982]. Each of these aspects of dis-
course context constitutes an active area of investigation in NLP.

The techniques used in NLIs are aimed not at providing a general solution
but at covering the most common uses of pronouns in database querying. Typi-
cally, the interpretation of pronouns is based on a “history list,” which contains
a record of the most recent preceding queries (i.e., some given number of
these). The list distinguishes those expressions in each query that either intro-
duce something new into the discourse or refer to something already intro-
duced (these usually correspond to noun phrases), along with their interpreta-
tions and positions in the parse. When a pronoun is encountered, a search is
made through the list (starting with the most recent entries) to find an expres-
sion or interpretation (depending on the type of system) that matches the pro-
noun (the same number and gender) and is compatible with the interpretation
of the query.

For example, following the query “What is the division of the highest paid
secretary?” the history list would include both “division of the highest paid
secretary” and “highest paid secretary” (perhaps along with other information
about each phrase). In interpreting the subsequent query “How many em-
ployees does it have?” the pronoun “it” is taken to refer to the same thing as
“the division of the highest paid secretary” because divisions have employees
and secretaries normally do not.

In semantic-grammar systems there are usually special rules that explicitly
mention pronouns. For example, the following pair of rules might be used to
provide an interpretation of the query “What is its revenue?” following the
query “What department has the smallest number of employees?”

<SENTENCE> — what is <DEPT-POSSESSIVE> <ATTRIBUTE>
<DEPT-POSSESSIVE> — its

When a pronoun is encountered in a particular construction, one of these rules
is matched. This triggers a search through the history list for an expression that
matches a particular category; the category searched for depends on.the
matched rule.

LUNAR also allows for references to objects dependent on other quan-
tified objects, as in “What is the silicon content of each volcanic sample? What
is its magnesium content?” The most general treatment of pronouns in IRL sys-
tems takes into account the syntactic structure of preceding queries to give a
preference ordering on candidates and omit certain of these on the basis of syn-
tactic constraints [Hobbs, 1978]. Various aspects of the pronoun resolution

160 Perrault and Grosz

problem have been treated more generally in NLP research; Hirst [1981] pro-
vides a good overview.

Because an adequate treatment of definite descriptions requires a model of
discourse context, NLIs typically ignore the referring properties of such de-
scriptions and take their interpretation to be all objects matching the descrip-
tion. In essence, these systems assume either a particular context in which there
is only one object that matches a certain description or they assume that all
items fitting that description are equally relevant. They ignore the difference
between definitely and indefinitely determined noun phrases (e.g., “The G.M.
employees” and “G.M. employees” are treated identically). Although this may
be fine for an isolated query, it can lead to incorrect responses in context. For
example, in isolation the query “Who manages the G.M. employees?”” might be
a request for a list of the managers of all G.M. employees; on the other hand,
in a context in which the user has just asked for the names of all employees
earning more than $30,000, it may be a request solely for the managers of
those G.M. employees earning more than $30,000.

Ellipsis The term ellipsis refers to the omission of certain elements from
what would ordinarily constitute the full syntactically correct form of a phrase.
The interpretation of an elliptical phrase depends on recovering the missing in-
formation from the context in which the phrase is used. The treatment of ellip-
sis in NLIs has been restricted to the use of elliptical queries like those given
in the beginning of this paper.

Two different approaches to ellipsis have been taken. One is to encode el-
liptical phrases directly in the grammar; the other is to modify the parser. The
second approach not only allows broader coverage but also is more easily
adaptable to new domains and databases.

The encoding of elliptical fragments directly in the grammar has been
done both for IRL systems [Walker, 1978] and for semantic-grammar systems
[Burton and Brown, 1979]. In each case special grammar rules provide for in-
complete phrases to be used in certain circumstances. For example, a syntactic
grammar might include a rule like

S — NP

to allow a single noun phrase to be used in place of a complete sentence.
Likewise a semantic grammar might include a rule such as

query — <division>

Such rules would cover a sequence like

Who are the secretaries in the sales department?

The research department?

Chapter 4 Natural-Language Interfaces 161

The interpretation rules or processes attached to these fragment rules construct
an interpretation of the fragment and then search through the history of pre-
vious interactions (in some cases, only the preceding query is considered; this
is often correct) to find an interpretation into which this piece can fit; the
match is determined on the basis of a number of constraints, typically includ-
ing lexical and encyclopedic ones.

A more general solution is provided by modifying the parser. This has
been done for semantic-grammar NLIs that are based on a top-down parse
using an ATN [Hendrix, 1977], but not for NLIs with more general grammars.
The resulting parser remains efficient for the semantic grammars because of
the additional semantic and pragmatic information encoded directly in them.

5.4 Semantic Coverage

One of the most important questions in NLIs is the relation between the ex-
pressivity of NL, IRL, and QL. IRLs are less expressive than NLs, if only be-
cause their basic vocabularies (predicates and constants) are restricted to
specific domains and tasks. They may, however, be more expressive than QLs
in that they may admit logical concepts that are beyond the deductive abilities
of the DBMS that interpret the QLs. The logical form of the TEAM system, for
example, allows for modal operators (such as tense) and higher-order functions
(such as maximum, count, and average) that lie beyond the deductive abilities
of relational calculus, although their addition still leaves the QL decidable. This
extra expressivity, often obtainable at little cost, makes it possible eventually
for parts of the NLI to be used with software systems of greater deductive
power.

There may be NL queries for which no corresponding QL representations
exist. However, we claim that for any query that can be put to a DBMS in QL,
there should be a corresponding query in NL that the NLI can. translate into QL
to generate the same answer. We call this the accessibility requirement. It is
the analogue in NLIs of the Turing equivalence between a high-order program-
ming language and the language into which it is compiled.

In the remainder of this section we show that NLIs in general do not meet
the accessibility requirement. In the following section, we illustrate ways of re-
gaining accessibility.)

The translation from IRL to QL is usually done according to what we will
call the rewrite method: Atomic elements of the IRL representation language
are rewritten into possibly complex expressions of QL. Thus, for example, IRL
atoms may be mapped into expressions in QL that contain references to various
parts of the DB (files, fields, values, etc.) and operations upon them. In re-
lational algebra, the set of such operations would include union, projection, and
Jjoin—often enhanced by the so-called aggregate functions, such as maximum,

162 Perrault and Grosz

minimum, average, and count. In logic-based systems, the operators are those
of first-order logic.

Any NL query representable in QL has an answer in the DB, as all re-
lational-calculus queries are decidable. There are, however, NL (or IRL) quer-
ies to which there exist answers in the DB, but which have no corresponding
QL queries, at least none constructible under the rewrite method assumption.
For example, the Navy Blue File, for which the LADDER system was written,
contained a SHIP file in which a Boolean field DOB (for doctor-on-board) re-
corded whether or not a ship carried any doctors. The database contained no
other mention of doctors, or of persons being on board ships. Thus, the IRL
concepts doctor and on-board-of cannot be expressed separately as relational-
calculus expressions in this database. As a result, the query “Is there a doctor
on board the Fox?” can be interpreted only if the phrase “a doctor on board”
(or its IRL equivalent) can be rewritten directly into a reference to the database
field DOB."

Introducing special translations for fixed phrases does not Yy general. For
example, the query “Is there a doctor within 500 miles of the Fox?” can be an-
swered from the information in the Blue File, but it can be interpreted only by
introducing translations for doctor and on-board-of separately.

The problem is not that the information is lacking in the database; that
would explain why the query “How many doctors are on the Fox?” could not
be answered. Neither is it only that the database does not represent certain ob-
jects, properties, and relationships directly (e.g., the Blue File does not expli-
citly represent doctors or indicate who is on what vessel), and that it is not
possible, by means of relational algebra, to construct from the existing relations
one that does represent these explicitly (doctors, for example). The problem is
inherent in the assumption of the rewrite method that atoms of the IRL map to
expressions in the QL; hence, this method does not provide a way to take ex-
pressions in IRL to atoms in QL. The deductive method described in the fol-
lowing section is one solution.

6 Future Directions

Thus far, we have focused our attention on natural-language interfaces to
DBMS. More broadly, in the context of natural-language processing, it is im-
portant to consider what issues need to be addressed to provide capabilities for

14 A similar problem arises in a database in which every person is related directly to his or her
grandfather, e.g., in the single relation GRANDFATHER (YOUNG, OLD). The query “Who is the
father of the father of John?” has an answer in the DB, but “father” is not expressible as a function
of GRANDFATHER.

Chapter 4 Natural-Language Interfaces 163

users to communicate in natural language with a wider range of software. Two
major obstacles stand in the way.

» Providing general procedures for bridging the gap between the concepts
that can be expressed in natural language and the underlying software sys-
tems.

* Providing general mechanisms to allow the user and the computer system
to cooperate in solving the user’s problem by engaging in a dialogue.

One strategy for overcoming the first obstacle is suggested by a solution to
the problem inherent in the use of the rewrite method, i.e., certain queries that
can be made in QL cannot be asked in NL. Instead of placing the semantic
burden on the QL, as most existing systems do, this strategy places it on the
IRL.

The ability to sustain interaction requires a different perspective as to the
function of the interface. It must be considered not merely as a translator of
sentences of one language into those of another, but rather as a recognizer of
the user’s intentions and as a collaborator in bringing about their satisfaction.

6.1 Putting Query Languages in their Place

A solution to the doctor-on-board problem is readily available if two conditions
are met: (a) first-order logic (FOL) is taken as the IRL, and (b) all the informa-
tion in the database is encoded in IRL. The second condition can be relaxed, as
we will do shortly. Under these assumptions, it is now possible to define the
relations encoded in the DB directly in terms of the domain concepts in IRL,
rather than vice versa. If the contents of the DB are now converted into ground
literals in IRL, the answer retrieval process can be implemented as deduction
in IRL. In the ship DB, this means including an axiom that defines the DOB
field from the DB in IRL:

bOB(x) — 3d ship(x) A doctor(d) A on-board(d, x)
where ship, doctor, and on-board are predicates of IRL. The query “Is there a
doctor on board the Fox?” would be represented in IRL by

3d x 3Jship(x) A doctor(d) A on-board(d,x) A x = Fox
which is true if DOB(Fox) is true. Similarly, “Is there a doctor within 500
miles of the Fox?” would be represented in IRL by

3d, dloc, sloc, s, dist doctor(d) A location{(d,dloc)

location(s,sloc) A s = Fox

distance(dlock, sloc, dist) A dist < 500 miles.

164 Perrault and Grosz

Obtaining the correct answer now depends on having axioms such as

on-board(d, x) A location(d, dloc) A location(s, sloc) —

dloc = sloc.

We will call this second view of the language-to-DB correspondence the de-
ductive method.

Now, in a sense, the deductive method is an unacceptable solution to the
answer retrieval problem, because it does not use the DBMS as an inference
engine—all deduction is done directly in IRL. Konolige [1981] presents a bet-
ter solution in which a QL query is actually constructed, but deduction rather
than rewriting is used. The language in which deduction is performed contains
IRL, but it also includes as terms the syntactic constructs of QL. Axioms are
provided that express the relationships between the relations of IRL and the
terms of QL.

Konolige’s solution suggests a picture of the relation between an NLI and
its underlying software that is rather different from the one suggested by
analogy to programming-language compilers. The NLI must be able to draw
inferences on its own, independently of whatever “black boxes” it may be con-
nected to. Some of these boxes may themselves be specialized inference ma-
chines (DMSs are clear examples of this), but their operations and semantics
must be subordinate to those of NL.

6.2 Participating in a Dialogue

Although superficially it may appear that users of NLIs are merely asking
questions, at a deeper level they are almost always engaged in a problem-solv-
ing activity that requires them to obtain information from the DB. The view
that interactive sessions with NLIs are instances of cooperative problem-solv-
ing behavior offers a more useful perspective not only on interaction with a
database in particular but on human-machine interaction in general. From this
perspective, a user is seen as interacting with a system to effect a certain
change in the world. The user might intend to accomplish this directly by get-
ting the system to do something, or indirectly by getting the system to com-
municate some fact. Utterances are actions that change the world and provide
information about the mental state of the utterer—most notably, about certain
of his or her beliefs and intentions [Austin, 1962; Searle, 1969].

When language use is examined from this perspective, discourses (i.e., ex-
tended sequences of utterances), not individual utterances, are the natural unit
of analysis; what the user intends to do and not what he has said is ultimately
what matters. This point of view may make a difference even for some simple
database query applications (the need to take this view can be inferred some-

Chapter 4 Natural-Language Interfaces 165

what from the range of constructions that most NLIs attempt to handle and that
go beyond simple questions), but it is vitally important from the standpoint of
providing NL interaction with a broader range of software systems (e.g., deci-
sion support systems). This point is nicely illustrated by the following short
dialogue segment:

1. U: 1 need to know which divisions earned less than $500,000 in 1985.
2. S: The automobile division.

3. U: Consider its performance over the last five years.

4

Can you show me a histogram by month?

Although Utterance 1 is superficially a statement about U’s mental state, it
is intended as a request for some information. If it were merely a report on U’s
mental state, a response acknowledging that (e.g., “OK. I understand.”) would
suffice, but such a reply is clearly unreasonable. Utterance 3 demonstrates that,
even in a simple query-like context, the system’s responses are an important
part of the dialogue. The “its” is used to refer to the automobile division, a sin-
gular entity; Utterance 1 contains only a plural noun phrase and, if Utterance 2
were ignored, it would seem that there was no compatible prior phrase supply-
ing a referent. Furthermore, the considering to be done depends on both Utter-
ances 1 and 2. Utterance 3 is not about the domain of discourse, nor is it even
a query, but rather about the discourse per se: It establishes a particular focus
of attention for the discourse, namely, the performance of the automobile divi-
sion over the last five years. Utterance 4 can be treated properly only by taking
the context of the preceding utterances into account. What we have here is a
request for a histogram of the monthly performance of the automobile division
over the last five years. Finally, Utterance 4 is a request for a particular action
to be taken; although ostensibly it asks for a “yes” or “no” response, neither of
these would be adequate in and of itself; the “yes” requires that the system
supply the histogram and the “no” obligates it to explain why it cannot do so.

Several areas of active research are concerned with devising methods for
supporting NL communication on a broader basis. Some of this research is
directly concerned with natural language; natural language provides both a set
of particular problems to be addressed and a set of constraints on the theories
being developed. Other research involves more general study of theories and
models of purposeful action but is nonetheless very relevant to work in NL.
Activities in the following areas are of particular interest.

1. The connection between language and action: recognizing what a user
intends (to do or have done) from what he says, as well as generating
utterances that satisfy various intentions [Cohen and Perrault, 1979; Allen

166 Perrault and Grosz

and Perrault, 1980; Cohen and Levesque, 1985; Litman, 1985; Appelt,
1985].

2. The connection between the intentions of individual utterances and the
overall purpose of a discourse [Hobbs and Evans, 1980; Grosz and
Sidner, 1986].

3. Interactions among beliefs, desires, intentions, actions, and plans
[Nilsson, 1980; Moore, 1985; Bratman, 1984; Konolige, 1984; Fagin and
Halpern, 1985].

These issues are of interest to a broad range of intellectual communities:
theoretical computer science (because of their relevance to distributed comput-
ing systems), artificial intelligence (with its long-standing interest in machine
reasoning and planning), the philosophy of mind (especially practical reason-
ing), and the philosophy of language (in which speech acts and reference are of
central concerns). There continues to be much more to the understanding of
language than language.

Acknowledgments

Preparation of this paper was supported by the Defense Advanced Research
Projects Agency under Contract N0O0039-84-K-0078 with the Naval Electronic
Systems Command. We thank Martha Pollack and Jane Robinson for com-
ments on earlier drafts.

References

Allen, J., Perrault, C. R., 1980. Analyzing intention in utterances. Artificial In-
telligence 15:143-78.

Appelt, D. E., 1983. TELEGRAM: a grammar formalism for language plan-
ning. In Proceedings of the 8th International Joint Conference on Artificial
Intelligence. IICAI, Karlsruhe, pp. 595-99.

Appelt, D., 1985. Planning English referring expressions. Artificial Intelligence
26(10):1-33.

Austin, J. L., 1962. How to Do Things with Words. London: Oxford University
Press.

Bates, M., Bobrow, R. J., 1983. A transportable natural language interface. In
Proceedings of the 6th Annual International SIGIR Conference on Research
and Development in Information Retrieval. ACM.

Bobrow, D., the PARC understander group, 1977. GUS-1, a frame driven
dialog system. Artificial Intelligence 8(2):155-73.

Chapter 4 Natural-Language Interfaces 167

Bobrow, R. J., Webber, B. L., 1980. Knowledge representation for syntac-
tic/semantic processing. In Proceedings of the 1st Annual Natl. Conference
on Artificial Intelligence. AAAI pp. 316-23.

Brachman, R. J., Bobrow, R. J., Cohen, P. R., Klovstad, J. W., Webber, B. L.,
Woods, W. A., 1979. Research in Natural Language Understanding—An-
nual Report. Tech. Rep. 4274, Bolt Beranek And Newman Inc., Cambridge,
Mass.

Bratman, M., 1984. Two faces of intention. Philos. Rev. 93(3):375-405.

Bruce, B. C., 1975. Case systems for natural language. Artificial Intelligence
6(4):327-60.

Burton, R. R., Brown, J. S., 1979. Toward a natural language capability for
computer-aided instruction. In Procedures for Instructional Systems
Development. Ed. H. O’Neil, New York: Academic Press. pp. 273-313.

Burton, R. R., Woods, W. A, 1976. A compiling system for augmented transi-
tion networks. In Proceedings of the 6th International Conference on Com-
putational Linguistics. COLING. Ottawa.

Charniak, E., 1973. Jack and Jane in search of a theory of knowledge. In Pro-
ceedings of the 3rd International Joint Conference on Artificial Intelligence.
IJCAL, Stanford, Calif., pp. 337-43.

Chomsky, N., 1965. Aspects of the Theory of Syntax. Cambridge, MIT Press.

Codd, E. F., 1970. A relational model for large shared data banks. Communica-
tions of ACM 13(6):377-87.

Codd, E. F., 1972. Relational completeness of data base sublanguages. In Dara
Base Systems. Ed. R. Rustin, Englewood Cliffs, NJ: Prentice-Hall. pp. 65—
98.

Cohen, P. R., Levesque, H. J., 1985. Speech acts and rationality. In Proceed-
ings of the 23rd Annual Meeting. ACL, Chicago, pp. 49-60.

Cohen, P. R., Perrault, C. R., 1979. Elements of a plan-based theory of speech
acts. Cognitive Science 3:177-212.

Colmerauer, A., 1978. Metamorphosis grammars. In Natural Language Com-
munication with Computers. Ed. L. Bolc, New York: Springer-Verlag. pp.
133-90.

Colmerauer, A., 1979. Un sous-ensemble interessant du Francais. RAIRO
13(4):309-36.

Cooper, R., 1979. Variable binding and relative clauses. In Formal Semantics
and Pragmatics for Natural language. Ed. F. Guenthner, S. J. Schmidt, The
Netherlands: Reidel, Dordrecht. pp. 131-70.

Culy, C. D., 1985. The complexity of the vocabulary of Banbara. Linguist.
Philos. 8:345-51.

Dahl, V., 1981. Translating Spanish into logic through logic. American Journal
of Computational Linguistics 7(3):149-64.

Damerau, F. J., 1981. Operating statistics for the transformational question an-
swering system. American Journal of Computational Linguistics 7(1):30-42.

168 Perrault and Grosz

Davidson, J., Kaplan, S. J., 1983, Natural langauge access to databases: inter-
preting update requests. American Journal of Computational Linguistics
9(2):57-68.

Earley, J., 1970. An efficient context-free parsing algorithm. Communications
of ACM 13(2):94-102.

Fagin, R., Halpern, J. Y., 1985. Belief, awareness, and limited reasoning. In
Proceedings of the 9th International Joint Conference on Artificial Intel-
ligence. LICAL Los Angeles, pp. 480-90.

Fillmore, C. J., 1977. The case for case reopened. In Grammatical Relations.
Ed. P. Cole, J. M. Sadock, New York: Academic Press. pp. 59-81.

Finin, T. W., 1985. Constraining the interpretation of nominal compounds in a
limited context. In Analyzing Language in Restricted Domains. Ed. R.
Grishman, R. Kittredge. Hillsdale, NJ: Erlbaum.

Gazdar, G., Klein, E., Pullum, G. K., Sag, 1., 1985. Generalized Phrase Struc-
ture Grammar. Oxford: Blackwell.

Ginsparg, J., 1983. A robust portable natural language database interface. In
Proceedings of the Conference on Applied Natural Language. ACL, pp. 25—
30.

Grosz, B. 1., Joshi, A. K., Weinstein, S., 1983. Providing a unified account of
definite noun phrases in discourse. In Proceedings of the 21st Annual Meet-
ing. ACL. Cambridge, Mass., pp. 44-50.

Grosz, B. 1., Sidner, C. L., 1986. The structures of discourse structure. Com-
putational Linguistics 12: In press.

Grosz, B. J., Appelt, D. E., Martin, P., Pereira, F., 1986. TEAM: An experi-
ment in the design of transportable natural-language interfaces. Artificial In-
telligence. In press.

Harris, L. R., 1977. User-oriented data base query with the Robot natural lan-
guage query system. International Journal of Man-Machine Studies 9:697-
713.

Heidom, G. E., 1976. Automatic programming through natural language dial-
ogue: a survey. IBM Journal of Research and Development 20(4):302-13.
Heim, 1., 1982. The Semantics of Definite and Indefinite Noun Phrases. Ph.D.

thesis. Univ. Mass., Amherst.

Hendrix, G. G., 1977. Human engineering for applied natural language pro-
cessing. In Proceedings of the 5th International Joint Conference on Artifi-
cial Artificial Intelligence. IICAI. Cambridge, Mass., pp. 183-91.

Hendrix, G., Sacerdoti, E., Sagalowicz, D., Slocum, J., 1978. Developing a nat-
ural language interface to complex data. ACM Transactions on Database
Systems 3(2):105-47.

Hendrix, G. G., 1978. Semantic aspects of translation. See Walker, 1978, pp.
193-226.

Herskovits, A., 1986. Space and the Prepositions in English. London/New
York: Cambridge Univ. Press. In press.

Chapter 4 Natural-Language Interfaces 169

Hintikka, J. K. K., 1974. Quantifiers vs. quantification theory. Linguist. Ing.
5:153-77.

Hirst, G., 1981. Lecture Notes in Computer Science, Vol. 119: Anaphora in
Natural Language Understanding. New York: Springer-Verlag.

Hirst, G., 1983. Semantic Interpretation Against Ambiguity. Ph.D. thesis.
Brown Univ., Providence, RIL.

Hobbs, J., 1978. Resolving pronoun references. Lingua 44:311-38.

Hobbs., J. R., 1980. Selective inferencing. In Proceedings of the 3rd Biennial
Conference on of CSCSI. Victoria, B.C., pp. 101-22.

Hobbs, J., Evans, D., 1980. Conversation as planned behavior. Cognitive
Science 4(4):349-77.

Hobbs, J. R., Moore, R. C., 1985. Formal Theories of the Commonsense
World. Norwood, NJ: Ablex.

Hopcroft, J. E., Ullman, J., 1979. Introduction to Automata Theory, Languages
and Computation. Reading, Mass.: Addison-Wesley.

Isabelle, P., 1984. Another look at nominal compounds. In Proceedings of the
10th International Conference on Computational Linguistics. COLING.
Stanford, Calif., pp. 509-16.

Johnson, T., 1985. Natural Language Computing: The Commercial Applica-
tions. London: Ovum.

Kaplan, R., Bresnan, J., 1982. Lexical-functional grammar: a formal system for
grammatical representation. In The Mental Representation of Grammatical
Relations. Ed. J. Bresnan, Cambridge, Mass.: MIT Press. pp. 173-281.

Kaplan, S. J., 1982. Cooperative responses from a portable natural language
query system. Artificial Intelligence 19(29):165-88.

Kay, M., 1979. Functional grammar. In Proceedings of the Berkeley Linguistics
Society 5:142-58.

Kay, M., 1980. Algorithm schemata and data structures in syntactic processing.
Nobel Symposium on Text Processing. Gothenburg, Sweden.

Kay, M., 1985. Parsing in functional unification grammar. In Natural Lan-
guage Parsing. Ed. D. R. Dowty, L. Karttunen, A: Zwicky, London: Cam-
bridge University Press., pp. 251-78.

Konolige, K., 1981. The Database as Model: a Metatheoretic Approach.
Menlo Park, Calif.: SRI International.

Konolige, K., 1984. A Deduction Model of Belief and its Logics. Ph.D. thesis.
Stanford Univ., Calif.

Koskenniemi, K., 1983. Two-level Model for Morphological Analysis. Ph.D.
thesis. Univ. Helsinki.

Kuno, S., Oettinger, A., 1962. Multiple path syntactic analyzer. Information
Process. 62:306—12.

Landsbergen, S. P. J., 1976. Syntax and formal semantics of English in
PHLIQALI See Burton and Woods, 1976.

170 Perrault and Grosz

Lehnert, W. G., Shwartz, S. P., 1983. EXPLORER: a natural language pro-
cessing system for oil exploration. See Ginsparg 1983, pp. 69-72.

Lesser, V. R., Fennell, R. D., Erman, L. D., Eddy, D. R. 1975. Organization of
the HEARSAY II Speech Understanding System. IEEE Transactions on
Acoustics, Speech, and Signal Processing 23(1):11-24.

Litman, D. J., 1985. Plan Recognition and Discourse Analysis: An Integrated
Approach for Understanding Dialogues. Ph.D. thesis. University of Ro-
chester, New York.

Marcus, M. P., 1980. A Theory of Syntactic Recognition for Natural Language.
Cambridge, Mass.: MIT Press.

Marcus, M. P., Hindle, D., Fleck, M. M., 1983. D-Theory: talking about talk-
ing about trees. See Grosz et al., 1983, pp. 129-136.

McCord, M. C., 1985. Modular logic grammars. In Proceedings of the 23rd
Annual Meeting. ACL, Chicago, pp. 104-17.

McDonald, D., 1983. Description directed control. Comput. Math. 9(1):111-30.

Montague, R., 1973. The proper treatment of quantification in ordinary Eng-
lish. In Approaches to Natural Language: In Proceedings of the 1970 Stan-
ford Workshop on Grammar and Semantics. Ed. J. K. K. Hintikka, J.
Moravcsik, P. Suppes., The Netherlands: Reidel, Dordrecht. pp. 221-42.

Moore, R. C., 1979. Handling Complex Queries in a Distributed Database.
Menlo Park, California: SRI International.

Moore, R., 1981. Problems in logical form. In Proceedings of the 19th Annual
Meeting. ACL, Stanford, California, pp. 117-24.

Moore, R. C., 1985. A formal theory of knowledge and action. In Formal
Theories of the Commonsense Word. Ed. J. R. Hobbs, R. C. Moore, Nor-
wood, NJ: Ablex. pp. 319-58.

Nilsson, N. J., 1980. Principles of Artificial Intelligence. Morgan Kaufmann
Publishers, San Mateo, California.

Paimer, M. S., 1983. Inference-driven semantic analysis. In Proceedings of the
4th National Conference on Artificial Intelligence. AAAI Washington, pp.
310-313.

Paxton, W. H., 1978. A framework for speech understanding. See Walker,
1978, pp. 17-120.

Pereira, F. C. N., Warren, D., 1980. Definite clause grammars for language
analysis. Artificial Intelligence 13:231-78.

Pereira, F. C. N., 1981. Extraposition grammars. American Journal of Comput-
ational Linguistics 7(4):243-56.

Pereira, F. C. N., 1983. Logic for Natural Language Analysis. Ph.D. thesis.
University of Edinburgh.

Pereira, F. C. N., Shieber, S. M., 1984. The semantics of grammar formalisms
seen as computer languages. See Isabelle, 1984, pp. 123-29.

Perrault, C. R., 1984. On the mathematical properties of linguistic theories.
Computational Linguistics 10:165-76.

Chapter 4 Natural-Language Interfaces 171

Petrick, S. J., 1973. Transformational analysis. In Natural Language Pro-
cessing. Ed. R. Rustin, New York: Algorithmics Press. pp. 2741.

Robinson, A. E., 1981. Determining verb phrase referents in dialog. American
Journal of Computational Linguistics 7(1):1-16.

Robinson, J. J., 1982. DIAGRAM: a grammar for dialogues. Communications
of ACM 25(1):27-47.

Sager, N., 1981. Natural Language Information Processing. Reading, Mass:
Addison-Wesley.

Scha, R. J. H., 1976. Semantic types in PHLIQAI. See Burton and Woods,
1976.

Schank, R. C., 1975. Conceptual Information Processing. New York: Ameri-
can Elsevier.

Scott, D., 1982. Domains for denotational semantics. In Proceedings of the
ICALP-82, International Conference on Autom. Language Program..
Heidelberg.

Searle, J. R., 1969. Speech Acts: An Essay in the Philosophy of Language.
London: Cambridge University Press.

Shieber, S. M., 1984. The design of a computer language for linguistic infor-
mation. See Isabelle, 1984, pp. 362-66.

Shieber, S. M., 1985. Evidence against the context-freeness of natural lan-
guage. Linguist. Philos. 8:333—43,

Sidner, C., 1983. Focusing in the comprehension of definite anaphora. In Com-
putational Models of Discourse. Ed. M. Brady, R. Berwick, Cambridge,
MIT Press. pp. 267-330.

Slocum, J., 1981. A practical comparison of parsing strategies. See Moore,
1981, pp. 1-6.

Stonebraker, M., Wong, E., Kreps, P., Held, G., 1976. The design and im-
plementation of INGRES. ACM Transactions on Database Systems
1(3):189-222.

Tennant, H. R., Ross, K. M., Saenz, R. M., Thompson, C. W., Miller, J. R.,
1983. Menu-based natural langauge understanding. See Grosz et al., 1983,
pp. 151-58.

Thompson, F. B., Thompson, B. H., 1975. Practical natural language pro-
cessing: The REL system prototype. In Advances in Computers. Ed. M. Ru-
binoff, M. C. Yovits, New York: Academic Press. pp. 109-68.

Ullman, J. D., 1982. Principles of Database Systems. Rockville, Md.: Com-
puter Science Press.

Walker, D., 1978. Understanding Spoken Language. New York: Elsevier.

Waltz, D. L., 1978. An English language question answering system for a large
relational database. Communications of ACM 21(7):526-39.

Warren, D. H. D., Pereira, F. C. N., 1982. An efficient easily adaptable system
for interpreting natural language queries. American Journal of Comput-
ational Linguistics 8(3-4):110-22.

172 Perrault and Grosz

Webber, B. L., 1980. A Computational Approach to Discourse Anaphora. New
York: Garland.

Weischedel, R. M., 1979. A new semantic computation while parsing: presup-
position and entailment. In Presupposition. Ed. C. K. Oh, D. A. Dinneen,
New York: Academic Press. pp. 155-82.

Weischedel, R. M., Sondheimer, N. K., 1983. Meta-rules as a basis for pro-
cessing ill-formed input. American Journal of Computational Linguistics
9(3-4):161-77.

Wilks, Y., 1975. An intelligent analyzer and understander of English. Com-
munications of ACM 18(5):264-74.

Winograd, T., 1972. Understanding Natural Language. New York: Academic
Press.

Winograd, T., 1983. Language as a Cognitive Process Vol. 1: Syntax. Reading,
Mass., Addison-Wesley.

Wolf, J. J., Woods, W. A., 1980. The HWIM speech understanding system. In
Trends in Speech Recognition. Ed. W. A. Lea, Englewood Cliffs: Prentice-
Hall. pp. 1-24.

Woods, W. A., 1967. Semantics for a Question Answering System. Harvard
University Computer Lab.

Woods, W. A., 1970. Transition network grammars for natural language analy-
sis. Communications of ACM 13(10):591-606.

Woods, W. A., Kaplan, R. M., Nashwebber, B. L., 1972. The Lunar Sciences
Natural Language Information System: Final Report. BBN Rep. 2378, Bolt
Beranek and Newman Inc., Cambridge, Mass.

Woods, W. A., 1978. Semantics and quantification in natural language question
answering. In Advances in Computers. Ed. M. Yovits, New York: Academic
Press. pp. 1-87.

Woods, W. A., 1980. Cascaded ATN grammars. American Journal of Comput-
ational Linguistics 6(1):1-15.

Younger, D. H., 1967. Recognition and parsing of context-free languages in
time n3. Information and Control 14:189-208.

Zwicky, A. M., Friedman, J., Hall, B. C,, Walker, D. E. 1965. The MITRE
syntactic analysis procedure for transformational grammars. In Proceedings
of the Fall Joint Computer Conference. AFIPS, pp. 317-26.

Chapter

J

Reasoning About Plans and
Actions

Michael P. Georgeff

SR International

Aritificial Intelligence Center and

Center for the Study of Language and Information
Menlo Park, California

1 Introduction

Humans spend a great deal of time deciding and reasoning about actions, some
with much deliberation and some without any forethought. They may have
numerous desires that they wish fulfilled, some more strongly than others. It is
often necessary to accommodate conflicting desires, to choose among them,
and to reason about how best to accomplish those that are chosen. This choice,
and the means chosen to realize these ends, will depend upon currently held
beliefs about present and future situations, and upon any commitments or in-
tentions that may have been decided upon earlier. Often it will be necessary to
obtain more information about the tasks to be performed, either prior to choos-
ing a plan of action or during its execution. Furthermore, our knowledge of the
world itself is frequently incomplete, making it necessary for us to have some
means of forming reasonable assumptions about the possible occurrence of
other events or the behaviors of other agents.

All this has to be accomplished in a complex and dynamic world popu-
lated with many other agents. The agent planning or deciding upon possible

173

174 Georgeft

courses of action can choose from an enormous repertoire of actions, and these
in turn can influence the world in exceedingly complicated ways. Moreover,
because of the presence of other agents and processes, the environment is sub-
ject to continuous change—even as the planner deliberates on how best to
achieve its goals.

2 The Representation of Actions and Events

2.1 Models of States and Events

To tackle the kind of problems mentioned above, we first have to understand
clearly what entities we are to reason about. The traditional approach has been
to consider that, at any given moment, the world is in one of a potentiaily in-
finite number of states or situations. A world state may be viewed as a snap-
shot of the world at a given instant of time.

The world can change its state only by the occurrence of an event or ac-
tion. In this view, events can be modelled simply as state transitions (or, more
generally, as certain sequences of state transitions). For example, in Figure 1,
the occurrence of the event e results in the world changing from state S1 to
state S2, and event e2 takes us then to state S3. An event type is a set of event
instances, representing all possible occurrences of the event in all possible sit-
uations. Thus, the event type “Put block A on top of block B” corresponds to
all possible occurrences of the putting of block A upon B.

In domains in which there is no concurrent activity, it is only necessary to
consider the initial and final states of any given event, as nothing can happen
during the event to change its outcome. Consequently, an event (strictly, an
event type) can be modeled as a set of pairs of initial and final states. If, in ad-
dition, we limit ourselves to deterministic events, this relation between initial
and final states will be functional; that is, the initial state in which an event oc-
curs will uniquely determine the resulting final state.

An action is a special kind of event, namely, one that is performed by
some agent, usually in some intentional way. For example, a tree’s shedding of
its leaves is an event but not an action; John’s running around a track is an ac-
tion [in which John is the agent]. Philosophers make much of this distinction
between actions and events, primarily because they are interested in activities
that an agent decides upon, rather than those events that are not caused by the
agent (such as leaves falling from a tree) or that involve the agent in some un-
intentional way (such as tripping over a rug) {Davis, 1979]. For our purposes,
however, we can treat these terms synonymously.

We also want to be able to say that certain properties hold of world states.
For example, in some given state, it might be that a specified block is on top of

Chapter 5 Reasoning About Plans and Actions 175

some other block, or that its color is red. But what kind of entities are such
properties? For example, consider the property of redness. In a static world, we
might model this property as a set of individuals (or objects), namely, those
that are red. However, in dynamic worlds, the individuals that are red can vary
from state to state; we therefore cannot model redness in this way.

One way to handle this problem is to introduce the notion of a fluent
[McCarthy and Hayes, 1969], which is a function defined on world states. Es-
sentially, a given fluent corresponds to some property of world states, and its
value in a given state is the value of that property in that state. For example,
the property of redness could be represented by a fluent whose value in a given
state is the set of individuals that are red in that state.

STATES AND EVENTS

(s~
. ©

World States S

Event Instances e

Figure 1

176 Georgeff

Fluents come in a variety of types. A fluent whose value in a given state is
either true or false is usually called a propositional fluent. For example, the
property of it being raining could be represented by a propositional fluent that
has the value true in those states in which it is raining and the value false when
it is not raining [Dowty, Wall and Peters, 1981}

2.2 The Situation Calculus

Of course, in any interesting domain, it is infeasible to specify explicitly the
functions and relations representing events and fluents. We therefore need
some calculus or formal language for describing and reasoning about them.

- McCarthy [McCarthy and Hayes, 1969] proposed a logic of situations
(states) that has become the classical approach to this problem. In the variant
we describe here, the logical terms of the calculus are used to denote the states,
events, and fluents of the problem domain. For example, the event term
puton(A, B) could be used to denote the action in which block A is placed on
top of block B. Similarly, the fluent term on(A, B) could designate the fluent
representing the proposition that A is on top of B.

The predicates in this situation calculus are used primarily to make state-
ments about the values of fluents in particular states. For propositional fluents,
we shall use the expression holds(f, s) to mean that the fluent f has value true
in state s. For example, holds(on(A, B), s) will be true if the fluent denoted by
on(A, B) has value frue in state s; that is, if block A is on top of B in s.

We must also be able to specify the state transitions associated with any
particular event in the problem domain. We shall do this by use of an occurs
predicate, and write occurs(e, s1, s2) to mean that the performance of event e
begins in state 51 and ends in state s2. (The more usual way to do this is to in-
troduce the term result(e, s) to designate the state resulting from the perform-
ance of event e in state s, but this approach is not as expressive as the one I am
proposing.) For example, occurs(puton(A, B), s1, s2) denotes the fact that the
action puton(A, B) is initiated in state 51 and terminates in state s2. We can also
use the occurs predicate to characterize those states that are reachable from
some given state.

The well-formed formulas of this situation calculus may also contain the
usual logical connectives and quantifiers. With this machinery, we can now ex-
press general assertions about the effects of actions and events when carried
out in particular situations. For example, we can express the result of putting
block A on top of block B as follows:

Vs1, s2 . holds(clear(A) A clear(B), s1) A occurs(puton(A, B), s1, 52) D
holds(on(A, B), s2)

Chapter 5 Reasoning About Plans and Actions 177

This statement is intended to mean that if blocks A and B are initially
clear, then after the action puton(A, B) has been performed, block A will be on
top of B.

One problem with the above approach is the apparently large number of
axioms needed to describe what properties are unaffected by events. For ex-
ample, if block B were known to be red prior to our placing block A on it, we
would not be able to conclude, on the basis of the previous axiom alone, that
block B would still be red afterward. To do so, we require an additional axiom
stating that the movement of block A does not change the color of block B:

Vs1, 82 . holds(color(B, red), s1) A occurs(puton(A, B), s1, s2) D
holds(color(B, red), s2)

In fact, we would have to provide similar axioms for every property of the
domain left unaffected by the action. These are called frame axioms; being
forced to specify them is commonly known as the frame problem [Hayes,
1973].

Various other logical formalisms have been developed for representing and
reasoning about dynamic domains. The most common are the modal logics,
which avoid the explicit use of terms representing world state. One type of
modal logic, called temporal logic, introduces various temporal operators for
describing properties of world histories [Prior, 1967]. Process logics are
another kind of modal logic in which explicit mention of state is avoided
[Nishimura, 1980]. These logics are based on the same model of the world as
described above, but introduce programs (or plans) as additional entities in the
domain (see Section 3.1). Dynamic logics can be viewed as a special class of
process logics that are concerned solely with the input-output behavior of pro-
grams [Harel, 1979]. While these various logics may vary in their expressive
power, all suffer from the frame problem.

2.3 The STRIPS Representation

The STRIPS representation of actions, originally proposed by Fikes and Nils-
son [1971], is one of the most widely used alternatives to the situation calculus.
It was introduced to overcome what were seen primarily as computational dif-
ficulties in using the situation calculus to construct plans. The major problem
was to avoid (1) the specification of a potentially large number of frame ax-
ioms, and (2) the necessity of having the planner consider these axioms in de-
termining the properties that hold at each point in the plan.

In the STRIPS representation, a world state is represented by a set of logi-
cal formulas, the conjunction of which is intended to describe the given state.
Actions or events are represented by so-called operators. An operator consists
of a precondition, an add list, and a delete list. Given a description of a world
state s, the precondition of an operator is a logical formula that specifies

178 Georgeft

whether or not the corresponding action can be performed in s, and the add and
delete lists specify how to obtain a representation of the world state resulting
from the performance of the action in s. In particular, the add list specifies the
set of formulas that are true in the resulting state and must therefore be added
to the set of formulas representing s, while the delete list specifies the set of
formulas that may no longer be true and must therefore be deleted from the de-
scription of s. This scheme for determining the descriptions of successive states
is called the STRIPS rule.

For example, the following STRIPS operator can be taken to represent the
action that moves block A from location zero to location 1.

Precondition: loc(A, 0) A clear(A)
Add list: {loc(A, 1)}
Delete list: {loc(A, 0)}

Let’s say that some world is described by the formulas {loc(A, 0),
clear(A), red(A).} Given this set of formulas, it is possible (trivially in this
case) to prove that the precondition holds, so that the operator is then con-
sidered applicable to this world description. The description of the world re-
sulting from application of this operator is {loc(A, 1), clear(A), red(A)}.

Although the operators in STRIPS are intended to describe actions that
transform world states into other world states, they actually define syntactic
transformations on descriptions of world states. STRIPS should thus be viewed
as a form of logic and the STRIPS rule as a rule of inference within this logic.
Given this perspective, it is necessary to specify the conditions under which the
STRIPS rule is sound. That is, for each operator and its associated action, the
formulas generated by application of the operator should indeed be true in the
state resulting from the performance of the action. Surprisingly, only very re-
cently has anyone attempted to provide such a semantics, though the impor-
tance of doing so has long been recognized.

The problem is that soundness is not possible to achieve if the STRIPS
rule is allowed to apply to arbitrary formulas. For example, suppose in the case
above I add to the description of the initial world state the formula:

loc(A, 0) A loc(A, 0)

This is somewhat redundant, but from a logical point of view it is still a fine
description of the initial state. The problem is that, when the STRIPS operator
is now applied, this formula will not be deleted from the description of the
successor state (because it does not appear in the delete list of the operator),
yet of course it should be deleted.

Lifschitz [1987] was the first to describe a way of defining the kind of
formulas allowable in world descriptions, and to prove soundness for such a
system. In particular, soundness is guaranteed if, for every operator and its as-
sociated action: (1) Every allowable formula that appears in the operator’s add

Chapter 5 Reasoning About Plans and Actions 179

list is satisfied in the state resulting from the performance of the action, and (2)
Every allowable formula that is satisfied in the state in which the action is in-
itiated, and that does not belong to the operator’s delete list, is satisfied in the
resulting state. The latter condition is commonly known as the STRIPS assump-
tion.

The STRIPS representation thus avoids the specification of frame axioms
that state what properties are left unchanged by the occurrence of actions.
Furthermore, the lack of frame axioms allows a planner to better focus its
search effort. On the other hand, STRIPS is not nearly as expressive as the sit-
uation calculus (Waldinger, 1977]. In particular, the STRIPS representation
compels us to include in an operator’s delete list all allowable formulas that
could possibly be affected by the action, even if the truth value of some of
these could be deduced from other axioms. For example, even if we were
given an axiom stating that when Fred dies he stops breathing, an operator rep-
resenting the fatal shooting of Fred would nonetheless have to include in its de-
lete list both effects of the shooting.

To overcome this difficulty, it is tempting to modify the STRIPS rule so
that formulas that can be proved false in the resulting state need not be in-
cluded in an operator’s delete list. This leads to the extended STRIPS assump-
tion, which states that any formula that is satisfied in the initiating state and
does not belong to the delete list will be satisfied in the resulting state, unless it
is inconsistent to assume so. Unfortunately, no one has yet provided an ade-
quate semantics for such an approach [Reiter, 1980].

Yet another variant representation is described by Pednault {1986]. Each
action is represented by an operator that describes how performance of the ac-
tion affects the relations, functions, and constants of the problem domain. As
with the STRIPS representation, the state variable is suppressed and frame ax-
ioms need not be supplied. For a restricted but commonly occurring class of
actions, the representation appears as expressive as the situation calculus.

3 Plan Synthesis

Plan synthesis concerns the construction of some plan of action for one or
more agents to achieve some specified goal or goals, given the constraints of
the world in which these agents are operating. In its most general form, it is
necessary to take into account the various degrees to which the agents desire
that their goals be fulfilled, the various risks involved, and the limitations to
further reasoning arising from the real-time constraints of the environment.
However, we shall begin by considering the simpler problem in which an
agent’s goals are consistent and all of the same utility. We shall disregard rea-
soning about the consequences of plan failure and we shall not concemn our-
selves with real-time issues. (In philosophy, this kind of planning is commonly

180 Georgeft

called means-ends reasoning, and is considered to be just one of the many
components comprising rational activity [Bratman, forthcoming; Davidson,
1980; Davis, 1979].)

3.1 General Deductive Approaches

Given a formulation of actions and world states as described in Section 2, the
simplest approach to planning is to prove—by means of some automatic or in-
teractive theorem-proving system—the existence of a sequence of actions that
will achieve the goal condition. More precisely, suppose that we have some
goal y that we want to achieve and that the initial state satisfies some condi-
tion @. Then the theorem to be proved is:

Vs . holds(@, s) D 3z . holds(y, z) A reachable(z, s)

That is, we are required to prove that there exists a state z, reachable from s, in
which the goal y holds, given that ¢ holds in the initial state s.

Green [1969] was the first to implement this idea. As he observed,
however, it is essential to have the theorem prover provide the right kind of
constructive proof. For example, consider being faced with a choice of two
doors, behind one of which is a ferocious lion and the other a young maiden.
In trying to maximize your lifespan, a theorem prover may well suggest that
you simply open the door behind which lies the young maiden. Unfortunately,
you may only be able to ascertain the maiden’s location after opening the
door—too late for you but of little concern to the planning system. This diffi-
culty arises because the sequence of actions constructed by the planner can be
conditional on properties of future states; that is, on properties that the agent
executing the plan is not in a position to determine.

Manna and Waldinger [1987] consider many such problems and show how
they can be solved. Unfortunately, while planners based on general deductive
mechanisms are extremely elegant, no one has yet managed to produce one
that can solve any interesting world problem within acceptable time limits.

3.2 Planning as Search

Instead of using some general deductive method, one can try searching for an
appropriate plan in the space of all possible plans. There are two common
ways of viewing plan search techniques. One is to perceive the process as
searching through a space of world states, with the transitions between states
corresponding to the actions performable by the agent. Another view is that the
search takes place through a space of partial plans, in which each node in the
search space corresponds to a partially completed plan. The latter view is the
more general, as the first can be seen as a special case in which the partial plan

Chapter 5 Reasoning About Plans and Actions 181

is extended by adding a primitive plan element to either end of the current par-
tial plan.

Thus, we can characterize most approaches to the planning problem as fol-
lows. Each node in the search space corresponds to some possibly partial plan
of action to achieve the given goal. The search space is expanded by further
elaborating some component of the plan formed so far. The plan space can be
searched with a variety of techniques, both classical and heuristic [Nilsson,
1980; Tate, 1984].

Before we consider specific planning techniques, let us introduce some
new terminology. Let us assume that, for some action g, if we initiate ¢ in a
state in which ¢ holds, y is guaranteed to hold at the completion of execution.
If y is the strongest condition for which we can prove that this holds, we shall
call y the strongest provable postcondition of a with respect to ¢. We can sim-
ilarly define the weakest provable precondition of a with respect to y to be the
weakest condition ¢ that guarantees that y will hold if q is initiated in a state
in which ¢ holds.

Now- consider how we could find a sequence of actions p to achieve a goal
, starting from an initial world in which ¢ holds. Let’s write exec(p, v, @) to
mean that p satisfies this property. We now have that, for any primitive action
a, exec(p, y, ¢) will hold if:

1. p =N0-0p and Vs . holds(®, 5) > holds(y, s).

2. p = a,q, where g satisfies exec(q, ¥, y) and 7y is the strongest provable
postcondition of a. (I am here using the symbol ; to denote sequencing of
actions.)

3. p = g.a, where g satisfies exec(q, ¢, ¥) and Y is the weakest provable pre-
condition of a and .

4. p = quaq, where, for some y| and 12, a satisfies exec(a, Y1, Y2), qi
satisfies exec(q1, @, Y1) , and q2 satisfies exec(qz2, Y2, V).

Case (1) simply says that, if the goal condition is already satisfied, we
need not plan anymore, i.e., the empty action (NO-0OP) will do. Now consider
case (2). Let’s say that we are guaranteed that, if we execute some action a in
a state in which ¢ holds, y will be true in the resulting state. Thus, if the plan
begins with the element a, the rest of the plan must take us from a state in
which 7 is true to one in which y is true. We can take y to be any condition
that is guaranteed to hold after the execution of a but, to spare ourselves from
planning for situations that cannot possibly occur, it is best to take y to be the
strongest of these conditions. Thus, case (2) amounts simply to forward-chain-
ing from the initial state and is usually called progression. Case (3) is similar
to case (2), except that we chain backward from the goal. It is usually called

182 Georgeff

regression; the condition v is often called the regressed goal. Case (4) is tanta-
mount to choosing a primitive plan element somewhere in the middle of the
plan, then trying to patch the plan at either end. In fact, case (4) is a generali-
zation of cases (2) and (3).

It is straightforward to construct a simple planner that uses these rules to
build a plan. The planner simply applies rules (2), (3), or (4) recursively until,
finally, rule (1) can be applied. Clearly, whether or not a solution is obtained
will depend on the choice of rules and the choice of primitive plan elements at
each step. The algorithm works for any plan or action representation, requiring
only that we be able to determine action postconditions and preconditions, as
described above. For example, GPS [Newell and Simon, 1963] and STRIPS
(Fikes and Nilsson, 1971] use STRIPS-like action representations and rules (1)
and (4), whereas Rosenschein [1981] employs dynamic logic to describe the ef-
fects of actions and uses rules (1), (2), and (3).

Unfortunately, this approach is too inefficient to be useful for most real-
world planning problems. Thus, for the last 15 years or so, researchers in plan-
ning have attempted to make this process more efficient. One approach is to
avoid fully instantiating the actions in the plan being formed (that is, to leave
some of the parameters of the action free) until one is forced to make a com-
mitment. Another approach is to allow the ordering of the actions to remain
partial until sufficient information is available to make a wise choice (such
planners are usually called nonlinear planners). Some planners form plans at
one abstraction level, and only after that plan is complete do they consider
elaborating it at lower levels of abstraction. The SIPE system, developed by
Dave Wilkins at SRI, incorporates many of these ideas and is perhaps the most
advanced of these planners [Wilkins, 1985].

However, it is often very hard to find practical real-world problems for
which these planners are useful. What are the reasons for this? I believe there
are two. First, the world modelled by these planners is assumed to be static,
both during planning and during plan execution. They do not allow for the oc-
currence of events external to the planning agent, or the existence of other
processes. Unfortunately, there are not many interesting applications where this
assumption holds. Second, in those cases that are felatively static, there often
exist special-purpose planners that can solve the problem more efficiently by
taking account of the particular features of the problem domain for which they
are designed. For example, specialized techniques have been developed for
path planning in the presence of obstacles—these are far superior in perform-
ance to the general purpose planners I have discussed above (e.g., see the work
of Gouzenes [1984] and Brooks [1983, 1985a])).

In the remainder of this paper, I want to look at two areas of planning that
I believe are particularly rich in research problems and for which I believe
there are a very large number of important applications. The first is what is

Chapter 5 Reasoning About Plans and Actions 183

commonly called muitiagent planning, and the second involves the design of
planning systems that are embedded in a dynamically changing environment.

4 Multiagent Domains

Most real worlds involve dynamic processes beyond the control of an agent.
Furthermore, they may be populated with other agents—some cooperative,
some adversarial, and others who are simply disinterested. The planners we
have been considering are not applicable in such domains. These planners can-
not reason about actions that the agent has no control over and that, moreover,
may or may not occur concurrently with what the agent is doing. There is no
way to express nonperformance of an action, let alone to reason about it.

We therefore need to develop models of actions and plans that are differ-
ent from those we have previously considered. We need theories of what it
means for one action to interfere with another. Many interactions are harmful,
leading to unforeseen consequences or deadlock. Some are beneficial, even es-
sential (such as lifting an object by simultaneously applying pressure from both
sides). We should be able to state the result of the concurrence of two events
or actions. We need to consider cooperative planning, planning in the presence
of adversaries, and how to form contingency plans. In addition, we shall re-
quire systems capable of reasoning about the beliefs and intentions of other
agents and how to communicate effectively both to exchange information and
to coordinate plans of action. Furthermore, these systems will sometimes need
to infer the beliefs, goals, and intentions of other agents from observation of
their behaviors.

4.1 Action Representations

Multiagent domains are those having the potential for concurrent activity
among multiple agents or other dynamic processes. The entities introduced in
earlier sections—world states, fluents, actions, events, and plans—can also
form the basis for reasoning in these domains. However, most of the simplify-
ing assumptions made for handling single-agent domains cannot be usefully
employed here. In particular, it is not possible to consider every action as a
transition relation from an initial to a final state, as the effects of performing
actions concurrently depends on what happens during the actions [Georgeff,
1983; Pelavin and Allen, 1986]. For example, in a production line making
various industrial components, it is important to know what machines are used
during each activity so that potential resource conflicts can be identified.

In addition, we need more powerful and expressive formalisms for repre-
senting and reasoning about sequences of states, or so-called world histories.

184 Georgeff

For example, we should be able to express environmental conditions such as
“The bank will stay open until 3pm” and “If it rains overnight, it will be icy
next morning.” Similarly, we have to be able to reason about a great variety of
goals, including goals of maintenance and goals satisfying various ordering
constraints [Pelavin and Allen, 1986].

It is also important that the representation of events can model the simul-
taneous occurrence of events. One of the main reasons for doing so is simply
that it is often the most natural way to describe some activities. For example,
when two people are lifting a table together, it is very convenient to be able to
describe the lifting of both ends of the table as occurring simultaneously.
Furthermore, it is difficult to see how one could easily describe causal connec-
tions between processes without such a notion (and I will have more to say
about this later). For example, consider two machines that are connected to one
another in some way. Let’s imagine that each machine has a lever, and that
these levers are directly coupled together. Thus, the movement of one lever
will directly cause a corresponding movement of the other. It would be diffi-
cult to describe this mechanism in a suitably simple way without the notion of
simultaneity.

However, reasoning about the effects of actions is then much more com-
plex, as the properties that are true of the world after the performance of an ac-
tion will depend not only on what was true before the action was initiated but
also on what events are occurring simultaneously with the given action. For ex-
ample, consider the axioms regarding the action puton(A, B) that I gave earlier.
The axiom concerning the fact that block A will be atop block B in the state re-
sulting from performance of the action will clearly still hold. But none of the
axioms concerning those properties that previously remained invariant
throughout the action will hold if simultaneous actions are allowed! For ex-
ample, the axiom concerning redness cannot be stated because it may be that,
in some cases, someone throws a can of blue paint over block B just as I am
putting block A atop it.

I believe that the solution to this problem rests on using the notion of inde-
pendence to describe the region of influence of events and actions. This turns
out to be critical for reasoning about the persistence of world properties and
other issues that arise in multiagent domains. Indeed, what makes planning
useful for survival is the fact that we can structure the world in a way that
keeps most properties and events independent of one another, thus allowing us
to reason about the future without complete knowledge of all the events that
could possibly be occurring.

McDermott [1982] provides a somewhat different formalism for describing
multiagent domains, although the underlying model of actions and events is es-
sentially as described above. Allen and Pelavin [Allen, 1984; Pelavin and
Allen, 1986] introduce yet another formalism based on a variation of this
model of actions and events. The major difference is that fluents are viewed as

Chapter 5 Reasoning About Plans and Actions 185

functions on intervals of states, rather than as functions on states. Thus, in this
formalism, holds(raining, i) would mean that it is raining over the interval of
time i, which might be, for example, some particular time period on some
specific day. The aim is that, by using intervals rather than states, we obtain a
more natural and possibly more tractable language for describing and reasoning
about multiagent domains. However, I think too much can be made of the
difference between the state-based and interval-based approaches—both reduce
one to the other, and the differences in expressive power or naturalness appear
to me to be small.

Yet another approach is suggested by Lansky [1987], who considers events
as primitive and defines state derivatively in terms of event sequences. Proper-
ties that hold of world states are then restricted to being temporal properties of
event sequences. For example, one might identify the property “waiting for
service” with the condition that an event of type “request” has occurred and
has not been followed by an event of type “serve.” Lansky uses a temporal
logic for expressing general facts about world histories and, in part, for reason-
ing about them also.

If we are interested in constructing plans of action, one of the more impor-
tant considerations is whether or not the actions constituting such plans are
indeed performable. In single-agent planning, this question is quite easily
handled by means of explicitly specifying preconditions that guarantee action
performability. However, it is much more complex in multiagent domains.

The source of the problem in multiagent planning is that it is not possible
to state simple preconditions for each individual action, the satisfaction of
which would ensure its performability. In multiagent domains, whether or not
an action can be performed will depend not only on the fulfillment of such pre-
conditions, but also on which events or actions may (or are required to) occur
simultaneously with the given action: It is, after all, of little use to form a plan
that calls for the simultaneous or concurrent performance of actions that are in-
herently precluded from coexisting.

This problem is far more crucial than it may first appear. In particular, we
are not concerned merely with issues of deadlock avoidance. In planning and
other forms of practical reasoning, the failure of an action does not necessarily
mean that the agent or device performing the action will thereafter be unable to
proceed. Rather, such failure is usually taken to mean that the desired or in-
tended effects of the action have not been achieved. Thus, though true dead-
lock may occur quite rarely, actions often fail to produce their intended effects
because of interference with other, often unanticipated events.

Moreover, much of human planning revolves around the coordination of
plans of action. Some of this is concerned with synchronizing the activities of
agents so that tasks involving more than one agent can be carried out success-
fully. Such synchronization can be accomplished by specifying explicitly what
temporal relations should hold among the activities of the various agents—

186 Georgeff

[Lansky, 1985; Stuart, 1985] the more difficult problem is to identify interac-
tions among potentially conflicting actions. Indeed, the recognition of possible
plan conflicts is considered by some philosophers to be at the heart of rational
behavior [Bratman, forthcoming].

4.2 Causality and Process

One problem I have not yet addressed is the apparent complexity of the axioms
that describe the effects of actions. For example, while it might seem rea-
sonable to state that the location of block B is independent of the movement of
block A, this is simply untrue, as everyone knows, in most interesting worlds.
Whether or not the location of B is independent of the movement of A will de-
pend on a host of conditions, such as whether B is in front of A, on top of A,
atop A but tied to a door, and so on.

One way to solve this problem is by introducing a notion of causality
(some philosophers, to avoid such a loaded term, prefer to use “generation” in-
stead) [Allen, 1984; Georgeff, 1987; Lansky, 1987; McDermott, 1982; Sho-
ham, 1986). Two kinds of causality suggest themselves: one in which an event
causes the simultaneous occurrence of another event; the other in which an
event causes the occurrence of a subsequent event. We could denote these two
causal relations by introducing two new predicates, causess(Q, e1, e2) and
causesn(9, e1, e2) , say, where ¢ is the condition under which event e1 causes
event e2. These two kinds of causality are sufficient to describe the behavior of
any procedure, process, or device that is based on discrete (rather than continu-
ous) events.

Of course, we need to specify how causally related actions affect one
another. The axiom expressing the effects of simultaneous causation can be
written

Vsi1, 52, @, el, e2 . causess(Q, el, €2) A holds(Q, s1) A occurs(el, s1, s2) D
occurs(ez, si, s2)

This simply specifies that, if condition ¢ holds at the moment event e is
initiated, and if event e2 is causally related to e1 under these conditions, then e2
will occur simultaneously with the occurrence of e1. A similar axiom can be
given for subsequent causation.

With such axioms, we are now in a position to write down the causal laws
of the problem domain. For example, we might have a causal law to express
the fact that, whenever a block x is moved, any block on top of x and not
somehow restrained (e.g., by a string tied to a door) will also move. We could
write this as

V x, y,1. causess((on(y, x) A — restrained(y)), move(x,l), (move(y, 1)))

Chapter 5 Reasoning About Plans and Actions 187

While the introduction of causality can help simplify the descriptions of
actions and events, we are still left with the problem of specifying the inde-
pendence and causal relationships among events. Indeed, it would appear that
the combinatorial difficulties in expressing all the required independence and
causality axioms are no less formidable than those presented by the original
frame problem.

One way to reduce the combinatorics of the problem is by introducing the
notion of process. This notion can be used to specify the way in which groups
or conglomerates of events depend on one another and the way in which they
can interact with the external world. To do this, the problem domain is con-
sidered to be composed of a number of processes, and the events and fluents of
the domains are classified as being either internal or external with respect to
these processes [Georgeff, 1987; Lansky, 1987]. We then require that there be
no direct causal relationship between internal and external events, so that the
only way the internal events of a given process can influence external events
(or vice versa) is through indirect causation by an event that belongs to neither
category (Figure 2). Within the framework of concurrency theory, these inter-
mediary events (more accurately, event types) are often called ports. Processes
thus impose causal boundaries and independence properties on a problem
domain, and can thereby substantially reduce combinatorial complexity [Geor-
geff, 1987; Lansky, 1987].

In this way I believe much of the difficulty surrounding the frame problem
can be overcome. To make the point more strongly, consider the state of oper-
" ating systems practice fifteen years ago, prior to the widespread use of the no-
tion of process. In those days, the designer of an operating system had to con-
sider, for every single program that the system might execute, whether or not
such execution could interfere with the control state of other programs and thus
affect their computation. But as soon as the formal notion of process was intro-
duced—along the lines I sketched out above—the problem went away. I expect
the same would happen in Al if we paid more attention to some of the con-
cepts of operating systems theory and concurrent programming,

Of course, for the kind of problems we are concerned with, exploiting
these ideas will not be easy. The identifiability of processes depends strongly
on the problem domain. In standard programming systems (at least those that
are well structured), processes can be used to represent scope rules and are
fairly easy to specify. In complex physical systems, it is often the case that
many of the properties of one subsystem will be independent of the majority of
actions performed by other subsystems; thus these subsystems naturally corre-
spond to processes as defined here. Lansky and Fogelsong [1987] give other
examples in which processes are readily specified. In other situations, such
specification might be more complicated. Moreover, in many real-world situa-
tions, dependence will vary as the spheres of influence and the potential for in-
teraction change over time [Hayes, 1985].

188 Georgeff

PROCESS
CAUSALITY
¥ =
- —
~
N /
PORT EVENTS
INTERNAL EVENTS INTERNAL EVENTS

Figure 2

4.3 Muitiagent Planning

Despite the variety of formalisms developed for reasoning about multiagent
domains, relatively few planning systems have been fully implemented. Allen
and Koomen [1983] describe a simple planner, based on a restricted form of
interval logic [Allen, 1984]. While this technique is effective for relatively
simple problems, it is not obvious that the approach would be useful in more
complex domains.

Another issue concerns how separate plans can be combined in a way that
avoids interference among the agents executing the plans. In such a setting, one
could imagine a number of agents each forming their own plans and then, after
communicating their intentions (plans) to one another or a centralized sched-
uler, modifying these to avoid interference. To solve this problem, it is neces-
sary to ascertain, from descriptions of the actions occurring in the individual
plans, which actions could interfere with one another and in what manner
[Georgeff, 1984]. After this has been determined, a coordinated plan that pre-
cludes such interference must then be constructed. This plan can be formed by
inserting appropriate synchronization actions (interagent communications) into
the original plans to ensure that only interference-free orderings will be al-
lowed [Georgeff, 1983]. Stuart [1985] formalized this approach and imple-

Chapter 5 Reasoning About Plans and Actions 189

mented a synchronizer based on techniques developed by Manna and Wolper
[1981].

Lansky and Fogelsong [1987] have developed a multiagent planner that
exploits causal independencies. Unlike the approaches described above, con-
straints between events have to be specified explicitly. However, the system
accommodates a wide class of plan synchronization constraints. Also, the
process of plan synchronization is not limited to a strategy of planning to sepa-
rately achieve each component task and then combining the results. Instead, a
more general, adaptable strategy is used that can bounce back and forth be-
tween local (i.e., single-agent) and global (multiagent) contexts, adding events
where necessary for purposes of synchronization. Planning loci can be com-
posed hierarchically or even overlap.

5 Embedded Systems

Of course, the ability to plan and reason about actions and plans is not much
help unless the agent doing the planning can survive in the world in which it is
embedded. This brings us to perhaps the most important and also most ne-
glected area of planning research—the design of systems that are actually sit-
uated in the world and that must operate effectively given the real-time con-
straints of their environment.

5.1 Execution Monitoring Systems

Most existing architectures for embedded planning systems consist of a plan
constructor and a plan executor. As a rule, the plan constructor plans an entire
course of action before commencing execution of the plan [Fikes and Nilsson,
1971; Vere, 1983; Wilkins, 1985]. The plan itself is usually composed of
primitive actions—that is, actions that are directly performable by the system.
The rationale for this approach, of course, is to ensure that the planned
sequence of actions will actually achieve the prescribed goal. As the plan is ex-
ecuted, the system performs the primitive actions in the plan by calling various
low-level routines. Usually, execution is monitored to ensure that these routines
achieve the desired effects; if they do not, the system may return control to the
plan constructor so that it can modify the existing plan appropriately.

Various techniques have been developed for monitoring the execution of
plans and replanning upon noticing potential plan failure [Fikes and Nilsson,
1971; Wilkins, 1985]. The basis for most of these approaches is to retain with
the plan an explicit description of the conditions that are required to hold for
correct plan execution. Throughout execution, these conditions are periodically
checked. If any condition is discovered to be unexpectedly false, a replanning

190 Georgeff

module is invoked. This module uses various plan modification operators to
change the plan, or returns to some earlier stage in the plan formation process
and attempts to reconstruct the plan given the changed conditions.

However, in real-world domains, much of the information about how best
to achieve a given goal is acquired during plan execution. For example, in
planning to get from home to the airport, the particular sequence of actions
performed depends on information acquired on the way—such as which turnoff
to take, which lane to get into, when to slow down and speed up, and so on. In
such situations, one cannot use a system that plans in full down to the lowest
level of detail. Of course, one might simply use a traditional planner at the
higher levels of planning, but that avoids the issue—that is, how do we plan
with incomplete information, how do we plan to gather information, and how
do we elaborate our plans as we acquire this information.

5.2 Reactive Systems

Real-time constraints pose yet further problems for traditionally structured sys-
tems. First, the planning techniques typically used by these systems are very
time consuming. While this may be acceptable in some situations, it is not
suited to domains where replanning is frequently necessary and where system
viability depends on readiness to act. In real-world domains, unanticipated
events are the norm rather than the exception, necessitating frequent replan-
ning.

A second drawback of traditional planning systems is that they usually
provide no mechanisms for responding to new situations or goals during plan
execution, let alone during plan formation. Indeed, the very survival of an au-
tonomous system may depend on its ability to react quickly to new situations
and to modify its goals and intentions accordingly. These systems should be
able to reason about their current intentions, changing and modifying these in
the light of their possibly changing beliefs and goals. While many existing
planners have replanning capabilities, none have yet accommodated modifica-
tions to the system’s underlying set of goal priorities.

A number of systems developed for the control of robots have a high de-
gree of reactivity [Albus, 1981; Albus, Anthony, and Nagel, 1981]. Even
SHAKEY [Nilsson, 1984) utilized reactive procedures (ILAs) to realize the
primitive actions of the high-level planner (STRIPS), and this idea is pursued
further in some recent work by Nilsson [1985]. Another approach is advocated
by Brooks [1985], who proposes decomposition of the problem into fask-
achieving units in which distinct behaviors of the robot are realized separately,
each making use of the robot’s sensors, effectors, and reasoning capabilities as
needed. This is in contrast to the traditional approach in which the system is
structured according to functional capabilities, resulting in separate, self-con-
tained modules for performing such tasks as perception, planning, and task ex-

Chapter 5 Reasoning About Plans and Actions 191

ecution. Kaelbling [1987] proposes an interesting hybrid architecture based on
similar ideas.

Such architectures could lead to more viable and robust systems than the
traditionally structured systems. Yet most of this work has not addressed the is-
sues of general problem solving and commonsense reasoning; the work is in-
stead almost exclusively devoted to problems of navigation and execution of
low-level actions. It remains to extend or integrate these techniques with sys-
tems that have the ability to completely change goal priorities, to modify,
defer, or abandon current plans, and to reason about what is best to do in light
of the current situation.

5.3 Rational Agents

Another promising approach to providing the kind of high-level goal-directed
reasoning capabilities, together with the reactivity, required for survival in the
real world, is to consider planning systems as rational agents that are endowed
with the psychological attitudes of belief, desire, and intention. The problem
that then arises is specifying the properties we expect of these attitudes, the
ways they interrelate, and the ways they determine rational behavior in a sit-
uated agent.

Amy Lansky and I have been largely concemed with means-ends reason-
ing in dynamic environments, and with the way partial plans affect practical
reasoning and govern future behavior [Georgeff and Lansky, 1986; 1987]. We
have developed a highly reactive system, called a Procedural Reasoning Sys-
tem (PRS), to which is attributed attitudes of belief, desire, and intention
(Figure 3). Because these attitudes are explicitly represented, they can be
manipulated and reasoned about, resulting in complex goal-directed and reflec-
tive behaviors. The system consists of a data base containing current beliefs or
facts about the world, a set of current goals or desires to be realized, a set of
procedures or plans describing how certain sequences of actions and tests may
be performed to achieve given goals or to react to particular situations, and an
interpreter or reasoning mechanism for manipulating these components. At any
moment, the system also has a process stack, containing all currently active
plans, which can be viewed as the system’s current intentions for achieving its
goals or reacting to some observed situation.

The set of plans includes not only procedural knowledge about a specific
domain, but also metalevel plans—that is, information about the manipulation
of the beliefs, desires, and intentions of the system itself. For example, a typi-
cal metalevel plan would supply a method for choosing among multiple rele-
vant plans, for achieving a conjunction of goals, or for deciding how much
more planning or reasoning can be undertaken, given the real-time constraints
of the problem domain.

192 Georgeff

BDI ARCHITECTURE

DATA
~ NPUT MONITOR
BELIEFS PLANS
(Database) (Procedures)
SENSORS
SYSTEM REASONER
INTERFACES (Interpreter) ENVIRONMENT
EFFECTORS
DESIRES INTENTIONS
(Tasks) (Agenda)
DATA || COMMAND
-1 ouUTPUT GENERATOR

Figure 3

The system operates by first forming a partial overall plan, then figuring
out near-terrn means, executing any actions that are immediately applicable,
further expanding the near-term plan, executing further, and so on. At any
time, the plans the system intends to execute (i.e., the selected plans) are struc-
turally partial—that is, while certain general goals have been decided upon,
specific questions about the means to attain these ends are left open for future
reasoning.

While the above work attempts to show how means-ends reasoning may
be accomplished by systems situated in real-world environments, little research
has been done in providing theories of decision making that are appropriate to
resource-bounded agents. Researchers in philosophy, as well as decision
theory, have long been concerned with the question of how a rational agent
weighs alternative courses of action [Jeffrey, 1983]. This work has largely as-
sumed, either explicitly or implicitly, idealized agents with unbounded compu-
tational resources. In reality, however, agents do not have arbitrarily long to
decide how to act, for the world is changing around them while they deliberate.
If deliberation continues for too long, the very beliefs and desires upon which
deliberation is based, as well as the real circumstances of the action, may
change. Dean [1987] discusses some methods whereby a planning system can

Chapter 5 Reasoning About Plans and Actions 193

recognize the difficulty of the problems it is attempting to solve and, depending
on the time it has to consider the matter and what it stands to gain or lose, pro-
duce solutions that are reasonable given the circumstances.

Systems that are situated in worlds populated with other agents also have
to be able to reason about the behaviors and capabilities of these other systems.
This requires complex reasoning about interprocess communication [Appelt,
1985; Cohen and Levesque, 1985], and the ability to infer the beliefs, goals,
and intentions of agents from observations of their behavior [Pollack, 1986;
1987]. The challenge remains, however, to design situated planning systems
capable of even the simplest kinds of rational behavior.

Acknowledgments

The views expressed here owe much to the insight and understanding of the re-
searchers at SRI and CSLI. I wish to thank particularly Michael Bratman,
David Israel, Amy Lansky, Nils Nilsson, Leslie Pack-Kaelbling, Martha Pol-
lack, Stan Rosenschein, Richard Waldinger, and Dave Wilkins.

The writing of this paper has been made possible by a gift from the Sys-
tem Development Foundation, by the Office of Naval Research under Contract
N00014-85-C-0251, and by the National Aeronautics and Space Administra-
tion, Ames Research Center, under Contract NAS2-12521.

References

Albus, J. S., 1981. Brains, Behavior, and Robotics. McGraw-Hill. Peter-
borough, New Hampshire.

Albus, J. S., A. J. Anthony, and R. N. Nagel., 1981. Theory and practice of
hierarchical control. In Proceedings of the Twenty-Third IEEE Computer
Society International Conference.

Allen, J. F., 1984. Towards a general theory of action and time. Artificial Intel-
ligence. 23:123-154.

Allen, J. F. and J. A. Koomen., 1983. Planning using a temporal world model.
In Proceedings of the Eighth International Joint Conference on Artificial In-
telligence. 741-747. Karlsruhe, West Germany.

Appelt, D. E., 1985. Planning English referring expressions. Arrificial Intel-
ligence. 26:1-34.

Bratman, M. Forthcoming. Intention, Plans, and Practical Reason. Harvard
University Press. Cambridge, Massachusetts.

Brooks, R. A., 1983. Planning collision-free motions for pick-and-place opera-
tions. International Journal of Robotics Research. 2(4):19—40.

194 Georgeff

Brooks, R. A., 1985. A Robust Layered Control System for a Mobile Robot.
Technical Report 864. Artificial Intelligence Laboratory. Massachusetts In-
stitute of Technology. Cambridge, Massachusetts.

Brooks, R. A., 1985. Visual map making for a mobile robot. In Proceedings of
IEEE Conference on Robotics and Automation. St. Louis, Missouri.

Cohen, P. R. and H. J. Levesque., 1985. Speech acts and the recognition of
shared plans. In Proceedings of the Twenty-Third Conference of the Asso-
ciation for Computational Linguistics. 49-59. Stanford, California.

Davidson, D., 1980. Actions and Events. Clarendon Press. Oxford, England.

Davis, L. H., 1979. Theory of Action. Foundations of Philosophy Series. Pren-
tice-Hall. Englewood Cliffs, New Jersey.

Dean, T., 1987. Intractability and time-dependent planning. In Reasoning about
Actions and Plans: Proceedings of the 1986 Workshop. 245-266. Morgan
Kaufmann Publishers. San Mateo, California.

Dowty, D. R., R. E. Wall, and S. Peters., 1981. Introduction to Montague
Semantics. Synthese Language Library. D. Reidel Publishing Company.
Boston, Massachusetts.

Fikes, R. E. and N. J. Nilsson., 1971. STRIPS: a new approach to the applica-
tion of theorem proving to problem solving. Artificial Intelligence. 2:189—
208.

Georgeff, M. P., 1983. Communication and interaction in muitiagent planning.
In Proceedings of the Third National Conference on Artificial Intelligence.
125-129. Washington, D. C.

Georgeff, M. P., 1984. A theory of action for multiagent planning. In Proceed-
ings of the Fourth National Conference on Artificial Intelligence. 121-125.
Austin, Texas.

Georgeff, M. P. and A. L. Lansky., 1986. A System for Reasoning in Dynamic
Domains: Fault Diagnosis on the Space Shuttle. Technical Note 375. Artifi-
cial Intelligence Center, SRI International. Menlo Park, California.

Georgeff, M. P., 1987. Actions, processes, and causality. In Reasoning about
Actions and Plans: Proceedings of the 1986 Workshop. 99-122. Morgan
Kaufmann Publishers. San Mateo, California.

Georgeff, M. P. and A. L. Lansky., 1987. Reactive reasoning and planning: an
experiment with a mobile robot. In Proceedings of the Sixth National Con-
ference on Artificial Intelligence. Seattle, Washington.

Gouzenes, L., 1984. Strategies for solving collision-free trajectories problems
for mobile and manipulator robots. The International Journal of Robotics
Research. 3(4):51-65.

Green, C. C., 1969. Application of theorem proving to problem solving. In
Proceedings of the First International Joint Conference on Artificial Intel-
ligence. 219-239. Washington, D. C.

Harel, D., 1979. First Order Dynamic Logic. Lecture Notes in Computer
Science. 68. Springer-Verlag. New York, New York.

Chapter 5 Reasoning About Plans and Actions 195

Hayes, P. J., 1973. The frame problem and related problems in artificial intel-
ligence. In Elithorn A. and D. Jones, editors. Artificial and Human Thinking.
45-59. Jossey-Bass. San Francisco, California.

Hayes, P. J., 1985. The second naive physics manifesto. In Readings in Knowl-
edge Representation. 467-485. Morgan Kaufmann Publishers. San Mateo,
California.

Jeffrey, R., 1983. The Logic of Decision. University of Chicago Press. Chi-
cago, Illinois.

Kaelbling, L. P., 1987. An architecture for intelligent reactive systems. In Rea-
soning about Actions and Plans: Proceedings of the 1986 Workshop. 395-
410. Morgan Kaufmann Publishers. San Mateo, California.

Lansky, A. L., 1987. A representation of parallel activity based on events,
structure, and causality. In Reasoning about Actions and Plans: Proceedings
of the 1986 Workshop. 123-159. Morgan Kaufmann Publishers. San Mateo,
California.

Lansky, A. L. and D. S. Fogelsong., 1987. Localized representation and plan-
ning methods for parallel domains. In Proceedings of the Sixth National
Conference on Artificial Intelligence. Seattle, Washington.,

Lifschitz, V., 1987. On the semantics of STRIPS. In Reasoning about Actions
and Plans: Proceedings of the 1986 Workshop. Morgan Kaufmann Publish-
ers. San Mateo, California.

Manna, Z. and R. J. Waldinger., 1987. A theory of plans. In Reasoning about
Actions and Plans: Proceedings of the 1986 Workshop. Morgan Kaufmann
Publishers. San Mateo, California,

Manna, Z. and P. Wolper., 1981. Synthesis of Communicating Processes from
Temporal Logic Specifications. Technical Report STAN-CS-81-872. Com-
puter Science Department, Stanford University. Stanford, California.

McCarthy, J. and P. J. Hayes., 1969. Some philosophical problems from the
standpoint of artificial intelligence. Machine Intelligence. 4:463-502.

McDermott, D., 1982. A temporal logic for reasoning about processes and
plans. Cognitive Science. 6:101-155.

Newell, A. and H. A. Simon., 1963. GPS, a program that simulates human
thought. In E. A. Feigenbaum and J. Feldman, editors. Computers and
Thought. 279-293. McGraw-Hill, New York.

Nilsson, N. J., 1980. Principles of Artificial Intelligence. Morgan Kaufmann
Publishers. San Mateo, California. '
Nilsson, N. J., 1984. Shakey the Robot. Technical Note 323. Artificial Intel-

ligence Center, SRI International. Menlo Park, California.

Nilsson, N. J., 1985. Triangle Tables: A Proposal for a Robot Programming
Language. Technical Note 347. Artificial Intelligence Center, SRI Inter-
national. Menlo Park, California.

Nishimura, H., 1980. Descriptively complete process logic. Acta Informatica.
14:359-369.

196 Georgeff

Pednault, E. P. D., 1986. Toward a Mathematical Theory of Plan Synthesis.
Ph.D. thesis. Department of Electrical Engineering, Stanford University.
Stanford, California.

Pelavin, R. and J. F. Allen., 1986. A formal logic of plans in a temporally rich
domain. Proceedings of the IEEE. Special Issue on Knowledge Representa-
tion. 74:1364—-1382.

Pollack, M. E., 1986. Inferring Domain Plans in Question Answering. Ph.D.
thesis, Computer Science Department, University of Pennsylvania. Pitts-
burgh, Pennsylvania.

Pollack, M. E., 1987. A model of plan inference that distinguishes between the
beliefs of actors and observers. In Reasoning about Actions and Plans: Pro-
ceedings of the 1986 Workshop. 279-295. Morgan Kaufmann Publishers.
San Mateo, California.

Prior, A. N., 1967. Past, Present and Future. Clarendon Press. Oxford, Eng-
land.

Reiter, R., 1980. A logic for default reasoning. Artificial Intelligence. 13:81—
132.

Rosenschein, S. J., 1981. Plan synthesis: a logical perspective. In Proceedings
of the Seventh International Joint Conference on Artificial Intelligence. 331-
337. Vancouver, British Columbia.

Shoham, Y., 1986. Chronological ignorance: time, nonmonotonicity, necessity
and causal theories. In Proceedings of the Fifth National Conference on Ar-
tificial Intelligence. 389-393. Philadelphia, Pennsylvania.

Stuart, C.)., 1985. Synchronization of Multiagent Plans Using a Temporal
Logic Theorem Prover. Technical Note 350. Artificial Intelligence Center,
SRI International. Menlo Park, California.

Tate, A., 1984, Planning in Expert Systems. D. A. 1. Research Paper 221. Uni-
versity of Edinburgh.

Vere, S., 1983. Planning in time: windows and durations for activities and
goals. IEEE Transactions on Pattern Analysis and Machine Intelligence.
5(3):246-267.

Waldinger, R., 1977. Achieving several goals simultaneously. Machine Intel-
ligence. 8:94-136.

Wilkins, D. E., 1985. Recovering from execution errors in SIPE. Comput-
ational Intelligence. 1:33-45.

Chapter

o]

Search: A Survey of Recent
Results

Richard E. Korf

Computer Science Department
University of California, Los Angeles

1 Introduction

This chapter surveys the literature of search in Al, with a focus on recent re-
sults in the field. The best reference for the state-of-the-art as of 1984 is Judea
Pearl’s book Heuristics [Pearl, 1984] A more recent survey of the field is an
article in the Annual Review of Computer Science [Pearl and Korf, 1987].
Search has a long and distinguished history in artificial intelligence. The
earliest Al programs were search programs. The reason behind this is that
higher-level problem solving was the first aspect of intelligence to receive the
attention of Al researchers. Problems such as theorem proving and playing
chess were thought to embody the essence of intelligence. Problems such as vi-
sion and natural language didn’t seem very difficult at first since young child-
ren could solve them. Paradoxically, we now have a situation where in certain
domains, such as chess or symbolic mathematics, the best computer programs
perform comparably to human experts, yet in areas such as language and vi-
sion, the best programs can’t even reproduce the behavior of two-year-old
children. This paradox becomes less surprising when we observe that problems
such as vision have been attacked by evolution and natural selection over mil-
lions of years, while games such as chess are relatively recent inventions and
performance in that domain doesn’t convey any particular survival value.

197

198 Korf

1.1 Early History

The literature of heuristic search starts with an article by Claude Shannon, en-
titled “Programming a Computer for Playing Chess” [Shannon, 1950]. Even
though he didn’t actually implement a computer program, he laid out most of
the theory of heuristic search for two-player games.

One of the earliest Al programs was the Logic Theorist of Newell and
Simon [Newell et al, 1963]. The Logic Theorist proved theorems in proposi-
tional calculus using heuristic search.

Another very early effort, in the late 50s, was Samuel’s pioneering pro-
gram that played checkers as well as the best humans [Samuel, 1963]. What
was especially notable about Samuel’s program was that it was one of the first
machine learning programs. It automatically improved its play with experience.

Other heuristic search programs prior to 1960 include Gelernter’s
geometry theorem proving machine [Gelemnter, 1963], Slagle’s symbolic inte-
gration program [Slagle, 1963}, and Tonge’s assembly-line balancing proce-
dure {Tonge, 1963].

Thus, search is as old as Al, with the original efforts in artificial intel-
ligence aimed at higher-level reasoning and problem solving [Newell, 1969]. It
was thought at one point that expert performance would emerge from very
general problem solving algorithms, the so-called weak methods. That view has
shifted somewhat to focus on more knowledge-intensive efforts, but it’s still
the case that one of the important goals of Al is to develop and analyze general
problem solving paradigms. Heuristic search is still one of the most successful.

1.2 Problem Types

The classic problems that have been attacked by search algorithms fall into
three general classes: path-finding problems, two-player games, and constraint-
satisfaction problems.

Canonical examples of pathfinding problems include puzzles such as the
Eight Puzzle and Rubik’s Cube, and the Traveling Salesman Problem. These
are called pathfinding problems because the task is to find a sequence of opera-
tions that map an initial state to a goal state. Theorem proving is another ex-
ample of a pathfinding problem, since the task is to find a sequence of primi-
tive deductions that map the given state of knowledge of the problem to the
statement to be proven.

Another class of search problems is two-player games. While chess,
checkers, and othello have received the most attention by Al researchers,
others including backgammon and go have been studied.

Constraint satisfaction is the third category of search problems, and forms
a third parallel thread of the search enterprise. The classic example of a con-
straint-satisfaction problem is the Eight Queens Problem. The task is to place

Chapter 6 Search: A Survey of Recent Results 199

eight queens on a chessboard, such that no two queens are attacking each other
along the same row, column, or diagonal. Another example is map coloring,
where the task is to color the regions of a map with a minimum number of
colors so that no two adjacent regions have the same color.

Research in all three of these areas has proceeded in parallel but somewhat
independently, even though there are strong similarities among them. One of
the open research problems is to unify all three areas into a single theory of
heuristic search. We are closest to this goal with respect to path-finding prob-
lems and two-player games, and steps toward unifying these two will be dis-
cussed later.

This represents a top-level view of heuristic search. We will discuss path-
finding algorithms in some depth, and treat two-player games and constraint
satisfaction problems in less detail. This is less an indication of the relative im-
portance of the areas than a reflection of the interests and expertise of this
author. In any case, many of the same concepts that emerge from path-finding
algorithms also surface in two-player games and constraint-satisfaction algo-
rithms as well, and need not be revisited in each domain.

1.3 Problem Spaces

Why is search considered such a fundamental notion in AI? The reason is the
problem space hypothesis, due to Allen Newell and Herbert Simon [1972]. The
strong version of the hypothesis [Newell, 1980] says that all goal-oriented
symbolic activity occurs in a problem space. The claim is that search in a prob-
lem space is a completely general model of intelligence. The General Problem
Solver [Newell and Simon, 1963} was an early implementation of the theory,
and the latest instantiation is the SOAR system [Laird et al., 1987], which
completely embraces the problem space model, and seriously pursues the idea
that everything that we think of as exhibiting intelligence can be cast as search
in a problem space.

A problem space consists of two components: a set of states and a collec-
tion of operators. The states of the problem are configurations of the world or
of the problem to be soived. The operators are the actions that map one state of
the world to another state.

In addition to a problem space, a problem instance is a particular problem
to be solved. A problem instance can be viewed as a problem space together
with two additional components, an initial state that one starts out in, and a set
of goal states or desired configurations of the world.

To be more precise, there are actually two different ways of characterizing
a goal state. One is to explicitly give the goal state. For example, in a problem
such as Rubik’s Cube, the goal state is explicitly specified as that particular
state in which every side of the puzzle shows only a single color. Another way
of describing the goal state is to give a test for the solution. For example, in

200 Kort

the Eight Queens Problem, the goal state isn’t given explicitly, since there
wouldn’t be any problem if it was. Rather, a test or criteria for determining if
one has reached the goal is given, namely that eight queens be on the board
such that no two are attacking each other. Thus, all that is really needed is a
test for a goal state, with an explicit goal state being a special case of such a
test.

The task, in the pathfinding model, is to find a sequence of operations that
maps the initial state to the goal state. The notion of search comes from the
fact that in general there is more than one operator that can be applied to a
given state. In order to find a solution, a systematic trial and error procedure is
applied until a goal is reached.

If it were the case that from any given state there was exactly one operator
to apply, then the problem would be quite easy. At any given state, one would
simply determine which operator to apply, apply that operator, and continue
until the problem was solved. A “search” in which exactly one operator is ap-
plicable to each state, is often called an algorithm. One can view search tech-
niques as extending from brute-force techniques, where there is no information
as to which operator to apply, to deterministic algorithms, in which there is
sufficient knowledge of the problem to determine exactly what operator to
apply to each state.

One normally doesn’t think of sorting a list of numbers, for example, as a
search problem. It does, however, exist in a problem space. The states are the
different possible permutations of the list, the initial state is the current permu-
tation of the elements, and the goal state is the sorted permutation. The opera-
tors might be to swap two elements, for example. What distinguishes this prob-
lem from traditional search problems is that we have enough knowledge of the
problem that we know exactly which operator to apply at each stage to get to a
solution. This knowledge is typically expressed as a deterministic algorithm for
sorting.

While the problem space is a fairly general model, it will be illustrative to
instantiate it with several examples. The first is the problem of road navigation,
where the task is to plan a route to drive from one point to another on a net-
work of roads. The states are the different locations one could be in. The
primitive operators are sections of road between two adjacent intersections. A
primitive operator is an operator that, when applied, doesn’t admit any interme-
diate states from which other operators can be applied. Given that definition of
a primitive operator, then a section of road between two adjacent intersections
becomes a primitive, since we're not allowed to get off between intersections
or drive on the sidewalk.

The initial state in such a problem is where we start out, and the goal state
is where we want to end up. The reason that the problem is interesting is that
for most intersections, there’s more than one road to take. The problem is to
find the right sequence of roads to get from the initial state to the goal state.

Chapter 6 Search: A Survey of Recent Results 201

1.4 Search Trees

The standard abstraction of a problem space is a search graph. The nodes of
the graph represent the states, and the edges of the graph represent the opera-
tors. A search tree is a special case of a search graph. The difference is that in
general a graph may have cycles whereas a tree has no cycles. Most problems
that we’re actually interested in will have a graph structure, such as the net-
work of roads in an area. Any graph, however, can be modelled by a tree, at
the cost of introducing some duplicate nodes. When a cycle is encountered,
two paths lead to the same state, but in the tree representation, that state will be
represented by two different nodes that are different instances of the same data
structure. Thus, any graph can be represented as a tree, with a consequent in-
crease in the number of nodes. It’s a reasonable simplification if there are few
cycles in the graph or if they’re fairly long. It’s unreasonable if there are a very
large number of fairly small cycles. The advantage of the tree structure over a
general graph is that the absence of cycles simplifies many of the search algo-
rithms.

Two important parameters of a search graph are called the branching fac-
tor and the depth. The reason they’re important is that the performance of most
search algorithms is characterized in terms of these parameters.

The branching factor is essentially the number of choices available at a
given node. The branching factor of a node is the number of operators that can
be applied to that node to yield a new state. Typically, the operator used to
generate the given state is excluded, even if it’s invertible. In other words, we
look at the number of new states that can be generated from a particular node.
In general, we're interested in an average branching factor computed by aver-
aging the branching factors of all the nodes in the graph.

The other parameter of interest is the depth of the solution. The depth is
the length of the shortest solution path, in terms of number of operator applica-
tions. Taken together, the branching factor and the depth characterize the diffi-
culty of performing a search in a particular problem space.

Figure 1 is an example of a search tree. This is a classic problem called
the Eight Puzzle. The puzzle is a 3 x 3 frame of movable square tiles, with one
empty position called the blank. The legal operators are: to move a tile which
is horizontally or vertically adjacent to the blank position into that position.
The task is to rearrange the tiles from some given initial configuration to a par-
ticular goal configuration.

In the figure, we find nodes with branching factors of four, two, and one.
The average branching factor for this problem turns out to be the square root of
three, or about 1.7. If one of the nodes in the bottom row of the figure were the
goal state, then the depth of solution for this problem instance would be three
moves.

202 Kort

1{2]3
8| |4
716|5
1{ |3 1/2]3 1/2]3 1123
82(4 84 8164 814
716]5 7]6|5 7] |5 7]6\5
1{3] |13 1{2 1{2|3 1{2]3] [1]2{3 213] [1]2]3
8/2(4| |8/2/4] |8/4/3| (8/4|5] |8]6/4| (864 184 |7/8]4
71615 171615] (716[5] (716 7151 (715 76|15 6(5
8|1i3 [1/3/4 1] 2] [1]2(3 (23] [1/2]3] |2] 3] [1i{2}3
24| (8]2 814(3] (8]4(5 64| (8(6 1,84, [7/8/4
7/6(5| [7]6/5] (7]6(5] (7] (6] (87|5] |7/5(4) 17,6!5] (6] |5

Figure 1 Eight Puzzle Search Tree

John Gaschnig [1979] called the Eight Puzzle the Drosophila or fruit fly of
search in Al The reason is that this toy problem serves as a useful experimen-
tal test bed for research on search algorithms. The features of this problem that
make it suitable for such a role are that it is extremely simple to represent and
manipulate, yet no efficient algorithms are known for finding optimal solutions.
In fact, the generalization of the problem to arbitrary sizes was recently shown
to be NP-complete [Ramer and Warmuth, 1986]. There do, however, exist
heuristic evaluation functions that dramatically improve search efficiency in
this problem.

1.5 Search Efficiency

The efficiency of algorithms is the central concern in heuristic search. The rea-
son is that search is a completely general problem-solving algorithm. Any
problem that can be formulated in a problem space can be solved by a search
algorithm. Given claims for generality of problem spaces, then search becomes
a very general mechanism for intelligence. What limits the applicability of

Chapter 6 Search: A Survey of Recent Results 203

heuristic search is the efficiency with which it can be performed. Thus, the
central issue in search research, including single-agent problems, two-player
games, and constraint satisfaction, is efficiency. The efficiency of search algo-
rithms is typically measured along three dimensions: the cost of the solution
generated, the time required for the search, and the memory required for the
search.

If all of the edges or operators of the problem space have the same cost,
then solution cost is characterized by the length of the solution path. More
generally, however, operators may have different costs. For example, different
sections of road may have different lengths or require differing amounts of
time or fuel to traverse. In that case, all the relevant costs are lumped into a
single parameter for each operator, depending on some utility function. The
cost of a solution, then, becomes the sum of the edge costs along the corre-
sponding path. An optimal solution is one whose cost is less than or equal to
the cost of all possible solutions to a given problem instance.

Two other important measures of efficiency are the amount of time the al-
gorithm takes to find the solution, and the amount of memory required to
successfully execute the algorithm. The cost of the solution should not be con-
fused with the time required for search. Even though they may be measured in
the same units, in one case we’re looking at the amount of time to plan a solu-
tion, whereas in the other case we are concerned with the cost of actually ex-
ecuting that solution.

1.6 The Knowledge Dimension

As mentioned above, the original goal of Al was to develop completely general
problem-solving algorithms that would apply across a wide spectrum of
domains. What has been discovered in almost every area of Al, however, is
that in order to achieve better performance, one often needs more domain-
specific knowledge. This gives rise to a spectrum of algorithms along what can
be called the knowledge dimension. This spectrum ranges from very general
and hence knowledge-poor algorithms to very specific but knowledge-rich
methods. It amounts to the familiar trade-off between generality and power.

Search algorithms tend to be found near the general and knowledge-poor
end of the spectrum. Even so, different search algorithms differ in their posi-
tion on this spectrum. Three convenient points to discuss, in increasing order of
knowledge, are the brute-force searches, the heuristic searches, and various ab-
straction techniques.

A brute-force search algorithm can be characterized as an algorithm that
uses no knowledge about the problem other than the problem space itself. In
other words, the set of states, the set of operators, the initial state, and a test for
the goal state. As one would expect, these are very general but very inefficient
algorithms.

204 Korf

The next point in the knowledge dimension includes heuristic search algo-
rithms. The notion of heuristic search is to add a small amount of additional
domain-specific information. That information, called a heuristic evaluation
function, estimates the likelihood of success or the distance to the goal. These
functions will be discussed in more detail below.

Many problem-solving techniques, such as subgoaling, macro-operators,
and abstraction, can be viewed as search algorithms. What distinguishes them
from more typical heuristic search algorithms is that other sources of knowl-
edge are brought to bear. This also will be discussed in more detail.

2 Brute-Force Searches

We begin by looking at the brute-force search algorithms. A brute-force search
algorithm uses no knowledge other than a set of states, a set of operators, an
initial state, and a test for a goal. The classic algorithms are breadth-first
search, and depth-first search. We’ll also discuss uniform-cost search and
depth-first iterative-deepening. Finally, we’ll consider bidirectional search. In
the descriptions of the algorithms, the term generate means to create the data
structure corresponding to a particular node, whereas the term expand means to
generate all the children of a node.

2.1 Breadth-First Search

Figure 2 shows a search tree along with the order in which the nodes would be
generated by a breadth-first search. Breadth-first search explores the tree one
level at a time, generating all the nodes at a given depth before generating any
nodes at a greater depth.

Figure 2 Breadth-First Search

Chapter 6 Search: A Survey of Recent Resuits 205

What is the performance of breadth-first search? It should be clear that
once the algorithm generates a goal node, the length of the path from the initial
state to the goal node will be as short as possible. In this sense, breadth-first
search finds an optimal solution.)

In order to determine the running time, or time complexity, of the algo-
rithm, let b be the branching factor and d the solution depth. The running time
of the algorithm is proportional to the number of nodes generated, since each
node can be generated in a fixed constant amount of tlme The number of
nodes at depth d'is b%. The number of nodes one level up is b+, two levels up
is *2, and so on. The 11m1t of the sum of these terms as d goes to infinity
asymptotlcally approaches 5%, since all the smaller terms grow vanishingly
small in relation to the dommant term. We say that the asymptotic time com-
plexity is of order b or O(b).

The drawback of breadth first search is its memory requirement. To run
this algorithm requires O(b) memory. The reason is that the space is propor-
tional to the number of nodes saved, and in order to generate the next level of
the tree, the entire previous level of the tree must be stored in memory. In
practice, an implementation of breadth-first search on a typical computer usu-
ally exhausts the available memory quite quickly. This is due to the ratio of
processor speed to the amount of memory on standard computer configura-
tions. Computer designer Gene Amdahl is credited with coining what has been
termed “Amdahl’s law”: For every million instructions per second (MIP) of
processor speed, one needs approximately a million bytes of memory. This
rough guideline balances the processing speed and memory capacity of a com-
puter system. It is also a fairly good empirical generalization, in that if one ex-
amines a fairly wide range of machines, one finds for every MIP of processor
speed about a megabyte of memory. Let’s assume that a new state can be
generated in a single instruction, and that it takes a byte of memory to store a
state. Under these assumptions, memory is exhausted in one second. If we
modify those numbers a little, then perhaps we run out of memory in ten sec-
onds or a minute. In practice, however, breadth-first search tends to run out of
space before we run out of patience.

2.2 Uniform-Cost Search

In the above discussion, we assumed that all edges had the same cost. If that is
not the case, then breadth-first search can be generalized to uniform-cost
search. Instead of expanding nodes in order of their depth from the root, uni-
form-cost search generates nodes in order of their total cost from the root.
Thus, at each step the next node expanded is the one whose total cost from the
root is lowest. If all edge costs are the same, then uniform-cost search degener-
ates to breadth-first search, and hence its performance is entirely analogous to
that of breadth-first search. This algorithm is also known in the computer

206 Korf

science community as Dijkstra’s single-source shortest-path algorithm on a
graph [Dijkstra, 1971]. It also suffers the same memory constraint as breadth-
first search.

2.3 Depth-First Search

An algorithm that remedies the memory limits of breadth-first and uniform-
cost search is depth-first search. Figure 3 shows the order in which nodes
would be generated by a depth-first search. While breadth-first search always
expands next the first unexpanded node generated, depth-first search always
generates next a child of the last node to be generated. Both algorithms can be
implemented using a list of unexpanded nodes, with the only difference being
that managing the list as a first-in first-out queue produces breadth-first search
whereas treating the list as a last-in first-out stack produces depth-first search.

The advantage of depth-first search is that its space requirement is propor-
tional to the depth of the search. The reason is that the algorithm only needs to
store a stack of the nodes on the path from the root to the current node. Thus,
the memory is only linear in the search depth, as opposed to exponential for
breadth-first search. The time complexity of depth-first search is still O(b),
since it generates the same set of nodes as breadth-first search, but simply in a
different order.

The problem with depth-first search is that if the search tree doesn’t have a
natural termination, such as the Eight Puzzle tree, for example, then the algo-
rithm may never terminate. It will proceed down the first branch forever, un-
less a solution happens to lie along that branch. In order to guarantee termina-
tion on infinite trees, an arbitrary cutoff depth must be imposed, beyond which
the search will not extend.

Figure 3 Depth-First Search

Chapter 6 Search: A Survey of Recent Results 207

The question is how to choose that cutoff depth. Ideally, the cutoff depth ¢
should equal the solution depth d, so that the solution will be found without ex-
pending any additional effort. The difficulty is that the solution depth is almost
never known in advance of actually solving the problem. In fact, for problems
that are too large to be searched exhaustively, the worst case optimal solution
lengths are unknown. For example, in the Eight Puzzle, an exhaustive search of
the entire state space shows that no two states are more than 31 moves apart.
For a slightly larger problem, such as the 4 x 4 Fifteen Puzzle, the maximum
distance between a pair of states is unknown, since an exhaustive search of the
entire space is not feasible.

Given that the solution depth is not known a priori, a cutoff depth ¢ must
be chosen. If ¢ is less than d, the algorithm terminates without finding a solu-
tion. If ¢ is greater than d, then the first solution found may not be an optimal
one. This can be remedied by completing the search to the depth of the last so-
lution found, and returning the best solution. In that case, however, a very large
price in running time may be paid relative to breadth-first search, since the
time complexity grows exponentially with search depth.

2.4 Depth-First Ilterative-Deepening

Depth-first iterative-deepening (DFID) {Korf, 1985b] is a brute-force search al-
gorithm that resolves these problems. The intuition behind the algorithm is to
dynamically set the cutoff depth c. At first, ¢ is set to a very small value, and
then incrementally increased until the solution is found.

Figure 4 Depth-First lterative-Deepening

208 Korf

DFID first appears in the literature in a description of the Northwestern
Chess 4.5 program of Slate and Atkin [1977]. In a two-player game, a move
must be made after a certain amount of time, and moves based on incomplete
searches are very unreliable. The problem is how to set the search horizon so
that the search will complete just as a move must be made. Since that’s very
difficult to do, Chess 4.5 first searched to a shallow horizon. If more time re-
mained after that, the entire search was rerun with a horizon of one move
deeper. These iterations continued until time ran out, at which point the move
recommended by the last completed search was made. The application of DFID
to single-agent problems was discovered independently by several researchers
[Stickel and Tyson, 1985; Korf, 1985b].

The algorithm consists of a sequence of depth-first searches. The first it-
eration has a depth cutoff of one. If the solution is found, the algorithm termi-
nates. Otherwise, the depth cutoff is increased by one and a complete depth-
first search to the new depth is performed, ignoring the results of the previous
search. While this seems a bit wasteful, we’ll see below that it has a minimal
impact on performance. The iterations continue, increasing the cutoff depth by
one each time until the solution is found. Figure 4 shows the order in which
nodes would be generated by a depth-first iterative-deepening search. Note that
many nodes are generated by more than one iteration.

The first thing to observe about DFID is that the solution lengths it pro-
duces are optimal. One way to see this is that the order in which this algorithm
generates new nodes is the same order as that of breadth-first search. In other
words, with each iteration, another level of the tree is generated for the first
time. Thus, once a solution is found, it’s a shortest solution. If all edge costs
are the same, this translates to an optimal solution. If the edge costs differ then
DFID must be modified by replacing depth increments with cost increments.
This modification will be discussed further in the context of heuristic search.

Since at any given point DFID is performing a depth-first search, it only
maintains a stack of nodes. Furthermore, since the algorithm terminates when it
finds a solution at depth d, the stack will never grow deeper than d. Thus, the
memory required by DFID is linear in the solution depth 4.

The remaining issue is the search time. On the surface it seems to be a
very wasteful algorithm, since a large number of nodes are regenerated in each
iteration. In fact, all the nodes except those at the final search frontier are
generated more than once. This doesn’t affect the asymptotic performance,
however, because in an exponentially growing tree, most of the nodes are on
the bottom level. Thus the extra work in the shallower levels doesn’t affect the
asymptotic complexity. Even with a branching factor of two, the number of
nodes in the bottom level is one greater than all the nodes higher in the tree.
With larger branching factors, the ratio is much higher.

One way of seeing that the asymptotic time complexity of DFID is O(bd)
is that the final iteration has an asymptotic complexity of O(bd) since it’s a

Chapter 6 Search: A Survey of Recent Results 209

depth ﬁrst search to depth d. The next to last iteration has a time complexity of
O(b) since it’s a depth-first search to depth d-1, and similarly for the re-
maining iterations. Summmg each of these terms results in an overall asymp-
totic time complexity of O(b) for DFID.

We can also prove that this algorithm is the best one can do under the as-
sumptions of brute-force search. The precise statement of the theorem is that
DFID is asymptotically optimal in time and space over all brute-force shortest
path algorithms on a tree. Without going into all the details [Korf, 1985b],
here’s a sketch of the proof. The fact that it doesn’t use any additional knowl-
edge and finds an optimal solution qualifies it as a brute-force shortest path al-
gorithm.,

The time it takes is O(b). How do we know that there isn’t some other al-
gorithm that is guaranteed to find an optimal solution and takes less time?
Well, assume that there is such an algorithm. Since 1t takes less than b° time,
this hypothetical algorithm must examine less than b% nodes. Then there must
be at least one node at depth d in the tree that the algorithm doesn’t examine.
What we do is construct a problem in which the only solution is that one node
that our algorithm misses, and hence it won’t find the solution to that problem.
Thus, our algorithm fails on at least one problem, disqualifying it from con-
sideration. Therefore, any algorithm must take b" time.

The memory required by DFID is O(d). Again, how do we know that there
isn’t some algorithm that solves the same problem but uses less memory?
From the above argument, we know that any algorithm for this problem has to
take b¢ time. A simple result from complexity theory says that any algorithm
that takes f{n) time must use at least log f{n) space [Hopcroft and Ullman,
1979]. The reason is that in order to take f{n) time and then terminate without
looping, the algorithm must be able to store f{n) distinct machine states, which
requires log f{n) bits of storage. Since any algorithm for our problem must take
b? time, then it must use log blord space.

2.5 Backward Chaining

Since DFID is the best one can do without additional constraints on the prob-
lem, it’s time to start adding such constraints. The first step in that direction
leads to backward chaining. The idea of backward chaining is that instead of
searching forward from the initial state to the goal state, one can search back-
ward from the goal state until the initial state is reached. What’s required to do
backward chaining is an explicit goal state. One can’t perform backward chain-
ing on a problem such as the Eight Queens Problem, since we don’t have an
explicit goal state to work backward from. All we have is a test for the goal.
Similarly, one can’t do backward chaining on chess since there are a very large
number of goal states or checkmate positions.

210 Korf

Given an explicit goal state, as in the Eight Puzzle for example, one can
perform backward chaining. For problems such as the Eight Puzzle, in which
forward and backward branching factors are the same, the search is equally
efficient in either direction, hence it doesn’t matter which direction one
searches.

Other problems, however, have different forward and backward branching
factors. Given a graph where the backward branching factor is less than the
forward branching factor, then backward chaining is a good idea. The reason is
that the solution depth is the same in either case, but the complexity of the
search is a function of the branching factor and the solution depth.

An example where this occurs is the problem of theorem proving. In
theorem proving, forward chaining amounts to starting with what’s given in a
particular problem, along with the axioms of the system, and seeing what can
be deduced by the application of a single rule of inference. In general, there’s a
very large number of things that can be proved in one step from a given state-
ment of a problem, most of them irrelevant to the particular problem at hand.

Backward chaining, on the other hand, corresponds to taking the statement
that is to be proved, and determining what will allow us to conclude that state-
ment in a single inference step. In theorem proving, backward chaining is al-
most always used in preference to forward chaining. The reason is that, in
general, there are relatively few things that will imply a given statement in a
single inference. Thus the backward branching factor is less than the forward
branching factor, and backward chaining is more efficient.

2.6 Bidirectional Search

Even if the forward and backward branching factors are the same, one can
combine forward chaining and backward chaining to produce bidirectional
search. The study of bidirectional search was pioneered by Ira Pohl [1971].

The idea is to search forward from the initial state and backward from the
goal state until the search frontiers meet in the middle. In principle, the two
searches occur simultaneously, but in practice the algorithm timeshares be-
tween the two searches.

Bidirectional search still guarantees an optimal solution. By the time that
each search reaches a depth of half the optimal solution, the frontiers will con-
tain the end points of all paths of that depth, including two paths that together
form an optimal solution. They will have a single node in common and the al-
gorithm will return an optimal solution.

The time complexity of bidirectional search is significantly less than that
of unidirectional search, however. Since two searches are performed to half the
solution depth, the time is O(Zbd/z), which is O(bdfz). Thus, bidirectional
search cuts the exponent of the search time in half, a very significant savings.

Chapter 6 Search: A Survey of Recent Results 211

The cost of that improvement, however, is memory. To implement a bi-
directional search, at least one of the search frontiers must be stored in memory
in order to know when a match has been found with the other search frontier.
While the naive implementation stores them both, one can store only one and
perform a depth-first search 1n the other direction. The memory required to
store one of the frontiers is O(b)

Interestingly, multiplying the time and the space requirements of bi-
directional search resuits in 0(b) which is the time requirement of uni-
directional search. Thus, one way to think about bidirectional search is that it
provides a multiplicative space-time trade-off. For problems and machines in
which sufficient memory is available, bidirectional search reduces the amount
of time drastically. The limiting factor, however, is memory, as is the case with
breadth-first search. In both cases, the time and space complexities are equal,
typically resulting in memory being exhausted before time.

2.7 Combinatorial Explosion

The problem with all brute-force search algorithms is that their time complexi-
ties grow exponentially with problem size. This is called combinatorial explo-
sion, and its effect is that the size of problems that can be solved with these
techniques is quite limited. For example, the Rubik’s Cube problem space con-
tains approximately 4 x 10'® nodes. If we want to solve this problem with
brute-force search, even if we assume that we can manipulate a computer
model of the puzzle at a rate of a million twists per second, on the average it
would take almost a m11110n years. Even worse, the complete chess tree is esti-
mated to have about 10'2° nodes in it. Even relatively small problems, such as
the Fifteen Puzzle, generate search spaces that are large enough, ten trillion
nodes in this case, to render brute-force search techniques completely impracti-
cal.

3 Heuristic Search

The standard Al technique for coping with combinatorial explosion is to add
more knowledge to reduce the complexity. Heuristic search adds a small
amount of knowledge to a problem space. Surprisingly, a small amount of
knowledge often has a fairly dramatic effect on the efficiency of a search algo-
rithm.

The term heuristic search has two somewhat different meanings in the Al
literature: a general meaning, and a more specialized technical meaning. In a
general sense, the term heuristic is often used for any advice or rule of thumb
that is often effective, but isn’t guaranteed to work in every case. For example,

212 Korf

to drive from one point to another, a good heuristic is to select roads that go in
the direction of the goal. While this is certainly a good general rule, it often
must be violated due to various constraints. Much of artificial intelligence can
be characterized as a collection of heuristic techniques of one sort or another.

3.1 Heuristic Evaluation Functions

In the heuristic search literature, however, the term heuristic has a more
specialized technical meaning. In this context, a heuristic is a function that
takes a state as an argument and returns a number that is an estimate of the
merit of that state with respect to the goal. In the case of a single-agent prob-
lem, a heuristic is a function that returns an estimate of the cost of reaching the
goal from a given state. In a two-player game, it is loosely interpreted as the
relative strength of a position for one player or the other.

For example, in the road navigation problem, a standard heuristic evalua-
tion function is the Euclidean or airline distance from a given state to the goal,
which is an estimate of the distance to the goal in the road network. The reason
it’s only an estimate is that the road network prevents the problem solver from
travelling directly as the crow flies. Euclidean distance does provide a rea-
sonable estimate, however, and can be computed very efficiently. Given the x
and y coordinates of the given state and the goal state, the Euclidean distance
can be computed in constant time.

The important properties of a heuristic evaluation function are that it pro-
vide a reasonable estimate of the merit of a node, and that it be inexpensive to
compute. One could compute the actual value of a node by solving the entire
problem, but that would be prohibitively expensive. A key empirical result of
heuristic search is that the trade-off of computational complexity versus ac-
curacy of heuristic functions is very favorable. That is, giving up a small
amount of accuracy often dramatically reduces the complexity of computing an
estimate.

An example of a heuristic evaluation function for the Eight Puzzle is Man-
hattan distance. Manhattan distance is computed by determining, for each in-
dividual tile in the puzzle, how many grid units that tile is away from its goal
position, and summing those values over all tiles.

An important property that both of these evaluation functions share is that
they never overestimate actual distance. Airline distance never overestimates
the road network distance between two points, since the shortest path between
a pair of points is a straight line. Similarly, Manhattan distance never overesti-
mates the actual number of moves necessary to solve an instance of the Eight
Puzzle, since every tile must be moved as many times as its distance in grid
units from its final position.

Another type of heuristic evaluation function is an estimate of the prob-
ability that a node will lead to a solution. In a situation where one has both an

Chapter 6 Search: A Survey of Recent Results 213

estimate of the probability of success and an estimate of the cost required to
achieve it, Simon and Kadane [1975] have shown how to combine the two into
a single evaluation function. Specifically, nodes should be ordered by the ratio
of their probability of success to the cost of realizing it.

An important empirical result is that a wide range of different problem
domains naturally give rise to heuristic evaluation functions. In other words,
one can often find functions that are inexpensive to compute and give reliable
estimates of the relative merits of different states. The main research issue is
the design of algorithms that effectively use such functions to reduce the time
complexity of search.

3.2 A" Algorithm

The classical algorithm for single-agent heuristic search is called A* [Hart et
al., 1968]. The algorithm makes use of a heuristic evaluation function, labelled
h(n). If n is a node, then h(n) returns the heuristic estimate of the cost of reach-
ing the goal from node n. In addition, g(n) is the actual cost incurred in going
from the initial state to node n. The figure of merit that A" uses for a node,
f(n), is the sum of these values, or f{n) = g(n) + h(n). In other words, the merit
of a node is the sum of the cost incurred in reaching that node from the initial
state plus the estimate of the remaining cost to reach the goal from that node.
The reason for this particular combination is that it represents the estimate of
the total cost of a solution path from the initial state to a goal state that is con-
strained to go through node n.

A'is a best-first search algorithm. It maintains an OPEN list of unex-
panded nodes, sorted by cost, which contains only the initial state at first. At
each cycle of the algorithm, a node on OPEN whose cost, f{n), is lowest is
chosen for expansion and removed from OPEN. It is expanded by generating
each of its children, evaluating them according to the cost function, and insert-
ing the children into the OPEN list. This continues until a goal state is chosen
for expansion.

An important and well-known result is that if the heuristic function never
overestimates actual cost, then when A" terminates it will have found an opti-
mal path to the goal [Hart et al., 1968). For example, if A* is used on the road
navigation problem with Euclidean distance for the evaluation function, since
Euclidean distance never overestimates road distance, then it will find a short-
est route from the initial state to the goal. What’s surprising about this result is
that even though it makes use of inexact information, it still finds optimal solu-
tions.

A more recent result [Dechter and Pearl, 1985] concerns the optimality of
A" in terms of time to find a solutlon as opposed to the cost of executing the
solution. Informally, it says that A” is the fastest algorithm for finding optimal
solutions, for a given non-overestimating heuristic function. What this means is

214 Korf

that the A* cost function, fin) = g(n) + h(n), is the best way of combining the
heuristic information with the other information available.

The drawback of A* is the same as that of breadth-first search, namely its
memory requirement. In every cycle of the algorithm, a new node is expanded,
and its b children are added to the OPEN list, where b is the branching factor.
Thus every cycle of the algorithm increases the size of the OPEN list by b-1
nodes. The space complexity of A”, or of any other best-first search, is asymp-
totically the same as its time complexity. As mentioned previously, this causes
memory to be exhausted rather quickly on typical computer configurations.

3.3 lterative-Deepening-A’

How do we get around this space limitation without sacrificing solution opti-
mality or time complexity? The trick is to employ the same idea we used
before for breadth-first search, namely iterative-deepening. The algorithm,
called iterative-deepening-A* (IDA") is similar to depth-first iterative-deepen-
ing, with the difference being the cutoff criterion [Korf, 1985b].. In the brute-
force case, a path is cutoff when its depth exceeds a threshold c. In the heuris-
tic case, a path is cutoff when its total cost, f{n) = g(n) + h(n), exceeds a cost
threshold.

IDA" starts with an initial threshold equal to the heuristic estimate of the
distance from the initial state to the goal. Each iteration of the algorithm is a
pure depth-first search, cutting off a branch when its f{n) value exceeds the
threshold. If a solution is expanded, the algorithm terminates. Otherwise, the
threshold is increased to the minimum f value that exceeded the previous thre-
shold, and another complete depth-first search is started from scratch. This
continues until a solution is found within the cost threshold.

As in the case of A*, if the heuristic never overestimates actual cost, then
IDA" will find an optimal solution. The virtue of IDA® is that its space com-
plexity is linear in the solution depth instead of exponential. The reason is that
at any point, the algorithm is executing a depth-first search, which requires
only linear space. Furthermore, by the same argument used above for depth-
first iterative-deepening, the : space complexity of IDA" is asymptotically opti-
mal. For example, while A* requires far too much space to solve typical in-
stances of the Fifteen Puzzle on current machines, IDA* can effectively solve
this problem.

Finally, as was the case w1th depth-first iterative-deepening, IDA”
asymptoucally no slower than A”. In the last 1teratlon the one that finds a so-
lution, IDA* does the same amount of work as A*. In previous iterations, it
does extra work that is wasted. But again, as long as the tree grows exponen-
tially, most of the work goes into the final iteration. One can prove that under
thfse conditions, IDA* generates asymptotically the same number of nodes as
A

Chapter 6 Search: A Survey of Recent Results 215

A surprising empirical result is that, even though IDA" generates more
nodes than A", it actually runs faster in practice than A*. The reason is that
IDA" incurs less overhead per node. In addition, IDA” is easier to implement
than A* since it is a depth-first search instead of a best-first search.

Combining the results on the time optimality of A* with the asymptotic
time equivalence of IDA" allows us to conclude that, for a given non-overesti-
mating heuristic function, IDA® is asymptotically optimal in time and space
over all algorithms that are guaranteed to find shortest paths on an exponential
tree.
One caveat that should be mentioned is that these results are for exponen-
tially growing trees. If a problem space is not a tree, nor closely approximated
by a tree, but rather contains many short cycles, then IDA* and DFID run into
the same problem as any depth-first search algorithm. In particular, a depth-
first search must explore all paths to a given node. Given a graph with a large
number of cycles, there may be a large number of paths to any given node.
Strictly speaking, therefore, our results for IDA* and DFID only apply on an
exponential tree. In practice, however, as long as cycles in the problem space
are relatively few and relatively long, then these algorithms are still effective.

3.4 Running Time of Heuristic Search

The reason that A* and IDA" are useful is that by using the information in the
heuristic evaluation function, they are able to find solutions by examining a
much smaller number of nodes than a brute-force search would. As a result,
heuristic searches run much faster than brute-force algorithms and are able to
solve larger problems within practical time constraints. This raises the obvious
question of how much faster heuristic search is than brute-force search. The
short answer is that the speed of the algorithm is a function of the accuracy of
the heuristic function. The more accurate the heuristic function, the faster the
algorithm. The problem really is to characterize the relationship between heur-
istic accuracy and time complexity.

The problem of trying to quantitatively characterize this relationship is one
that has received a great deal of attention by Pearl [1984] and others. An easy
and instructive way of approaching this is to examine various limiting cases.
For example, if the heuristic evaluation function is exact, then A* runs in linear
time. It goes straight to the solution, expanding only those nodes on an optimal
path. Conversely, given a useless heuristic evaluation function, such as one that
estimates zero everywhere, then A* degenerates to uniform-cost search, which
has exponential complexity.

In between these two extremes are two other simple cases. If the heuristic
function has constant absolute error, meaning that it never underestimates by
more than a constant amount regardless of the magnitude of the estimate, then
the running time of A" is linear in the solution depth [Gaschnig, 1979]. A more

216 Korf

realistic assumption, however, is constant relative error, which means that the
error is a fixed percentage of the quantity being estimated. In that case, the
running time of A'is exponential [Pohl, 1970].

In general, the time complexity of A" is an exponential function of the
error. If the error is constant, then a base raised to a constant exponent is still a
constant. If the error is linear, as is the case with constant relative error, then a
base raised to a linear exponent is an exponential function.

The difference is that, even though the complexity may be exponential, the
base of the exponent will be significantly reduced by an accurate heuristic
function. This means that one can solve larger problems with heuristic search
than with brute-force search. For example, on current computers, brute-force
search is sufficiently powerful to solve the Eight Puzzle in a reasonable amount
of time, but not its larger relative the Fifteen Puzzle. With a heuristic function
such as Manhattan distance, the Fifteen Puzzle can be solved with IDA" in rea-
sonable time on current machines. On the other hand, even though the heuristic
allows somewhat larger problems to be solved, it doesn’t allow the optimal so-
lution of significantly larger problems, because of the limitation of exponential
complexity. For example, IDA* with the Manhattan distance heuristic function
is not powerful enough to find optimal solutions to the 5 X 5 Twenty-Four
Puzzle.

Summarizing then, the good news is that IDA" is the best we can do for a
given heuristic function. The bad news is that it often isn’t good enough. The
problem is that optimal heuristic searches don’t actually defeat exponential
complexity, but merely delay its effects.

4 Abstraction

In order to reduce exponential problems to polynomial complexity, we need to
add more knowledge. Examples of the kinds of knowledge that can be utilized
include subgoals, macro-operators, and abstract problem spaces [Korf, 1987].
We will briefly mention subgoals and macro-operators, and then discuss ab-
straction in more detail.

One caveat is that in using any of these techniques, we almost always
sacrifice solution optimality. All of these methods involve solving a problem in
multiple steps, and even if the individual steps are locally optimal, there is no
guarantee that their combination will be globally optimal. One way of viewing
this is that the loss of solution optimality is an unavoidable cost of reducing
complexity.

The idea of subgoaling is that instead of solving a problem directly, we
break the problem down into a sequence of subgoals, solve the subgoals one at
a time, and then merge the solutions to the subgoals into a solution to the

Chapter 6 Search: A Survey of Recent Results 217

original problem. Subgoaling is used to solve almost every complex problem
and dramatically reduces the time required to find a solution.

A macro-operator is a sequence of primitive operators that are stored and
applied as if they were a single operator [Korf, 1985a]. A good example of
their use is in road navigation. When one first moves into a new area, a search
must be performed, either on a map or on the roads directly, to find a good
driving route between home and work. After living in an area for a while,
however, this search need not be repeated for every trip. Rather, one stores the
route and repeats it from memory. The route may involve a fairly complex
sequence of turns and utilize many different roads, but it is stored and executed
as if it were a single operator. The result is to improve the efficiency of solving
this task. As one becomes more familiar with an area, a large number of these
different macro-operators are learned and stored, allowing navigation with al-
most no search.

4.1 Single Level of Abstraction

The idea of abstraction is that given a complex problem, one should at first ig-
nore the low-level details of the problem and concentrate on the essential fea-
tures, and then fill in the details later. Again, road navigation provides an ex-
cellent example. Consider the problem of finding a driving route between an
address in Los Angeles and an address in New York. Given the size and den-
sity of the U.S. road network, brute-force or even heuristic search would re-
quire a significant amount of time to solve this problem. But we can do it quite
quickly by hand. What we do first is consult a map of the Interstate Highway
System. Since this is a much sparser problem space, we very quickly find a
route in the Interstate System from the L.A. area to the N.Y. area. This leaves
two subproblems to be solved. One is to find a route from the starting address
in L.A., and the second is to find a route from the interstate in N.Y. to the
destination address. These problems are also relatively easy since the distance
that must be covered in each case is quite small. Thus, by ignoring the detail of
all the roads in the country and first focusing only on the Interstate System,
and then solving the relatively small problems of getting to and from the inter-
state, the overall complexity of the problem is greatly reduced. In this example,
the Interstate Highway System serves as a more abstract problem space than
the complete road network.

The idea of abstraction is well known. It is described in George Polya’s
book How to Solve it [Polya, 1945], a veritable fountain of ideas about problem
solving. One of the first Al programs to make use of it was Earl Sacerdoti’s
NOAH system [Sacerdoti, 1974]. He found empirically that in robot problem
solving, abstraction produces a large reduction in problem complexity.

How much does abstraction improve search performance in general? We’ll
answer this question by comparing it to brute-force search. In a brute-force

218 Korf

search we don’t have any knowledge to distinguish one state from another,
other than the goal state, so all we can do is blindly examine one state after
another until we stumble upon the goal. In the worst case, we’ll have to look at
all the states in the space, and in the average case we’ll have to examine half
of them. Thus the complexity of brute-force search is linear in the number of
states in the problem space, which is usually an exponential function of the
problem size.

The performance of a search using an abstract problem space depends on
the density of the abstract space relative to the original problem space. By per-
formance we mean the time required to find a solution, rather than the cost of
executing that solution. What makes this problem interesting is that the two
boundary conditions of density are equivalent to brute-force search. At one end
of the spectrum is an abstract space that is so sparse that in the limit it doesn’t
exist at all, and hence the search must occur in the original space. At the other
extreme is an abstract space that is so dense that it becomes equal to the origi-
nal space. In that case as well one is stuck with searching in the original prob-
lem space. If abstraction is to help at all, there must be an optimal level of
detail in between these two extremes.

One can prove that the optimal level of detail is for the number of states in
the abstract space to be the square root of the number of states in the base
space [Mackworth, 1977]. The effect of such an optimal abstraction is to re-
duce the running time to find a solution from linear in the number of states, to
on the order of the square root of the number of states in the problem space.

4.2 Muitiple Hierarchical Levels of Abstraction

Since one application of abstraction reduces the complexity of a search, will
multiple applications reduce it even more? The idea is that given an abstract
problem space, we could create yet a more abstract problem space on top of it.
For example, in the road navigation problem, instead of having just a single
level of abstraction that is the interstate highways, there are multiple hierarchi-
cal levels of abstraction, such as the interstate highways, the federal highways,
state highways, county roads, municipal streets, etc. To solve a problem, we
start with the base space and successively work our way up the abstraction
hierarchy, and then work our way back down again into the base space.

With multiple hierarchical levels of abstraction, one can ask what is the
optimal number of levels, what should the ratios of successive levels be, and
what is the performance of the resulting problem solving. The answer is that an
optimal abstraction hierarchy has log n levels where 7 is the number of states
in the original space. Furthermore, in an optimal hierarchy the ratios of the
number of states between successive levels is a constant. Finally, the running
time of problem solving in such an optimal abstraction hierarchy is reduced

Chapter 6 Search: A Survey of Recent Results 219

from linear in the number of states to logarithmic in the number of states
(Korf, 1987].

What'’s interesting about this result is that if the number of states is an ex-
ponential function of problem size, then using multiple hierarchical levels of
abstraction actually defeats the combinatorial explosion, reducing the complex-
ity as a function of problem size from exponential to polynomial. On further
examination, it’s not very surprising. The really complicated problems we
solve, such as designing very complex circuits or writing very large computer
programs, suffer from this exponential complexity if looked at naively. What
we do in practice is use abstraction. For example, in programming, we build up
multiple levels of subroutines, procedures, and high level language constructs.
This allows us to solve such problems in time that is close to linear in the
length of the program. As Simon points out in “The Architecture of Complex-
ity,” almost every artifact we encounter, either man-made or in nature, that is
of sufficient complexity is hierarchically structured [Simon, 1981].

5 Two-Player Games

The second major application of heuristic search is two-player games. One of
the original challenges of Al, which in fact predates Al by a few years, was to
build a program that could play chess at the level of the best human players.
Certainly a chess grand master exhibits at least some aspects of intelligent be-
havior, and hence a computer program playing at the same level would as well
[Turing, 1950].

From the perspective of Al research, chess has some nice properties. First,
it is a well-structured domain. There is a small, discrete board. There are a
small number of different pieces. There is a small set of well-specified rules.
Secondly, chess is a game of perfect information. Unlike most card games or
games of chance, both chess players have all the information there is about a
position. In spite of these nice properties, chess is a very difficult game to
master. People spend their entire lives studying this game and still don’t
achieve the levels that they aspire to. This makes it a nearly ideal domain for
studying certain aspects of intelligence.

5.1 Minimax Search

The standard algorithm for two-player games is called minimax search with
static evaluation [Shannon, 1950}. The algorithm searches forward to some
fixed depth in the game tree, limited by the amount of computation available
per move. At this search horizon, a heuristic static evaluation function is ap-
plied to the frontier nodes. In this case, a heuristic evaluation is a function that

220 Korf

takes a board position and returns a number that indicates how favorable that
position is to one player or the other. For example, a very simple heuristic
evaluator for chess would count the total number of pieces on the board for
one player, appropriately weighted by their relative strength, and subtract the
weighted sum of the opponent’s pieces: Thus, large positive values would
correspond to strong positions for one player whereas large negative values
would represent advantageous situations for the opponent.

Unfortunately, while a heuristic function is well defined in a single-agent
problem as an estimate of the cost of reaching a goal, there is no generally
agreed upon precise formulation of the meaning of a heuristic function in a
two-player game [Abramson and Korf, 1987].

Given the static evaluations of the frontier nodes, values for the interior
nodes in the tree are computed according to the minimax rule. The player for
whom large positive values are advantageous is called MAX, and conversely
the opponent is referred to as MIN. The value of a node where it is MAX’s
turn to move is the maximum of the values of its children, while the value of a
node where MIN is to move is the minimum of the values of its children.
Thus, at alternate levels of the tree, the minimum and the maximum values of
the children are backed up. This continues until the values of the immediate
children of the current position are computed, at which point one move to the
child with the maximum or minimum value is made, depending on whose turn
it is to move.

The idea of minimax search comes from classical game theory, where it is
assumed that the game tree is small enough to be exhaustively searched, and
hence the values at the terminal nodes are assumed to be exact payoffs [Von
Neuman and Morgenstern, 1944]. Claude Shannon adapted this idea to very
large trees by introducing a fixed search horizon and a heuristic static evalua-
tion function [Shannon, 1950]. Later we’ll discuss some of the ramifications of
this seemingly innocent modification.

5.2 Alpha-Beta Pruning

One of the most elegant ideas in all of heuristic search is the alpha-beta prun-
ing algorithm. While it is not entirely clear who invented it, Pearl credits John
McCarthy for coming up with the original idea [Pearl, 1984]. It first appeared
in print in an MIT tech report by Hart and Edwards [1963]. The notion is that
an exact minimax search can be performed without examining all the nodes at
the search frontier.

Figure 5 shows an example of alpha-beta pruning. The square nodes repre-
sent moves for the maximizer while the circular nodes are moves for the min-
imizer. The search proceeds depth-first to minimize the memory requirement,
and only evaluates a node when necessary. After statically evaluating nodes d
and e to 6 and 5, respectively, we back up their maximum value, 6, as the

Chapter 6 Search: A Survey of Recent Results 221

value of node c. After statically evaluating node g as 8, we know that the
backed up value of node f must be greater than or equal to 8, since it is the
maximum of 8 and the unknown value of node w. The value of node b must be
6 then, because it is the minimum of 6 and a value that must be greater than or
equal to 8. Since we have exactly determined the value of node b, we do not
need to evaluate or even generate node w. This is called an alpha cutoff. Simi-
larly, after statically evaluating nodes j and & to 2 and 1, the backed-up value
of node i is their maximum or 2. This tells us that the backed-up value of node
h must be less than or equal to 2, since it is the minimum of 2 and the un-
known value of node x. Since the value of node a is the maximum of 6 and a
value that must be less than or equal to 2, it must be 6, and hence we have
evaluated the root of the tree without generating or evaluating nodes x, y, or z.
This is called a beta cutoff.

Since alpha-beta pruning allows us to perform a minimax search while
evaluating fewer nodes, its effect is to allow us to search deeper with the same
amount of computation. This raises the question of how much deeper, or how
much does alpha-beta improve performance? This problem has been carefully
studied by a number of researchers and finally solved by Pearl [Knuth and
Moore, 1975; Pearl, 1982]. The best way to characterize the efficiency of a
pruning algorithm is in terms of its effective branching factor. The effective
branching factor is the d™ root of the number of frontier nodes that must be
evaluated in a search to depth d.

The efficiency of alpha-beta pruning depends on the order of the node
values at the search frontier. For any set of frontier node values, there exists
some ordering of the values such that alpha-beta will not perform any cutoffs
at all. In that case, all frontier nodes must be evaluated and the effective
branching factor is b, the brute-force branching factor.

d(6 e(5)g(8) w j(2 k(1)y z

Figure 5 Alpha-Beta Pruning

222 Korf

.On the other hand, there is an optimal or perfect ordering in which every
possible cutoff is realized. In that case, the effective branching factor is re-
duced from b to b2, which is the square root of the brute-force branching fac-
tor. Another way of viewing the perfect ordering case is that for the same
amount of computation, one can search twice as deep with alpha-beta pruning
as without. Since the search tree grows exponentially with depth, doubling the
search horizon is quite a dramatic improvement.

In between worst-possible ordering and perfect ordering is random order-
ing, which is the average case. Under random ordering of the frontier nodes,
alpha-beta pruning reduces the effective branching factor to approximately el
This means that one can search 4/3 as deep with alpha-beta, yielding a 33%
improvement in search depth.

5.3 Node Ordering, Quiescence, and Iterative-Deepening

In /gractice, however, the effective branching factor of alpha-beta is closer to
b due to node ordering. The idea of node ordering is that instead of generat-
ing the nodes of the tree strictly left-to-right, the order in which paths are ex-
plored can be based on static evaluations of the interior nodes in the tree. In
other words, the children of MAX nodes can be expanded in decreasing order
of their static values while the children of MIN nodes would be expanded in
increasing order of their static values.

Two other important ideas are quiescence and iterative-deepening. The
idea of quiescence is that the static evaluator should not be applied to positions
whose values are unstable, such as those occurring in the middle of a piece
trade. In those positions, a small secondary search is conducted until the static
evaluation becomes more stable.

Iterative-deepening is used to solve the problem of how to set the search
horizon, as previously mentioned [Slate and Atkin, 1977). In a tournament
game, there is a limit on the amount of time allowed per move. Unfortunately,
it is very difficult to accurately predict how long it will take to perform a
complete search to a given depth. If one picks too shallow a depth, then time
which could be used to improve the move choice is wasted. Alternatively, if
the search depth is too deep, time will run out in the middle of a search, and a
move based on an incomplete search is likely to be very unreliable. The solu-
tion is to perform a series of complete searches to successively increasing
depths. When time runs out, the move recommended by the last completed
search is made.

Iterative-deepening and node ordering can be combined as follows. Instead
of ordering interior nodes based on their static values, the frontier values from
the previous iteration of the search can be used to order the nodes in the next
iteration. This produces much better ordering than the static values alone.

Chapter 6 Search: A Survey of Recent Results 223

Virtually all performance chess programs in existence today use full-width,
fixed-depth alpha-beta minimax search with node ordering, quiescence, and it-
erative-deepening.

5.4 Special Purpose Hardware

Another interesting development in the area of two-player games is the advent
of special purpose hardware. This trend was started by Condon and Thompson
at Bell Laboratories when they built the Belle machine [Condon and Thom-
pson, 1982]. Up until that time, most entries in computer chess tournaments
were general-purpose digital computers that were programmed to play chess.
Condon and Thompson built a special-purpose machine that could only play
chess. The advantage of this scheme is to be able to highly optimize the ma-
chine for chess with the result that it could search deeper than even very
powerful general-purpose machines. In general, the deeper the search, the bet-
ter the quality of play. What limits the search depth is the efficiency of the
primitive operations of move generation and evaluation. By embedding these
functions directly in hardware, they run much faster.

A more recent entrant in this category is Hitech, built by Hans Berliner
and Carl Ebeling at Camegie-Mellon University [Ebeling, 1987]. What’s no-
table about Hitech is its use of a special purpose parallel architecture for play-
ing chess, consisting of 64 processors arranged in an 8 x 8 array to match the
chess board. Hitech can generate and evaluate over 200,000 nodes per second.

6 Real-Time Single-Agent Search

If one examines the history of research in single-agent problems and two-
player games, one finds two parallel but distinctly different paths. In two-
player games, the standard assumption is that it is completely impractical to
search all the way to the end of the game. The effect of this is that research has
focused on how to make the best decisions with a fixed amount of computa-
tion, with no serious thought devoted to making optimal decisions. In addition,
tournament games require that individual moves be made within tight time
constraints.

Conversely, in single-agent problems, researchers have long focused on find
ing optimal solutions. The challenge has been to increase the size of problems
that can be solved optimally within practical computational limits. For example,
the advent of iterative-deepening-A” increased the size of sliding tile puzzles
for which optimal solutions could be found from 3 x 3 to 4 x 4.

224 Kort

6.1 Limitations of A" and IDA"

One result of this preoccupation with optimal solutions is that search algo-
rithms for single-agent problems, such as A" and IDA", suffer from two fun-
damental limitations. One is that, even with the best heuristics available in
practice, these algorithms take exponential time to run. The second problem is
that to use these algorithms to solve a problem, the algorithm must be run to
completion in a simulation mode before the first move can actually be made.
The reason is that to guarantee an optimal solution, one can’t be sure of even
the first move until the entire solution is found and shown to be at least as
good as any other possible solution.

Given this characterization, an obvious research direction is to look at
single-agent problems under the ground rules of two-player games, namely
limited search horizon and execution of moves based on incomplete informa-
tion. The first assumption can be satisfied by picking a problem large enough
that practical computational constraints prohibit the search from extending
from an initial state to the goal node, such as, for example, the 5 x 5 Twenty-
Four Puzzle. Alternatively, or in addition, there may be informational limits on
the problem solver. For example, in the problem of autonomous navigation of a
mobile robot, there is a limit on the range of data that can be gathered by the
vision or other sensors of the robot. This suggests a literal interpretation of the
term search horizon. In addition to limited information or computation, we as-
sume that actions in the real world must actually be executed based on in-
complete information. For example, the mobile robot must actually move in
order to extend its search horizon in the chosen direction.

6.2 Minimin Lookahead Search

The research problem is to develop decision-making algorithms for a single
problem-solving agent under such real-time constraints. The obvious approach
is to try to adapt the algorithms for two-player games that were designed to
solve a similar problem. This gives rise to a special case of minimax search
called minimin search [Korf, to appear]). The idea is to search forward from the
current state to a fixed depth determined by the informational or computational
resources available. At the search horizon, the A* heuristic evaluation function
fin) = g(n) + h(n) is applied to the frontier nodes. Since only a single agent is
making all the moves, the value of each interior node in the tree is recursively
computed as the minimum of the values of its children. Finally, a single move
is made in the direction of the immediate child of the current state with the
minimum value. The reason for only making a single move instead of going
directly to the frontier node with the minimum value is that since the values
are based on fallible heuristic information, we should follow a strategy of least
commitment. Further search from the new current state may indicate different
choices for subsequent moves than originally anticipated.

Chapter 6 Search: A Survey of Recent Results 225

6.3 Alpha Pruning

There exists an algorithm, called alpha pruning by analogy to alpha-beta prun-
ing, that allows us to perform minimin search without evaluating all the nodes
within the search horizon [Korf, to appear]. It is based on the heuristic function
being a metric. A metric is a function that satisfies a set of properties that we
normally associate with distance functions. In particular, a function 4 of two
arguments is a metric if and only if (1) A(x, x} = 0, (2) h(x, y) = h(y, x), and
(3) h(x, y) + h(y, z) < h(x, z). By adding the goal state as a second argument
to h, we get a function of two arguments. Most naturally occurring heuristic
functions, such as Euclidean distance and Manhattan distance, are metrics since
they satisfy our intuitive and formal definitions of distance functions. If 4 is a
metric, then the cost function f = g + h is guaranteed to be monotonically non-
decreasing along any path away from the initial state. Given a monotonic cost
function, we can apply a technique known as branch-and-bound to significantly
prune the search space.

The algorithm is as follows: Let o be the minimum cost of all frontier
nodes encountered so far. Initially, o will be set to the cost of the first frontier
node. In the course of the search, evaluate all interior nodes and whenever the
cost of a node equals or exceeds o, abandon that path, pruning all nodes below
it. The justification for this is that since the cost function can’t decrease, all the
frontier nodes below that node must have cost greater than or equal to the
given node, and hence will not be less than the frontier node responsible for
the current value of o. Finally, whenever a frontier node is encountered with a
cost less than a, the value of o is reset to this new minimum.

The performance improvement of alpha pruning is quite dramatic, even
when compared to alpha-beta pruning. In some cases, alpha pruning extends
the achievable search horizon by a factor of five relative to brute-force search,
with the same amount of computation [Korf, to appear].

Minimin lookahead search with alpha pruning is an algorithm for evaluat-
ing the immediate children of the current node. As such, the algorithm is run in
a simulation or planning mode until the best child is identified, at which point
the chosen move is executed in the real world. For simplicity of exposition, we
can view the heuristic function combined with lookahead search and alpha
pruning as simply a more accurate, but computationally more expensive heuris-
tic function. In fact, it provides an entire spectrum of heuristic functions differ-
ing in accuracy and cost, depending on the search horizon.

6.4 Real-Time-A'

Since minimin with alpha pruning only recommends a single move, the next
question is how to determine the sequence of moves to be executed. The ob-
vious approach of simply repeating the algorithm for each move won’t work

226 Korf

since it falls into infinite loops and doesn’t benefit from the information
gathered in previous lookahead searches. In addition, since the heuristic infor-
mation is fallible, on occasion we may want to backtrack and undo the pre-
vious move. The question of how to allow intelligent backtracking while pre-
venting infinite loops is the problem addressed next.

The principle of rationality is that backtracking should occur when the
estimated cost of continuing the current path exceeds the cost of going back to
a previous state plus the estimated cost of reaching the goal from there. One
way to implement this policy would be to modify A" so that the g value of
every node is relative to the current position of the problem solver rather than
the initial state. Unfortunately, this requires updating the g values of every
node on the OPEN list with every move, and maintaining a path to every
OPEN node from the current state. The following algorithm, called real-time-
A" (RTA"), produces the same behavior using only local information and con-
trol, and hence requires only constant time per move [Korf, to appear].

For each move, the f = g + h value of each neighbor of the current state is
determined, and the problem solver moves to the state with the minimum
value. The second best f value, which is the best value among the remaining al-
ternatives, is stored with the previous state. This represents the h value of the
previous state from the perspective of the new current state. This is repeated
until a goal is reached. To determine the # value of a neighboring state, if it
has previously been visited, then the stored value is used, and otherwise the
heuristic evaluator is called. Note that the heuristic evaluator may employ min-
imin lookahead search with alpha pruning in addition to the heuristic function
itself.

One can prove that in a finite problem space in which there exists a path
to a goal from every state, RTA" is guaranteed eventually to find a solution, re-
gardless of the initial heuristic values [Korf, to appear]. Of course, the speed
with which a solution is found depends on the accuracy of the heuristic values.
The algorithm, however, can be used effectively even in the absence of a heur-
istic function, for example, by setting / to zero for every node initially. Over
the course of the problem-solving trial the algorithm learns more accurate A
values.

7 Constraint-Satisfaction Problems

In addition to single-agent path-finding problems and two-player games, the
third major application of heuristic search is constraint-satisfaction problems.
The Eight Queens Problem mentioned previously is a classic example. More
realistic examples include job shop scheduling, graph coloring, and applica-
tions in truth maintenance systems.

Chapter 6 Search: A Survey of Recent Results 227

Constraint satisfaction problems are modelled as follows: There is a set of
variables, a set of values, and a set of constraints on the values that the varia-
bles can be assigned. A unary constraint on a variable specifies a subset of all
possible values that can be assigned to that variable. A binary constraint be-
tween two variables specifies which possible combinations of assignments to
the pair of variables would satisfy the constraint. For example, in a map or
graph-coloring problem, the variables would represent regions or nodes, and
the values would represent colors. The constraints are binary constraints on
each pair of adjacent regions or nodes that prohibit them from being assigned
the same color.

7.1 Brute-Force Backtracking

The brute-force approach to constraint satisfaction is called backtracking. One
selects an order for the variables, and an order for the values, and starts assign-
ing values to the variables one at a time. Each assignment is made so that all
constraints involving any of the variables that have already been assigned
values are satisfied. The reason for this is that once a constraint is”violated, no
assignment to the remaining variables can possibly resatisfy that constraint.
Once a variable is reached which has no remaining legal assignments, then the
last variable that was assigned is reassigned to the next legal value. The algo-
rithm continues until either a complete, consistent assignment is found result-
ing in success, or all possible assignments are shown to violate some con-
straint, resulting in failure.

The key property that makes this algorithm effective is that the constraints
can be applied to partial assignments of variables, and that if a constraint is
violated in a partial assignment, no complete extension of that partial assign-
ment can satisfy the constraint. This makes backtracking much more efficient
than trying all possible complete assignments. Backtracking is a brute-force
depth-first search combined with a goal test that is applied to partial candidate
solutions.

7.2 Intelligent Backtracking

Most of the interesting research in this area goes by the name of intelligent or
heuristic backtracking. A short survey of the different techniques employed in-
cludes variable ordering, value ordering, going back to the source of failure,
and constraint recording, including arc and path consistency.

The order in which variables are instantiated can have a large effect on
the efficiency of backtracking. The idea of variable ordering is to choose an
order that is likely to cause the least backtracking [Freuder, 1982; Purdom,
1983]. For example, one simple heuristic is to first instantiate the most tightly

228 Kort

constrained variables, or to order the variables in increasing order of the num-
ber of possible values that can be assigned to them.

Similarly, the order in which the values of a given variable are chosen can
significantly affect the efficiency of backtracking. The technique of value
ordering is to choose the sequence of values for each variable that is likely to
minimize backtracking [Dechter and Pearl, 1987a; Haralick and Elliott, 1980].
In general, one would like to order the values from most likely to succeed to
least likely to succeed, in order to minimize the time required to find a
complete solution.

An important idea that goes by a number of names, including dependency-
directed backtracking, is that instead of simply undoing the last decision made,
the decision that actually caused the failure should be modified [Gaschnig,
1979]. For example, consider a three-variable problem where the variables are
instantiated in the order x, y, z. Assume that values have been chosen for both
x and y, but that all possible values for z conflict with the value chosen for x.
In pure backtracking, the value chosen for y would be changed, and then all the
possible values for z would be tested again, to no avail. A better strategy in this
case is to go back to the source of the failure and change the value of x, before
trying different values for y.

In a constraint-satisfaction problem, some constraints are explicitly
specified, and others are implied by the explicit constraints. Some implicit con-
straints may be discovered in the course of the backtracking search. The idea
of constraint recording is that once these implicit constraints are discovered
they should be saved explicitly so that they don’t have to be repeatedly redis-
covered. Constraint recording can occur during the backtrack search, or alter-
natively the problem can be preprocessed to record as many constraints as
possible before beginning the search.

A simple example of constraint recording in a preprocessing phase is
called arc consistency [Freuder, 1982; Mackworth, 1977; Montanari, 1974].
For each pair of variables x and y that are related by a binary constraint, we re-
move from the domain of x any values that do not have at least one corre-
sponding legal counterpart in y and vice versa. In general, several iterations
may be required to achieve complete arc consistency. Path consistency is a
generalization of arc consistency where instead of considering pairs of varia-
bles, we examine triples of related variables, for example. The effect of per-
forming arc or path consistency before backtracking is that the resulting search
space can be dramatically reduced. In some cases, this preprocessing of the
constraints can eliminate the need for search entirely.

7.3 Network-Based Heuristics

Another powerful set of techniques for constraint-satisfaction problems is
grouped under the term network-based heuristics [Dechter and Pearl, 1987a].

Chapter 6 Search: A Survey of Recent Results 229

Given a binary constraint-satisfaction problem, a corresponding constraint
graph can be constructed as follows: Each variable is represented by a node
and each constraint between a pair of variables is represented by an edge be-
tween the corresponding nodes. Higher-order constraints give rise to hyper-
graphs.

Network-based heuristics depend upon the structure of the resulting con-
straint graph. For example, if the graph is a tree, the problem can be solved in
polynomial time Freuder, 1982]. One simply starts with the leaf variables, re-
moves those values that do not have a consistent value in the parent variable,
and repeats this process for each level of the tree. After a single complete pass
over the tree, any choice of values from the remaining domains is guaranteed
to be a solution. Only if some variable has no remaining values is the problem
unsolvable.

If the constraint graph is not a tree, but contains only a small number of
cycles, then the cycle-cutset method may be effective [Dechter and Pearl,
1987b]. The idea is to identify a small set of nodes that taken together would
break every cycle in the graph if they were removed. Then the values of these
variables are instantiated using a backtracking algorithm. For each instantiation
of the cutset variables, the above technique for solving the resulting tree-struc-
tured graph is applied. The cycle-cutset method is exponential in the size of the
cycle-cutset, as opposed to the complete graph, and hence is likely to be effec-
tive in a sparse graph.

8 Major Open Problems

Major open problems and new research directions in heuristic search include
three general categories: parallel search algorithms, automatic learning of heur-
istic evaluation functions, and alternatives to full-width minimax search.

8.1 Parallel Search Algorithms

Since search is fundamentally constrained by its efficiency, an obvious ques-
tion is how to effectively use parallel processing. There are basically three ap-
proaches to parallelizing a search algorithm. The first is to parallelize the
primitive operations of node generation and evaluation. This is the approach
taken by the Hitech machine [Ebeling, 1987]. Unfortunately, this approach is
inherently domain specific. Some problems may be easy to parallelize this way
and others may not, but the techniques applied will be specific to the particular
application. Furthermore, the available parallelism is strictly limited by the
domain. For example, it’s difficult to see how Hitech processors could take
advantage of more than 64 processors to speed up the machine any further.

230 Kort

A second approach is called parallel window search and was pioneered by
Gerard Baudet [1978]. He parallelized alpha-beta minimax search by giving
each processor the entire tree to search but different bounds for alpha and beta.
The entire possible range for the minimax value was broken up into different
windows bounded by different values of alpha and beta and distributed to
different processors. All but one of the processors would return with the result
that the minimax value was not within its window, and one would return the
actual minimax value within its range. The virtue of the algorithm is that the
successful processor would find the value more quickly by starting with a nar-
row range of alpha and beta and hence pruning many more branches than if it
started with alpha and beta equal to negative and positive infinity. Unfor-
tunately, this algorithm is limited in practice to a speedup of no more than five
or six, regardless of the number of processors used. The reason is that even if a
processor is given values of alpha and beta that equal the true minimax value,
it still takes considerable time to verify that that is indeed the case.

The third approach is perhaps the most obvious, and that is to decompose
the search tree so that different parts of the tree are searched by different pro-
cessors. This provides potentially unlimited parallelism. The major challenge is
load balancing. Since real search trees and particularly those pruned by heuris-
tic techniques tend to be very irregular, there must be some mechanism to dy-
namically reallocate work to idle processors [Finkel and Manber, 1987; Rao et
al., 1987; Ferguson and Korf, 1988].

A more challenging problem is to parallelize branch-and-bound searches
such as alpha-beta or alpha pruning. The essential difficulty is that the work
done by one processor may be wasted if its nodes are subsequently pruned by
bounds obtained elsewhere in the tree. Effectively parallelizing alpha-beta
pruning is a longstanding open problem {[Finkel and Fishburn, 1982; Vorn-
berger, 1987; Ferguson and Korf, 1988].

8.2 Learning Heuristic Evaluation Functions

Another very important open problem that has been around for quite a while is
how to automatically learn heuristic evaluation functions.

Research on this problem started in the late 1950s with Arthur Samuel’s
checkers program [Samuel, 1963]). What was unique about that program was
that it automatically leamed to improve its performance by changing its evalua-
tion function. This is the classic example of what is now called parameter
learning. For purposes of exposition, let’s consider chess, and assume that a
program is told that a set of relevant features upon which to base a static eval-
uation is the numbers of different types of pieces. The learning task then is to
figure out what the relative weights of those pieces ought to be, or the coeffi-
cients of a polynomial material evaluation function. The basic idea that Samuel
originated and that has recently been improved by others [Christensen and

Chapter 6 Search: A Survey of Recent Results 231

Korf, 1986] is that if the evaluation function were correct, then the static eval-
uvation of a board should be equal to the backed-up minimax value from a
lookahead search. This reduces the problem to finding a set of coefficients that
is nearly invariant under lookahead search.

A more challenging problem is how to discover the features in the first
place. Judea Pearl [1984] has suggested a rather compelling approach to this
problem, based on some ideas of John Gaschnig [1979]. The claim is that heur-
istics are derived from simplified or relaxed problems. More specifically, the
exact solution cost for a relaxed version of a problem is often a good heuristic
evaluation function for the original problem. For example, consider the task of
finding a good heuristic function for the road navigation problem. What makes
this problem difficult is the constraint that one must travel along the given
roads. If we remove this constraint and allow direct cross-country travel as in a
helicopter, the resulting problem is very simple and can be solved by travelling
in a straight line from the initial state to the goal state. The exact solution cost
for any instance of this simplified problem is just the Euclidean distance. This
suggests how Euclidean distance might be arrived at as a heuristic function for
the original road navigation problem. As another example, if we remove the
constraint on the Eight Puzzle that a tile can only be moved into the blank
position, and allow tiles to be slid over one another, then the exact solution
cost to this simplified problem is simply Manhattan distance.

While this theory provides a convincing explanation of the origin and na-
ture of heuristic functions for single-agent problems, the challenge is to auto-
mate the process of going from an original problem to an effective heuristic
function for that problem. This requires overcoming a number of difficulties
and is still an open problem.

8.3 Alternatives to Full-Width Minimax Search

The final item on the list of open problems is alternatives to full-width mini-
max search. In Shannon’s original paper [Shannon, 1950], he described two
‘types of strategies that he labelled Type A and Type B. Type A is fixed-depth
full-width search, with no pruning, since he didn’t anticipate alpha-beta. When
combined with alpha-beta pruning, this is the algorithm used by all current per-
formance programs. Type B strategies included the use of additional heuristics
to prune parts of the tree and search some lines of play more deeply than
others. This is also called selective search.

The best current chess machines play better than 99% of all rated human
players [Berliner and Ebeling, 1988]. In other games, such as Othello, comput-
ers play as well as the best humans [Rosenbloom, 1982]. However, when one
realizes that these machines are looking at millions of positions per move,
while human players only examine tens of positions, it becomes clear that
humans must be doing something the machines are not. If one constrained

232 Korf

machines to only examine tens of positions, they would perform quite misera-
bly. The difference is that humans use a very selective search to rapidly prune
poor lines of play while exploring promising lines relatively deeply. Both
David McAllester [to appear] and Ron Rivest [1986] have recently proposed
interesting selective search algorithms. Unfortunately, the integration of selec-
tive search algorithms into successful performance programs has resisted most
efforts to date. This is likely to become an important research area in the near
future.

The other aspect of this problem is the minimax rule itself. Minimax has
long been the accepted way of backing up heuristic evaluations. It was origi-
nally invented by Von Neuman and Morgenstern in the 1940s in the context of
game theory [Von Neuman and Morgenstern, 1944]. In classical game theory,
it is assumed that the search can proceed all the way to the end of the game in
which case the values at the search horizon are exact payoffs. In that case,
minimax is provably the correct way to back up values. Shannon’s contribution
was to recognize that this could not be done in a game like chess and to intro-
duce the notion of a heuristic static evaluation function at the search frontier.
Then, for lack of anything better, he suggested using minimax to back-up the
heuristic values. Unfortunately, minimax is not justifiable as a backup rule
when the values are inexact.

As an example of this, consider a maximizer node with two children. As-
sume that the values of the two children are independent random variables that
are uniformly distributed between zero and one. The best heuristic estimate of
the values of the nodes would be their expected value which is one-half. Mini-
max would back-up the maximum of the two expected values and return one-
half as the backed-up estimate of the value of the maximizer node. However,
the expected value of the maximum of two independent random variables uni-
formly distributed between zero and one is not one-half but two-thirds. The
error is that we want the estimate of the maximum but we computed the maxi-
mum of the estimates instead.

As we continue to minimax values further up the tree, the error only in-
creases, until the signal all but disappears in the noise due to minimaxing. The
result is that for certain analytic games with uniform branching factor, uniform
depth, and independent leaf values, occasionally searching deeper in the tree
leads to poorer play relative to shallower search. This phenomenon is called
pathology and was independently discover by Nau [1982] and Beal [1980]. The
dilemma is that for real games such as chess and checkers, it is almost always
the case that searching deeper improves play. This raises the question of which
assumptions in the analytic model are not valid for real games. The answer is
all of them, since removing any one of the above assumptions (uniform depth,
uniform branching factor, or independence of sibling nodes) causes pathology
to disappear [Nau, 1982; Pearl, 1983].

Chapter 6 Search: A Survey of Recent Results 233

Nevertheless, the search for a better back-up rule than minimax continues.
For example, when independence of sibling nodes is a reasonable assumption,
and the heuristic function is interpreted as a probability of winning, then back-
ing up heuristic values by multiplying them is often more effective than mini-
max [Nau et al., 1986]. Non-minimax rules have yet to find their way into per-
formance chess programs, however.

9 Conclusion

In conclusion, search is a very general problem-solving technique. For any
problem that can be represented as a problem space, search techniques can be
used to solve it. The price of this generality is exponential complexity, with the
result that many problems of practical interest are solvable in principle with
search, but the limitations of computational capacity prevent them from being
solved in practice. In order to reduce the complexity, more domain-specific
knowledge must be added. The research challenge is to develop and analyze al-
gorithms to acquire and use such knowledge. While this is true of heuristic
search, it is also true of most work in artificial intelligence in general. What
distinguishes work in search is an emphasis on domain-independent algorithms,
even though the knowledge may be domain-specific, and a focus on analytical
and quantitative performance results.

References

Abramson, B. and Korf, R. E., 1987. A model of two-player evaluation func-
tions. In Proceedings of the National Conference on Artificial Intelligence
(AAAI-87), pp. 90-94, Seattle, Washington. San Mateo: Morgan Kaufmann.

Baudet, G., 1978. The Design and Analysis of Algorithms for Asynchronous
Multiprocessors. Ph.D. dissertation. Dept. of Computer Science, Carnegie
Mellon University, Pittsburgh, Pennsylvania.

Beal, D., 1980. An analysis of minimax. In Advances in Computer Chess 2, M.
R. B. Clarke, ed., pp. 103-109. Edinburgh: Edinburgh University Press.

Berliner, H. and Ebeling, C., 1988. Pattern knowledge and search: The suprem
architecture. Technical Report CMU-CS-109. Dept. of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania.

Christensen, J. and Korf, R. E., 1986. A unified theory of heuristic evaluation
functions and its application to learning. In Proceedings of the Fifth
National Conference on Artificial Intelligence (AAAI-86), Philadelphia,
Pennsylvania. San Mateo: Morgan Kaufmann.

234 Korf

Condon, J. H. and Thompson, K., 1982. Belle chess hardware. Advances in
Computer Chess 3. Pergamon Press.

Dechter, R. and Pearl, J., 1985. Generalized best-first search strategies and the
optimality of A*. Journal of the Association for Computing Machinery
32(3):505-536.

Dechter, R. and Pearl, J., 1987a. Network-based heurestics for constraint-satis-
faction problems. Artificial Intelligence 34(1):1-38.

Dechter, R. and Pearl, J., 1987b. The cycle-cutset method for improving search
performance in Al applications. In Proc. 3rd IEEE Conf. on Al Applic., pp.
224-230, Orlando, Florida.

Dijkstra, E. W., 1971. A note on two problems in connection with graphs.
Numerische Mathematik 1:269-271.

Ebeling, Carl, 1987. All The Right Moves. Cambridge, Mass.: MIT Press.

Ferguson, C. and Korf, R. E., 1988. Distributed tree search and its application
to alpha-beta pruning. In Proceedings of the National Conference on Artifi-
cial Intelligence (AAAI-88), St. Paul, Minnesota. San Mateo: Morgan Kauf-
mann.

Finkel, R. and Fishburn, J., 1982. Parallelism in alpha-beta search. Artificial
Intelligence 19(1).

Finkel, R. and Manber, U., 1987. A distributed implementation of backtrack-
ing. ACM Transactions on Programming Languages and Systems 9(2).

Freuder, E.C., 1982. A sufficient condition for backtrack-free research. Assoc.
Comput. Mach 29(1):24-32.

Gaschnig, J., 1979. Performance Measurement and Analysis of Certain Search
Algorithms. Ph.D. dissertation, Dept. of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania.

Gerlernter, H., 1963. Realization of a geometry-theorem proving machine.
Computers and Thought, E. Feigenbaum and J. Feldman, ed. New York:
McGraw-Hill.

Haralick, R. M. and Elliot, G. L., 1980. Increasing tree search efficiency for
constraint satisfaction problems. Artificial Intelligence 14:263-313

Hart, T. P. and Edwards, D. J., 1963. The alpha-beta heuristic. M.L.T. Artificial
Intelligence Project Memo. Massachusetts Institute of Technology, Cam-
bridge, Massachusetts,

Hart, T. P., Nilsson, N. J., and Raphael B., 1968. A formal basis for the heuris-
tic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics SSC-4,2:100-107.

Hopcroft, J. E. and Ullman, J. D., 1979. Introduction to Automata Theory, Lan-
guages, and Computation. Reading: Addison-Wesley.

Knuth, D. E. and Moore, R. E., 1975. An analysis of alpha-beta pruning. Artifi-
cial Intelligence 6(4):293-326

Korf, R. E., 1985a. A weak method for leaming. Artificial Intelligence
26(1):35-77.

Chapter 6 Search: A Survey of Recent Results 235

Korf, R. E., 1985b. Depth-first iterative deepening: An optimal admissible tree
search. Artificial Intelligence. 27(1):97-109.

Korf, R. E., 1987. Planning as search: A quantitative approach. Artificial Intel-
ligence.

Korf, R. E., In press. Real-time heuristic search. Artificial Intelligence.

Laird, J. E., Newell, A., and Rosenbloom, P. S., 1987. SOAR: An architecture
for general intelligence. Artificial Intelligence 33(1):1-64.

Mackworth, A. K., 1977. Consistency in networks of relations. Artificial Intel-
ligence 8(1):99-118.

McAllester, D. A., In press. A new procedure for growing min-max trees. Arti-
ficial Intelligence.

Montanari, U., 1974. Networks of constraints: Fundamental properties and ap-
plications to picture processing. Inform. Sci. 7:95-132.

Nau, D.S., 1982. An investigation of the causes of pathology in games. Artifi-
cial Intelligence 19:257-278.

Nau, D., Purdom, P., and Tzeng, C., 1986. An evaluation of two alternatives to
minimax. Uncertainty in Artificial Intelligence, L. N. Kanal and J. F. Lem-
mer, ed. Amsterdam: Elsevier Science Publishers.

Newell, A., 1969. Heuristic programming: Ill-structured problems. In Progress
in Operations Research IIl, J. Aronofsky, ed. pp. 360—414. New York:
Wiley.

Newell, A., 1980. Reasoning, problem solving and decision processes: The
problem space as a fundamental category. Attention and Performance VIII,
R. Nickerson, ed. Hillsdale: Erlbaum.

Newell, A. and Simon, H. A., 1963. GPS, a program that simulates human
thought. Computers and Thought, E. Feigenbaum and J. Feldman, ed. New
York: McGraw-Hill.

Newell, A. and Simon, H. A., 1972. Human Problem Solving. Englewood
Cliffs, New Jersey: Prentice-Hall,

Newell, A., Simon, H. A., and Shaw, J. C., 1963. Empirical explorations with
the logic theory machine: A case study in heuristics. Computers and
Thought, E. Feigenbaum and J. Feldman, ed. New York: McGraw-Hill.

Pearl, J., 1982. The solution for the branching factor of the alpha-beta pruning
algorithm and its optimality. Commun. of the Assoc. of Comput. Mach.
25(8):559-564.

Pearl, J., 1983. On the nature of pathology in game searching. Artificial Intel-
ligence 20(4):427-453.

Pearl, J., 1984. Heuristics. Reading: Addison-Wesley.

Pearl, J. and Korf, R. E., 1987. Search techniques. Annual Review of Computer
Science. 2.. Palo Alto, California: Annual Reviews Inc.

Pohl, 1., 1970. First results on the effect of error in heuristics search. In Ma-
chine Intelligence 5, B. Meltzer and D. Michie, ed. pp. 219-236. New York:
American Elsevier.

236 Kort

Pohl, 1., 1971. Bi-directional search. In Machine Intelligence 6, B. Meltzer and
D. Michie, ed. pp. 127-140. New York: American Elsevier.

Polya, G., 1945. How to Solve It. Princeton: Princeton University Press.

Purdom, P.W., 1983. Search rearrangement backtracking and polynomial aver-
age time. Artificial Intelligence 21(1,2):117-133.

Rao, V. Nageshwara, Kumar, V., and Ramesh, K., 1987. A parallel implemen-
tation of iterative-deepening. In Proceedings of the National Conference on
Artificial Intelligence (AAAI-87), pp. 133-138. Seattle, Washington. San
Mateo: Morgan Kaufmann.

Ratner, D. and Warmuth, M., 1986. Finding a shortest solution for the NxN ex-
tension of the 15-puzzle is intractable. In Proceedings of the Fifth National
Conference on Artificial Intelligence (AAAI-86), Philadelphia, Pennsylvania.
San Mateo: Morgan Kaufmann.

River, R.L., submitted 1986. Game tree searching by min/max approximation.
Artificial Intelligence.

Rosenbloom, P.S., 1982. A World-Championship-Level Othello Program. Arti-
ficial Intelligence 19:279-320.

Sarcerdoti, E.D., 1974. Planning in a hierarchy of abstraction spaces. Artificial
Intelligence 5:115-135.

Samuel, A.L., 1963. Some studies in machine learning using the game of
checkers. Computers and Thought, E. Feigenbaum and J. Feldman, ed. New
York: McGraw-Hill.

Shannon, C.E., 1950. Programming a computer for playing chess. Philosophi-
cal Magazine 41:256-275.

Simon, H. A., 1981. The architecture of complexity. The Sciences of the Artifi-
cial, 2nd edition. Cambridge, Mass.: M.L.T. Press.

Simon, H. A. and Kadane, J. B, 1975. Optimal problem-solving search: All-or-
none solutions. Artificial Intelligence 6(3):235-247.

Slagle, J. R., 1963. A heuristic program that solves symbolic integration prob-
lems in freshman calculus. Computers and Thought, E. Feigenbaum and J.
Feldman, ed. New York: McGraw-Hill.

Slate, D. J. and Atkin, L. R., 1977. CHESS 4.5—the Northwestern University
chess program. Chess Skill in Man and Machine, P.W. Frey, ed. New York:
Springer-Verlag.

Stickel, M. E. and Tyson, W. M., 1985. An analysis of consecutively bounded
depth-first search with applications in automated deduction. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI-85),
Los Angeles, California. San Mateo: Morgan Kaufmann.

Tonge, F. M., 1963. A summary of a heuristic line balancing procedure. Com-
puters and Thought, E. Feigenbaum and J. Feldman, ed. New York:
McGraw-Hill.

Chapter 6 Search: A Survey of Recent Results 237

Turing, A. M., 1950. Computing machinery and intelligence. Mind 59:433-
460. Also in Computers and Thought, E. Feigenbaum and J. Feldman, ed.
New York: McGraw-Hill, 1963.

Von Neuman, J. and Morgenstern, O., 1944, Theory of Games and Economic
Behavior. Princeton: Princeton University Press.

Vornberger, O., 1987, Parallel alpha-beta versus parallel SSS*. In Proceedings
of the IFIP Conference on Distributed Processing. Amsterdam.

Waltz, D., 1975. Understanding line drawings of scenes with shadows. Psy-
chology of Computer Vision, P. H. Winston, ed. New York: McGraw-Hill.

Chapter

/

Qualitative Physics: Past,
Present, and Future

Kenneth D. Forbus

Qualitative Reasoning Group
Department of Computer Science
University of lllinois at Urbana, Champaign

1 Introduction

Qualitative physics is concerned with representing and reasoning about the
physical world. The goal of qualitative physics is to capture both the common-
sense knowledge of the person on the street and the tacit knowledge underlying
the quantitative knowledge used by engineers and scientists. The area is now a
little over ten years old, which, at least measured in the span of Al, is a long
time. So it makes sense to step back and try to systematize the work in the
field and describe the current state of the art.

I’ll start by describing what qualitative physics is, why one should be
doing it, and where it came from. Then I’ll sketch the current state of the art,
at least the part that is now fairly stable. Then I'll describe what I think lies
around the corner, including some pointers to recent work and some interac-
tions between qualitative physics and other fields. Finally, I'll describe some
open problems, each of which will probably require quite a few inspired Ph.D.
theses to crack.

Qualitative physics is growing rapidly, and thus any survey is likely to be-
come quickly dated. For example, several problems which were described as
virgin territory when this material was presented at AAAI-86 have now been at

239

240 Forbus

least partially explored. Nevertheless, I think the general framework for under-
standing the area that was presented then remains sound, and so I have re-
mained faithful to that organization.

2 Why Qualitative Physics?

Consider what we need to know about the physical world to make coffee. We
know that to pour coffee from the pot into a cup requires having the cup under
the spout of the kettle, and that if we pour too much in, there will be a mess on
the floor. We know all this without knowing the myriad equations and numeri-
cal parameters required by traditional physics to model this situation.

Suppose we were going to build a household robot that, among other du-
ties, made coffee. We might start by using traditional physics to model the sit-
vation. Immediately several problems arise. There are few formal axiomatic
theories of physics. The formal aspects of physics, the equations, do not by
themselves describe when they are applicable. What, for example, is the equa-
tion for the cup? There isn’t one, per se, but rather various aspects of the cup
potentially participate in several different equations describing “what happens”
in the world. Many everyday physical phenomena, such as boiling, are not
easily described by a single equation. And even when equations exist, people
who know nothing about them can often reason fluently about the phenomena.
So equations cannot be necessary for performing such reasoning.

But suppose for a moment that we had such a set of equations. Could we
use them? Realistic equations rarely permit closed-form, analytic solutions.
Even when they do, the high computational complexity of symbolic algebraic
means it’s not the sort of computation you want going on inside a robot en-
gaged in real-time activity. An alternate route is numerical simulation. By
plugging in numerical values, we could generate a very precise description of
what will happen. But such simulations require immense computational re-
sources. Worse yet, it assumes the existence of a complete set of accurate
values for all input parameters. Typically we just don’t have such accurate in-
formation, thus forcing us to search a space of parameters corresponding to the
ranges the various input parameters may take. This increases the amount of
computation even more, making numerical simulation infeasible.

Even if numerical simulation were technologically feasible, by say shirt-
pocket supercomputers, or by allowing rough approximations, it still would be
insufficient for our robot. First, we still need to interpret the output of the
simulation. A list of numerical state parameters is not the most perspicuous
representation of an event. Second, any run of a numerical simulator provides a
specific set of predictions about what the system being simulated will do. This
will suffice for some tasks, but not for all. Often we want to characterize the
possibilities that might occur, with some guarantee of completeness. For in-

Chapter 7 Qualitative Physics 241

stance, a fault-tree analysis of a power plant that captured only a small fraction
of the failure modes of the system would be inappropriate. With numerical
simulations it is often hard to tell when one has captured all of the possible be-
haviors.! In many situations one needs a rapid and rough estimate of what is
possible, rather than a very precise prediction based on many unsupported as-
sumptions. A robot pouring coffee should be cognizant of the possibility of
overflow, and not spend its time calculating just how big the resulting puddle
might be.

These problems are not specific to making coffee; they hold more gener-
ally whenever one tries to reason about the physical world. To summarize,
these problems are:

1. The modeling problem: How does one map from real-world objects to the
abstractions of one’s physics?

2. The resolution problem: Carrying out numerical simulations requires
more detail than is often available. Reasoning techniques that can exploit
low resolution, partial information are required for commonsense
reasoning.

3. The narrowness problem: Traditional simulation provides precise answers
given a particular set of assumptions. Many reasoning problems require
knowing alternative possibilities, rather than a single projection.

At first these problems may seem surprising. Physics, one of the crowning
successes of the scientific method, has been carried on for hundreds of years.
But consider: Physicists already have commonsense theories of the world.
Their goal is to create models capable of more precise explanations. With few
exceptions, the focus of formalization lies with building new models that have
significantly better predictive and explanatory power than our implicit com-
monsense models. Qualitative physics arises from the need to share our intui-
tions about the physical world with our machines.

There are many potential applications of qualitative physics. As argued
elsewhere [Gentner and Stevens, 1983; de Kleer and Brown, 1984; de Kleer,
1984], the tacit knowledge of engineers and scientists rests on this shared
framework. If we are to build programs that capture this expertise, we must un-
derstand the foundation qualitative physics provides. We will return to this
point after briefly summarizing the essence of qualitative physics.

1 It is said that if the angular increment in the simulation of the aerodynamic properties of the
Boston John Hancock building had been halved, the fact that the building’s windows would tend
to pop out in high winds could have been predicted. Instead, it was discovered empirically.

242 Forbus

2.1 The Essence

The key to qualitative physics is to find ways to represent continuous proper-
ties of the world by discrete systems of symbols. One can always quantize
something continuous, but not all quantizations are equally useful. One way to
state the idea is the relevance principle: The distinctions made by a quantiza-
tion must be relevant to the kind of reasoning performed [Forbus, 1984b].

The idea is simple, but few quantizations satisfy it. Rounding to fewer sig-
nificant digits, replacing numbers by arbitrary intervals, using simple symbolic
groups like TALL, VERY TALL, and fuzzy logic do not satisfy it. Signs generally
do, since different things tend to happen when signs change (balls fly up and
then down, different kinds of things can happen if the level of coffee in a cup
is rising versus falling). Inequalities do, since processes tend to start and stop
when inequalities change (heat flows occur when there is a temperature differ-
ence, boiling occurs when the liquid’s temperature reaches its boiling point).

Good quantizations allow more abstract descriptions of state, which in turn
make possible more concise descriptions of behavior. If our state parameters
are elements of R, there are potentially an infinite number of states. Replacing
state parameters by floating-point numbers makes the number of potential
states finite, but still numbering in the billions for many systems. In the quanti-
zations of qualitative physics there may be as few as a dozen, or a hundred, or
in some cases thousands. Each state in a qualitative physics typically corre-
sponds to many states in a traditional description, each distinguished by having
the same “meaningful behavior pattemn” occurring in them.

Abstraction is a two-edged sword. While these abstract state descriptions
succinctly capture possible behaviors, they tend not to prescribe exactly which
behavior will occur. By themselves they typically cannot, for we have thrown
away just that information required to settle such questions. Thus qualitative
simulations tend to be ambiguous. Often such answers suffice, e.g., if a house-
hold robot cannot imagine any way for the house to burn down as a con-
sequence of its plan to cook supper, then its plan is reasonably safe. However,
if a house fire is a possibility, more knowledge must be invoked. The ability of
qualitative physics to represent this ambiguity explicitly is beneficial, since it
provides a signal to indicate when more detailed knowledge is required.

A central goal of qualitative physics is to achieve a degree of systematic
coverage and uniformity far in excess of today’s knowledge-based systems. In
today’s expert systems, knowledge is encoded about a particular domain for a
particular purpose. Instead of continuing to build such systems, qualitative
physics strives to create wide-coverage, multi-purpose domain models. By
wide-coverage, we mean that there is some large but precisely characterizable
set of systems that can be described by the domain model. It is assumed that
every model for a specific system is built by instantiating appropriate elements
of the domain vocabulary in appropriate ways. This will reduce the amount of

Chapter 7 Qualitative Physics 243

hand-crafting required for new programs and will hopefully lead to “off the
shelf” knowledge bases.

By multi-purpose, we mean that a domain model (or a model for a specific
situation) can be used for more than one inferential task. Characterizing these
styles of reasoning is another goal of qualitative physics. These styles of rea-
soning include qualitative simulation, interpreting measurements, planning,
comparative analysis, and others. Developing domain-independent characteriza-
tions of these styles will hopefully lead to generic algorithms that can be used
as modules in a variety of larger systems.

2.2 Potential Applications

To turn robots loose in unconstrained environments, we must teach them quali-
tative physics. Often we must enlist physical processes to carry out our plans.
For example, if I want to make coffee in the morning, I need to use the stove
to make boiling water. This requires filling the kettle, putting the pot on the
stove, turning the stove on, and waiting for it to boil. One could imagine writ-
ing a little expert system to do this. It wouldn’t take many IF-THEN rules to
express this particular procedure. However, if you lived in my house you
would prefer a robot to be reasoning from first principles. My stove is a little
unusual: The surface that contains the burners retracts into the wall, under the
oven. When the stove is retracted, the burners are directly under the electrical
wiring for the oven. Having been designed in the 50’s, it has no safety cutoff
switch. Turning the burner on when the stove is retracted, or retracting the
stove when the bumer is still hot, is likely to burn the house down. It is doubt-
ful that the designer of the IF-THEN rules could have taken my stove into ac-
count, so I would be very nervous about turning such a machine loose in my
house. And houses are fairly stereotyped; consider such machines loose in a
construction site. Clearly, such robots will need some form of qualitative
physics

But qualitative physics has many other potential applications as well. The
subject matter of many expert systems includes aspects concerned with the
physical world, particularly in the sciences and engineering. Diagnosis and de-
sign are two obvious examples. As remarked above, qualitative physics identi-
fies the “tacit knowledge” that engineers and scientists use to ground the
formalisms they learn in school and on the job.

Consider for example the problem of building an intelligent tutoring sys-
tem for propulsion systems. Figure 1 shows a simplified layout of a Navy pro-
pulsion system, Distilled water is fed into the boiler, heated by oil-fired
burners, and turned to steam. The system operates at very high temperature and
pressure (950° F, 1200 psi) to increase the amount of energy transferred per
pound of steam. The steam is heated in the superheater, to impart even more
energy. (By the time it leaves the superheater in a shipboard system, it is

244 Forbus

travelling faster than the speed of sound.) Here is a hard problem that instruc-
tors routinely ask about this situation: Suppose the feedwater temperature in-
creases, as might occur when travelling in a warmer part of the ocean. What
happens to the temperature at the superheater outlet?

This is a complicated situation, and most of us haven’t had a lot of ex-
perience with it, so it hardly qualifies as commonsense physics. Yet qualitative
reasoning suffices to answer it. In fact, qualitative reasoning is crucial: While a
few numerical values have been provided, many critical ones have not, includ-
ing how much the feedwater temperature rises! Here is the solution, according
to instructors at the Navy Surface Warfare Officer’s school in Newport, Rhode
Island. The water coming into the boiler is now hotter. The boiling will occur
at the same temperature, so this means that the amount of heat that must be
added to get a piece of water to boil is reduced. This means the water will boil
sooner, which means the rate of steam production increases. Assuming a con-
stant load, this means the steam spends less time in the superheater. Since the
amount of heat transferred to the steam in the superheater is a function of the
time it spends in the superheater, and the starting temperature of the steam is
the same, less heat is transferred. Thus the steam temperature at the super-
heater outlet falls when the feedwater temperature rises.

The ability to make these subtle, yet human-like, deductions makes quali-
tative physics an excellent candidate for a knowledge component in intelligent
tutoring systems [Forbus and Stevens, 1981; Forbus, 1984a] and plant moni-
tors. For example, Figure 2 shows an explanation generated by one of my pro-
grams a long time ago, as part of the STEAMER system. The valve shown is a
spring-loaded reducing valve, and it converts 1200 psi steam to 12 psi steam at
constant pressure, for a wide range of loads. The important thing to notice is
that the terms of the explanation are those which are easily understood by
human students and operators. No numerical values were used to generate
these conclusions—just a very simple qualitative physics.2

Qualitative physics also has many potential applications in other aspects of
engineering [Forbus, 1987b]. Consider a really smart mechanical design as-
sistant that could generate a description of possible behaviors before detailed
parameters were chosen. Suppose the desired behavior exists in the space of
behaviors predicted by a qualitative simulation. Then the design effort proceeds
by choosing parameters to force the desired behavior, and not the alternatives,
to occur. If the desired behavior is not even possible, then it is clear that the
design must be changed, even without more details. It does not take detailed

2 The physics used was the early de Kleer and Brown physics, which provided only perturbation
analysis, not full dynamical reasoning. The limitations of this approach inspired my own qualita-
tive process theory (and their confluences theory).

Chapter 7 Qualitative Physics 245

)) Qutlet

Superheater

Inlet ; ,
— Tout = B50°F
g e — Boiler Pout = 1200 p.s.i.

Figure 1. The SWOS Problem. Given that the temperature of the feedwater is

increasing, what is the temperature at the superheater outlet? Instructors at the
Navy Surface Warfare Officer's School say this is one of the hardest problems

students are given, yet it can be answered with purely qualitative reasoning.

Figure 2. Qualitative physics can be used in intelligent tutoring systems

246 Forbus

numerical simulation to ascertain, for example, that a pendulum is not a good
oscillator to use in a wristwatch.

3 The Past

We will not attempt a complete historical survey or time line of qualitative
physics. Instead, we will describe three early efforts, the “pre-history” of the
area, that provide a background for making later work easier to understand.

Qualitative physics arose from attempts to build programs that could solve
textbook physics and math problems. The earliest systems (STUDENT [Bobrow,
1968], carps [Charniak, 1968], MECHO [Bundy et al., 1979], 1SSAC [Novak,
1976)) attempted to capture the full breadth of the problem, from parsing the
initial problem description in natural language to generating diagrams. These
programs could solve a variety of problems, but it was quickly discovered that
the equations (explicit or implicit) were insufficient to solve most problems.
Consider Figure 3 from the description of Charniak’s CARPS program. To set
up the equations properly required interpreting the phrase “approaching the
dock,” which here means the distance along the top of the water.

The easy answer, of course, is that more knowledge is needed. But what
kind? de Kleer was the first person to characterize the relevant kind of knowl-
edge. His work on the NEWTON program marked the beginning of qualitative
physics. NEWTON was designed to solve problems conceming a single point
mass sliding on a surface (see Figure 3).

A BARGE WHOSE DECK 1S 10 FT BELOW THE LEVEL OF A DOCK IS BEING DRAWN IN
BY MEANS OF A CABLE ATTACHED TO THE DECK AND PASSING THROUGH A RING
ON THE DOCK. WHEN THE BARGE IS 24 FT FROM AND APPROACHING THE DOCK AT
3/4 FT/SECHOW FAST IS THE CABLE BEING PULLED IN?

Make a sketch of this situation for yourself. Most all people will draw

3/4 FT/SEC } 10FT

\—v——/

24 FT

Clearly when we say APPROACHING THE DOCK we mean at the level of the boat.
Once again information of gravity would lead to this result.

Figure 3 Commonsense knowledge is needed to solve textbook problems.
In extending STUDENT's technigues to handle calculus problems, Charniak
found that more world knowledge was needed to properly interpret these
problems.

Chapter 7 Qualitative Physics 247

(x)

c2 (—-)v

Figure 4 An example from NEWTON. de Kieer's NEWTON used a combination
of qualitative and algebraic techniques to reason about a point mass moving on
a surface.

When faced with a problem, NEWTON would begin by creating an envi-
sionment, an explicit representation of all the different possible behaviors of
the system. Figure 5 shows the envisionment for the problem in Figure 3.
There are two things to note about this envisionment. First, in standard simula-
tions there is a unique next state. In a qualitative simulation there can be more
than one next state, due to the lack of resolution in the qualitative description.
Second, the envisionment alone suffices to answer many questions about this
domain. For example, if asked whether or not the mass could fly off segment
S1 going to the right, NEWTON could answer “no,” because no description
matching that behavior can be found in the envisionment. To paraphrase de
Kleer, an intelligent problem solver has to be able to answer stupid questions,
and preferably with less work than it takes to answer subtle questions.

To answer more subtle questions, NEWTON performed algebraic manipula-
tion. Consider the problem of determining conditions that will prevent the cart
from flying off when it enters the right side of the track. There is a qualitative
ambiguity in what happens after state S1, one branch corresponding to the cart
flying off and the other branch to the cart sliding back. NEWTON used this qual-
itative ambiguity to index into a knowledge base of equations, which was then
manipulated to derive an appropriate inequality.

The next event in the prehistory of qualitative physics was the Pat Hayes’
Naive Physics Manifesto [Hayes, 1985]. This paper achieved wide informal
circulation in 1978, and had a major impact. In particular, Hayes’ notion of
histories is central to qualitative physics. Figure 6 illustrates a fragment of the
history for a liquid being poured from a container onto a table top. The basic
idea of histories is that events should be represented as spatially bounded, but
temporally extended, pieces of space-time. It is assumed that histories which
do not intersect do not interact.

248 Forbus

FALL

ENVISIONMENT

Figure 5. An Envisionment for a NEWTON problem.

Mere Contain Emptying

/ \ o Ty
C

Wet

Spreading | Wetting

g

vertical Falling
Wet
-4
Time
Horizontal

Figure 6 An example of Hayes' notion of histories.

Chapter 7 Qualitative Physics 249

Histories were designed to solve several problems with the situation cal-
culus, especially the Frame Problem. Situation calculus provides no spatial
boundaries for an event. In fact, the situation calculus describes what happens
between events of some kind (such as the actions taken by an imaginary robot),
not what happens during those events. This leads to several well-known prob-
lems, such as being forced to change situations whenever anything happens
anywhere in the entire universe of discourse. There are two advantages to his-
tories. Their being temporally extended means it is easier to talk about what is
happening during some action (assuming appropriate temporal representations).
Their being spatially bounded means that descriptions can be evolved locally,
thus eliminating the requirement of global simulation (see [Hayes, 1979; For-
bus, 1984b; Williams, 1986] for details).

While several aspects of Hayes’ naive physics enterprise have been
adopted enthusiastically in the qualitative physics enterprise, several have not.
For instance, Hayes argued that implementation was an “unnecessary distrac-
tion.” In qualitative physics, testing ideas via computer implementation is
viewed as essential. As our models grow more complex, carrying out proofs by
hand is burdensome. With abstruse mathematical constructs it is easy to main-
tain rigor, but with commonsense matters it is all too tempting to relax one’s
vigilance. Carefully written programs are superb bookkeepers, keeping one’s
theories honest. Furthermore, as discussed below, there are several styles of
reasoning that use such knowledge. Identifying these problems and developing
computational techniques to solve them is a worthwhile endeavor in its own
right.

The third piece of prehistory is my FROB program [Forbus, 1980, 1981a]
which reasoned about motion through free space. de Kleer’s “roller-coaster”
world was essentially one-dimensional, with the simulation halting whenever
the cart left the surface. FROB worked with a true two-dimensional world, rea-
soning about balls bouncing around on surfaces (see Figure 7). The user could
specify a scenario by drawing a diagram to specify the surfaces and introduce
balls. The more information the user provides, the more FROB refines its de-
scriptions. For example, FROB used a constraint language to determine, in con-
junction with the diagram, the consequences of any numerical parameters pro-
vided. In addition to carrying out numerical analyses, FROB could answer ques-
tions like “where will this ball end up eventually?” and “can these two balls
collide?” In all cases, FROB used minimal information to answer the question.

FROB’s spatial reasoning worked by calculating a qualitative vocabulary of
places from the surfaces in the diagram. Combined with symbolic descriptions
of activity (such as FLY and COLLIDE) and velocity (e.g., (LEFT UP)), these
places provided the framework for qualitative spatial analysis. Consider the
problem of determining whether or not the two balls in Figure 8 will collide.
To collide, two balls must be in the same place at the same time. If all we
know is that both balls are going to the left, then they might collide, since the

250 Forbus

union of the places they might be overlap. But if we also assume that FRED
never gets to S31, then a collision is ruled out, since the two balls can never be
in the same place.

Metric Diagram

->> 'Motion-Summary-for b1)

FOR G0364

THE BALL WILL EVENTUALLY STOP

(T 1S TRAPPED INSIDE (WELLO)

AND WILL STOP FLYING AT ONE OF (SEGMENT 11)
NiL

Figure 7 FROB reasoned about motion through space.

Chapter 7 Qualitative Physics 251

S50 S40 S40

«© «— “FRED”
$17 SR1 S31{ SR2 |[S44 SR3 518

-©
"GEORGE:\

S13 S41 30

$12 | SR6 | S10

S11
Metric Diagram

->>(collide? fred george)

(POSSIBLE AT SEGMENT S0 SEGEMNT 17 SEGMENT 13 SREGION)
-> >(cannot-be-at fred segment 31)

(SEGMENT 31)

UPDATING ASSUMPTIONS FOR (> > INITIAL-STATE FRED)
CHECKING PATH OF MOTION AGAINST ASSUMPTIONS
->(collide? fred george)

NO

-> >(what-is (> >state initial-state fred)

(> >STATE INITIAL-STATE FRED) = (FLY (SREGIONS3) (LEFT))
NIL

-> >(what-is (> >state initial-state george))

{>>STATE INITIAL-STATE GEORGE) = (FLY (SREGION) (LEFT))
NiL

Figure 8 Coliision problem.

252 Forbus

FROB advanced the state of the art in several ways. First, it demonstrated
that Hayes’ notion of histories was indeed useful. There was perhaps more
numerical information in FROB’s histories than in Hayes’ original conception,
but they are histories nonetheless. Second, FROB was based on a theory of spa-
tial reasoning that divided the problem into two parts, using a diagrammatic
representation to provide quick answers to a class of geometric questions, and
a qualitative description of places computed from the diagram. Third, it dem-
onstrated that qualitative ambiguities could be resolved by numerical calcula-
tion, just as NEWTON demonstrated that symbolic algebra could resolve them.
And finally, the notion of envisionments was generalized from the trees used in
NEWTON to full graphs. This allows many properties of the behavior, such as
final states and oscillations, to be characterized by properties of the envision-
ment graph (e.g., end states and cycles) rather than by explicit nodes as in
NEWTON.

At this point we draw our pre-historic retrospective to a close. NEWTON
and FROB were organized around using a combination of qualitative and quanti-
tative techniques to solve particular classes of problems. It became clear
around this time that simply understanding the nature of qualitative repre-
sentation was a full-time effort, and that a domain-independent, general qualita-
tive physics could exist. Research effort turned to finding such a physics—or,
more correctly, understanding the space of such systems of physics—and we
now turn to this exploration. '

4 The State of the Art

Work in qualitative physics may be roughly divided into three areas: qualita-
tive dynamics, qualitative kinematics, and styles of reasoning. In traditional
physics,

Dynamics deals with the causes of motion, as opposed to kinematics,
which deals with its geometric description, and to statics, which deals with
the conditions for the lack of motion [Considine, 1983].

Dynamics is used generically to describe the study of forces on systems
(e.g., fluid dynamics), and typically includes statics. Hence qualitative dynam-
ics is concemed with what causes systems to change over time, ignoring
geometry except as a source of boundary conditions.

Qualitative kinematics is concerned with the spatial reasoning required by
commonsense physics. Not all commonsense spatial reasoninglis qualitative
kinematics—counterexamples include navigation, spatial planning, and control-
ling arm motions. Carrying the distinction between dynamics and kinematics

Chapter 7 Qualitative Physics 253

into qualitative physics is not an arbitrary choice, as we will argue in Section
42.

Styles of reasoning, of course, concern how to exploit the knowledge of
qualitative physics. There is no direct analog in traditional physics, except inso-
far as physicists and educators have attempted to formalize their problem-solv-
ing methods in order to teach them more readily. But studying styles of reason-
ing is crucial for qualitative physics, since representation without reasoning is
an idle exercise.

4.1 Qualitative Dynamics

Qualitative dynamics studies how physical systems change. It addresses the
problem of how to represent differential equations qualitatively, and how to or-
ganize such knowledge in a usable form. We begin by surveying qualitative
representations for numbers and time-varying differential equations. Ontologi-
cal issues are discussed next, since providing a formalism for organizing
knowledge is a central job of qualitative physics. Finally we take a brief look
at two other issues, the role of continuity and how such equations are given
causal interpretations, since these topics are often misunderstood.

But before we start: A variety of notations have been used in qualitative
physics. While terminology differences can be bewildering to the uninitiated,
and standardization has been suggested ({Bobrow, 1984], p. 5), it is doubtful
that the situation will improve soon. In fact, two facts suggest that stand-
ardization is not an urgent issue. First, there is already significant overlap. Sec-
ond, the lack of a single standardized notation has not seemed to retard pro-
gress in traditional mathematics, in which there are still over six different nota-
tions for derivatives, despite its being hundreds of years older than qualitative
physics. We will sometimes point out variations, but will not attempt a
complete concordance.

4.1.1 Numbers Three representations for number have proven useful so far
in qualitative physics: signs, inequalities, and orders of magnitude. We de-
scribe each in turn.

Signs Reducing numbers to signs is the simplest qualitative representation for
number [de Kleer, 1979b, 1984b; Williams, 1984]. For example, we might say
that the level of water in a container is —1, 0, or 1, depending on whether or
not the level is lower, the same as, or higher than a desired height. If the com-
parison is chosen carefully, we can satisfy our desiderata of capturing relevant
distinctions while not introducing irrelevant ones.

Signs of derivatives form a natural indicator of change {Forbus, 1981b; de
Kleer, 1984b; Williams, 1984]. We will use the notation of qualitative process
(QP) theory and denote the sign of the derivative of a quantity Q by Ds{Q]. If

254 Forbus

the sign of the derivative is —1, then the quantity is decreasing, if O then it is
constant, and if 1 then it is increasing. Since change is intuitively important,
and the direction of change determines what boundary conditions might
change, signs carry critical information about derivatives.

The earliest use of signs in qualitative physics was de Kleer’s QUAL pro-
gram [de Kleer, 1979a], where signs were interpreted as the difference between
an original equilibrium value and the new equilibrium value reached as the re-
sult of a perturbation (the incremental qualitative value (1Q) interpretation).
The semantics of this representation were slightly problematic: For example, it
was not clear what the 1Q value should be if the system went through several
behavioral states before settling into an equilibrium value.

The major advantage of the sign representation is simplicity. We are
taught the method of substitution very early in mathematics, and sign values
provide a concrete object that may be “plugged in” to qualitative equations of
whatever form. However, signs alone are often not enough. Consider the prob-
lem of figuring out what might happen if we have three tanks F, G, and H with
pipes hooked up between them. Given some initial level of water in each, we
turn on all the valves in the pipes between them. To determine how the water
would flow requires comparing the pressures in the tanks that are linked to-
gether.

A sign value encodes a comparison of a magnitude with a single reference
value. Suppose tank G is connected by pipes to both F and H. Clearly no sign
representation of pressure will suffice for the pressure in G, since we must
compare the pressure with two reference values, the pressures in F and G. The
fact that these reference values are themselves changing is yet another compli-
cation. It seems counterintuitive to say that the value of pressure in G is chang-
ing simply because the pressure in F is changing.

One representational “trick” sometimes suggested to work around these
problems, albeit unnaturally, is to rewrite a quantity as a constellation of signed
quantities. For example, a given quantity Q might be represented by new quan-
tities Q1. . . Qn, one for each comparison Q is involved in. This does violence
to the notion of quantity. Furthermore, it makes the number of pseudo-quanti-
ties needed to describe a quantity vary with the situation, rather than with the
type of object. The next section describes a more natural representation for
such circumstances.

Inequalities Comparing the value of a quantity with several other parameters
is a common occurrence in physics. For example, to determine the phase of a
piece of stuff, one determines the relationship of its temperature to the boiling
temperature and freezing temperature of that substance for the appropriate con-
ditions (such as pressure). Worse yet, the parameters that it makes sense to
compare a value with can change as conditions change. For example, if we dis-

Chapter 7 Qualitative Physics 255

cover a leak in tank G in the previous example, we should also consider the re-
lationship between the pressure at the leak and the surroundings.

These considerations suggest collecting a set of inequalities to describe a
quantity. This set of inequalities is called its quantity space [Forbus, 1981b].
Inequalities makes sense for several reasons. First, they provide a means to
partition numerical values, and thus express boundary conditions for behavior.
For example, when two objects in thermal contact are at different temperatures,
there will be a heat flow from the object with higher temperature to the object
with lower temperature. Second, a quantity can participate in any number of in-
equalities, thus providing the variable resolution we desire. Third, if numbers
are combined by addition, inequality information often suffices to determine
the sign of the outcome. If, for instance, there is flow into a tank and flow out,
the relative magnitudes of the flows determine whether the level of the tank is
rising or falling.

Here is a simple quantity space that describes the temperature of water W
in a pot on the stove.

- Tstove
T Tt

Ttreeze = Tw

A simple quantity space. The significant relationships involving the temperature
of a piece of water (Tw) can be expressed as inequalities. Here, the
temperature is above freezing (Tfreeze) and less than the temperature of the
stove and its boiling temperature.

The arrows represent inequalities, with the quantity at the head of the
arrow being greater than the quantity at the tail of the arrow. Thus W is
warmer than freezing, and cooler than both its boiling temperature and the
temperature of the stove. Importantly, quantity spaces need not be complete—
notice that in this diagram we do not know the relationship between the
temperature of the stove and the boiling point of W. The ability to represent
this ambiguity allows us to accumulate partial information, and detect when
more information is required.

What should a number be compared to? One source of quantity space ele-
ments are parameters representing domain-specific boundary conditions. An
example of such limit points are the boiling temperature of a substance or the
fracture stress of a material [Forbus, 1981b]. Some comparisons are required
due to the specifics of a situation, such as a comparison between the rate of
flow into and out of a container. We will adopt the terminology of [Kuipers,
1986] and refer to the elements of a quantity space generically as landmark
values for the quantity, whether or not they are limit points.

256 Forbus

Landmarks versus limit points Two distinct semantics have been used for
landmark values in the literature. The distinction has often been misunderstood,
via a type/token confusion, and we undertake to clarify it here. We call a de-
scription temporally generic if it refers to a class of temporal behaviors, rather
than just a single behavior. A description of a single behavior we will call tem-
porally specific. The script of a play is a temporally generic description, while
a videotape of its performance is temporally specific. Limit points are tem-
porally generic, as are comparisons between rates, since there are classes of sit-
uations where liquids boil and flows occur. The value of the boiling tempera-
ture at 3 PM is temporally specific—we are referring to a single situation, and
hence a single specific value.

Most systems of qualitative physics use only temporally generic land-
marks. But temporally specific landmarks can be critical for many reasoning
tasks: For example, it may be crucial for a doctor to compare a patient’s
cholesterol level today with the specific cholesterol level last week, not just
with some generic “safe” value. Kuipers’ QSIM generates such temporally
specific landmarks. These landmarks do not correspond to “discovering” new
limit points, as originally claimed. Rather, they are the equivalent of a qualita-
tive “strip chart” that describes a specific behavior of a system. QSIM thus pro-
vides an automatic naming facility to support reasoning about temporally
specific values.

Although temporally specific landmarks are essential for some inferences,
they introduce a new level of computational complexity. Consider for example
a decaying oscillation, such as a ball bouncing up and down, each time rising
only some fraction of the height it reached before. Each height is a new land-
mark value. Thus an infinite behavior can sometimes lead to an infinite number
of landmark values (see Section 4.3.2).

The quantity space is now a standard feature of qualitative physics
[Kuipers, 1984, 1986; Simmons, 1983; Weld, 1986]. It addresses the resolution
problem by providing the ability to incrementally accumulate information
about a number, thus simplifying the modeling task. However, manipulating
sets of statements describing a value is more complicated than treating values
as atomic objects, as the sign representation allows. Quantity space implemen-
tations require efficient application of the laws of transitivity, typically ob-
tained by separate inferential mechanisms [Forbus, 1984c; Simmons, 1983;
Forbus, 1988].

Several useful variations of the quantity space have been developed. For
instance, Kuipers requires quantity spaces to be totally ordered [Kuipers,
1984), which simplifies the representation into a collection of intervals. Sim-
mons [1986] augments inequalities with numerical intervals, thus providing a
simple way to integrate empirical bounds.

Chapter 7 Qualitative Physics 257

Orders of magnitude Sometimes saying that N is greater than N2 is not
enough: One may need to say that Nj is so large compared to N2 that N2 may
be ignored. For instance, the effect of evaporation on the level of a lake may
be ignored if the dam holding it has burst. In everyday life, engineers rely on
the ability to distinguish a value that is significantly out of range from a nor-
mal variation. One way to represent such information is to extend the range of
comparative relationships to include orders of magnitude. Three such repre-
sentations, FOG [Raiman, 1986], o{M] [Mavrovouniotis and Stephanopolous,
1987], and Davis’ infinitesimal theory [Davis, 1987] have been developed in
qualitative physics. We begin with FOG and O[M] since they share intended use,
and then describe Davis’ system.

FOG introduces three new relationships, in addition to the traditional order
relations. They are:

A << B : A is negligible compared to B.
A =B : Ais very close to B.
A ~ B : A is the same order of magnitude as B.

Raiman has developed a consistent formalization that captures the intuitive
meaning of these statements, using infinitesimals as a model. The effect of
these relationships is to stratify values into equivalence classes, thus providing
the means to say that values are very different. For example, in the DEDALE di-
agnosis system [Dauge et al., 1987], this vocabulary is used to describe the
typical relationships between values in component models.

The O[M] is based on assigning labels to ranges of ratios. For example, the
relationship

A ~< B (read A is slightly smaller than B)

is true exactly when

where e is a domain-specific parameter. This mapping simplifies the laws of
the system and potentially allows a variety of quantitative information to be
easily incorporated. O[M] also uses physical units to reduce inferential complex-
ity; only parameters of the same units may be compared.

The definition of orders-of-magnitude relations in O[M] in terms of ranges
simplifies the mapping from numerical values, a problem for which FOG pro-
vides little guidance. However it also allows a large but finite number of negligi-
ble values to add up to something that is significant, which violates the intuitions

258 Forbus

underlying such reasoning. This cannot happen in FOG. The relative advantages
of the two systems remain to be explored.

Davis [1987] describes another formalism for orders-of-magnitude which,
like FOG, is based on infinitesimals. He reconstructs a qualitative calculus to in-
clude infinitesimal values for both numbers and as durations of intervals. Thus
he can talk about changes taking infinite (or very short) time.

4.1.2 Equations Equations are the hallmark of physics. Just as qualitative
physics restricts the accuracy to which numerical values are known, the notions
of equations developed in qualitative physics are also typically weaker. These
weaker constraints can better capture partial knowledge and simplify inference,
thus addressing the resolution problem.

Arithmetic operations Every system of qualitative physics includes at least
addition and subtraction. Multiplication is often introduced as well. While the
operations are familiar, the effects of weakening the values they are performed
on has profound consequences. First, ambiguities can arise, even with complete
initial information. If one only knows that A is greater than zero and B is less
than zero, for instance, then the sign of A + B cannot be determined. In this
case knowing the relative magnitudes of A and B can provide the answer, but
in general, algebraic inequalities are required. But since most qualitative values
do not form a field, algebraic manipulations must be performed with care.

In [de Kleer and Brown, 1984], equations involving sign values are called
confluences. Confluences are solved by propagation of constraints, using
generate and test when unresolvable simultaneities occur. Under certain condi-
tions, Dormoy has shown that sets of confluences can be solved by a variant of
Gaussian elimination [Dormoy and Raimen, 1987]. Confluences have also been
used with the FOG formalism, where the comparison is made between the ac-
tual value of a parameter and its nominal value [Dauge et al., 1987].

Monotonic functions One of the weakest statements that can be made about
the relationship between two quantities is that when one increases, the other
tends to increase. This level of knowledge is captured by monotonic functions,
which are used as a primitive in several systems of qualitative physics and
mathematics. Monotonic functions provide a means of approximating compli-
cated or unknown functions with minimal commitment.

If y = f(x) then f{x) is increasing monotonic if whenever x increases, y in-
creases. f(x) is decreasing monotonic if whenever x increases, y decreases.
Often there is no reason to name the function involved, so various notations for
anonymous functions have been developed. For example, Kuipers [1984, 1986]
uses M*(x, y) to denote an increasing monotonic connection between x and y,
and M (x, y) to denote a decreasing function.

QP theory allows the partial specification of monotonic functions through
qualitative proportionalities. Formally, y oQ+ x indicates y = f{. . ., x,. . .),

Chapter 7 Qualitative Physics 259

where f is some function which is increasing monotonic in its dependence on x.
Similarly, y aQ+ x indicates that the function involved is decreasing monotonic
in x. To determine the complete specification of functional dependence in any
particular situation requires a closed-world assumption.3

The advantage of qualitative proportionalities is composability; the knowl-
edge of a function can be decomposed and distributed appropriately through a
representation, to be assembled as needed by the reasoning system. For ex-
ample, parameters may be selectively ignored (such as the effect of pipe re-
sistance on the rate of liquid flow, if the fluid is moving very slowly) by “turn-
ing off” the description that contributes them to the function. Qualitative pro-
portionalities can also be used to express intermediate hypotheses in a learning
system. For example, ABACUS [Falkenhainer, 1985] searches for them as the
first step in finding equations to describe numerical data. The disadvantage is
that ambiguities arising from them cannot be settled by just inequality informa-
tion. Consider for instance

CogrA A CaQg-B A Ds[A]=Ds[B] =1

No additional sign or inequality information suffices to determine Ds[C], un-
like subtraction or multiplication.

We have found it useful to allow two other kinds of information to be
specified about monotonic functions. First, correspondences are introduced to
propagate inequality information. Intuitively, a correspondence fixes a point on
the curve relating two (or more) parameters. For instance, when a spring is at
its rest length it exerts no force. Suppose the force is aQ- its length (i.e.,
stretching it produces a force that tends to make it return to its rest length).
These two facts together allow us to deduce that if we push a spring to be
shorter than its rest length, we will cause it to exert a positive force (i.e., push
against us). A detailed discussion of correspondences can be found in [Forbus,
1984b; Kuipers, 1986]. Second, functions can be named, so that inequality in-
formation can be propagated across distinct individuals [Forbus, 1984b]. For
example, the function that determines the pressure of a contained liquid in
terms of its level is the same for all containers, and hence information about
differences in level can be mapped into differences in pressure.

Of course, many functions required in modeling the physical world are not
monotonic. Such functions can be represented by decomposing them into mon-
otonic segments. Providing a framework for explicitly describing the assump-
tions underlying this decomposition is one of the roles played by ontology in
qualitative physics.

3 A language for framing more complete hypotheses about functional dependence is described in
[Forbus, 1984b], Section 5.3.

260 Forbus

4.1.3 Ontology Ontological choices are central to qualitative physics. Along
with space and time, ontology provides the organizational structure for every-
thing else. Continuous properties are properties of something, and equations
hold as a result of that. Usually developing the appropriate ontology is the
most difficult part of formalizing a domain.

If we are to build a complete qualitative physics, one that covers the
breadth and depth of our commonsense knowledge of the physical world, we
must discover and utilize common abstractions. Generating an ad hoc model
for each scenario is impractical and unreliable. Two such ontological abstrac-
tions, devices and processes, have been widely used in qualitative physics. We
describe them here, after briefly reviewing a simple precursor.

4.1.4 Qualitative State Vectors The qualitative state vector ontology was
the earliest used in qualitative physics. It was the ontology used in both NEW-
TON [de Kleer, 1975, 1979a], and FROB [Forbus, 1980, 1981a]. The idea is to
decompose system behavior into segments, each described by a list of symbols.
This symbolic state vector contains two types of elements:

1. A quantization of the traditional state variables.
2. A symbolic description of the type of activity.

In traditional physics, we might state informally what kind of system we
are reasoning about (say, a ball bouncing on a surface), describe the initial
values for the state parameters, and state what equations will be used to de-
scribe the different things a ball can do (i.e., fly through space and collide with
surfaces). In the corresponding qualitative description, we would quantize posi-
tion into symbolic places, velocities into symbolic directions, and add a symbol
for the type of behavior. For example, we might say a ball is in REGIONO,
going (LEFT UP), and FLYing (see Figure 9).

2;4

é 1|

; "o i 1. (FLY REGION3 (LEFT uP>)

: i 2. (COLLIDE Sit (RIGHT DOWN)
5 p 3. (STOP $13 NIL)

; 3 i 4. (CONTINUE S49 (UP))

Figure 9 An example of qualiiative state vectors.

Chapter 7 Qualitative Physics 261

The need for the first class of constituent is obvious, since some repre-
sentation of state variables is needed to capture the behavior. The second type
explicitly describes that which is left implicit in the traditional representations.
Roughly, the symbolic description of activity should change whenever the
quantitative equations traditionally used to describe the behavior will change.
Since we do not have equations, we must provide instead a set of qualitative
simulation rules. These rules take a state and produce the set of states which
can occur next. As mentioned previously, more than one state may be possible
due to the coarse grain of the representation. The particular content of the rules
is highly domain-specific, but typically a small set of rules suffices for each
class of behavior. (Hayes’ conception of reasoning with histories by “gluing
them together” fits within this framework as well.)

The qualitative state vector representation has three useful properties. First,
it is quite natural. The notion of state is central in any account of physics,
traditional or qualitative. Second, it is very compact. Each state can be suc-
cinctly described by a short list of symbols, and hence envisioning is very
cheap. Third, it provides an easy means to combine dynamic and kinematic
representations, something which is more difficult with the other ontologies.

The difficulty with this ontology is that it lacks composability. To describe
a complex system directly is often too difficult. Instead, one decomposes it into
smaller parts, models each of those parts and the relationships between them,
and then combines these models into a model of the whole system. The advan-
tages of such modular approaches are well known; the pieces can often be re-
used to describe yet more systems. But we have placed little constraint on the
actual contents of states and simulation laws, and so we have no methodology
for combining them.

For example, suppose we wish to combine the states in NEWTON and FROB.
Each simulation stops when it reaches conditions that make the other appro-
priate, so one might imagine using the union of their simulation laws to more
fully describe the behavior of a point mass. But not all combinations are so
simple. If we glue the point mass onto a stick that is attached to a pivot (thus
creating a pendulum), both sets of laws are simply wrong. Each new condition
we add requires reorganizing our vectors and simulation laws in some ad hoc
fashion.

Hayes’ axioms for liquids do not escape this problem, either. First, Hayes
himself points out there are many cases where his theory cannot make predic-
tions (such as pouring water into a leaky cup). Second, adding new phenom-
ena, such as solutions, would require wholesale reorganization of the theory.
No theory is completely composable, of course. What we seek is an organizing
principle, a methodology that simplifies combination as much as possible. Pat-
terns of history combinations (or, equivalently, tables of qualitative simulation
laws) are not constrained enough.

262 Forbus

In traditional physics, composability is arranged by sharing parameters.
The equations for distinct parts are combined by identity of names in some
cases, and by new equations describing the relationship between the parts in
others. Qualitative versions of such theories thus require both a qualitative rep-
resentation of equations, and an organizing structure to place them in. This
generative power is exactly what is required to provide composability. The
other two ontologies exploit this idea.

4.1.5 The Device Ontology System dynamics [Shearer et al., 1971] is an
engineering methodology which provides a common set of abstractions that
encompass a variety of domains, including many electrical, thermal, mechani-
cal, and acoustical systems. This modeling paradigm has been widely used in
qualitative physics as well, the principle advocates being de Kleer and Brown
[de Kleer, 1979b; de Kleer and Brown, 1984; de Kleer, 1984a] and Williams
[1984]. These theories replace the quantitative equations of system dynamics
with qualitative equations, and have developed new inference techniques for
using these descriptions.

The basic idea is to view a system as constructed from a collection of dev-
ices, such as transistors and resistors. The behavior of a device is specified by
internal laws, often decomposed into distinct states or operating regions. Each
device has some number of ports, and all interaction between devices occurs
through these ports. To model a particular system, one builds a network of
devices. The device network is then analyzed by using the combined equations
from the devices and interconnections, either by constraint propagation or sym-
bolic relaxation.

Consider, for example, the bipolar transistor common emitter amplifier in
Figure 10. The catalog of domain devices will include descriptions of transis-
tors and resistors, and descriptions of what parameters are shared when termi-
nals are connected together. A typical conclusion (but not the only kind) that
can be reached with this description is how the circuit might respond to a
change in input. This reasoning is accomplished by “perturbing” a declared
input parameter, and using the laws associated with devices and interconnec-
tions to propagate effects through the system. For instance, suppose the input
voltage increased. This will cause the base-emitter current to increase, which
(due to the way transistors work) will cause the collector-emitter current to in-
crease. This in turn will cause the collector voltage to drop, which will in turn
cause the output voltage to go down.

This example has been deliberately simplified; detailed descriptions can
easily be found in the literature (see [de Kleer and Brown, 1984; Williams,
1984]). However, it illustrates two important properties of this ontology. First,
once a model is created, most inferential work occurs by local propagation
within the model. Such antecedent reasoning is easy to control and can be
made to work very efficiently. Second, we have assumed that flow of informa-

Chapter 7 Qualitative Physics 263

tion in the model of the system directly mirrors flow of causality in the world.
The ramifications of this assumption are discussed in Section 4.1.7.

One additional complexity that bears mention is that devices can have
states, corresponding to different modes of a device. For example, a valve may
be OPEN, CLOSED, or PARTIALLY-OPEN. Each device state is characterized by
a different set of laws (see Figure 11). The state of a device is invariably predi-
cated on the (qualitative) value of a numerical parameter.

The device ontology has three advantages. First, the fixed network to-
pology provides a substrate for efficient computations. All references within
laws are strictly local, and hence resolving them is straightforward. This sim-
plifies implementation. Second, composability is maintained by having all in-
formation transferred through local connections. Given a correct catalog of
device models and interconnections, one could in principle model an arbitrarily
complex system by connecting together the corresponding device models.

The third advantage is that system dynamics is a widely used traditional
engineering methodology. Consequently, there are generally accepted standards
for structural descriptions (i.e., schematics) and standard quantitative models
for many domains which can be used as a starting point for creating qualitative
models. The translation of such quantitative to qualitative models is not trivial,
since new device states may have to be introduced (see {de Kleer and Brown,
1984] for details). However, most of the ontology can be inherited from system
dynamics intact, thus simplifying the modeler’s task and providing greater con-
fidence in the result.

However, there are two serious disadvantages to this ontology. First, the
device ontology provides no guidance for the construction of the network
model itself. This is not a problem in some domains, such as electronics, where
the mapping from objects and relationships in the world is straightforward. In
manufacturing electronic components, great care is taken to ensure that the
physical objects perform much like their idealizations, within reasonable limits.
But for most domains this aspect of the modeling process is problematic.

Consider, for example, the block shown in Figure 12(a). If the block is sit-
ting on a table and we push it, then we probably want to model it as an ideal-
ized mass. But if we push it while it is resting against a wall, then we will
probably want to model it as an idealized spring (albeit very stiff). If we im-
merse the block in water and push on it, then we will probably model it as an
idealized damper. Thus we see that the same physical object can be modeled
by three distinct abstract devices, depending on the conditions in the system.

The advice given in system dynamics texts is to figure out how the object
behaves, and then select the right device model. This advice is fine for human
engineers, since their goal is to produce quantitative analyses and they pre-
sumably already have some idea of the system’s qualitative behavior. But the
goal of qualitative physics is to produce precisely those qualitative descriptions
of behavior, and hence we are left in the position of needing the answer before

264 Forbus

{0 +Vee
Vour
Vin O
_—
Figure 10 An example of the device ontology.

State Condition
OPEN: [A = Amax] [P}1=0 oP=0
PARTIALLY-OPEN: [0<A <Amax] [P]=1[Q]
CLOSED: fA =0] {0]1=0 Q=0

Figure 11 A device model for a valve. This simple model of a valve is drawn
from Confluences. A refers to the area of the valve, relative to some maximum
area Amax. P refers to the pressure across the valve, while Q refers to the flow
rate of gas through the valve.

__f_’ __f_’ | A
_

Acts like a Acts like a Acts like a
mass spring damper

Figure 12 System dynamics doesn't capture modeling assumptions

Chapter 7 Qualitative Physics 265

we can compute it. Consequently, the standard device ontology fails to
completely address the modeling problem, since it does not formalize the criti-
cal task of model creation.

The second disadvantage is that, in many cases, the device ontology is un-
natural. Consider the situations in Figure 13. We can consider the water in the
pot on the stove (Figure 13(a)) to be an object. If the water boils, this object
will decrease in size until it vanishes. It is hard to think of this system as a col-
lection of devices, since the reasoning requires “clipping” a device out of the
network when the water vanishes. Such changes in the network topology lie
outside the device formalism. Similarly, the bouncing ball in Figure 13(b) il-
lustrates that what an object interacts with can change drastically. It is difficult
to see any elegant representation for this system in the device ontology.

A

4
7z
|
Z
?
%
.
Z
%
Z

Dot

Figure 13 System dynamics cannot model many interesting systems.

4.1.6 Processes Informally, people often describe changes in the physical
world in terms of processes. Examples include motion, liquid flow, heat flow,
boiling, bending, compressing, and expanding. This notion has been formalized
in qualitative physics as an ontological commitment. Consider a cup under a
faucet. If the faucet is turned on, there will be a process of liquid flow occur-
ring from the faucet, through the fluid path formed by the space above the cup,
to the cup itself. This liquid flow is not a property of either the cup, the faucet,
the water, or the space above the cup. It is a new type of entity, with properties
of its own, such as the rate of water flow.

In this ontology, processes like liquid flow provide the notion of mecha-
nism for physical situations. All changes, ultimately, are assumed to be caused
directly or indirectly by physical processes. A model of a domain includes a
description of the kinds of objects there are, the kinds of relationships that hold
between them, and the kinds of processes that can occur. To describe a specific
situation, models for each of the parts and relationships are asserted. Impor-
tantly, the modeler does not directly specify what processes are possible in
each situation. Instead, the process specifications in the domain model state the
conditions under which they can occur, and the inference system uses these
specifications to automatically generate descriptions of the possible processes.

266 Forbus

This notion of process was introduced by qualitative process (QP) theory
[Forbus, 1981b, 1984b], and has been used in various forms by several re-
searchers in qualitative physics, including Simmons [1983], Weld [1986], Mo-
hammed and Simmons [1986], and Schmolze [1986]. Some of these theories
describe the effects of processes continuously over time (such as QP theory),
while others describe processes discretely by the net effect they have over an
interval of time [Simmons, 1983; Weld, 1986]. (The earliest attempts to for-
malize physical processes in Al preceded qualitative physics. Hendrix [1973]
described processes as STRIPS-like operators augmented with equations for
use in planning. Brown, Burton, and Zdybel [1973] represented processes as
finite-state automata, for instructional purposes. Neither representation used
qualitative information, in the current technical sense of the term.)

Figure 14 illustrates a simple model of liquid flow expressed in QP theory.
The individuals specification provides a form of quantification. An instance of
a process is said to exist for every combination of objects in a scenario that
matches the individual specifications. The preconditions and quantity condi-
tions together determine when the process is active. Roughly, quantity condi-
tions can be inequalities and whether or not other processes are active, and pre-
conditions are external conditions. Aligned, for example, means that all
valves in the path are open. A QP model can predict that pressures will change,
but not that a sailor may walk by and close a valve.

The relations field describes what holds when the process is active. This
field can declare local quantities and constraints, as well as information rele-
vant to external representations (such as appearances). Here, the local quantity
flow-rate is introduced and is declared to be equal to the difference in pres-
sures. Together with preconditions, the relations field provides a means of in-
terfacing QP theory to other representations.

The direct effects of a process are specified by the influences field. Every
process must have at least one direct influence, and only processes can have
direct influences. Direct influences, noted by /+ and /-, specify the derivative
of their first argument. Here, the amount of liquid in the source will tend to
decrease, and the amount of liquid in the source will tend to increase. Like
qualitative proportionalities, direct influences must be composed to compute
the total derivative by making closed-world assumptions. But unlike qualitative
proportionalities, where no commitment is made to the method of combination,
direct influences are additive. So if we knew that in fact some other process
were influencing the amount at the destination (an instance of liquid flow
corresponding to a leak, say), then by knowing the relative flow rates we could
predict how the amount of water in the destination will actually change. (This
solves the problem with Hayes’ leaky cup, mentioned earlier.) ‘

The process ontology has several advantages. First, the notion of process is
intuitively appealing for many domains. Objects can come into existence and
vanish, for example, something that is not allowed in the device ontology. Sec-

Chapter 7 Qualitative Physics 267

ond, processes provide a simple notion of causality by imposing a distinction
between independent variables (those which are directly affected by processes)
and dependent variables (those which are affected as a consequence of the in-
dependent variables changing). The next section examines this issue in detail.

The third advantage of the process ontology is that it allows explicit repre-
sentation of modeling conditions and assumptions, via the individuals and pre-
conditions fields. This means the program can take on more of the modeling
burden. Instead of demanding a complete initial description, a program using
the process ontology can “fill in” the user-supplied description of a particular
situation with the kinds of processes that can occur. Potentially, this flexibility
provides considerable power. For example, the class-wide assumptions de-
scribed informally in [de Kleer and Brown, 1984] can be formally expressed
by combinations of individuals and preconditions specifications in QP theory.

Of course, nothing comes for free—the process ontology also has some
disadvantages. First, in some domains (like electronics) the distinction between
dependent and independent parameters changes according to the kind of analy-
sis being performed. Process descriptions are very hard to write for such cases.
Second, the process ontology requires more inference, and the manipulation of
quantified descriptions, to set up the model. This complicates the design of
programs using the process ontology, and often results in longer run times.
And third, the process ontology has not been formally explored as much as the
device ontology. There is no process-oriented equivalent engineering formalism
to system dynamics, no off-the-shelf models to adapt.

Process Liquid-Flow(?src ?sub ?dst 7path)
Individuals: src a container
?dst a container
?sub a substance
?path a fluid-path,
Connects(?path,?src,?2dst)
Preconditions: Aligned(?path)
Quantity Conditions: A[Pressure(C-$(?sub liquid, ?src))}
> AlPressure(?dst)]

Relations: Quantity(flow-rate)
flow-rate = Pressure(C-S(?sub,iqiuid,?src))
- {ressire)?dst)
Influences: | + (Amount-of-in(?sub,liquid, ?dst), Al flow-rate])

I-(Amount-of-in(?sub,liquid, ?src) Al flow-rate])

Figure 14 A description of liquid flow.

268 Forbus

4.1.7 Other Issues A common misconception is that the different theories
described in the literature are merely notational variants for “the” qualitative
physics, or that eventually only one theory will be proven to be “right.” Such a
view ignores the rich variety of the phenomena we are trying to model (from
the patchy, incomplete theories constructed on the fly by the person on the
street to the integrated, broad theories formulated explicitly by world-class en-
gineers and scientists) and the range of potential applications we are addressing
(from student modeling in intelligent tutoring systems to monitoring process
plants to scientific discovery).

As the earlier sections indicate, there are a variety of choices for repre-
sentations of quantity, equation, and ontology. Different combinations of these
choices correspond to different systems of qualitative physics. I claim the best
way to view research in qualitative physics is to think of it as describing this
space of possible theories and their properties. By understanding the alterna-
tives and trade-offs, we can select the best combination of choices for particu-
lar purposes.

The next two issues apply this viewpoint to two controversial issues in the
current state of the art: continuity and causality.

Continuity Continuity is a formal way of enforcing the intuition that things
change smoothly. A simple consequence of continuity, respected by all systems
of qualitative physics, is that, in changing, a quantity must pass through all in-
termediate values. That is, if A < B at time ¢1 then it cannot be the case that at
some later time 72 that A > B holds, unless there was some time 3 between ¢
and 1 such that A = B.

This law has consequences for computing state transitions, since changing
inequality relations (or just comparisons with zero, in the case of sign repre-
sentations) herald state transitions. If X > Y and D[X] < DI[Y], for instance,
then the relation between X and Y could change to =. Similarly, if X = ¥ and
the same relationship held between their derivatives, then the relationship
would change to <.

The details of computing state transitions are the same for all the existing
theories, with one exception—how long these transitions will take. The second
kind of transition, changes from equality, everyone agrees will occur in an in-
stant. The first kind of transition, in every theory right now but QP, always
takes an interval of time. In QP theory it takes an interval of time if the differ-
ence is finite, but only an instant if the difference is infinitesimal.

Invoking infinitesimals is an unusual step. The motivation is to capture the
commonsense intuition that “if you kick something only for a moment, you can
kick it back quickly,” a kind of symmetry in duration. If you influence a quan-
tity away from equality for only an instant, one should be able to push it back
in an instant. In my first implementation of QP theory, GIZMO, this model
caused cycles of behavior whose states only lasted for an instant (called stut-

Chapter 7 Qualitative Physics 269

ter). These cycles could then be merged into single states, expressing a chang-
ing equilibrium [Forbus, 1984b]. Unfortunately, in at least some of the ex-
amples studied the instant-instant transitions were violating continuity on
derivatives, and a more accurate implementation (QPE) fails to show stutter. At
this point it is not clear whether or not stutter will always be ruled out by such
constraints,4 and whether or not it will appear in “natural” models.

The more general question is, are infinitesimal models useful? Or should
we simply adopt classical continuity universally? There are two arguments for
continning to pursue alternatives to classical continuity. The first is that in-
finitesimal models are proving their worth in other areas of qualitative physics
(see Section 4.1.1 and [Weld, 1987]). The second is that classical continuity
alone is inadequate to model the full range of phenomena in qualitative phys-
ics. Impulses, for instance, are part of every engineer’s vocabulary. Yet they
violate classical continuity, by allowing instantaneous transitions to equality.
Other similar phenomena have been explored recently by Nishida and Doshita
[1987]. Continuity, while significantly tamed through the efforts of a few
hundred years of mathematics and physics, still has some unexplored territory.

Causality By any account, causality remains unruly, even after a long history
of investigation. A recent public exchange between de Kleer and Brown and
Iwasaki and Simon in the Al Journal unfortunately may have shed more heat
than light on the matter. At the risk of unleashing yet more rhetoric, I will at-
tempt to clarify the issues here.

The necessary framework to understand these issues appears in [Forbus
and Gentner, 1986b], where Dedre Gentner and I analyze the various notions
of causal reasoning about quantities used in qualitative physics. The goal of
that analysis is to isolate some distinctions that may be useful in understanding
human reasoning. Roughly, these distinctions are: the temporal aspects relating
cause and effect (the measurement scenario), whether or not the ontology con-
tains an explicit class of mechanisms or not, and whether or not the primitives
for describing equations include presuppositions about the direction of effect
(directed versus non-directed primitives). The second two factors will be the
most relevant for this discussion.

We assume that some notion of mechanism underlies all causal reasoning
(see [Forbus and Gentner, 1986a]). However, accounts differ in their construal
of what mechanisms are. In explicit-mechanism theories, the notion of mecha-
nism is tied to particular ontological classes. For example, in QP theory,
processes are the mechanism; they are the source of all changes. In implicit-
mechanism theories, such as de Kleer and Brown’s confluence theory, the no-
tion of mechanism arises from the interactions of the system’s parts. They

4 Cycles of length 2 are forbidden, but longer sequences look plausible.

270 Forbus

assume that flow of information in the model of the system directly mirrors
“flow of causality” in the world. To see the differences, consider a liquid flow
between two containers. In QP theory all changes would be caused by an in-
stance of the 1iquid~flow process. In a confluence model the changes would
arise from the interaction of the constitutive equations.

The difference between directed and non-directed primitives can be il-
lustrated again by comparing QP theory and Confluence theory. The influences
used in QP theory (and others) to represent equations are directed primitives.
Influences include qualitative proportionalities and direct influences (I+ and 1-)
needed to specify derivative relationships. We might represent the relationship
between level and pressure in a contained liquid WC as:

pressure(WC) o+ level(WC)

indicating that a change in level could cause a change in pressure, but not the
reverse. In Confluences (and others), the primitives are non-directed since they
do not carry a presupposition of causality. Thus we might say

pressure(WC) = level(WC)

but would be equally willing to say a change in pressure causes a change in
level as the reverse. Notice that, at least in this case, there is a clear, intuitive
direction.

Any causal analysis must determine which way the primitives in its repre-
sentation are to be used. In theories with explicit mechanisms, what is an inde-
pendent parameter is determined by what the mechanism directly affects. In
QP theory, for instance, the causal directedness hypothesis [Forbus, 1984b] ex-
presses causality:

Changes in physical situations which are perceived as causal are due to
our interpretation of them as corresponding either to direct changes caused
by processes or propagation of those direct effects through functional de-
pendencies.

A process directly affects something by supplying its derivative. (Since it can
supply a derivative of 0, the same notion suffices to impose causality on static
situations.)

By contrast, in theories with implicit mechanisms, some other means of
specifying independent parameters must be found. For example, the confluence
model critically relies on an input perturbation for causal analysis. The choice
of input parameter provides significant constraint on the direction of propaga-
tion (which is interpreted as the direction of causation) in the system. This con-
straint is not quite sufficient, since it is necessary to annotate some parameters
as independent, to prevent inappropriate causal deductions ([de Kleer and
Brown, 1984}, page 73).

Chapter 7 Qualitative Physics 271

Now we are in a position to understand the causal ordering proposal of
Iwasaki and Simon [1986]: They propose to use directed primitives, similar to
qualitative proportionalities, but without associating a sign of effect (i.e., ag ,
but not o+ or 0,g-). The exogenous variables of the system are used as the in-
dependent variables. Given these independent parameters, the technique of
causal ordering will produce a graph of dependencies by manipulating the
quantitative equations describing the system. To get the direction of change im-
posed by each connection, they propose to use the method of comparative stat-
ics, which uses quantitative information to produce a sensitivity analysis. The
end result will be much the same as the graph of influences that holds for the
corresponding situation in a QP model. The possibility of incorrect causal argu-
ments seems to be avoided by detecting when the system of equations is under-
determined: It is exactly in such cases that an assumption must be made, and
an external knowledge source (such as the user) can determine which assump-
tion will lead to correct arguments.

Whether or not causal ordering is useful in analyzing a particular example
depends on the availability of two things: a set of quantitative equations and
knowledge about which variables are exogenous. For many circumstances
equations are available, but for many simple circumstances (such as boiling)
they aren’t. Often the available equations are too complicated to use: A high-
accuracy differential equation model of a coal-fired power plant, for instance,
can be dozens of pages long. Basing the notion of causal independence on exo-
genous parameters limits causal ordering to creating models of specific systems
in specific modes of behavior. The limitation to specific systems comes from
the fact that what is exogenous often changes when a system becomes part of a
larger system. Thus we cannot carry our analysis of, say, a heat exchanger, in-
tact to the analysis of a larger system including it. The limitation to specific
modes of behavior comes from the fact that the equations describing a system
or object can change drastically (phase changes in fluids and turbulent versus
non-turbulent flow are two examples).

While causal ordering satisfies several intuitions about commonsense rea-
soning, it also violates two others. First, since it requires quantitative equations,
it cannot explain how commonsense physics comes about—after all, people
reason causally about quantities long before they can do symbolic algebra. Sec-
ond, it also does not assign causality in feedback systems (“a chicken and egg
problem,” [Iwasaki and Simon, 1986]), although such descriptions are common
in informal descriptions of how systems work.

5 There is no obvious reason why it couldn’t; in classical simulation paradigms such “loops” in
the equations are broken by delay elements (i.e., integration operators), and similar techniques can
be used in qualitative equations (e.g., the QP theory notion of direct influence).

272 Forbus

I believe that, while the techniques Iwasaki and Simon describe seem to
have only limited usefulness as simulation tools, they could be quite valuable
in the context of knowledge acquisition. Consider the problem of acquiring
knowledge from textbooks. Two kinds of knowledge must be encoded. The
formal aspects, the equations, must be transformed into qualitative laws. The
informal aspects, the contents of the text, must be transformed into the organi-
zational structure (typically ontological) that tells when these laws are appro-
priate and useful. Causal ordering and comparative statics may be useful tech-
niques in translating the explicit, formal knowledge of a domain. By combining
these techniques with a system that can induce representations for the implicit
knowledge, we might be able to develop tools to semiautomatically acquire
qualitative models by interacting with human experts.

4.2 Qualitative Kinematics

There has been significant progress in qualitative dynamics. Several repre-
sentations for ontology, number, and equations have been explored, a number
of successful programs developed to test these ideas, and there are high expec-
tations of future progress. Unfortunately, the same cannot be said for qualita-
tive kinematics. This section explores why, and describes some progress made
since the original survey talk upon which this essay is based.

To begin with, we must refine what we mean by qualitative kinematics.
We exclude problems like navigation, manipulator-level planning, and layout
design simply because they overlap to a greater degree with robotics and en-
gineering problem solving than with qualitative physics per se. By qualitative
kinematics 1 mean the spatial reasoning aspects of qualitative physics. Ex-
amples include reasoning about motion, the geometry of fluid flow, the shape
of charge distributions, and so forth. Most efforts have focused on the simplest
of these, reasoning about motion. And recently, significant progress has been
made on reasoning about mechanisms, in the classical sense—gears, transmis-
sions, mechanical clocks, and the like.

I mentioned before that the dividing line between “prehistory” and the pre-
sent in qualitative physics lay in the decision to explore purely qualitative rep-
resentations. This tactic was reasonably successful in qualitative dynamics. I
claim this hasn’t happened in spatial reasoning because it cannot be done. We
conjecture that there is no purely qualitative kinematics (the poverty conjecture
[Forbus et al., 1987]).

This idea takes some explaining. Consider FROB. It did some fairly sophis-
ticated spatial reasoning, including understanding collisions and the notion of
being trapped in gravity wells. But to arrive at this understanding took a metric
diagram, which contained a significant amount of quantitative information.

Chapter 7 Qualitative Physics 273

Thus FROB itself is not purely qualitative.6 But in fact purely qualitative repre-
sentations suffice for a surprising number of inferences about dynamics. Sadly,
it just doesn’t seem to be the case for qualitative kinematics.

The poverty conjecture is based on three arguments. First, no one to date
has developed a purely qualitative kinematics. For example, I've spent years
trying to develop one, and I've talked to a number of other people who have as
well, with little success.

Naturally, this is a weak argument. Negation by failure is rarely safe scien-
tifically, and part of my motivation for making this conjecture is the hope that
someone will succeed in proving me wrong! But the second argument makes
me skeptical. Much of the power of qualitative dynamics comes about from
partial orders. Time, as Allen [1984] showed, can be nicely modeled in terms
of temporal relations where transitivity provides significant constraint. In-
equalities, while individually weak descriptions, combine via transitivity to
yield often powerful conclusions. But these are both one-dimensional prob-
lems. There is a result in dimension theory which states that partial orders
don’t work for higher dimensions. Try it yourself: Create a vocabulary of spa-
tial relationships between 2D figures like Allen’s relationships for time, such as
EQUAL, INSIDE, ABUT, OVERLAP, and so forth. You'll find the only entries in a
transitivity table for such relationships that provide significant constraint are
those which impose a partial order (in this case, EQUAL and INSIDE). With the
others (e.g., ABUT, OVERLAP), just about anything is possible.

While stronger, this second argument still does not clinch the matter. After
all, there might be some other powerful idea, some new formalism that will
provide the “right” quarmzatlon for shape and space independent of an initial
quantitative descrlpnon But the third argument is that we have no reason to
think that such a formalism necessarily exists, because people appear to per-
form poorly at spatial reasoning without the “moral equivalent” of a diagram.
There is a large literature on the psychology of visual imagery, and while it
must be interpreted with care, it seems to indicate that some kind of quantita-
tive information plays an important role in human spatial reasoning. In addition
to imagery, people resort to sketches, models, looking at the object itself, and
so forth—in shoit, we harness our perceptual apparatus in service of spatial
reasoning.

This apparent reliance on perceptual apparatus motivated FROB’s metric di-
agram, and we believe that this model can be extended productively into a
general model for qualitative kinematics (the MD/PV model [Forbus et al.,

6 If quantitative dynamics worked that way, there would be no qualitative simulators per se. In-
stead, we would always have to provide numerical simulation routines and lots of numerical para-
meters to get any predictions. (Or use symbolic algebra—as mentioned earlier, not every symbolic
description is qualitative, and this is a good example.)

7 As shown prevxously, useful quahtanve descnptlons for space can be computed from quantita-
tive ones—but the goal in this argument is to avoid using a metric diagram altogether.

274 Forbus

1987]). By this account, spatial reasoning requires at least two representations.
The first is a metric diagram, which includes quantitative information and can
answer geometric questions by some form of calculation or measurement. The
metric diagram attempts to describe the functionality of the visual system in
human spatial reasoning. One operation that can be done with a metric diagram
is computing a place vocabulary, which quantizes space by some relevance cri-
teria. Figure 15 shows how this model was instantiated in FROB.

History
£y
it AR V)
Envisionment Ball
| ’ﬁ? s

T | 0
! 1 i o =
, N =
Place Vocabulary / D |

Metric Diagram

Solid Regions

Figure 15 FROB illustrated the MD/PV model of spatial reasoning. This picture
illustrates what is “under the hood” in FROB. The metric diagram provides a
means of communicating with the user, a means of answering quantitative
spatial queries, and a substrate for computing a qualitative description of

space. The first step in computing this place vocabulary is to ascertain the solid
regions, where free space isn’t. Next, it breaks up the free space into regions,
in a way that simplifies the description of possible motions. These regions plus
symbolic descriptions of their connectivity form FROB’s place vocabulary.

Chapter 7 Qualitative Physics 275

It seems that all spatial reasoning projects to date fit the MD/PV model
fairly well. For example, the (earlier) natural language understanding program
by Waltz and Boggess [1979] used a metric diagram in constructing models of
sentences like “A fly is on the table.” Geoff Hinton [1979] developed an ele-
gant theory of imagery that used a mixture of propositional and numerical rep-
resentations to explain phenomena that simpler theories based on array repre-
sentations cannot explain. In reasoning about geological processes, Simmons
[1983] compared quantitative calculations with a diagram to check the correct-
ness of qualitatively plausible histories. Stanfill [1983] used symbolic descrip-
tions with numerical parameters to reason about simple pistons and bearings.
Davis [1987] argues that purely qualitative representations are “too weak” to
support reasoning about motion involving solid objects.

4.2.1 Reasoning About Mechanisms There has been renewed interest in
spatial reasoning recently, particularly in understanding mechanisms. Gelsey
[1987] uses a constructive solid geometry CAD description as his metric dia-
gram, and computes motion envelopes to recognize kinematic pairs. The place
vocabulary in his system consists of regions that involve interactions between
parts. Joskowicz [1987] has proposed to analyze single interactions in a mecha-
nism by recognition, describing kinematic pairs by patterns in configuration
space. (Configuration space was first used in robotics for motion planning
problems, see [Lozano-Perez, 1983]).

In our own CLOCK project, Faltings [1986, l987a, 1987b] has developed a
general theory of place vocabularies for mechanisms. Faltings observes that the
important distinctions for quantizing shape must come from pairs of objects,
rather than objects in isolation, since it is their interaction that determines
whether or not a pair of objects will move together or bind. In mechanisms,
each part has only one degree of freedom, so a configuration space for a pair
of objects is two-dimensional. The place vocabulary for an entire mechanism
(such as a clock) is the combination of the place vocabularies for the pairs of
parts. Faltings also observes that symbolic algebra can be used to parameterize
place vocabularies, thus increasing the potential for their use in mechanical de-
sign. Faltings’s theory has been tested by an implementation on a wide range
of examples, including gears, ratchets, escapements, and the complete set of
kinematic pairs for a mechanical clock [Faltings, 1987b].

Of course, Faltings’s theory only solves half of the problem: It describes
what contact relationships are possible, and what might be reached if move-
ment occurs in a particular direction. To integrate this information with a quali-
tative dynamics requires imposing reference frames in order to describe forces
and motions. Nielsen, in his part of the CLOCK project, has developed a theory
of qualitative vectors and reference frames. Such vectors are used for repre-
senting contact directions, forces, velocities, and other parameters. He has used
these techniques in a qualitative theory of rigid-body statics [Nielsen, 1987],

276 Forbus

which can determine what directions an object is free to move in as well as
what movement will occur. This theory has been implemented and has success-
fully answered questions about the stability of Blocks World structures, in ad-
dition to gears and escapements.

4.3 Styles of Reasoning

The purpose of representation is reasoning. This section describes some of the
styles of reasoning that have been explored in qualitative physics to date. Be-
cause there has been confusion about the relationship between envisioning and
other forms of qualitative simulation, this issue is discussed in detail. I will ig-
nore diagnosis, since an adequate treatment is well beyond the scope of this
survey.

4.3.1 Qualitative Simulation The result of a standard numerical simulation
is a list of state vectors, each vector representing the system being simulated at
some particular Ar. Qualitative simulations differ from numerical simulations in
two respects. First, time is individuated by the occurrence of interesting events,
rather than some regular, fixed increment. Second, the reduced precision of
qualitative representations often requires branching to represent alternate
possible futures.

It is important to note that some qualitative simulators do not produce
specific histories at all! This is a subtle point that is often misunderstood. A
history describes a specific behavior of an object. While a history is (at least
potentially) infinite, it typically consists of only a finite number of distinguish-
able episodes. Referring back to Section 4.1.1, we say that two episodes are
distinguishable exactly when they differ in some limit point (i.e., temporally
generic landmark). The implication is that each episode can be described as an
occurrence of one of a finite set of abstract qualitative states. This assumes
there are a finite number of properties, and a finite number of values for each
property, and hence only a finite number of combinations of these properties.
Similarly, for any finite collection of objects we can define qualitative states
that describe consistent collections of every possible distinguishable episode
for each object.

Qualitative states can be defined without recourse to histories. In fact, the
notion of qualitative state was developed earlier than histories, as Section 3 in-
dicates. The graph formed by the collection of all qualitative states of a system
and the transitions between them is called an envisionment. The notion of envi-
sionment is due to de Kleer [1975]. The process of constructing an envision-
ment, envisioning, was the first method of qualitative simulation. Roughly,

Chapter 7 Qualitative Physics 277

each history corresponds to some path through the envisionment, but the con-
verse is not true, as we will see shortly.

A further distinction between envisioners is whether they start from a
given initial state or from all possible states. The former are said to produce
attainable envisionments, the latter foral envisionments. Total envisionments
are usually larger than attainable envisionments, but are more useful for certain
tasks. A number of envisioners of each type have been built for different theo-
ries. NEWTON [de Kleer, 1975] and FROB [Forbus, 1980] both produced attain-
able envisionments for different kinds of motion problems. QUAL [de Kleer,
1979b] produced attainable envisionments for electronics, while ENVISION pro-
duced total envisionments for system-dynamics-like models (see Section 4.1.5)
For qualitative process (QP) theory, GIZMO [Forbus, 1984c] produced attainable
envisionments, while QPE [Forbus, 1988] produces total envisionments.

Several programs produce histories directly. FROB, for instance, used a
constraint-based numerical simulation to generate histories. In several impor-
tant applications, histories are specified as part of the description of a problem,
as in integrated circuit fabrication [Mohammed and Simmons, 1986] or hy-
pothesized on the basis of other knowledge [Simmons, 1983]. Kuipers’s QSIM
system, of course, generates histories directly.

4.3.2 Envisioning Versus History Generation The relationship between
envisionments and histories is more subtle than first suspected, and is still
being explored. Some aspects are clear; for instance, I've defined a logic of oc-
currence [Forbus, 1987a] that specifies how a history may be related to an en-
visionment so that general behavioral constraints (such as assuming classes of
behavior must or may not occur) can be enforced. Sometimes there have been
simple terminological confusions, such as de Kleer and Brown [1984] calling
their qualitative states “episodes,” Kuipers [1986] calling his account of history
generation a “deeper semantics” for envisioning, or Collins and Forbus [1987]
calling their MC envisioning a history. Other aspects, however, are genuinely
problematic and have become fertile areas of research.

In a correct envisionment, every possible history can be expressed as a
path. Various properties of the graph correspond to important behavioral dis-
tinctions. For example, states with no transitions from them represent final
states for the system, and cycles correspond to oscillations.

Originally, de Kleer [de Kleer and Brown, 1984; de Kleer, 1984a] claimed
that, just as every history corresponds to a path through the envisionment, so
every path through the envisionment must correspond to a physically realizable
history. Kuipers [1986] shows this is incorrect. The counterexample he uses is
shown in Figure 16 (this envisionment was generated with QPE [Forbus,
1988]). The parameter Z is a function of position, and should be compared
with Z’, but is otherwise unconstrained. By declaring the comparison between

278 Forbus

Z and Z ’ as interesting, we will cause a state transition to occur whenever the
relationship between them changes. There are other transitions that will occur
due to the way motion and acceleration are modeled (see [Forbus, 1984c] for
details).

To generate a history from an envisionment, begin by selecting a start
state. That state forms what occurs at the first episode in the history, the dura-
tion of the episode being the duration of the corresponding qualitative state
(i.e., either an interval or instant). If there are no transitions from the chosen
state, then that episode is the end of the history. If there are, select one of the
transitions as representing what actually occurs. Then continue as before,
starting from the state resulting from the transition.

Carrying out this procedure on the envisionment of Figure 16 reveals a
variety of possible histories. For example, the sequence of states Si1, S4, S7,
S10, S13, S16, S19, S22 corresponds to a legal history, as does S3, S6, S9, Si12,
S15, S18, S21, S24. Other legal histories correspond to variations of these where
Z changes in its relationship to Z * within the range of variation for X. For ex-
ample, the sequence S3, S¢, S8, S10, S13, S16, S20 ,524 corresponds to the case
where Z equals Z * when X equals zero.

All of the histories mentioned so far are legitimate. But consider again the
transitions from, say, Se¢. Each time around the cycle, one of these transitions
must be chosen. In the algorithm specified, which corresponds to the original
de Kleer claim, each such choice is independent. Thus we are free to choose
another transition the next time we reach Sg, which will give us an illegitimate
history. The problem can arise even on a single cycle; the sequence S3, Se, Ss,
S10, S13, S16, S17, S18 ,S21, S24 is inconsistent because the Se, Sg ,510 sub-
sequence assumes Z = Z ’ when X = zERO, while the Si¢, S17, Si8, S21 is
based on the assumption that Z reaches Z ‘D before X reaches zZERO. The
choices are not in fact independent, and treating them as such can lead to in-
correct predictions.

In this simple case, the solution seems clear: Each choice of transition im-
plies additional information about the functional relationship between X and Z.
For example, assuming that the transition from Se to Sg occurs “fixes” a point
on the (implicit) graph defining their relationship: in particular, Z = Z * when X
= ZERO. (Assuming that one of the other transitions occurs requires introducing
a new constant related either to X or to Z, but the principle is the same.) These
constraints must then be respected in successive choices. For example, choos-
ing the transition from S12 to S11 forces the later transition of Si6 to S17.
However, it is not straightforward to generalize this technique to all situations.

To summarize: With no information, we can get incorrect predictions. If
we had a fully specified correct quantitative model, there would be no ambigu-
ity and hence we would always get correct histories. The open research ques-
tion right now is, just how much information, and in what form, suffices to
generate histories correctly from envisionments?

Chapter 7 Qualitative Physics 279

X= Z versus Z’

< = >

S1 S2 S3

§)ess o)

s7 S8 S9

S10 St1

S13 S14 S1$

@ S17 §18

LEEFFELL-

$19 $20 s21
; §23 S24
s1 s2 s3

Figure 16 Generating histories from envisionments can be difficult. An
envisionment for a modified spring-block oscillator is shown below. The
modification consists of an extra parameter Z, which is a function of X and is
compared with an arbitrary constant Z’. Each row is labelled with a picture
indicating the general position and velocity of the block in the states of that
row. Each column indicates the relationship Z has with Z’ in those states.
Arrows denote locally consistent transitions between states. Circles indicate
states that last over an interval, while squares indicate states lasting only for an
instant.

280 Forbus

This problem arises even without envisionments; direct history generation
must also take into account constraints imposed by earlier choices. In QSIM, for
example, new named values can be introduced at every step of the computa-
tion, corresponding to the value a quantity takes on in a particular episode of
the history (more on this below). Since the algorithm can introduce a new
value between any two adjacent previous values, the number of possible epi-
sodes can (and does) grow exponentially without bound. This means that QSIM
also produces incorrect histories. Several pruning techniques to weed out incor-
rect histories have been investigated, including problem-specific constraints
[Lee et al., 1987], algebraic manipulation [Kuipers and Chiu, 1987], and quan-
titative knowledge [Chiu, 1987], but so far these results have been mixed. (For
instance, Struss [1987] points out several limitations of qualitative mathemat-
ics, such as sensitivity to the form of equations, which indicate that algebraic
manipulation of qualitative equations is often unsafe.)

Both envisionment and direct history generation have their role to play in
the arsenal of qualitative physics. The notion of envisionment is a superb
theoretical tool, providing a simple way to think about classes of behaviors.
Envisioning is a good methodological tool for qualitative model development,
since it exercises domain theories in obscure cases that the model builder might
otherwise ignore. But envisioning is unlikely to be the desired solution for
quick on-line computation: After all, it corresponds to explicitly generating the
entire problem space for some class of problems! In such cases history genera-
tion, perhaps combined with heuristics, seems to make sense. The space/time
trade-offs in qualitative simulation have only begun to be explored. One can
imagine compiling envisionments “offline,” for example, or the envisionment
of a system at a high level of abstraction being used to guide direct history
generation at a lower level.

4.3.3 Recognition Engineers are good at explaining how things work.
Often, this occurs by recognition “Oh, it’s a proportional-action controller”—
they redescribe the system in terms drawn from a functional vocabulary. This
functional vocabulary appears to help organize their knowledge for several pur-
poses. In diagnosis, symptoms might be computed by comparing current be-
havior against the standard behavior stored with the functional description. In
design, a functional vocabulary provides an intermediate goal that constrains
the search space. The designer might decide what combination of functional
blocks would achieve her purpose, and then figure out how to implement this
functionality with the available components. Capturing this ability to map from
structure to function was an early focus of qualitative physics.

The most successful work in this area is still that of de Kleer [1979b,
1984a], who originally pointed out the problem as well. His theory is that to
perform recognition, engineers first figure out how the system behaves, and
then use that description of behavior to “retrieve” into a functional vocabulary.

Chapter 7 Qualitative Physics 281

A transistor circuit that behaves in a particular manner, for instance, might be
recognizable to an engineer as a “common-emitter amplifier.” One elegant
aspect of de Kleer’'s work was how he constrained the result of qualitative
simulation. The simulation proceeded by determining how the system would
respond to “poking” its input. He noted that any sensible engineer wouldn’t in-
clude parts that didn’t help the circuit perform its function. Thus, any inter-
pretation of the circuit’s behavior that did not include every component could
be ruled out on teleological grounds. In almost all of the electronic circuits he
examined, this principle sufficed to rule out all but one interpretation.

While this work was one of the early successes of qualitative physics, little
has been done by way of follow-up. What is needed is the formalization of rich
functional vocabularies, and this problem has received little attention. Recent
work by Chandreskaran [Sembugamoorthy and Chandrasekaran, 1984] and
Doyle [1986] can be viewed in this light.

4.3.4 Measurement Interpretation Ideally, we would like our programs
to gather their own data about the world. A program that works in a power
plant, for instance, should have the ability to “read the gauges” to find out
what is happening inside the plant. This is the problem of measurement inter-
pretation. My ATMI theory [Forbus, 1986a, 1987c] describes how to interpret
measurements taken over a span of time in terms of qualitative states. This
theory is very general, requiring only domain-specific procedures for perform-
ing an initial signal/symbol translation and that an envisionment (potentially)
exists. An implementation has been demonstrated that works on multiple on-
tologies (i.e., both QP models and FROB models). However, at this writing it
has only been tested on simulated data without gaps, and does not specify con-
trol strategies for handling noisy data.

Yet a different kind of measurement interpretation was studied by Sim-
mons in the GORDIUS program [Simmons, 1983]. The specific problem he
addressed was evaluating whether or not a hypothesized sequence of geological
events could account for the strata at a particular place. Knowing how the
sequence came about is important economically, since some sequences will re-
sult in oil as a byproduct and others won’t. A map built up out of well
measurements represents the final state of this behavior. The program accumu-
lated constraints on the size and shapes of maps that could result from the pro-
posed history, and checked the actual map to see if it was consistent with these
constraints.

5 The Frontier

The previous sections examined where qualitative physics came from, and
where it is now. I have tried to paint a coherent picture of the state of the art,

282 Forbus

indicating the alternatives that have been explored and where substantial pro-
gress has been made. But no survey is complete without looking at the boun-
daries: areas which right now are relatively unexplored, and are thus fertile
ground for new investigations.

5.1 The Near Future

I'll begin by describing some areas that are likely to see rapid progress. It
would surprise me to not see significant advances in these areas in the next
three years or so.

5.1.1 Improved Domain Models A central activity of qualitative physics
is developing a variety of models for physical phenomena and engineered sys-
tems. However, building good domain models is very difficult, and even with
good tools takes much longer than one would expect. Nevertheless, the next
few years should see significant advances in the kinds of physical phenomena
that we can represent. For example, initial forays into reasoning about granu-
larity and composition [Bunt 1985; Schmolze, 1986; Raulefs, 1987] may pro-
vide tools for reasoning about nonrigid objects. I suspect that progress in mod-
eling powders and clays will require developing more sophisticated geometric
representations to describe deformations, sheer, stress planes, and the other
constructs of materials science. In modeling fluids, we still do not have a good
theory of mixtures that describes exactly how different stuffs affect each other
inside a container. An especially fertile ground is chemistry, which is interest-
ing both industrially and intellectually, since it requires integrating discrete
structures and geometry with reasoning about continuous systems,

5.1.2 Implementations 1 expect that implementations will steadily improve
in performance and storage economy—we haven’t been building qualitative
simulators for very long, after all, and are still discovering the right techniques.
This trend, combined with the rising tide of improvements in computer tech-
nology, suggests that the range of problems we can tackle will continue to ex-
pand.

As we understand styles of reasoning better, the kinds of programs used in
qualitative physics will become more diverse as well. Problems like design, for
instance, require a detailed accounting of how different properties of the com-
ponents and their interconnections relate to properties of the behavior pro-
duced. Keeping track of these justifications, especially in the presence of feed-
back, is a difficult problem. Williams’s [1986] temporal constraint propagator
TCP is the first system that does this correctly. Widespread application of these
techniques should improve the sophistication possible in qualitative analyses.

One of the advantages of envisioning is that it postpones worrying about
control issues. Alas, such issues cannot be put off forever. Solving problems by

Chapter 7 Qualitative Physics 283

explicitly generating the entire search space simply is not a viable long-range
alternative. Notice that history generation, per se, is not the answer— these ap-
proaches are already plagued with control problems, since they can lead to in-
finite descriptions of behavior. (In fact, a resource limit is often imposed for
control purposes.) An attractive alternative is to generate generic qualitative
states by heuristic search, applying the standard Al techniques to minimize ef-
fort. This subset of the envisionment can then be used as a framework for con-
strained generation of temporally specific landmarks, if needed.

Of course, this is just one alternative. Another idea is to decompose a
complex system (such as a power plant) into a collection of semi-independent
pieces, produce envisionments for each of the pieces, and glue them together as
needed to provide a description of the whole plant. A few theoretical ideas
have been proposed for such decompositions (e.g., the notion of p-component
in [Forbus, 1984b]), but the bulk of the work remains to be done.

Another control issue that must be faced concerns domain models which
are potentially infinite. Consider this simple model: An object consists of a set
of parts, each of which is itself an object. This simple recursive structure will
kill every existing qualitative simulator in which it can be stated (it cannot
even be stated in most), and hence such models have been avoided. However,
such descriptions are sufficiently useful that techniques for controlling their in-
stantiation should be explored.

5.1.3 Ontological Shifts 1t is unlikely that we have exhausted the space of
ontological choices. Furthermore, not much is known about the relationship be-
tween various ontologies. For example, aside from a few rules of thumb, we
cannot precisely characterize when to use a device-centered ontology instead of
a process-centered ontology.

In examining human reasoning, it seems ontological shifts occur in the
course of solving a single problem. Recall the SWOS problem from Section
2.2. Most people implicitly use two distinct ways of looking at fluids to solve
this problem. To establish directions of flow and the fact of boiling required
looking at “the stuffs” in different parts of the system—the water in the boiler
is turning into steam, the lower pressure in the load means there will be a flow
of steam from the boiler through the superheater, and so on. To figure out how
the temperature actually changed, however, required thinking of a little piece
of stuff travelling through the system.

Early on, Hayes [1985] identified these ideas as the contained liquid on-
tology and piece of stuff ontology, respectively. Most qualitative physics work
has used the contained liquid ontology. Recently John Collins and I developed
a specialization of the piece of stuff ontology, the molecular collection on-
tology, to capture the kind of reasoning engineers do about thermodynamic cy-
cles. The idea is to define a little piece of stuff, Mc, which is large enough to

284 Forbus

have macroscopic properties yet small enough never to split up when tra-
versing a fluid system.

How is an MC envisionment generated? Since qualitative representations
are not detailed enough to provide local gradients, what MC does is computed
from an envisionment generated using a contained stuff ontology. We suspect
this is exactly the kind of ontological shift occurring in examples like the
SWOS problem.?

Even considering fluids, many ontological questions remain open. For ex-
ample, what other specializations of Hayes’ piece of stuff ontology are useful?
Spatially extended pieces of stuff appear essential to modeling mixing and
weather patterns—how are they to be individuated and combined? 1 am sure
that as we attempt to build more sophisticated domain models, we will uncover
many new ontological issues, many of them revolving around spatial reasoning.

5.1.4 Hypothesizer One particularly interesting potential application is a
kind of monitoring task, using a module I call a hypothcsizer.9 The goal is to
merge measurement interpretation with explanation in order to improve plant
operations and fault management.

Suppose you have someone controlling a large, complicated system, such
as a production line in a chemical plant, and some condition arises that must be
dealt with. Operators in such circumstances will often seize upon the first
theory they generate about what is going on, and stick with it even in the face
of contradictory data. Imagine a program that could critique an operator’s
theory. Such a program, if done properly, could have two benefits. First, it
would force the operator to be explicit about his theory of what is wrong. Sec-
ond, the program could compare the consequences of the theory with measure-
ments, point out discrepancies, and suggest further experiments and modifica-
tions. Besides being used for diagnosis, it would not surprise me if this kind of
module became one of the first applications of qualitative physics. Providing
human-understandable explanations is the forte of qualitative physics, after all.

5.1.5 Planning Realistic planning requires knowing what the physical world
will do, with and without the planner’s actions. How can we best use qualita-
tive physics in planning?

One way is to transform the domain model into something the planner can
use. Hogge’s domain compiler [Hogge 1987a, 1987b] takes as input a QP
domain model, and produces rules suitable for a temporal planner. (The plan-
ner derives from [Allen and Koomen, 1983], adding inference rules and other
extensions—see [Hogge, 1987c] for details.) Given a description of liquid

8 Techniques for comparative analysis in [Weld, 1987} provide another piece of the puzzle. It is
not known at this writing if together these techniques are sufficient to solve the SWOS problem.
9 Mike Williams of IntelliCorp calls it a “Doubting Thomas” system.

Chapter 7 Qualitative Physics 285

flow, for instance, the domain compiler produces an inference rule describing
what it takes to cause a liquid flow to happen. When these rules are added to
other inference rules and a specification of the actions an agent may take, the
planner can create plans which involve processes as intermediaries, such as
filling a kettle by moving it under a faucet and turning it on.

While elegant, this approach requires more research to live up to its pro-
mise. The large descriptions produced by the domain compiler, and the com-
plex inferences required (especially transitivity), tend to choke the temporal
planner. Compiling can also produce oversimplified models. For instance, the
rules implicitly assume that any influence they impose on a quantity will actu-
ally succeed in changing that quantity. Thus a planner using these rules might
assume that it can prevent an ocean liner from sinking by bailing with a
teaspoon. Such limitations do not appear impossible to overcome, and no doubt
there are other valuable approaches to be explored as well.

There is also a second kind of planning problem that I think ultimately is
going to be extremely important, yet has received little attention to date—the
problem of procedure generation. When you design a new engineering system,
you don’t just design the object, you have to develop procedures for operating
it, for maintaining it, for diagnosing problems with it. If we are trying to get
our computers to help us design complex systems, we need to find ways to
have them generate such procedures automatically. If the design system knew
the kinds of actions the system operators can take and their limitations, its out-
put could include not just the blueprint, but the operations manual, the main-
tenance manual, and the diagnosis manual (or expert systems that provided the
same service). Furthermore, safe operation could be posted as an explicit con-
straint on the design of the plant.

5.1.6 Connections with Traditional Physics Understanding the kind of
reasoning scientists and engineers do was the original motivation for qualitative
physics. To fully capture what they are doing, we must extend qualitative phys-
ics in the direction of traditional physics. This section describes two exciting
recent efforts in this area.

In traditional physics, a set of equations can be solved analytically or by
simulation to derive the behavior of a system. Similarly, qualitative equations
are typically derived from an oniology in order to generate behavior via quali-
tative simulation (either envisioning or history generation, see above). Sacks
[1985] has developed an analytic technique that generates qualitative descrip-
tions from traditional equations. His initial QMR system could solve a variety of
systems, including models of a dampened oscillator and heat dissipation. One
limitation of this approach is that most interesting equations do not have ana-
lytic solutions. Sacks’s {1987] solution is to decompose more complex systems
into piecewise linear approximations, use QMR on each piece, and reconstruct
the global solution from the local solutions.

286 Forbus

Yip [1987] has a complementary approach to a similar problem. Phase
portraits are a geometric technique traditionally used in mathematics to de-
scribe complex dynamics. Yip has created a vocabulary of qualitative descrip-
tions of phase space that formalizes the intuitions mathematicians bring to bear
in understanding such portraits. Given a numerical simulation of a non-linear
system, he uses this vocabulary to interpret the particular behavior, and make
predictions about what the other parts of phase space must be like. Ultimately,
these predictions will form the basis of additional numerical experiments.

Williams [1988] has developed an elegant formalism that combines quali-
tative and quantitative algebra. Potentially, this theory could greatly extend the
range of qualitative reasoning.

5.1.7 Learning Creating a complete qualitative physics is a herculean task;
it will become much easier if our machines can help. Several workers are tack-
ling different aspects of this problem. Langley, Simon, Bradshaw, and Zytkow
[1987] have studied various aspects of scientific discovery of physical laws. So
far, their work has focused on equational and discrete symbolic (as opposed to
qualitative) models. Kokar [1987] describes a methodology for determining
limit points using dimensional analysis. Falkenhainer’s ABACUS [Falkenhainer,
1985] program uses qualitative proportionalities as an intermediate repre-
sentation in inducing equations from numerical data. Mozetic [1987] describes
how hierarchy can be exploited in automatically acquiring qualitative models,
demonstrating his techniques with a model of the heart. Rajamoney and De-
Jong [1987] have tackled the problem of debugging qualitative theories, pro-
viding a theoretical classification of bug types, including strategies for detect-
ing and fixing them.

At Illinois we are taking two different approaches to understanding learn-
ing in physical domains. The first is psychological; Dedre Gentner and I are
combining QP theory and her Structure-Mapping theory of analogy [Gentner,
1983, 1987, 1988] in an attempt to account for experiential learning in physical
domains [Forbus and Gentner, 1986a). We suspect the kinds of representation
and reasoning explored by qualitative physics to date actually appear rather late
in human learning, with two other stages postulated for both computational rea-
sons and to explain certain psychological findings. Right now we are exploring
these ideas through both cognitive simulation (using SME, a cognitive simula-
tion of Gentner’s analogy theory [Falkenhainer et al., 1986, 1988]) and psy-
chological experiments.

The other approach, the Automated Physicist project, is being carried out
in collaboration with Jerry DeJong. The idea is to build a series of machine
learning systems that learn by experimentation and observation and by solving
textbook problems. The dream behind the AP project is to build a sort of
“Sherlock Holmes” of physics—it it begins by sitting back in its armchair and
trying to explain reported behavior in the physical world. If it can explain a re-

Chapter 7 Qualitative Physics 287

port no learning takes place. But if it cannot, then it tries to fix its model. Our
ultimate goal is to have a program which designs and builds its own experi-
mental apparatus, analyzes real data, and so forth.

The first such programs are due to Falkenhainer and Rajamoney. Falken-
hainer’s PHINEAS program has demonstrated how QP models can be learned
with his theory of verification-based analogical learning [Falkenhainer, 1987].
Given a new behavior, PHINEAS attempts to use its current domain model to ex-
plain the behavior. If it cannot, PHINEAS accesses a database of previously ob-
served behaviors with associated explanations. An important aspect of PHINEAS
is that it performs analogical matching on the behaviors first, to guide the
transfer of a QP model from an understood domain to explain the new one.
The new model is tested to see if it can explain the observations. Often, the
model has to be “fixed up” in various ways. Rajamoney’s ADEPT system pro-
vides exactly the right functionality, since it has the ability to generate potential
improvements and the conceptual specifications of experiments required to de-
cide between them. The two programs have been successfully linked and tested
on several examples [Falkenhainer and Rajamoney, 1988].

5.2 Open Problems

I would like to finish with a set of open problems. While we will make signifi-
cant progress on these problems in the near term, they are sufficiently deep and
tough not to yield to short assaults. I suspect each of them will take a few
generations of Ph.D. theses to solve.

5.2.1 Spatial Quantities There are no doubt other representations lying be-
tween the poverty of signs and the richness of R that remain to be discovered.
And no doubt there will be advances in qualitative representations for time-
varying differential equations as well. But the real frontier is now partial differ-
ential equations, especially quantities that vary by space instead of time.
Formalizing these spatial quantities will allow us to describe a vastly wider
range of phenomena than at present. These phenomena include the flow over
an airplane wing, the distribution of electric fields due to a distribution of
charges, and the stresses on different parts of a bridge.

I suspect the problem decomposes into two parts. The first is the formali-
zation of partial derivatives in general. While this part may have many techni-
cal obstacles, it seems likely that the current theories can be gracefully ex-
tended in this direction. The second problem appears to me to be much harder:
the problem of choosing the appropriate axes and frames of reference to
simplify computations and produce perspicuous results.

5.2.2 What Kinds of Numbers Are There? Imagine what we know
about the space of representations for number. Let sign values be at the top and

288 Forbus

elements of R be at the bottom, so that increased height corresponds to in-
creased degree of abstraction. Inequalities are high in this structure, almost up
to sign values. Floating point numbers and other simple truncations of R lie
toward the bottom. You may choose for yourself where to put the order of
magnitude formalisms that have been developed recently. The question is, what
else is in there? How many different representations for number remain to be
developed, and what do they look like?

It would not surprise me if several more useful representations of number
were developed. Some, like fuzzy numbers [D’Ambrosio, 1987], will be im-
ported from other branches of Al and mathematics. A better understanding of
the tradeoffs and systems that integrate several types of numerical reasoning
(like [Simmons, 1986]) are necessary.

5.2.3 What Kinds of Functions Are There? A related question is, what
sort of functions are there? Traditional physics relies heavily on the analytic
functions, i.e., combinations of +, —, *, polynomials, trigonometric functions,
and so on. These lie at the most precise end of an abstraction continuum. At
the other end are qualitative proportionalities, where a closed world assumption
is required to even determine what parameters affect a given quantity. How
many representations for functions remain to be developed?

I suspect the answer is very few, much fewer than for numbers. Functions
and algebras have been well explored by mathematicians for a long time, and
while we may harvest a few new things from their efforts, I doubt there will be
much because the class of analytic functions is so large. But it is an empirical
question.

5.2.4 Large-Scale Organization of Qualitative Models Almost all of
the models we have built to date are quite simple (on the order of 300 or so
axiom-equivalents) compared to the scope of human commonsense or expert
knowledge of the physical world. Building such a massive knowledge base will
be impossible on an ad hoc basis. Ontology provides one source of organizing
principles, but there are no doubt others.

Hierarchy plays an important role in organizing many other Al knowledge
bases, and it is likely to do so in qualitative physics as well. Making qualitative
simulations work with multiple levels of detail is an important problem (see
[Weld, 1986; Kuipers, 1987] for some initial forays).

At least two other organizational ideas appear necessary as well. First, we
need to formalize the idea of structural abstractions, the conceptual objects
used in our representations, as distinct from their real-world counterparts. This
separation is needed in order to provide an input language for systems that is
reasonably independent of the theoretical commitments of a particular model. It
is seductive to consider a transistor as identical to our model of it, and as long

Chapter 7 Qualitative Physics 289

as we limit our analysis to a particular frequency range this conflation does
little harm. But more sophisticated reasoning about circuits, and any considera-
tion of almost any other engineering domain (e.g., fluid systems, thermal sys-
tems, motion) requires more work to map from a relatively neutral description
of the physical system to the kind of model used for a particular level of analy-
sis.

The second organizational tool is a language of simplifying assumptions.
Rather than build distinct models for different purposes, we should instead use
explicit assumptions to turn off and on different parts of a model. For instance,
in reasoning about thermodynamic cycles one often invokes a “steady-state as-
sumption—the amount of fluid in each part of the system remains constant,
despite flows. Human engineers constantly use assumptions like this to drasti-
cally reduce the number of possible states, making analysis of complex systems
more feasible. Our models will have to be designed in a way that allows our
programs to do the same. We have recently developed some conventions for
representing such assumptions in QP theory, and tested them on a large multi-
grain, multiple perspective model of a Navy propulsion plant [Falkenhainer and
Forbus, 1988]. These conventions are a solid first step, but much research re-
mains.

As qualitative physics becomes ready for widespread application, we will
face the same kinds of validation issues now confronting other kinds of expert
systems. Most engineering disciplines have validation procedures in place, and
standards on the quality of model that must be used for a particular level of
safety desired. We will have to fit qualitative models into such schemes, some-
how.

5.2.5 Integration with Vision and Robotics Vision and robotics are, in
principle, closely tied to qualitative physics. Qualitative physics can tell a robot
where something might go if it is dropped, and what it has to do in order to
boil water. As mentioned in the introduction, some form of qualitative physics
will be needed by robots that work in unconstrained environments (although in
general the useful representations may be more like protohistories and the
causal corpus [Forbus and Gentner, 1986a] than like the current state of the
art). But qualitative physics also needs vision and robotics. The poverty conjec-
ture suggests that advances in spatial reasoning and vision will help drive qual-
itative kinematics. For instance, Ullman’s theory of visual routines [Ullman,
1985] can be viewed as a theory of human metric diagrams. Knowing what the
visual system computes can suggest what primitives are likely to be useful, and
conversely, knowing the computational requirements of qualitative kinematics
may in turn suggest what spatial descriptions people might be computing. Eric
Saud [1987] has in fact proposed an “information rich spatial representation,”
using the various representations postulated for human vision to support spatial
reasoning.

290 Forbus

5.2.6 A Complete Qualitative Physics Today qualitative dynamics and
kinematics are typically pursued in isolation. Integrating them is crucial to
building a complete qualitative physics. A full understanding of an internal
combustion engine, for instance, cannot be gleaned without understanding how
physical processes and geometry interact. Efforts like the CLOCK project are a
step, but just a first step, in this direction.

And, finally, of course, there is the ultimate goal. The holy grail of qualita-
tive physics is a complete set of models, spanning the space of all the physical
domains people know, able to characterize human models from the person on
the street up to the best experts, capable of supporting efficient application pro-
grams, and so forth. Like traditional physics, we will probably never get there.
But we will certainly learn interesting things on the way.

Acknowledgmentis

I. would like to thank Johan de Kleer, Dedre Gentner, Paul Nielsen, John Col-
lins, Brian Falkenhainer, and Ernie Davis for useful comments and discussions.
Support for this work has come from the Office of Naval Research (Contract
No. N00014-85-K-0225, Contract No. N00014-85-K-0559), and the National
Aeronautics and Space Administration (Contract No. NASA-NAG-9137).

References

Allen, J., 1984. Towards a general model of action and time. Artificial Intel-
ligence 23(2).

Allen, J. and Koomen, J., 1983, Planning using a temporal world model. In
Proceedings of IJCAI-83, Karlsruhe, West Germany. San Mateo: Morgan
Kaufmann Publishers.

Bobrow, D., 1968. Naturai language input for a computer problem-solving sys-
temn. Semantic Information Processing, M. Minsky, ed. Cambridge, Mass.:
MIT Press.

Bobrow, D., ed., 1984. Qualitative Reasoning About Physical Systems. Cam-
bridge, Mass.: MIT Press.

Brown, J., Burton, R. and Zdybel, F., 1973. A model-driven question-answer-
ing system for mixed-initiative computer-assisted instruction. /EEE Trans-
actions on Systems, Man, and Cybernetics, SMC-3(2).

Bundy, A., Byrd, L. Luger, G., Mellish, C., Milne, R. and Palmer, M., 1979.
MECHO: A program to solve mechanics problems. Working Paper 50, De-
partment of Artificial Intelligence, Edinburgh University.

Chapter 7 Qualitative Physics 291

Bunt, H.C., 1985. The formal representation of quasi-continuous concepts.
Formal Theories of the Commonsense World, R. Hobbs and R. Moore, ed.
Norwood, N.J.: Ablex Publishing Corporation.

Charniak, E., 1968. CARPS, a program which solves calculus word problems.
Technical Report MAC-TR-51, Project MAC, MIT.

Chiu, C., 1987. Qualitative physics based on exact physical principles. Paper
presented at the First Qualitative Physics Workshop, Urbana, Illinois.

Collins, J. and Forbus, K., 1987. Reasoning about fluids via molecular collec-
tions. In Proceedings of AAAI-87, Seattle, Washington. San Mateo: Morgan
Kaufmann Publishers.

Considine, D. M. ed., 1983. Van Nostrand’ s Scientific Encyclopedia, Sixth Edi-
tion. New York: Van Nostrand Reinhold.

D’Ambrosio, B., 1987. Extending the mathematics in qualitative process
theory. In Proceedings of AAAI-87, Seattle, Washington. San Mateo: Mor-
gan Kaufmann Publishers.

Dauge, P., Raiman, O. and Deves, P., 1987. Troubleshooting: When modeling
is the trouble. In Proceedings of AAAI-87, Seattle, Washington. San Mateo:
Morgan Kaufmann Publishers.

Davis, E., 1986. A logical framework for solid object physics. New York Uni-
versity Computer Science Department Technical Report No. 245. To appear
in International Journal of Al in Engineering, 1988.

Davis, E., 1987. Order of magnitude reasoning in qualitative differential equa-
tions. New York University Computer Science Department Technical Re-
port No. 312.

Davis, E., 1988. In press.

de Kleer, J., 1975. Qualitative and quantitative knowledge in classical mechan-
ics. Technical Report No. 352, MIT Al Lab, Cambridge, Mass.

de Kleer, J., 1979a. The origin and resolution of ambiguities in causal argu-
ments. In Proceedings of IJCAI-79, Tokyo, lapan. San Mateo: Morgan
Kaufmann Publishers.

de Kieer, J., 1979b. Causal and teleological reasoning in circuit recognition.
MIT AI Lab Technical Report No. 529.

de Kleer, J., 1984a. How circuits work. Artificial Intelligence 24.

de Kleer, J., 1984b. Choices without backtracking. In Proceedings of AAAI-84,
Austin, Texas. San Mateo: Morgan Kaufmann Publishers.

de Kleer, J., 1986. An assumption-based truth maintenance system. Artificial
Intelligence 28.

de Kieer, J. and Brown, J., 1984. A qualitative physics based on confluences.
Artificial Intelligence 24.

de Kleer, J. and Williams, B., 1986. Reasoning about multiple faults. In Pro-
ceedings of AAAI-86, Philadelphia, Pennsylvania. San Mateo: Morgan Kauf-
mann Publishers.

292 Forbus

Dormoy, J. and Raiman, O., 1987. Assembling a device. Paper presented at the
First Qualitative Physics Workshop, Urbana, Illinois.

Doyle, R., 1986. Constructing and refining causal explanations from an incon-
sistent domain theory. In Proceedings of AAAI-86, Philadelphia, Pennsyl-
vania. San Mateo: Morgan Kaufmann Publishers.

Falkenhainer, B., 1985. Proportionality graphs, units analysis, and domain con-
straints: Improving the power and efficiency of the scientific discovery
process. In Proceedings of IJCAI-85, Los Angeles, California. San Mateo:
Morgan Kaufmann Publishers.

Falkenhainer, B., 1987. An examination of the third state in the analogy
process: Verification-based analogical learning. In Proceedings of 1/CAI-87,
Milan, Italy. San Mateo: Morgan Kaufmann Publishers.

Falkenhainer, B., 1988. In press.

Falkenhainer, B. and Forbus, K., 1988. Setting up large-scale qualitative mod-
els. In Proceedings of AAAI-88, St. Paul, Minnesota. San Mateo: Morgan
Kaufmann Publishers.

Falkenhainer, B., Forbus, K. and Gentner, D., 1986. The structure-mapping en-
gine. In Proceedings of AAAI-86, Philadelphia, Pennsylvania. San Mateo:
Morgan Kaufmann Publishers.

Falkenhainer, B., Forbus, K. and Gentner, D., 1987. The structure-mapping en-
gine: Algorithm and examples. University of Illinois at Urbana-Champaign,
Department of Computer Science Technical Report No. UIUCDCS-R-87-
1361. To appear in Artificial Intelligence, 1988.

Falkenhainer, B. and Rajamoney, S., 1988. The interdependencies of theory
formation, revision, and experimentation. In Proceedings of the Fifth Inter-
national Conference on Machine Learning, Ann Arbor, Michigan. San
Mateo: Morgan Kaufmann Publishers.

Faltings, B., 1986. A theory of qualitative kinematics in mechanisms. Univer-
sity of Illinois at Urbana-Champaign, Department of Computer Science
Technical Report No. UIUCDCS-R-86-1274.

Faltings, B., 1987a. Qualitative place vocabularies for mechanisms in configu-
ration space. University of Illinois at Urbana-Champaign, Department of
Computer Science Technical Report No. UIUCDCS-R-87-1360.

Faltings, B., 1987b. Qualitative kinematics in mechanisms. In Proceedings of
IJCAI-87, Milan, Italy. San Mateo: Morgan Kaufmann Publishers.

Forbus, K., 1980. Spatial and qualitative aspects of reasoning about motion. In
Proceedings of AAAI-80, Palo Alto, California. San Mateo: Morgan Kauf-
mann Publishers.

Forbus, K., 1981a. A study of qualitative and geometric knowledge in reason-
ing about motion. MIT Al Lab Technical Report No. 615.

Forbus, K., 1981b. Qualitative reasoning about physical processes. In Proceed-
ings of IJCAI-81, Vancouver, B.C. San Mateo: Morgan Kaufmann Publish-
ers.

Chapter 7 Qualitative Physics 293

Forbus, K., 1984a. An interactive laboratory for teaching control system con-
cepts. Bolt Beranek and Newman Technical Report No. 5511.

Forbus, K., 1984b. Qualitative process theory. Artificial Intelligence 24.

Forbus, K., 1984c. Qualitative process theory. MIT Al Lab Technical Report
No. 789.

Forbus, K., 1985. The problem of existence. In Proceedings of the Cognitive
Science Society. Hillsdale: Lawrence Erlbaum.

Forbus, K., 1986a. Interpreting measurements of physical systems. In Proceed-
ings of AAAI-86, Philadelphia, Pennsylvania. San Mateo: Morgan Kaufmann
Publishers.

Forbus, K., 1986b. The qualitative process engine. Technical Report No. UI-
UCDCS-R-86-1288. Also to appear, International Journal of Al in En-
gineering, 1988.

Forbus, K., 1987a. The logic of occurrence. In Proceedings of IJCAI-87,
Milan, Italy. San Mateo: Morgan Kaufmann Publishers.

Forbus, K., 1987b. Intelligent computer-aided engineering. In Proceedings of
the AAAI Workshop on Al in Process Engineering, Columbia University,
New York. To appear in Al Magazine, Fall 1988.

Forbus, K., 1987c. Interpreting observations of physical systems. /EEE Trans-
actions on Systems, Man, and Cybernetics SMC-17(3).

Forbus, K. 1988. In press.

Forbus, K. and Gentner, D., 1986a. Learning physical domains: Towards a
theoretical framework. Machine Learning: An Artificial Intelligence Ap-
proach, Volume II, R. Michalski, J. Carbonell, and T. Mitchell, ed. San
Mateo: Morgan Kaufmann Publishers.

Forbus, K. and Gentner, D., 1986b. Causal reasoning about quantities. In Pro-
ceedings of the Eighth Annual Conference of the Cognitive Science Society,
Ambherst, Mass. Hillsdale: Lawrence Erlbaum.

Forbus, K., Nielsen, P. and Faltings, B., 1987. Qualitative kinematics: A
framework. In Proceedings of IJCAI-87, Milan, Italy. San Mateo: Morgan
Kaufmann Publishers.

Forbus, K. and Stevens, A., 1981. Using qualitative simulation to generate ex-
planations. Bolt Beranek and Newman Technical Report No. 4490. Also in
Proceedings of the Third Annual Meeting of the Cognitive Science Society.
Hillsdale: Lawrence Erlbaum.

Gelsey, A., 1987. Automated reasoning about machine geometry and kinemat-
ics. Proceedings of the Third IEEE Conference on Al Applications, Orlando,
Florida.

Gentner, D., 1983. Structure-mapping: A theoretical framework for analogy.
Cognitive Science 7(2).

Gentner, D., 1987. Historical shifts in the use of analogy in science. University
of Illinois Department of Computer Science Technical Report No. Ul-
UCDCS-R-87-1389.

294 Forbus

Gentner, D., 1988. Mechanisms of analogical learning. To appear in Vosni-
adou, S. and Ortony, A. ed., Similarity and Analogical Reasoning. London:
Cambridge University Press.

Gentner, D. and Stevens, A. ed., 1983. Mental Models. Hillsdale: Lawrence
Erlbaum.

Hayes, P., 1979. The naive physics manifesto. Expert Systems in the Micro-
electronic Age, D. Michie, ed. Edingburgh: Edinburgh University Press.

Hayes, P., 1985. Naive physics 1: Ontology for liquids. Formal Theories of the
Commonsense World, R. Hobbs and R. Moore, ed. Norwood: Ablex Pub-
lishing.

Hendrix, G., 1973. Modeling simultaneous actions and continuous processes.
Artificial Intelligence 4.

Hinton, G., 1979. Some demonstrations of the effects of structural descriptions
in mental imagery. Cognitive Science 3(3).

Hogge, J., 1987a. Compiling plan operators from domains expressed in qualita-
tive process theory. In Proceedings of AAAI-87, Seattle, Washington. San
Mateo: Morgan Kaufmann Publishers.

Hogge, J., 1987b. The compilation of planning operators from qualitative
process theory models. Technical Report No. UITUCDCS-R-87-1368.

Hogge, J., 1987c. TPLAN: A temporal interval-based planner with novel exten-
sions. Technical Report No. UIUCDCS-R-87-1367.

Hollan, J., Hutchins, E., and Weitzman, L., 1984. STEAMER: An interactive
inspectable simulation-based training system. Al Magazine.

Iwasaki, I. and Simon, H., 1986. Causality in device behavior. Artificial Intel-
ligence 29.

James, G., and James, R., 1968. Mathematics Dictionary. New York: D. Van
Nostrand Company.

Joskowicz, L., 1987. Shape and function in mechanical devices. In Proceedings
of AAAI-87, Seattle, Washington. San Mateo: Morgan Kaufmann Publishers.

Kokar, M., 1987. Critical hypersurfaces and the quantity space. In Proceedings
of AAAI-87, Seattle, Washington. San Mateo: Morgan Kaufmann Publishers.

Kuipers, B., 1984. Common sense causality: Deriving behavior from structure.
Artificial Intelligence 24.

Kuipers, B., 1986. Qualitative simulation. Artificial Intelligence 29.

Kuipers, B., 1987. Abstraction by time-scale in qualitative simulation. In Pro-
ceedings of AAAI-87, Seattle, Washington. San Mateo: Morgan Kaufmann
Publishers.

Kuipers, B. and Chiu, C., 1987. Taming intractable branching in qualitative
simulation. In Proceedings of IJCAI-87, Milan, Italy. San Mateo: Morgan
Kaufmann Publishers.

Langley, P., Simon, H., Bradshaw, G. and Zytkow, J., 1987. Scientific Dis-
covery: Computational Explorations of the Creative Processes. Cambridge,
Mass.: The MIT Press.

Chapter 7 Qualitative Physics 295

Lee, W. W, Chiu, C. and Kuipers, B. J., 1987. Developments towards con-
straining qualitative simulation. University of Texas at Austin Artificial In-
telligence Laboratory Technical Report No. Al TR87-44.

Lozano-Perez, T., 1983. Spatial planning: A configuration space approach,
IEEE Transactions on Computers C-32.

Mavrovouniotis, M. and Stephanopolous, G., 1987. Reasoning with orders of
magnitude and approximate relations. In Proceedings of AAAI-87, Seattle,
Washington. San Mateo: Morgan Kaufmann Publishers.

Mohammed, J. and Simmons, R., 1986. Qualitative simulation of semiconduc-
tor fabrication. In Proceedings of AAAI-86, Philadelphia, Pennsylvania. San
Mateo: Morgan Kaufmann Publishers.

Mozetic, 1., 1987. The role of abstractions in learning qualitative models. In
Proceedings of the Fourth International Workshop on Machine Learning, Ir-
vine, California. San Mateo: Morgan Kaufmann Publishers.

Nielsen, P., 1987. The qualitative statics of rigid bodies. University of Iilinois
at Urbana-Champaign, Department of Computer Science Technical Report
No. UIUCDCS-R-87-1354.

Nishida, T. and Doshita, S., 1987. Reasoning about discontinuous change. In
Proceedings of AAAI-87, Seattle, Washington. San Mateo: Morgan Kauf-
mann Publishers.

Novak, G., 1976. Computer Understanding of Physics Problems Stated in Nat-
ural Language. Ph.D. thesis, Department of Computer Science, University
of Texas at Austin.

Raiman, O., 1986. Order of magnitude reasoning. In Proceedings of AAAI-86,
Philadelphia, Pennsylvania. San Mateo: Morgan Kaufmann Publishers.

Rajamoney, S. and DeJong, G., 1987. The classification, detection, and hand-
ling of imperfect theory problems. In Proceedings of IJCAI-87, Milan, Italy.
San Mateo: Morgan Kaufmann Publishers.

Raulefs, P., 1987. A representation framework for continuous dynamic sys-
tems. In Proceedings of IJCAI-87, Milan, Italy. San Mateo: Morgan Kauf-
mann Publishers.

Sacks, E., 1985. Qualitative mathematical reasoning. In Proceedings of 1JCAI-
85 , Los Angeles, California. San Mateo: Morgan Kaufmann Publishers.

Sacks, E., 1987. Piecewise linear reasoning. In Proceedings of AAAI-87, Seat-
tle, Washington. San Mateo: Morgan Kaufmann Publishers.

Saud, E., 1987. Presentation at the First Qualitative Physics Workshop, Ur-
bana, Illinois.

Schmolze, J., 1986. Physics for robots. In Proceedings of AAAI-86, Phlladel-
phia, Pennsylvania. San Mateo: Morgan Kaufmann Publishers.

Sembugamoorthy, V. and Chandrasekaran, B., 1984. Functional representation
of devices and compilation of diagnostic problem-solving systems. Techni-
cal paper, Al Group, Ohio State University.

296 Forbus

Shearer, J., Murphy, A., and Richardson, H., 1971. Introduction to System Dy-
namics. Reading: Addison-Wesley.

Simmons, R., 1983. Representing and reasoning about change in geologic in-
terpretation. MIT Aurtificial Intelligence Lab Technical Report No. 749.

Simmons, R., 1986. Commonsense arithmetic reasoning. In Proceedings of
AAAI-86, Philadelphia, Pennsylvania. San Mateo: Morgan Kaufmann Pub-
lishers.

Stanfill, C., 1983. The decomposition of a large domain: Reasoning about ma-
chines. In Proceedings of AAAI-83, Washington, D.C. San Mateo: Morgan
Kaufmann Publishers.

Struss, Peter 1987. The limitations of qualitative mathematics. Paper presented
at the First Qualitative Physics Workshop, Urbana, Illinois.

Ullman, S., 1985. Visual routines. Visual Cognition, S. Pinker, ed. Cambridge,
Mass.: MIT Press.

Waltz, D. and Boggess, L., 1979. Visual analog representations for natural lan-
guage understanding. In Proceedings of IJCAI-79, Tokyo, Japan. San
Mateo: Morgan Kaufmann Publishers.

Weld, D., 1986. The use of aggregation in qualitative simulation. Artificial In-
telligence 30(1).

Weld, D., 1987. Comparative analysis. In Proceedings of IJCAI-87, Milan,
Italy. San Mateo: Morgan Kaufmann Publishers.

Weld, D., 1988a. Exaggeration. In Proceedings of AAAI-88, St. Paul, Minne-
sota. San Mateo: Morgan Kaufmann Publishers.

Weld, D., 1988b. Theories of Comparative Analysis. M.1.T. Ph.D. thesis, May.

Williams, B., 1984. Qualitative analysis of MOS circuits. Artificial Intelligence
24,

Williams, B., 1986. Doing time: Putting qualitative reasoning on firmer
ground. In Proceedings of AAAI-86, Philadelphia, Pennsylvania. San Mateo:
Morgan Kaufmann Publishers.

Williams, B., 1988. In press.

Yip, K., 1987. Extracting qualitative dynamics from numerical experiments. In
Proceedings of AAAI-87, Seattle, Washington. San Mateo: Morgan Kauf-
mann Publishers.

Chapter

8

Model-based Reasoning:
Troubleshooting

Randall Davis

Walter Hamscher
Artificial Intelliigence Laboratory
Massachusetts Institute of Technology

1 Introduction

To determine why something has stopped working, it’s useful to know how it
was supposed to work in the first place. That simple observation underlies
some of the considerable interest generated in recent years on the topic of
model-based reasoning, particularly its application to diagnosis and trouble-
shooting. This chapter surveys the current state of the art, reviewing areas that
are well understood and exploring areas that present challenging research top-
ics. We begin by describing the nature of the task, exploring what is given and
what we’re trying to produce. Since, as will become clear, there are considera-
ble advantages to reasoning from a model of structure and behavior, we need
representations for both; we review the set of techniques in current use and ex-
amine their strengths and weaknesses.

A considerable part of the chapter is then devoted to how those repre-
sentations are used to do model-based diagnosis. We view the fundamental par-
adigm as the interaction of prediction and observation, and explore it by ex-
amining its three fundamental subproblems: generating hypotheses by reason-
ing from a symptom to a collection of components whose misbehavior may
plausibly have caused that symptom; testing each hypothesis to see whether it
can account for all available observations of device behavior; then discriminat-

297

298 Davis and Hamscher

ing among those that survive testing. In any real system these three are likely
to be intertwined for reasons of efficiency. We treat them independently to
simplify the presentation and because our goal is a knowledge-level analysis—
an understanding of what reasoning capabilities arise from the varieties of
knowledge available to the program.

The presentation is structured as a sequence of increasingly elaborate ex-
amples, starting with the simplest approach and adding successively more
knowledge, producing successively more constraints that can be brought to
bear. This is useful both as a way of simplifying the presentation and as a way
of making another of the major points of this chapter: While a wide range of
apparently diverse model-based systems have been built for diagnosis and trou-
bleshooting, they can all be seen as exploring variations on the basic paradigm
outlined here. Their diversity lies primarily in the varying amounts of and
kinds of knowledge they bring to bear at each stage of the process.

Our survey of this familiar territory leads to a second major conclusion of
the chapter: Diagnostic reasoning from a tractable model is largely well under-
stood. That is, given a model of structure and behavior of tolerable complexity,
we know how to use it in a variety of ways to produce a diagnosis. Part of the
evidence for this is the number of different applications of that same paradigm
in a variety of domains.

There is, by contrast, a rich supply of open research issues in the modeling
process itself. While to some degree we know how do model-based reasoning,
we don’t know how to model complex behavior, how to create models, and
how to select the “right” one for the task at hand. The last major section of the
chapter deals with these topics, exploring the kind of difficulties that arise and
using them to outline some important research problems.

2 The Basic Task

The basic paradigm of model-based reasoning for diagnosis can best be under-
stood as the interaction of observation and prediction (Figure 1). In one hand
we have the actual device, typically some physical artifact whose behavior we
can observe. In the other hand we have a model of that device that can make
predictions about its intended behavior. Observation indicates what the device
is actually doing, prediction indicates what it’s supposed to do. The interesting
event is any difference between these two, a difference termed a discrepancy.

A fundamental presumption behind model-based diagnosis is the notion
that if the model is correct, all the discrepancies between observation and pre-
diction arise from (and can be traced back to) defects in the device. Simply
put, if the model is right, the device must be broken, and the discrepancies are
clues to the character and location of the faults. This is a useful view of the
process that will carry us through the first two-thirds of the chapter.

Chapter 8 Model-based Reasoning: Troubleshooting 299

We will eventually see, however, that it is also a simplified view: The as-
sumption that the model is correct is in fact necessarily wrong in all cases. It is
wrong in ways that are sometimes quite obvious and sometimes quite subtle.
Simply put, a model is a model précisely because it is not the device itself and
hence must in many ways be only an approximation. There will always be
things about the device that the model does not capture.

The good news is that the things the model fails to capture may have no
pragmatic consequence. A schematic for a digital circuit will not indicate the
color, smell, or coefficient of friction of the plastic used to package the chips,
but this typically doesn’t matter. In theory the model is always incomplete, and
hence incorrect, in some respects, but it is a demonstration of the power and
utility of engineering approximations that models are often pragmatically good
enough.

The less good news comes in situations where the approximation is not
good enough. In that case we need to ask the more difficult question of how to
do model-based reasoning in the face of an incorrect model. What can be done
when both the model and the artifact may have defects? We turn to this later in
the chapter.

Turning back to the basic problem, the task can be specified slightly more
precisely by saying that we are given:

* Observations of the device, typically measurements at its inputs and out-
puts (because these are often easiest to obtain; in fact measurements at any
point will do and are handled identically).

* A description of the device’s internal structure, typically a listing of its
components and their interconnection.

* A description of the behavior of each component.

The task is then to determine which of the components could have failed
in a way that accounts for all of the discrepancies observed. Figure 2, for ex-
ample, shows a device made from three multipliers and two adders. We know
the values at the five inputs; the value at output F was predicted to be 12 and
observed to be 10 (observations are noted in square brackets). The value at G
is predicted to be 12 and has not yet been measured. The overall task is to use
knowledge about the structure and behavior of the components to determine
which ones could have produced the discrepancy at F, a process explored in
detail in Section 6.

This approach to troubleshooting has been called by a variety of names in
addition to model-based, including “reasoning from first principles” because it
is based on a few basic principles about causality, and “deep reasoning,” an un-
fortunate term intended to distinguish it from the associational rules typically
used in rule-based expert systems. '

300 Davis and Hamscher

ACTUAL OBSERVED PREDICTED {____ MODEL
DEVICE gbservations BEHAVIOR BEHAVIOR predictions
DISCREPANCY

Figure 1 Diagnosis as the Interaction of Observation and Prediction.

Numerous model-based reasoners have been built, exploring a variety of
problem domains. The illustrative sample given in Table 1 indicates the growth
of interest in the area. Some of the earliest work dates from the mid-1970s,
with a considerable growth of interest in the mid-1980s. Much of it has been
directed to electronic circuits, both analog and digital, but there have also been
applications to problems in neurophysiology, hydraulic systems, and other
domains. In the remainder of this chapter we use digital circuits as a motivat-
ing example, largely because they are a familiar and important application that
offers a range of examples from simple to quite complex.

Table 1 Sample Model-Based Troubleshooting Systems

INTER [de Kleer, 1976]
WATSON [Brown, 1976]
ABEL ([Patil et al., 1981}
SOPHIE (Brown et al., 1982]
HT [Davis et al., 1982]
LOCALIZE {First et al., 1982]
IDS [Pan, 1984]

DART {Genesereth, 1984]
LES/LOX [Scarl et al., 1985]
GDE [de Kleer and Williams, 1987]
DEDALE [Dague et al., 1987]

Chapter 8 Model-based Reasoning: Troubleshooting 301

A=3 MULT-1
B3 F=12
= ADD-1 j— F=10]
C=2 — _|MuLT-2
G=12
=2 ADD-2 —
3 MULT-3

Figure 2 A Common Example.

The term model has been used widely to refer to a range of different
things and is somewhat underdetermined. It is thus useful to review briefly
some of the different kinds of models that have been used, to get a sense of the
character of the information that models have supplied. As noted, the models
used in this chapter contain information about the structure and correct be-
havior of the components in the device. Work in [Patil et al., 1981] describes a
medical diagnosis system that used models of behavior without structure, mod-
els that indicated how one physiological event in the body could lead to
another (e.g., low blood serum pH causes increased respiration, which causes
decreased CO2 concentration). Traditional circuit diagnosis has often relied on
fault models, descriptions of the varieties of component misbehaviors typically
encountered. Finally, work in [Pan, 1984] has attacked the problem of depend-
ent failures by building models that capture the behavior of a component when
it receives out-of-range inputs and itself begins to malfunction as a result. All
of these are varieties of models, so a system built around any one of them

302 Davis and Hamscher

could be termed model-based. Within the scope of this chapter we are con-
cerned primarily with models of structure and correct behavior.

3 Alternate Approaches

Since a number of different approaches to diagnosis have been explored over
the years, it is useful to consider alternatives to the model-based approach both
as a way of setting it in context and as a way of establishing the appropriate
circumstances for its use.

One traditional approach has been to use diagnostics, the test programs
traditionally used on electronic devices at the end of the manufacturing line, to
ensure that the device is capable of doing everything it’s supposed to do. A
second technique is to build a “fault dictionary” by using simulation and a list
of the kind of faults anticipated. The idea here is to simulate the device be-
havior for every one of the ways in which each individual component can mis-
behave. Each simulation generates a description of how the entire device would
behave if a specific component were broken in a specific way. The overall re-
sult is a list of fault/symptom pairs. The list is then inverted so that it is orga-
nized by symptom, providing a dictionary that indexes from observed symp-
tom—the surface misbehavior—to one or more underlying faults capable of
causing that misbehavior.

Third, we can build programs to do diagnosis by capturing the experience
of experts, in the fashion widely used to build rule-based systems that employ
empirical associations. Finally, decision trees are a long-standing approach to
capturing diagnostic knowledge and offer a way of organizing a set of ques-
tions that leads methodically through the process of zeroing in on the faulty
component.

Given the diversity of approaches to the problem, why and when does it
make sense to use the model-based approach? One way to answer the ques